STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-168

STAN-CS-72-287 | AD 746146

ADMISSIBILITY OF FIXED-POINT INDUCTION IN FIRST-ORDER
LOGIC OF TYPED THEORIES

BY

SHIGERU 1GARASHI

SUPPORTED BY
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
AND
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. &7

MAY 1972

S Do
o

.: \0! ?“ We jed

Repraduced by Ved \ \‘ﬂﬂ

NATIONAL TECHNICAL
INFORMATION SERVICE

us D'por' of Conmerce
aringfi ld VA 2215t

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN|VERSITY




STANFORD ARTIFICIAL INTELLIGENCE PROJECY MAY 1972
MEMO AlM=168

COMFUTER SCIENCE DEPARTMENT
REPORY CS=287

AUMISSIBILITY OF FIXED=POINT INDUCTION IN FIRST«ORDER

LOGIC OF TYPED THEORIES

by

®)
Shige,ry lgacaghl

ABSTRACT?S First=grder lO0alc Is extandec so as to des| with typed
theories, egpecially that of continuous ‘unctliens with
fixeo=point Induction formallzed by D, Soott, The transistion
of his foemal system, or the X caloulus-orlented system
derived and Implemented o0y R. Milner, into this logle
amounts to addino predicate calcujus features to thenm,

In sych a loglc the fixed=point Induction axloms are no
longer valid, in general, so that we characterize formulas
for which Scottetype induction Is applicabie, In terms of
syntax which gan De checked by machines automatically,

To be pregented at the Symposium on Theoratlical Programming,
Novosiblrsk, August 1972,

This research was supported In part by the Advanced Research
Projects Agency of the Office of the Secretary of Defense under
Contract SU=183 and in part by the National Aeronavtics and Space
Admirnistration under Contract NSR 05-920-500.

The views and conglusions contained In this document are

those of the author and should not be Interpreted as necessarlly
representing the ofticlal policles, slther expressed or Implied, of
the Advanced Research ProJects Agengy, the National Aeronaytios and
Space Agministration, or the U, S, Government,

Reproduced ;n the USA, Avaliabdle from the Nationa| Teohnleal
Infcrmation service, springfiela, virginia 22153,

®) Acdress after 1 July 1972: Research |[nstitute for Mathematlioal
Sciences, Kyoto University, Sakyoku, Kyoto 686, Japan,

i



~~
* ®

wnN

CONTENTS

Introduction teren
FlegteOprder LoG!c of Typed Theorles ceas
Langusge teeoy
Interpretation . teene
Teuth functions assoclated with formulas ,,,..
Lo3!ca! axlioms and rules Yeese
Weak |y Contlinuous Functions seens

Admissibiilty of Fixed=Point [nduction N

Characterization of Predicates that
agmit Fixede=point Induction veven

Syntax of Formulas that admit Induyctlion ,,,..

Tabjeg of inheritangce of admigsibi(ity tease
Cxampi® of formuia that admitg Induction ,,,..

Transiation of LCF Into FjirstsOrder

Logic of Typed tTheories e
Axlomatization seeve
(Table of moniogical| axioms: ereae
Adequacy sre e
Examp|e taken fpom proof of compller

corroctness toeee
Discussions XEEE

® o

1f

e~NAN N =



Aorissibility Of FixedePolnt Induction In FirgteOrder Loylo
0f Typed Theorles

by

Shigeru lgarasghi

1 Introduction

D, Scott postulated a |ogle of typed functions comblined with
fixea=point Induction{18), R, Mliner modifled this '!oglc |nte o
forral system called LCF 30 as to handie Aeexpressions convenlent|y,
and implemented it in an (nteractive proof checkergé), Singe an
ear!y oeriod Of ¢this Implementation it has peen thought thet some
precicate calculug=|ike faclllty may be needed for sSome or Other
reasons, so0 that in the machine version of LCF are Inciuded a kind of
universal quantifier ang Implication, the iatter being one I[evel
lower than the Implication In¢cluded in the orlginal foglec, These
operators, however, can be used in quite a restricted manner, for
they are only abbreviations of |egitimate formulas In LCF, Especially
implication cannot be nested,

The writer geviged a formal means to carey out derlvations of
a predicate calculus whose obJects were typed A-expregsions within
LCF, which caiculus included the universal quantifier as well as
usual propositiona| operators but not the existentia| guantifler,
which could not be replaced by negation and universal gquantifleation
since GentZen’s intyltionistic system was used as the pasis. J,
McCarthyl4) propcsed to use the full classical predioate caljcuius as
a super-structure of LCF, quantifiers ranging over LCF objects, He
suggested also some generalization of such a system, The formal
system discussed in the present paper is In the essentialis along the
last |ine, The main purpose of ¢the opresent paper Is to allow
Scott=type fixed-point induction as much as possible In the intended
jogic,

This point wi|i be explained more conoretely, Suppose f and ¢
are continuous partial functions, The predicate fag, where the
equality means the »strong eauallity", 1,e,, if one side Is undefined
so I8 the other, 1s not continuous, But as in Scott’s |oglc we can
use fixedepoint inductlon In order to drove this equallity, Then
what Wil happen to the following formuia which we are going to allow
in the Intended lodic?

Yx(f(x)sa-g(x)sh(x)),

with the axliom



fsMin AfAxJ(f,x),

- belng Implication In the classical sense, MIn ¢the ninimal
fixed=polint of the function to which it is prefixed, and J(f,x) a
terr In LCF, It turns out that if a|l the functions Invo|ved In the
expression J(f,x) are continuous, whieh condition ig rcather natural
in order to consigep |ty fixed=-point, and the cange of ¥ Ig discroeze,
tike a pocolean function, then we can apply fixed-point Induction
without Incurring Inconsistency, even if g and h are non=continueus
functions, In fact the continulty of 3 and h does not matter In thnls

case, for fixeoepoint Indugtion Iis not sound uniess the above
conaitions are satigfled,

We shal| give a syntactic characteriZation of the formujas
for which fixed=-point induction is sound, 80 that machines can cheok
autoratically whether or Nnot a glven formuia aedmits appjlication of
the inference rule corresponding to fixsd-point induction,

? First=Order Loglc of Typed Theories

we conslider a kind of iInfipite|ly many=sorted (ljrsteorder
logic tn the classical sensel32), The obJjects are Individyals (n the
usus! sensc together with functions of Individuals or previously

defined functiong, Each type can Do regarded as a sort, Only
objects are typed, and we do not consider predicate variables, The
Iintended formaj system wlj|{ be aboveviated as FLTY, we shall

partially tollow gheoenfield’s stylelil),
2.1 Language

Types

Al, We presuppoge that there are a number of <types galled the
“base types™, Some of the base types can be “ordered types™, Typoes
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are dencted by «, O, etc.,» 4nd the aordered types are pogtfixed by the
jetter “o", Ilke 0, No relationships between & and €0 ars assumed
if both @ and €0 happoen to be base types, Types other than the base
types are called the "function types”,

A2, If a and B are types, 80 |g 8<B, Hoth sl<e2. ,,, cap<P gnd

€1, 02, ..y +GNe3 gre used a8 the adbreviations of Wie(@2<( ,,,
e{gnesd),, )},

A3, It @0 and 0o are types, which must be ordsred types, %0 |s
(eg=B0)o,

Becauss of this construction we can consistent|y abbreviate
wgng excedt the outmost one, For INnstance, (¥o-+(Pe<+(Ppefo)ololo Is
sbbreviated by (%<R.PeB)0,

Alphaoet

Tne ajphapet of the |[ntended formal system consists of
s-congtants and sevariabies for each type ., (e3, v
,en)=predicates, (,es,, precicate constants, for each n-tuple ("%, ,s.
,on) of types (n23), and the following |oglical symdols,

£ { , ) av ]Mn

It & is a base type, Aan S=congtant or variadie can be called an
individual constant or varlabdle, Otherwlige, an @egonstant or
variatle can be cglled o fungtion oonstant or varigble, It must be
noted that functiong of arbitrapy finite oraer appear. An (81, ..
san)~predicate ig an N argumen<t predicate In the usua| sense, the
{-th argument being of type ei for each | (15iSn),

we shal| use several defined gymbols whieh are standard In
fogic ag follows,

& « v 2

The syrdol =« stands for Impilcation, and £ for logica| squlvalenge,
Thus < reang function In the text and Iimpjicetion In formulas,

Terns

£1., i1t & |s apn s~congtant, then a is an s=ternm, 1t x ls an
savarisble, then x |s an G=teenm,

R2, It t s an a<%term and u s an a=term, then ¢tiy) Is a
Reterm, t(u) cgn be ailgo wWritten as (t u), and {eCulilv) ag
tlu.Vv),



83, If ¢ is an (@geso)o=term, then Min t |s an So-term,

84, [t ¢ Is 3n eo=term and &g lg & function type, then ¢ is an
-". 'm.

fFornulas

ci. I1f ¢ and y are a=-termg, then t=u ls a formula,

ce., 1t D is an (%1s «es s3n)=predicate that Is different from &,

and t! Is an si=term for each | (1SiSn) , then pltl, .., sth) g a
formuise,

c3, It A is a formula, then -~A |s a formula,
c4, 1t A ancd § are formulas, then AvB, AdB, and A<B are formyuias,
cs. It A is a formu|m and x (s an Sevariable, then VxA and 3xA

are forruias,
2,2 Interpretation

Wa chooss a ngoneempty set D(%), or U, for each base tybe «
as the domaln »f ingividuals of type o, [f & (s an ordered bDase
type, We assume further that DO s an ordered gset (L, £) satlsfying
the following congitions,

(1) (Le S) has the leagt element, l,e, inf L, which shall be denoted
oy C.

(i4) (L, ) Is an ==inductively ordered set in that L Is non=empty
and every noneempty countable set X such that X<[ and X s (Inearly
order®d has sup X In L,

That L is non=empty Is a part of the standard definition of the
induct!vely orcared set, which Is automatically satisfled In this
cese, The symbo| »=* reads “omega" through out this paper, N some
case, It can be read "aleph naught™,

Suppose® Da and DB have been definred, e |0t D(e=0] Dbe the
set of all the functliong of D® (nte Dn, If © and p are ordered type,

we let UC(9+B)0) Dbe the set of all the ==continuovs functions
belorglng to DLS=7) together witn the order relation § deflned by

f50 1ttt f(x)Sgix) for any xels,

where the =~econtinujty is defined as follows,



Definition, A "seaquence” X In a set L is a funotion of the @0t of
the positive Integers iNnto L, Xn denoting the neth teem X(n), X
is weitton as (Xn) gometimes, A "monotone Increasing™ sequence X
In (Le §) 's a sequence in (L, S) sych that

XI s lz S [N ] S lﬂ s [ ] L]
f 1 "=egontinuoyusg” (ff
f(sup X) 3 gup f(X),

for sny monotone increaging sequence X (n (L, $), where f(X) denotes
the set (f(x)IxeX),

Remark, f Is ==continuous In this sense Iff fisup X) = gup (X
for any countable directed set XcL, (See section 3,) Thls property
will pe called the =econtinuity, while = wtronger deflnition of

continuity ls that f(gup X) s sup f(X) for any directed set Xc_ . f Is
salg t0 be "monaotone” I1ff f(x)Sf(y) whensver xSy, T™he =econtinulty
implies the monotonicity, whigh can be shown as fol lows[18],

Supcose xsy, Let X1 be x and Xn be y for any n22, 80 that X is a

monotone increasing seaquence, By w=econtinuity, f(sup X) = sup f(X),
But sue X = y, and fi{x) S sup f(X). Therofore f(x) § f(y),

by this construction 0%0 can be shown to gatisfy the
concitions (1) angd (11), so that the inductive definition works, In
fect, the function g: DeoceDpo such that

gi(x) = 0 for any x€Dwmo

is the Ileast element of D[(e®o<Polo], and, for each asend!ng chaln
(fn) in DClao<PO)3), the function h; Q®c<+0fo that maps each e|ement x
of Deo onto supifnix)) s sup(fnl,

With eacn a=constant a In FLY is associated an element a» of
Dg, With each (gl, ,., senlepredicate p In FLT (s assoclated an
neary rolation pe in Del® ,., ®Dan, Such a cojlection of Dge’s will be
oenoted by D, and FLT(D) will denote the |anguage obtained from FLT

by 80dinrg a new e-constant, cajled a "name®, for each element of D@,
for each s,

A term s "closed” If no variables occur free In I¢t,
Especiailly, s variaple=free term is cjosed in this sense, We yse
this terminology becaouse we ghall extend the gyntax of terms later
in order to axlomagize (LCF, In which Axx |s a closed tarm, though K3
i{s not varlable=freg, We dofine an Seindividual et for each olioged
s=term t by Induction on terms,

Ci, If t 1s an Inalviduyal symtol, then t must be an e=gconstant
since t Is closed, we (et et Do areDe,
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oz, 1¢ ¢ Is uiv), then u must be a closed sep-term and v & Closed
s=term, 30 that syué€¢Dimed) and eveds, We let s(ulv)) be eylev ),

D3, It ¢t Is Min y, then u must be a ciosed (@0+s0)o=term, 00 that
ey 8 an =~¢continuoys function of type %qg+%g, Let f denote rV, We
let ot bg Ingixigixlax) (With reSPgct %0 the ofgering of o)) namgly
the leagt fixed polat of fo which Ig ghgwy to .x?.t ag follguslil],

Let f,n,x denote
fU60 .o, T(X),y,)) (f occurs n times),

for each n28, Especially, ft.2,x s x, Then supi{f,n,0), or
sup(f,n,0108n<=) gtrigtiy, ls in fact inf(x|f(x) x), BY =egontinuity,

fisupl(f,n,0)) = sup(f(f.n,0))
= gup{f.tnel),0)
z guplf.n,0118n¢=)
< suplf n,0},

Gy wonotonicity (see the above remark),

sup{f,n,2) < f¢lsupif,n,0)),

Thus
f(supi{f,n,00) 3 syupit,n,0),

Namely suplf,n,0) is a fixea point of f, Let a Do an element of O%o

such that f(a)sa, ince D%a, f(0)St(a)=g, by monotaniclity, Tthen, by
mgthzmatica! lnauct?on. t,n,08a for any n, 30 that sup(f, n,0)Sa, Thus
sup{f,n,0)=intixieixdlan),

D4, 17 t Is a cloged Jo=term and o0 is not a base type, then ete
Deoc and DesocDe, sp that wiElw,

A trutn vgiye is eilther T or F. T meansg "¢rus”™ and F

“"ftaise™,

4 tormula ig "clogsed” If no varianies occur free in Iit, We
define & truth value wa for each closed formula A In FLY(D) by
lndyction on formulas, AL J, or tL ), genotes a formula, or &8 term,
with voids, and ACx), or t(x), resuits of repjacing them by x.

£1. 1f A Is ¢2y, then ¢t and u must be closed s=tgrmg for &
certain a, since 5, is closed, HWe (et
eAST (ff wezmy,
£2, If A {3 pltls «.. +tr) where p (s different from s, we (et
eAzT (11 peltis .oy »tN),

(]



£3, If A is «B. then we (et
wAZT [ff wHSF,
Eq, 1t A is BvC, then woe ot

vAZY |ff «B=T op «CaT,

ES. 1f A |Is 3xBf(x) and x |s an sevariab.e, then Bla) Is closed
for fach €=name a, We (ot

vAsT (ff #(Blal))sT for some ®=name a,

A "Deingtance” of a formuia ALxl, (.. ,%xn] of FLY 1s a cloged
forruls of the form ACal, ... can] In FLT(D), where al 1o an s |=name
1t x| is an etevgriable (1sisn), A formula A of FLT s "valld® in D

It eA’=T for every Del{ngtance A’ of A, fn pacticuiar, a ecloged
fornula A of FLY 1s valld I17f wAsT,

2,3 Truth functiong associated with formulas

To study the properties of formuias we Shal| conslder truth
functions, nameiy functions whose values are the truth vaiues T end
F, assoclated with formulas In the natural manner, For the
convenlence  of the later description we uyge the followling
terrinologles,

Let x be an Sevariadle, and A(x) a formula In which at most x
occurs frase, Since ACa) Is a closed fromuja for each €=ngmeé a, we
can define a function f. D®«(T,F) that sends each as onto the truth
value wACa), f ig called "the truth function determined by A and x
in D", orf, if there is no ambliguity, “the truth function determined
by A"

Lot ALxY, ... »xn) be a formyla in which at most varlab|es
X1, ¢es ¢+ xn, respectively of type €1, .., , @n, occur free, A
“(9,xl)einstance” of ALx1, oo oXNn) In FLT Is a formula (n FLTC(D) of
the forr Alal, .., .n(l-l).xl.a(l*i)o ses o8N] where aly, ,,. ¢ &N are
names of types %1, ... » ®¥n, Thys at most xi ocecurs free (n formulas
that ere (D.xl)einstances of a formula (1218N), Therefore sach
(D.xl)=ingtance determines a tryth functlion,

ALXl, .+ sxn) also "determines” an negry truth function f:
ofeiie ,,. oDLen) <« (T, F) that gends each n=tup|e (age, ..y s800)
onto ®sALal, ..¢ cr0N1,



2.4 Logica| axioms and rules

We shall accept the following axioms and rules for FLT,

Rule of substitution, In the bejow schemata of axiome or rules,
arbitrary variadleg can D¢ substituted In pilaaoe of 8, x, ¥, 2, %1,
yi, 210 o0+ XMy yn, Zne Bng W ReDjtrRey torme ’n p"‘. of ¢ w
ve &Nnd g, an apbit,a,y nNeary ppedicage in ,laoe ) e Sadh N, and
an ardlitrary formylg In place of A, B8, and ’ tugJoct %0 the
restrictions that the results of substitutions should be welle=formed
forvulas and that any free Occurrence of variadjos shou|d bs Kkept
free, On the Induction axlom are Imposed the additienal! restelotion
that oniy those formulag Oof the form AL ) that "admit Induet]en
syntactical iy are gubstituted In oiace of AL ), The effestive
definition of formujag that admit (nductien gyntacticaily Is glven
In gsoction 6,1,

Logjcal axlomg

propositional axiom, ~AVA,
fdentity axlom, xSx,
equality axionm, XBy < Zsw * x(Z)sylw),

xsy « Min x 8 Min y,
XL3YL ¢ ,4q ¢ XNBYN © PixY, ,0, oXN) @ DlYL, o0y 2¥R),
gstationariness axjom, X(M|in x) = Mln x,

indyction axiom, ACOJevy(ALYy)ealxty) J)aAlMIn x],

Rules of inference., We shal| accept all the rules In Gentzen’s
system of Naturgl Deduction(i), or NJ, with ¢the following
modification of the gquantifler=intradyction and elimination rules,
(a cegignates a variable In thig section,)

Veintroguction ruije, Yeglimination rule,
Ala) YxACx]
cocace () eevenw
VxACx) ACte)



3-introguction rule, Jeslimination rule,

(aCal)
ACt) IxACx) c
covceea oesssosecraveve (.,

InAlx) c

Restrictiont In the Yesliminaglon ryle and thae J=introdustion rule,
the eilrinated or Introduced bound varlable, replacing x, must be of
the sare type a» the corresponding term, creplacing ¢, In ¢he
Yy=introguction ruje and th Jesj{imination rujes, the Introduced or
elirinated Dbouns varlaedble, replaciQg a, must de of the gsame tyoe as
the corresponding free varfable (eigenvariable), replacing g,

<a> Indicates the restriction, in the original NJ, that the
fres variabie substityted In place of a ogoury only n ¢the pisces
explicitly cesignated bY a, Tous, for Instance, In the
Y=irtroguction ruje the free variabie replacing a must net oceur In
the formula oOssignated by VYxAlx), nor In any assumption formula of
that fo-myla,

As anpearsg |n the above rule we use ( ), In stead of L 1 In
the original notatlien, to indicate the assumption formyja whiah I
not carried beyond the bar, Besides, we shal| use A -+ R gometimes,
as wel| as (), ty denote that A [S an asgsumption formuia of B8, and
Al:, 100 o AN ==e B1, . ,, , Hn tg denote a "goequent™, In the sense of
Gentzen‘'s LK, For instance, the vee|imination rule can pge expressed
In the foilowing ways, and we shal! use all of them In the geque! for
the convenience of degeribtion,

vegiimination rule,

(A) (8)
AvB C c
C

Infer C from AVB, A~=<(, and E=e(,
Infer P ~ae ( fpom P =~e AVE, A,P e+« C, and 8,P eee (C,

An Inferance ruie of the iast form, .0, a rule to Infer s
sequent from other sequents is called a "reiativi,ed™ Inference rule,
A sequent of the ‘oem AL, ,,, +Am === 31, ,,., ,Bn is “vallg In D" Jf¢
the forrula A38,,.8am < Blv,,,.vBn (s vajld f§n (, A refativiged
Iinference ruie Is "goung” Iff the conseguence af the ruje s valld In
0 (as seauent) whgngvar alil of iIts premises are valid In D, for any
D,



We oan treat the loglcal axioms In the form of Inference

rules, We Iist them In the Qeneralized foems for the practieal
derivation, These ryles are derived rules actually,

propositional rule, ldentity rules,
wAVA tzt
esquality ruije, stationariness rule,
tsu ACt]
Alul t(Min tisMin ¢

inductlion rule,
ALOJ Afajealt(a))

cocvessevesevnrnowwe {g)

A(MIp t)

<a> Indglicates the same restriction as described above, Thus the
variadie substituteg In place of a must not occur free {n aAlMIN ¢,
nor In ATOJ, nor in any assumption formula of AlMIn t),

Apparentiy the [nduction axiom, or rule, Is not accoptable
uniess goms adequats restriction, [Ike the one Indicated In the rule
of subgtitution, s tmposed on (t, First, In order te Instantiate
this axjom by a namg b, substituting b In piace O0f X, &b mwmust be
~-gontinuous So that Scottetype fixed point induction makes sense,
which restriction ig satisfied In the present formalism, for MINn b is
not a welli=formed term otherwlise, Second, even (f MIn b represents an
wecontinuous function of an appranriate type, there eoxist many
tforrulas which make this axlom not valld, The maln purpose of this
caper |s to characterize those formylas for which the indugtion axlom
Is vallig, so that they admit the application of this rule,

10



3 Weakly Continyous Functions

The vallidiey of the inductlion axlom pefiscts the properties
of truth functions psgociated wWith formulas of FLT, The flest such
property wlill he salled the weak continulty, It must be noted that
most of the truth fyunctions determined by formulas of FLT are 0t
continuous, gng weg gres Qoing to eS%ap!ish soms criterly for sugh
noen-continuous predicates to make the jnductlon axiom valld, The
wesk continulty cean be deflinad for functions, so0 that we discuss this
oroperty In gensral,

Through out thisg section, L cenotes an ==inductively ordered

pet with ¢the leagt glement 0 (see section 2,2), and L’ a compiete
fattice, Namely, L’ is an orcered set such that Inf X and sup X
exist for any subset X ¢f L’, O and | shal| denote ths |east slament
of L¢, or Inf L', and the greatest element of L‘, or aup L’
respectivaly,

Ltet X ©bs a sgequeénce In L', We cangidae the monotene
increasing sequence Y defined by Yn s Infi{Xmim2n), and the monotonas
decreasing sequence 2 deflned by 2n = sypi(Xmim2n), whigh are
well=defines by compligteness, Then, by completensss again, sup Y and
Inf z exist, which are callied "{iminf X" and “|imsup X" respectiveiy,

3,1 Definitlion, A seqguence X im & complete lattice L’ s
“econvergent" iff

liming X = Jimsup X,
In such a case we define (I™ X DYy

lim X =2 |imlnf X
s 1imsup X.

A ssguence X in an ordered set Is a "quasi-ascending chaln” Iff It s
an ascending chain gr there sxists a number M o,t,

X1 € X2 € ,,, € XM 2 X(M+1) = ,,, = X(Men) = ,,, '
In the Jatter case X Is sald ¢o be "semi=finite”,
3,2 Proposition, Let f be & function s,t, ft LeL’, f(X), [(,0, ¢the
seguence (f(Xnll, Is convergent for any seni=finite X, and

lim f(X) s f(gup XJ,

Proof, Apparently

11



tim £¢X) = f(XM) and XM =2 sup X,
whare M satisfies the conditlon of definition 3,2,

3,3 Propositicn, Let f be a fynction s,t, f: Le.’, f s
wegcontinuous I7f

flgup X) = sup f(X),
for any countable directed sot X s.t. XG_,

Proof, The sufficiency s <trivial, We Dprove ¢the necessity,
Let X be a countabls dlrected set s5,t, XS, Then we ¢Can cheose a
quasi=-agcending chain Y s,t, YeXx and Y is cofinal in X so that

sSuyp Y = sup X,
Suppose f g ==continyous, Then, by ==continuity,

fisup Y) = syp f(Y),

But
sup f(Y) < sup f(X),
gince
Y ¢ X,
Thus
tflsyp X) = fCsup Y)
s sup ¢(Y)
S sup ¢(X),

By ronotonicity (gee the remark in segtion 2,2),

f(xy € ¢{sup X} for any x¢X,
since

x £ syp X,
g0 that

sup f(X) S f(sup X),
Theroetore

fi(syp X) = sup f(X),
3,4 Definitlon, Let | be an weinductively ordered get, and L’ a
complete jattice, f: (<L’ Is "waskly continyous® (¢

fisyp X) = |im 0CX),

for every sscending chain X In L, (This relationship Iimplles that (Inm
t(X) exists, for the |eft hand side always exists,)

3.5 Proposition, f (g weakly continuous (¢

fisup X) = (im £(X)

12



for any quasi=ascending chain X,

Proof, Apparent from proposition 3,2,

3,6 Thearen, f |s =-continuous |ff f Is weakly continuous and
monotons,

Proof, necessity: Suppose f s =-gontinuous, Then f 1s monotone,
s0 that for any agcending chain X

feX1) S €£(X2) € 4.4 .
Therefore

sup f(X) & |im fC(X),
3y =-continulity,
fisyp X) s sup (X},
80 that
flsyp X} s Iim £C(X),
gsufficlency! Let X be an quasi-ascending chaln, We have to show
fisyr X) = sup 1(X),
Ay weak continulty,
fisyp X) = 1im fUX),
an!, by monotonlicity,

jim ¢(X) s syp f(X),
so that
fisyp X) s sup f(X),

3,7 Theorem, f |s weakly ocontinuous Iff for any ==continuous
function g: LeL the following relationship holds,
f(Min g) 3 |im t(g.n.0),

where Min § denotes the leagt fixed point of g, i,e, Infixlg(x)ax),
which cen be expresged as sup(9,n,0) (see section 2,2,)

We need the following lemma in order to prove this theorem,

3.8 Lerma, Let X be a quasieagending chain In L, Then there exigts
an ==continuous functior f: L~L s,%t.

f,n,0 3 Xn for any n,

13



Procf of |emma, The foljowing construction suffioes,

f(x) = X1, xs0}
Xt{nel), x22 and xSX| does not hold for any |
8.,t., 1Sn=1, and xS$Xn ho|ds (n2i))
sup X, x$Xn does not hold for any n,

(This congtruction wag given by R, Ml|ner,)

Proof of theorem 3,7, necessity! Suppose 9 is ==continuoyg, then
Min g = supfa,n,0},

tg,n.U) is a quasi-ascending chaln, so that by weak continulty
f(Min g) = Jim f(g,n,0),

sufficiency: Let x be a guasieascending chain In (, Then by |emma
3.8 there exigts an =econtinuous function g s,t,

e,n,0 = Xn,

Asauyre

f(qin @) s (im f(g,n.0l,
We note that

Min g = sup X
and

Iim f(g,n,0) s jinm £0X),
Thereforse

f(syp X) = 1Iim 10X,

3.9 Theorem, f Is weak|y continuoug If¢
Iiingup f(X) = flsup X) !
for every ascending chalin X In (,

Proof, The necesgity Is teivial, so that we prove the suffiolency,
Let X bs an ascending chalin in L. We orove that

limine €£(X) = iimsup 0O

foliows the latter condition of the theorem, Let a and b denote
fimint £(x) and |imgup f{X). regpectively, We prove aghb, We ean
choos® a subsequence Y of X 8.%t,

Iim f(Y) & &,
gince a is iIminf f(X), Then, by definition,
|imgup f(Y) s a,
14



Ne note that v |s ajiso an ascending chain In |, so that
limgup (Y)Y 2 f(pup Y)
by the supposition of the theorem, Since Y ls cofinal In X,

sup Y = sup X,
s0 that

f(syp Y) s flsup X),
But

f(syop X) s b

agaln by the supposition of the theorem, Thus

Iimgup f(Y) = b,

NamelYy.,
a = h,
4 AdmisstibDility of Fixed=Polnt [ndustion
We shall digscuyss properties of Dredicates, For ¢the

conveniance of mathematical description we intrcduce the ordering of
truth vaiyes such ag

FsT,

This ordering is outside our |ogle, and it must be noted that the
concopt of weak continulty of predicates as well as that of
admissipl|ity of indugtion Introduced below can be stated witheut
referring to this orgdering (see 4,6 bDelow), though [t makes some
argurents more understandable,

Since we considered tota| opredicates when we Interproted
forwulas, the concept of monotoniclty or =egontinuity has little
importance as 10n9 as we assume T and F ars not comparab|e with each
other, For, then, the only monotone or cantinuous predicates are
the ldentically true predicate and the identically falise one, We
shall use, hawever, the concepts of monotonicity and continulty of

15



predicates with respect to the above ordering, These ¢oncoepts are
mainly related to the existential auvantifier,

4,1 Detinijtion, Let TO denote the complete two element Iatties,
Namely 70 conslists of O and |, while 0 s |, (Y0 can be regarded as
a TE~space whose open ssgts are @=( }, (I}, ang (0,1}, which |s aise s
continuous lattice, as discussed by D, Scott,) We sha|l uee thls
jattice to represent the truth vajues, 0 and | ecorresponding to F,
t,e, faise , and T, 1,8, true, respectively, so that

FeT,

4,2 Definitlon, A "tputh function” on L Is a fynction s,t,
L+*70,

a) A truth function f “admits Induction weakiy~” [ff
£(g.,n.0) = T for eveey n (n22) (mplieg f(Min @) & T,

Especialiy, f(x) admits induction weakly if f(0) s F,
b) A truth function f on L "admits induction gtrongiy"® {ee

1im ftg,n,0) s T Implleg f(Min g) s T,

4,3 Proposition, Let X denote an ascending chaln in L, and f & truth

functior on L,
a) ¢ adrits Inductiogn weakly {ff

f£CXn) = T ¢gr eveary n (0Sn) implies f(gup X) s T,

for any X,

b) f adrits Induction strongly If f admits Iinduction weak(y and ¢¢(Q)
s T,

¢) The foilowing congltions gre equivgignt to egqeh Other,

(i) f admits induction stronaly,

(i) 1im f(X) € ¢ftgup X} tfor any acsending chaln X for whieh
jim f(X) oxiste,

SRR R limsup f(X) € f(sup X) for any ascending chain X,

Proof, a) simliar ¢to the proof of theoren 3.7 using lemma 3,8,
b) Suppose

fim $(X) = 7,
Ther
t(Xn) = T ¢or almost every n, (ses 4,6)

80 that we can choose a quasieagcending subchaln Ym of X 8,t,

16



Y1 50 and f(ym) = T for every m,
By weak admissibiligy,

fisup Y) = T,
By cofinalliity,

f(sup X) = T,

c) we prove ¢that (1) Implies (111}, the rest being left to the
reacgdr, Suppose

iimsup f(X) S f{sup X)),
1¢ timsup f(X) = F, then |im £(X) = F, so thay

vim (X)) § flgup X).

Suppose
timsup f(X) = T,

Then we can choose an ascending subchain Y of X s,t.
1im 1(Y) = *,

By coflnalllity of ¥ in X,
sup Y = syp X,

and, Dy strong admigsibility,

f(sup Y) = T,
Thus
{imgup f(Xx) = ¢({sup X),

4,5 Theoren, 0Of the following conditiong the uPper ones 4re
implieo by the (owee ones,

(N f admits i{nduction weak|y,

¢il) t admits ingugtion strongly,

SRAR t ts weakly continuous,

(iv) t |sg ==gontinyous,

Proocf, We shall see that (iil) Implies (1i), the rest having Deen

proved, Sunpose ? s weakly continuous, and |Im f(X) oexigsts, Then

Iim £(X) s ¢{gup X)

by weak continulity,

7



4,6 Remark, AS noted In the beginning, the concepts of admigsiblilty

of induction and weak contlnulty of truth functions are Independant
of the ardering of tryth values, for we can regard the refationship

tim t¢q,n,0) = T
simply as stating
ftag,n.0) = 1 for aimgst avery n,

because of the finiteness (thence discretenssy, see 5.4) of 10, TYhus
these conditlans can be restated as foljows,

a) A truth function ¢ sdmits induction weakly |tf

£(g.n,0) = T for every n (n2]) implieg f(Min @) s 7,
) f aorits Induction strongly {ff

1(9,n.0) almost every n Implies f(Min g} = T,
¢) ¢ is weakly continyous (¢

f(g,n.,0) = ¢ MIn Q) aimost evary n,

4,7 Definition, Let x be an goevariadie, and A a formuia in which at
most X occurs free, A "admits induction weakly wW.r,t, ¥ ta D® |0¢
the truth function determined by A and x In 0 adnits Industion
weakly, If A is an arbitreary formula, A waamits induction weakly
w,e.ty, X In D" Iff gvery (Osx)=instance of A admits Induotion weakly,

A “edmits industlion weakly w,r.t, x" (ff A aomits Inductlion
woakly in any D,

We define the concepts that A “admits induction strongly
w,r.te x ¢in D) and that 4 s “weak |y continuous In x (In D)*
simifariy,

4,8 Tneorem, The Indyction axlom ACOJ=Vy(ATY)eAlx(y) D) =AlMin x) is
vallag 11f A aomits induction weakiy w,r,t, X,

Proof, ae prove the sufficiency flest, sufficleney: Let D be

any collection of Dats, BLOJ*YytBLyleBlaly))}<B(Min a) Dbe a
D-instance of the indyction axiom, so that at most y ocours free |In
Blyd. Let Fix) 4encte the truth function determined by Bix]l, and
t(x) tne function determined by alx), I.,0., ea, Brx) adnits
inductlion weakiy in D becauss of the assumption that Alx] does, Thus

F(f.n,0) for any n2d implies F(Min 0},
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while Min f Is »(Min a), Agsume the truth values of BLO) end
Vy(6Llyleblaly)]) are both T, Then

F(u) 2T,

and
F(o)aT imglieg F(F(0))=T for any O,

Therefore we have
F(T,Nn,0)5T eysry n2b,

s0 that, by weak admigsiblliity of F(x),
F(MIn )37,

Therefore the truth value of 8lMin a) Ie T, Thus

BLO)=VY(BLylsbla(y)))eBMIN a) is valld In D, Hengs the Induetion
axiom lg valid In D,

necesslity: We use the same notations as sbove, BY definition of
vallaity any D=ingtgnge of the axiom must be valld, tTheorefore i1 ¢the
truth valuss of &(0) and vy(BCy)-Blaty)])) are both T. I!yees
F(f.n,0)sT avery n2d, the truth valus of BfMin aj is T, Namely
F(Min ¢)8T,

4,9 vetinition, ACx] ~admits crelativized Induction w,r,t, X" Iff
ACx) makes tne [nduction rule sound, Namely, the rule obtalned from
the schema of induction rule by substituting ALX] in plagcs of the
meta=-variadie A is gound.

4,19 Theorenm, ACx) admits relativizeo Indyction If ACx] admits
Induction weakly.

Proof, We have to prove the soundness of the foljowling rule,

P ~ee A[O] Ala), P == Al¢ta)]

--..-----.-.--.----..-.o.---..--.-.--.-.-.. (.)

P =ee AlMIp t)

Let C denote C1 & .,, & Cm where P Is Cl, .., , Cmy The rule la
sound 11f (CoALO))(CoVy(alyJoaltly))))=(CoalNnin t)) s wvalld Dy
definitlion, Therefore we shall prove for any U, every Delngtance of
this formuia, say !E-BCO;)-tﬁivvtBth~B[b(y)g))ottoﬂtnln b)) s
vailia, where b 13 an arbitrary varlab|e=frse term of the same type as
t, l.0, (aoewp)o for some S0, Obvicus|y we have on|y to prove for the
case that b 13 a nane, For, If b I8 not a namg, there |s some name b’
s.t. #bsed’, and the validlty can be establighed easily wuvsing this
fact and the cage that b is a name, (6t F(x) be the truth fynction
determined oy 8(x), and f he b, Then the following econdition |9
gsufficlent,
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If wExT, F(0)sT, and, *EsT ang F(c)sT tmply F(f(ec))sY for any
ceD®o, then F(Min 23T,

Min t Is w«tMin p) by definition, Assume the premise of the above
gonaltlon, Then by (ndyction, »

F(f,n,0)=T every n2o,
By the assumption that Alx) admits induction weakly, 80 doeg B8(x], so
that Fly) admits inductlion yeak|y, Therefare

F(Mjn $)37T,

4,11 Theorem, ACx] agmits lcf induction it ACx) admits reiativized
Inguction, where by Ie¢f Indugtion (s meant the relativised rule In
LCF to Infer ACy) from yaMin x. ACO): and ala) =« Alx(®)],

Proof, We ses that lcf Induction tule s a derived rule,
ysMin x, P ees A(O] ACal, ysMin x, P ==e Alx(a))

.o-.-...-.-.-----.-.o.--o.-.-.v-—-----.oo.-..--.--o---. <ad 'ﬂ‘u.t'oﬂ

ysMin x, P =-e A[MIN x)

-------.....---...-.-.---.--.--.-.-..-.-..-------.o..-. egual ‘ty

ysMin x, P =ee A(y;

4,12 Coreollary, ACx] admits (cf Induction !f ACx] admits Inductien
woakiy,
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S Characterization of Predicates that aamit FixedePolint

Inouction
We study what kind of formulrg adnit Induction, fFor the
rencabllity of proofs we ghall discuss them in terms of tryth

functions that have one argument designated by %, The theorems be(Ow
ca® DO 80 gPp!legd to every Instance of formuj, thet the results wli)
be regarded as statements about formujas iIn genera! by deflinition
(seo 4,7,) For <tmis purpose |oglical combinators bejow should be
understoecd as functions or functionalis whose values are T or F, For
instance VyfF(x,y) denotes ths truth function detepmined by VyAlx,y)
where F(x,y} Is ¢the truth function determined by ACX,y]) in D, The
relation s Is not a |oglecal symbol of FLT, but It will be used as @
preclicate later on in connection wigh LCF,

5,1 Theorem, The relationship f(x) § gi(x) sdmits Induction strongly
It £(x) and g(x) are w~gontlinyous,

Proof, Lot F(x) damnote the corresponding truth function, |,e,,

Fix) = 7 fix) § gix)}
F otherwige,

Let X be an ascending chaln in L. Suppose

|1m F(X) 8 7T,

80 that
f(Xn) & g(Xn) for aimost every n,

Then, by monotanicity of g,
fiXxn) € g(syp X) for a|most every n,
Therefore we can chgoge an ascending subchalir v of X s,¢,

f(vym) S g(syp X) for every m,
Thus
sup f(Y) € glgup X),

But, Oy w=econtinuity of f,

fisup Y) = gup fLY),
so that
fisup Y) € glsup X)),

By cofimajllity of Y in X,

subp Y 3 ayp X,
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Thus
fisyp X) 3 glsup X),
'..Q'

s$.2 Remark, f(x) € gtx), 7 and g being continuous, Is not aiways
weakiy continuoug, (the fact that ([t (s not e=continuous beling
welleknown,) Let N’ bs the natural numbers with the Infinity =
(omega) ordered In the usual gsonse, Define f, gi N’eN’ by

fix) = x+},
pix) = x,

Let X be s,¢t,

Xn 3 n each n pg.%, L1Sn(~,

Then
F(Xn) = F each n;

but
Fisup X)) = 7,

5,3 Theoreom, Lot f De an =econtinuous function Into a dlserete
tattice L’, ¢ an glgmentg 0of L, Then the relationphlip

f(x)=¢g
Is woak|y continuous,

Proof, Let X bes an agcending chalin In the aomalin of ¢, By theorom
5.1, tixnisg gimost every n Imo|les f(BuD X)S¢, SuppoOSe

f(Xn)Zo aimost every n,
We have to prove
f(syo X)zc
Let Yn denote f(Xn) for each n, B8y monotonicity of ¢,
asYls ,,, YnsYin+l)S .,, SD,

where b denotes sup Y, Y must have at least an acoumu)ating peint,

for, Ootherwise, Ve coyld choose an ascending chaln Z that s a subset
" Y '.t.

aceicC .., <CEnCZ(NeLiIC ,,, <by

which contradicts the alscreteress of L', B8Y monoteniclity such an
sccurulating polint {s unique and will ce denoted Dy ¢, Thus
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Yned alimget every n,

By the supposition
cra,

By wonotoniclity again, d (s the maximym ejement of ¥, 50 that
asgyp f(X),

B8y ==continulty,

fisup Xlzgup f(X)
sd
ge,
Thus
flayo Xdze,

5,4 Rewark, I!n the above proof we uped “disgreteness™ to mean there
ils no asconaing chain 9,t,

.(‘1“2‘ ' X <xﬂ< s 00 <b.

for any @ and b,

%$.,5 Thegorom, &) Fix)vG(x) admits indyction strongly If F(x) and G(x)
do
b).F(l)VG(I) is weakly gontinyoys 1f Fix) and Gix) are,

Proof, 8) Suppoge

1imgup FIXIVG(X) = T, ¢ Cr, 4,3,8(131) )
Then elther
iimgup F(X) s ¥
or
timgup G(X)} = T,
s0 that either
Flayo %) 8 7Y
or
G(syo X) s T

by strong admissidijtey, Thus
F(ayp X)vGlaup X) = T,
b) By weak sontinu!ty,

Fisyp X) = F{Xn) = a for aimost overy n

and
Gtsup X) 8 G(Xn) 3 b for a|most every n,



for some a and b, Therefore

F(Xn)Vvi(Xn) = avd for aimost every n,
At the gams time,

F(syp X)vG(sup X) 5 avb,

5.6 Remark, a) F(x)vG(x) doss not necessarl|y admit Indyetion weakly
even if F(x) and G(x) do, We consiger N’ (see remark 5,2) agalin, Lot

rix) = 7T x30;
12 ACxS=}
and
G(x) s T B<xC=}
F X0 or xsw,

Then F and G admit jnductlion weakly, and

F(n)vG(nm) = ¥ for every n20,
But
Fle)vG(m) = F,

b) F(X)vG(X) does nat necessarlly admit Induction weak|y even 1f one
of F(X) and G(x) is wepak!y continuous and the other admits Indyotion
weakly, For, In fact, F(x) In the above examp|e | weakly cont!nuous,

5,7 Theorenm, n) F(x)8G(x) mdmits Indyction weakly |f F(x) and G(x)
do.,

D) F(X)&G(x) admitg Induction gtrong|y If F(x) and G(x) do,

) F(xX)EG(X) 1s weakiy continuous If F(x) and G(x) are,

Proof! left to the regager,

5,8 Tneorem, -~F(x) Is weakly continuous If F(x) |s.

Proof, Let a dennte the truth value F(sup X), BY weak continuity,
F(Xn) = a for ajmost every n,

Let b denote the truth valye =~a, Then

~F(Xn) ® b for a|most every n,

Besiaces,
«-F(sup X) 3 b,

.9 Remark, a) =F(x) does not necessariiy admit indyction weak|y even
If p(x) adnits indyction strongly, Lot pix) be the truth funotlon

determined Dy xS= & =<x, which Is equivalent to xa=, In N, Then
F(x) adrits Induction strongly because of theorems 5,1 and s,7(b),
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Lot Xn be the neth natura| number for each n, Then

«F(Xn) & T for n20,
But

aF (gup X) 3 =F(e) s F,
Thus =F(x) does not admit Inductlion weakly,
b} By the above argyment, the nsgation of a formula of LCF does not
admit Indyction weakly In general,
5,18 Thearenm, It F(x) and ~F(x) both admit Indyction strongly then
Fix) |s weakiy continyous,

Proaf, We prove thag F(X) Is convergent for any ascending chaln X,
The case that

Iimgup F(X) & F

1e teiviaj, Suppose

(imgup F(X) = T,

We prove
Iimint F(X) s T

by contradiotion, Asgume

Itmin? F(X) s F,

s0 that
Iimgup «F(X) = T,

By strong admissibiiity,

=Flgup X) = T,
1e040
F(suo Xy s F,

Thus Fix) does not admig Induction strongly, which s a
contradliotion,

5,11 Theorem, a) Ftx)eG(x) admits Induction strengly I¢ F(x) s
waakly continuous and G(x) admits induction strongly,
b) F(X)eG(x) 19 wegk|y continuous If F(x) and G(x) are,

Proof, F(x)eG(x) Ilg a tautology of =F(x)vGi(x), s0o that theorems 93,8
and 5,5 suffice,

s,12 Remark, Fix)<G(x) doeg not necessarily admit induction weakiy
even I? F(x) admits indyctlion strongly and G(x) |s ==cOntinuous, Lot
Cix) dbe F, |,e,, the ldentically faise truth function, Then F(x)=G(x)
1s a taytology of Fix), Conslider the exampie of roemark %,9,
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Heresafter ¥y Ig used to Indicats the argument Instead of %,

$,13 Theorem, a) VYxF(x,y) admits Inducstion weakly WePets ¥ 11 Fix,y
doses.
B) VYxFix,y) admits fndyction steongly w,r,t. y If Fix,¥) doos,

Proot, a) Suppose
YxfF(x,0) s T

and

Yat{x,Yn) = 7 for every n,
Then

F(a,0) s T
.nd

F(a,¥Yn) = T 'O' ove,y N,

for any a, Therefore, by weak admigsidility,

F(a,sup Y) s T for any a,

Thus
YxfFix,su0 Y) 5 T,

b) Suppose

{ingup er(x.y) z T.

Then
| fmgup Fla,yn) s T each a,

By strong admissidbility,

Fl(a,sup YY) = ¢ each a,

Thus

5,14 Rerark, a) YxF(x,y) |s not necessarily weakly continuous even |

Fix,y) s ¥ x{= and x<y, Or xs=}
F etherulisge,

Then F Is weakly continueus In ¥, for

Iim Flu,Yn) & F(a,=) = 7 each a¢=,

and
F(=,YN) & F(w,=) 8 T for every n,

for any ascending chaln Yn In N/, HMoreover,

YxfF(x,Yn) = F for evepy n,

so that
1im vxF(x,¥Y) s F,
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But
YxF({x,8up Y) &8 VxF(Xx,=) = T,

b) YxF(x,y) is not necessarlly weakly continuous even {f F(ix,y} (g
- wegontinyous In vy, for Fix,y) definad above s ==continuous (n ¥,

because [t is not only weakly continuous ©but aiso monotone (cf,
theorem 3,6,)

§,15 Theorem, a) 3IxF(x.y) aomits Induction strongly If Fix,y) lg
monotong in y,

b) dxFix,y) |Is monotone and weakly continuous (and therefore
wecontinuous, See theorem J3,6) If Fix,y) ls.
Proof, a) Suppose
1{m AxFix,Y) = T,
so that for some a and M

Fla,YM) = T,
By monotanicity,
F(a,sup Y) = T,
Thus
IxFix,sup Y) s T,
b) ke prove
IxF(x,sup Y) s |iminf IxF(x,Y) 3 [imsup IxF(x,Y)

for sach ascending chaln Y by case analysis, (1) Suppose

{imgup 3xFix,Y) = T,

so that

Fta,YM) = 7 for sone & ang N,
By renotoniclty,

F(a,¥n) = T Hgn,
a0 that

IxF(x,Yn) = T NSPh,

"..'
Lim 3xr(ﬂ!v, = T,

Algc by monotonicity, Fta,YM) = T imo|les

Fta,syp Y) = T,
so that
IxFix,syp Y) = T,

tii) Suppose

tingup 3xF(x,Y) = F,
'...l
1im 3IxF(x,Y) ¢ F,

Then there oxists M(a) for each a, s,t,
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F(a,YM(a)),
s0 that, by monotonicity,
F(a,Yn) s F for any a and n,

totherwise Ftb,Ym) = T, MSm for some b and M, which Imp|les (Im
IxF(xsY) = T,) Thys

fim F(a,Y) = F for any a,

g0 that by weak continulty,

F(a,syp Y) = F for any 8,

Therefore
IxF(x,sup Y ) & F,

$,16 Remark, a) IxF(x,y) Is not necessarlly weak|y contlinyoys even
I1f F(x,y) |s monotone (and therefore admits Induction gteongly by
theorem 5,15) In y,. Let Fix,y) be

VZ(z<ma2(y),

Then F(x,y) is monotanes In y, ana

F(x,n) & F for every n and any x,
.0 that

IxF(x,n} = F for svery n,
But

IxF(x,=) ¢ T,
becayuse

F(x,=) = T,

b) IxF(x,y) s nct necessarlily weakiy continuous even |? Fix,y) Is
monotone and admit imduction strongly, Let

Gi{x,y) s T ySxC=}
F ctherulise,
Namely,
G(x,y) 2 “Fix,¥)»

F(x,y) being the tpeuth function described In remark S5,14 90 that
G(x,y) Is weakiy gomtinuous In y by theorem 5.8, But

IxG(x,n) a T every n,
and
3!5(50', s F,
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é Syntax of Formuizs that aomit [nduction
6,1 Tableg of Inher;tance ot adr ;iDjlity

We summarize the Inheritance of samissibl!iity of Imdyuctien iIn
the tables so that they can be checked by machines easi|y,

Th3sa tabiess ghall de redardec as a part of the postulates of

FLYT for technical (logleal) reasong, Since the weak admigslbl|lty
of Imduction s an informal concept that |s not effective, we oannot
accept a formal system descrlbed |r terms of that concept, althoygh
we woulg |like to use the Induction axiem, or ruie, for every formyla
that agmits induction weakly, Instead we regard these tables as an
Induotive definitiogn, and hence an effective definition, of formulas
that “eadmit Inductign ayntactically", Namely we call a formu|a AC )
to admit Induction gsyntactically I1ff alx) s concluded to admlt
Inductlon weakiy w,r,t, x using eonly these tables, the primitive
ceses |lsted In 11 serving as the base step of Inductive definltion,

We add the foilowing definltion for practical purposes,

Definition, A formula A I8 sald to be “constant w,r,t, x" ¢ oA
does NOt depend on x, A term t i3 an "jcf teerm” 1¢¢ ail ¢the
constants and variablies cccurring Iin t are of gontinuous types, A
forrula of the form tSu where ¢t and u are icf terms is calied an "jef
awff"

" Obvieusly a sufficient condition for A to be constant w.r t,
x Is that x doeg not occur free in A, Proofs concerniné the
Inheritance of acmigsibility rejated to this condition are Ileft ¢o
the reager,

11, The following congitlions are hierarchical In the sense that the
lower ars the strgonger conditions,

(primitive cases)

I A aamits Indyceion weakiy, | |

.-.-...-.---.-.---..----.-.----------.-o-.--o-.-..-’.‘....-..

| A agmits Induction strongly,! ¢ty (t and U are Icf terms)|

.---.---.-.—.-.-...-...-.--.-.--...--'n--.-------.--..-.-....

| A Is weak|y continuous, | t=0, t=TRUE, tsFALSE |
! | (t Is an lef term)|
.-..-..--O-.-----.-v--.--.-------.---..--.---------.---.--O.-
| A is constant, | x does not occur free In A, |
-...-..D.-o-.-.-.-.-..0--...-------.-.--------....--...-.O-.-

() A adnits rejutlivized Induction and Icf Iinduction w,rp,t, X |If

A acrits induction weak|y w,r,t, x,
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(i) A ls «=continyoys Iff A s weak|y continuous and monotene,
(SRED] A admits inguction weskly w,r,t, x If A |g monotone w.r,t, X,

12, Table for &, v, and =,

It A and B satisfy the conditions stated In the flrst cOlumn

and the first row, regpectively, then A8B, AVB, and A8 gatisfy the
conditions shown in ¢the corresponding places.

I A& N u ladn, weak, ladm, str, |weak. cont,|const, |
---.---.--....-.-.----.-.------—-.----.---.-.-....-..--.-....
i \op | | | | |
ladm, 1&lagm, wegk, ladm, weak, |adm, weak, |adm, weak, |
inoak, ivi x | L§ ! x ladm, weak, |
| e X | x | x ladm, weak, |
.--.-.-------.---....-.---....--.--....--....-..-.--...-.....
iadm, ‘c'ldn. wegk, ladm, str, ladm, ste, '.d.n str, |
tste, Ivi x ‘adm, str., lagm, gtr, ladm, gtr, |
] i~ X | x | X lagm, s¢r, |
.-.-----.---.--.-...--.-.....-....-.-----.----.-..-..........
|weak, I&jugm, weak, ladm, str., |weak. cont, |weak, eont,|
lcont, Ivi x ladm, str, Iweak, cont,|weak, gont,|
| "l X '.dM. stre., |“..ko eo"t.".‘k. 0001.‘
lcongt, i&lagm, weak, |adm, str, Iweak. cont,l|const, |
! (viadm, weak, tadm, ster, |weak, cont,|const, |
| I=lagm, weak, ladm, ste, |weak, cont,lconst, |

.-..----.--—-.--..--.-.--.-.---.-.---.--.-..-...-..-.-...-..6
13, 7Tabie for =, ¥, and 3,
Al| the conditions are w,r,t, x,

{f x and 7 are ldentical then YyA and 3ys are constant w,r.t, X,

i A ! =A ' VyA } dya |
' ' l !..---------..--..-.-.-.l
| | | IIn genera| |A: monotonel
...-'--.--.---o..-.-.-----------Q-.....-...-...-..-......-..0
lagm, weak, | x ladm, woeak, | x ladm, g¢r, |
-..--------..-.-. .---’---....----...-..-'---.-.--..--........
jaam, gtr, | x ladm, ste, | X ladm, gtr, |
.....‘-...-..-........-.........'..........-.-.-.--..---.-..-
Iwoak, cont,iwesak., cont,ladm, str, | x Iweak, gont, |
.‘.-..------.---...’.-.-.-....-.'-....----.-.-.--.-..........
leonst, {congt, leonst, TYLIE lcongt, |
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6,2 Example of formula that admits Induotion

Yuf(x,y) I weakly continvous |f Fix,y) |s antiemonotone and
admits Induotion gtrongly w.r,t, V¥,

For, VaF(x,y) ls a tautojogy of =3Ix~F(X,¥), Suppoes Fix,y)
Is anti=monotons and admits Indyction sgrongly w,r.%, Yo =F(X,¥) I
monotone, 80 that ~F(x,y) admite Induction strongly bY thearem 3 4n,
Then F(x,Y) |s weakly continuoys by theorem 4,8, s0 that IxF(x,¥) ls
weak!y econtinuous by theorem 5,40, Thus <IxFix,y) |9 weakly
eontinuous by theorem 4,6, (Ses tablies of 6,1)

We can check this rosult by a direct proof as follows,

Proof?, Cease 1) Suppoee

1imgup YuFix,Y) & Fo 1,000 |Im YuFix,Y) = F,
Then there exists M g,t,

YxF{x,YM) s F,
80 that there g gome 8 8,%.

F(a,YM) s F,
By antismonotonicity,

Fla,sup Y) s F,

0 that
VYxFix,sup Y) s F,

Cage 1) Suppose

jimoup YuF(x,¥) = T,
Then,
|imgup Fla,v) = ¥ each &y

50 that

F(a,;¥n) = T for evepy n, etch a,
'.'..
Itm F{a,Y) & T,

(Othereonige limgup F(la,Y) s F Dby antl=monotonielity,) B8y strong
admissidl iy,

fF(a,Bup ¥) =« ¢ esach &
80 that
vxFi(x,suyp Y) o 7,
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? Transiution of LCF Inte FirsteOrder Logic of Typed Theorles

7.1 Axlomatization

In order to axjomatize LCF, flirst we need to extend the
syntax of terms so as to Incliude A-expressions as foliows,

85, If ¢t is an ao=term and x isS &8 foevarjable, then ixt |9 a
(Poeso)o=term, Any occurrence of x In J\xt |8 not free,

The corregsponding Interpretation I3 as fo|lows,

0S, I1f ¢t is Axulx]) and X is a Ho-variabie, ulal must be a ologed
ag-term for each No=-name a g0 that ,(ulalie¢Dao, for SOme w0, WS |ot
et be the fyngtlonm which sends each ra€DFo onto e(ulal), Suah a
function is known to be continuous(Cif, 71,

Renark, The proof of contlinuity of the functions represented by
\eexpregsions, namgly <he terms (nvojving the operator )\, requires
induyctlion on the structure of terms, The case that sup De’g do not
axist in general has been treated by R, Milinep,

we |ntroduge an Jrdered base type denoted by Bo, three
Bo-constants J, TRUE, anmd FALSE, and, a (Bo=@g+@g-eg)o~constant 2 and
an (a,8)epredicate ¢ for ®ach &,

D[Bo) congigts of thres eslements, TRUte and FALSEe Dbeling

Incomparable, Hergafter we UsSe tne same symdol ¢to denote a
Boeconstant and “ne teutn vajlye represented by It,

3Ctiusv)e namgly ((3(L))ICUd)(v) roads "1f t then y oeligse "
and is written as tau,v usually, We (et adb,c be 0, b, and ¢, If a Is
D, TRUE, and FALSE, respectiveiy, for sach a¢go, be¢D%0, and ¢c¢D®0,
This function I3 continyous(io],

xSy representg the order relation discussed In ¢the orevigus
gsectiong, mathematically, Intuitively, however, xSy Means that ¥y Is
wgefinec™ more than or gs much as x, %20 read *x Is undefined,” 1f «x
and ¥y are functions, this means y is an extenglion of x as function,

We give the following non=|0glcaj axlioms, An arbitrary
ternm with voids can be substituted In place of ¢C ), pravided that
the variable designated dy x does not occur frees (n that term, tex)
and t(Y) aenote the terms obtalned from It by substituting arbitrary
variabDles designated by x and y, regpectively, in place of Its volds,
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reflexivity,

antisymeetry,

transitivity,

extenslionality,

monotonicity.

Nonjogtlcal axlions

xEX,

xSy & ySx < xs¥y,

xsy * A8y,

x€y & y$z < xSZ,

vZixtz)<sy(z)) » xSy,
x<7 =+ x(TIsytz},

xSy = Z{x)SILYy)

miniral ejoments,

truth vaiuyes,

conaitionals,

s=conrversion,

0¢x,

0(”’50.

xz0 v xsTRUE v xszFA|SE

.O‘YRUEO
‘O‘F‘LSEI
«~TRYEsFALSE,

O>x,y = O,

TRUE:IOY s X,

FALSEax,y = V¥,

(Axelxd)(y)selyl,
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7.2 Adeguacy

We nesd to see that aili the inference ruies In LCF oan be
adequately expressed In tha pregent caleulus In the form of theorens
or cerived rules, which means that we do not 1ose anything by
changing the loglc, [n other words, we acte dealing with an
extension of LCF in that we can prove a theorem A In the new caloulus
1¢ A Is a theaorem in LCF, and, moreover, we can use any rule of (CF
in the present calculus, We have oniy to examine those rules that are
nslther of the nature of propositionai caiculus nor expregssed as eone
of the logleal or ngnjogical axjonms,

Ji, abgtraction ruje (LCFI,
tla] s ulal

axelx) § Mxylxd
Derjvat on,

t(al s ula)
ecosrescnsscocaremponrwn Aeconversion (and equajity)
Axtixl(a) S Axulx)(a)
esesemscnscananrccccsanscensens (2D Yeintroduction
VyC(axt(x))(y) & (Axusx))(y))
P T T T I XYL L LR P L PY 2 L Ll L ddad i CKtCHl|°ﬂl||t¥

MeeCx) $ Axulx]

J2, furction rule (LCF),
1)

Axyin) g ¥
Cerivation,

(Axy(x))(z) = y(2) A=converslion
PR YT T Y P L X <Z> '.lﬂtfoquct"ﬂ
yztiaxyix))(z) = yl2))

P T T Y e RY YL L T L Y .lt.ﬂ."nl'lt’

Axyl(x) = ¥y

J3, cases rule (LCF),

(¢20)  (tsTRUE)  (tsFALSE)
A A A

ceroneTeventenversabeGerssnse

A
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Derivation,

(t=0)  (t3TRYE)  (tsFALSE)
ts0 v tsTRUE v tsFALSE A A A

.-......--.--.-..-o.-...----o-----------..--..-.- V..' :n'n.t;'n

A (twige)

J&, Inouctlon rule (LCF), It sutfices to show that any conjunction
of lcf awffs admits induction syntacticaily in the sense of section
6.1, for LCF is a formal system that carrles out relativized
deduction for thege gentences, Each tcf awff adnits !nduction
strongly w,r,t, ary varjable (tad|e 11, 6,1) sudJect to the type
comformity, So doces any conjunctlun of ¢them (tabie 12, 6.1).

7.3 txampie taken from proof of compller cOrrectness

The following example (s taken from an FLTe|ike proof of
McCarthy=pPainter’s theorem(5], The proof of this theorem In (CF s
discussed in (8] and (13),

e presuppose thers are tnhree types called 1languagel,
janguage?, and the meaning soace, These need n0t be bagse types, in
particular the megning space can Do the type (states)e<(states),
Neme |y the meaning space Is the set of partial functiong of (states)
Into itsel|f, A conceptual compiisr carries out a transiation of
fanguagel Into [anguage2, an expression x In languagel being mapped
onto obj(x), He negd not assume caontinuity of the meaning space and
function obj for the present argument, wnich is, however, nOot an
Important polint, ~e ugse the foljo#Ing constants, each of them belng
either an Indivigua! constant or a function in the usual sense, The
aster isked constants are assumed to have beon 3Jliven apprepriate
axiors,

constant tyoe comment

isconsc o (1angyagel-bolo tscons¢(9)sTRUE,

isvar . ({1angyagel«do)o lsvari{a)=TQUE,

lsexo (tangyagel«<do)o Isexp((8+n)e(9+bd))mTRUE.
arql L] (languagel<langyagello ardl((8ea)e(9eb))oBen,
aro2 » (languagel-languageldo arg2(8+a)sa,

obj ) languagel~ianguage?

meanl . languageiemeaning space

MOANrS . language2=meaning space

We LSO 2 (languagel, lanjuage2)=predicate Correct(x,y) to mean y Is a
correct object prooram for expression x. correct(x,y) Is not
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eontinuous In generg!, beacause It Is usuaily defined by an axiom ||ke
(Ax,1) VxVy(Coprectix,y) = meani(x)asmean2(y)), (®)
The function isexp s deflined by the fojiowing axiom,

tAx,2) lsexposMin Xf Ax(lscongt(x)aTRUE, (igsvar{x)aTRUE,
(f(.rgl(x)):(f(.rgZ(x))=TRuE.FALsE)oFALsE)’).

The theorem we want tp prove |s
(1) Yx(i{sexp(x)3TRUE <« Correctix,objix))),

Correctix,obj(x)) {9, however, not sufficient as an (nductlion
hypothesis in genergl, so that we prove first a formula of the form

(2) Yx(lsexp(x)STRUE < A),

vsually, where A Ig the conjunction of a certain generalization of

Correct(x,0Dj(Xx)) angd additional conditiong pecullar to fagh
compliina aigorithm, More concrete|y, we sShall conslider a compliar
which works with g coynter, n, Indicating that <the addresses wheose
mneronic names are TS(1)s ... + TS(n) are occupied as temporary
storages, We defing the foliowing constants, the iast three related
to the loading or gljocation, The set of integers, or addresses, |s
a base type, varsgno(x) i9 the number of digtinct variables oceurring
In x, varnol(z,x) rdgnotes some numbsring of suech variab|es,

congtant type comnent

comp | . (languagel, intsgers)<ianguage?

TS integerseinteqgers

varno » (languagel, languagsl)=integers varno(a, (8eaje(Ped))al,
vargno . languageleintegers varsno((8ea)e(9eb))n2,
toc (languagel, languagel)=integers

In this cese, obJ(x) |s defind by the followling axiom,

(Ax,3) Yx(obj(x)scompiix,8)),

A typicel form of A (g

3) Ynin2@ < Coprectix,compi(x,n)) & Unaffected(x,n,compli(x,n))),

where Uraffected s a (languadel,intecers, |anguage2)=predicate s, t,
Unaffected(x,n,y) meang the object program y does not destroy the
gontents of the storages corresponding to the prooram varlabdlies
eccurrirg in the soyrce program x or any of TS(L), ,,. o TS(N),

&) The reacer may recal! that = means loQical sgulivalenge, whije s

equality [n the strong sense, that Is, Z In LCF,
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I1f we make the gadiresses adbsolute by the Dejow sxlom, whlgh
corresponds to a oparticular loading obviously, the object preogram
becores as flig, 1 below, Occur(z,x) reads 1 occurs in x,

(Ax, &) Vsz(lsvar(:)arnuc~0ccur(z.x)oloe(z.u)-v.rno(z.x)).

vxV¥nt|oc(TSin))svargnoixien),

comp | ((Bea)+(9¢D),nN) memory Mmap

(lﬂ'tructlon’ (mn.mon'cs) evoavomtesecentacevensPed
YT XL A X A2 d L L L LA L Al dd lﬂ |lceullu|ltﬂl' '
Ll ) '-.-.---.--..o.-........|
sTo ned TS(ne}) 12 1] {
Ll 7] '-.o-.---.-.--.-.-.-.-'.‘
AUD 2 ® 13 I1TS¢1) |
s10 ned 15(ne2) epac ver e
Ll n+J3 TS(ne}) I ne2 17S¢n) |
ADD ned TS(H*Z) '.-.--..a.--.--..--.--..'
1ned 1TS(nel) |
|ned {TSune2) |
Let nsd to get 0pJj((Begle(9ep)), |weescvesscncecocnccosss|

fig, 1 Exampie of objcet program
and memdry map

Let ACx] genote (3) hersafter, We note that nelther lsexp
nor n occurs freg in AlxJ, Then, the formula (2) aedmits lcf
induction w,r,t, "ligexp” as follows,

isexp(x)sTRUE weak, cont, w,r,t, lsexpl
ACx) congt, w,r,t, lsexp;
isexp(x)2TRUE « Alx) weak, cont, w,r,t, lssxpi
Yx(isexp(x)sTRYE < A(xjJ) adm, str, w.r.t, [genp,

(Sees tables in gection 6,.1,)
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Thys we can iInfer (2) feom (4) and (5) bejow,
te) Yx(0(x)sTRUE < Alx]),

(5) Yx(FIXIETRUE + AlX]) e=

vx((isconati{x)>TRUE, (Isvar(x)aTRUE,
(fcargl(x))a(fcarg2(x))aTRUE,
FALSE).FALSE)))STRUE < ALX)),

we csen improve the readability oy the following
consideration, Let p be an (%«Bo)etsrm, Then we (et p and “p stand
for the formul|as p=TRUE and psFALSE, respectively, This causes no

comfusicn becauss of the syntax we empioyed, ODviousl|y
p v "p
{s not va)id, whije pvep ia, We notice the re|ationship
(p>q,r) = p8a v “pér, (e)
which Is provable in FLT, since this formula Is an abbreviagtion of

(p>q,r)ETRUE = p=TRUE $ a=TRUE v p3FALSE & r®TRUE,

Thus we can rewrite (4) and (5) as follows,
(4°) ¥Yx(0(x) ~ ALx]),

(5) Yx(f(x) =« A(x]) =e

vx(|lsconstix)visvar(x}?v-igconstix)& " isvar(x)
& flargl(x)28 f(argdix)) = Alx1),

1t must ba noted that there are soms sybstitutes |n LCF for
forrulas Ilke (1)=(4), <though <these formyias are nOt a)lowed as
lsgitimate formuias in it and the Interpretation becomes different,
By the deduction theorer In first-order |0Qic we can also expresd the
sentence (5’) ty a formyla of FLT, replacing =< by < and binding f by
yniversal quantifisp, obtaining

5°°) VELYX(fix) « ACx}) =
Yx(|secontst(x) v Isvar(x) v “(gconsti(x? &
“tsvapix) & flarglix)) & flarg2ix)) « ACX))),

For such a formula there sSeem to be no natural substitutes In ¢the
fornr of LCF formuiag,

) 1t is a |itt|ie interesting, and also wuseful, that this oid
relatlionship still holds |n a calculus that Includes the undefined
truth Vl'u.o See, [ R Y [2,1,0
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Discusglions

‘The welgep hag been motivated toward the study described In
this paper through an attempt to transiate his formal system
representing the eayfvalence of Algolelike statementl2, 3] Into LCF,
For that puUrpose having some predicate calcujus=|lke faclility soems
to be egsentlial, for we reed to express Implication between 3trongd
equivalence In the form of formula,

From the writer’s paing of view, the following are among the
possiole advantages of having soms predicate calculus=]lke things
within jogic for computable funcxions,

1, (nuran engineering) In not a few cases, the sonventional logleal

operators mMake the welting and understanding of descriptions essler,
Besldes, many people are famiilar With expressions and derlvation In
predicate calculus, egpeclally, of flrsteorder,

2, t(unaeplying thegrles) In the practical fleld of apollcation of

such a loglc, for Ingtance nroving correctness of compllers, we have
to handis underiying theorles whoge representations In oredicate
calculus seem t0 be natura!, |lke ejementary set theory, We do not
care if some of the sets Involved in our proof are not computable oOr
continuous, even I# ¢hey might be In fact computable, There ard aiso
thecriag of equivalence and correctness of programs which are rolaced
to prodicate calculys,

3, (mega=theoremg) There wll| be many facts sbout the obJects of LCF
that can be stated on|y in the form of meta=theoroms of LcFy while
significant portion of them could be stated as <theoroms In an
extondeg leglc, Then handiing derived rules and applying already
proved theorems wll| become more convenlent,

Obviously thege desirable properties will not be obtained
before considepable experiments Moreover ther® myst ©S some
compromise, For Instance, [f we use engire ciassical oredliogte
calculus as In the present paper, We are out of the LCFellke wopld
that consists of so|e|y continuous functions, losing some neatness of
the forra|ism and relative simp(lelty of Implementation, tmploying
second or higher order predicate caloulus might glve us more
compiexity as weli as power,

It must be noted that J. McCarthy(4) sugoested that In some
generalization of Sco¢t’s loale using predicate calculus we ghould De
able to Drove the contlinuity of fungtions, It seems thet FLT ls
caPable Of doing thyt in splte af the limitgtion thet no oredicete
variables are ailgwed, for we have guantiflers ranoing over tyged
sets in effect, A fixedepolint inductlion based mainiy on monotonicity
within second-order predicate calculus has been discussed by 0,
Plrkt’)o
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