AD 738027
AN EFFICIENT PLANARITY ALGOR ITHM

BY

ROBERT E. TARJAN

STAN-CS-244-71
NOVEMBER, 1971

COMPUTER SC IE“[\\ICE DEPARTMENT

School of Humanities and Sciences
STANFORD UN!VERSITY

REPRODUCED BY

NATIONAL TEGHNICAL
INFORMATION SERVICE

U.S. DEPARTMENT OF CYMMERCE
SPRINGFIELD, VA. 20161

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED
FROM THE BEST COPY FURNISHED US BY
THE SPONSQORING AGENCY. ALTHOUGH IT
IS RECOGNIZED THAT CERTAIN PORTIONS
ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

Unclassified

Security Classification

DOCUMENT CONTROL DATA-R& D

(Security classilication of title, body of abatract and Indexing annotation muxst be antered when the overall report is clasallied)

1 ORIGINATING ACTIVITY (Corporate author) 2a, REFORT SECURITY CLASSIFICATION
N . Unclassified
Stanford University RIS

)} REFPORT TITLE

AN EFFICIENT PLANARITY ALGORITEM

L DESCFIPTIVE NOTES (Type of repart and inclusive dates) :
Technical, December 1971 .: ‘

s. Al THOR(S) (Firat name, middle initial, last name)

Robert E. Tarjan : !

é. REFORT DATE - Ta. YOTAL NO. CF PAGES 72. NO. OF REFS

December 1971 154 36
8. CONTRACY OR GRANT NO.

. ”21213*88011;47-;\-0112-005{ | STAN-CS-T1-2lh
' © NR Ob4-402 and NEF

92. ORIGINATOR'S REPORT NUMBER(S)

95, CTHER REPORT NO(3) (Any other numbera that may be nasigned
this report)

d.

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.
L]

1t. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research

" Washington, D. C.

l3.\ AB\]‘TRACT
™~

An efficient algorithm is presented for determining whether a graph &

can be embedded in the plane. Depth-first search, or backtracking, is the

most important of the techniques used by the algorithm. If G has V wvertices,

the algorithm requires O(V) space and 0o(v) time when implemented on a

tandom access computer. An implementation on the Stanford IBM 360/67 success-

fully analyzed graphs with as many &s 900 vertices in less than 12 seconds.

.‘.

D t'noo':‘ul473 (PAGE 1)

Unclassified
S/N 0101.807.68014

“Becurity Clusallication

Unclassified

Security Classilication
R T A

ia. KEY WORDS - CLINK A LINK S LINK ©
noLx wT ROLE wT RO\ E wWT
Graph, Connectivity, Biconnectivity,
Search, Backtracking, Depth-first.
PRt A
FORM . k
D 1t noV 001473 (BACK) Unclassified

(PAGE 2)

Security Claasification

Abstract:

AN EFFICIENT PLANARITY ALGORITHM

Robert E. Tarjan

tanford University

An efficient algorithm is presented for determining whether
a graph G can be embedded in the plane. Depth-first
search, or backtracking, is the most important of the tech-
niques used by the algorithm. If G has V vertices, the
algorithm requires O(V) space and O(V) time when im-
plemented on a random access computer. An implementation on
the Stanford IBM 360/67 successfully analyzed graphs with as

many as 900 vertices in less than 12 seconds.

This research was supported by the Office of Naval Research under grant
number N-00014-67-A-0112-0057 NR Oik-402. Reproduction in whole or in
part is permitted for any purpose of the United States Government.

I. In the Beginning

1. Introduction

Graph theory is an endless source of easily stated yet very hard
problems. Many of these problems require algorithms; given a graph, one
may ask if the graph has a certain property, and an algorithm is to
provide the answer. Since graphs are widely used as models of real
phenomena, it is important to discover efficient algorithms for answering
some graph-theoretic questions.

This work presents an algorithm for determining whether an arbitrary
graph G can be embedded (without any crossing edges) in the plane. If
V is the number of vertices and E the number oI edges in the graph G
then the method requires amounts of space and time bounded by a linear
function of V and E . The algoritim is optimal (to within a constant
factor), because it is possible to show within a suitable theoretical
framework that each edge of a graph must be examined at least once to
resolve the planarity question.

The planarity algorithm is based upon a depth-first search, or
backtracking, -echnique for exploring a graph. Backtracking has been
widely used for finding solutions to problems in combinatorial theory
and aitificial intelligence [Gol 65, Nil 71]. Analysis reveals that by
depth-first examination of a graph, we may simplify the g aph and collect
enough information to determine planarity rapidly. Besides planarity,
several other problems have been solved using depth-first search.

Tn order to analyze the efficiency of an algorithm, we uce a
random-access computer model. Data storage and retrieval, arithmetic

operations, comparisons, and logical operations are assumed to reguire

fixed times. A memory cell is allowed to hold integers whose absolute
value is bounded by k max(V,E) , where V is the number of vertices
and E is the number of edges of the graph being processed, and k is

some constant. An exact computer model will not be specified; see Cook

[Coo 71]. To express the time and space bounds of algorithms, we shall
£ >

use an extended version of the hig O notation. Of functions of

Xj5eeerX, We say f is O(fl,...,fn) if, for some constants k.
\f(xl,...,xm)| < ko+kl|fl(xl,...,xm) | + ...+kn|fn(xl,...,xm)| for

all values of xi .

2

2. Previous Research on Planarity Algorithms

Embedding a graph in a plane has several applications. The design
of integrated circuits requires knowing when a circuit may be embedded
in a plane. Determining isomorphism of chemical structures is simplified
if the structures are planar [Led 65, Hop Tlb, Wei 65a, 65b, 66]. The
importance of the problem is suggested by the number of published
planarity algorithms. Examples include [Aus 61, Bru 70, Chu 70, Fis 66,
Gold 63, Hop 7le, Lem 67, Mei 70, Mon 71, Shi 69, Tut 63, Win 66, You 63].
Surprisingly little work has been directed toward a rigorous analysis of
their running times, however, and algorithms continue to appear which
are obviously inferior to previously published ones. We shall examine
several of the best algorithms here; a more complete history of the
planarity problem may be found in Shirey's dissertation [Shi 69], which
contains an extensive bibliography.

The earliest characterization of planar graphs was given by
Kuratowski [Kur 30]. He proved that every non-planar graph contains a
subgraph which upon removal of degree two vertices is isomorphic either
to the complete graph on five vertices or to a complete bipartite graph
on six vertices. (See Figure 2.1.) Conversely, no planar graph contains
either of these graphs. Although elegant. Kuratowski's condition is
useless as a practical test of planarity; testing for such subgraphs
directly mey require an amount of time proportional to at least V6 B
if not much worse, where V is the number of vertices in the graph.

The best approac: to the planarity problem seems to be an attenpt
to actually draw the graph in the plane. If such a drawing can be

completed, then the graph is planar; if not, then the graph is non-planar.

Figure 2.1:

The Kuratowski subgraphs.

—-

The first such algorithm was proposed by Auslander and Parter [Aus 61].
First, a cycle is found in the graph. When this cycle is removed, the
graph falls into several pieces. The algorithm is called recursively

to embed each piece in the plane with the original cycle. Then the
embeddings of the pieces are combined, if possible, to give an embedding
of the entire graph. Unfortunately, Auslander and Parter's paper contains
an error; the proposed method may ioop indefinitely. Coldstein [Gold 63]
correctly formulated the algorithm, using iteration instzad of recursion.
Shirey [Shi 69] implemented this method using a list structure represen-
tation for graphs, and proved an asymptotic time bound of O(V5) for
his variation of the algorithm.

Lempel, Even, and Cederbaum [Lem 67] have presented another method
for building a graph in the plane. They start with a single vertex, and
add ali edges incident to that vertex. They then add all edges incident
to one of the new vertices, and continue in this way until the entire
graph is constructed. Vertices must be selected in a special order if
the algorithm is to work correctly. Lempel, Even, and Cederbaum give no
implementation or time bound for their method; however, Tarjan [Tar 69]
has implemented the algorithm in a way which requires O0(V) space and
o(V®) time.

Mondshein [Mon 71] has recently proposed another constructive
algorithm. He adds one vertex at a time until the entire graph is
constructed. The order of vertex selection is again crucial. Mondshein's
inplementation requires O(Ve) time. Hopcroft end Tarjan [Hop 7lc],
using depth-first search in a complicated program, have devised a variant
of Goldstein's algorithm with a time bound of O(V log V) . This method,

although ponderous, is asymptotically the most efficient previously known.

6

A few algorithms deserve mention because of their novel approach.
Fisher [Fis 66] gives an algorithm which works directly from the
incidence matrix of a graph. This method, however, is not very efficient,
nor is any method which uses incidence matrices. (See Chapter L.)

Bruno, Steiglitz, and Weinberg [Bru 70] present an algorithm based on
some theorems of Tutte relating to triconnected planar graphs. Instead
of constructing a graph in the plane, they reduce it to simpler and
simpler graphs. Although they give no explicit time bound, the algorithm

does not compare favorably with those mentioned above.

3. Definitions from Graph Theory

This chapter outlines the graph-theoretic concepts needed tc under-
stand the planarity algorithm. We use definitions similar to those found
in any text on graph theory; for instance [Ber 64, Bus 65, Har 69, Ore 62].
We shall also introduce some special terminology. Proofs are omitted in
this chapter; the results are either obvious or are standard in the

literature of graph theory.

Definition 3.1: A graph G = (V,€) is an ordered pair, consisting of

a finite set Vv of vertices and a finite set € of edges.

We shall deal with the properties of finite graphs only; we are
concerned with constructive characterization of certain properties of

graphs, and computers cannot manipulate infinite objects. The

vertices of a graph may also be called points or nodes. The edges of a

graph may also be called arcs or links. For the moment we have left

undefined the nabture of the edges of a graph; there are two kinds of

graphs which we shail study, with two different types of edges.

Definition 3.2; An undirected graph G = (V,€) consists of a set of

vertices and a set of edges. EFEach edge is an unordered pair {v,w}
of distinct vertices of G . The vertices v and w are said to
be incident to v and w ; v and w are said to be incident to
{viw} . Vertices v and w are said to be adjacent if f{v,w} is
an edge of G . The relation v = w holds if and only if {v,w}

is an edge of G .

Definition 3.3: A directed graph d = (V,€) consists of a set of

vertices and a set of edges. Each edge is a directed pair (v,w)

of distinct vertices of @ . The vertex v is said to be the tail
of the edge (v,w) . Vertex w is said to be the head of the

edge (v,w) . Incidence and adjacency are defined as for undirected
graphs. A directed graph is really only an irreflexive relation; as
with undirected graphs, we use the notation v = w to mean that v

and w satisfy the relation " (v,w) is an edge of @ ".

Notice that we do not allow loops (edges whose two endpoints are
identical). Neither do we allow several identical edges. An object
resembling a graph but which contains multiple edges will be called a
multigraph. We shall use capital letters ("G") +to denote undirected
graphs and capital letters with an arrow ("@’") to denote directed
graphs. A capital letter with a tilde ("5") will dencte a graph,
either directed or undirected.

Let us consider the relationship between directed graphs and
undirected graphs. Given an undefined graph G , we may convert it to
a directed graph in one of two ways. —First , we may convert each
undirected edge {v,w} of G into two directed edges, (v,w) and

(w,v) .

Definition 3.4: ILet G = (V,€) be an undirected graph. Then

= (¥,€&') is the directed graph such that &' = {(v,wy|{v,wYee) -

is called the doubly directed version of G .

The computer representations of an undirected graph G and of the

doubly directed version G of G will be indistinguishable; each edge

\
will appear twice in the represcentation, once for each of its possible

directions. \

Ancther way to convert an undirected graph G into a directed
graph is to convert each edge {v,w} of G into a single directed edge
(v,w) . This will give a directed graph 8 with the same number of
edges as G , in which each edge of G is assigned one of the two
possible directions.

Conversely, suppose we have a directed graph Q= (V.€) . We may
conver: G into an undirected graph by ignoring the direction of the
edges. (We may have to delete multiple copies of the same undir-cted

edge; otherwise a multigraph will result.)

Definition 3.5: The function u maps directed graphs into undirected

graphs. If T - (v,&) is a directed graph, u(e) = (V,&') is
the undirected graph formed by ignoring the directions of all the
edges of T oe = {(v,w)|(v,w) €€} . The inverse function is
multivalued. If G = (V,&') is an undirected graph,

u-l(G) = (¥,&) will denote any directed graph formed by giving

each edge of G a direction.

Henceforth, we shall use " (v,w) " to denote an edge of any graph,
either directed or undirected. We then have (v,w) = (w,v) in an
undirected graph but not in a directed graph. The following definitions

apply to both directed and undirected graphs.

~

Definition 3.6: Let G = (V,€) and GC' = (V',&') be graphs. IF

V'cV and €' c £, then G' 4is a subgraph of G . G' is

called a proper subgraph of G if G £ G .

10

Definition 5.7: Let a = (v,€) be a graph. A sequence of vertices Vi s

1 <i<n, such that e, = (vi,v is an edge in G for

i)
1<i<n, is ca.;.led a path of G . If all the vertices on the
path are distinct'l, the path is called a simple path. If vy =V,
all the vertices Vi, 1<i<n, are distinct, and all the
edges e > ‘l < i?.< n , are distinct, then the path is called a
cycle. The vertex Wy
The vertex v is c&]{l.ed the inish vertex of the path. Vertices

is called the start vertex of the path.

Vi

the path is called 'oro;Qei". The length of a path is the number of

and v, are called the endpoints of the path. If n ;é 1,

edges it contains.

Although a path may be concepﬂua_.lized as a subgraph, the order of
‘the vertices in the path is important. We shall generally identify a
path by listing its sequence of poin‘bs;“'t%le edges of the path are uniquely
determined by this sequence. Note ‘that a path may contain no edges.
Paths will be denoted by the small letter " p " with or without
subscripts. The small letter " c ¥ will occasionally be used to denote a

cycle. We assert the existence of a path from vy to v_ , and name

n

.x.
the path p , by writing bp: vy v, o The notation vy 5 v, means that
there exists a path of leng‘bh“ione or greater between vy and v, - (In

E}
general, if R is any binary ',;'elation and I is the identity =elation,
2
\ *
R+ denotes the transitive closure of R, and R denctes the reflexive
!
transitive closure of R .) y

Lemma 5.1: Let -G’ be a directed graph. Then any path (simple path,

-
cycle) of T is a path (simple path, cycle) of G = u(G) -

The converse of this lemma is not true. However:

Lemma 3.2: Let G be an undirected graph. Then any path (simple path,
cycle) of G corresponds tc a path (simple path. cvele) of e »
the doubly ¢irected version of G . Conversely, any path (simple
patla, cycle of length greater than two) of g corresponds to a

path (simple path, cycle of length greater than two) of G .

Definition 3.8: TLet G = (V,&) be an undirected graph. Suppose that

for each pair of vertices v and w in G , there exists z pain
* . : = -1 - .
p: v=>w . Then G is connected. If G =u (G) , G is

called connected if and only if (¢ 1is connected.

Lemma 3.5: Let G = (v,8) be. a graph. Then G may be.uﬁiquely
partitioned into a set of pairwise vertex- and edge-disjoint
subgraphs; cacu of which is connected, and each of which is not
properly contained in a connected subgraph of G . These maximal

connected subgraphs are called the comnected components of G .

Proof: See [Ore 62].

Definition 3.9: Let G = (V,€) be an undirected graph. Suppose that

for each triple of distinct vertices wv,w,a in VvV , there is a
path p: v i w such that a is not on th¢ path p . Then G 1is
biconnected. If, on the other hand, there is a triple of distinct
vertices v,w,a in V¥ such that a 1is on any path p: v _f: G
and there exists at least one such path, then a is called an

articulation point of & . If z =u_l(G) , then @ is called

biconnected if and only if G 1is biconnected. If a is an

12

articulation point of G , then a is also said to be an

articulation point of d.

Lemma 3.4: Let G = (Vv.f) bc a graph. We may define an equivalence
relation on the set of edges as follows: two edges are equivalent
if and only if +they belong to a common cycle. Let the distinct
equivalence classes under this relation be 83'. ; 1<i<n, and
let E—i = ("vi, &‘,i) , Vhere vi is the set of vertices incident to
the edges of & : ¥, = {vlﬁw((v,w)eai)} . Then:

(1) Ei is biconnected, for each 1< i <n .

(ii) DNo Ei is a proper subgrzph of a biccnnected subgraph
of G .

(iii) Each articulation point of G occurs more than once
aanong the V. 1 <i<n . Each non-articulation
point of ¢ occurs exactly once among the Vi B
1<i<n.

(iv) The set Vi n Vj contains at most one point, for any
1<i,j <n . Such a point of intersection is an

~

articulation point of the graph. The subgraphs Gi

of G are called the biconnected components of G .

Proof: See [Har 69].

Definition 3.10: TLet G = (V,€) Dbe an undirected graph. Suppose that

for each quadruple of distinct vertices v,w,a,b in Vv , there is
*

a path p: v = w such that neither a nor b is on the path p .

Then G is triconnected. If there is a quadruple of distinct

¥
vertices v,w,a,b in V¥ such that there is a path p: v=Ww,

13

and any such path contains either a or b , then

-
a and b are a biarticulation point pair in G . If G is a

g
directed version of G , then G is called triconnected if and only
if G is tricomnected. If a and v are a biarticulation point

pair in G , they are also said tc be a biarticulation point pair

. -
in G .

The triconnected components of a graph may be defined in several
ways (see for instance [Tut 66]). each giving an analogy to Lemmas 3.3
and 3.4. We shall not need to use triccnnected components in our study
of planarity. However, with a suitable definition of triconnected
components, a graph is planar if and only if' its triconnected components
are planar, and a triconnected plenar graph has an essentially unique

representation in the plane.

Definition 3.11: Let G = (V,€) be a graph. Suppose that G may be

embedded in a plane (or equivalently, in the surface of a sphere).
That is, suppose there is a mapping of the edges of the graph into
the plane in such a way that each edge (v,w) is mapped into a

simple curve, with the points v and w mapped into the endpoints
of the curve. Mappings of two different edges may have only their

common endpoints in common. If such a mapping exists, the graph

G is called planar. If nm(G) is the image of G in the plane,
and if m('(."})C is the complement of this set relative to the plane,
then the connected sets of points in m(a)C are called the faces

% of G (relative to the mapping m).

1k

Lemma 3.5 (Euler's Theorem): Let V be the number of vertices,
E +the number of edges, and F the number of faces in a planar

embedding of a connected graph G . Then V+F =E+2 .
Proof: See [Har 69].

The most useful property of the plane related to grapns is the

Jordan Curve Theorem:

Lemma 3.6: Let c¢ be a simple closed curve in the plene. Removal of
¢ from the plane divides the remaining points into exactly two
topologically connected sets, called the inside and the outside

of ¢ .

Proof: Difficult. See [Hal 55, Thr 53]. However, for our purposes we
need this result only for piecewise linear closed curves ¢ . This

special case is not tooc difficult to derive.

If G is a planar graph and ¢ 1is a cycle in G , then the image
of ¢ under a planar embedding of G is a simple closed curve. (In
fact, G may be embedded so that all edges of c¢ are piecewise linear.
See [Bus 65].) Thus, if ¢ is removed from G , the remaining vertices
and edges fall into two sets: those embedded on the inside of the image
of ¢ and those embedded on the outside of tﬂe image of ¢ . We base
our planarity algorithm on this observation and its corollaries, all of
which follow from the Jordan Curve Theorem. In particular, we need the

following result:

15

R

Lemma 3.7: Let c: X DXy 2 e xn-l = xl be a cycle in a graph
G Wwhich is embedded in the plane. Let (v,xi) s (w,xj) be two
edges not on the cycle. Guppose the order of edges clockwise
around vertex x, is (xi_l,xi) , (v,xi) s (xi,xi+l) , and that
the order of edges clockwise around xj is (Xj—l’xj) s (w,xj) 5
(Xj’xj+’) . Then (v,xi) and (w,xj) are on the same side of c .
If the order of edges clockwise around xj is (xj-l’xj) P
(Xj’xj+l) B (w,xj) , then (v,xi) and (w,xj) are on opposite
sides of c¢ .

Proof: A rigorous proof of this theorem requires knowledge of
topology (see [Hal 55, Thr 53]), but the idea is simple. Suppose
the order of edges clockwise around x. is (xj_l,xj) 5 (w,xj))

J
) . Then edges (v,xi) and (w,xj) may be connected

(xj’xj+l
by a path which follows the cycle but does not cross it, as in
Figure 3.1. Thus the two edges are on the same side of the
cycle.

Suppose the order of edges clockwise around xj is (Xj-l’xj) s
(xj’xj+l) s (w,xj) . Every vertex in the plane may be joined by
a simple path to one of the vertices on the cycle. If (v,xi)
and (W,Xj) were on the same side of the cycle then the remark
above and the first part of the Lemma would imply that every point

in the plane is on one side of the cycle, contrary to Lemma 3.6.

Thus the second part of the Lemma is true.

We shall need to use two special classes of directed graphs, one

standard, the other new.

16

Figure %.1: Two edges on the same side of a cycle.

11

Y
Definition 3.12: Let ‘f be a directed graph. Suppose T satisfies

tha following properties:
. -
(i) T is connected.
(ii) There is a unique point in T which is the head of
no edges. This point is called the root.
-
(iii) ALL other points of T are the head of exactly one

edge.

=
Then T 1is called a directed rooted tree.

Since we shall deal only with trees which are directed rooted trees,
we shall refer to them simply as trees. There may be simpler definitions

of trees, but the one above is the most useful for our purposes.

- -
Lemma 3.7: Let T be a tree. Then u(T) contains no cycles.

Proof: An exercise for the reader.

Lemma 3.8: Let v and w Dbe vertices in a tree T . Then there exists

either exactly one path p whose endpoints are v and W or nc

such path.

Proof: An exercise for the reader.

Definition 3.13: A path in a tree E" is called a branch of T.

-—
Definition 3.14: Let T be a tree and let v and w be vertices of '¥.

If (v,w) 1is an edge of 7 , then w is called-a son of Vv , and
M

v is called the father of w . If there is a path p: V=W,

then w 1is called a descendant of v , and v is called an

18

ancestor of w . If such a path is proper (v # w) , then w is

called a proper descendant of v , and v 1is called a proper

ancestor of w .

We use single-shafted arrows to dencte arcs of trees, since we shall
study trees which are a subgraph of a directed graph, and it will be
necessary to distinguish between the tree arcs and arcs in the larger
graph. We use v % w to denote the (unique) branch from v to w in
a tree, and also to indicate the fact that such a path exists. (Vertices
v and w satisfy the relation " v is an ancestor of w in 7 ")

The meaning will be clear from the context.

Definition 3.15: Let "f be a tree and let v g vertex of -f . The

subtree of T rooted at v is the tree :‘ﬁv = (v',¢&') whose

vertices V' are all the descendants of v and whose edges are
*

all those edges with tails in v' : V' = {wlv-ow} ;

e = {(v,wlvoaweverl.

s
Definition 3.16: ILet G = (V,&) be a directed graph. A spanning tree

- - -

T of G is a subgraph of G which is a tree and which contains
-

all the vertices of G . If G = (V',&') is an undirected graph,

any spanning tree of the doubly directed version G of G is also

a spanning tree of G .

We now present a new class of directed graphs, upon which the

planarity algorithm is based. .

Definition 3.17: TLet f” = (V,€&) be a directed graph, consisting of two

disjoint sets of edges, dencted by v-—w and Vv --» W respectively.

19

-
Suppose P satisfies the following properties:
(1) The subgraph containing the edges v - w is a tree 7
which contains all the vertices of -1—?’ , called the

spanning tree of _13 .

(ii) We have --c (ﬁ) , where " --" and " -'" denote the
relations defined by the corresponding sets of edges.
That is, each edge which is not in the spanning tree ﬁ.?
of 3 connects a vertex with one of its ancestors in -'f') .
Then ‘3 is called a palm tree. The arcs v --w are called the

-5
fronds of P .

Figure 3.2 shows a palm tree and its fronds. Since the notion of
a palm tree is non-standard, we shall not develop its properties until
we discover the context in which it arises. Tree palms are in reality
more nearly comparable in structure to overgrown cornstalks than to true

trees.

20

Figure 3.2: A palm tree. Fronds are dotted.

21

ITI. The Technique of Depth-first Search

&

k. Data Structures Representing Graphs

Good algorithms require an appropriate data structure; we therefore
look with some care at how a graph may be represented in a computer. We
need a representation which will preserve the adjacency properties of
the graph, which will be economical of storage, and which may easily be
constructed from the original list of vertices and edges which defing

the graph.

Definition 4.1: Let G = (v,€) be a graph with vertices {1,2,...,V} .

The adjacency matrix A

(aij) of G is a VxV matrix of zeros

and ones such that 25 1 if (i,3)ee, 8y = o if (i,3)fe .

The adjacency matrix of a graph is a common representation. If G
is undirected and contains no loops, A will be symmetric and will have
zeros on the main diagonal. IT G is directed, then A may be asymmetric.

Figure 4.1 gives an example of a greph and its adjacency matrix.

The adjacency matrix of a graph has several useful features. Certain

simple matrix operations correspond to simple graphical manipulations.

1

For instance, if (bijz = A% , then bij gives the number of paths of
length k between vertices i and Jj . The zeros and ones of the
adjacency matrix may be packed into machine words to save storage space;
word operations such as addition and logical operations may be used to
manipulate the det>» w bits at a time if w is the word size of the
given machine. This saving is scmewhat illusory, however. The amount
of storage space required by an adjacency matrix is kV2 , and we may

prove rigorously of most interesting graph problems that they require

23

7N

~oooOorlOorA O
oqoocoordor
ocooroHodAO
ooododor
HorO+HOOO
oo-Ho~AO0O
HoHooo-dO
odHodooord

N

=

A graph and its adjacency matrix.

Figure 4.1:

2k

examination of every bit in the matrix and thus have a computation time
proportional to at least V2' [Hol 70]. When the graph is large enough,
the gain obtained by packing bits becomes insufficient. If the matrix
is sparse (E << V2) we must use a representation which is not as
wasteful as the adjacency matrix. A list structure representation of

the graph is a good choice.

Definition 4.2: Let G = (v,e) be a graph. For each vertex ieV , we

may construct a list Li containing all vertices Jj such that

(i,j)e€ . Such a list is called an adjacency list for vertex 1 .

A set of such lists, one for each vertex in G , is called an

adjacency structure for G .

Figure 4.2 gives a graph and its adjacency structure.

A single graph G may have many adjacency structures; each ordering
of the edges around the vertices of G gives a unique adjacency
structure, and each adjacency structure corresponds to a uniqueoordering
of the edges at each vertex. (An adjacency structure for an undirected
graph G corresponds to an embedding of G in some orientable surface;
see [You 63].)

If G 4is undirected, each edge (i,J) 1is represented twice in an
adjacency structure; once for i1 and once for j . If G is directed,
each edge (i,j) is represented exactly once; vertex J appears in the
adjacency 1ist of vertex 1 . An adjacency structure requires an amount

of storage space linear in V and E . The enormous value of an

edjacency structure of G is that we may use 1f effectively to perform

25

o T[] J—ls]
0. I I 317
5 2 [s{a] 36 11
v ELd—] d-ls5 1A
5: (6 [—t8] 441
6: [5 L[z 4z 1A
7: [1 F—l8] d—le 1]
8: [5 [edl7] 4la

Figure 4.2: An adjacency structure for the graph in Figure 4.1.

26

~

searches of G ; that is, to traverse the edges of ¢ in some systematic

way. Such a search will require O(V,E) steps.

T

5. Searches, Spanning Trees, and Finding Connectec. Components
p

Suppose G is a connected undirected graph which we wich to explore.
Consider the following procedure. Initially all the vertices of G are
unexplored. We start from some vertex of G and choose an edge to
follow. Traversing the edge leads to a new vertex. We continue in this
way; at each step we select an unexplored edge from a vertex already
reached and we traverse this edge. The edge leads to some vertex, eithei*
new or already reached. Eventually we will traverse all the edges of G,
each exactly once. Such a process is called a search of G .

Any search of G imposes an orientation on the edges in G,
according to tue direction in which they are traversed. Thus a search
converts G into a directed graph .8 . For any starting point in G,
there may be many possible searches depending upon how the edges to
explore are selected. Each search generates a (possibly) different
directed version .6 of G . Any search also prodauces a spanning tree
E"G given by the set of edges which when traversed during the search
lead to & new vertex. A graph and the results of two possible searches
are illustrated in Figure 5.1.

Notice that the edges of E’ which do not form part of the spanning
tree ¥G mey interconnect the branches of the tree. (See the examples
in Figure 5.1.) For one type of search, however, this is not true.
Suppose we use the following rule for selecting an edge to traverse:
Always choose an edge emanating from the vertex most recently reached
which still has unexplored edges. We call a search whick uses this rule

a depth-first search. The set of old vertices with possibly unexplored

edges may be stored on a stack; thus the search may be easily programmed

28

8

(®) (1,2)(L,4)(1,8)(2,3)(2,7) (4,3) (4,5 (8,5 (8T (5 6) (5,6)(756)

()

(a)

(e)

N
\91

Figure 5.1: Two searches on a graph. (a) Graph. (b),(d) Search orders.
(c),(e) Directed graphs generated by searches. Spanning

trees indicated by solid arcs.

@)

either iteratively or recursively. The program given below carries
out: a depth-first search of a graph G , starting at vertex s . The
procedure constructs the directed graph generated by the search, and

uses an adjacency structure of the graph G .

begin
integer 1i;

- procedure DFS(v,u); comment v is the current vertex, and u
is the father of v in the spanning tree generated by the
search;

NUMBER(V) := 1 := i+l;
for w in the adjacency list of v do
begin
if w is not yet numbered then
begin
construct arec v - w in P;
DFS(w,v);
end
" else if NUMBER(w) < NUMBER(v) apd w £ u then

construct arc v -—» w in P;

end;
end;
i:= 03
DFS(s,0);

end;

Figure 5.2 gives an example of the directed graph generated by a
depth-first search.

An adjacency structure gives a unique depth-first search for any
starting vertex; edge selection order is fixed by the order of the
adjacency lists. The search requires O(V,E; steps, where V is the
number of vertices and E +the number of edges of the graph. Let us

characterize the directed graphs generated by depth-first searches.

30

(a)

(b) (1,8)(8,7)(7,6)(6,3)(3,2)(2,1)(2,7) (3,4) (4, 1) (4, 5) (5,8) (5,6)

n
-3

4
l__l

8: L1 L}

Figure 5.2: Depth-first search of a graph. (a) Graph. (D) Search order.

(¢) Generated palm tree (spanning tree indicated by solid arcs).

(A) Adjacency structure of palm tree.

31

- .

Recall the definition of a palm tree given in Chapter 3: P is a palm
=

tree if P is a connected directed graph with a directed rooted spanning
- - . % . -

tree T eand 21l arcs (i,j) ¢P-T satisfy j-—i in T . The edges of

?-"]-." are called the fronds of the palm.

-
Theorem 5.1: Let G be the directed graph generated by a depth-first
=y
search of a connected graph G . Then G is a palm tree. Conversely,
5 .
let G be any palm tree. Then G. is generated by some depth-first

-
search of G , the undirectcd version of G .

Proof: Suppose T = (v,&) 1is the directed graph generated by a depth-
first search of some connected graph G , and assume that the search
begins at vertex s . Examine the procedure DFS. The algorithm
clearly terminates because each vertex becomes v only once and is
numbered then. Furthermore, each edge in the graph is examined |
exactly twice. Therefore the time required by the search is linear
in ¥ and € .

For any vertices v and w, let vd(v,w} be the length of
the shortest path between v and w in G . Since G 1is connected,
all distances are finite. Suppose that some vertex remains unnumbered
by the search. Let v be an unnumbered vertex such that a(s,v) is
minimal. Then there is a vertex w such that w is adjacent to v
and a(s,w) <d(s,v) . Thus w is numbered. But v will also be
numbered, since it is adjacent te w . This means that all vertices
are numbered during the search.

The vertex s is the head of no edge wW- s . Each other
vertex v is the head of exactly one edge w - v . The subgraph

- -
T of G defined by the edges v - w is obvicusly connected, since

ey
N

there is a path in _'f from the root s to any vertex. This may
be proved by induction. Thus T is a spanning tree of g .

Each arc of the original graph is directed in at least one
direction; if (v,w) does not become an arc of the spanning tree
E_‘) s elther v --»w or w -— v must be constructed, since both v
and W are numbered whenever edge (v,w) is inspected and either
NUMBER(v) < NUMBER(w) or NUMBER(V) > NUMBER(w) -

The arcs v —»w run from smaller numbered points to larger
numbered points. The arcs v --w run from larger numbered points
to smaller numbered points. If arc v --w 1is constructed, arc
w— Vv 1s not constructed later because both v and w are numbered.
If arc w- v is constructed, arc v --w is not later constructed,
because of the test " w # u " in procedure DFS. Thus each edge in
the original graph is directed in one and only one direction.

Consider an arc v --w . We have NUMBER(w) < NUMBER(v) .
Thus w is numbered before v . Since v --»w is constructed and
not v-ow, v must be numbered before edge (w,v) is inspected.
Thus v must be numbered during execution of DFS(w,) . But all
vertices numbered during execution of DFS(W,__) are descendants
of w . This means tnat w -*-; v, and G is & palm tree.

To prove the converse part of the theorem, suppose that —i;
is a palm tree, with spanning tree E) and undirected version P .
Construct an adjacency structure of P in which all the edges of
? appear vefore the other edges of P in ithe adjacency lists.
Startiné with the root of -'l.‘) , perform a depth-first search using
this adjacency structure. The search will traverse the edges of —T->

-
preferentially and will generate the palm tree P ; it is easy to

53

see that each edge is directed correctly. This completes the proof

of the theorem.

From Theorem 5.1 we have the following interesting result:

Corollary 5.2: Let G be any undirected graph. Then G can be

converted into a palm tree by directing its edges in a suitable

manner.

A simple application of the concept of search is a well-known
algorithm for determining the connected components of a graph G .
We choose an arbitrary initial vertex and search. The search gives one
connected component. We then choose some new vertex and search again.
After a suitable number of searches the graph will be completely explored
and all its connected components will be found. The program pelow will

carry out these searches.

integer 1i;
procedure CONNECT (v,u) 3
NUMBER(v) := i := i+l;
for w in the adjacency list of v do
if w is not yet numbered then
add edge (v,w) to current connected component;
CONNECT (W, V) 5
end
else if NUMBER(w) < NUMBER(v) and w # u ther
add edge (v,w) to current component ;
end;
end;
1 :=0;

for x in Vv if x is not yet numbered then

start new connected component;
CONNECT(x,0) ;
end;

end;

Depth-first search is convenient but not neceesary for this algowrithm;
any search method will do. It is easy to verify that the space and time
requirements of the algorithm are linear in V and E .

As we shall see, depth-first search is an extremely useful teéhnique.
In the algorithms that follow we perform one depth-first search of a
graph G to generate a palm tree '3 and a corresponding adjacency
structure. In some cases we may reorder the lists of this adjacency
structure to give a new depth-first search. The new search is performed
on the directed graph -; ; thus the edges are traversed in the same
direction as during the first search but explored in a different order.
The test to avoid traversing edges in the wrong direction is unnecessary,
and the palm tree does not change after the initial search. We save
enough information during the later search to enable us to answer

—-)
interesting questions about G , aided by the simple structure of P .

6. Finding Biconnected Components Using Depth-first Search

We have seen how to use a search to find the connected component s
of a graph. The simple structure of palm trees enables us to answer
more complicated connectivity questions in linear time. Assume for
example that a comnected graph G has an articulation point a as
jllustrated in Figure 6.1. Suppose we begin a depth-first search in
region G-R and enter region R by passing through vertex a . We
must eventually back up through vertex a ; that is the only way to
leave region R during the search. This observation allows us to

efficiently calculate the biconnected components of G .

Figure 6.1: Vertex a separates region R from the rest of the graph.
-
Let P be the palm tree generated by a depth-first search of G

Y
and let T be its spamning tree. The procedure DFS numbers the vertices

-
of P from 1 to V so that the numbering corresponds to the order in

36

which they have been reached during the searchi. We may refer to a
vertex by its number. Then an ancestor Jj in ?[") of any vertex 1 has
j<i. If i is any vertex of P, let LOWPTL(i) be the smallest
vertex in the set 8§, = {11 U j} - If S, is empby, let

LOWPTL(i) = +«= . The following results form the basis of an algorithm
for finding biconnected components. This algorithm was discovered by

Hopcroft and Tarjan [Hop 71d]. Paton [Pat 71] describes a similar

algorithm.

Lemma 6.1: Let G be an undirected graph and let P be a palm tree
formed by directing the edges of G . Let T be the spanning tree
*

of P . Suppose p: v=Ww is any path in G . Then p contains

a point which is an ancestor of both v and w in T .

Proof: Let ‘f’u_ with root u be the smallest subtree of T containing
all vertices on the path p . If u=v or u=¥W the lemma is
jmmediate. Otherwise, let T'ul and Tue be two subtrees containing
points on p such that u - uy and u - Uy - If only one such
subtree exists tnen u is on Dp since T'u is minimal. If two

—

such subtrees exist, path p can only get from fu to Tu .

1 2
by passing through vertex u , since no point in one of these trees
is an ancestor of any point in the other, while both - and --

connect only ancustors in a palm tree. Since u is an ancestor

of both v and w , the lemma holds. 4

Lemma 6.2: Let G be a connected undirected graph. Let P be a palm

tree formed by directing the edges of G, and let T be the

-—

spanning tree of P . Suppose a, v,w are distinct vertices of G
-y

such that (a,v)eT , and suppose Ww is not a descendant of v

- * -
in T . (That is, —(v-w) in T .) I{ LOWPTl(v) >a then a
-

is an articulation point of P and removal of a disconnects

v and w . Conversely, if a is an articulation point of G

then there exist vertices v and w which satisfy the properties

above.

Proof: If a - v and LOWPT1l(v) > a , then any path from v not passing
through a vremains in the sg.btree -TJ'V , and this subtree does not
contain the point w . This gives the first part of the Lemma.

To prove the converse, let a be an articulation point of G .
If a is the root of G then at least two tree arcs must emanate
from a . Let v be the head of one such arc and let w be the
head of another such arc. Then a - v, LOWPTL(v) >a , and w
is not a descendant of v . If a is aot the root of ; , consider
the connected components formed hy deleting a from G . One
component must be a cubtree of T whose root v is a son of a .
If w is any proper ancestor of & , then a - v, LOWPT1(v) >a ,
and w 1is not a descendant of v . Thus the converse part of the

Lemma, is true.

Figure 6.2 shows & graph, its ILOWPT1l values, articulation points,
and biconnected components. The LOWPT1 values of all the vertices of
a palm tree I-P, may be calculated during a single depth-first search,
since LOWPT1(v) = min({IOWPT1(w) |v - w], {NUMBER(W) |v =~-w}) .

On the basis of such a calculation, the articulation points and the

%8

2
1 6
9 i?
8
(a)
3
7 8
[20 s 7
1 p ?
2
1
(c)

Figure 6.2: A graph and its biconnected components.
(a) Graph.
(b) A palm tree with LOWPOINT values in [], articulation
points marked with *.

(¢) Biconnected components.

biconnected components may be determi: :d, all during one search. The
biconnectivity algorithm is presented below. The program will compute

the bicomnected components of a graph G , starting from vertex s .

begin
integer 1i;
procedure BICONNECT(v,u) ;
begin
NUMBER(v) := i := i+l;
LOWPTL(v) := + =}
for w in the adjacency list of v do
begin
if w is not yet numbered then
begin
add (v,w) to stack of edges;
BICONNECT (w, V) 3
LOWPTL(v) := min(LOWPT1(v),TOWPTL(w));
if LOWPT1(w) > NUMBER(v) then
begin
start new biconnected component;
for (ul,ug) on edge stack with
NUMBER(ul) > NUMBER(v) do
delete (ul,uz) from edge stack
and add it to current component;
delete (v,w) from edge stack and add it
to current component;
end;
end
else if NUMBER(W) < NUMBER(v) and w # u then
add (v,w) to edge stack;
LOWPTL(v) := min(LOWPT1(v),NUMBER(W));
end;
end;

end;

: .= 03
empty the edge stack;
for x in V do if x is not yet numbered then BICONNECT(x,0) ;

end;

The edges of -15) are placed on a stack as ;chey are traversed; when
an articulation point is Zound the corresponding edges are all on top of
the stack. (If (v,w)eT and LOWPT1(w) > v , then the ccrresponding
biconnected component contains the edges ‘in
{(ul,ue) fw 3 ul} U {(v,w)] which are still on the edge stack.)

A single search on each connected component of a graph G will give

us all the bicormected components of G .

Theorem 6.3: The biconnectivity algorithm requires 0(V,E) space and

time when applied to a graph with V vertices and E edges.

Proof: The algorithm clearly requires space linear in V and E . The

algorithm is similar to the connectivity algorithm, except that
LOWPT1l values are calculated and each edge is placed on the edge
stack once and removed from the edge stack once. The amount of
extra time required by these operations is proportional to E .

Thus BICONNECT has & time bound linear in V and E .

Theorem 6.4: The biconnectivity algorithm correctly gives the biconnected

comronents of any undirected graph G .

Proof: The actual depth-first search undertaken by the algorithm depends

on the adjacency structure chosen to represent G ; we shall prove

that the algorithm is correct for all adjacency structures. Notice

b1

first that the biconnectivity algorithm contains as 2 part the
algorithm presented in Chapﬁer 4 for finding congecpéd components.
Each connected component is gnalyzed separately tb find its
biconnected components. Thus we need only prove that the
biconnectivity algorithm works correctly on connected graphs’ G .

The correctness proof is by inductiop on the number of edges
in G . Suppese G is connected and contains no edges. G either
is empty or consists of a single point. The algorithm wili terminate
after examining G and listing no components. Thus the élgorithm
operates correctly in this case. Now suppose that the aigorithm
works correctly on all connected graphs with E-1 or ﬁﬁwer edges.
Consider applying the algorithm to a connected graph ﬁ- with E
edges. ; ,/

Each edge placed on the stack of edges is evenyﬁally removed
and added to a component since everything on the g%ge stack is

/

removed whenever the search returns to the root gé the palm tree
of G . Consider the situation when the first/éomponent G' is
formed. Suppose that this component does not include all the edges
of G . Then the vertex v currently being examined is an
articulation point cf the graph and separates the edges in the
component from the other edges in the graph by Lemma 6.2.

Consider only the set of edges in the component. If
BICONNECT(v,0) is executed, using the graph G' as data, the
steps taken by the algorithm are the same as those taken during the

analysis of the edges of G' when the data consists of the entirc

greph G . Since G!' contains fewer edges than G , the algorithn

L2

operates correctly on G' , and G' must be biconnected. If we
delete the edges of G' from G , we get another subgraph G"
with fewer edges than G since G' is not empty. The algorithm
operates correctly on G" by the induction assumption. The
behavior of the algorithm on G is simply a composite of its
behavior on G!' and on G" ; thus the algorithm must operate
correctly on G . -

Now assume that only one component is found. We want to
show that in this case G is biconnected. Suppose that G 1s
not bicomnected. Then G has an articulation point a . By
Lemma 6.2, LOWPTl(v) >a for some son v of a . But the
articulation point test in the program will succeed when the edge
(a,v) is examined, and more than cne biconnected component will
be generated. This contradiction shows that G is biconnected,
and the algorithm works correctly in this case.

By induction, the biconnectivity algorithm gives the correct

components when applied to any connected graph, and hence wien

applied tc any graph.

43

IIT. A Linear Planarity Algorithm

7. Gencral Deseription

We wish to decide whether or not a given graph G can be embedded
in the plane. We can answer this ques%tion using an algorithm whose space
and time bounds are linear in V , the number of vertices in the graph G .
An intuitive description of the algorithm is presented here; later thz
various operations necessary wili be discussed in detail. Figare 7.1
gives a flowchart of the overall process.

Suppose a connected graph G 1s embedded in a plane. When the
set of points representing the edges and vertices of G 1s deleted
.from the plane, certain regions remain; these are the called the faces
of G . Euler proved a relationship between the number of vertices V,
faces F , and edges E of a connected planar graph: V+F =E+ e

(Lemma 3.5). A consequence of this fact is:

Lemma 7.1l: If G is a planar graph with three or more vertices then

E<3V-6.

Proof': If G is not connected, w2 may connect it by adding additional
edges. Since G is not a multigraph the boundary of each face
must contain at least three edges. Thus 3F < 2F ; every edge is
counted twice if we sum over the facial boundaries. Tt follows that

3 = 3V+3F-6 <3V+2E-6 , and E <3V-6 .

Because of Lemma- 7.1, we may hope to determine planarity in time
which is proportionsl to the number of vertices. The first step of the
algorithm is to count the number of edges in the graph G . If the count evev
exceeds 3V -6 , we stop and declare the graph non-planar. Next we may

divide the graph into biconnected components, using the algorithm described

); 5

START

Yes

(E>3V-6 ﬁ

iNo
Optional Find biconnected
step |} components of graph G.

Perform first depth~first search.
Construct a palm tree P for G .
Calculate lowpoint information for vertices.

..
Reorder edges using

radix sort.

Perform second search. Renumber
vertices in search order.

L

Perform third search. Construct paths
and subgraph of dependency graph.

" Is 2-coloring of dependency No
(subgraph possible?

Yes

P

" Does 2-coloring give a planar No
embedding without crossing edges?

Figure 7.1l: Flowchart for planarity testing algorithm.

L6

in Chapter 6. (This step is not actually necessary, but it will simplify

the presentation.)

Lemma 7.2: A graph is planar if and only if all its biconnected

camponents are planar.
Proof: Standard. See [Ber 62j.

Consider one of the biconnected compornents. We know ‘that such a
component may be converted into a palm tree -3 using a depth-first
search. Suppose that ? is embedded in the plane. Without loss of
generality i? may be embedded so that the branches of its spamning tree
point "up" in the plane, and none of the fronds cross under the root
of the tree. Let u be a vertex in the component, and let
(u,vi),(u,VQ),...,(u,vn) be the tree arcs emanating from u , in the
order they cccur around u in the planar embedding. Let Tl’TQ""’Tn
be the subtrees whose roots are ViV eV s respectively. Various
fronds emanate from fhese subtrees and connect to ancestors of u , as
illustrated in Figure T.2.

For tree T, , the lowest point of connection is LOWPTl(vi) .

The highest point of connection (below u) we may call HIGHIT(vi) .
Every subtree Ti except one (T2 in Figure 7.2) must have all of

its fronds descending on the same side of the branch l-i'u in the
planar embedding. The subtrees Tl’TE""’Tn must be arranged so that
T, and T = have the highest intervals [IDWP]?l(vi),HIGHPI(Vi)] and

these intervals are non-decreasing as we move in the sequence of subtrees

toward the tree (if one exists) whose fronds descend on both sides of

b7

Figure 7.2: Relationship of subtrees adjacent to a single

vertex in a planar embedding.

L8

the branch 1 5w . Two subtrees (such as T, and T, in Figure 7.2)
whosc intervals overlap by more than one point cannot have their fronds
descending on the same side of the branch l:ﬁ u .

The value HIGHPT(v) is not easy to calculate, unfortunately, so
we must resort to a bit of legerdemain to actually determine the proper
arrangement of the various subtrees of a bicoﬁnected component. Instead
of using subtrees, we examine paths. Each path is of the form
p: s ﬁ - £ . If (s,v) is the first edge on such a path p and s - v
is a tree arc, then the interval associated with p dis the same as that
associated with Tv , the subtree rooted at v . If (s,v) is a frond
(p is of length one), then the interval associated with p is [v,v].
We do not completely calculate these intervals but we do determine
something about them; in particular we compute the lowest point of eacn
interval and we determine which intervals consist of more than one point.

Using this information, we choose paths with the lowest intervals
first. As the paths are selected, we may imagine adding them to a
planar embedding which contains all the previously selected paths. If
paths P1sPps -+ +5Py pass through vertex s , then their ordering around
s is restricted in the same way as the ordering of the corresponding
subtrees Tl’Tz”"’Tn ; where Ti has root vi) vi is on path pi P
and S - vy Thus each new path p: s i £ has at most a two-fold
ambiguity in its placement; p must ﬁe placed either at the left end or
at the right end of the sequence of paths around vertex s . See

Figure 7.3. We call one of these possibilities the left embedding and

the other the right embedding.
Using some additional information about the paths, we develop a

dependency relation between paths: +two paths may either constrain each

49

Figure T.3: The two possible embeddings of new path p .

50

other to have the same embedding, or they may constrain each other to
have opposite embeddings, or they may not restrict each other at all.
The relation consists of a set of equalities and inequalities which
must be satisfied over a two-element domain. We shall see that a graph

is planar if and only if its dependency relation is satisfiable.

We may construct a graph corresponding to the dependency relation.
The vertices in this graph are the paths in the original graph. Two
paths are joined by an ELINK if they must have equal embeddings, and two
paths are joined by an ILINK if they must have unequal embeddings. The

resulting graph is called a dependency graph D ; this graph is colorable

using two colors if and only if the original graph G is planar. In
order to test planarity, then, we convert each biconnected component of
the graph into a palm tree, we partition each palm tree into a set of
edge-disjoint paths, we construct the corresponding dependency graph D ,
and we attempt to color D wusing two colors.

In order to get a fast algorithm, we must use another bit of
cleverness. We shall see that the number of paths generated is E-W1 .
The dependency graph may a priori cortain up to (E-V+1)(E-V)/2 edges.
We do not actually find all links in the dependency graph, but only
enough to connect the connected components of this graph. Since a
two-coloring of any connected component is essentially unique, the
selected links provide enough information to give only one coloring.

(We may permute colors in the variocus connected components arbitrérily.)
We then test this coloring to see if it is a coloring of the entire
dependency graph. If so, the original graph is planar and the coloring

gives a planar embedding. If not, the graph is non-planar.

51

Each step of this process may be carried out in time proportioral
to the number of vertices. (The subgraph of the dependency graph which
is actually constructed contains a number of links linear in V .)

The storage space required is also proportional to the number of
vertices. Thus the planarity algorithm is linear in V in both time
and space; furthermoie, +the algorithm is optimal to within a constant
factor, since any correct planarity algorithm must examine each edge of
the graph at least once. Figure 7.k gives an example of the algorithm's
application. The example illustrates the general steps involved in
determining planarity. In the next sections we develop the details of

these steps.

52

/71
5 / //l 11\
s /7 |
/ d 2 /i \|
l/ \ s
| v /|
\ :\ .
vy e/
/
\ o\ /
1
\\3.:«
6 4 .
(a) (b)
ALL]
(c) A: (1,4%,5,2,1)
B: (2,3,1) B[L] E p[L]
c: (3,4) I
D: (3,5) E I F[R]
E: (2,6,1) E
F: (6,4) clrl B oERIN g
G: (6:5)
G[R]
(a)
6
p)
1
(e)
Figure 7.1{2 Application of the planarity algoritim. (a) Graph.

(b) Generated palm tree. (¢) Paths. (d) Dependency

subgraph with 2-coloring in []. (e) Planar embedding
corresponding to 2-coloring.

53

8. Pathfinding

Assume that G is a biconnected graph with E < 3V-6 . In order
to decide whether G 1is planar, we shall perform three depth-first
searches of G . The first search generates a palm tree ? by directing
all the edges of G . It also gives information about the fronds of -1-3) .
This information is used to construct an adjacency structure A for —13
which determines the last two searches. The second depth-first search
numbers the vertices of T” . The third search generates paths and
discovers their interrelationships. In this chapter we shall consider
the three searches and the pathfinding process in detail.

If v is a point in a palm tree -1-3) , we wish to know the set of
points SV = {wlvi --» w} . The two lowest points in SV adequately

represent Sv for our purposes. Thus we have the following definition:

-
Definition 8.1: Let G be a connected undirected graph.. Let P be a

palm tree generated by a depth-first search of G . Suppose that
the vertices of —P’ are numbered in the order they are reached
during the search. We define two numbers characteristic of a
vertex v relative to the palm tree _1-3) . LOWPTL(v) is the number

*
of the lowest numbered vertex w, in the set Sv = {w|v - - W}

1
LOWPT2(v) is the number of the second lowest numbered vertex w,
in the set S _, if such a vertex w, <v exists. If Is,| =0,

LOWPTi(v) = LOWPT2(v) = +w. If |[S | =1, LOWPI2(v) =+,

It is important to realize that LOWPT1(v) # LOWPT2(v) uuless
LOWPTL(v) = LOWPT2(v) = +» . Figure 8.1 gives an example of a palm

tree and two sets of its lowpoint values. The pair

54

Figure 8.1:

\) \ 3\

/ \
[Tk \ \
6 \ '

| « |/
N ».iv

The meaning of LOWPT1l and LOWPT2.
(a) A palm tree.
(b) LOWPTL(7) = 1; LOWPT2(7) = 6.

(¢) LOWPTL(3) = 1; IOWPT2(3) = +=.

(LOWPTL(v) , LOWPT2(v)) is calculated during the initial depth-first

search of G .

biconnectivity algorithm.

is presented below.

computes

at vertex

begin

S

The calculation is an extension of that in the
A recursive procedure for this calculation

It is easy to verify that the program correctly

IOWPT1 and LOWPT2 , using a depth-first search which begins

integer 1i;

procedure DFSL(v, u);

begin

NUMBER(v) := i := i+l;
LOWPTL1(v) := LOWPT2(V) + =;
for w in the adjacency list of v do
begin
if w is not yet numbered then
begin
construct arc v - w in —1-”;
DFS1(w,v)
if LOWPT1(w) < LOWPT1(v) then
LOWPT2(v) :
LOWPT1(v) :
end
else if LOWPIL(w) = LOWPTL(v) then
LOWPT2(v) := min(LOWPIZ(v),LOWPTR(w))
else LOWPT2(v) := mir (LOWPT2(v) , LOWPTL(w)) ;

min(LOWPTL{v) ,LOWPT2(W)) ;
LOWPTL(w) ;

0

]

end

else if NUMBER(w) < NUMBER(v) and w # u then
begin
— -
construct arc v -—» w in P;

if NUMBER(w) < LOWPT1(v) then

56

begin /
LOWPT2(v) :=
LOWPT1(v) :
end

else if NUMBER(w)/ > LOWPT1(v) then
LOWPTI2(v) := niin(LOWPT2(v),NUMBER(W));

end;
end;
end;
1 :=0;
DFS1(s,0);

end;

Figure 8.2 illustrates why we need lonly consider the two lowest
points in the set SV . Suppose u-vy and u- v, are two tree arcs

-—)
in P, and all fronds from Tv and | v descend on the left in some
1 2

-
planar embedding of P . If LOWPTL(vl) < LOWPI'l(vl) <u, or if
LOWPl‘l(ve) = LOWPPl(vl) and. LOWPTQ(vl) <u, then v, must appear

to the left of vy in the ordering of points around wu . The algorithm

will attempt to embed Tv2 before Tvl

The first search generates a palm tree 3 . This palm tree has
several possible adjacency structures, each corresponding to an ordering
of the edges around the vertices of 3 . The adjacency structures for
-IJ” have one entry for each of the edges of the originel graph G ; all
the edges are now directed. We use the lowpoint valucs to chocse a
particular adjacency structure A , which will be used to determine the
selection of paths in the graph. This adjacency structure is based upon

the ordering of paths determined by their connections with ancestors of

their start vertices which was described informally in Chaptexr 7. The

57

/7 P
/ 7/
T
/ ! ARV v
] /l'\'/‘ 2
! I
{ \
I [[
BTN E
\ \ \
\ \ \ \
\ \
\\ \ .
\
\ N
\ \ \\)
AN \
N\ \
N \
AN
AN
(a)

o1

(b)

Figure 8.2: Relationship of subtrees in a planar embedding.

(a) LOWPI‘].(VE) < LOWP]?l(vl) <u .

(b) LOWPTL(v,) = LOWPIL(v,) ; LOWPT2(vy) <u .
2 1 : 1

ordering is chosen so that a depth-first search using this adjacency
structure will choose paths with lowest frond heads first. The
implications of the ordering are presented in the lemmas below. We

refer to vertices by the numbers assigned using DFSL1 .

Definition 8.2: Let $ be the mapping from the edges of a palm tree

P into ({1,v] U {+=}) x {0,1} defined as foliows:

(i) If e=v -—-w, @(e) = (w,0) .

(ii) If e=v-w and LOWPT2(w) >v , f(e) = (LOWPTL(w),0) .

(iii) If e

v sw and LOWPT2(w) <v , @$(e) = (LOWPTL(w),1) .

q
Definition 8.3: Let A be any adjacency structure for a palm tree P .

A is called acceptable if the edges e 1in each adjacency list LV

of A are ordered lexicographically according to the value of @(e) .

In general, a palm tree -1_9) has many acceptable adjacency
structures A . It is easy to construct one by using a single radix
sors. LOWPTL(v) and IOWPT2(v) are integers in the range [1,V] U {+=}.
Since we may assume G 1is biconnected, LOWPT1(v) < v for all vertices,
and IOWEFT1l is never + . Thus we need 2V Dbuckets. The following
procedure gives the sorting algorithm. All vertices are identified by
the number assigned to them during the initial search. Tt is obvious
that the sorting procedure requires time proporticnal to V .

procedure SORT;
begin
—
for each arc (u,v) of P do
if u -—- v then place (u,v) in BUCKET(2¥v-1)
else if LOWPT2(v) > u then
place (u,v) in BUCKET (2*¥LOWPT1(v)-1)

29

else place (u,v) in BUCKET(2XLOWPI1(V));
for i := 1 until 2%V do
for each arc (u,v) in BUCKET(i) do
place v at end of adjacency list of vertex u:

end;

Lemma 8.1: Let T be a biconnected palm tree with spanning tree T .
Suppose that the vertices of '3 are identified by distinct numbers
in such a way that v iw in E‘) implies v <w . Let LOWPT1
and IOWPT2 be defined as in Definition 8.1 using the given

numbering. Then the acceptable adjacency structures are

independent of the numbering chosen.

Proof: Since G is bicomnected, LOWPT1(v) is always an ancestor
of v . The value of @((x,y)) depends only on the fronds of B
and the numbers of the ancestors of x . The order of the
ancestors of a vertex is identical to the order of their numbers,
by the hypothesis of the lemma, and this order is independent of
the actual numbering selected. The property of being a frond of f;
is also independent of the numbering. Thus the edge order imposed

by § does not depend upon the numbering.

Lemma 8.1 implies that we may renumber the vertices of 3 in the
order they are reached during any depth-first search of f’) without
changing the adjacency structure A . (The adjacency structure specified
by ¢ is not unique, but the possibilities for A are independent of
the numbering.) The seconl depth-first search numbers the vertices in a

special way in preparation for pathfinding. This search selects edge[s

60

in the reverse order to that given by the adjacency structure A .

The vertices are renumbered in the order they are reached during the
search. This numbering is such that if vertex v appears before
vertex w in the adjacency list of vertex u and u-v, u-w,
then v >w . This backward numbering scheme is necessary in order to
determine the interactions between the paths, as we shall see later.
Henceforth we shall refer to vertices us"{ng the number assigned by th=
second depth-first search.

We have so far found a palm tree ‘; for G , constructed an
adjacency structure for '? based vpon its lowpoint values, and numbered
the vertices of '? . We are ready to undertake the third depth-first
search, which generates paths. The recursive procedure for this w.arch
appears below; PATHFINDER(1) carries out the calculation starting with
the root of the palm tree. The search uses adjacency structure A
(this time in the correct order) and works in the following way. The
initial vertex (number one) is marked as the start vertex of the first
path. The search proceeds until a frond is traversed. The sequence
of edges traversed from the start vertex to this frond is the first
path. When the next edge is traversed during the search, its tail
vertex is marked as the start of a new path. The new path is completed
when another frond is traversed. This process is repeated until the

third search is completed.

61

procedure PATHFINDER(V);
for w in the adjacency list of v do

begin comment Vertex s is a global variable, the start

vertex of the current path, and is initialized to O;
if v —» w then
begin
if s = 0 then
begin
s 1= V;
start new path;
end;
add (v,w) to current path;
PATHFINDER(W) 3
A: if s # O then delete last edge on current path;
if s = v then s := 0}
end;
else comment v -- W;
begin
add (v,w) to current path;
output current path;
s := 0;
end;

end ;

The paths generated in this way have some very interesting properties
which are crucial to the behavior of the remainder of the planarity
algorithm.

In particular, if p: s U f 1is a generated path then f is the
lowest vertex reachable via an unused frond from TS . PFurther, if v
is any intermediate vertex on path p , f is the lowest vertex
reachable via any frond from Tv . A little more can te sald because
IOWPT2 is used in path selection. The lemmas below give the important

properties. G is the original biconnected graph, having V vertices

€2

= 3
and E edges. P is the palm tree generated by the first search;

.-’ -
P has spanning tree ’—I? .
Lemma 8.2: The pathfinding algorithm generates E-V*+1 paths.

- -
Proof: One path is generated for each frond of P . Since T has

V-1 edges, there are E-V+1 paths.

-~

*

Theorem 8.3: Let p: s = f be a generated path. Then f 1is the
lowest vertev reachable via an unused frond from Ts . If v is
an intermediate vertex on p , f is the lowest vertex reachable

via any frond from Tv .

Proof: If v 1is reached during the pathfinding search, then all
ancestors of v have already been reached. A path terminates
as soon as it reaches an ancestor of any vertex on the path. Each
path contains one and only one frond, the last edge of the path.
If p has length one, p consists of an unused frond leading to
the lowest vertex reachable from Ts . If p has length greater
than one and s — v is the first edge of p , then Tv has a
frond leading to the lowest vertex reachable from Ts . This

follows from the definition of § . The theorem follows by induction.

Theorem 8.k4: The first path generated by the pathfinding algorithm 1is
a cycle. Each other path is a simple path having exactly two
vertices (the endpoints of the path) in common and no edges in

common with previously generated paths.

Proof: If a generated path p is of length one, it is obviously

*
simple. If p: § -V = =-- £ , then f = LOWPT1(v) by Theorem 8.3.

63

Since G is biconnected, f < s unless s = 1 by Lemma 6.2.
Thus the initial path begins at vertex 1 and is a cycle, and 11

other paths are simple.

*
Corollary 8.5: If p: s > f is one of the generated paths, then

* .-
feoas in T

Proof: Immediate from the proofabove, since LOWPI1(v) is an

ancestor of v , for every vertex v in G .

* *
Lemma 8.6: Let Py sy = fl and Pyt S5 2 f2 be two generated paths
-

such that sl-ﬁ So in T . Suppose that 15 is found before Py -
Then fl < f2 .

ey
in T , path Py coi1ld have

Proof: Since s is a descendant of s

2 1
reached f2 , but instead reached fl . By Theorem 8.3, fl < f2 .

* *
Lemma 8.7: Let Pytos = fl and Pyt 5= f2 be two generated paths

which have the same start vertex. Let vy be the second vertex

of Py let v, be the second vertex of Ps s and suppose that

2
Py is found before Py - Then we have:
(3 £,
(ii) Suppose £, =1, . If p, is of length greater than

one and LOWPIE(vl) <s , then p, is of length greater

than one and LOWPI2(V2) <s .

Proof: Vertex v, appears before vertex v, in the adjacency list of

1 2

vertex s , because path p, is generated before path p, . The
1 2

lemma follows immediately from Definitions 8.2 and 8.3.

6l

* *
Lemma 8.8: Let Pyt s, =@ fl and Pyt Sy = f2 be two generated

paths. Suppose that s. <s, and that 12 is found bvefore P,

1-"2
*
during the pathfinding process. Then Sy = 5, -
Proof': This result is immediate. The vertex numbering is such that

the only vertices v which are examined after Sy is first
reached during pathfinding and such that v > sy are the descendants

of s Remember, the numbering scheme is backwards.

5

We now that a single depth-first search of a possibly planar
graph G requires time proportional to V . (Remember, we have checked
that E < 3V-6 .) The machinations performed during the three searches
necessary to find paths all require only O(1) time per step of the
search process. Thus the total time spent on tﬁe-three searches is
0(V) . We have also seen that the sorting used to c.‘oins.truc‘b the adjacency
structure A requires O(V) timé. Therefore the complete -path
generation process has a time bound linear in V . The space 1:‘eq:.1j.red
igs also obviously linear in V .

If G is not biconnected, the paths generated will not all be
simple. In fact, any path passing from one biconnected component to
another cannot possibtly be simple. There are two ways in which simple
paths may not be generated. One way is illustrated in Figure 8.3. The
path in the figure consists of a simple path from v to W followed
by a cycle which loops at w . Vertex w is an articulation point of
the grapk\l.\ ‘The region R is separated from the rest of the graph by
vertex w . The planarity testing algorithm will handle paths of the
type "autonatically"; the paths in region R do not interact with those

in the rest of the graph. Figure 8.4 illustrates the only other

65

possibility. Vertex w is a dead end (a vertex of degree one). If
such a vertex is reached during path generation, the edge leading to it
is deleted from the graph and ignored. (This is accomplished by test A
in procedure PATHFINDER.) The presence or absence of the deleted edge
does not affect the planarity of the graph. Although this is only an
intuitive justification for the dispensability of the biconnectivity

assumption, one may easily verify this fact using the results below.

3%
(6}

w (finish)

v (start)

Figure 8.3: A non-simple path.

¢ ¥ (dead end)

¢ v (start of path)

Figure 8.hi: A dead-end branch.

9. Embedding of Paths

We have learned how to partition a biconnected graph G into a
set of simple paths, such that each path has only its endpoints in common
with previous paths, and each edge occurs in exactly one path. In this
chapter we discover how to embed these paths in the plane. Every path,
when it is placed, has at most two possible embeddings with respect to
paths placed earlier, and we shall characterize these possibilities.
Assume that the paths found in G are numbered from 1 to
E-V+ 1 in the order they have been generated; path one is the initial
cycle. We may associate a unique path with each vertex; namely the
lowest numbered path to cortaiii that vertex. We shall distinguish three
types of paths; these paths interact in different ways. The first
type of path is the initial cycle; it is unigue. The other two types

are given by the following definition.

¥
Definition 9.1: Let p: s =» L be a simple path generated by the

o

.x.
Py 8y = I

path containing s . If i‘o <f , then p 1is called a normal

path. fo = f then p is callzd a special path. The case

pathfinding algorithm. ZLet be the earliest generated

£y > F cannot cccur by Lemma 8.6.

Let us imagine embediiag the paths in the plane one &t a time in
the order they are ecenerated. The results which follow give a specifi-
cation o the poussible placements of a path, in relation to previously

embeddad paths.

€3

Theorem 9.1: TLet p be a generated path in a biconnected planar
graph G . Suppose the previously generated paths have been
embedded in the plane. Then there are two possible ways to add
P to the embedding, at least one of which may be extended to

give a planar embedding of the entire graph.

Proof: The theorem does not claim that there are only two possible
ways to insert the path p . It merely asserts that there are
two placements of p +to which we may restrict our attention
without affecting the planarity of G . The proof requires consi-
deration of the three different types of paths and follows from the
next three lemmas, which characterize the two embeddings for each
of the three types of paths. Without loss of generality we may
assume that G 1is embedded in the plane in such a way that the
arcs of the spanning tree -’_f" of G point "up" in the plane and

no frond passes under the root of E’ .

Definition 9.2: Let ? with root 1 be a palm tree embedded in the

plane, with tree arcs pointing "up" and no frond passing under
vertex 1 . Let (v,w) be a frond of —15) , with X = w -y 5 v .
(If w=1, add an extra tree arc x - 1 to the embedding, with
vertex x directly Lelow vertex 1 .) Frond (v,w) is said to

*
descend on the right (of branch 1 - v) if the order of edges

clockwise around w is (x,w) , (w,y), (v,w) . Frond (v,w) is

*
said to descend on the left (of branch 1 - v) if the order of edges

clockwise around w is (x,w), (v,w), (W,y) . Figure 9.1 illustrates

this definitim.

69

v v
a~“\~ , -2
\ /
\ /
\ !
|
\ \
, \ [] y
< / \
A § / \
N
/ W
P N
w ok
X b k:c
(a) (b)
Figure 9.1: Position of fronds in a planar palm tree.

(a) Frond descends on right.

(b) Trond dezcends on left.

70

*
Lemma 9.2: Let p: 1= 1 be the initial cycle of G . Then

Theorem 9.1 is true for p .

Proof: Tigure 9.2 illustrates ihe two possible embeddings for the
initial cycle. If the tree arcs of the cycle are drawn upwards in
the plane, the frond which forms the last arc of the cycle may
descend either on the left side or..on the right side of the tree

arcs, giving respectively the left embedding and the right embedding.

Lemma 9.3: Let p: s : f be a normal path of G . Let Pot 5o i fo
be the earliest path containing s and suppose that x - s . Then
Theorem 9.1 is true for p , and without loss of generality »p
may be inserted into one of the two faces in the partial embedding

having the edge (xX,s) on its boundary.

Proof: Let PysPys -5y be the paths already embedded which contain
vertex s , in the order they occur clockwise arcund s beginning
from arc X -» s . We will show that without loss of generality p
may be embedded either fo the left of Py > with its frond descending
on the left of branch lli s or to the righ* of P, » with its
frond descending on the right of 1 f»s . Thus suppose we Wish
tc place T so that its frond descends on the right.

Suppose P : S Z fh (path D, starts at s). Let c, be
the cycle formed by P, and the branch fn‘i s . If fn < f and
the frond of p descends on the right, p must be placed to the
right of P, by Lemma 3.7 and Definition 9.2, since the frond of

p and the first edge o7 p must be on the same side of <y

(Figure 9.3(a)). This argument also shows that p must be to the

71

(a) (v)

Figure 9.2: Embedding of a cycle.
() Left embedding.
() Right embedding.

T2

right of Py in the ordering of paths about s .

Suppose f =f, P: s avhear , and LOWPT2(v) < s .
Consider a frond e whose tail is a descendant of v and whose
nead is LOWPT2(v) . If the frond of p descends on the right
then so does e , applying Lemma 3.7 to cycle o2 ® and the
frond of p . Applying Lemma 5.7 to c,s €5 and the first edge
of p shows that p must be piaced to the right of P, in the
ordering cf paths about s (Figure 9.3(b)).

If fn = £, and either p has length 1 or p: s -—-vi - T
with LOWPT2(v) > s , then either p = has length 1 or

P _:

*
n S — Vn - == with LOWPIE(VH) _>_ S by T.emma. 8_7_ n this

case (s,f) is a biarticulation point pair in G , as may be
proved in the same way as Lemma 6.2. Path p may be placed either
to the right or tc the left of P, without affecting the planarity
of G [Har 69]. Without loss of generality we place p to the
right of p, (Figure 9.3(c)).

We must still consider what happens when Pyt S, i s (path
P, finishes at s). 1In this case some earlier path

*

: = f h z If
pi S-S -v=T has VoS, . (If P =Py > sk_sG;és.

Otherwise Sy = s .) The argument above applies to p, . Further,

if ¢ is the cycle formed by P, > the part of Py following

* *
vertex v , the branch v -s_, and the branch fk - s , then
both ends of p must be on the same side of ¢ . Lemma 5.7 shows

that p must be placed to the right of P, in the ordering of
paihs about s . (Figure 9.4(d)).
The entire argument presented here is symmetric with respect

to left and right, so without loss of generality we may anbed p in

75

(e) (4)

Figure 9.3: Embedding of a normal path p with start point cn Py-
(a) Interaction with path p,, £ <f.
(b) Interaction with path P fp = f, p has two connections.
(¢) 1Interaction with path p , f = f, p has only one connection.

(d) Interaction with path p_, f = s.

7h

one of two places; either at the left end of the sequence of paths
ordered around s ', with its frond descending on the left (the

left embedding); or, at the right end of the sequence of paths,

with j¢s frond descending on the right (the right embedding) .

* . *

Lemma 9.4: Let p: s = f be a special path of G . Let p,: 5y =1
be the earliest path containing s and suppose that x - s . Then
Theorem 9.1 is true for p , and without loss of generality p may
be inserted into one of the two faces in the partial embedding

having edge (x,3) on its boundary.

Proof: Assume that path Py is embedded with its frond descending on
the right. An argument similar to the proof of Lemme 9.3 shows

that p may be embedded at the left end (the left embedding) or

at the right end (the right embedding) of the sequence of previously

embedded paths ordered clockwise around s beginning from arc
X =8 .

The location of the frond of p is not fixed by thié/argument;
we must determine .whether it descends on the lef‘tf,,s:lirié or on the
right side of the branch 1 i s . Tigure 9.&/,5;’J/‘J/.ustrates the three
possibilities. If p has the right embegd“ifif.;g its frond descends
on the right, as in Figure 9.4(b). If/;) has the left embedding,
its frond also descends on the right, as in Figure o.4(a). If
f =1, this is tr‘ue because 'bh/effembedding 9.4(c) in which the
frond descends on the left iﬁ/‘:;opologicajly equivalent (on the
sphere) to 9.4(a) and may /}52 ignored. An induction argument shcws

that we may choose embeddflng 9.4(a) instead of 9.4(c) for all

special paths witk finish vertex 1 .
i

(&

If £ 41, then we must have f -v -s with LOWPTL(v) < £,
by Lemma 6.2. (G is biconnected.) Thus some path p': sf Z g s
with st on v t s and f' < f , has already been embedded.
Applying Lemma 3.7 to the cycle %, formed by Py and f X 85
and to the cycle c¢' formed by p' and I f» s' , shows that the
enbedding illustrated in Figure 9.4(c) is impossible.

Hence the frond of p descends on the same sidec as the frond
of Py > independent of p's embedding. This is the difference

between normal and special paths.

Definition 9.2: Let G be a biconnected planar graph. Suppose that

the pathfinding algorithm is applied to G , partitioning it into
a set of paths. Consider a planar representation of G such that
each generated path has the left embedding or the right embedding
as defined above. Such a representation is called a standard

planar representation of G .

Given this definition, Theorem 9.1 becomes:

Theorem 9.h4: Every bicommected planar graph G has a standard planar

representation.

The proofs of the lemmas above depend heavily upon the ordering
determined by ¢ and used to construct the adjacency structure A .
In particular, paths would not be restricted to only two possible embeddings
if ILOWPT2 had not been used in the ordering. Having determined the
possible path placements, we must determine how paths behave within

these restrictions. This is the subject of the next chapter.

76

(2) (v)

Figure 94 : Fmbedding of special path p with start vertex on path Py-
{a) Left embedding.
(b) Rignt embedding.
(c) Fmbedding equivalent to (a) if £=1 and impossible
otherwise.

7

10. DeRendenc e

Each path may be added to the planar representation we are
constructing in at most two different ways. Even within these restric-
tions the placement of paths is not arbitrary; embedding a path in a
certain way may affect the embedding of other paths. In this chapter we
analyze these additional path interactions, which are in fact sufficient
to determine the planarity of the graph.

Figure 10.1 shows the paths generated when the pathfinding algorithm
js applied to one cf the Kuratowski subgraphs. Using Lemme 5.7 it is

easy to show that paths B and C must have different embeddings in

any planar embedding of K5 3 Similarly, B and D must have different
2

embeddings, and C and D must have different embeddings. Thus K5 3
2

cannot possibly be ple :r, since there are only two possible embeddings

for each path. We wish to carry out an analysis of this sort for an

arbitrary graph G .

¥ ¥
Lemma 10.1: Let Pyt Sy 2 V= fl and Pyt Sy 2 f2 be two paths

generated when the pathfinding algorithm is applied to a biconnected

*
planar graph G . Suppose path Py is normal. If v - Sy and

f <f2<s

1 , then 123 and P, have the same embedding in any

1

standard planar representation of G .

Proof': Path P must be generated after Py > because vertex So is
not reached during pathfinding until after Py is generated
*
(v = sg) . If w is the highest numbered ancestor of s, on the

*
path Pps V <w . Let Pyt S = fi'(_j be the earliest path

containing vertex s, . The edge s

1 — v and the frond of P,

1
must be on the same side of the cycle formed by Py ard the

78

(a) (b)

A: (1:2:3)h:5:6)l)

B: (6,

U
~~

C: (5:2)
D: (4,1)

(c)

Figuve 10.1: Relationship of paths in K3 3
2

(a) Graph.
(b) Generated palm tree.
(c) Generated paths.

79

*
branch fo ~ 55 - By Lemma 3.7, 2 and Py muet have the

same embedding (Figure 10.2).

* *
Lemma 10.2: Let pyi o8y = fl and Dy Sy = f2 be two generated
paths in G . Suppose Dy is generated before Po and that Py
*
is normal. If s, 1is on the branch fl -8y and Yo < fl < S < S, »
then p, and P must have different embeddings in any standard

planar representation of G .

*
Proof: Let e be the first edge of s. ~ s Edge e and the

2 1°
frond of Py must be embedded on the same side of the cycle

*
formed by Py and f2 - 8, . Lemma 5.7 implies that Py and Py

have different embeddings (Figure 10.3).

= - * . *

Lemma 10.35: Let Py S = fl and Pyi S, = J‘.‘2 be two normal paths
in G generated by the pathfinding algorithm. Suppose P, is
generated before D - Let v Dbe the second vertex on the branch

*
fl -8 - If v< S5 < Sy and :‘L‘2 < fl then Py and Py must

have different embeddings in any standard planar representation

of G .
Proof: The numbers of the descendeonts of v form an interval (v,vtk) .
* *
Since v o s:l and v < S5 < sl y V8, . Let w be the highest
numbered commcn ancestor of 84 and Sy It Sy =W, the lemma

o

*
follows from Lemma 10.2. Otherwise, let p: w-»X = £ be the

*
generated path such that x —-» s, . Paths p and 12 must have

2
different embeddings by Iemma 1C.2 and paths p and Py must heve

the same embedding by Lemma 10.1. This gives the lemma.

Figure 10.2: ELINK relation between a path pl ard a normxl
path Py-
(a) Path p, normal.

(b) Path p, special.

81

Sz
Dy >
1
f2
Tlours 0.0 ILINK relation netween a normal path Py and another
+
path Po-

82

Definition 10.1l: Let G be a biconnected graph. Suppose the

pathfinding algorithm is appiied to G to yield a set of
edge-disjoint paths which contain all the edges of G . Let

{xp} be a set of variables, one for each of the paths. Let R

be the smallest set of relations containing " xp = xp " for
1 2
each pair of paths Py > Py related as in Lemma 10.1,
containing " x_ £ x_ " for each pair of paths p, , p, related
Py P 1 2
as in Lemma 10.2, and containing " X # %, " for each pair of
1 2

paths Py s Py related as in Lemma 10.5. (The inequalities
based on Lemma 10.5 are redundant, but are added for convenience.)

R is called the dependency relation of G . Let D be a graph

having the paths of G as vertices, and having two types of edges

(links). If " X, =y "¢R then (pl’PE) is an ELINK in D .
1 2

If " x "e¢R , then (pl,pz) is an ILINK in D . Then D

£ x
Py Dy
is called the dependency graph of G .

Theorem 10.4: Let G be a bicommected graph with a dependency relation
R and a dependency graph D . If G is planar, then R is
satisfiable over a two-element domain. Equivalently, the vertices
of D (the paths in G) may be colored with two colors so that
any two paths joine’ by an ILINK are colored differently, and any

two paths joined by an ELINK are colored the same.

Proof: This result follows from Theorem 9.4 and thu tﬁree lemmas
above. If G 1is plqnar, then G has a standard planar represen-
tation. We color the vertices of D with the colors "left" and
"right" according to the embeddings of the corresponding paths in

some standard planar representation of G . Lemmas 10.1 and 10.2

83

guarantee that, the coloring satisfies the restrictions imposed

by the links in D .

The planarity test is based upon the fact that the converse to
Theorem 10.4 is true; 2-coloring the dependency graph D gives a complete
test for the planarity of the original graph G . Before we verify this
fact, we shall show that the structure of the dependency graph D is
related not only to the planarity of the original graph G but also to
the connectivity properties of G . (Since the proofs below are rather
involved and are not directly re;ated to the planarity algorithm, anyone
interested only in planarity mey skip the remainder of this chapter.)

Our objective 1s to show that the commected components of D are

related in a simple way to the triconnectivity of G .

Lemma 10.5: Let G = (V,&) be a triconnected graph. Suippose the
pathfinding algorithm is applied to G , giving a set of paths with
.x.
a dependency graph D . Let Py:osy = fl and p2: S5
be two generated paths such that Py is the earliest path containing

Zr
= o

verten S5 and p, it not the iritial cycle. Then P and Py

are in the same connected component of D .

Proof': The proof of this lemma is complicated. Consider Figure 10.hL.
It s, > T, > 15, ‘(pl,pz) is an ELINK in D and there is nothing
to prove. IT f2 > sl > Po is normal; if f2 = fl > Do is

special. In either of these cases, (Pl’Pg) is not a link in D .

Let S = {pg} . We prove the lemma by adding paths to S one by

one. Each path added to S will be connected tc Py in D .

Eventually a path connected to Py in D rwill be added to S . We

8L

(a) (o) (e)

Figure 10.4%: Connection in dependency graph to be proved.
(a) Second path normal, no link.
(t) Second path linked to first.
(c) Second path special.

85

use one extension method if S contains only normal paths and
another extension method if S contains at least one special

path.

Extension method 1l

Suppose S 1is a collection of normal paths generated by
extension method 1 fromthe initial set {;92} . Let s, be the

highest numbered endpoint of a path in § and let fo be the

lowest mumbered endpoint of a path in S . Both So and fo lie

on path P - This may be proved by induction on the paths added

to S . Let W

Wo u Up(_:S Wp » Where fo - v,

* *
{w'\vo - %' & = (s, -w')} , and if

and vo is on

path P, > WO

* *
p: 5»va>T, WP = {w"|v 5 w"} . There must be a generated
*
path p,: 33 = f3 with one endpoint in W and the other endpoint
7

in V-W-{s fo} , where V is the set of vertices of G .

o,
Otherwise G is not triconnected, since (so,fo) would be &
biarticulation point pair in G . Either f3 is a proper ancestor

of £, , or 55 is a proper descendant of So *

0
Suppose f3 is a proper ancestor of fo . Let w Dbe the
first common ancestor of 35 and SO . We have fo <w < Sy 2
*
and w is on the branch £, - s, - (Vertex 53 cannot lie in any

Wp because a path with start vertex in some WP ends at a
descendant of f, by Lemnma 8.6.)

We may in ract assume that s5 =W because r‘: w-oX i b
with x ot Ss has finish vertex at least as low as f5 by Lemma 8.6.

We may extend the set of paths S by adding p5 . Path p5

must be joined by an ILINK to some path D already in S , since

86

*
every point on i‘o - 5, except fo and o lies between the

start and finish vertices of some path in S . This may be proved

by induction on the paths added to s . If f5 >s

normal, and we may use extension method 1 for the next step. If

12 then p3 is

f <f, <s

. s s -
0 3 0’ then Py is joined by an ILINK to 1 and we are
done. If f5 = fo > Pz is special, and we use extension method 2

for the next step.
Suppose that 55 is a proper descendant of 84 Then vertex
*
f_. must lie on the branch fo - Sy - We may assume that P3 is

)
normal, since some path whose start vertex is an ancestor of S
and whose finish vertex is fj must be normal, and we may select
this path as p3 . Such a normal path p3 may be choser so that
S5 £ Sy - Otherwise G is not triconnzcted, since (so,fo) is
a biarticulation point pair in G . Then path Ps must be joined
by an ILINK to some path p in S as in the case above.

Iot W be the highest munbered ancestor of 33 which lies
on py - Let m): wfa J‘.‘l¥ be the path whose first vertex is w and
whose first edge leads to an ancestor of 55 . Then p5 and Py
are joined by an ELINK or are identical. If fLL > sy then we may
add P), to S and apply extension method 1 for the next step
(Figure 10.5(a)). If £, <f) <sy then D) and p, are joined
by an ELINK and we are done (Figure 10.5(b)). If f) =f; then we

add D3 and P, to S and shift to extension method 2 for the

next step (Figure 10.5(c)) .

87

Figure 10.5:

(a) (b)

_Extension of set via an ILINK with a aormal path.

(a) Path P normal, p) normal.
(b) Path p) linked to Pl"
(¢) Path p, special.

n

88

Extension methﬁéd 2

i

We lmom/how to extend a collection of normal paths. Suppose

Y]

we add a qﬁecial path to the set S . We use a variation of the
method a‘.'brove to continue the extension process. Let v > fl be
the sgéond lowest endpoint of a path in S . Let

W =,,"‘{W' |gu(v — u :(-) w! & u is on a path in S U {pl}} . Then there
if,-'jsome generated path p3: 53 : f5 from a point in W 1o a point
m V-W- {v, fl} . Such a path must terminate on the branch

£, 5v . (The point v will always be on the path p, .) We may
assume that jp3 is normal, since some normal path has finish
vertex i"5 and has an ancestor of s5 as its start vertex and we
ma;r choose this path as p3 .

Let w be the first ancestor of 55 lying on one of the
paths in S or on Py - If vertex w is on Py s path p5 will
either be comnected with one of the normal paths in S , applying
Lemma 10.3, or with one of the special paths in S , appiying

Lemme. 10.2. In either case, is connected

3
to p, in D (see Figure 10.6(a),(b)). Vertex w cannot be on
one of the normal paths in S . If w is on one of the special
paths p in 'S, then p3 is connected by an FLINK to p as
illustrated in Figure 10.6(c), and thus P is connected to p,
in D .

If f5 <8 5 (Pl’P“:?) is an ELINK in D and the lemma holds.
s, » we may add p5 to D and apply extension method 2
again.

Extension metlhiods 1 and 2 enablz us to indefinitely enlarge

the set S of paths connected to Py in D . Since there are onliy

89

Figure 10.6:

(v)

Extension of set containing a special path.
(a) Connection with normal path P < Py-
(b) Connection Kri"f:h special path p < D3

(¢) Comnection via an ELINK with a special path.

a finite number of paths in the graph G , the process must stop.
This can only happen when a connection between Py and some path
in S is discovered. But then Py and p, are in the same

connected component of D . This completes the proof'.

Lemma 10.6: ILet G be a tricomnnected graph. Suppose the pathfinding
algorithm is applied to G , giving a set of paths. Let Py and
Py be two paths whose start vertices lie on the initial éycle C .
Then 12% and Py lie in the same connected component of D ,

the dependency graph of G .

Proof: Figure 10.7 illustrates the possible interrelationships between
paths Py > y2 , and ¢ . We use the extension methods daescribed
in the proof of Lemma 10.5 to give a set S of paths connected to
one of the paths Py or P enlarging the set until a comnection
in D Dbetween, P and N is found.

In Figure 10.7(b),(e) paths p, and p, are directly linked
in D . In Figure 10.7(a) we may extend the set {p,} usirg
extension method 2 until a connection with Py is formed. In
Figure 10.7(c) we may extend the set {pE} using extension method 1
until either a comnection with p; is found »r Figure 10.7(a) is
created; this case we have already handled. In Figure 10.7(d) we
may extend the set {p,} using extension method 1, until we either
find a connection with p, or we create Figure 10.7(a) (already
discussed). In Figure 10.7(f) we may extend the set {p2}
using extension method 1 until we get a link with P:L .

In I'igure 10.7(g) we may extend the set {pg} using extension

methoed 1 until we get a connection with p, or we

91

(4)

Figure 10.7 :

(a)

(e) (f)
Two paths starting on initial cycle.

(a) Paths py» P, special.

(v), (e), (d) Path p, special, path p, normal.

(e), (£), (g) Paths Pys Po normal.

g2

(e)

produce Figure 10.7(c) or 10.7(f) (both already handled). Thus

P, and p, are connacted in D .

Now we can prove our main result, giving a relationship between
the triconnectivity of & graph G and the connectivity of its dependency

graph D .

Theorem 10.7: Let ¢ be a bicomnected graph with four or more
vertices. Suppose the pathfinding process is applied to G to
give a set of paths. Let D be the correcponding dependency graph
of G . Then G is triconnected if and only if G has no vertices

of degree two and D consists of exactly two connected components.

Proof: Suppose G 1is triconnected. Then G must have no vertices
of degree two. Ixamine D . The initial cycle forms a connected
component of D ; it is connected to no other paths. Any two paths
with start vertices on the initial cycle are in the same connected
component of D by Lemma 10.6. Further, if p: s ZS f is a path
whose start vertex s is not on the initial cycle, then p is
connected in D to the earliest path containing s, by Lemma 10.5.
An induction argument shows that p is connected in D to some
path with start vertex on the initial cycle. Thus all paths except
the initial cycle form the second and last connected comyonént of D .

Conversely, suppose G 1is not tricomnected. Assume further

that G does not have a vertex of degree two and that removal of
vertices a and b disconnects vertices v and W in G . When
a and b are removed, G falls into several connected pieces.

Tet R be the piece containing vertex v . We may assume without

95

loss of generality that the first edge of the initial cycle generated
by the pathfinding process does not lie in R . Add the edge (a,b)

to R to form a new graph G, and add the edge (a,b) to G-R

1
to form a (multi-) graph G2 . The construction is illustrated in

Pigure 10.8.

It is easy to see that both Gl and Ge must be biconnected.

Then the pathfinding process may be applied to graphs Gl and G2
to give a set of paths identical to those in G , with one
exception. The first peth found in G which has an edge in Gl
will become two paths, one heing the initial cycle ¢y in Gl and
the other being a path in G, containing the edge (a,b) . Since
both Gl and G2 have 2t least one vertex of degree 5, at least

two paths are generated in each graph. Thus if Dl is the
dependency graph of Gl , it will have at least two connected
components (one being the initiel cycle c,). If D, is the
dependency graph of G2 it will also have at least two connected
components. The dependency graph D c¢f G must then have at

least three connected components, because D 1s isomorphic to

D, U DE"{Cl} . This completes the proof.

ol

Figure 10.8:

(2)

(b)

Analysis of the dependency graph of a non-triconnected
graph.

(a) The original greph G-
(b) Transformation into two graphs Gy and G,

95

11. Constructing the Dependency Subgraph

Since the pathfinding a! j‘o?ithm generates E-V+1 paths in a
biconnected graph G with V vertices and E edges, the gravh D
of dependencies between these paths may contain as many as (E-V+I.1) (E-V)/2
edges. If the entire planarity algorithm is to have a linear time bound,
the number of dependencies must be restricted somehow. We are interested
in coloring the dependency graph using two colors. If a two-colorable
graph is connected, it has a unique coloring with two colors. This fact
suggests that we construct only a subgraph of the entire dependency
graph. If this subgraph has the same connected components as D , and
if any 2-coloring of D exists, then the possible 2-colorings of the two
graphs are identical. We can thus generate a single 2-coloring of the
~ subgraph and test this coloring to discover if it is a '2-coloﬁng of the
entire dependency graph. Such a test requires only 0(V) time, as we
shall see.

Hence our objective is to construct e subgraph DS of the dependency
graph D such that Dy has 0(V) edges and Dq has the same
connected components as D . This is not so e.a.sy, and a detailed yet
intuitive description of the process is hard to present. The basic
idea is to keep track of groups of paths connected together by various
types of links. Each group of paths is represented by a single path.
These group representatives are stored on stacks and each new path
discovered during pathfinding is ~ompared with the top paths on the
stacks to discover whether any new links should be constructed.

Four stacks are used to store paths. One stack (ASTACK) contains

all the paths with an edge on the branch leading to the current vertex

96

being examined during the pathfinding search. The other three stacks
contain paths, each of which represents a connected corﬂponent in the
dependency subgraph of the paths found so far. Three stacks are used
because three types of links in D are handled separately. A path on
INSTACK represents a group of normal paths connected by ILINK's. A path
on ISSTACK represents a group of normal paths connected together via

ILINK's with special paths and normal paths. Only normal paths are

—
placed, \03 ISSTACK and INSTACK. A path on ESTACK represents & group of

paths con;@\w@;ﬁogether by ELINK's. Procedure PATHFINDER, modified to

construct the de;é\mdency subgraph as it finds paths, appears below.

AN

procedure PA’IHE'INDE\R\(V);
for w in the adjacé\}: list of v do
' N

v owthen N
if S = O then
begin '
. Sy 1= V3
end;

PATHFINDER(W) ;
delete from ASTACK, ESTACK all paths p, with s(pl) > v;
delete from INSTACK, ISSTACK all paths p; with i‘(pl) > v
IH: while (s(HIGHPATH(v)) > s(top of INSTACK)) and
(v < s(top of INSTACK)) and '
(HIGHPATH(v) < top of INSTACK) do
begin
construct ILINK between HIGHPATH(v) and
top of INSTACK;
delete top path on INSTACK;

end;

971

restore last path (if any) deleted from INSTACK by IH;
HIGHPATH(V) := 03
end
else comment v -- w;
begin
P i=prls
s(p) = 843
£(p) = w;
SO := 03
add. top path on ASTACK to ESTACK;
if f(top of ASTACK) # w do
begin
El: vhile w < s(top of ESTACK)
construct ELINK between p and top of ESTACK;
delete top path on ESTACK;
end;
restore last path (il any) removed from ESTACK by ®E1;
IN: while f(p) < f(top of INSTACK) and
s(p) < s(top of INSTACK) éo
begin
construct ILINK between p and top of INSTACK;
delete top path on INSTACK;
end;
FIX: while f(p) < f£(top of ISSTACK) and
s(p) < s(top of ISSTACK) do delete top path
onn ISSTACK;
add p to INSTACK;
add p to ISSTACK:
if s(p) > s(HIGHPATH(w)) then HIGHPATH(w) := p3
end
else
begin comment p is special;
while f{p) < f(top of ISSTACK) and
s(p) < s(top of ISSTACK) and
s(top of stack) < s(p) + RANGE(s(p) do

i
0
(X3

98

begin
coastruct ILINK between p and top of ISSTACK;
delete top path on ISSTACK;
end
restore last path (if any) deleted from ISSTACK by IS;
end;
if s(p) < v then add p to ASTACK;

end ;

Definition 11.1: Let G be a biconnected graph. Let D be the

dependency graph corresponding to a set of paths in G generated
by the pathfinding algorithm. The subgraph DS of D which is

constructed by the dependency construction algorithm given above

is called the dependency subgraph DS .

Since procedure PATHFINDER has suddenly become reasonably complicated,
a few observations may be useful. Paths are numbered from 1 to E-W1
as they are generated. The only information about a path p which is
necessary to the algorithm is the start vertex s(p) and the finish
vertex f(p) of the path. If v is a vertex, RANGE(v) is the number
of descendants of v in the tree 7 of the generated palm tree. The
descendants of v are all the vertices w such that v <w < v+RANGE(vV) .
The calculation of RANGE(v) is easy and may be done during the first
depth-first search; we have omitted the calculation for simplicity. If
vow and w is an ancestor of the vertex currently being examined by
the search procedure. HIGHPATH(v) is the normal path p with the
highest start vertex s(p) such that w < s(p) <w+ RANGE(w) and p has

finish vertex f£(p) = v . HIGHPATH(v) depends not only upon v but

9

upon w . However, since HIGI—IPAEH(v,wl) and HIGHPATH(V,WE) are
never used at the same time a single variable may be used to store
both.

Consider ASTACK and ESTACK. If path p; occurs above path Py
on one of these stacks, f(pz) < f(pl) and. S(PE) < s(pl) . Paths on
INSTACK and ISSTACK are always in order according to the value of their
finish vertices, highest on top. If two paths on one of these stacks
have the same finish vertex, the one with the larger start vertex is
lower. It is easy to verify these properties.

Statemerts IH and IN construct ILINK's between normal paths.
Statane@f IS constructs ILINK's betweer normal and special paths.
Sta.’cemer;% E1l constructs ELINK's. Statement FIX keeps the paths on
ISSTACK in the order described above. The tests indicated in these
statements implement the criteria for path dependence described in

Chapter 10.

Theorem 11.1l: Let G Dbe a biconnected graph and let DS be a

dependency subgraph constructed for G based upon some set of

generated paths. ILet D be the complete dependency graph of the

same set of paths. Then D, is a subgraph of D and the connected

S

components of DS and D are identical with respect to the

vertices they contain.

Proof: It is easy to verify that DS
from the fact that each link constructed in statements IH , IN ,
IS , and E1 is indeed a link in D . The second part of the

theorem is a little more troublesome. We must show that given any

link between paths in D , there is a sequence of links joining the

100

is a subgraph of D ; this follows

two paths in D The three types of links in D are illustrated

g °
in Figure 11.1; the next three lemmas give the proofs for these

cases.

* *
Lemma 11.2: Let Py 55 = fo and p: s = £ be two paths generated

0
by the pathfinding algoritlm such that Py is found before p
and (po,p) is an ELINK in the dependency graph D . Then p,
and p are connected in the dependency subgraph DS generated

by PATHFINDER.

.X.
Proof: We know that Sg V= s , where v is the second vertex on

*
path Py - The branch Sg = S contains edges from several paths.

Let these paths be 19 SFRER ’P, in the order their edges appear
*

along £g =S Let P4y =P - It P, and p are joined by an

ELINK in D, (pi,p) is an FLINK in D for ail 1 <i <n , since

P is normal and s(pi) >s, forall 1<i<n. When path Piyq

is discovered, path Ps is placed on ESTACK. If an ELINK between

D.

5 and Piyq is not immediately created by statement Y , then

Bip
on ESTACK is Pipy Path Py may subsequently be removed from

ESTACK only if P; becomes linked to Piyq via an ELINK in DS .

is placed just above p; on ESTACK, since the next path placed

Consider the situation when p is discovered. Path P, is placed on

top of ESTACK. Let k = minf{i ‘pi is on ESTACK when p is found} .

Then Py must be connected to Py in DS . This follows by

induction from the observation above. But an ELINK between p and

all paths p; on ESTACK will be constructed by statement Y when
|

p is found, and this includes P - Thus a connection between p

and Py exists in DS . This verifies the lemma.

101

(2)

Figure 11.1:

(v) (c)

Links in D.
(2) ELINK. Path p is normal.

(b) ILINK. Paths p,, D, are normal.

(¢) ILINK. Path py is normal, path D, special.

* *

Lemma 11.5: Let Pyf Sy = fl and Pyt Sy @ f2 be two normal paths
generated when the pathfinding algorithm is applied to G, such
that (Pl’Pe) is an TLINK in the dependency graph D of G .

Then P, and p, are connected in the dependency subgraph DS .

Proof: Without loss of generality we may assume that Py < Py - The
proof of this lemma is complicated. We shall use induction on the
number of the path Py - The base of the induction as well as the
induction step will follow from the argument below. Thus suppose
that the lemma holds if Py <k . Let Py = k. Let v be the
second vertex on fl i sy - We may assume that s, occurs on the
branch fl :)-(; sl , since the links in D resulting from Lemma 10.3
are redundant.

We shall consider what happens between the time path Py is
discovered and the time vertex fl is reexamined during the search.
We shall assume that Py and Py do not become connected in DS
during this period. (If they do become connected, the lemma is true
for Dy = k .) We shall pay close attention to two paths. One,
called p3 , occurs on INSTACK when Py is discovered and is
connected to Py in DS . The other, called D), > occurs on
INSTACK when vertex fl is reexamined and is connected to Py
in DS .

When Py is discovered it is placed on INSTACK. We may prove

by induction on the path number that when Py is found, there is a

path p5 on INSTACK such that p3 is connected to P, in Ds B

5. 5 s(pB) , and f(p5) <t;. This follows from an examination of

2
statements IH and IS . If f(PB) > f, , then s(p5) >s, by

103

Lemma. 8.6, and an ILINK between p, and Pz will be formed by 1IN
when p, is discovered. (This fact is easy to prove.) Hence we
may assume that f(P3) <ty -

Path Py is also placed on INSTACK when it is discovered.

We may prove by induction on the path number that when vertex fl
is reexamined during the search, there is a path p, on INSTACK
such that p) 1is connected to u, in Dy, V< s(ph) <s;

and f(pu) < f, . Thus let p be a path on INSTACK such that

v < s(p) < Sy > f(p) < f, > and D is connected to p, in Dg .

Any path p' found between the time p is found and the
time £, is reexamined satisfies v < s(p') < s, - Thus if p
is removed from INSTACK by statement IN during this time, p becomes
connected to a path p' on INSTACK with v < s(p') < s, and
£(p*) < £(p) < fg .

Suppose path p 1is removed from INSTACK by statement IH .
Path p will be connected in Dy to HIGHPATH(w) , for some
vertex w >v . If s(HIGHPATH(w)) < s, » then p must be
connected in DS to some path p! which remains on INSTACK and

which satisfies v < s(p') <s, and f(p*) < £(p) < £, . If

1
s (HIGHPATH(w)) > s, » then f(HIGHPATH(w)) must lie on the branch

fl-%-ps2 . If path p; is found aiter HIGHPATH(w) , p; and
}IIGHPATH(W) are connected in Dy by the induction hypothesis.

If path p; 1is found before HIGHPATH(w) , then HIGHPATH(w) must
start at a descendant of Sy by Lemma 8.8. Path Py must still

be on INSTACK when HIGHPATH(w) is added, since all vertices examined
between the time p; is found and the time HIGHPATH(W) is found

are descendants of 8¢ - Thus both Py and HIGHPATH(w) must be

10k

cornected to p5 in DS , and Py and P, are connected in DS .
it follows by induction from the previous paragraphs that
when fl is reexamined, there is a path P, on INSTACK such
that p, is connected to p, in Dg, V< S(Ph) <s, end
f(Ph) < f2 . When :t‘l is again reached during the search, an
ILINK will be constructed between HIGHPATH(fl) and path p) by
statement IH , since s(HIGHPA’I'H(fl)) =5y - (This fact is easy
to prove.) Thus we need only show that Py and HIGHPATH(fl) are
connected in Dy , since Dy , Py and HIGHPA'.’L‘H(fl) are connected
in DS , and Py and p5 are connected in DS .
It HI(H-IPATH(fl) =p, the result is immediate. Assume
HIGHPATH(fl) is found after p, . Then s(HIGHPATH(fl)) is a
descendant of s

1
when HIGHPATH(f

by Lemma 8.8. Path p; must still be on INSTACK
l) is found and added to INSTACK, since 2ll vertices
examined between the time Py is found and the time HIGHPATH(fl)
is found are descendants of s, . Thus p, and HIGH'PATH(fl) are
both connected to p5 in DS and the lemma holds.

Suppose that HIGHPA‘IH(fl) is found before p; . If
HIGHPATH(fl) is found after Pz then HIGHPATH(fl) must be
placed on INSTACK while p5 is lower on INSTACK, and P.l 3 p3 ’
and HIGHPATH(fl) must all be connected in Dy . Thus we may
further assume that HIGHPATH(fl) is found before P .

We have two more cases. If S(PB) > s(HIGHPATH(fl)) s S(PB)
is n descendant of s(HIGHPATH(fl)) by Lemma 8.8. This means that
£, < f(pj) by Lemma 8.6, which is a contradiction. If
s(p5) < s(HIGHPATH(fl)) , then (HIGHPAI’I—I(i‘J_),pB) is an ILINK in D,

and HIGHPATH(fl) and p; are connected in Dg by the induction

105

hypothesis. Therefore in any case p3 and HIGHPATH(fl) are
connected in DS , which means that P, and p, are connected
in DS . This completes the proof of both the base of the

induction and the induction step, and the lemma is true in general.

Lemns 11.4: Let py: s; = f; De a normal path and p,: s, = f, bea
special path generated by the pathfinding algorithm. Cuppose that
(Pl’Pe) is an ILINK in the complete dependency graph D . Then
Py and p, are joined by a sequence of links in the dependency

1

subgraph DS .

Proof: We know that Py < Ps by the definition of this type of ILINK
(Lemma 10.2) . Any path which starts at a descendant of 5o must
finish at a vertex not smaller than f2 ,~'since the first path through

s, finishes at f2 . Any path which starts at a descendant of S5

2
and which finishes at f2 must be special for the same reason.
When Py is discovered it is placed on ISSTACK. If P, is removed
from ISSTACK before Py is found, Py will. be linked in Ds to
some other path on ISSTACK with finish vertex greater than f2 and
start vertex greater than s, » as an examination of statements IS
and FIX shows. (If FIX removes paths from ISSTACK, the next path
added to ISSTACK is linked in DS to the removed paths, by

Lemma 1i.3.) When Py is discovered, an ILINK will be formed by
statement IS between D, and all paths on top of ISSTACK with a
finish vertex greater than f, , ‘including the path on ISSTACK to

which P is connected in DS . The Llemma follows.

The proof of Theorem 11.1 is immediate from the three lemmas above,

because all the possible links in D have been conS'i.dered;

106

Theorem 11.5: If G is a biconnected planar graph with V vertices
and E edges, the number of edges in any dependency subgraph DS

of G is bounded by 9V .

Proof: The number of paths (ignoring the initial cycle) is E-V . Let
N be the number of normal paths and let S be the number of special
paths. Every time a path is fournd, a path may be added to E3TACK.
Every time more than one ELINK is formed by statement E1 , a path
is removed from ESTACK. Thus the number of ELINKs in DS is
bounded by 2(E-V) < 4V . Each normal path is added to INSTACK
once and to ISSTACK once. Each time a vertex is re-examined during
the search one ILINK may be formed by statement IH without
deleting any paths from INSTACK. Each time a special path is found
an ILINK may be formed by statement IS without deleting any paths
from ISSTACK. Thus the numbér of ILINKs formed is bounded by
SN+ V+S < 2(E-V)+V < 5V . Thus the total number of links in Dg

 is bounded by 9V .

Theorems 11.1 and 11.5 imply that the dependency subgraph DS has
exactly the necessary properties. Now we are almost done; we must still
examine the algorithm used to check a coloring of D , and we must prove
the converse of Theorem 10.4. We attend to these matters in the next

chapter.

107

12. Coloring the Dependency Subgraph

After the dependency subgraph DS is constructed by the pathfinding
algorithm, it must still be colored using two colors. This is accomplished
very simply using a depth-first search. A path is chosen and colored
“arbitrarily, either "left" or "right". Each time a new path is reached
by traversing a link in DS , the path is colored according to the color
of the path at the other end of the link and the type éf link. Each
time & link between two paths already colored is traversed, the colors
of the paths are checked to see if they are consistent with the type of
the link. One search on each connected component of Ds will produce
a coloring of DS if such a coloring exists. A program for this purpose

is presented below.

begin
procedure PATHMARKER(V) ;
for w in the adjacency list of v in DS do
if w is not yet colored then
begin |
if (v,w) is an ELINK then COLOR(w) 2= COLOR(V);
else COLOR(w) := -COLOR(V) 3
PATHMARKER (W) 3
end
else if ((v,w) is an ILINK end COLOR(V) = COLOR(w))
or ((v,w) is an ELINK and COLOR(V) £ COLOR(w) }
then ge to nonplanarexit;

——

for w a vertex in Dg if w is not yct colored then
COLOK(w) := 1;
PATHMARKER (W) 3
end;

end;

108

If the dependency graﬁh DS is not colorable using two colors,
then the original graph is not planar. However, the converse is not
necessarily true. Given a coloring of DS , we must discover if this
coloring satisfies the constraints of the entire dependency graph D .
Our test for this property uses four stacks; ALEFT, ILEFT, ARTIGHT, and
IRIGHT. .

Imagine repeating the pathfinding process, now knowing which
embedding the paths will be given as they are found. Consider a path D
which is colored "left". We compare this path with the path P, on top
of ARIGHT, which is a previously found pash with the right embedding.

If p and p, are joined by an ELINK in D , then D is not coiora.ble
using two colors. We also compare p with the path D, on top of
ILEFT. @Path N is a previously found path with the left embedding.

If (p,pz) is an ILINK in D , then D is not colorable using two
colors. Having performed these tests, we place p on top of ALEFT

and TLEFT if it is normal, and on top of only ALEFT if it is special.
Path p is treated similarly if it is colored "right".

This process is carried out for each path in the order that the
paths were found. Stacks ALEFT and ARIGHT are continuously updated so
that they contain only paths with edges on the tree branch leading to
the start vertex of the next path. Sta.cks;ILEFT and TRIGHT are
continuously updated so that they contain only paths whose finish vertex
is a proper ancestor of the start vertex of the next path. A program

for the color checking process appears below.

109

procedure COLORCHECK;
for i := 1 pmbil B-W1 do
delete from ALEFT, ARIGHT all paths p with s(p) >
delete from ILEFT, IRIGHT all paths p with £(p) > s(i);
if COLOR(3) = 1 then

if i is normal then
begin
if £(i) < s(top of ARIGHT) then go to
nonplanarexit ;
if £(i) < f£(top of ILEFT) and
s(i) < s(top of ILEFT) then go to
nonplanarexit;
put 1 on top of ALEFT, ILEFT;
end

else comment i is specialj

if £(i) < f(top of ILEFT) and
s(i) < s{top of ILEFT) and
s(i) + RANGE(s(i)) > s(top of ILEFT) then
go to nonplanarexit;
put 1 on top of ALEFT;
end;
end

else if i is normal then

begin
if f(i) < s(top of ALEFT) then go to nonplanarexit;
if £(i) < £(top of IRIGHT) and
s(i) < s(top of TRIGHT) then
go to nonplanarexit;
put i on top of ARIGHT, IRIGHT;
end

else if i is normal then

110

begin
if £(i) < s(top‘ of ALEFT) then go to nonplanarexit;
if £(i) < f(top of IRIGHT) and
s(i) < s(top of IRIGHT) then
go to nonplanarexit;
put i on top of ARIGHT, IRIGHT;
end
else comment i is special;
begin
if £(i) < f(top of IRIGHT) and
s(i) < s(top of IRIGHT) and
s(i) + RANGE(s(1)) > s(top of ILEFT) then
go to nonplanarexit;
put i on top of ARIGHT;
end;

end ;

Theorem 12.1: Let ¢ be a biconnected graph with complete dependency

graph D and dependency subgraph DS . 'If D is colorable using
two colors, then any coloring of DS will pass the test given by
COLORCHECK. Conversely, if D is not colorable using two colors,

then any coloring of DS will fail the test given by COLORCHECK.

Proof: By Theorem 11.1, DS and : D have the same connected components.
If D is colorable using two colors, then the possible two-colorings
of DS are exactly the same as the possible two-colorings of D .
Thus any two-coloring of DS must pass the test given by COLORCHECK,
since COLORCHECK merely verifies that colors are consistent across
certain links of D .

Conversely, suppose D is not colorable using two colors.

Suppose a coloring of DS is given. Then two paths Py and Py

111

must be colored compatibly in DS but incompatibly in D . There
are two cases; Py and P, may be colored the same or they may he
colored differently.

Suppose (pl’PE) is an ELINK in D and that p, and p, are

colored differently. Without loss of generality we may assume that
Py is found before Py s that Py is colored "left”, and that Py
is colored "right". When Py is found it is placed on ALEFT.
Path Py will still be on ALEFT when Py is found. By the proof
of Lemma 11.2, Py will be joined by an ELINK in D to all paths
above and including p, on ATEFT. Thus the color check will fail
when D, is tested.

. Suppose (Pl’PZ) is en ILINK ir D and that p, and p, are
cﬁg)‘lo;‘ed the same. Without loss of generality we may assume that P,
is found before s and that P, and p, are colored "left". We
prove by induction on the number of paths Py that the color check
fails. The base step and the induction step follow from the argument
below. Thus suppose that the color check fails it P, < k . Let
p, =k . We may assume that S(PQ) lies on the brahch f(pl) i s(pl) s
since the links in D resulting from Lemma 10.3 are redundant.

Path Py is on ILEFT when path Py is found. Consider the
path p on top of ILEFT when b, is tested. Path p must have
s(p,) S s(p) - Ir £(p) >f(py) then s(p) >s(py) by Lemna 8.6
and (p,pg) is an ILINK in D . Thus the color check will fail,
since P is colored "left!.

Hence we may assume that f£(r) < f(PQ) . If s(p) < s(pl)
then (p,pl) is an ILINK in D and the color check will fail by

the induction hypothesis. If s(p) zs(pl) then s(p) is a

112

descendant of s(p;) by Lemma 8.8. This is impossible since
f(p) < f(pg) < f(pl) and p was found after p, - Thus in any
case the color check fails. By induction the color check fails for

all Py - Therefore the theorem is true.

Theorem 12.2: Let G be a biconnected graph with a dependency graph D .
If the vertices of D (the paths found in G) may be colored with

two colors consistently with the links in D , then G is planar.

Proof: Suppose a coloring of D with the colors "left" and "right"
is given. Consider building an embedding of G in the plane one
path at a time in the order the paths were found, using the left

| embedding as defined in Chapter 9 if the path is colored "left"
and the right embedding if the path is colored "right". We shall
show that the embedding may be completed satisfactorily to give a

planar erbédding of the entire graph G .

Suppose to the contrary that scme path p: s i f may not
be added to the embedding without crossing some other path.
Without loss of generality we may assume that p 1is colored "left".
Suppose p is a normal path. Path p must cross some edge
(v,w) e‘ither entering or leaving the branch f i s . Suppose
(v,w) is on a path p, and leaves the branch f - s on the left
as in Figure 12.1. Path Py is found before path p . Thus there
is some path Py which starts at v and proceeds up the branch

*
v— 5. Since p is normal, p and N must be connected by an

113

FLINK in D . But Py is found after Py and thus Py cannot
have the left embedding, since the edge (v,w) is to the left of
the first edge of Py (see Figure 12.1). This contradiction shows
that no such edge (v,w) exists.

Suppose some edge (v,w) on path Py enters the branch
£ o s on the left as illustrated in Figure 12.2. We may assume
that Py is normal, since if P is special some normal path whose
start vertex is an ancestor of s(pl) must have finish vertex w
and must enter on the left of the branch f s (See iemma 9.k.)
Vertex s(pl) cannot lie on the branch £ % s by Lemma 8.6.
Thus s(pl) > s(p) . But then (p,pl} is an ILINK in D . This
is impossible because p and Py have the same color.

Thus every normal path may be successfully embedded. Suppose
B JH i f is a special path whose embedding is blocked. Let
DAt S 2V :; £ be the normal path with highest start vertex such

0" 0 0
* *
that f -8, - v s . If £=0, let P be the initial cycle.

0]
Such a path Py must exist since G is biconnected. Without
loss of generality we may assume that both p and pO are
embedded on the left. We know that no path blocked the placement
of P - Path p may only be blocked by a path P starting
from a descendant of s and finishing at a vertex on the branch
£ f» s as illustrated in Figure 12.3. We may assume that Py is
normal, since some normal path whose start vertex is a descendant
of s must terminate at :(pl) on the same 3i1de of tha branch

*
1 -5 as Py - Path Py must have the left embedding. Further,

s(pl) # s , since if s(pl) =s, ©p, would have f(Pl) <f .

11k

N

Figure 12.1: Blockage of a normal path p: s = f by a path
Figure 12.1 P path py

¥

leaving f -* s.

115

P
\ 4

Figure 12.2: Blockage of a normal path p: s =¥ f by a path P,

entering f ¥ s,

116

Figure 12.3: Blockage of a special path p: s =* f by a path

. *
entering £ - s.

7

But (p,pl) mist be an TLINK in D , which is impossible since p
and pl have the same color. Thus the placement of a special path .«

cannot be blocked, and the entire graph G may be embedded in the

plane.

Theorem 12.3: Let G be a biconnected graph. Let DS be a dependency

subgraph constructed for G . Testing a two~coloring of DS using
the color checking algorithm COLORCHECK gives a necessary and
sufficient condition for the planarity of G . This algorithm

requires O(V) +ime and space, if G has V vertices and E edges.

Proof: The correctness of the planarity test follows from Theorem l12.1,
Theorem 12.2, and all the previous results. It is easy to verify
that the entire algorithm requires O(V) time and space, since
E <3V-6 in a planar graph. A 1ittle extra work will show that
the plenarity algorithm works correctly even if the graph is not

first divided into biconnected components.

With this result, we have come to the end of the line. TFor further

enlightenment, Figure 12.4 illustrates an application of the planarity

algorithm.

118

(1,2,3,1)
(3,4,1)
(4,7,1)
(7,2)
(4,5,1)
(5,6,1)
(6,3)
(5,2)

0 o " B3 O Qo0 o>

(¢)

Figure 12.L:

(a) ()

[
JA
E
C
‘\E y
D E i T
E I , \
B H
E
(d)

Application of the planarity algorithm.

(2)
(b)
(e)
()

Nonplanar graph

Generated palm tree

Paths

Dependency subgraph (not 2-colorable)

119

IV. From Alpha to Omega

/L ©

13. Implementation and Experiments

The connectivity, biconnectivity, and planarity algorithms were
programmed in Algol W, the Stanford University version of Algol [Sit 71],
and run on an IEM 360/ 67. Program listings appear in the appendix.

The programs were extensively tested. The planarity algorithm was
applied to a group of planar and. nonplanar graphs to verify that the
implementation was correct. The algoritim was also applied to a series
of randomly generated complete planar graphs, in order to determine the
experimental running time.

The test graphs were generated by starting with a complete graph
of three vertices (Figure 13.1(a)). At each step, a triangular face
of the graph was selected at random and split into three new triangular
faces by adding one vertex and three edges, as in Figure 15.1(b) . A graph
of this type has the property that V = 3E - 6 3 no new edge may be added
without destroying the planarity of the graph. Although not all complete
planar graphs can be generated by dividing triangular faces in this way
(see Figure 13.2 for instance), the test graphs seemed to give the
planarity program a satisfactory workout.

The test results are given in Figure 13.5 and plotted in Figure 13.h.
A least squares fit gave: .

(1) T = .0125V - .07
where T is the time in seconds and V 1is the number of edges in the
graph. The program indeed requires time linear in the number of vertices
of the graph. The data may be summarized in another way: the program
will analyze a graph at the rate of 80 vertices/second (or faster, if

E < 3V-6). Non-planar graphs generally require less time than plenar

121

(a)

(o)

Figure 13.1: Construction of random complete planar graphs.
(a) Initial graph.

(b) Addition of a vertex by splitting a randomly selected

face.

Figure 13.2: A complete planar graph which cannot be generated by
the process in Figure 15.1.

123

Time to determine planarity

'V (vertices) E (edges) : (seconds)

20 54 0.22

4o 11k 0.46

60 17h 0.72
80 234 0.97
100 294 1.23
150 Lk 1.60
200 594 . 2.58

. 250 Thh 3.03
300 89k 3.87
Loo 119k h,62
500 1holk 6.07
600 1794 7.25
700 209k 9.02
800 2394 10.28
900 269k 10.95

Figure 15.5: Results of running the planarity program on randomly
generated complete planar graphs (E = 3V-6) .

12k

e e

00

T00

b

j

B

600

o7

oepn |

RERNES

.0125V -

in

o gt e

—
S

[N R QLS

500

T

il

Vertices

ares fit:

i
Loo

qu

Graph of running time of planarity test on

o te e im0 a0

Least s

300

camplete planar graphs.

+ Experimental points.

e 13.h4:

00

Fi

e

R R
S T
3

ones, since the algorithm halts as scon as the graph is found to he
non-planar. The planarity program was space-limited rather than time-
limited; a 1000 vertex, 2994 edge graph could not be analyzed in the
space available (417,792 bytes) although no more than 12.5 seconds
would be required for processing such a graph. No special care was
taken in conserving storage space; careful reprogramming or use of
auxiliary storage devices would allow much larger graphs to be analyzed.
It is difficult to compare the experimental running times of
different algorithms, since implementations and machines vary greatly.
However, an algorithm devised by Bruno, Steiglitz, and Weinberg [Bru 70]
required about 30 seconds to process the 28 vertex planar graph in
Figure 13.5, using an IBM 360/65. The algorithm presented here required
0.4 seconds to construct a planar representation of the same graph.
The time discrepancy would be much greater on larger graphs. The
experimental results were quite satisfactory, and they demonstrate that
the planarity algorithm presented here is of significant practical

as well as theoretical value.

126

Figure 1%.5: Graph analyzed using the algorithm of Bruno, et. al.,
and using the depth-Tirst search method.

127

1k, Conclusions

The depth-first search process has applications beyond those
presented here. For instance, Theorem 10.7 demonstrates a reiationship
between the triconnectivity of a graph G and the connected components
of any dependency graph D of G . Using this result it is easy to
discover in O(V,E) space and time whether a graph is tricomnected.
Given a graph G , a dependency subgraph DS for G is constructed.
The number of comnected components of DS is found, and Theorems 10.7
and 11.1 are applied to resolve the question. An elaboration of this
procedure gives an algorithm for dividing a graph into triconnected
components, using O(V,E) time and space. Such an algorithm will be
described in detaill in a future paper. V

Hopcroft [Hop 7la] has presented an algeritim for determining
whether two triconnected planar graphs are isomorphic. His algorithm
requires O(V log V) time. Combining this algorithm with the connect-
ivity, biconnectivity, triconnectivity, and planarity algorithms, it is
possible to construct an algorithm which determines in 0(V) space and
0(V log V) time whether two arbitrary planar graphs are isomorphic
[Hop 71b]. This algorithm may be modified to enumerate all planar graphs
of various kinds, or to construct canonical representations of planar
graphs. Th: planar isomorphism algorithm promises to be of great value
to chemists, since most molecules may be represented as planar grapis.
A canonical form for molecules, which follows from the isomorphism
‘a;gorithm, may greatly speed searches of the chemical literature.

We have so far considered only properties of unairected graphs.

However, directed graphs may alsc be explored in a depth-first mannex.

128

The structure which results, called a jungle, is more complicated than
a palm tree, but it is still very useful. For example, the strongly
connected componants of a directed graph may be discovered in o(V, %)
time using depth-first search [Tar 71].

Depth-first search has been widely used by researchers in artificial
intelligence and combinatorics. The a:l..gc;rithms presented here demonstrate

the value of this technique as a systematic method of analyzing graphs.

129

V. Bibliography

[Aus 61]

A[Ber 64]

[Bru 70]

[Bus 65]

[Chu T0O]

[Coo 71]

[Fis 66]

[Gold 63]

[Gol 65]

[Hal 55]

Auslandsr, L., Parter, S. V. '"On Imbedding Graphs in the
sphere." Journal of Mathematics and Mechanics. Vol. 10,
No. 3 {May, 1961), 517-525.

Berge, C. The Theory of Graphs and its Applications.

Translated by Alison Dolg; rev. ed. London: Methuen and Co.,
Ltd., 196k.

Bruno, J., Steiglitz, K., Weinberg, L. "A New Planarity
Test Based on 3-Comnnectivity." I.E.E.E. Transactions on
Circuit Theory. Vol. CT-17, No. 2 (Mey, 1970), 197-206.

Busacker, R., Saaty, T. Finite Graphs and Networks: An

Tntroduction with Applications. New York: McGraw-Hill, 19¢5.

Chung, S. H., Roe, P. H. "pAlgorithms for Testing the Planarity
of a Graph." Proceedings of the Thirteenth Midwest Symposium

on Circuit Theory. University of Minnesocta, Minneapolis,
Minnesota (Mey 7-8, 1970), VIT.b.1 -VII.b.12.

Cook, S. "Linear Time Simulation of Deterministic Two-Way

Pushdown Automata." IFIP Congress 71: Foundations of

Information Processing. Ljubljana, Yugoslavia (August, 1971) .
Amsterdam: North Holland Publishifig Co., 174-179.

Fisher, G. J. '"Computer Recognition and Extracticn of Flanar
Graphs from the incidence Matrix." I.E.E.E. Transactions on

Circuit Theory. Vol. CT-13, No. 2 (June, 1966), 154-163.

Goldstein, A. J. "An Efficient and Constructive Algorithm for
Testing Whether a Graph Can Be Embedded in a Plane." Graph
and Combinatorics Conference. Office of Naval Res. Logistics
Proj., Contract No. NONR 1858-(21), Dept. of Math., Princeton
University (May 16-18, 1963), 2 unnc. Tp.

Golumb, S. W., Beumert, L. D. "Backtrack Programming." JACM
12, 4 (Oct., 1965), 516-52k.

Hall, D. W., Spencer, G. Elementary Topology. New York:
Wiley, 1955.

131

[Har 69]

[Hol 701

[Hop 71a]

[Hop 71b]

[Hop T1c}

[Hop 71d]

[Kur 30]

[Led 65]

(Lem 67]

Harary, F. Graph Theory. Reading, Massachusetts: Addison-
Wesley, 1969.

Holt, R. C., Reingold, E.AM.”_"On the Time Required to Detect

Cycles and Connectivity in Difectni Graphs." Technical Report
No. 70-63, D2partment of Computer Sciénce, Cornell University

(June, 1970).

Hoperoft, J. "An n log n Algorithm {or Isomorphism of
Planar Triply Connected Graphs." Technical Report No. 192,

Computer Science Department, Stanford University (January, 1971) .

Hopcroft, J., Tarjan, R. "A V2_ Algorithm for Determining
Isomorphism of Planar Graphs." Information Processing Letters.

1 (1971), 32-3k.

Hoperoft, J., Tarjan, R. "Planarity Testing in V log V Steps:
FExtended Abstract." IFIP Congress 71l: Foundations of

Information Processing. Ljubljana, Yugoslavia (August, 1971) .
Amsterdam: North Holland Publishing Co., 18-22.

Hopcroft, J., Tarjan, R. "Efficient Algorithms for Graph
Manipulation." Technical Report No. 207, Computer Science
Department, Stanford University (March, 1971).

Kuratowski, C. "Sur le Probleme des Corbes Gauches en
Topologie." Fundamenta Mathematicae. Vol. 15 (1930), 271-283.

Lederberg, J. "DENDRAL-64: A System for Computer Construction
Enumeration, and Notation of Organic Molecules as Tree
Structures and Cyclic Graphs, Part II: Topology of Cyclic
Graphs." Interim Report to the National Aeronautics and

Space Administration, Grant NsG 81-60, NASA CR 68896, STAR No.
N-66-140T7Y4 (December 15, 1965) .

Lempel, A., Even, S., Cederbaum, I. "An Algorithm for
Planarity Testing of Graphs." in P. Rosensteihl, ed.,

Theory of Graphs: International Symposium: Rome, July, 1966.
New York: Gordon and Breach, 1967, 215-232.

132

[Mei 70] Mei, P., Gibbs, N.A "A Planarity Algorithm Based on the
' Kuretowski Theorem." AFIPS Conference Proceedings, Volume

36, 1970, Spring Joint Computer Conference. Atlantic City,
New Jersey (May 5-7, 1970), 91-95.

[Mon 71] Mondshein, L. "Combinatorial Orderings and Embedding of
Graphs." Technical Note 1971-35, Lincoln Laboratory,
Massachusetts Institute of Technology (August, 1971).

[Nil 71] Nilsson, N. Problem-Solving Methods in Artificial Intelligence.
New York: McGraw-Hill, 1971.

[ore 62] Ore, 0. Theory of Graphs. American Mathematical Society

Colloguium Pub., Vol. 38. Providence, Rhode Island: Amer.
Math. Soc., 1962.

[Pat T71] Paton, K. "An Algorithm for the Blocks and Cutnodes of a
Graph." Communications of the ACM. Vol. 14, No. 7 (July, 1971),
LE8-U4T5.

[Shi 69] Shirey, R. W. "Implementation and Anaiysis of Efficient
Graph Planarity Testing Algorithms." Ph.D. Thesis, University
of Wisconsin (June, 1969). ' '

[sit 71] Sites, R. L. "Algol W Reference Manual.! Technical Report
No. 230, Computer Science Department, Stanford University

(August, 1971).

[Tar 69] Tarjan, R. "Implementation of an Efficient Algorithm for
Planarity Testing of Graphs." (December, 1969), unpublished.

[Tar 71] Tarjan, R. "Depth-First Search and Linear Graph Algorithms."
Conference Record: Twelfth Annual Symposium on Switching and
Automata Theory. (October 13-15, 1971), IEEE Computer Society,
11h-119.

(Thr 53] Thron, W. J. Introduction to the Theory of Functions of a
Complex Variable. New York: Wiley, 1953.

[Tut 63] Tutte, W. T. "How to Draw a Graph." Proceedings of the
London Mathematical Society. Series 3; Vol. 15 (1963),
TH5-768.

135

[Tut

[Wel

[Wei

[Wei

[Win

[You

661

65a.]

65b]

66]

66]

€3]

Tutte, W. T. Connectivity in Graphs. London: Oxford
University Press, 1966.

Weinbery, L. "Planc Representations and Codes for Planar

Graphs." Proceedings: Third Annual Allerton Conference on

Circuit and System Theory. University of Illinois, Allerton
House, Monticello, Illinois (Oct. 20-22, 1965), 733-Thl.,

Weinberg, L. "Algorithms for Determining Isomorphism Groups
for Planar Graphs." Proceedings: Third Annual Allerton

Conference on Circuit and System Thcory. University of Illinois,
Allerton House, Monticello, Illinois (Gct. 20-22, 1965),
915-929.

Weinberg, L. "A Simple and Efficient Algorithm for Determining
Isomorphism of Planar Triply Connected Graphs." I.E.E.E.
myansactions on Circuit Theory. Vol. CT-13, No. 2 (June, 1966),
1h2-1L8.

Wing, O. "On Drawing a Planar Graph." I.E.E.E. Transactions
on Circuit Theory. Vol. CT-13, No. 1 (March, 1966), 112-11k.

Youngs, J. W. T. "Minimal Imbeddings and the Genus of a
Graph." Journal of Mathematics and Mechanics. Vol. 12,
No. 2 (1963), 305-315.

13k

VI. Appendix: Program Listings

This section contains listings of the procedures needed to build
the connectivity and biconnectivity algorithms, and the listing of a
complete implementation of the planarity algorithm. The programs are
written in Algol W. The reader may notice scme differences Between
the programs here and the procedures discussed in the text; these are
mostly a matter of convenience. Further, the comments occurring in
the programs may not be completely lucid. The reader is strongly
urged to implement the algorithms himself, but if he is

lazy, the planarity program accepts data in the following form:

"problem name" (a character string identifying the problem)

v (the number of vertices in the graph)
E (the number of edges in the graph)
i ove)
V3 vk

$ (pairs of integers denoting the endpoints of

the edges of the graph)

V2E-1 V2E
/

This sequence may be repeated for each graph to be analyzed.

136

Utility procedures for CONNECT and BICONNECT

Re oduced from
E:E{ available copY.

PROCEDURE ACD2 (LETEGE] VAWLUE a,u;itlecseh ARRAY STACK (¥*);
IMIEGER VALUL RESULT PTR),;

BEGIN
COMMTENT % % % o oofe ok o e o o ok 8 30K A0 30 o koK sk ool ok ok o ok o o Xk ok %
* EROCCEDUKE TO ADD VALGwLS A, o IO STACK "STACK" AND
* INCREASE STACN POINIbw "Plx"™ BY 2,

ok e o o ot A o ok % Aok o ok ok 3k e e o d% ok R ke kR ek ol ot ok Kk R R ROR R ROk R R Rk KK
PTR:=PTR+2;
STACK(PTR-1) :=4;
STACK (PTR) :=F

LND

PROCLDUFE NEXTLINK (INTEGER VALUL PULNT,VAL);
REGIN
COMNTENT %ok dodedk o ok ok ok ok e ok o ok oo ko 20405 3 3% 3ok o s 30 ok e oo o %k %ok o ok
PROCEDURE TO ADD DIRECTED sbse (POINT,VAL) TO
STRUCTOZAL REPKSSENIAILION OF 4 GLAPH.

GLCRAL VARIABLES:
HEAD(V#1z:V+2%5) ,NpEAT(1::V+2%E): STRUCTURAL
REPRESENTATLION OF Tabk GwaPH.
FREFN&LXT: CUIRENL LAST ENLRY IN NEXT ARZAY.
Aot o e o ok o g e e e ok e et ok ok e et ok e o e ok ek ok kol ko ok ok sk kR Xk kK ke
FREENEXT:=FRESNEXT+1; ’
NEXT {FEYINEXT) s =NEXT (POLNT) ;
NUXT (FOINT) :=FKEENEXT;
HEAD(FRETNEXT) :=VaL
END;

#3% 3t # # 4t

INTEGFR EROCEDUFF HMIN(INTEGER VALUn &,B);
CCMMENT sskokdkmkhokn khok dakkkdonkdk xs dhx Rk ok ok ok ok Rk fkk &
* FROCFDUFT TO COMPUTE [iie iNLIUs OF TWO INTEGEKRS.
o ook ook ok dk Rk bk % Ak Aok At ok ok s R RO A KR Rk ok x Rk Rt ok ok ok ok k k ke dek ok &
IP AKF LHZN A ELSE 3;

137

Recursive connectivity procedure

DROCEDURE CONNECT!{INTEGER VALUEZ V,E; LNIEGER RESULT CPTK;
INTFGER ARRAY EDGELIST,COMPONENTS (¥));
PEGIN :
COMMENT ********************#******##*******************&**
PROCEDUKE TO FIND THE CONWECT:D COMPONENTS OF A
GRAPH.

PARAMETEKS:

V,EF: INPUT NUABER Of VoulICES AND EDGES OF TdE
GRAPH.

EDGELIST (1::2%E): INPUT LLIST OF EDGES OF GRAPH.

CCMPONENTS (1:23%E): OUIPUT LIST OF EDGES OF
CCMPONENTS FOUND. ©ACd COMPONENT IS PRECEDED BY
AN ENTRY GIVING IdE NUMBEAR OF EDGES OF THE
CCMPONENT.

CPTR: OUIZUT POINTER TO LAST ENTRY IN COMPONENTS.

GLCBAL VARIABLES: ;

HEAD (V+1::V+#2%*E) ,NEXT (12:V+2%E): STRUCTURAL
REPRESENTATION Uf THE GuAPH (UNDIRECTLD, NO
CROSS-LINKS) .

FREENMEXT: LAST ENTHY IN NsXT ARRAY.

LOCAL VARIABLES:

NUMBER (1::V+1) : ARRAY FOR NUMBERING THE VERTICES
DURING DEPTiU-FIRSL SEAKCH.

CODE: CURWENT HIGhH:SST VaRiTsX NUMNBER.

POINT: CURRENT POLNL SEINuv EXAMINED DURLING SEAKRCH.

V2: NEXT 2OINT TO BL RXAMINED DURING SEARCH.

OLDPTR: POSITION IN COMPONENTS TO PLACE E VALUE OF
NEXP COMPONENT.

GLOBAL PROCCEDURES:
ADD2,NEXTLINK,

L -

A RECURSIVE DEPTH-FLKST SEARCH PROCEDURE IS USED TO
* EXAMINE CONNECTED CunkINENTS OF THE GRAPH.
ook o ok ke o Aok ke woook o kol ok ok K0k ok koo ok kalok kol kR ROk R R Rk ek Rk
INTECER AERAY NUMBER (1::V+1); ‘
INTCGER CODE,PCINT,VZ2,O0LDPIK;
PLOCEDURE CONNECTUR (INTEGER VALUE PULNT, OLDPT);
CCMMENT e ok skl ok ok 4ok e ot ok ok ok e R Xk ek ook kokokokokok Rk Aok ok Aok ok ok kR Rk &
* RECURSIVE PROCEDUR: TO FINU A CONNECTED COMPONENT,
USING DEPTH-¢LRST SEAKCA.

PARAMETERS:
PCINT: STARTPOINL OF SEaRCi.
QLDPT: PREVIOUS STAkKkIPOINL.

GLCBAL VARIABLES:
SEE CONWECT FOR DesCkLPIION.

03 % 4 3 H# o H#

138

* GLCFAL PROCEDURES:
* ADDZ2,
*

* SYNAINE BACH £0GL UJl Ul PUlNT.
#*#***************##***#*******************************#;
WHEILE NEXT(BUIN!))O Do
FEGIN
COAMENT ***#*#*#*********#***************************

* V. IS HEAD OF nuik. vELLTE EDGE FROMU
. ¥ SPTRUCTURAL REPhosiLwfalivlN,

*****v*##**********************************#********;
V2:=HERD (NEXD(POLNT)) ;

STKT (FOINT) s =NEXD(NLAL (FOLINT)) 3

COMMEYT oo e o o o e e R R ok ol ok o R ot kR ok R ok XK K

* HAS [uE £DSE Bied SwarcCidD TN THE OTHER
* pLFECTICN? ic 59, LLUR tOR ANCTHER EDGE.

*************f*******#******************************;
17 (NUNBER (V2) <NUBBER (POLST))AND (V2~=0LDRI) THEN

RRGIM
CCMAENT o ok e o e A o R ek R R R ook kR ROK RO R Rk X
* ADv BDuwE TU CUNPONESL,

s o e R R R R R R R R R R R R ok R R R K
ADDZ(POINI,VZ,CUﬁtuNLNID,CPTR);

CCMALNT ook e e e K R R Kl s ek koK ot ok kR R R R K
* LAS A NEW PULNI oobd FOUND?

****************#*$**#****#***************#*****;
- IF WUXSER(V2)=0 TnowslN
E% FSGIN
oV COAGENT e e ROR 3SC oK Rk ek loROoR ok Aok ook ok ROk X
—— D
- * dua DPOLWNL FuUnio, NUMBER IT.
3% **#****v****u*******************************;
E] e L . . e
gz Ndnoﬁn(V&):=LUUb:=Lng*1:
] COnUENT *****#***********#**********##*******
o R e o T RPN .
oD *® IN laiwaw A4 U=t UA-FIRST SEPARC:H FROW THE
* NT . opdial.
FxEEEXK e o % A OR % & %R R Ol ol gk R R R R R R R Stk R R
CONMECTUR{VZ,rOINL) 3
Fub
TND S
END;
COYYNENT ***4**;*****¢********¢***********************
* coNsdUC?T Tud SigdCrinalb ALenSSONTATION OF THE
* SRAPRH.

##******t*#$**m***v******************v************#*;

FEELNLXT (=Y,

3

ND3s

FOF I:z=1 UNTLL V DO NEXT(L):=0;
FOE I:=1 UNTIL £ DO

ERGIN
COMMENT ot R K Rk K ok kRO ROk KRk ok Rk K
* EACH EDGE OCCUKS TWICE, ONCE FOR EACH
* ENDPOILNT.

##**#**&************************************;

NEXTLINK (EDGELISI(2¥I-1) ,EDGELLST(2¥I)) 3

NEXTLINK (EDGELIST (2%¥1) ,EDGELIST (2*¥I-1)) 3

END;

COHMH&T ***#***
* INITTIALIZE VARIABLES FOR SEARCH.
*****##***;
CPIR:=0;
FOINT:=1;
FOF I:=1 UNTIL V+1 DO NUMBEkR(I):=0;
WHILE POINT<=V DO

EEGIN
COMMENRT **********************#******************
* FACH EXECUTION OF CONNECIOR SEARCHES A
* CONNECTED COMPONENLI. AFTER EACH SEAPRCH,
* FIND AN UNNULSERED VEKTEX AND SEARCH AGAIN.
* FEPEAT UNTIL ALL VERTICES ARE INVESTIGATED.

ok o o R R R KR R R R R R R ROk
NUNBER(POINT):=CODE:=1;
OLDPTR :=CPTR:=CPTR+1;
CNNECTOR(PVINT,O0);
COMMENT e 2 A R R ko o ok KR Rk KR B R R K
* COMPUTE NUMBER OF EDGES OF COMPONENT.
o ok o o R R R KK o R R Rk R R Rk
COMPONENTS (OLDPTR) := (CPTR-OLDPTR) DIV 23
wMILE NUMBER (POINT)-~=0 DO POINT:=POINT+1}

END

10

Recursive biconnectivity procedure

PafCeDURF

RICONMTCE (INTEGRX VaLUe V,o; INTEGEF RRSULT BPTH;

INTEGE® ARRAY EDGuLLIST,BICUNPONESTS(*));

nEGIv

CONNFNT ko dok % 5ok % ok ok ok 30 3 R ok ok 3 40k 3ok oor s dolok ook ok RO oKk Sk o

p\3

H# O Rk % b 4 3%

LR A B 2

5

d from
€ copy.

availabj

produce

es:

IO R 3 b B B e B 3 S % 4 4 R 3 % # X ¥ % K o# R
Re
b

PRCCEDULL T FIND Tus BICUNGLUTLD COMPONENTS OF A
GRAPH.

EARAMETE 1S)

V,2: INPUy NUMBER UF vinTICsS AND EDGES OF Tdi
GL{APH.

LDGELLSL (12:2%8) s 1lidur wisl OF BDGES OF GRAPH.

FICCHPONENTS (1::3%s) ¢ UUsEUL LIST OF EDGES OF
CCMPONLNTS FOUNY. Eacu CUNPONENT 1S PRECEDED BY
AN CNTRY GIVING Tui bUdisnl OF EDGES OF THE
CCMPONENT.

EPTF: OULPUT POliwide TU LAST ENTRY OF BICOMPONENTS.

.

i,
{
I

GLCRAL VAsLASLES: g

HOAD(V+T1ssVe2¥E) jNLAL (1:sV4e*B): STRUCTURAL RBPRu-
SRUTATION OF THE OKAPd (UNDTRECTED, NO CROSS-
LINKS) . {

FRFENZXT: LAST EJLRY IN o424 ARRAY.

LCCAL VARIABLES:

MIARFE s (1:2V41) 2 AnsAY Fod SUMNRERING THE VERTICES
DUIINS DEPTH-FIRST SLakci.

COUE: CUARENT dlgnoesl Vonlii NUM¥RER.

BOGESLACK (123 2%E} ¢ SIUKads FOR LIST OF ZDGES
EYANINED DURING Scaikcu. ‘

NPTP: BFOINTLE TuluasT Ewiny i¥ EDGFSTACK.

POIVT: CURKRENL POINL wwadG LAAYINTD DUKING SFPAKCH.

V2: NEXI POINI TC¢ oi EAA#LNnL DURING SEARCH.

WEALCABT: LOWDOILT Fun BLCONNECTED PART OF GRAPH
ARCVE AND LNCLUDING VZ.

OLDPTx: POSLITION IN SICUMPONENTS TO PLACE
UF SEXT COATONENL.

—E

VALUE

t

SLCEAL uaocuauazs:\
NTN,ADD2, NEATwidcl
i

A RECURSIVE UEPLH-FiuSI ScaalCn PAOCEDURE IS USED TO
DTIVIDE DHi Gkaru. Tdb LOwosi PUINT REACHASLE FROU THb
CURNENT POLdT #iTHOUL GULnG TduOUGH PREVIOUSLY
SFARCEEY POLINTS IS5 CaLCULaluoir. THIS INFURMATION

AT LOWS DSTLSMINATION UF Tur AXRLICULATION POINTS AND
DIVISTCN OF THE GFRAPU.

vk o A Aok e R 3% S ok g e Xk X R %ok Ak o Atk K 3 ok 20k i ok s ok e ool ko ok o ok ke ok ke o K R

k1

* v2 IS HEAD OF THL EDGE. UELETE EDGE FROM
* STRUCTURAL REPR&SENTATIUN.
*******************#********************************;
V2 :=HEAD (NEXT (POINT)) ;
NEXT (PCINT) : =NEXT (NEXT (POINT)) ;
CCMMENT ***************#**#***********************f**
* HAS THE BDGE BEEN StAKCHED IN THE OTHER
* DIRECTION? Il SU, LUOK FOR ANOTHER EDGE,
****************************#********************#**;
IF (NUMBER(V2) <NUMBER (POLNT))AND (V2~=OLDPT) THEN
BEGIN
COMMENT # ¥k doiokk ko o sk ook ok bk R ook ok bk 3ok ¥
* ADD EDGE TO EDGESTACK.
*#**************************&*******************;
ADD2 (POINT,V2,EDGESTACK,ErTR) §
CCMMENT *************************#*************##
* HAS A NEW POINT BEEN FOUND?
##********#*********************************;
IF NUMBER (V2)=0 THEN

REGIN
COMUENT ok okt o d o d otk bRk ok koo ko &
* NEW POLINT FOUND. NUMBER IT.

**************************#*****************;

INTEGER ARKAY NUMBER(1::V+1);

INTEGERK ARFAY EDGESTACK(1::2%E);

INTEGER CODE,EPTR,POINT,V2,NEWLUWPT,OLDPTR;

PROCEDURE BICONNECTOH (INTEGER VALUE RESULT POINT,OLDPT,

LCWPCINT) ;

COMMENT ***

P P E R R I I I

RECURSIVE PKOCEDURE 10 SEAKCH A COSNECTED COMPONENT
AND FIND ITS BILCONNoCTeD COMPONENTS USING DEPTH-
FIRST SEARCH.

PARKAMETERS:
FCINT: STARTPOINT OF SEARCH, UNCHANGED DURING
EXECUTIUN.,
OLDPT: PREVIOUS STARIPOLNT, UNCHANGED DURING
EXECUTION.
LOWPOINY: OUTPUT OF LUWEST POINT REACHABLE ON A
PATH FOUND DURING SsEARCH FORWARD.

GLOBAL VARIABLES:
SEk BICONNECT FOR DeESCRIPLION.

~ GLOERAL PROCEDURES:
MIN, ADDZ.

EXAMINE EACH EDGE OUT OF PUINT.

ok ook sk o ok R ok o o o o R oK R o ok ook ROk Ok KR R K Ok JOR R RO S
WHILE NEXT(POINT)>0 DO

BPEGIN

CCMIAENT *********************#*#*****#***************

1k2

T

Reproduced from

T

>

best available copy.

ND

FI

END

NUMBEK (V2) :=CODiE:=CODE+1;
COMMENT ***********************************#*
* INITIALL & wiEpiu-FIRST SEARCH FROMN THE
* NEW POlNI.
******#*#**#**#**************#*#***********#;
NEWLOwPT:=V+1;

B3TCONKECTUR (V2,i0LiT, NLWLOWPT) ;

COHﬂENT ***#********************************#

* NUPE [tial auTduUsd GLOBAL VARLABLE V2
* IS CliANwEb, i4S VALUE 1S RESTORED UPON
* BXIF FROM THLS FROCEDUKE. QRECALCULATE
* LOWAPOILNT.,

ko o ke R ARk R Rk R kR Rk R kR kR Rk kR R kR Rk
LOWPOINT :=HLlN (LOWPOINT,NEWLOWPT) ;

COMMENT ks kdokodor s wohofoh ok k dob otk ok dokokof ook
% IS PULINT AN ARLIICULATION POINT OF THE

* GRAPH?
e T T L L E P L L LR L L Rl
IF NEWLOWPT>=NUMJ3ER (POINT) THEN

BEGLN
COAAERT %% sk dok soof 4 #0% ok o Rk ROROR R AR R
* PuoInsl L5 ad ARTICULATION POINT,
* QUTPUT wwDGeS OP COMPONENT FROM
* EVGESTACK.

Ek ke Rk ok Rk Xok Mk Rk R kkk Rk dok R ok Rk kR RFFRKE
OLDPIh:=sEThe=brin+ 13
Wil o hunbun(LJGLSlACK(EPTR-1))>NUMBEE
{puinl) DO
3I8GLN
ADDZ(&UGLSFACK(EPTR-1),EDGESTACK
(zkid),ulconPONENTS,BPTR);
SPTa:=nbln-2
“ND;
CUMMENT
*® ADD LAsL oDGE.
o o ok ok & o ok K Aok R R kR ok kR ok ROk R ok kR R K S
ADDZ(POLNT,V&,dILOMPOHENTS,BPTR);

o n ok o R R R0 ok ok d o ook ook Aok ok ok ok ok ok ok R R K

EPIR:=EPIa-2;
*******#*************************

CoAn LNt
* COACUTEL wnUsoskR OF EDGES OF
* CONPUONENL.

#***********#***#****#******************;
BICOKPONEJTb(ULDPIR):=(BPTR-OLDPTR)DIV 2;
LAD
oND

St
e o de ke ok b ko ool ok ok gk sk ok K

COMGRNT 4ok ok Ak F g doR Rk K R
* Nigw POINY woi FOUsu. RECALCULATE LOWPOINT.
s s o e R R R R R K R ROR R R R KRR R R R R R R
LUWPOINT:=MIN(LuwPUiNF,NUﬂBER(VZ))

143

COMMENT ook ok e o 0k A R K K KR oK o K K Xk ok 3k X0ROKOR JR KKK 0K Ak KK KRR ORK X
*x CONSTRUCT THE STRUCTURAL REPRESENTATION OF THE GRAPH.
*************#*#*#******t***#****t*********#**********t#**;
FREENEXT:=V;

FOR I:=1 UNTIL VvV DO NEXT (L) :=0;

FOE I:=1 UNTIL & DO

BEGIN
CCMMENT gk ok ook Aok o ol o KR R KRR R O R R Rk Rk ok K
* EACH EDGE OCCURS TWICE, ONCE FOR FRACH ENDPOINT.

2 e e ok o kK ok A kKK ok OR 20K RO R Rk ok R Rk Kok ok R ko ok Rk or ok
NEXTLINK (EDGELIST (2%1-1) (EDGELISE (2*1));
NEXTLINK(EDGELISE(Z*I),Euunulsr(z*1-1))

END;

COMMENT X% o Ak g e ke Xk ok R ok ok ok kK ok RoKokoRE ok R Rk ok Kok ko k

* INITIALLZE VARIABLES FOr SEARCH.

ok ok oo i ek Mok o ok R R R R R Kok R R Rk koK Rk Rk R ok ok ok Rk ok

EPTR==0;

BPTR:=0:

POINT:=1;

v2:=0;

FOR I:=1 UNTIL V+1 DO NUMBER(L) :=U;

WHILF PCINI<=V DO

BFGIN
CCMMENT ITEETEE SRS L ES S L 12 ek ok ok g ok ok o kol ok ok K Rk ok ok K Xk K
* FACH EXECUT1ON OF BICUNNEZCTOR SEARCHES A
* CONJECTED COMPONENT Of THE GRAPH. AFTER EACH
* SEARCH, FIND AN UNNUABEKRED VERTEX AND SEARCH
* AGALN. REPEAT UNTIL ALL VERICES ARE EXAMINED.

2 ko o o ko ok K R ek R oK oK R R R Bk R R R R R KR R Rk R Rk Rk kR Rk
NU#BER (POINI) :=CNDE2=1;
NEWLOWPT:=V+1;
BICONNECTOR(POINT, V2, NEwWLOWPT) ;
WHILE NUMBER(POINT)-=0 DU POINT:=POINT+1
END;
TND;

1hd

Complete program implementing the planarity algorithm

AEGIN

INTEGER V,:

STKING (80)
NODEXT

NAME;

haADLNAME) ;

READ(V, ") ;

RRITR{NAME) ;

WRITE("TIHZ",

mINE (1)) ;

'A'RITP("V=",V,"1‘.=", E) ;

EESIN

INTAGCEF FREENEXT;

TN L

GEF O AREAY HEAD (VHT13V+2%L)

INTRGER ARRAY NEXT({1::Ve2%p);
FROCEDURE NFXTLING (INJEZGER VALU: BFULNT,VAL);
REGIN

Reproduced from
best available copy.

COMAENT *fdkdxkkkdhokkrdwrhak g rkp ks xhk hdkddokkokbk ke dokkdeok ok ko ik

* PROCEDUXE TD ADD DIRsCTED wuGE (POTNT,VAL) TO
% STRUCTURAL nEPRESENLATION Ur & GRAPH.

*

* GLOBAL VAPLABLES:

* HeAD (V41 :Ve2%E) ,0EXT(1:: V+2%E): STRUCTURAL
* REPKESENTATLON OF THE GRAPU.

* FREENEXT: CURKENT LaSi coiIry IN NEXT ARRAY.

e o oo o e oK A ool s ook e ok ko kel kol o Rkl e ok ok Rtk ok ok kR R R kR ko K
TERNENEXL:=FEFENEAT+1;

NEXT (FURENEXT) e=N2KL (POINT)

MEXT (PCINT) :=FRELNEXT;

HFAD (FRTENEXT) :=VAL

“ND;

FEGIN

TMTEGR

F0R L= 1
REGIN

COMHENT ok dodon ook dodok ok kAo Rk o ook ok ok ok ook deodolok fokolok ok ok ok
* CONSLRUCT SIXUCTUnAL niPRuSasTATION FOR FIRST
* SzAnCii.

*##******#******************************#***************;

v V1,V2;

FRFENEAT:=V;

FOR T:=1 UNPIL V DO NEXT (i):=U;
BNTIL E DO

READON (V1,V2);
NEXTLINK (V1,V2);
NEXTLINK(V2,V1) 3

NP

WAILE("TIAS AFTER SET yP"™, rINE(1));

END;

145

BEGIN

INTEGER CUR, EDGE;

INTEGER AWRAY PATi,NUMBER(1::V);

INTEGFR ARKAY LOWPT1,LUWPTZ2,RANGEP(1::V);

INTEGER ARRAY COLOE(1::E-V#1);

INTEGER ARRAY S,F(0::E=-V#1);

INTEGER AERAY EDGESTACK(1::2%E);

BOOLEAN FLAG;

INTEGEF V2,CODE,POLNT, STARTPOINT,PATdNUABER;
INTEGER APTR,YPTR,XNPTR;

INTEGER EPTR,STARTPATH,XSPTR;

INTEGER MEPTR, ALPTR,XLPTR, XRPTR;

INTEGER EDGEFREE;

INTEGER ARRAY NEXTEDGE (1::7#E~-5%V+2);

INTZGER ARRAY HEADEDGE (E-V+1::T*E-O%V+2);

ROOLEAN ARREAY LINKTYPE (E-V+1::T*¥E-5%V+2);

RCOLEAN ARRAY MNEWNODE(1::E-V+2);

PROCEDURE ALD2 (INTEGER VALUE 4,B;INTEGER ARRAY STACK(*);
INTEGER VALUE RESULT PTR);

BEGIN e o R S e
COMMENT ok o R A R R KR ok R R R Rk R R K
% PROCEDUXE TO ADD VALUES A, B TU STACK "STACK" aND
* INCREASE STACK POINTEk "PTR" BY 2.

o ok o A ok e skl ok ook e ok ook kR ok ok % ok ko kkok Rk RE Kk kR kR Rk Rk kR kg
PTR:=FTR+2;
STACK(PTR-1) =
STACK(PTE) :=E

END;

PROCEDURE EDGELINK (INIEGER VALUE A,B);

BREGIN '
EDGEFRFE:=EDGEFPREE+1;
NEXTEUGE(EDGEFREE):=NEXTEDGE(A);
NEXTEDGE (A) :=2DGEFREE;

HFADEDGE {(EDGEFREE) :=B3

END;

INTEGEK PROCEDURE MIN(INTEGER VALUE A,B);

CCMMENT ****************************#*****#****************#*

* EROCEDURE TO COMPUIE THE HINIMNUY OF TWO INTEGERS.

***********#**********#*************************************;

IF A<E THEN A ELSE B3

INTEGER EROCEDURE MAX (INTEGER YALUL A,B);
IF A>B THEN A ELSE Bj
PROCEDURE ACD3 (INTESER VALUE A,B,C;INTEGER ARRAY STACK (*);
INT¥GER VALUE RESULT PTR);

BEGIHN
PIR:=PTR+3;
STACK (PTR-2) 2=A
STACK (PT&-1) :=D;

=A;

STACK {PTR) :=C;
END;
PROCEDURE XLINK({LNTEGER VALUE X,Y);
BEGIN

WRITE {"XLINK") ;
GO TO NONPLANBREXIT;
END;
PROCEDURE YLINK (INTEGER VALUE X,Y);

146

-

GO

TC

PEGIN
RRITE("YLINAY) ;
NINPLANAREX TT
LEND3 :
PLGCFDURE PRESFARCH(INTEGLR VALus RESULT PCINT,OLDPT);
COMEENT % dsok ook o ook 4 8ok o o ok Xk 40K %ok ook ok o fokok dok Sk ok e ok ok &
PECCFDURE TO S£ARCH CUNNECTZDL COMPONENT AND COMPUTE
I1OWICINT VALULS,
PARAMETZELS S
POIN'D: CUBRENT POLNT.
QLDPT: PHREVIOUSLY 3 EAKCabD POINT.
GLO3AL VARIABLES:
AEAD (V4#1::Ve2*E) ,NEXT (12:V+2%E): STRUCTURAL
PETRESENTATION ur Ghavd (UNDIRECTED, NO CROSS-
LTNRS) »
V2: NZXT POINT SZARChhu.
NUMBCR(1::V) : CONSLCUTIVE SEZARCH NUMBER OF A
VEFTEX.
CODEs BIGWEST CONSECUTiIVE SEARCH NUMBER.
EXTLEA0A (12:V) s Luwe3i rULNT REACHABLE THROUGH
NiW EUGES FROM 4 uvlViws PUINT.
GLOEAL PHEOCEDURES:
MLIN, AvDZ2.
THIS PROCEDUR: OFEkals> AS ANKY OTHER DEPTH-FIRST
SEARCH.
2% ook ok % % % e do ok ok ook ok 4 o % ok ok o % Xk ok ok o TR ok ook kool Rk kR R R Rk R R K o
*HILE NRYT(POTudT)>0 DO
BEGIN
V2:=HEAD (NEXT(POINT)) ;
NFXT (POINT) e=NELAT(NZXT (POLUT))
I7 (NUMBER(V2)KNUSBEL (POINT))AanD (V2-=0LDPT) THEX
TG IN
ADD2 (PULNT,V2,Cueislack, uriR);
TF NUMBER(V2)=0 1dEN
RPSGIN
NURLER({V2) :=CUDL:=C0Da+T;
PRESEARCA(VZ,201nT)
IF LOWPTY (Vo) <LUWPYTT1(PUINT) THEN

B3 O 3t 3 O3 OB X H OH K OF R O OR

BeGTH
N LOWPTZ2 (PULNL) 2=uin (LOWPT2(V2),
£¢ LOWET 1 (eOlol)) ;
2, LOAPTY (POINL) :=LOWET1(V2);
B iND
9 ELSE IF LOW11(V2)=LUaPT1(20INT) THEN
T LOWPT2 (POLa L) :=niId (LIAPT2(V2),
&% LOAPT2 (LULNT))
o0 LS55 LOWDT2(PULwI):=NIN(LOWPTI(V2),
LOWPI2 (PUINT))
5dD
TLS IF NU3En (V2) SLUw2i1(£0INT) THEN
BUGIN
LOwP T2 (POINT) :=LUMPLT(FPOINT);
LO4PT1 (POINT) :=NUUBLR(V2);
LiD
S1.SE IF SUJABEK (Ve) >LUwe[1(¢OINT) THEN
IOWPL2 (POINT) s=all (MNJABEK (V2) , LOWPT2 (POINL)) ;
v
BN

1h7

PROCFDURE SECONDSEARCHER (INTEGEx VALUE RESULT POINT);
COMMENT %k ook gk ook ok oo dok ok 40Kk ko ok ok ok ko ok ko ok ok 4

* PROCEDURE TO SEARCH GRAPh IN DESIRED ORDER AND

* RENUMBER VERTICES FUR TRLCONNECTOR. STRUCTURAL
* REPRESENTATLON OF GzAPH IS IN DIRECTED FORM.

*

* PARAMETERS:

* PCINT: CURRENT POLNT BEING EXAMINED.

3 e o e Ak e ok o e skt e ot ook o ok kol RO ook ok ki ok ok Kok ke koK ok Rk i ok R kR Rk R o
WHILE NEXT (POINT)>0 DO
BEEGIN
V2 :=HEAD (NEXT (POINT)) ;
NEXT (EOINT) :=NEXT (NEXT (POINT)}) ;
IF NUMBER(V2)=0 THEN
BEGIN
NOMBER(V2) :=CODb:s=CuDL+1;
SECONDSEARCHER (VZ2)
END;
ADDZ(NUMBER(POINT),NUHBER(VZ),EDGESTACK,EPTR):
END;
PRCCEDURFE PATHMARKER (INTEGEk VALULE POINT);
AHILE NEXTEDGE(POINT)-~=0 DO
FEGIN
EDGE:=NEXTEDGE (PJINT) ;
V2:=HEADEDGE (EDGE) ;
NEXTEDGE (POINT) : =NEXTEDGL (ELGE) ;
IF COLOR(V2)=0 THEN
BEGIN
IF LINKTYPZ (EDGE) THEN COLOR({V2):=
COLOR(POINT) £LSE COLOR{(V2):=3-COLOR (POINT);
WRITE ("COLOR(",V2,")=",COLOR(V2)):

END

ELSE IF (COLOR(V2)=COLUR(PUINT))=-LINKTYPE(EDGE) THEN
REGIN

WEITF ("CONFLICT IN PATHMARKEK");

G0 TO NONPLANARZ;
END;
IF NEWNODE (VZ2) THEN

REGIN
NEWKNODE(V2) ==
PATHMARKEK {V2

END:;

END;
PROCEDUERE SORT;

FALSE;
)3

1hk8

m

FREESUIT: LAST uNinY oW NEXTSOKT,.

SORYPTR: POlkiikg usby 10 EMPTY BUCKETS AFLER
* SOnT. :

B e ook o e ok ok o ok g Rk Bk o A Kk Sk e ok ok ke kok Rk okl ok ok R ROk R R K
INTEGLR FREESOKT,SOnYETR;

INTEGER AgKAY N2rT30xy (leie*Ved) s

INTFEGEL AERAY SORIPT1,SCRLPTZ(2%V+12:2%V+E)]

COMMPNT % ok dok de s e ook doko ook kR ok ok ok ke koR R 3ok SR ko k%

EGIN

CCMMENT * ¥ kkkxxekrXiixxx 23k % Rk % ook ok ok ok ok ol ok g ok ok ok ok dkookok ok X
* EEOCEDUXKE TO SOTl bwvse$S [0 GIVE ADJACENCY

® SIRUCTUR e USED B8Y valalFLNDING SEARCH.

¥ LGCAL VARIAbLLS:

* NEXISORT (1::2%V+s): LiINKS FOR BUCKET SORT.
% SORTPT1 (2%V+1::2%V+r): TRIL OF EDGE IN

* BUCKET.

* SORAIPT2 (2%V+1::2%V+E): HEAD OF EDGE 1IN

* pUCK £T.

*=

%*

* INITIALLZE FOR »Uxilys E£DGES ACCORDING TO
* LOAEST PUINT KoACnABLo FROM HEAD AND FOR
*® CONSTRUCTING NEW ADJACENCY STRUCTURE,

Rk o ok e ek R g ok ok 3 ok R o ok ok oK 3 ROk oo ok ook R R ok Rk ek ok
FREESOPT :=2%V; :

FUTENEXT 1=2%V;

FOR T:=1 UNTIL 2%V DU WEXiSOKI(I):=0;

COMMENT #dow ok &tk g3k R3Ok ook ok ok ok ok ok otk door ok ok &

* INSERT HACH ZDuvi INTU A BUCKET. EACH BUCKLT
* I5 & LIST OF EUDGES. CJMUICE OF BUCKET DEPENDS
* FIXST ON EXTeoiiUM VALUE AND SECOND ON WHETHER
* TudPr2 I3 NURTwWiVIiIAL,

f e ok sk s Ao ok o o e o e dodook R o ok ok ok o ok R ok kol ok kR Rk R R R R KOk R R R E |
FOR T:=2 S1eP 2 UNTLL 2*%n 0O

BRGIN
FREESOLL:=FREE3OLT+1;
CCMYENT s e 2 o 4 o o ok o o ok ok e ok el e ok gk ok ook ok o ok ok ok ok
* PLACE EMDR2OLNTS Or gLSE IN BUCKET.
s e o o o Ao ok o K e Aol o ok 4 ok %ok ke ok ki el ook gk kR kR Rk Rk R R .
SORTPTI (FEEESORT) : =LDGLSTACK (I-1)
V2:=SORTPI2 (FRES30RY) :=uDUESTACK(I) 3§
IF NUMDER (VZ2) <NUMBan (50aTril (FREESORT)) THEN

. nsGIY

E§ CQMAENY'**********¥*******#******************
é: * PAYH Tu LUWESY PULNT IS SINGLE EDGE.
B 2 o A 3 ok 3 % % ok R K K R R A o 4R % ok koK ek R ol ek ok R dkok ok Rk Rk .
g% KEXTSORLI (FRELSORT) : =NcaATSORT (2¥NUMBER (V2) ~1) ;
T3 NEATSURT (2¥NUaseh (v2)=-1) :=FREESORT;

S ERD

«® 8] TLSE

1k9

e}
5}
(9]

TN
COMNENT ok ok dok ook d dok ook ok ok ko dok koo ok ok i

* PATH TO LOWLSY PUINT IS INDIRECT.
et ok o gk R Aok R OR RO KR Rk o ok ook Xokok Rk koR R ek sk dokde kK

IF LOWPT2(VZ2) >=NUupER(SORTPT1(FRZESORT)) THEN

BrGIN
NEXTSORT (FKEESOnTL) : =NEXTSORT (2¥LO¥PT 1(V2)
-1
NEXISOKT (2%L0wPT1(V2)~-1) :=FREESORT
END
£LSE
BESIN

NEXISORT (FHELSOKXT) :=NEXTSORT (2*%LOWPT1(V2)
).
NEXTSORT (2%i.OWT1(V2)) :=FREESORT

oD
END
END

COMMENT % e e sod o % %ok dok 3 e ok ok ko o 4ok Aok ook dedeok okok ok R ke e e ok
* FMETY BUCKETS AND CONSITRUCT STRUCTURAL
* FLPRESSNTATION. 6DGeS WILL BE IN REVERSE OF
* DeuSIkeD ORDER. THiLiS 15 CORRECTED BY NEXT
* SEARCH.,

e Ao o ok o ok ok ok o o o R e ok o ek o o ke e ool skl e sk ok e e ook ok o kol
FOR I:=1 UNTTIL 2%V DO
BEGIN
SOR'PTR:=NEXISORT (L),
WHILE SORTPTR-=0 DU
ReGIN
NEXTLINK (SORL2T1(SORLETR) , SORTPT2 (SORLPTR)) ;
SORIPIR:=NEXTSURY (SOILFPTR)
END)

IF E>3%V-6 TERY GU TO NONPLANAWKLKLT,
COMMENT #% %% s gk fo ok & skokok 0% &0 3ok ok ook ke dokokok sk ok o o ol o ok ok
* INITIALIZE ASD kUN FIKST SEawCH TO COMPUTE
* LCWPOLNTS,
o R ok R R KR R ROk K KR o Kok O AR RORR R R R OROR R R
FoF I:=1 UNLIL V DO

TEGIN .
NUMBEK(I) :=0U;
LOWPT1 (I} :=LCOWPT2(I):=V+1;

END;

150

PCINT:=EPTR:=0;
VI2:=MUMREL (1) :=CODE:=1;
PFPESEARCHA(VZ, POINT)
FOk Ie=1 UNTIL V DO IF LOWPT2 (L) >=NUHMBER(I) THEN
LOWPT2(I) :=LOaPTI1(1);
AT, '

Foz I:=2

UNTIL V D0 NUABZR(I):=0,

PATH (1) :
S {0) :=F (0):=0;

STCONDSFARCHER (EGINT) ;

FREENEXT:=V;

FOR T:=1 UNTIL £ U0 NiXTLINK (eDoeSTaun (£*¥I-1),EDGESTACK (2%1));
AEIPI=YETIR:=XNPTE:=0; -

XSPTR:=0;

STARTEOINT:=0;
PATANUMRER: =1;
3EGIN
DKOCEDURE PATUFINMDER (L¥iEsen VALUZ RESULT POINT);
WHILE NEXT (POINT)-~=0 DO
PEGIN
V2:=HEAD (NZAT (POINT)) ;
NTYT (POINT) :=NEAT(NLAZ (POLNT)) ;
ATILE ("20INT IS",ECINT,"VZ IS",V2);

IF STARLIPOINT=J THEWN
BEGIN
STARTPOINT:=POINT;
END;
IF Yy2>UCINI THIN
PIGIN
RANGEPRP(V2) :=CUR;
PATH (V2) :=PATuNUMLEK,
PRTuFINDER (V2) ;
CliR:=v<-1;
STAILPOINL:=1;
wiHILE POINTL=Y (YPIK) Lo YPLIR:=YPTR-2Z2;
WHILE DPOINT <=A(AP1x) 0O APTR:=APTR-2;
wATLE POINIK=XN (XNPIX) DO XNPTR:=XNPTR-3;
WHILZ POINT <=&5 (A3ITg) DO XSPTR:=XSPTR-3;
FLAG:=FALSS,
WIILE (HI&HPATH(Z*BOIAI—l)>XN(XNPTR-1))AND
(PUINT< AN (XNPTE-1)) AND
{(dIGHPATH (2%PULNT) <4AN (ANPTR-2)) DO
FEGIN
FLAG:=TRUE;
EDd;LiNK(anhUnln(é*POINT),XN(XNPTR—A));
WEITE ("AIGHPATL YIINK", iw (ANPTR=2) ,dIGnealn(2¥20INT))

EDGELLINK (XN (XNPT&-2) ,HIGHPATH (2*¥POINT)) ;
LINKTYPE (2DGhEaEE-1) :=LINKTYPE (EDGEFKEZ)
:=FALSL;
ANPIK:=aNPIK-3;
END;
1¥ FLAG FHEN XNeTR:=XublIn+d;
HIGHPATh(Z*PmINT);=nIthATu(2*POINT—1):=O;
N

1 m
=

t73
-
3 4

151

BEGIH ?
¥RITE ("PATHNUMBER IS",PATHNUMBER,"STARTPOINT IS",STARTPOINT,"V2 IS",V2);

S(PATHNUMBER) : =STARTPOINT;
F (PATHNUMBER) :=V2;
FLAG :=FPALSE;
IF A (APTR)~=0 THEN ADD2 {A(APTR-1),A(APTR),Y, TPTR)
IF F{A{(APTR-1))-~=V2 THEN
BEGIN COMMENT PATH IS NORMAL:
WHILE V2 < Y(YPTR) DO
BEGIN
EDGELINK (PATHNUMBER,Y (YPTR-1)) 3
WRITE ("YLINK",Y (YPTR-1) ,PATHNUMBER) ;

EDGELINK (Y (YPTR-1) ,PATHNUMBER) 3
LINKTYPE(EDGEFREE-1):=LINKTYPE(BDGEYREE):=
TRUE;
FLAG:=TRUE;
YPTR:=YPTR-2;
END;
IF FLAG THEN YPTR:=YPTR#2;
FLAG:=FALSE;
HHILE(VZ(XE(XNPTR))AND(STARTPOINT(XN
(XNPTR-1)) DO
BEGIN

HRITE(“XLINK“,PATHHUMBER,XN(XNPTR—Z));
EDGELINK(PATHNUHBBR,XN(XN?TR-Z)):
EDGELINK (XN (XNPTR-2) ,PATHNUMBER) ;
LINKTYPE(EDGEFREE-1):=LIHKTYPE(EDGEFREE):=

FALSE;
XNPTR:=XNPTR-3;
END:
HHILE(V2<XS(XSPTR))AND(STARTPOINT(XS(XSPTR—1))
DO XSPTR:=XSPTH-3;
IF STARTPOINT>HIGHPATH (2*¥2-1) THEN

BEGIN

HIGHPATH (2*V2-1) :=STARTPOINT;
HIGHPATH (2*V2) :=PATHNUMBER;

END;
ADD3(PATENUHBER,STARTPOINT,V2,XN,XNPT3);
ADD3(PATHNUHBER,STARTPOINT,VZ,!S,XSPTR);

END
ELSE

BEGIN COMMENT PATH IS SPECIAL;

HHILE(V2<XS(XSPTR))AND(STABTPOINT(XS
(XSPTR-1))AND(XS(XSPTR-1)<=R&NGEP
(STARTPOINT)) DO

BEGIN
FLAG:=TRUE;

WRITE ("SPECIAL XLINK",PATHNUMBER,KS(XSPTR—Z)):
EDGELINK(PATHNUMBEB,XS(XSPTR—Z)):
EDGELINK (XS (XSPTR-2) ,PATHNUMBER) ;
LINKTYPE(EDGEFREE-1):=LINKT!PE(EDGEFREE):=

. PALSE; =
XSPTR:=XSPTR--3;
END;
IF FLAG THEN XSPTR:=XSPTR+3;
END;
IF POINT-=STARTPOINT THEN

152

ADD2 (PATHNUNBER,STARTPOINT,A,APTR) ;

PATHNUMBER:=PATHNUMBER+1;
STARTPOINT:=0;
END
END;
INTEGER ARRAY A,Y(-1::2%E);
INTEGER ARRAY XN ,XS(-2::13%E);

INTEGER ARRAY HIGHPATH(1::2%V};
Y(-1):=Y(0)2=A{~1) :=A(0) :=XN ({~2) :=XH(0):=0;
XS(~2}:=XS(0):=0;

XN(~1)2=XS(~1) :=V+1;
FOR X:=1 UNRTIL 2%V DO HIGHPATH(I) :=0;
EDGEFREE:=E~-V+1;
FOR I:=1 UNTIL 7*E-5*V+¢2 DO NEXTEDGE(I):=0;
¥2:=1;
CUR :=V; RANGEP(1) :=V;
PATHFINDER({V2) ;
END;

PATHNUMBER: =PATHNUNBER-1;
FOR I:=1 ONTII B-V+1 DO COLOR{I) :=0;
POR I:=2 UNTIL PATHNUMBER+1 DO NEWNODE (I):=TRUE;
STARTPATH:=1;
WHILE STARTPATH<=PATHNDMBER DO
BEGIN
COLOR {STARTPATH) :=1;
NEWNODE (STARTPATH) :=FALSE;
PATHMARKER (STARTPATH) ;

WHILE~NEWNODE (STARTPATH) DO STARTPATH:=STARTPATH+1;

END;

BEGIN
PROCEDURE COLORCHECK;
FOR I:=1 UNTIL PATHNUMBER DO
BEGIN
POINT:=S (I);
V2:=F(I);

WHILE POINT<=ALEFT (ALPTR) DO ALPTR:=ALPTR-2;
WHILE POINT<=ARIGHT (ARPTR) DO ARPTR:=ARPTR-2;
WHILE POINT<=XLEFT (XLPTR) DO XLPTR:=XLPTR-2;
WHILE POINT<=XRIGHT (XRPTR) DO XRPTR:=XRPTR-~2;

IF COLOR(I)=1 THEN
BEGIN

IF {(F {PATH (POINT))->=V2) THEN

BEGIN
IF V2<ABIGHT (ARPTR) THEN
BEGIN
WRITE ("CONFLICT IN ARIGHTY,I,ARIGHT (ARPTR~-1)):
GO TO NONPLANAREXIT;

END;
1P V2<XLEFT{XLPTR) THEN
BEGIN
WRITE (®CONFLICT IN XLBFT®,I,XLEFT(XLPTR-1));
GO TO NONPLANAREXIT;:
END;

ADD2(I,VZ2,XLEFT,XLPTR) ;
END
ELSE IF {(V2<XLEFT (XLPTR)) AND(
-1)) <=RANGEP (POINT)) THEN

155

S (XLEFT (XLPTR

BEGIN
WRITE {"SPECIAL CONFLICT",I,XLEFT(XLPTR-1)) 3
GO TO NONPLANAREXIT;

END;

ADDZ(I,POINT,ALEFT,ALPTR);

END

.ELSE

BEGIN
IF | F (PATH(POINT)) ~=V2}

BEGIN
IF V2<ALEFT(ALPTR) THEN

BEGIN

WRITE ("CONFLICT IN ALEFT",I,ALEPT (ALPTR-1));
' GG TO NONPLANAREXIT;
END;
' IF V2<XRIGHT (XRPTR) THEN
BEGIN
WRITE ("CONFLICT IN XRIGHT" ,I,XRIGHT (XRPTR-1));
' GO TO NONPLANAREXIT;

END;
‘ ADDZ(I,VZ,XRIGHT,XBPTR):
"END
ELSE IP{V2<XRBRIGHT (XRPTR))AND(
(XRPTR-!))<=RAEGEP(POINT)) THEN
BEGIN .

WRITE ("SPECIAL CONFLICT",I,XRIGHT (XRPTR-1));
© GO TO NONPLANAREXIT;
.END;

HPDZ(I,POINT,ARIGHT,ARPTR);

END;
END;

THEN

S (XRIGHT

INTEGER ABRAY'ALEFT,ARIGHT,XLEFT,XRIGHT(-1::Z*E);

;ARPTR:=ALPTR:=XRPTR:=XLPTR:=0:
ALEFT(O):=ARIGHT(0):=XLBPT(0):=XRIGHT(D):=0;

ALEFT(-1):=ARIGHT(-1):=XLEFT(-1):=XRIGHT(-1):=0;

COLORCHECK;
END;
WEITE ("PLANARY) ;
WRITE ("TIME®,TINE(1)):
GO TO DONE;

NONPLANAREXIT: s NONPLANARZ:HRITE("NONPLANAR");
DOXE: GO TO NODEXT;
END;
END; .
END.

154

