STAN-CS-71-251 SEL-T71-063

AN EFFICIENT PARALLEL ALGORITHM FOR THE SOLUTION
OF A TRIDIAGONAL LINEAR SYSTEM OF EQUATIONS

by

*
Harold S. Stone
NASA Ames Research Center, and
DIGITAL SYSTEMS LABORATORY
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California

December 1971

Technical Report no. 19

* ASEE fellow, Summer 1971

This work was supported by the NASA Ames Research Center, by the Joint
Services Electronics Program under contract N-0001L4-67-A-0112-00LkL,
and by the National Science Foundation under grant GJ-1180.

An efficient parallel algorithm for the solution

of a tridiagonal linear system of equations

by

Harold S, Stone
*
NASA Ames Research Center and

Digital Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University

Abstract

Tridiagonal linear systems of equations can be solved on conventional
serial machines in a time proportional to N, where N is the number of
equations, The conventional algorithms do not lend themselves directly to
parallel computation on computers of the ILLIAC IV class, in the sense that
they appear to be inherently serial. An efficient parallel algorithm is
presented in which computation time grows as log2 N. The algorithm is
based on recursive doubling solutions of linear recurrence relations, and

can be used to solve recurrence relations of all orders,

*
ASEE fellow, summer, 1971

1 introduction

The trend in large-scale high-speed computers today clearly points to
the use of internal parallelism to obtain significant increases in speed.

For example, the ILLIAC IV computer can perform N simultaneous computations
where N = 64, 128, 256, or 512. We expect that highly efficient computations
performed on a computer of the ILLIAC IV class will execute N times faster
than on a serial computer of the same inherent speed. Actually,
inefficiencies due to overhead and constraints on data communication among
processors will reduce the speed increase to kKN where k lies in the interval
(G < k < 1, Efficient algorithms have k near unity.

Unfortunately, many parallel algorithms do not lend themselves to
efficient parallel computation. We can exhibit examples of algorithms for
which computation time decreases rather slowly as we increase the number of
processors, and for some pathological examples the computation time 1is
independent of the number of processors. An efficient parallel algorithm
has the property that computation time decreases proportionally to 1/N as N,
the parallelism factor, increases.

In this paper we examine the solution of tridiagonal systems of linear
equations. It is well known that such systems can be solved using a
conventional serial computer in a time proportional to N where N is the
number of equations. We present an algorithm for solving the equations in
a time proportional to 10g2 N by using a computer with N-fold parallelism,
Computation in this case grows as (log2 N)/N which is proportional to Nl_E
for any € > O when N is sufficiently large. A different parallel algorithm
for this problem which exhibits a similar time behavior has been developed

by Buneman [1967], and analyzed in the literature [Buzbee, et al., 1970].

4 Bl

In Section II, we state the broblem and indicate conventional serial
methods for solution. These methods are inherently serial in that each
computation depends on the result of the immediately preceding computation,
In Section III we show how to perform a forward and backward sweep in
log2 N steps when given the LU decomposition of the original matrix. In
Section IV we show how to obtain the LU decomposition in 1032 N steps.

This particular computation is of general interest because it is an
efficient method for evaluating partial fraction expansions and linear
difference equations in parallel.

II Statement of the problem

We wish to solve the tridiagonal system of equations

A Xx =Db
WA L
where
3 7
d1 f1
e2 d2 f2
© d f
3 3 3
A =
M 5 Pe
ex-1 In-1 In-a
L - 1%

In the remainder of this paper we assume that N is a power of 2, but
this is not an essential assumption.

There are a number of related methods for solving this system serially
in a time proportional to N. The parallel algorithm presented here is
based upon one such algorithm, the LU decomposition, [cf. Forsythe and

Moler, 1967] In this algorithm we find two matrices, L, and U, such that

(1) =4
(ii) '& is a lower bidiagonal matrix with 1's on its principal diagonal.
(iii) Ji is an upper bidiagonal matrix.
When é'is non-singular, its LU decomposition is unique. In fact, it

is easily shown that

— ——

u1 fl

DRI

. —

where fi, 1 <i< N-1, is the upper diagonal of A, and

u, =d, - %1 Yi-1, for 1> 1. (1)

i i 3
i-1

The lower bidiagonal matrix, L, 1is then given by

— -
1
1
)
m 1
L = 3
[Fovy
mN-l 1
m 1
L_ N
where
m2 = e2/d1
e, . (2)
m, = i , for i > 2
i 3 — -
i-1 i-2 i~-1
= ei ’ for iz 2
uo

-) -

After computing L and U, it is relatively straight forward to solve
the system of equations., The solution is a two-step process.
Letting y = yg, we have
W

Ax=LUx=Ly=b

oy e A An A

LA

The equation L y = b is easily solved for y since
TS [N

v, = by (3)
¥y = bi - myi g for 2'='1'<'N
Then we solve U‘g =0y fork§. This equation is solved by a backward sweep
since
Xy = I
()
X5 =% V%t
u,
i

Note that the recurrence formulae (1), (2), (3) and (4) constitute a
complete algorithm for the solution of~é'§ = b, Since each computation in
this algorithm depends on the results of the previous computation, the
algorithm is satisfactory for serial computation but quite unsatisfactory
for parallel computation. In the following sections we derive equivalent
formulae that are well-suited for parallel computation.

III Parallel evaluation of the forward and backward sweeps

The model of a parallel processor that lies behind the development of
these parallel algorithms is based upon the ILLIAC IV computer. In this
computer there are N processors with independent memories, but only one
instruction stream., All of the processors operate synchronously, executing
the same instruction on N different operand pairs, where N can be 64, 120,
256, or 512, For added flexibility, there is a mask associated with each
processor that enables or disables the processor. Hence, if a processor's
mask is on, the processor executes the current instruction, otherwise the

processor remains idle.

- 5 -

Data can be communicated among the processors in one of two ways,
One datum can be broadcast to all processors simultaneously, or a vector
of N items can be shifted cyclically among the processors. As an example

of the latter case, suppose that the vector b = (b ..bN) is stored

1)b2,b3)'
. . .th . .

with bi in the i processor, Then the vector can be shifted j places

cyclically so that bi is routed to processor (i+j) mod N for all i,

In this section, we shall show how to solve (3) by a technique called

recursive doubling. The idea is to rewrite (3) so that y21 is a function

of Yi- Thus, in successive iterations we can compute yl,yg,yh,yB, etc.,
and yy can be computed in 1og2 N iterations. Since (4) is of the same
form as (3), the backward sweep can be done using the same algorithm, and
it also requires 10g2 N iterations,

To begin the derivation, we rewrite (3) in the form

- b
Y1 1

(3")

Vi

b, + (-m

g *my)y
This change is necessary because we shall make use of the associativity of
addition.

Substituting for y, . in (3') we find

1

=b, + (-m,).D
Yp = by + (-my)eby (5)
y3 = b3 + (-m3)-b2 + (—m3)-(—m2)-b1
y; =2 b, 0 (-m)

j=1 J k=j+1
where a vacuous product of mk‘s is interpreted as the constant 1.

The last formula in (5) shows the explicit dependence of Yy on each of
the coefficients of m and b. Our goal is to derive a recurrence in which

on

yg, is a function of yi. To anticipate the answer, momentarily consider
i

= B =

what happens when all of the components of‘E.are equal to -1, In this

case y, is the sum of the first i components of b. Then if yi(bj’bj L ERRER)

bj-i+1) is defined to be the sum of bj through bj—i+1’ we have

(b +

Vi (PogsPpy_yseeesby) = ¥y(byysDpy 5eeesby)

(6)

v (0y5by_150005by)
Equation (6) holds for all i 2 1, This recurrence has the recursive
doubling form that we seek, and therefore is the basis for a parallel
algorithm, The recursive doubling relation above suggests that we look for

a general solution in terms of functions Yl’ Y seey Y, Where each Y, is a

2? N i

function of i components of.E'anng. We shall use the notation Yi(J) as an
abbreviation for the more cumbersome notation

Yi(bj’bj-l"‘"bj-i+1’mj’”ﬁ-1’""mj-i+1)

That is, Y.(j) is a function of i consecutive components of b and‘E, with

i
the jth component being the highest component.

The following theorem establishes the relation we desire.

Theorem 1: Let Y, (j) satisfy the recurrence relation

(
i
¥,13) = v(3) + ¥, (3-1)- (-my) for i, j 2 1 (1)

with the boundary conditions

Il

Yl(J) bj for j =21

0 for j <O

¥, (3)

0 for i <0

v, (3)
Then

(i) for s 2 2, Yi(j) satisfies the recurrence relation
i

Yi+S(J) = YS(J) s Yi(J-s) k=Jgs+1(-mk) fori=21, j=2s. (8)

- 7 -
_ J J
(ii) Yi(j) = I Y,(k) T (—ms) foriz j=21 (9)
k=1 s=k+1
(iii) for iz j = 1, Yi(j) =¥y where Y5 is the jth component of the
unique solution of (3).

Proof:

To prove part (i), we use induction on s,

Basis step, s = 2.

From (7) we have

Yi0(3) = ¥0) + ¥, ,,0-1) (-my)

¥y (3) + ¥y (3-1)- (-my) + ¥, (3-2) - (-my) - (-my_y)
But using (7) again we also have
Y5(3) = %, (3) + ¥, (3-1)- (-my)

Hence,

)

which is recurrence relation (8) with s = 2. This proves the basis step.

Vip(3) = ¥,(3) + ¥, (3-2)+ (-m)« (-m,

Induction step. We assume that (8) hold for all s in the interval

2 <s < n-1, and we show it holds for s = n.

From the induction hypothesis we have
J
. _ 0 s AY - -
Yi+n(3) = Yn—l(J) + Yi+1(3 r+1l .H (mk)
) () : (-m)
Y (J) + Y. (j-n+1)- I -
n-1 1 k=j—n+2 Ink

]

J
AJ-n). 1 -
* ¥y (3mn) k:j—n+1(")

But from the induction hypothesis it follows that

J
v (3) = v, _;(3) + Yl(J-n+1)-k=j§n+2(-mk)

Hence,

J
Y1+n(J) = Yn(j) - Yi(j-n).k=jqn+1(_mk)

which is the same recurrence as (8) with s replaced by n. This proves
part (i).

Tc prove part (ii), we use induction on i.

Basis step. From the theorem hypothesis we have

Y,(3) = ¥,(3) + Yl(j-l)-(-mj), for j = 1
Then applying the boundary condition Yl(O) = 0, we obtain

v,(1) = v, (1)

Y2(2) Y1(2) - Yl(l)-(-mz)

These equations satisfy (9), thus proving the basis step.

]

Induction step: We assume that (9) holds for all i in the interval

2 < i < n-1, and we prove that it holds for i = n. Using (8) we have

Y .(3) = v, (3) + ¥ _,(3-1)-(-m,)

Using the induction hypothesis to substitute for Yn_l(j-l) yields

3-1 j-1
Y (3)=Y,(3)+ = v(x) O (-m)]+(-m,) for2<j<n
- - k=1 ' skél ° J
J J
= I Yl(k) y| (-ms) for 2 < j<n (10)
k=1 s=k+1

?he interval 2 < j < n for which the equations above are valid arises from
the application of the induction hypothesis to Yn_l(J-l) for 1 < j-1 < n-1.
Since (10) has the same form as (9), it is only necessary to show the
validity of (10) for j = 1 to complete the proof. From the theorem

hypothesis,
Yn(l) = Y1(1) - Yn_l(O) = Yl(l)
Since the same result is obtained by setting j = 1 in (10), the interval

in (10) may be changed to 1 < j < n. This proves part (ii) of the theorem.

9

Part (iii) is a direct consequence of the fact that with the boundary
condition Yl(j) = bj’ (10) is identical to the solution to (3). This
completes the proof of the theorem,

Corollary:

J
Ygi(j) = Yi(j) + Yi(j-i)- ul (-mk) for i, j 21 (11)
k=j-i+1l

Proof: Follows directly from part (i) of Theorem 1 by replacing s
by 1i.

The corollary of Theorem 1 provides the recursive doubling algorithm
for the solution of (3). The product term in (11) appears to be difficult
to evaluate because the number of factors in the product doubles with each
iteration. Fortunately, we can also use recursive doubling to compute the
product term,

Let Mi(j) be defined to be

J
M (3j)= T (-m) for j = i
* k=j-i+l "k
. 12
j . (12)
= II (=~ for j < i
k=1 i
Then (11) can be rewritten as
¥, (3) = v, (3) + v, (3-1)-M,(3) for i,j = 1 (13)
The recursive doubling computation of Mi(j) is provided by the formula
i) = i YoM, (5~ for i,j = 1 1h

with the boundary conditions

i) o - for j = 1
MI(J) m J
Mi(j) =1 for j <0

=1 for 1 £ O

v, (3)

=10 =

The parallel algorithm for the solution of (3) is simply the iterative
application of (13) and (14). It is given below in an ALGOL-like language.
In the program, when an interval of the form (1 <3Jj< N) appears after a
statement, that statement is assumed to be executed simultaneously for all
indices in the interval.

begin

real array Y[1:N], M[2:N];

real array b[1:N], m{2:N];

comment Y and M are the arrays in which equations (13) and (1k4)

are evaluated. Arrays b and m are the arrays that give the
coefficients of (3). These arrays may utilize the same

storage space as the arrays Y and M, respectively;

initialize:
¥3d = = ofgl, (2 = § = R);
M{j] : = -m[j], (1 =< 3j <N);
for i : = 1 gtep i uptil N/2 do
Qﬁg}p
¥[3] : = ¥[3] + ¥l3-1] x M[3], (i+1 < J < N);
M{J] : = M[J] x M[j-1], (i+1 < j < N);
end;

At the completion of each iteration, the array Y contains Yi(j)’ and
M contains M,(j). From Theorem 1, Y (j) = y; for 1< j < N, so that Y is
the solution to (3). Since i doubles during each iteration, log2 N
iterations are required for the computation. The vector operations

indicated in the program are easily carried out in an ILLIAC IV type of

computer since masking operations can be used to establish the interval

— 10 =

for the index j, and cyclic shifting of components of a vector can be used
to align Y[j] with Y[j-i]. The parallel algorithm is also suitable for
efficient operation in vector processors of the pipeline class such as the
CDC STAR computer,
For the solution of the backward sweep, Equation (4), the body of the
iteration should be modified as indicated below:
oo
Y(i]:
ML 3] :

Il

v[3] + v[g+i] x M[j], (1 <js<N-1i);

]

M[3] x M[j+i], (L<j<N-=-1i);
end;
g

IV Calculation of the LU decomposition by recursive doubling

We now focus attention on the efficient calculation of (1) and (2).
Again we use recursive doubling to compute the coefficients u = (ul,ue,...,uN
and m = (m2,m3,...,mN). The approach we use is to solve (1) by recursive

doubling, then compute m, = ei/ui 1 simultaneously for 2 < i < N to solve (2).

i

Since (1) is a partial fraction expansion, it is convenient to cast it
into a linear form which is suitable for a recursive doubling algorithm. It
is well known [cf. Wall, 1948] that every partial fraction expansion is

associated with a linear second order recurrence relation. In particular,

if we define the quantities q; s 0 < i < N, by the recurrence relation

q; = d;q; 5 - e 19 5 iz2 (15)
with the boundary conditions
qy =1
qy =%
then it is easily shown that
(16)

= 2 1
uy qi/qi—l for i

= 1B =

or equivalently,

i
by 321 E
To solve (1) efficiently, we have only to solve (15) efficiently,
because after calculating a5 0 =i =< N, we can evaluate (16) in a single
operation carried out simultaneously on N processors. Equation (15) is
somewhat more difficult to solve than (3) because it is of second order,
whereas (3) is of first order. However, we can make use of an artifice to

reformulate (15) as a matrix recurrence relation of first order. In

particular, it follows from (15) that

a4 g o] % 451
= = A (16)
Y } 9 %Yo 9.0
T 'T
Note that we can substitute A, . (a; , qi_3) for (q;_; 9;_,) in (16),
and can continue this substitution repeatedly until we obtain
q q
i 1
- At)
%1 9%

This formulation of the problem is ideal for recursive doubling. Since
matrix multiplication is associative, we can evaluate the product

A A

~i~1-1"‘52 in exactly the same way that we evaluate a product of scalars,

In fact, we have encountered this problem before in (12), and the recursive
doubling solution is the schema of (14). Then to solve (15) for all ay
simultaneously, requires log2 N iterations, in which the ith iteration
involves the EN'_1 simultaneous calculations of the product of two 2 X 2

matrices.

-'13 -

It is rather interesting to investigate the properties of the functions
a because it is possible to exploit their characteristics and obtain a
parallel algorithm slightly more efficient than the solution to (17)
described above. Fortunately, a great deal is known about these functions.

One important property is well illustrated by the first few qi.

qy =1

q =9

9 = 98, = &t

ag = dydyd) - doef) - et d)

qh = dud3d2d1 - d3d3e2f1 - due3f2d1

- euf3d2d1 + ehf3e2f1

Knuth [1971] attributes to Euler [1748] the observation that q

contains the term d. d d together with every term that can be

ii-1"""71

constructed by replacing djd by -e for all possible combinations of

-1 1*3-a

such pairs. This property follows directly from the recurrence relation
(15). The first product in (15), d;q;_,, creates terms in g, for which
adjacent d-pairs are deleted from among only the coefficients dl’ d2, coay
di-l in all possible ways, and thus produces every possible way there can

be terms containing d The second product in (15) replaces didi-l by

i-

_eifi 17 and combines this with every possible way d-pairs can be eliminated

among the coefficients dl’ d2, veely di-2‘ This produces every possible term
without di' |

We can obtain factorizations of the 9 functions that correspond to the
intermediate results in the evaluation of (17). To arrive at these
factorizations, let us define Qi(j) for j 2 i to be the function inwith the

subscripts of its arguments increased systematically so that the leading

subscript is j. For j <i, we define Qi(J) = Qj(j). Some examples of Qi(j)

< il -

should clarify ambiguities in the definition,

Q (1) = d,

L (1) = 4,

Q3(3) = d3d2d1-d3e2f1-e3f2dl
Q3(u) E dhd3d2-due3f2—euf3d2
Q3(2) - Q2(2) = dyd,-e f,

Frem this definition it now follows directly that the Qi functions
satisfy the recurrence
QI+S(J) = QS(J)Qi(j-S) - ej—S+1fj—SQS—l(J)Qi-l(j—s_l) (18)
for 3 & 8, L& 1

with the boundary conditions

) = d. for J = 1
Q(3) = g, j
Qi(j)_—_l for 3 20, 1 =0
Ql(j)zl for j <0, 1 2 0
ej+1fj =0 for j <O

This recurrence formulation is also well-known, with citations in the
literature at least as early as 1853, [Sylvester, 1853; Perron, 1913].

The validity of (18) can be verified by an intuitive argument. To
find all possible ways of eliminating adjacent d-pairs in a sequence of
i+s coefficients, combine every possible way of eliminating pairs in the
first s coefficients with every possible way of eliminating pairs in the
last i coefficients. This accounts for the first term of (18). However,
one d pair contains the last coefficient from the set of s coefficients and
the first coefficient from the set of i.coefficients, The first term in
(16) does not account for any of the ways this pair can be eliminated. We
see that the second term in (1§) accounts for all such ways, because

e‘j s+1fj 5 replaces the pair and this replacement is combined with every

possible way of eliminating pairs in the first s-1 coefficients and in the
last i-1 coefficients. From (18) we obtain the recursive doubling formulae.
Theorem 2: Qi(j) satisfies the recurrence relations
Q; (3) = @ (3)Q(3-1) + (-ey_j 4%, ;)9 1(3)Qy_y(3-1-1)
Q;_1(3) = ()@ (3-1) + (mey %5 09 4 (3)Q pl3-1-1) 19
Qy p(3) = @_1(3)Qy_y(3=141) + (=ey 5 o35)9 p(3)Q;_p(3-1)

Proof: These formulae follow directly from (18).

The first of the equations in the corollary above is a recursive
doubling formula which shows that Q2i depends on both Qi and Qi-l' Hence,
to compute th we need to compute both Q21 and QZi-l‘ To compute th-l we
have to compute Q21—2‘ Since Q21—2 depends on the same quantities as Qgi
and Q,;_;, Ve need only the three equations (19) in a recursive doubling
algorithm, Since we have to compute Q2i—1 and Q2i—2 anyway, it is slightly
more efficient to compute Q2i by the formula

Q;

;(3) =0y 4(3) + (~ejfj_l)Q21_2(J-c)-

The complete algorithm to compute a5 1 < i< N is given below in an
ALGOL-1ike language. The initial conditions establish the values of QO’ Ql’
and QE' The first iteration computes Qg’ Q3, and Qh’ the second iteration
computes Q6’ Q7, and Q8, and the last iteration computes QN—E’ QN—l’ and QN'

begin

mad
real grray E[2:N], F[1:N-1], p[1:N], EF[1:N],

AP~
TEMP[1:N], QI[1:N], QIM1[O:N], QIM2[-1:N];

comment the arrays hold the quantities indicated below.
AN~

E The lower diagonal of the tridiagonal matrix A.
F The upper diagonal of A.
D The major diagonal of A.

EF This holds products of the form _eifi-l‘

- 3K =

TEMP A temporary array.
QI Holds Q, (Jj).

QIM1 Holds Q, ,(J).
QIM2 Holds Qi_z(J).

The computation begins by initializing EF, QI, QIMl, and QIMZ2;

initialize:
EF(i] := - E[1]xF[1-1], (2 < 1 < N);
QIM2[i] :=1, (1 < i < N);

QIM1[1i] := D[i], (1 < i < N);

QIfi] :
QI(1] :

p{1]xp[i-1] + EF(1], (2 < i < N);
p[1];

comment the last three lines initialize the arrays to QO’ Ql’ and Q2,

respectively;
for i := 2 step i until N/2 do
— —— AAA -
begin
A~

TEMP[j] := QIML[jJxQIM1[j-i+1] + EF[j-i+2]xQIM2[j JxQIM2[j-1],
(i-1 < j < N);

comment TEMP contains Q21-2' It cannot be written over Q1-2 yet

since Q1-2 is needed in the next line;

QIMI[j] := QI[JIxQIM1[j-i] + EF[j-i+1]xQIM1[jIxQIM2[j-1-1],

(i =3J =N);

QIM2[j] := TEMP[j], (i-1 < j < N);
QI[J] := p[jIxQIM1[j-1] + EF[j]xQIM2[j-2], (i+l < j < N);
end;
At the termination of the algorithm, QI[i] will contain q, for
1<1i<N., Weuse (16) to compute the diagonal of.H.from the qi's. This

clearly can be done in parallel by dividing the vector QI by a shift of

- 17 -

itself. Finally, to compute the subdiagonal of L, we note that (2) indicates
that this computation can be done by one parallel division.

In executing the algorithm on an ILLIAC IV class of computer, the
vector alignment required for the calculation is done by cyclically shifting
vectors among the processors. Since the algorithm requires that QI[j] =
QIM1[j] = QIM2[j] =1 for j < 0, we can avoid storing these quantities by
changing the cyclic shift of these vectors to an end-off shift in which the
integer 1 is shifted into element 1 of each of these vectors. Similarly,
EF[j] = O for j < 1, so that O's are always shifted into EF[2] when the EF
vector is aligned.

The ranges indicated for each statement in the basic iteration show the
positions of the vectors which change when that statement is executed. The
algorithm will work correctly when all ranges are replaced by the £413
range 1 < i < N since values that do not change are recomputed at each step.
It is somewhat more efficient to use the full range for a calculation than
the ranges given, although redundant recomputation of values may be
accompanied by greater round-off error.

The serial solution of a tridiagonal system of equations, when done as
outlined in Section II, requires 3(N-1) of each of the operations division,
multiplication, and subtraction. The parallel computation has three loops,
éach executed log2 N times. The loop that computes the LU decomposition
requires eight multiplications and three additions per iteration, whereas
the forward and back substitutions each require two multiplication and one
addition per iteration. Apart from the computations within loops, there
are at least four divisions, two multiplications and one addition applied

to N elements simultaneously.

= 1B =

Hence the operation count for the parallel algorithm (exclulive of
overhead computations) is
12 log2 N + 2 multiplications
5 log2 N + 1 additions
L divisions.
The reduction in the number of divisions is particularly important for
computers which take much longer to divide than to multiply. (On the
ILLIAC IV computer division is approximately five times longer than
multiplication).
At this writing the stability o; the algorithm has not been thoroughly

investigated. Clearly, the algorithm is unstable if any q vanishes.

i

Since q = ﬂluJ, 9 vanishes if and only if one of the uy coefficients
j=

vanishes. However, if the‘ﬂ‘matrix is diagonally dominant and non-singular,

every u, is bounded away from zero [Isaacson and Keller, 1966].

i

We conjecture that the error bounds for the parallel algorithm are

comparable to those of the serial algorithm,

Summary and conclusions

The parallel algorithm for the solution of tridiagonal systems of
linear equations really consists of two different algorithms. One
algorithm is the parallel evaluation of first order difference equations
of the form

x5 = bixi-l + ci
where the bi and ci are constants,

The second algorithm solves second order equations of the form

x, =b; X + c,x (20)

Since partial fraction expansions are associated with second order
difference equations, the second algorithm may also be used to compute
partial fraction expansions. The form of the solution obviously general-
izes to linear recurrence relations of arbitrary mth order, still requiring
log2 N iterations, where each iteration involves simultaneous multiplications
of m X m matrices.

It is well known that a straightforward serial evaluation of (20) can
be unstable [Gautschi, 1967], although it is not unstable when the
coefficients are obtained from diagonally dominant matrices. The stability
of the parallel algorithm in such cases has not been investigated, but it
too is undoubtedly unstable. Since (20) can be solved by backward
recursion when forward recursion is unstable, we expect that backward

parallel recursion would also be stable.

= 20 =

Acknowledgment

The author expresses his appreciation to William Jones and

David Galant of NASA Ames Research Center for their many conversations,
comments, and criticisms which materially aided the research, He is also
grateful to Donald Knuth of Stanford University for pointing out the early
contributions to the factorization of second order recurrence relations.
The recursive doubling algorithm for solving first order recurrence
relations was discovered independently by Harvard Lomax of NASA Ames
Research Center and by Robert Downs of Systems Control, Inc. Gene Golub
of Stanford University pointed out Buneman's algorithm as an alternative

method for solving tridiagonal systems in a time proportional to log2 N.

- 2] -

References

Buneman, Oscar, 1969. "A compact non-iterative Poisson solver,"
Report 294, Stanford University Institute for Plasma Research,
Stanford, California, 1969,

Buzbee, B, L., G. H. Golub, and C. W, Nielson, 1970. "On direct methods
for solving Poisson's equations,” SIAM J. Numer, Anal., Vol.T,
No. L4, December 1970.

Euler, Leonhard, 1748. Introductio in Analysin Infinitorum, Lausanne,
Section 359, 1748,

Forsythe, G. E. and C. B. Moler, 1967. Computer Solution of Linear
Algebraic Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 1967.

Gautschi, Walter, 1967. 'Computational aspects of three-term recurrence
relations," SIAM Review, Vol. 9, No. 1, pp. 24-82, Jan. 1967.

Isaacson, E., and H. B. Keller, 1966. Analysis of Numerical Methods,
John Wiley and Sons, New York, 1966.

Knuth, D. E., 1971. '"Mathematical analysis of algorithms," Report
Stan-CS-71-206, Stanford Computer Science Department, March 1971.

Perron, O., 1913, Die Lehre von den Kettenbruchen, Leipzig, 1913.

Sylvester, J. J., 1853. Philosophical Magazine, 6, pp. 297-299, 1853.

Wall, H. S., 1948. Analytic Theory of Continued Fractions, Van Nostrand,
Princeton, N. J., 1943.

