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Recurrence Relations Based On Minilnization 
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Michael L. Fredman and Donald E. Knuth 
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M(O) = g(O) , M(n+l) = g(n+l) + mino <k <n(OM(k) + ~(n-k» 

for various choices of ex, ~ , and g(n) . In a large number of 

cases it is possible to prove that M{n) is a convex fUnction 

whose values can be ccmputed much more efficiently than would be 

suggested by the defining recurrence. The asymptotic behavior of 

M(n) can be deduced using canbinatorid.l methods in conjunction 

With analytic techniques. In sane cases there are strong connections 

between M(n) and the function H(X) defined by 

H(x) '" 1 for x < 1, H(x) = H{ (x-l)/a) + H( (x-l)/~) for x > 1 • 
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Recurrence Relations Based on Minimization 

Let (l and I:! be positive real constants, and let g(n) be a 

real-valued tunction over the nonnegative integers. Consider the new 

function M~(n) over the nonnegative integers, defined as follows: 

g(O) , 

= g(n+1) + min (aMgae(k) + ~gae(n-k» • 
O<k<n 

We shall occasionally write M(n) instead of M~ (n) • FUnctions of 

this type occur in discrete dynamic programming situations, where it is 

important to study the behavior of M~(n) for large n. 

The purpose of this paper is to introduce some techniques which are 

use:f'l1l. in the investigation of M~(n) , and in sane cases to obtain 

ways of canputtng M~(n) with much less work than the above definition 

implies. 

g(n) = 1 , 

derived. 

Particular attention is paid to the cases g(n) = !!InO ' 

2 g(n} = n , and g(n) = n , where asymptotic formulas are 

1. A convexity theorem 

A real valued function g(n) over the nonnegative integers is 

called convex if its second dii'i'erence is nonnegative, i.e., if 

g(n+2) -g(n+l) ? g(n+l) -g(n) for all n ~ O. The i'ollwing theorem 

shows that a large class of MgatI functions is con'"ex, and it characterizes 

the function D~(n) = Mg~(n+l)-Msat3(n) in this ClaISS. 
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Theorem 1. ~ g(n) ~!. function which satisfies ~ following 

condit ions: 

a) g(nt-2) -g(o+1) > g(n+l) -g(n) for all n > 1 

b) g(2) -gel) + min(ad,~) ~ d, where 

d = gel) - g(O) + «)f-~)g(O) (1.1) 

~ .!!. !. \Ulique function D(n) satisfying ~ follOWing ~~ properties: 

(i) D(O) ~ Del) 

(ii) D(O) = d (cf. (l.l)); 

(iii) D(n} = g(n+l) -g(n)+F{n) , for n ~ 1 , ~ the infinite 

sequence (F(1),F(2),F(3), •.• ) !! the result of sorting 

the sequence (cm(o),em(O),a:o(l),em(l), ••• ) ~ nondecreasing 

order. 

(Sanetimes the infinite sequence (F(l), 1'(2), ..• ) fails to 

include all the elements of (a:o(O),em(O), ••• ), e.g. when 

ao(n) < ,m(o) for all n .) 

~ function D is nondecreasing., and ~ have 

MS0\3(n) = g(O) + I: D(j) 
O~j <n 

Thus, M~ is convex. 

* ~: Consider the i'unction D (n) defined by the rules 

* D (0) - d 

* D (n) = g(n+l)-g(n)+Fnn ., for n ~ 1 , 

where (F 1,F 2'" .,F 2n) is the sequence obtained when n n n, 

* * * * (0:0 (O),,m (0), ••• ,0:0 (n-l),~ (n-I» is sorted into nondecreasing 

(1.2) 

(1.3) 

* * order. We shall prove by inducticm on n ~ 1 that D (n) > D (n-l) 

and that F +1 0+1 > F • When n = 1 , we have n, - n,n 

* * D (1) = g(2) -gel) + min(ad,~) ? D (0) by condlticm (b). Hence 
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F22 2' FU = min(ad,~) • For n 2' 2 , the relation Fnn ~ Fn -1,n-1 together 

* * with condition (a) shows that D (n) ~ D (n-1) • Consequent~ the first 

n eJ.ements of (F n+ 1,1' F n+ 1,2' ••• ) are the same as those of 

(Fnl,Fn2, ••• ) , and we have Fn+l ,n+1 2! Fn,n 

This argument shOW's that F = }O' for all m 2' n , hence n,n m,n 

(Fll,F22,F33"") is the result of sorting the sequence 

* * * * * (aD (O),~ (o),an (l),~ (1), ••• ) into nondecreastng order. Hence D 

satisfies the conditions (i), (ii), (iii). Conver3e~ if D is any 

function satisfying (i), (ii), (iii) we have D(O) ~ n(l) ~ D(2) ~ .•• 

by (i) and condition (a), hence D must satisf'y the recurrence relations 

* defining D (n) • This proves the existerce and uniqueness of D{n) • 

Final.J.¥ we need to prove (1.2), for n ~ 1. By the definition of 

(F(1).F(2),F(3), ••• ) , we have 

for all 0 ~ k $ n , and equality holds for sane k. Thus, 

g(O) + L D{j) = g(n+l) + (Clt",:s)g(O) + r F(j) 
O$j$n l$j~n 

= g(n+l) + min (ex{g(O) + 1: D(j» + ~(g(O) + r D(j»' 
O~k~n~ O~j<k O~j<n-k ~ 

o 

It is interestil'!_g to nate that condition (i), or sanething Similar, 

is necessary for the validity 01' this theorem. For example, as&llDle that 

ex = ,:s = 1 and that g(n) = 1 for all n. Then the two funCt:i.C·llS 

Dl. en) = 2 and D2(n) = 2&nO both satisfy conditions (ii) and (111) 1 

This accounts for the sanewhat canpl.1cated formula in condition (b). 
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Note that we can canpute the M f'unction using the following simple 

algorithm, whenever g(n) satisfies the hypotheses or Theorem 1: 

integer j,k,n; 

~ M,F; 

array D[O:N]; 

j := k := 0; D[O] := g(l)-g(O)+(o*B)xg(O); 

~ n := 1 ~ 1 ~ N do 

begin if' ex x D[j] 513 x D[k] ~ 

begin F := exxD[j]; j := j+l end 

!!!! begin F := I3xD[k); k := kt-l end; 

D[n] := B(n+1) -g(n)+F; 

end canputation of D; 

M := g(O); 

for n := 0 ~ 1 until N do 

begin print ('n= " n, '; D[n]= ., D[n], '; M[n]= ., M); 

M :=M+D[n]; 

end printing the table of D and M. 

Thi.s algorithm takes only O(N) steps to compute M[O],M[l], ••• ,M[N] , 

instead of the O(~) steps which are implied by the original derinltlon 

of M~(n) in (0.1). 

TheorE!ll 1 also has a useful corollary when a and 13 are equal: 

Corollary. Let ex = 13 and let g(n) be as in TheorE!ll 1. Then 

M_('J - .(nJ + " (M_( h' J) + M_ (r ',;'1)) tor all n > 1. (1.4) 

(Here Lx J , r xl respectively denote the greatest integer < x 

and the least integer ~ x .) 
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Proof: By Theorem 1 with ~ "ex, M is convex. It is easy to prove 

for any convex function M that the minimum. value of M(k) + M(n-k) 

occurs for k = Ln/2J • (Note further that (F(1),F{2),F(3),F(4), ••• ) 

(aD(O)laD(O),aD(l),aD(l), ••. ) in this case.) 
o 

2. The case g(n) = n: "opt:imal trees" 

When g(n) = n , so that nCo) = ~ dnd D{n) =: ~+F(n) in 

Theorem 1, we are soon led to an interpreta.tion of M~(n) in tenns 

of bina.ry trees. In this sect ion we shall develop this tree relationship 

in an independent manner, without explicitl,.y using the result of Theorem 1. 

OUr genE'ral plan 15 to define a weight:lng tunet ioo for the nodes of a 

binary tree; M~(n) will turn out to be the minimum total weight of 

any binary tree with n nodes. (See [il] for an introduction to the 

well-known properties of binary trees.) 

A binary tree '1' is, by definition, either empty or it consists 

of a left subtree 1('1') , a right subtree reT) , and an apex or root 

node a(T) ; l (T) and r(T) are themselves binary trees. Let " 

denote the empty binary tree, and let IT 1 be the number of nodes 

of T. Thus, 

{

o 
ITI = 

1+ 1'('1') 1+ !r(T)! 

if T =: " 

if T f " . 

Now consider the function 

"(T) = {o 
IT I + ex '»!(t (T» + ~ 11(r(T» , 

ifT ... " 

if T"''' , 

5 
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and let 

M{n) min '11(T) 
T: IT \=n 

(2.3) 

We shall say T is "optimal" if mT) .. M( IT \) • It is ea.sy to see 

that the "pr1nciple of optill1a.lity" of dynamic programming is sa.tisfied, 

in the sense tilat all subtrees of an opt1ma.l tree must be optimal.. 

Consequently for n > 0 we have 

M(n) .. n+ min (aM(k)+ty.i(n-l-k» , 
O<k<n 

i.e., M(n) = M~(n) • 

Another way to view the situation is to consider finite strings 

( 1. e., sequences) of the letters L and R. If a is such a string, 

define w( a) by the following rul.es: 

VeE) = 1 ; w(La) = 1+ aw(a) veRa) = 1 + ewe a) (2.4) 

Here E denotes the empty string. As an exampl.e 01' this definition, 

w( LBRLL) = 1 + a. + C1f> + 0fJ2 + cl-f,2 + ~ (32 • 

My node in 1\ binary tree may be Wliqueq identified by a sequence 

of L's and R' s [7] : we denote aCT) by E, 8lld denote the nodes 

of '(T) 8lld reT) by plac1ng an L or R respectively before the 

denotations in I (T) , reT) • Thus if AT) is the set of all such 

strings, we have 

AT) = {p , 
(E) U L J(I(T» U R J(r(T)} , 

it T=I'I; 

if TI=I'I. 

It is easy to see that a set of strings S is equal to J(T) for sane 

T if and o~ if 

aL£S or dR€S tmplies a£S. 
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Furthemore om is a. "total weight" ~ction, in the sense that 

'1I(T) = t w( a) 
a€.I(T) 

This is the basic relatiCll we shall use; it is easily ver11"ied by 

induction. 

Now consider a sequence of strings (al , a2, a" ••• > such that, 

for each n, w( an) has miniJllum weight among all strings not in 

(2.6) 

(0'1'" .,an_11· Thus, a1 = £; a2 == LifO: < tl, a2 == R if a > ~ • 

(For sane choices of () and 13, e.g. () = 1/3 and f3 = ';!./3 , there 

are infinitely lIlE;'lY strings which will aever appear in the seq'~ence.) 

For each n, the set S = {al , ••• , a) defines an optimal binary tree; 
n n 

this follows fran (2.5), because w( aLl a.nd w( oR) are always greater 

than w( a) • Consequently 

This explicit interpretation of M~ is essentially that of Theorem 1, 

since (D(O),D(l), ••• ) is precisely the sequence (w(a1),w(a2), ••• ). 

As & simple application of these ideaa, we can derive an uymptotic 

fonnuJ.a. 

Theorem 2. Let g(n) = n J 0 < a :s f3 , and a < 1.. ~ 

n 
r:<i (2.8) 

~: If a is a string of length ~ m, w(a)? w(Lm) = 1+ 0:+ ••• + r:P 

= (1-Jrr+1.)/(1-a) • There are onl¥ finitely many strings of length < m , 

hence lim inf M(n)/n ~ (l~1)/(l-a) for all m. On the other hand, 

11m sup M(n)/n S l/(l-a) , su;.ce the sequence of strings 

gives an upper bound. 

7 
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3. The case g(n) = n: asymptotic results when min(a,~) = 1 

Theorem 2 shows how M grows when min(a,~) < l. When a = ~ = 1 

we have w( a) = m+ 1 for all strings " of length m, hence we can 

obtain the well-known explicit formula 

r rlo~(k+l) 1 
l.<k<n 

r lO~(n+l) 1 
(n+l) r lo~(n+l)1 - 2 + 1 

-- n lo~ n+ O(n) (3.1) 

When a = 1 and 13 > 1 , the problem of estimating MgQf3(n) is 

considerably more difficult. In this case the weight f'unction w( a) is 

related to partitions into powers of 13; for ex.ampl.e, 

The weights take the form of po~omials with nonnegative coeffiCients, 

such that there are no "gaps It : 

An expression of the form (3.2) may be called a. partitio!! into 

powers of ~ ; if condition (3.3) is also satisfied we shall call it & 

sapless partition. It is convenient to regard the case ao = a1 = ••• = 0 

as a gapless partition, even though it is not the weight of any string 

the nonzero gapless partitions are in one-to-one correspondence with 

strings of L's and R'S, since (3.2) is the weight of 
aO-l &1-1 &k-1 

L RL R ••• RL • 

Let p(x) denote the number of partitions into powers of 13 whose 

value is .s x , and let H(x) be the correspondins number of gapless 
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partitions. ThUG, H(x) is the number of strings of weight 5 x , 

plus one. We have p(x) = H(x) = 1 for 0 5 x < 1 , and it is not 

difficult to deduce the following recurrence relations for x > 1 

p(x} = P(x-l) + P{x/fj) 

H(x) = Hex-I) + H«X-l)/~) 

As a consequence, we have the following relation between partitions 

and gapless partitions: 

Lemma 3.1. 

C1 = P(l + 1/ (~-1) - 0) and c2 = pelf (fj-l» • 

~: Let Hl(x) = P(x+l/(fj-l» • For x >1 we have 

(3.4) 

H1(X) = P(x-l+ l/(fj-l» +P«x-l)/~+ l/(fj-l» = Hl (X-l) + H1«x-l)/fj) , 

and for 0:5 x < 1 we have c2 :5 Hl (x) 5 c1 • Thus 

C~~l (x) $ H(x) 5 c;~l (x) for all x, by induction on LXJ • 
a 

When ~ = 2 , we have c1 = c2 = 2 , so the above lemma shows that 

the number of gapless part it ions of n into powers of 2 is exactly 

half the number of ordinary partitions of nH into powers of 2, for 

all poGitive integers n. A combinatorial proof of this result is also 

possible: The number of ordinary partitions (3.2) of n in which ~ = 1 

is the same as the m.unber with ~ > 1 , under the correspondence 

(aO'&1, ••• ,ak_1,1) " (aO,al'··"~_1+2) • The number of ordinary 

partitions of n in which ~ = 1 is the same as the ntmlber of gapless 

partitions::of n-l, Wlder the correspondence (aO,al ,·· .,ag.l,l) .. 

(aO+l,a1+l, •• '1 Bg_l+l) • 
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The H function has a canparative~ simple relation to M, 

namely 

x x 
M(H(x) -1) = J tdH(t) ::: xlI(X) - S H(t)dt , (:3.6) 

o 0 

since M(H(x) -1) is the sum of all ga:pless partitions whose value 

is :s x (cr. (2.7». Therefore we can use known results a.bout partitions 

into :powers of ~ in order to deduce the asym:ptot ic behavior of M: 

Theorem 3. When f3 > 1 ~ g(n) == n , ~ ~ 

~: N. G. de Bruijn [ :3 1 has proved that 

In p(x) '= In ~(L22 + Y) -r(_l __ 1) In x+ p(y) ... o({10g 10g X)2) 
In f3 2 log X ' 

(;'.8) 

where y = logf3 x - lOgf3 logf3 x , and where p is a rather horrible­

looking function of period 1, namely 

x 
Now we wish to shoil that the integral S H{t)dt in (3.6) is 

o 
small with respect to the other term xH(x) • We have 

10 



x x 
S H(t)dt = J {H(~t+l} - H(~t) )dt 

o o 

1 ~x+l 1 
= t3- (J H(u)du - S H(u)du) "" O(H(~X» 

t3x a 

By (3.8) and Lemma 4.1, In(Ii(t3x)/H(x)) = y In j3 + 0(1) , hence 

H{~) = O(xH(x)/log x) (3.10) 

If we set n = H(X)-l and M(n) ~ nef(n) I we now have 

M(n) = xn + O(xn/log x) (3.ll) 

fen) = 131 x + O(l/log x) (3.12) 

and it remains to express 1n x in terms of n. 

We have ln x ~ y In j3 + 131 Y + O(log log x/log x) hence by 

(3.8) and Lemma 4.1, 

In n '" ln2 j? i + (1 + ~)y + (_1_ - 1) 131 Y + 0(1) 
2 lnj3 2 

Consequently 

'2 -1"-- __ 1 ___ 1_ .L 0 (log log n) y = .19 og n ,- -
~ 2 1n t3 .hog n 

and (3.7) follows immediate~ for those values of n having the special 

form H(x)-l. In general suppose that H(x-o)-1 ~ nO < n ~ n
i 

= H(x)-1 

Then n1-nO ~ H{x) - H(x-I} = H«x-1)/t3) = O(H(x) log x/x) = o(nl ) , 

hence nolnl - 1 e.s n .... ; by (.5.11), M(no)/M(nl ) -1 • 
o 

The above proof can be extended to obtain slightly more information 

than is stated in Theorem 3; we coulri evaluate fen) to within 

0(1/4log n). But the complicated fonn of (3.9) shows that it is 

inherently very difficult to go any further than this. 
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Before moving to the next topic, let us digress ror a moment to 

summarize the interesting history of the present case. Euler gave the 

generating fUnction for partitions into powers of 2 in his famous paper 

on partitions [5]. A. Cayley [1] proved that the number of sequences 

&1'&2' • "'~ such that al '" 1 and 1 ~ ai +l :s 2ai is equal to the 

number of partitions of 2k_l into powers of 2 ; he proved this using 

the correspvnding generating function. Binary partitions were independently 

studied by Tant\ll"ri [16]. The behavor of the generating f'unct ion in the 

neighborhood of unity was investigated about 1923 by C. L. Siegel, in 

unpublished work. P. Erdos [4] found the leading term of (3.8), and 

K. Mahler [13] found the other tenns except with 0(1) instead of the 

periodic function p(y) , when ~ is an integer. N. G. de Bruijn [3] 

obtained (3.8) ror all t3 > 1 I and his work was f'urther generalized by 

W. B. Pennington [14]. The connection between binary partitions and the 

Mgl2 function was pointed out by Knuth [10], who gave an elementary 

derivation of the leading term in (:~.8) when ~ = 2. Heller [8] fOWld 

the leading terms of (3.8) using a different approach. Arithmetic properties 

of ~-ary partitions have been studied by Churchhouse [2] and Rooseth [151. 

4. " The case g(n) = n: asymptotiC results when m1n(a,t3) > 1 • 

When a = t3 , the weight of any string a is simply 

l+a+ ••• +alal ; so it is easy to obtain an "explicit" formula for 

M~ when g(n} = n and a = t3 : 

m m ~m-l) m-Lm-l M (2+k-l)=2(l+ct+ ... +Cl -(1+20+ ••. +2 Cl ) 
FJD. 

+ k(l+a+ ... +cf') for 0 5 k 5 2m • (4.1) 

12 



It follows that for 0 < Q < 1 and a > 1 , 

Replacing (1+Q)2
m 

by n, it follows that 

l+lo~a 
M~(n) - c(e) n 

where 
(lo~ n) mod 1 

Q = 2 -1 and 

1+Qa 1 -(1+ lo~a) 
c(9) = (a-1 - 20_1)(1 + 9) 

(4.2) 

is a periodic f'unction of lo~ n. For example, when a = ~ = 2 , 

the asymptotic form. of Mg22(n) varies between 3- n2 (when n IIt:j zn ) 
3 2 4 -Ill 

and 1; n (when n ~ '3 ~ ). 

We shall see that such behavior is typical of the case 

min(a,~) > 1. If we define the constant r by the relation 

a-r + ~-r = 1 I (4.3) 

1 + 1/., 
grows 8.1lP1"oximately as n • When we will find that M~(n) 

log a/log ~ is irrational, it turns out that Mf!PfJ(n)/nl + l/r actually 

approaches a limit as n -.. On the other hand in many cases when 

log a/log ~ is rational, Mgee(n)/nl + 1;" oscillates between two 

different limits, as in the case a = ~ • 

We shall begin our analysis of the general case g(n) = n , 

min(a,e) > 1 by generalizing the H :f'unction used in Section ,. Let 

hex) be the number of strings a whose weight w( a} is S x , and let 

H(X) = hex) + 1 • (4.4) 

We have H(x) = 1 for 0 S x < 1 , and for x > 1 the rule for defining 
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weights implies that 

H{x) = H«x-l}/a) + H«x-l)/~) 

The basic relation (,.6) between H and M I namely 

x x 
M{h(x» = xH(x) - J H{t)dt = Xh(X) - J h(t)dt (4.6) 

a o 

is still valid for this generalized H fUnction. Indeed, by separating 

the strings a which begin with L fram those which begin with R 

(cf. (2.4» we obtain the formula 

M(h(x» = h(x) +~(h«x-1)/a» + l3M(h«x-l)/~» • 

Therefore if we can determine the asymptotic behavior of h (or H) I 

we will be able to see how M grows, and to see how the value of k 

for which the minimwn occurs in (0.1) depends on n • 

Now that the problem has been set up in this way, it is cClllp8.l'atively 

easy to deduce the order of growth of M : 

Lemma. 4.1. Let ., be the positive constant defined Ez~. There 

C xl+ 1/'1 < M{x) < C xl + 1/'1 
1 - - 2 

for all sufficiently large x • 

Proof: Choose c
2 

so that H(x) ~ c2x'l for 1:S x < 2 • 

Then we can prove by induction on n that H{x) $. c2x'l for 

(4.8) 

1 :s x < n I since H(X) = H{ (x-l)/a) + H«x-l)/~) , which (by induction) 

is :s C2«x-l)/a}7 + c2«X-l)/~>'Y = C
2

(X-l)7 < c
2

x., • 
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The lower bound is a little trickier: If we aSSUJIle that there is 

a positive constant a such that H(X) > a:x."I-£ for x < Xo ' then we 

have H(xO) ~ a(xo-l)"-£ K, where 

For sufficiently large Xo we Wi.ll have a(xo -1)"- t K ~ 8X6-E for 

Xo S x < xO+l. Indeed we can clearly extend this to!8:! x ~ Xo • 

Since such an a exists for arbitrarily sma.l1 £, we must have 

H(x)/x"-£ .... as x ..... 

Let c be a constant such that x" -(x-I)" S cx,,-l for all 

large x; and let R be a constant such that RK > R+c , where 

(4.10) 

K :: c1-" + ~l-" > 1 as in (4.10). For sufficiently large Xo we will 

,,-1 ,,-1 ,,-1 
have (xo-l) RK? Xo (R+c) and H(x) '> Rx for all X? Xo • 

Thus there will be a positive constant cl ~ I such that 

(4.ll) 

We will show that this relation holds for all x ~ xo. Let 

xn = max(a,~)xO+n ; we will show by induction on n that (4.ll) holds 

for x < x < x +1 ' and this will establish (4.8). The calculation n - - n 
is not difficult, and it reveals why we have been foresighted enough 

to choose c and R in such a mysterious way: 

H(X) :: H«x-l)/a) + H«x-l)/ts) 

~ c
l 
«x-I)" ja") + (x-I) "/~1» + R( (x-I) 1-lja7- l + (x-I) "-1/~7-1) 

7 )7-1 
= cl(x-l) + RK(x-l 

.2: clx" - c
l 

c x'Y-l + (R + c)x7-l 

> c x'Y + Rx'Y-l 
- 1 
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Now to obtain bounds on M(x) , we may use (2.7). By the definition 

of H we have 

w( a ) < x if and only if H(X) > n , 
n 

hence by (4.8) 

c -1/1 nl /7 < w( a) < c -1/., (nn) 1/7 
2 n - 1 

(4.12) 

(4.13) 

for all large n. It follows that M(n) , the sum cf the first n 

weights, satisfies 

Mn 
lim in1' 1+ 1 
n -. n ., 

-L -1/7 *,n...L -1/'1 4 4) ? +1 c2 ' 11m sup 1+ :s 7+1 c1 .(.1 7 n _. n 7 

The desired relation (4.9) is an immediate consequence. 
Cl 

The latter part of this proof suggests the following resul.t. 

Leana 4.2. Let 7 ~!! ~ Lemma. 4.1. ~ 11m H(x)/x7 exists x-. 
if ~ ~ if 11m M(n)!n1+1/'1 exists. n-. 
_
Proof; If 11m H(x)/x7 '"' c then by (4.14), lim M(n)/n1+1/'1 = x-. n-. 
(7/ (7+ 1» c -1/"1 • Conversely if M( n) ,... Cn1+ 1/7 we III\1st have 

wean) ,... (1+ l/r)Cnl /7 since w(on) is a nondecreasing function of n • 

(This follCMs f'rcm a straightforward "Tauberian" argument: We have 

M(L(l+t)nJ) -M(n) ~ (L(l+t)nJ -n)a(wn) , hence lim sup w(an)/nl /7 $ 

Ct-1«1+ E)1+1/7 -1) tor all E > o. Silnilarly, 

lim intw(On)/n1/7 ~Ct-l(1_(1_£)1+1!7) .) Relation (4.12) canpleteB 

the proof. 
o 
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Now let us investigate whether or not the limits do exist, for 

various a: and ~. We have seen that the limit does not exist when 

a = a ; silllilarly we can construct a large number of further examples, 

1nc~ud1ng all cases Where a and a are integers and leg a/log a is 

rational: 

Theorem 4.1. Let min(a,/3) > 1 , ~ ~ 7 be defined ~ ~. 

!! log a/log a is rational, ~ if 7 < 1 (i.e.,!£ a-1 + a-I < 1 ) 

then lim M(n)/nl+~h <loes not ~. 
n~· 

Proof: We have a = fiP, ~ = eq where p and q are relatively 

prime positIve integers and e > ~. Without loss of generality we may 

assume that P < q. We will show that large "gaps" exist between 

weights, in the sense that there are positive real DtDl1bers x < y such 

m m 
that no string weIghts Ue between e x and 9 y-~ for any m. This 

is enough to prove the theorem, since existence of the limit ~d imply 

that H(9nX)/H(9ny_l) _ x7/y7 ! 1 = H(9mx)/H(9my-l) • 

The weight of every string Is a polynomial in 9, namely 

a a a a 
e t + Q t-1 + ..... Q 1 + 9 0 , (4.15) 

where aO = 0 and ai+~ -a1 = p or q for 0 < i < t • We may think 

of (4.15) as a number written with radiX Q and digits 0 or 1, 

subject to the requirement that exactly p-1 or q-1 O's occur between 

adjacent l's. For convenience, we shall c~ (4.15) a weight of 

order !t . 
-b -b -b 

Let S be the set of all infinite expansions Q 0 + 9 1 + Q 2 + ••• , 

where bo = 0 and b
i
+1 -bi = P or q for all i > O. Thus S is 

a set of real numbers Which satisfies 

(4.16) 
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The largest element of S is 1/ (1-Q -p) • This set contains large 

gaps, since the largest element of 1+ Q-Q.g is 1+ Q-q/(l- Q-p) 

and this is smaller than the smallest e1enent 1+ Q-P/(l- Q-q) of 

1+e-PS. (We have 9-q/(1-9-P) < Q-P/(1-e-q) since this relation 

is equivalent to Q-q - Q-2q < Q-P - Q-2p I i.e., (g-q - Q-P)(l- Q-q - Q-P) < 0 .) 

Equation (4.16) now shows that there are many f'urther gaps. 

1 + Q -q + Q -<is < 1 + Q -q + Q -Ps < 1 + Q -p + Q -qs < 1 + Q -P + Q -Ps I 

etc., and we see that S is contained in sanething like a "Cantor 

ternary set": Every point not in S lies in an interval that is not 

in S, and S has measure zero. 

Sinc~ every element of Qq-ps is greater than every element of S, 

we can find positive numbers x < y such that the interval (x,y) 

contains no point s of 

(4.17) 

If' v is the weight of a string such that Qmx < v < Qmy _1 , then 

v1 = v+ Q-q/(l- e-q) E 31 ' hence e-mw1 is an element of S1 n (x,y) • 

This contradic".s the ~hoice of x and y, so there are no string 

weights between ~~x and Qmy _l • 
o 

The next theorem shows why the hypothesis 1 < 1 is necessary in 

Theorem 4.1, since there are infinite~ mmy examples when M{n)/n1+l/1 

approaches a l:1mit even though log a/log ~ is rational. 

-1 -1 '/ Theorem 4.2. Let a + ~ = 1. If log a/log ~ .!! rational ~ 

a f. fJ then 

M( ) fJ-a (a-1 log a+fJ-l 1og t3)n2 
n - 2(log fJ - log a) (4.18) 
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Proof: We have ex = ~, j3::: 9'1 where p and q are relatjve~ 

prime positive integers and 9 is the Wlique real root > 1 of the 

equation 1.9-P.Q-q = o. Since ex 1= j3 we may a88t:r..1} that p < q • 

'to prove thiG theorem we sroll refine the observations made in the 

proof of Theorem 4.1 by studying the weights of order m more closely. 

Since p and q are relatively prime, there will be weights of order m 

for all large m 

The weights of order m have the form gm + w I where w is ~ weight 

of' order m-p or m-q. For large m, the largest weight of order m-q is 

where 

'if+ a 
u 

(U+l)'1!! m (modulo p) ,OS u <p , and 

Similarly the smallest weight of order m-p is gm + bv I where 

(V+l)p ~ m (modulo '1) , O,S'v<q, and 

We have 

a < a
O 

= - gq-p < - gP-q = b
O 

< b , 
u - - v 

(4.19) 

(4.20) 

(4.21) 

hence the weights of' order m appear in increasing orde'!' if we read 

their radix 9 representations in lexicographic order. 
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Let r = q-p and let 0.:s s < r. We shall divide the weights 

into r disjoint classes l where the weights of class s consist of 

all weights of order s I B+r, s+2r, ••• , s+kr, ••• • From the 

argwnent in the precedillg paragraph we see that the weights of class s 

appear in increasing order if we treat their radix 9 represerrtations 

as b1na.ry munbers; and furthermore the difference between consecutive 

weights of class s is bounded. (The set of all such differences 

contains pq elemerrts {bv - a.
u 

10 .:s u < P I 0 =s v < q 1 I plus perhaps 

a finite 'T.l.ilber of ather differences which might appear for small m.) 

Let fm be the number of weights of order m, so tb&t 1'0 = 1 , 

l' = 0 for m < 0 , and f = f + l' for m > O. (In the special 
m m n-p m-q 

case p = 1, q = 2 I f is a Fibonacci number and 9 = (1+/5)/2 .) 
m 

Let R: = l' + f + f 2 + ••• be the number of weights of order =s m 
1m m m-r m- r 

belonging to class m mod r ; and finally let hO=l and h =fI: -fl. m Im-r -m-r-q 

for m > O. We shall prove tha.t if 

(4.22) 

is the n-th smallest weiglIt of class s, we have 

(4.23) 

The proof is by inductioo on m = at ; since n = 1 = hO when m = 0 , 

we may a:;sume that m > O. Let (4.22) be the k-th smallest weight of 

order m. Then n = ~ - f m + k , where l.:s k ~ fm 

then w - em is the k-th smallest weight of order m-q, hence by 

induction (4.23) holds if and only if n - h = R: - l' + k. The 
m -m-q m-q 

latter is true by the def1nitim of h and k. Similarly 11' 
m 

at 1 = at - p, w - gm is the (k-f ) - th smallest weight of order - m-q 

m-p , hence by induction (4.25) holds if and only if 

20 



n - h = fl. - f + k - f since ~ - f = Il.. , the proof of m -m-p m-p m-q -m-p m-p -m-q 

(4.23) is complete. 

N,te that the generating 1\1nction for the hi s is 

= (4.24) 

This can be written 

c 
1-Q-P 

(4.25) 

where R(z) has no singularities in Iz I S 9-1 + E I since 9-1 is the 

smallest root of 1- ~ - zq = O. (If 1 = zP+ zq then 1 S \z \p+ Iz Iq 
I 

hence \z \ ~ 9-1 , with equality iff z = 9-1 .) Ccmsequent~ 

Let Hs (x) be the number of weights of clAss s that are S x , 

80 that we have 

H(x) = HO{X) + Hl (x) + ••• + Hr _1 (x) + 1 

For fixed S I we will ehov that lim Hs(X)/X = c. Let w be 
X~GD 

the largest weight of class s that is ~ x ; we have observed that 

(4.26) 

(4.2"7) 

x-w is bounded. If w is given by (4.22), ·~r.(x) is given by (4.23), 

which eq~ cw+ o(w) = cx+ o(x) • It follows that 

H{X) -- rex (4.28) 

and the theorem is obtained by app~ing Lemma 4.2, since we have 

rc 
log@-logCX 

o 
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A more detailed examination of the simplest case of Theorem 4.2, 

when a = ~ = (1+/5)/2 and f3 = ~2 , actually yields an explicit 

formula for the n-th weight: 

(Cf. [11], exercise 1.2.8-36, p. 493.) We also have 

M(Fn) = _1_ (~2n-1_ 2fJn-1_ (_1)n(2 _ ~-n+2» + F 
2~ n 

in this case, when Fn = (~n - (- ~) -n)//5 is a Fibonacci number. 

A completely different approach seems to be necess9.l'y when 

log a/log f3 is irrat ional. The following discus sial is based on 

Dirichlet integrals. 

(4.29) 

(4.;0) 

Theorem 4.3. ASS"<J;ne ~ min(a,f3) > 1 !!!!! log a/log 13 .!!. irrational, 

and.!!! '1 ~ defined ~ (4.3 ). Then l:imn .... M(n)/nl +1/'1 exists. 

Proof: We shall make use of the following result fran the analytic 

theory of nwnbers: 

Lemma 4.3: Let ret) be.! nondecreasing twlction of the ~ variabl!, t, 

S- / s+1 With f(t) > O. Assume that G(s) = f(t)dt t .!!. !!:!! anagtic 
1 

function of the caJtRlex variable s ~ Re(s) ~ '1 > 0 , except for .! 

first-order ~ at s =., ~ positive residue C • ~ f(t),.., ct'1 • 

A proof of this lemma appears in the appendix below. Let us apply 

this lemma to the function f(t) = h(t) = H(t)-l. By Lemma 4.1, 

the integral 

• 
G(s) = S h(t)dt / t S+l 

1 
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diverges when s = -; ; but it converges abso1utely and unifonnly in any 

bounded region such that Re( s) ~., + E , for all fixed E > O. It follows 

that G(s) is ana1ytic in the ha1f'-plane Re(s) >., . 
We will nov show that G(S) has a simp1e po1e at s = ., , by 

analytic~ continuing G to the left of the line Re(s) = r • 

Consider the fUnction Gl(S) = (l_a-s _~-s)G(S) ; when Re(s) > r I 

we have 

. - . 
G1 (s) = S h(t+l)dt 1 (t+1) s+l_ S h(t/a)dt 1 t S+1 _ S h(t/~)dt 1 t s+1 

o a f3 

• • 
= S (1 +h(t/a) + h(t/f3»dt I (t+1)S+1_ S (h(t/a) + h(t/~»dt / ts+1 

o o 

1 ro- 1 1 = B + J (h(t/a) + h(t/~»dt«t+l)-s- _t-S
- ) • 

m1n(a,~) 

(This derivation uses (4.5) together with the fact that het) = 0 for 

t < 1 .) Since (t+ 1) -s-l _ t -s-1 = o( (s+ 1)t -s-2) , the latter integral 

converges whenever Re(s) > .,-1. Therefore we can ana.l.ytically continue 

G(S) into this region, by using the fo:rmula 

/ 
-s-s G(s) = Gl (s) (l-a -~ ) , 

and letting G1 (s) be defined by (4.32). The only singul.a.rities of 

G(S) in this region are the po1es at s = 0 (if ., < 1 ) and possibly 

-s -s at the zeroes of 1 - a - ~ • For s = ., , we have a simple pole 

since we know this is a singularity of' G(s) ; the corresponding reSidue 

Gl (1)/(ln a • a-1 +'n f3. ~-I') must be positive, since G(s)(s-r) is 

positive when s approaches .., fran the right. Furthermore this is 

the only singularity of G(s) when Re(s) ~ r , for if we write 

s = a+ ior we have la-s + ~-s 1 :5 a-a + ~-a :5 a-r + ~-r = 1 , where equality 

23 



holds iff a-s 
= a-1 and ~-s = ~-1. This condition implies that 

'T = 2nP/ In a 8Jld 'T = 2rTq/ In ~ for sCllle integers p 8Jld q; if 'T 

is nonzero, this contradicts the fact that log a/log ~ is irrational. 

We have now shown that G{s) satisfies the ~heses of Lemna 4." 
(J 

80 h(t) .... ct . This canpletes the proof (cf. Lemma 4.2). o 
Incidentally if we attempt to app~ this same method of proof' 

when log a/log ~ is rational, we find that 1 - a -s - ~-s has infinite~ 

many zeroes on the line Re( s) = 1. But by 8Jl amazing coincidence, 

when -,=1 and af.~, 

these points. 

Gl(S) happens to be zero at all but one of 

It is possible to evaluate the residue C , when ., = 1 ; in fact, 

(4.18) holds al.so when log a/log ~ is irrational, since the residue 

is a continuous function of ex. 

The reader will note that Theorens 4.1- 4.3 do not cover all cases. 

If -, > 1 and log a/log ~ is rational, we conjecture that 

lim M{n) /nl+l/-t dC'les not exist. It C8Jl be shown that this conjecture 

holds "almost always", with at most countabl¥ many counterexamples 

(see Fredman [6]). 

5. The case g(n} = 1 • 

Another interest ing case of the general problem we are considering 

occurs when g(n) = 1 for all n. The problem breaks into two subca.ses: 

Theorem 5.1. Asswne ~ g{n} = 1 !£!:!:!! n, and ~ min(a,~) > 1 • 

~ '1 be defined ~~. ~ ~ ~ positive constants 

1+1/1 l+l/-, 
Cl ' C2 ~ that Cln < M(n) < c2n for!:!! n. Furthermore 

lim M(n)/nl +l !7 exists if ~ ~ g log ce/log ~ .!! irrational. 
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~: Theorem 1 appUes to M~ ; in this case D(n) ::: F(n) for 

n ? 1 1 and it is easy to see that again we obtain a tree interpretation 

as in Section 2 above. This time we have D(n} ... (\)+ ~}w«1nt-l) , where 

the weights are defined by the ru1es 

wee) = 1 1 w(La) = aw(J) , w(Ra) = f!W(a) 

The new rule is simpler than (2.4 ); the new weights are given by the 

final tem of the previous weights, e.g. w(LRRLL) = c:?~2. The 

i j 1+' 
weight cr~ occurs (. J) 

J. 

containing i L's and j 

times, since this i~ t!",e number of strings 

Rls • 

(5.1) 

To deduce the asymptotic behaVior of M~(n) , we proceed as above, 

letting hex) be the rrumber of weights < x , and H(x) = hex) + l. This 

time H(x) = 1 for 0 ~ x < 1 , and 

H(x) = H(x/a) +H(x/~) , for }I. ~ 1 1 

a relation simpler than (4.5). It is J;\JI{ easy to prove LemmA 4.1 for 

the new' H and M 1'unctions, and Lemn::l. 4.2 follows as before. Now 

we use the idea in the proof of Theorem 4.3: Let GCs) be defined 

by (4.~1), and G
l 

(s) = (l_a-s - ~-s)G(s) • When Re(e) >.., , 

G1 (13) = r (h(t) - h(t/a) - h(t/~»dt / t
s
+

1 
= t dt / ts+1 

= l/s. (5.3) 

1 1 

Thus, G(s) can be analyticaJ..ly extended to the entire pl.ane by ua1ng 

the formula G(s) = 1/ 13(1- a-a - ~-s) • When log a/log ~ is irrational, 

we argue as in Theorem 4.3 that Lemma. 4.3 applies; hence hex) _ ex'" 

and M(n),.., (\)+ fJ)c-lh -ynl+1/7 / (')'+1) ,where C = 1/(a-"1 In cl + ~-., In t!?') • 

When log a/log fJ is rational, on the other hand, there is no analog 

to Theorem 4.2; the limit h(x)/x'" doesn't ever exist. The reason 1s 
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that 0: = eP , ~ = Qq for sane Q, and all weights are powers of Q • 

n n+1 Thus h(Q) = h(Q - 0) , i.e., there are large gaps between the 

weights, as in Theorem 4.1. 

theorem 5.2. If g(n) = 1 ~ all n and if a:5 ~, 0::5 1 , then 

cf1-1 
M~(n) = 1+ (a+ ~)(1+0:+ ... + ) 

~: For this case, Theorem 1 does ~ apply, and in fact the 

function M~ turns out to be concave! We will prove (5.4) by 

induction. For k < n/2 we have M(k) :5 M(n-k) , hence 

c»o1(k) + ty.1(n-k) ~ c»o1(n-k) + tv-1(k) • For k > n/2 we have 

(5.4) 

c»o1(k) + ty.1(n-k) - (ct>1(k-1) + ~(n-k+1» = (0: +~)(c1- acf-k) :5 (0:+ ~)(c1- ~l-k) 

SO. Hence M(n+1) = 1+ct-1(n) + ~(O) , and the proof by induct1.on is 

complete. 

6. The Case g(n) = t'lnO • 

When ~(O) = 1 and sen) = 0 for all n > 0 , we obtain a case 

* strongly related to the previous one. Let M (n) = Mgae(n) -1/(a+ 13) 

then 

* M (0) = 1-1/(0:+13) , 

* * * M (n+1) min (QM (k)+a/(a+~) +t!M (n-k) +f3/(a+~» -l/(a+~) 
O<k<n 

* * = 1-1/(a+~) + min (OM (k) + ty.1 (n-k» 
0:5 k :5n 

In other words M*(n) = M~(n) , where g*(n) = 1-1/(0:+ 13) • If 

* a+ 13 > 1, M (n) is therefore just 1-1/(a+~) times the function 

in Theorem 5.1 or 5.2. 
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If CH ~ '" 1, M(n) is triviaLy equal to 1 for all n. The 

remain~ng case has a new twist: 

~rem 6: ~ g(n) = eno and a+ ~ < 1 , and let ., be defined 

~~. (Note that ., is negative, between -1 and 0.) If 

I . -1f'y 1+1/., log a log ~ is urationa1, Mgae(n) - (a+ ~ -l)C rn / (')'+1) , 

!!:!£!! c = 1/ (a-" In a"! + ~-., In ~"!) • On ~ ~ ~ if log a/log 13 

is rational, • > lim sup MgCff3(n)/nl +1/ r > lim inf MgCff3(n)/n1+1/r > 0 • 

f!:£2!: Theorem 1 applies to this case, since 0(0) = a+ ~ -1 is 

negative. It follows that the D's are all negative (we have M(n) > M(n+1) , 

but M is still convex); in fact, D(n) = (a +~ -l)/w«1n+l) , where the 

weights w«1) are defined now by the inverse rules 

-1 -1 ) Wet) = 1 , w(La) '" a w«1) , w(~) = ~ w«1 ( 6.1) 

The f'unction H(x) of Theorem 5.1 applies, but with a, ~ ,., replaced 

respectively by a- l , 13-1 , -1 j and we have c
1
x-" S H{x) S c

2
x-r . 

Therefore (cf. (4.13» we have 

(a+ ~ -l)C;l/., n1h < D(n) ~ (a+ ~ -l)ci1/r (n+l)l/r 

The theorem now follows as in Lemma 4,2 and Theorem 5.1, provided 

we can prove that M(n) ... 0 as n .... , Since M(n) = 1+ 0(0) + ••• + D(n-1) 

By definition, M(n+1) ~ aM(k) + l3M(n-k) for all k; and since the D's 

are negative, M(n} < M(n-1} • Hence 

M(n+l) S OM( Ln/2J ) + 13M( rn/21 ) 

S aM( Ln/2J ) + f!M( Ln/2J) • 

But a+13 < 1 , hence M(n) ... 0 • o 



7. The case gen) 
2 

= n • 

We shall conclude this study of the M functions by considering 

a function g(n) which grows more rapidly than those considered so tar. 

(1.1) 

~: We may app~ Theorem 1; and we note that j-tk = N-l , whenever 

the "if" test occurs in the algorithm following that theorem. Therefore 

F(n+l) = mln(aD(k),~(n-k» for some k. If F(~l) = aD(k) then 

aD{j) S F(n+l} S ~(n-j) for all j S k , and ~(n-j) S F(n+1) S aD(j) 

for all j > k ; similarly if F(n-tl} = ~D(n-k) we have 

CXD(j) S F(n+l) S tID(n-j) for all j < k and tm(n-j) S F(o+l) S av(j) 

for all j? k. Thus in all cases 

min(aD(j),~D(n-j» S F(n-tl) S max{OV(j),tID(n-j» (7.2) 

for all j, O:s j S n. In particular, (7.2) holds when 

j = L~n/(a+~) J . If we now write D(n+l) :; E(n) + 2Cn, for 

C = (a+ ~)/(a-+ ~ -~) , we have D(n+l) = g(n+2) - g(O+l) -+ F(n+1) , hence 

min(OV( L~/(a+~) J ),~D( lan/(a+~) J) S E{n} + 2Cn - (2n+~) 

Now 2Ca u~n/(a-t~} J = 2Cn - 2n + 0(1) , so there is a constant A such 

that 

28 



t'rom these relations we can prove that \E(n) \ does not grav too 

rapidly. Since Cf$/ (a + ~) < 1 , there is a constant ~ < 1 such that 

max(a(~/(a+ ~»\~(a/(o+ ~»~) < 1 ; let this maximum be p. There is 

~ ~ 
a constant no such that pen + ex +~) + A ~ n for all n ~ nO ' and 

~ 
we can find Cl ~ 1 with \E(n) \ ~ cln for all n < no. By induction, 

~ 
(7.4) shows that \E(n) I ~ Cln for § n • 

We have proved that D(n) = 2Cn + O(n~) ; consequentJ.¥ 

M(n) "" Cn2 + O(nMl) • 
o 

When a+ ~ = Cf$ , Le., 0-
1 + ~-1 = 1 , we can use the same technique 

2 
to show that M@fA~ grows as n log n. Assume that ex ~ ~. It we 

write D(n+l) = Ea(n) + 2n log n/10g a , we find 

this implies that Eo(n) ~ Cr:Jl for scme Co. Similarly if we write 

n(n+l) = E~(n) + 2n log njlog ~ , we find 

E~(n) ~ min(<XE~~~/aJ ),~E~( rn/~l » + O(log n) I 

so E~(n) ~ -C~n • Therefore M~(n) lies between n2 log n/1.og ~+ 0(n2) 

and n
2 

log n/log a+ 0(n2) • It would be interesting to discover if 

lim M~(n)/n2 log n exists. In the case ex = ~ = 2 our derivation 

proves that 

) 22 
Mg22(n = n lo~ n +O(n ), 

a formula analogous to (3.1). 
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Incidentally wben 0 = I:l '". 2 it is possible to give "explicit" 

fonnul.as for M(n) , in terms of the binary representation of n. Let 

al a
2 

ar n+ 1 = 2 + 2 + ••• + 2 ,where al > a2 > ••• > ar ~ O. Then 

a
l 

a2 a 
D(n} = 1+ 2{a

1 
• 2 + (a

2
+1) ·2 + ••• + (a

r
+l) .2 r) and 

In partiCular, M(2a _1) = (a - ~) • 22a + 2&+1 - 3 . 
When ex+ 13 < ~ we have (O-1)'{f3-1) > 1 , so min(a,~) > 1 • 

Now g{n) = n2 ~ n , so we know floan the results of Section 4 that 

M_(n) ~ c1nl+lj-, f C h -1 A-1 1 (h 1 eo....., or sane l' were 0 + ~ = ence 1 < , 

and 1 + 1;" > 2 ). It can be shown that Msat\ en) 1+1/., is alao < C n 
- 2 

in this case; in fact, whenever min{a,p) > 1 , the general upper bound 

(7. 6) 

M~(n) = 0(n1+1/ 7) holds for!!! functions g(n) that are 0(nl~I/7-E) • 

This result will appear in a future paper [6]. 



AppendiX. A Tauberian theorem 

Nov 1et us return to Lemma 4.3, on which we based. our proofs of 

Theorems 4.3, 5.1 and 6. Results of this type were originally given 

by N. Wiener [17, 18] and S. Ikehara [9], in a rather compl1cated 

rom sanewhat more genera1 than we need. Landau [12] s:impHfied the 

ideas and used them to give a new proof of the prime number theorem; but 

he gave a s1ightly less genera1 result than Lemma 4.3. The following 

proof is based on that of lAndau, with minor modifications in order to 

prove what we need. (At this point, the reader should refer back to the 

sta.t ement of Lenuna 4.3.) 

Let g(s) = G(s) -C/(S-1) , a. function which is ana1ytic for 

Re(s) ~ "y • We now introduce two parameters, y and ~, which will 

eventua1l.y approach infinity. By the Riemann-Lebesgue 1emma. and the 

fact that g is a.na.l.yt ie, 

~:(l -1;I}i>.yt g(7+ ,+ i>.t'dt I < for 0 ~ £ ~ 1, 

-",here K(X.) depends only on x.. Let 

then for f;' ~ 0 < £ < 1 and for n -. we have 

(A.I) 

(A.2) 



2( I ') }..(n-y) / ~ J 1 - ; ei"'yt S f(eY+x }..)e-(1+ E+i}"t) (y+x/}..) dxdt 

.-2 -"'y 

= ~ l( 1 - 1~I)ei"'yt ( f(u)u-(l+E+iAt+l) dudt 

-2 0 

~ l( 1 - I~')ei}"yt G(7+ E+ l}"t)dt + 0(1) 

-2 

as n __ •. (The parameter n was introduced in order to justify 

the change in order of integration.) Note that in the special "ideal!' 

caSe feu) ; Cu7 we have ~(x) = C and G(s) = c/(s-r) ; subtracting 

this particular case frcn the general case and canbining the result 

with (A,l) yields 

I 
{¢(x)e-E(Y+X/7I.)(s~ x)2 dx-C { e-E(y+X/7I.) (S1: x)2 dxl ~ 
-}..y -"'y 

!ill y • 

Now we can let E - 0 , because if E is extrane~ small the integrals 

clearly approach their value when E = O. Therefore we have proved 

I r ~(x) (Si: x)2 dx - C r (S1: x)2 dxl < 

-]"y -AY 

(This is the key inequality which gives us a handle on the problem: Wben 

y 1s very large and Ix I is bounded, ~(x) must be very nearly equal. 

to C .) 
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(A.4) 



Fran the monotonicity of f we now have the following inequallties 

'When - A ~ Jt ~ Ii.. : 

Hence 

for all fixed ~ and y > 1. If ·IIe let y..... 'We obtain 

and if 'We now let ~..... we have 1:1m sup f(u)/ur = c • A similar 

argument, using the ather half of (A.5), proves that 1:1m int t(u)/u" = C • 

o 



References 

[1] A. Cayley, "On a problem in the partition of numbers," Philos. Mag. 

13 (1857), 245-248; Collected Math. Papers 3, 247-249. 

[21 R. F. Churchhouse, "Congruence properties of the binary partition 

tunct ion, It Proc. C ambridge Phil. Soc. 66 (1969), 371-376. 

[3] N. G. de BruiJn, "On Mahler's partition problem," Prace Nederl. Akad. 

Wetensch., p.eries A, 51 (1948), 659-669_ 

[4] P. Erdos, "On an elementary proof of sane asymptotic formulas in 

the theory of partitions," Annals of Math., (2) 43 (1942), 447-4~8_ 

(5] L. Euler, "De partitione n'Wllerorum," Novi Canment. Petr(~p, .. 3 (1750), 

162-164; Qpera Omnia sere 1, vol. 2, 287-289. 

[6] Michael L. FreWnan, "Gr\N'th properties of a class of recursive~ 

defined functions," in preparation. 

(7 1 Francis Galton, Natural Inheritance (Macmillan, 1889), p. 249. 

[8) Sidney Heller, "An asymptotiC solution of the difference equation 

an+1 - an '" 8.[n/2] ," J. Math. Analysis and App1. 34 (1971), 464-469. 

[9] S. Ikehara, "An extension of Landau's theorem itl the analytical theory 

of numbers," J. Math. and FIlys., Mass. Inst. Tech. 10 (1931), 1-12. 

[10] Donald E. Knuth, "An alJnost linear recurrence," Fibonacci Quarterly 

4 (1966), 117-128. 
It., , 

[ill Donald E. Knuth, The Art of Canputer Programming, Vol. 1 (Addi~on-

Wesley, 1968), Section 2.,. 
[12] E. Landau, "Ueber den Wieners( nen neuen Weg Z\lJIl Primza.hlsatz, 

Sitzungsberichte Preussische Akad. Wiss. (1932), 514-521. 

[13J K. Mahler, Non 8. special functional equation," J. London Math. Soc. 

15 (1940), 115-123. 

[14] w. B. Pennington~ "On Ma.r,l.er's partitioo problem," Annals of Math. 

(2) 57 (1'15:), 531-546. 

r 151 Oystein ROdseth, "Sane ari t.hmctical properties o'f m-ary partitions, ,t 
Proc. Cambridge Phil. Soc. 68 (1970), 447 -453. 

34 



[16) Alberto Tanturri, "SUl numero delle partizioni d'un numero in potenze 

di 2," Atti R. Ac::caci. Sci. Torino 54 (1918), 69-82; Atti. R. Acead. 

nazionale dei lineei, Rcndic::onti 27 (191.8), 399-40~. 

[17) N. Wiener, "A new method in Tauberian theorems," J. Math. and f\'ys., 

Mass. Inst. Tech. 7 (1927-1928), 161-184. 

[18) N. Wiener, "Tauberian theorems," Annals of Math. (2), ~~ (19~2), 

1-100. 


