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Abstract: 

AN EFFICIENT PLANARITY ALGORITHM 

Robert E. Tarjan 
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P.n efficient algoritp.In is presented for determining whether 

a graph G can be embedded in the plane. Depth-first 

search, or backtracking, is the most important of' the tech­

niques used by the algorithm. If G has V vertices, the 

algorithm =equires O(V) space and O(V) time when im­

plemented on a ~'andom access computer. An implementation on 

the Stanford IBM 360/67 successfulJy analyzed graphs \'lith as 

many as 900 vertices in less than 12 seconds. 
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I. In the Beginning 



l. Introduction 

Graph th~ory is an endless source of easily stated yet very hard 

problems. Many of these problems require algorithms; given a graph, one 

may ask if the graph has a certain property, and an algorithm is to 

provide the answer-. Since graphs are widely used as models of real 

phenomena, it is important to discover efficient algorithms for answering 

some graph-theoretic questions. 

This work presents an algorithm for determining whether an arbitrary 

graph G can be embedded (without any crossing edges) in the plane. If 

V is the number of vertices and E the number of edges in the graph G, 

then the method requires amounts of space and time bounded by a linear 

function of V and E. The algorit!1m is optimal (to within a constant 

factor), because it is possible to show within a suitable theoretical 

framework that each edge of a graph must be examined at least once to 

resolve the planarity question. 

The planarity algorithm is based upon a depth-first search, or 

backtracking, "!;echnique for exploring a graph. Backtracking has been 

widely used for finding solutions to problems in combinatorial theory 

and a!tificial intelligence [Gol 65, Nil 71]. AnalYSis reveals that by 

depth-first examination of a graph, we may simplify the g: ~ph and collect 

enough information to determine planarity rapidly. Besides planarity, 

several other problems have been solved using depth-first search. 

In order to analyze the efficiency of an algorithm, we u~e a 

random-access computer model. Data storage and retrieval, arithmetic 

operations, comparisons, and logical operations are assumed to require 
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fixed t:imes. A memory cell is allowed to hold integers whose absolute 

value is bounded by k max(V,E) ,where V is the number of vertices 

and E is the number of edges of the graph being processed, and k is 

some constant. .An exact computer model will not be specified; see Cook 

(Coo 71]. To express the t:ime and space bounds of algorithms, we shall 

use an extended version of the big 0 notation. Of functions of 

Xl"",Xm we say f is O(f1, •.. ,fn ) if, for some constants 

If(X1,·· .,xm) I < kO + kllfl (Xl'" .,Xm) 1+ ••. + kn Ifn(x1, •• '~Xm) I 

all values of 
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2. Previous Research on Planarity ~~gorithms 

Embedding a gra~h in a ~lane has several a~~lications. The design 

of integrated circuits requires knowing when a circuit may be embedded 

in a ~lane. Determining isomo~hism of chemical structures is simplified 

if the structures are ~lanar [Led 65, Hop 71b, Wei 65a, 65b, 66]. The 

importance of the ~roblem is suggested by the number of published 

~lanarity algorithms. Examples include [Aus 61, Bru 70, Chu 70, Fis 66, 

Gold 63, Ho~ 71c, Lem 67, Mei 70, Mon 71, Shi 69, Tut 63, Win 66, You 63]. 

Su~risingly little work has been directed toward a rigorous analysis of 

their running t:imes, however, and algorithms continue to appear which 

are obviously inferior to ~reviously published ones. We shall examine 

several of the best algorithms here; a more complete history of the 

planarity ~roblem may be found in Shirey's dissertation [Shi 69], which 

contains an extensive bibliogra~hy. 

The earliest characterization of planar graphs was given by 

Kuratowski [Kur 30]. He proved that every non-planar graph contains a 

subgra~h which upon removal of degree bfO vertices is isomo~hic either 

to the complete graph on five vertices or to il. complete bipartite graph 

on six vertices. (See Figure 2.1.) Conversely, no planar graph contains 

either of these graphs. Although elegant~ Kuratowski's condition is 

useless as a practical test of planarity; testing for such subgraphs 

6 directly may require an amount of time proportional to at least V , 

if not much worse, where V is the number of vertices in the gra~h. 

The best approac> to the planarity problem seems to be an attempt 

to actually draw the graph in the plane. If such a drawing can be 

completed, then the graph is planar; if not, then the graph is non-plaJ.1ar. 
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Figure 2.1: The Kuratowski subgraphs. 
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~he first such algorithm was proposed by Auslander and Parter [Aus 61]. 

First, a cycle is found in the graph. vlhen this cycJ.e is removed, the 

graph falls into several pieces. The algorithm is called recu~sively 

to embed each piece in the plane with the original cycle. Then the 

embeddings of the pieces are combined, if possible, to give an embedding 

of the entire graph. Unfortunately, Auslander and Parter's paper contains 

an error; the proposed method may loop indefinitely. C:.:>l.:"l.stein [Gold 63] 

correctly formulated the algorithm, u;sing iteration inst·::ad of recursion. 

Shirey [Shi 69] implemented this method using a list structure represen­

t3.tion for graphs, and proved an asymptoti.:: tfuLe bound of O(V3) for 

his variation of the algorithm. 

Lempel, Even, and Cederbaum [Lern 67] have presented another method 

for building a graph in the plane. They start with a single vertex, and 

add all edges incident to that vertex. They then add all edges incident 

to one of the new vertices, and continue in this way until the entire 

graph is constructed. Vertices must be selected in a special order if 

the algorithm is to work correctl:'l' Lempel, Even, and Cederbaum give no 

implementation or time bound for their method; how-ever, Tarjan [Tar 69] 

has fuLplemented the algorithm in a way which requires O(V) space and 

O(~) time. 

Mondshein [Mon 71] has recently proposed another constructive 

algorithm. He adds one vertex at a tfuLe until the entire graph is 

constructed. The order of vertex selection is again crucial. Mondshein's 

inl)lementation requires O(~) time. Hopcroft and. Tarjan [Hop 7lc], 

using depth-first search in a complicated program, have devised a variant 

of Goldstein'S algorithm with a time bound of O(V log V) . This m8thod, 

althouc;h ponderous, is asymptotically the most efficicnt previously known. 

(; 



A ~ew algorithms deserve mention because of their novel approach. 

Fisher [Fis 66] gives an algorithm which works directly from the 

incidence matrix of a gra:pt.. This method, however, is not very ef~icient, 

nor is any method which uses incidence matrices. (See Chapter 4.) 

Bruno, Steiglitz, and Weinberg [Bru 70] present an alg0rithm based on 

some theorems of Tutte relating to triconnected planar graphs. Instead 

o~ constructing a gra:ph in the plane, they reduce it to slrapler and 

simpler graphs. Although they give no explicit time bound, the algorithm 

does not compare ~avorably with those mentioned above. 
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3. Definitions from Graph Theory 

This chapter outlines the graph-theoretic concepts needed to under-

stand the planarity algorithm. We use definit ions similar to those found 

in any text On graph theory; for instance [Ber 64, Bus 65, Har 69, Ore 62]. 

We shall also introduce some special terminology. Proofs are omitted in 

this chapter; the results are either obvious or are standard in the 

literature of graph theory. 

Definition 3.l: A graph G = (v,e) is an ordered pair, consisting of 

a finite set V of vertices and a finite set e of edges. 

We shall deal with the properties of finite graphs only; we are 

conc~rned with constructive characterization of certain properties of 

graphs, and computers cannot manipulate infinite objects. The 

vertices of a grapb may also be called points or nodes. The edges of a 

graph may also be called arcs or J.inks. For the moment we have left 

undefined the nature of the edges of a graph; there are two kinds of 

graphs which we shall study, with two different types of edges. 

Definition 3.2; An undirected graph G = (v,e) consists of a set of 

vertices and a set of edges. Each edge is an unordered pair [v, w} 

of distinct vertices of G. The vertices v and ware said to 

be incident to v and w v and ware said to be incident to 

[v:w} . Vertices v and ware said to be adjacent if [v,w} is 

an edge of G. The relation v ~ w holds if and only if [v, w} 

is an edge of G. 
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Definiti.ol1 3.3: A directed graph G = (V, e) consists of a set of 

vert.ices and a set of edges. Each edge is a directed pair (v, w) 

of distinct vertices of G. The vertex v is said to be the tail 

of the edge (v,w). Vertex w is said to be the head of the 

edge (v,w). Incidence and adjacency are defined as for undirected 

graphs. A directed graph is really only an irreflexive relation; as 

with undirected gr'aphs, we use the notation v ~ w to mean that v 

and w satisfy the relation " (v, w) is an edge of: G". 

Notice that we do not allow loops (edges vThose two endpoints are 

identical). Neither do we allow several identical edges. An object 

resembling a graph but which contains multiple edges will be called a 

rrrultigraph. We shall use capital letters (tlGIf
) to denote undirected 

graphs and capital letters with an arrow (IIG") to denote directed 

graphs. A capital letter with a tilde ("G If
) will denote a graph, 

either directed or undirected. 

Let us consider the relationship between. directed graphs and 

undirected graphs. Given an undefined graph G, we may convert it to 

a directed graph in one of two ways. First, we may convert each 

undirected edge [v,w} of G into two directed edges, (v,w) and 

(w,v) • 

Definition 3.4: Let G = (V, e) be an undirected graph. Then 

G = (v,e') is the directed graph such that e' = t(v,w)\[v,w}Ee} . 

G is called the doubly direc'ced version of G. 

The computer representations of an undirected graph G and of the .. 
doubly directed version G of G will be indistinguishahle; each edge 
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will appear twice in the representation, once 1\or each of its possible 

directions. \ 
\ 

Another "'tray to convert an undirected graph G into a directed 

graph is to convert each edge [v,w} of G into a single directed edge 

(v, w). This will give a directed graph 'ct with the same number of 

edges as G, in which each edge of G is assigned one of the two 

possible directions. 

--t 
Conversely, suppose we have a directed graph G = (v,e) • We may 

convert G into an undirected graph by ignoring the direction of the 

edges. (We may have to delete multiple copies of the same undir~cted 

edge; otherwise a multigraph will result.) 

Definition 3.5: The function u maps directed graphs into undirected 

graphs. If d (v,e) is a directed graph, u(G) = (v,e') is 

the undirecte,j <sra.ph formed by ignoring the directions of all the 

--t 
edges of G: e' t(v,w) I(v,w) E e} . The inverse function is 

multi valued. If G = (V, e') is an undirected graph, 

-1 
u (G) = (V, e) will denote any directed graph formed by giving 

each edge of G a direction. 

Henceforth, we shall use" (v,w) " to denote an edge ,Jf any graph, 

either directed or undirected. We then have (v,w) = (w,v) in an 

undirected graph but not in a directed graph. The following definitions 

apply to both directed and undirected graphs. 

Definition 3.6: Let G = (V, e) and C-' = (v',e') be graphs. I'''' ... 

V' c V and e' c e , then G' is a subgra;eh of G . G' is 

called a EroEer subgra;Eh of G if G' foG . 

10 



-Definition;'·7 : Let G (v, e.) be a graph. A sequence of vertices vi' 

I < i < n , such that ei = (vi,vi +1) is an edge in G for 

I < i < n , is called a path of G. If all the vertices on the 

path are distinct·~ the path is caJ.led a .?:imple path. If vI = vn ' 

all the vertices I ~ i < n , are dist inct, and all the 

edges ei , I < i'< n , are distinct, then the path is called a 

cycle. The vertex ',vI is called .the start vertex of the path. 

The vertex v is called the finish vertex of the path. Vertices 
n, 

and v 
'n are called the endpoints of the path. If n 1= I -' 

the path is called propp-I-. The length of a path is the number of 

edges it contains. 

Although a path may be conceptualized as a sub graph, the order of 

the vertices in the path is important. We shall generally identify a 

path by listing its sequence of points; the edges of the path are uniquely 
\ 

detennined by this sequence. Note that a path may contain no edges. 

Paths will be denoted by the small letter" p " with or without 

subscripts. The small letter n c ,: ;.rill occasionally be used to denote a 

cycle. We a~sert the existence of a path from VI "to vn ' and name 
-)(-

the path p, ·oy writing p: VI ~ vn . The notation means that 

there exists a path of le:lgth\One or greater between VI and vn (In 
i 

general, if R is any binary 'relation and I is the identitY"'elation, 
> '. 

R+ denotes the transitive clos\lre of R, and R* denotes the reflexive 
\ 

transitive closure of R .) \ 

Lemma 3.1: 
-+ 

Let G be a directed graph. Then an;}' path (s:imple path, 
-+ 

of d is a path (s:imple l-ath, cycle) of G == u( G) . cycle) 

11 



The converse of this lemma is not true. However: 

Lemma :5.2: Let G be an undirected graph. Then any path (simple path, 

cycle) of G corresponds to a path (simple path .. cycle) of G, 

the doubly c.irected version of G. Conversely, an;'l path (simple 

p;:t"t~l) cycle of length greater than two) of G corresponds to a 

path (simple path, cycle o:f :tength greater than tW"Q) of G. 

Definition 3.8: Let G =: (V, e.) be an undirected graph. Suppose that 

fo::c each pair of vertices v and w in G, there exj 1':+:.'" :.. :ga.L!l 

* ~ -1) p: v ~ w. Then G is c.onnected. If G = u (G 
~ 

G is 

called connected if and only if G is connected. 

~ 

Lemma 3.3: Let G = (V, e.) be a graph. Then G may be uniquely 

partitioned into a set of pairwise vertex- and edge-disjoi~t 

subgraJ:lh::;:::<lC~;, of which is connected, and each 02 which is not 
~ 

properly contained in a connected sub graph of G. These maximal 

-connected subgraphs are caJ..led the connected comp<?nents of G. 

Proof: See [Ore 62]. 

Definition 3.9: Let G = (V,e.) be an undirected graph. Suppose that 

for each triple of distinct vertices v,w,a in V, there is a 

* path p: v ~ w such that a is not on the path p. Then G is 

biconnected. If, on the other hand, there is a trip~e of distinct 
.;{­

vertices v,w,a in V such that a is on any path p: v=> i·T, 

and there exists at least one such pa+,h, then a is called a.n 

~ -1 ~ 
articulation point of G. If G = u (G), then (j is called 

biconnected if and only if G is biconnected. If a is an 

12 



articulation pomt of G, then a is also said to be an 

articulation point of G . 

-Lemma 3.4: Let G (v. p) ~c (;.i. graph. We may define an eCluivalence 

relation on the set of edges as followE: two edges are eCluivalent 

if 'and only if they belong to a common cycle. Let the distinct 

eCluivalence classes under this relai;,ion be E1' 1 S i ~ n , and 

let. G, ~ ev., e..) ,where If, is the set of vertiees incident to 
~ ~ ~ ~ 

the edges of e.. : 
~ 

(i) G. is biconnect ed, for each 1 <i<n 
~ 

-(ii) No G. is a proper sub graph of a bicc.'nnected sllbgraph 
~ 

of G . 
-(iii) Each articulation point of G occurs more than once 

(iv) 

",iiL011g the V. , 
~ 

l<i<n. Each non-articulation 

point of G occurs e.xactly once among the 

l<i<n 

V. , 
~ 

The set Vo; n V, contains at most one point, for any 
.J.. J 

1 < i,j < n. Such a pomt of intersection is an 

articulation point of the graph. The subgru.phs 

-
-G. 
~ 

of G are called the bio.:::onnected components of G. 

Proof: See [Har 69]. 

Definition 3.10: Let G = (V,e.) be an undirected graph. Suppose that 

for each quadruple of distinct vertices v,w,a,b in V, there is 

* a path p: v ~ w such that neither a nor b is on the path p . 

Then G is triconnected. If there is a quadruple of distinct 

* '/ertjces "r)w, a, b in V such that there is a path p: v ~ w , 

13 
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and any such path contains either a or b, then 

a and b are a biarticulation point pair in G. 
-. 

If G is a 
.~ 

directed version of G , then G is called triconnected if and only 

if G is triconnected. If a and 0 are a biarticulation point 

pair in G, they are also said to be a biarticulation point pair 
-. 

in G. 

The triconnected components of a gT~ph may be defined in several 

ways (see for instance [Tut 66]); each gi~ng an analogy to Lemmas 3.3 

a...'1d 3.4. We shall not need to use triconnected components in our study 

of planarity. However, with a suitable definition of triconnected 

components, a graph is plana: ... if and only if its triconnected compone:J.ts 

are planar, and a triconnected planar graph has an essentiall;y unique 

representation in the plane. 

-Definition '.il: Let G = (v,e) be a graph. Suppose that G may be 

embedded in a plane (or equivalently, in the surface of a sphere) . 

That is, suppose there is a mapping of the edges of the graph into 

the plane in such a way that each edge (v,w) is mapped into a 

s:U>lple curve? with the pOints v a ... nd w mapped :Lnto the endpoints 

of the curve. Mappings of two different edges may have only their 

common endpoints in common. If such a mapping exists, the grn.ph 

G is ca~led planar. If meG) is the image of G in the plane, 

-)C and if meG is the compl.ement of tb,is set relative to the pla.ne, 

m( -G)C then the connected sets of points in 

-
o.J. of G (relative to the mapping m). 

14 
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Lemma ,.5 (Euler's TheC'rem): Let V be the number of vertices, 

E the number of edges, and F the number of faces in a planar 

embedding of a connected graph G. Then V + F = E + 2 • 

Proof: See [Har 69]. 

The most useful property of the plane related to e;rapns is the 

Jordan Curve Theorem: 

Lemma 3.6: Let c be a simple closed curve in the plane. Removal of 

,c from the plane divides the remaining points into exactly two 

topologically connected sets, called the inside and the outside 

of c . 

Proof: Diffjcult. See [Hal 55, Thr 53]. However, for our purposes we 

need this result only for piecewise linear closed curves c. This 

special case is not too difficult to derive. 

-If G is a planar €;!'aph and c is a cycle in G, then the image 

of c under a planar embedding of G is e. simple closed curve. (In 

-fact, G may be embedded so that all edges of c are piecewise linear. 

See [Bus 65].) Thus, if c is removed from G, the remaining vertices 

and edges fall into two sets: those embedded on the inside of the image 

of c and those embedded on the outside of the image of c . We base 

our planarity algorithm on this observation and its corollaries, all of 

which follow from the Jordan Curve Theorem. In particular, we need the 

following result: 

15 
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Lenuna 3.7.: Let c: xl => x2 => ••• => xn_J• => xl be a cycle in a graph 

G which is embedded in the plane. Let (v,X.) , (w,x.) be t1-10 
~ J 

edges no+. on the cycl~. Suppose the order of edges clockwise 

around vertex xi is (xi_1,Xi ), (v,xi ) , (Xi,xi+l ) , and that 

the order of edges clockwise around x. is (x. l'x,) , (w,x.) , 
J J- J J 

(x.,X·n) . J J, ...... Then (v,x.) and (w,x.) ar:= on the same side of c . 
~ J 

If the order of edges cloc}:wise around 

(Xj,Xj+l ) , (w,xj ) , then 

sides of c . 

(v,X. ) 
J. 

and 

x. is 
J 

(w,x .) 
J 

(Xj_l,Xj ) , 

are on opposite 

Proof: A rigorous proof of this theorem requires knowledge of 

topology (see [Hal 55, Thr 53]), but the idea is simple. Suppose 

the order of edges clockwise around x. is (x. l'x,) , (w,x.) , 
J J- J J 

(x .,x. 1) . Then edges (v,x.) and (w,x.) may be connected 
J J+ ~ J 

by a path which follows the cycle but does not cross it, as in 

Figure 3.1. Thus the two edges are on the same side of the 

cycle. 

Suppose the order of edges clockwise around x. is (x. l'x,) 
J J- J 

(x.,x. l ) , (vr,x.) • Eve:ry vertex in the plane may be joined by 
J J+ J 

a simple path to one of the vel~ices on the cycle. If (v,x.) 
~ 

and (w,x.) were on the same side of the cycle then the remark 
J 

above and the first part of the Lenuna would imply that every point 

in the plane is on one sid'e of the cycle, contrary to Lenuna 3.6. 

Thus the second part of t.he Lemma is true. 

We shall need to use two special classes of directed graphs, one 

standard, the other new. 
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Figure 3.1: 

x. 1 J-

Two edges on the same side of a cycle. 
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Defini-r,ion 3.12: Let T be a directed graph. Suppose T satisfies 

t110. following :9roperties: 
~ 

T is connected. 

(ii) There is a unique point in T which is the head of 

( iii) 

~ 

no edges. This point is called the root. 
~ 

!~l other points of T are the head of exactly one 

edge. 

Tilen T is called a directed rooted tree. 

Since we shall deal only with trees which are directed rooted trees, 

we shall refer to them simply as trees. There may be simpler definitions 

of trees, but the one above is the most useful for our purposes. 

~ -+ 
Lemma 3.7: Let T be a tree. Then u(T) contains no cycles. 

Proof: An exercise for the reader. 

Lemma 3.8: Let v and w be vertices in a tree T Then there exists 

either exactly one path p whose endpoints are v and w or ~c 

such path. 

Proof: An exercise for the reader. 

Definition 3.13: A path in a tree T is called a branch of if. 

Definition 3.14: 
~ 

Let T be a tree anli let v and w be vel'tices of T 
If (v,w) is an edge of T, then w is called.'a son of v, a.nd 

* v is called the father of w. If there is a path p: v ~ w , 

then w is called a descendant of It, and v is called an 

18 



ancestor of w. If such a path is proper (v f w) , then w is 

called a proper descendant of v, and v is called a proper 

ance~tor of w . 

We use single-shafted arrows to denote arcs of trees, since we shall 

study trees which are a sub graph of a directed graph, and it will be 

necessary to distin{~ish between the tree arcs and arcs in the larger 

* graph. W'~ use v -+ w to denote the (unique) branch from v to w in 

a tree, and also to indicate the fact that such a path exists. (Vertices 

v and w satisfy the relation "v is an ancestor of w in ?i!".) 
The meaning will be clear from the context. 

DGfini t ion :3 .15: Let 
~ 

T be a tree and let v a vertex of 
~ 
T • The 

subtree of ?i! rooted at v is the tree Tv = (V', e.') whose 

vertices V' are all the descendants of v and whose edges are 

all those edges with taUs in V' : * V' = (w Iv ~ w} ; 

g.' = {(v,w) Iv-.w & VEl"} • 

Definition .3.16: 
-. 

Let G = (V, e) be a directed graph. A spanning tree 

-. ~ -. 
T of G is a subgraph of G which is a tree and which contains 

-+ 
all the vertices of G. If G = (v',e') is an undirected graph, 

any sp~~ing tree of the doubly directed version G of G is also 

a spanning tre~ of G . 

We now present a new class of directed graphs, upon which the 

planarity algorithm is based. 

~ 

Definition 3.17: Let P = (v,e) be a directed graph, consisting of two 

disjoint sets of edges, denoted by v~w aDd v --w respectively. 
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~ 

Suppose P satisfies the following properti~s: 

(i) The subgraph containing the edges v ~ w is a tree T 

(ii) 

~ 

which contains all the vertices of 

spanning tree of 1 . 

We have * -1 
--+ ~ (.~) ,where" _-t" 

~ 
P , called the 

and "-" denote the 

relations defined by the corresponding sets of edges. 

That is, each edge which is not in the spanning tree i/ 
~ ~ 

of P connects a vertex with one of its ancestors in T 

Then P is called a palm tree. The arcs v --ware called the 

~ 
fronds of P. 

Figure 3.2 shows a palm tree and its fronds. Since the notion of 

a palm tree is non-standard, vie shall not develop its properties until 

we discover the context in which it arises. Tree palms are in reality 

more nearly comparable in structure to overgrown cornstalks than to true 

trees. 
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Figure 3.2: A paJm tree. Fronds are dotted. 
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II. The Technique of Depth-first Search 



4. Data structures Representing Graphs 

Good algorithms require an a;p;propriate data st~lcture; we therefore 

look with some care at how a graph may be represented in a computer. We 

need a representation which will preserve the adjacency properties of 

the graph, which will be economical of storage, and which may easily be 

constructed from the original list of vertices and edges which define 

the graph. 

Definition 4.1: Let G (v,e) be a graph with vertices [1,2, ... ,V} . 

The adjacency matrix A = (aij ) of G is a V X V matrix of zeros 

and ones such that a .. 
~J 

1 if' (i,j)eC'" a .. = 0 if (i,j)%C',. 
~J 

The adjacency matrix of a graph is a common representation. If G 

is undirected and contains no loops, A will be symmetric and will have 

zeros on the main diagonal. If' G is directed, then A may be asymmetric. 

Figure 4.1 gives an example of a gre.ph and its adjacency matrix. 

The adjacency matrix of a graph has several useful features. Certain 

Simple matrix operations correspond to simple graphical manipulations. 

For instance, if (b .. ) = Ak -, then b .. 
~J.. ~J 

gives the number of paths of 

length k between vertices i and j . The zeros and ones of the 

adjacency matrix may be packed into machine words to save storage space; 

word operations such as addition and logical operations may be used to 

manipulate the dat':1 w bits at a time if w is the word size of the 

given machine. This saving is somewhat illusory, however. The amount 

of storage space required by an adjacency matrix is k~, and we may 

prove rigorously of most interesting graph problems that they require 
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7 6 

0 1 0 1 0 0 0 1 
1 0 1 0 0 0 1 0 
0 1 0 1 0 1 0 0 

A = 
1 0 1 0 1 0 0 0 
0 0 0 1 0 1 0 1 
0 0 1 0 1 0 1 0 

8 5 
0 1 0 0 0 1 0 1 
1 0 0 0 1 0 1 0 

Figure 4.1: A graph and its adjacency matrix. 
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examination of every bit in the matrix and thus have a computation time 

proportional to at least I- [HoI 70]. When the graph is large enough, 

the gain obtained by packing bits becomes insufficient. If the matrix 

is sparse (E« 1-) we must use a representation which is not as 

wasteful as the adjacency matrix. A list structure representation of 

the graph is a good choice. 

-Definition 4.2: Let G = (v,e) be a graph. For each vertex i€V, we 

may construct a list L. containing all vertices 
]. 

j such that 

(i,j)€e. Such a list is called an adjacency list for vertex i . 

A set of such lists, one for each vertex in G J is called an 

adjacency structure for G. 

Figure 4.2 gives a graph and its adjacency structure:. 

A single graph G may have many adjacency structure~; each ordering 

of the edges around the vertices of G gives a unique adjacency 

structure, and each adjacency structure corresponds to a uniqueoordering 

of the edges at eaCh vertex. (An adjacency structure fOI" an undirected 

graph G corresponds to an embedding of G in some orientable surface; 

see [You 63].) 

If G is undirected, each edge (i,j) is represented twice in an 

-adjacency st~cture; once for i and once for j If G is directed, 

each edge (i,j) is represented exactly once; vertex j appears in the 

adjacency list of vertex i. An adjacency structure requires an amount 

of storage space linear in V and E. The enormous value of an 

adjacency structure of G is that we may use if effectively to perform 
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7~ _____ .. 6 

5 

1: I 2 I.. I )1 4 I ~ 8 VI 

2: 11 I. I .1 3 1 ~I 7 vi 

3 : I 2 I. I ,I 4 I d---rA 6 0 

4: 11 I · I ~ 3 I d--4[j IZl 

5: I 6 I . I ~ 8 I H 4 121 

6: 15 I.J ,W=:=HI3 VI 

7: [6 I ·~I 8 I ~ 2 k1 

8: 12 I .~131 ~Il k1 

Figure 4.2: An adjacency structure for the graph in Figure 4.1. 
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searches of G ; that is, to traverse the edges of G in some systematic 

way. Such a search will require O(V,E) steps. 

27 



5. Searches, Spanning ~rrees, and Finding Connectec!. Components 

Suppose G is a. connected undirected graph which we wich to explore. 

Consider the following procedure. Initially all the vertices of G are 

unexplored. We start from some vertex of G and choose an edge to 

follow. Traversing the edge leads to a new vertex. We continue in this 

way; at each step we select an unexplored edge from a vertex already 

reac.hed and we traverse this edge. The edge J.eads to some vertex, either 

new or already reached. Eventually we will traverse all the edges of G, 

each exactly once. Such a process is called a search of G • 

Any search of G imposes an orientation on the edges in G, 

according to tile direction in which they are traversed. Thus a search 

converts 
~ 

G into a directed graph G. For any starting point in G, 

there may be many possible searches depending upon how the edges to 

explore are select~d. Each search generates a (possibly) different 

directed version 
~ 

~ 
G of G • Any search also proQuces a spanning tree 

TG given by the set of edges which when traversed during the search 

lead to s. new vertex. A graph and the results of two possible searches 

are illustrated in Figure 5.1. 
~ 

Notice that the edges of G which do not form part of the spanning 

tree T G may interconnect the branchet: of the tree. (See the examples 

in Figure 5.1.) For one type of search, however, this is not true. 

Suppose we USe the following rule for selecting an edge to traverse: 

Always choose an edge emanating from the vertex most recently reached 

which still has unexplored edges. He call a search whict uses tbis rule 

a depth-first search. The set of old vertices with possibly unexplored 

edges m~y be stored on a stac~; thus the search may be easily programmed 
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8 5 

(b) (1,2) (1,4) (1,8) (2,3)( 2, 7) (4,3) (4,5) (8,5) (8,7) (3, 6) (5,6) (7,6) 

(c) 7 

1 

(d) (1,2)(2,3)(3,4)(4,1)(1,8)(8,5)(5,6)(6,7)(7,8)(2,7)(6,3)(4,5) 

( e) 4 / 
( I 
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," ./ " J 
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/ -~' / 

/ " 
/ 5 _,,'" 

I E---

..If 8 

Figure 5.1: Two searches on a graph. (a) Graph. (b), (d) Search orders. 

(c), ( e) Directed graphs generated by searches. Spanning 

trees indicated by solid arcs. 



either iteratively or recursively. The program given below carries 

ou-/; a depth-first search of a graph G, starting at vertex s. The 

procedure constructs the directed graph generated by the search, and 

uses an adjacency structure of the graph G. 

begin 

integer i; 

procedure DFS(v,u); comment v is the current vertex, and 11 

is the father of v in the sJ;anning tree generated by the 

search; 

begin 

NUMBER (v) := i := i+l; 

for w in the adjacency list of v do 

begin 

end; 

i .- U; 
DFS{s,O); 

if w is not yet numbered then 

begin 

construct arc v ~w in P; 

DFS(w, v) ; 

end 

eise if NUMBER(W) < NUMBER{v) and w 1= 1.1. then 

constr1.l.ct arc v -~ w in P; 

Figure 5.2 gives an example of the directed graph generated by a 

depth-first search. 

An adjacency structure gives a unique depth-first search for any 

starting vertex; edge selection order is fixed by the order of the 

adjacency lists. The search requires O(V,E) steps, where V is the 

number of vertice;:; and E the number of edges of the graph. Let us 

characterize the r'I.irected graphs generated by depth-first searches. 
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1~----------------~6 
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8 ....... ----------~ 5 

(1,8) (8,7) (1,6) (6,3) (3,2) (2,1) (2,1) (3,4) (4,1) (4,5) (5,8) ( 5,6) 

5 
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\~ J , 
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II 
~ 

// t// 
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1 

( d) 1: L8 

ro. c:.. I 7 

3: [ 2 

4: 1 

5: 8 

6: 3 

7: 6 

8: L7 

L21 
I . ~ 1 ~71 

I ~ 4 1..</71 

I • I ~ 5 VI 

I ::J { 6 1::;21 

k?1 

0 
[/I 

Figure ).2: Depth-first search of a graph. (a) Graph. (b) Search order. 

(c) Generated palm tree (spanning tree indicated by solid arcs). 

(d) Adjacency structure of .~alm tree. 
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... 
Recall the de,f,inition of a palm tr.:e giv-en in Chapter 3: P is a palm 

... 
tree if P is a corJlected directed graph with a directed rooted spanning 

... ...... '* ... 
tree T and all arcs (i, j) (P-T satisf'y j ... i in T. The edges of 

...... 
P - T are called the fionds of the palm. 

~ 

Theorem 5.1: Let G be the directed graph generated by a depth-first 

~ 

search of a connected graph G. Then G is a palm tree. Conversely, 
... 

let G be any palm tree. Then G is generated by same depth-first 

-t> 
search of G, the undirected version of G • 

Proof: 
... 

Suppose G = (v,e) is the directed ~raph generated by a depth-

first search of some connected graph G, and assume that the search 

beg~ns at vertex s . Examine the procedure DFS. The algorithm 

clea.rly terminates because each vertex becomes v only once and is 

numbered then.. Furthermore, each edge in the graph is examined 

exactly twice. Therefore the time required by the search is linear 

in l' and e. 

For any vertices v and w, let d(v,w) be the len~h of 

the shortest path between v and w in G. Since G is cOnllected, 

all distances are finite. Suppose that some vertex remains unnumbered 

by the sr::arch. Let v be an UIl.'1umbered vertex such that d(s,v) is 

minimal. Then there is a vertex -v{ such that w is adjacent to v 

and d(s,w) < d(s,v) Thus w is numbered. But v will also be 

numbered, since it is adjacent to w. This means that all vertices 

are numbe~ed during the search. 

The vert ex s is -r.he head of no edge w ... s. Each other 

vertex v is the head of exactly one ed.ge w ... v. The subgraph 

... ... 
T of G defined by the edges V","'.l is obviously connected, since 
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--. 
there is a path in T frem the root s to any vertex. This may 

be prove~ by induction. - -Thus T is a spanning tree of G. 

Each arc of the original graph is directed in at least one 

direction; if (v,w) does not become an arc of the spanning tree 
--. 
T , either v --war w -- v must be constructed, since both v 

and ware numbered whenever edge (v,w) is inspected and either 

NUMBER (v) < NUMBER (w) or NUMBER ( v) > NUMBER (w) • 

The arcs v -+ w run from smaller numbered points to larger 

numbered points. The arcs v -- w run from larger numbered points 

to smaller numbered points. If arc v --w is constructed, arc 

w ~ v is not constructed later because both v and ware numbered. 

If arc w--. v is constructed, arc v --w is not later constructed, 

because of the test " w f. u " in procedure DFS. Thus each edge in 

the original graph is directed in one and only one direction. 

Consider an arc v - ..... w. We have NUMBER(w) < NUMBER(v) • 

Thus w is numbered before v. Since v --w is constructed and 

not V-)W, v must be numbered before edge (w,v) is inspected. 

Thus v must be numbered during execution of DFS(w,_) . But all 

vertices numbered du::oing executj.on of DFS(w,_) a:!:'e descendants 

* of w. This means tnat w ~ v , and G is a palm tree. 
-4 

To prove the converse part of the theorem, suppose that P 

-+ 
is a palm tree, with spanning tree T and undirected version P . 

Construct an adjacency structure of P in which all the edges of 
~ 

T appear before the other edges of P in the adjacency lists. 
--. 

Starting with the root of T , perform a depth-first search using 

this adjacency structure. 
~ 

The search will traverse the edges of T 
-+ 

preferenGiaJly and will generate the palm tree P; it is easy to 

33 



see that each edge is directed correctly. This completes the proof 

of the theorem. 

From Theorem 5.1 we have the following interesting result: 

Corollary 5.2: Let G be any undirected graph. Then G can be 

converted into a palm tree by directing its edges in a suitable 

manner. 

A s1Jnple application of the concept of search is a well-known 

algorithm for determining the connected components of a graph G • 

We choose an arbitrary initial vertex and search. The search gives one 

connected component. We then choose some new vertex and sea:rch again. 

After a suitable number of searches the graph will be completely explored 

and all its connected components will be found. The program below will 

carry out these searches. 

begin 

int.eger i; 

procedure CONNECT (v,u) ; 

begin 

NUMBER (v) .- i := i+l; 

for w in the adjacency list of v do 

begin 

end· --' 
i := 0; 

if w is not yet numbered then 

begin 

add edge (v,w) to current connected component; 

CONNECT (w,v) ; 

end 

else if NUMBER(w) < NUMBER(v) and w 1= u ther_ 

add edge (v,w) to c~rent component; 

end; 

for x in V if x is not yet numbered then 
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end· --, 

begin 

start new connected component; 

CONIDX::T(x,O) ; 

end; 

Depth-first search is convenient but not neceesary for this algo:L'ithm; 

any search laethod will do. It is easy tp verify that the space and ~ime 

requirements of the algorithm are linear in V and E • 

As we shall see, depth-first search is an extremely useiul tech.l1ique. 

In the algorithms that follow we perform one depth-first search of a 

~ 

graph G to generate a palm tree P and a corresponding adjacency 

structure. In ~;.?me cases we may reorder the lists of this adjacency 

structure to give a new depth-first search. The new search is performed 
~ 

on the directed graph P; thus the edges are traversed in the same 

direction as during the first search but explored in a different order. 

The test to avoici. traversing edges in the wrong direction is unnecessary, 

and the palm tree does not change after the initial search. We save 

enough information during the later search to enable us to answer 

~ 

interesting questions about G, aided by the simple structure of P 
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6. Finding Biconnected Components Using Depth-first Search 

We have seen how to use a search to find the connected components 

of a graph. The simple structure oi' paJJn trees enables us to answer 

more complicated connectivity questions in linear time. AS;3Ume for 

example that a connected graph G has an articulation point a as 

illustrated in Figure 6.1. Suppose we begin a depth-first search in 

region G-R and enter region R by passing through vertex a. We 

must eventually back up through vertex a; that is the only way to 

leave region R during the search. This observation allows us to 

efficiently calculate the bir.o!!..l1ected components of G . 

Figure 6.1: Vertex a separates region R from the rest of the graph. 

-. 
Let P be the: paJJn tree generated by a depth-first search of G 

-. 
and let T be its spanning tree. The procedure DFS numbers the vertices 

-. 
of P from 1 to V so that the numbering corresponds to the oro.er in 
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which they have been reached during the search. We may refer to a 

-+ 
vertex by its number. Then an ancestor j in T of any vertex i has 

j < i . If i 
-+ 

is any vertex of P, let LOWPrl(i) be the smallest 

* vertex in the set s. = fj Ii - -- j}. If S. is empty, let 
~ l 

LOWPrl(i) = + co. The following results form the basis of an algorithm 

for finding biconnected components. This algorithm was discovered by 

Hopcroft and Tarjan [Hop 7ld]. Paton [Pat 71] describes a similar 

algorithm. 

Lemma 6.1: Let G be an undirected graph and let P be a palm tree 

formed by directing the edges of G. Let T be the spanning tree 

* of P. Suppose p: v:::) w is any path in G. Then p contains 

a point which is an ancestor of both v and w in 
-+ T . 

Proof: Let T 
u 

• ~'r' 

with rCiot u be the smallest subtree of T containing 

all vertices on the path p. If u = v or u = w the lemma is 

irnmediat e . Otherwi3e, let 

points on p such that 

::;ubtree exists tHen u is on p 

and T be two subtrees containing 
u2 

and If only one such 

since T is minimal. 
u 

If two 

such subtrees exist, path p can only get from T to T 
u

l 
u 2 

by passing through vertex u, since no point in one of these trees 

is an ancestor of any point in the other, while both -+ and --+ 

connect only anc~stors in a palm tree. Since u is an ancestor 

of both v and w, the lemma holds. 

Lemma 6.2: Let G be a connected undirected graph. Let P be a palm 

tree formed by directing the edges of G, and let T be the 
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-+ 
spanning tree of P. Suppose a) v) ware d:i.stinct vertices of G 

-+ 
such that (a,v)ET, and suppose w is not a descendant of v 

-+ 'J!--+ 
in T (That is, "I(v -+ ",) in T .) If LOWPl'l(v) ? a then a 

-+ 
is an articulation point of P and removal of a disconnects 

v and w. Conversely, if a is an articulation point of G 

then there exist vertices v and w which satisfy the properties 

above. 

Proof: If a -+ v and LOWPTl(v)? a , then any path from v not passing 
-+ 

throUfs .. 'Il a remains in the subtree T ) and this subtree does not 
. v 

contain the point w. This gives the first part of the Lenuna. 

To prove the converse, let a be an articulation point of G. 

If a is the root of G then at least two tree arcs must emanate 

from a. Let v be the head of one such arc and let w be the 

head of another such arc. Then a -+ v, LOWPl'l( v) ? a , and w 

-+ 
is not a descendant of v. If a is not the root of P, consider 

the connected components formed hy deleting a from G. One 

component must be u :;;ubtree of iJ! whose root v is a son of a. 

If w is any proper ancestor of a, then a -+ v, LOWPl'l(v) > a , 

and w is not a descendant of v. Thus the converse part of the 

Lenuna is true. 

Figure 6.2 shows a graph, its LOWPTI values, articulation points, 

and biconnected components. The LOWPl'l values of all the vertices of 

-+ 
a palm tree P may be calculated during a single depth-first search, 

sin~e LOWPrl(v) = mine (LOWPl'l(w) Iv -+ ",) , (NUMBER(w) Iv -- w}) 

On the basis of such a calculation, the articulation points and the 
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(c) Biconnected components. 
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biconnected components may be determi: ~d, all during one search. The 

biconnectivity algorithm is presented below. The program will compute 

the biconnected canponents of a graph G, starting from vertex s • 

begin 

integer i; 

procedure BICONNECT(v,u); 

begin 

NUMBER (v) := i := HI; 

LOWPrI( v) : = + 00; 

for w in the adjacency list of v do 

begin 

if w is not yet numbered then 

begin 

add (v,w) to stack of edges; 

BICONNFCT(w,v); 

LOWPrI(v) := min(LOWPrl(v);I..l)WPl'I(w)); 

if LOWPrI(w) ~ NU~;JBER( v) then 

begin 

start new biconnected component; 

for (ul ,u2) on edge stack with 

NUMBER ( ul ) > NUMBER ( v) do 

delete (uI 'u2) from edge stack 

and add it to current component; 

delete (v,w) from edge stack and add it 

to current component; 

end 

~lse if NUMBER(w) < NUMBER(v) and w 1= u then 

b·~gin 

add (v,w) to edge stack; 

LOWPrI(v) := min(LOWPrl(v),NUMBER(w)); 
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~ 0== 0; 

empty the edge stack; 

for x in V do if x is not yet numbered then BICONNECT(X,O); 

end; 

-+ 
The edges of Pare placel on a stack as they are traversed; when 

an articulation point is :to1.md the corresponding ec.ges are all on top of 

the stack. (If (v,w) ET and LOWPrl(w)? v , thel'l the cC'r"C'esponding 

biconnected component contains the edges :'in 

* (ul ,u2 ) \w-+ul } U ((v,w)} which are still on the edge stack.) 

A single search on each connected component of a graph G will give 

us all the biconnectecl '~omponents of G • 

Theorem 6.3: The biconnectivity algoritlun requires O(V,E) space and 

time when applied to a graph with V vertices and E edges. 

Proof: The algoritt® clearly requires space linear in V and E ° The 

algorit~~ is similar to the connectivity algorit~Jn, except that 

Lowprl va.lues are calculated and each edge is :placed on the edge 

Rtack once and removed from the edge stack once. The amount of 

extra time required by these operations is proportional to E • 

Thus BICONNECT has a time bound linear in V and E • 

Theorem 6.4: The biconnectivity algoritlun correctly gives the biconnected 

com;ronents of any undirected gra.ph G ° 

Proof: The actual cl.2pth-first search undertaken by the algor:i.tl1m depends 

on the adjacency structure chosen to represent G; we shall prove 

that the algoritlun is correct for all adjacency structures. Notice 
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first that the bicon'1.ectivity algoritbm contains as a· part the 

algoritbm presented in Cb~pter 4 for finding connected components. 
" ; 

Each connected component is analyzed separately to find its 

biconnected components. Thu::; we need only prove that the 

biconnectivity algorithm works correctly on connected graphs: G . 

The correctness proof is by induction on the number of edges 

in G. Suppose G is connected and contains no edges. G either 

is empty or consists of a single pOint. The algoritbm "l'Till terminate 

after examining G and listing no components. Thus the ,~lgorithn 
/ 

operates correctly in this case. Now suppose that the a;Lgoritbm 

works correctly on all connected gra.phs with E-l or fJ~w'er edges. 

Consider applying the algoritbm to a connected 

edges. 

! 
i 

graph P 
/ 

./ 
I 

with E 

Each edge placed on the stack of edges is event;iually removed 
,I 
I 

and added to a component since everything on the e~ge stack is 
/ 

removed whenever the search returns to the root elf the palm tree 
! 

of G. Consider the situation when the first;6omponent G' is 

formed. Suppose that this component does not include all the edges 

of G. T.hen the vertex v currently being exaJ1ined is an 

articulation point cf the graph and separates the ed:ges in the 

component from the other edges in the graph by Lemma 6.2. 

Consider only the set of edges in the component. If 

BICO~T(v,O) is executed, using the graph G' as data, the 

steps taken by the algorithm are the same as those taken during the 

analysis of the edges of G' when the data consists of the entire 

graph G. Since G' contains fewer edges than G, the algorithm 
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operates correctly on G' , and G' must be biconnected. If we 

delete the edges of G' from G, we get another sub graph Gil 

with fewer edges than G since G' is not empty. The algoritlun 

operates correctly on Gil by the indue.tion assumption. The 

behavior of the algorithm on G is simply a composite of its 

behavior on G' and on Gil ; thus the algorithm must operate 

correctly on G . 

Now assume that only one component is found. We want to 

show that in this case G is biconnected. Suppose that G is 

not biconnected. Then G has an articulation point a. By 

Lemma 6.2, LOWPT1(v)? a for some son v of a. But the 

articulation point test in the program will succeed when the edge 

(a,v) is examined, and more than one biconnected component will 

be generated. This contradiction shows that G is bi;:!onnected, 

~~d the algorithm works correctly in this case. 

By induction, the bicolli1ectivity algorithm gives the correct 

components when applied to any conneeted graph, and hence when 

applied to any graph. 
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III. A Linear Planarity Algorithm 



7. General Description 

We wish to decide whether OT not a given graph G can bp embGdded 

in the plane. We can answer this quedjion using an algorithm 'iThose space 

and time bounds are linear in 'J, the number of vertices in the gral!h G. 

An intuitive description of the algorithm is presented here; le.ter th8 

various operations necessary will be discussed in detail. Figure 7.1 

gives a flowchart of the overall process. 

Suppose a connected graph G is embedded in a plane. When the 

set of points representing the edges and vertices of G is deleted 

. from the plane, certain regi ons remain; these are the called the faces 

of G. Euler proved a relationship between the number of 'Vertices if, 

faces F, and edges E of a connected planar graph: V+ F = E + 2 

(Lemma 3.5). A consequence of this fact is: 

Lemma 7.1: If G is a planar graph with three or more vertices then 

E < 3V - 6 . 

Proof: If G is not connected, w·;, may connect it by adding additional 

edges. Since G is not a multigraph the boundary of each face 

must contain at least three edges. Thus 3F:S 2E ; eVf,ry t::d.ge is 

counted twice if we sum over the facial boundaries. It follows that 

3E = 3V+ 3F - 6 :s 3V+ 2E - 6 , and E:S 3V - 6 • 

Because of Lemma 7.1, we may hope to determine planarity in time 

which is proportio!lf..l to the number of vertices. The first step of the 

algorithm is to count the nwnber of edges in the graph G. If the count eve}: 

exceeds 3V - 6 , we stop and declare the graph non-planar. Next we may 

divide the graph into bico!"Jlected corr.ponents, using the algorithm described. 



Optional 
step 

Yes 

Find biconnected 
components of graph G. 

----Perform first depth-first search. -Construct a palm tree P for G. 
Calculate lotoJIXlint information for vertices. 

Reorder edges using 
radix sorl. 

Perform second search. Renumber 
vertices in search order. 

Perform third search. Construct paths 
and subgraph of dependency graph. 

{ __ I_S __ 2_-_C_o~1_Or~in_g~O_f __ d_e_p_e_n_d_e_n_C_y __ \ subgraph possible? 

Yes 

Does 2-coloring give a planar 
~iliedding without crossing edges? 

No 

,Fig,ure 7.1: :nowcharl fur planarity testing algorithm. 
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in Chapter 6. (This step is not actually necessary, but it will simplify 

the presentation.) 

Lemma 7.2: A graph is planar if and only if all its biconnected 

components are planar. 

Proof: standard. See [Ber 62]. 

Consider one of the biconnect,3d components. We know' "that such a 

cOM'ponent may be converted into a palm tree P using a depth-first 

~ 

search. Suppose that P is embedded in the plane. Without loss of 

-+ 
generality P may be embedded so that the branches of its o::;panning tree 

point "up" in the plane, and none of the fronds cross under the root 

of the tree. Let u be a vertex in the component, and let 

(U,Vl ),(u,v2), •.• ,(u,vn) be the tree arcs emanating from u, in the 

order they occur around u in the planar embedding. Let Tl ,T2, ... ,Tn 

be the subtrees whose roots are vl ,v2' ..• ,vn ' respectively. Various 

fronds emanate from these subtrees and connect to ancestors of u, as 

illustrated in Figure 7.2. 

For tree T. , the lowest point of connection is LOWPT1(v.) . 
1 1 

The highest point of connection (below u) we may call HIGHPT(v.) • 
1 

Every subtree Ti except one (T2 in Figure 7.2) must have all of 

* its fronds descending on the same side of the branch 1 ~ u in the 

planar embedding. The subtrees Tl ,T2, ... ,T
n 

must be arranged so that 

and T have the htghest intervals 
n 

[LOWPT1(v.),HIGHPT(v.)] 
1 1 

and 

these intervals are non-decreasing as we move in the sequence of subtrees 

toward the tree (if one exists) whose fronds descend on both sides of 
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* the branch 1 ~ u Two subtrees (such as Tl and T4 in Figure 7.2) 

whose intervals overlap by more than one point cannot have their fronds 

·x· 
descending on the same side of the branch 1 ~ u • 

The value HIGHPr(v) is not easy to calculate, unfortunately, so 

we must resort to a bit ef legerdemain to actually determine the proper 

arrangement of the various su'bt'~ees of a biconnected component. Instead 

of using subtrees, we examine paths. Each path is of the form 

* p: s - -- f. If (s,v) is the first edge on such a path p and s ~v 

is a tree arc, then the interval associated with p is the same as that 

associated with T J the subtree rooted at v. If (s,v) is a frond 
v 

(p is of length one), then the interval associated with p is [v, v] 

We do not completely calculate these intervals but we do determine 

something about them; in particular we compute the lowest point of eacn 

interval and we determine which intervals consist of more than one point. 

Using this information, I'le chJose paths ''lith the lowest intervals 

first. As the paths are selected, we may imagine adding them to a 

planar embedding which contains all the previously selected paths. If 

paths Pl,P2'" "Pn pass through vertex s, then their ordering around 

s is restricted in the same way as the ordering of the corresponding 

subtrees ITO 
.L • 

l 
has root 

-l(-

V . 
l 

is on path Pi' 

and s ~ v. . Thus each new path p: s ~ f has at most a tWo-fold 
l 

ambiguity in its placement; p must be placed either at the l.eft end or 

at the right end of the sequence of paths around vertex s. See 

Figure 7.3. We call one of these possibilities the left embedding and 

the other the right embedding. 

Using some additional information about the paths, we develop a 

dependency relation between paths: two paths may ~it:.her constrain each 
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'l'he two possible embeddings of new path p . 
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other to have the same embedding, or they may constrain each other to 

have opposite embeddings, or they may not restrict each other at all. 

The relation consists of a set of c~ualities and inequalities which 

must be satisfied over a two-element domain. We shall see that a graph 

is vlanar if and only if its dependency relation is satisfiable. 

We may construct a graph corresponding to the dependency relation. 

The vertices in this graph are the paths in the original graph. Two' 

paths are joined by an ELINK if they must have e~ual embeddings, and two 

paths are joined by an ILINK if they must have une~ual embeddings. The 

resulting graph is called a ~dency graph D ; this graph is colorable 

using two colors if and only if the original graph G is planar. In 

order to test planarity, then, we convert each biconnected component of 

the graph into a palm tree, we partition each palm tree into a set of 

edge-disjoint paths, we construct the corresponding dependency graph D, 

and we attempt to color D using two colors. 

In order to get a fast algorithm, we must use another bit of 

c.leverness. We shall see that the number of paths generated is E-V+l 

The dependency graph maya priori coptain up to (E-V+l) (E-V)/2 edges. 

We do not actually find all lin!;.s in the dependency graph, but only 

enough to connect the connected components of this graph. Since a 

two-coloring of any connected component is essentially unique, the 

selected links provide enough information to gi'Te only one coloring. 

(We may permute colors in the various connected components arbitrarily.) 

We then test this coloring to see if it is a coloring of the entire 

dependency graph. If so, the original graph is planar and the coloring 

gives a planar embedding. If not, the gTaph is nnn-~lanar. 
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Each step of this process may be carried out in time proportional 

to the number of vertices. (The subgraph of the dependency graph which 

is actually constructed contains a number of links linear in V.) 

The storage space required is also proportional to the nunlber of 

vertices. Thus the planarity algorithm is linear in V in both time 

and space; furthermore, +'he algorithm is optimal to within a constant 

factor, since any correct planarity algorithm must examine each edge of 

the graph at least once. Figure 7.4 gives an example of the algorithm's 

application. The exaJ!lple illustrates the general steps involved in 

detennining planarity. In the next sections we develop the details of 

these steps. 
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8. Pathfinding 

Assume that G is a biconnected graph with E $ 3V-6. In order 

to decide whether G is planar, we shall perform three depth-first 

searches of G. The first search generates a palm tree 
-+ 
P by direct ing 

all the edges of G. -+ 
It also gives information about the fronds of P . 

This information is used to construct an adjacency structure A 
-+ 

for P 

which determines the last two searches. The second depth-first search 

-+ 
numbers the vertices of P. The third search generates paths and 

discovers their L.terrelationships. In this cha~ter we shall consider 

the three searches and the pathfinding process in detail. 

-+ 
If v is a point in a palm tree P, we wish to know the set of 

points * Sv = [wlv -+ - ..... w} The two lowest points in S adequat ely 
v 

represent S for our purposes. 
v 

Thus we have the following definition: 

-+ 
Definition 8.1: Let G be a connected undi:::'ected graph.. Let P be a 

palm tree generated by a depth-first search of G. Suppose that 

-+ 
the vertices of P are numbered in the order they are reached 

during the search. We define two numbers characteristic of a 

-+ 
vertex v relative to the palm tree P. LOWPrl( v) is the number 

* of the lowest numbered vertex WI in the set sv = [w Iv ..... -- w} . 

LOWPI'2( v) is the number of the second lowest numbered vertex w2 

in the set Sv' if such a vertex w2 < v exists. If ISv \ = 0 , 

LOWPI'l(v) = LOWPT2(v) = +co. If \S"I = 1, LOWPI'2(v) = +co. 

It is :ilIlportant to realize that LOWPrl(v) 1= LOWPr2(v) Uliless 

LOWPl'l(v) = LOWPI'2(v) = + co. Figure 8.1 gives an example of a palm 

tree and two sets of its lowpoint values. The pair 
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(b) L~f.PTl(7) = l; LOWPr2(7) = 6. 

(c) LOWPrl(3) = l; LOWPr2(3) = + ex) • 
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(LOvTPI'l(v) , LOWPT2(v)) is calculated during the initial depth-first 

search of G. The calculation is an extension of that in the 

biconnectivity algorithm. A recursive procedure for this calculation 

is presented below. It is easy to verify that the program correctly 

computes LOWPTI and LOWPT2, using a depth-first search which begins 

at vertex s. 

begin 

integer i; 

procedure DFSl(v,u); 

begin 

NUMBER (v) .- i := i+l; 

LOWPI' 1 (v) := LOWPT2(v) + CQ; 

for w in the adjacency list of v do 

begin 

if w is not yet numbered then 

:t?egin 
-+ 

constr~ct arc v-+w in P; 

DFSl(w,v); 

if LOWPTl(1f) < LOWPI'l(v) then 

begln 

LOWPT2(v) := min(LOWPT1(v) ,I.QT,";Pr2('f)); 

LOWPTl(v) := LOWPTl(w); 

end 

E:lse if LOWPl'l(w) = LOWPTl{v) then 

LOWPI'2(v) := min(L01m2(v),LOWPf2(w)) 

else LOWPT2(v) := mir.(LOWPT2(v),LOWPTl(w)); 

end 

else if NUMBER(w) < NUMBER(v) and w 1= u then 

-+ 
construct arc v -~w in P; 

if NUMBER(W) < LOWPTl( v) then 



end; 

i : = 0; 

DFS1(s,0) ; 

end; 

/ 

LOWPT2(v) OWPT1(v); 

LOWPrl(v) := NUMBER(W); 

end 

else if NUMBER(w) > LO\oTPI'l(v) then 

LOWPI'2( v) := n m(LOWPr2( v) ,NUMBER(w)) ; 

Figure 8.2 illustrates why we need tnlY consider the two lowest 

points in the set S v Suppose u ~ v. and u ~ v2 are two tree arcs 

descend on the left in some 
-. 

in P, and all fronds from T and 
vl 

-+ 
planar embedding of P. If 

'12 

< LOWPrl(Vl ) < u , or if' 

Vl must appear 

to the left of v2 in the ordering of points around u. The algorithm 

will attempt to embed T before T v
2 

v
l -+ 

The first search generates a palm tree p • This palm tree has 

several possible adjacency structures, each corresponding to an ordering 

-+ 
of the edges around the vertices of P. The adjacency structures for 

-+ 
P have one entry for each of the edges of the origine..l graph G; all 

the edges are now directed. We use the lowpoint values to choose a 

particular adjacency structure A, which will be used to determine the 

selection of paths in the graph. 'This adjacency structure is based upon 

the orclering of paths determined by their connections with ancestors of 

their start vertices which was described informally in Chapte:-..' 7. The 
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ordering i.s chosen so that a depth-first search using this adjacency 

6tructure will choose paths with lowest frond heads first. The 

implications of the ordering are presented in the lemmas below. We 

refer to vertices by the numbers assigned using DFSI . 

Definition 8.2: Let ¢ be the mapping from the edges of a palm tree 
~ 

into P ([l,V] U [+co}) X [O,l}. d~fined as follows: 

(i) If e = v --+ W , ¢(e) = (w,O) . 
(ii) If e=v~w and LOWPr2(w) >v , ¢( e) (LOWFT1(w), 0) 

(iii) If e=v~w and 10WPl'2(w) <v , ¢( e) = (LOWPT1(w),1) 

Definition 8.3: 
~ 

Let A be any ad,jacency structure fOl' a palm tree P 

A is called acceptable if the edges e in each adjacency list L v 

of A are ordered lexicographically according to the value of ¢(e) . 

In general, a palm tree 
~ 
P ha~ many acceptable adjacency 

structures A. It is ea,sy to construct one by using a single radix 

sort. LOWPrl(v) and LOWPT2(v) are integers in the range [l,V] U [+co}. 

Since we may assume G is biconnected, LOWPT1(v) < v for all vertices, 

and LOlifPI'l is never + co. Thus we need 2V buckets. The following 

procedure gives the sorting algorithm. All vertices are identified by 

the number assigned to them during the initial search. It is obvious 

that the sorting procedure requires time proportional to V. 

proc.edure SORT; 

begin 
~ 

for each arc (u,v) of P do 

if u --+ V then place (u, v) in BUCKET(2*v-l) 

else if LOWPT2 (v) ~ u then 

place (u,v) in BUCKET(2*LOWPTl(v)-1) 
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else place (u,v) in BUCKET(2*LOWPrl(v)); 

for i := 1 until 2*V do 

for each arc (u,v) in BUCKET(i) do 

place v at end of adjacency list of vertex u; 

Lerruna 8.1: 
-+ -+ 

Let P be a biconnected palm tree with spanning tree T . 

-+ 
Suppose that the vertices of P are identified by distinct numbers .... 

* -+ in such a way that v -7 W in T implies v < w. Let LOWPl'l 

and LOWPT2 be defined as in Definition 8.1 using the given 

numbering. Then the acceptable adjacency structures are 

independent of the numbering chosen. 

Proof: Since G is biconnected, LOWPT1(v) is always an ancestor 

of v. The value of ¢((x,y)) depends only on the fronds of P 
and th~ numbers of the ancestors of x. The order of the 

ancestors of a vertex is identical to the order of their numbers, 

b~r the hJ~othe3is of the lerruna, and this order is independent of 
-7 

the actual numbering selected. 'rhe property of being a frond of P 

is also independent of the numbering. Thus the edge order in~osed 

by ¢ does not depend upon the numbering. 

-+ 
Lerruna 8.1 implies that we may renumber the vertices of P in the 

order they are reached during a.ny depth-first search of F without 

changing the adjacency structure A. (The adjacenc:r structure specified 

by ¢ is not unique, but the possibilities fer A are independent of 

the numbering.) The secon:l depth-first search numberc the vertices iil a 

special way in preparation for pathfinding. This search selects edger 
I 
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in the reverse order to that given by the adjacency structure A. 

The vertices are renumbered in the order they are reached during the 

search. This numbering if such that if vertex v appears before 

vertex w in the adjacency list of vertex u and u ~ v, u ~ w , 

then v > 1{. This backward numbering scheme is necessary in order to 

determin~ the interactions between the paths, as we shall see later. 

Henceforth we shall refer to vertices using the number assigned by th; 

second depth-first search. 
~ 

We have so far found a palm tree P for G, constructed an 
~ 

adjacency structure for P based ~Fon its lOw~oint values, and numbered 
~ 

the vertices of P. We are ready to undertake the third depth-first 

search, which generates paths. The recursive procedure for this ~~~Tch 

appears below; PATHFINDER(l) carries out the calculation starting with 

the root of the palm tree. The search uses adjacency structure A 

(this time in the correct order) and works in the following way. The 

initial vertex (number one) is marked as the start vertex of the first 

path. The search proceec.s until a frond is traversed. The sequence 

of edges traversed from the start vertex to this frond is the first 

path. When the next edge is traversed during the search, its tail 

vertex is marked as the start of a new path. The new path is completed 

when another frond is travursed. This process is repeated until the 

third search is completed. 
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procedure PATHFINDER(v); 

for w in the adjacency list of v do 

begin comment Vertex s is a global variable, the stal't 

vertex of the current path, and is initialized to 0; 

if v ~ w then 

begin 

if s = 0 then 

begin 

S := v; 

start new path; 

end; 

add (v,w) to current path; 

PATHFINDER(W) ; 

A: if s 1= 0 then delete last edge on current path; 

if s v then s := 0; 

end; 

else comment v --+ w; 

begin 

add (v,w) to current path; 

output current path; 

s . -- 0; 

end; 

The paths generated in this way have some very interesting properties 

which are cruCial to the behavior of the remainder of the planarity 

algorithm. 

* In particular, if p: s -' ._- f is a generated path then f is the 

lowest vertex reachable via an unused frond from Ts Further, if v 

is any intermediate vertex on path p, f is the lmvest vertex 

reachable via any frond from Tv A little more can be said because 

LOWPT2 is used in path selection. The lemmas below give the important 

properties. G is the original biconnected. graph, having V yertices 
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~ 

and E edges. P is the palm tree generated by the first search; 

1 has spanning tree T . 

Lenuna 8.2: The pathfinding algorithm generates E-V+I paths. 

~ 
Proof: One path is generated for each frond of p • Since has 

V-I edges, there are E-V+I paths. 

* Theorem 8.3: Let p: s ~ f be a generated path. Then f is the 

lowest vert~y reachable via an QDused frond from T s If v is 

an intermedi~te vertex on p, f is the lowest vertex reachable 

via any frond from T v 

Proof: If v is reached during the pathfinding search, then all 

ancestors of v have already been reached. A path terminates 

as soon as it reaches an ancestor of any vertex on the path. Each 

path cont~ins one and only one frond, the last edge of the path. 

If P has length one, p consists of ~ unused frond leading to 

the lowest vertex reachable from Ts If P has length greater 

than one and s ~ v is the first edge of p, then T has a 
v 

frond leading to the lowest vertex reachable from Ts This 

follows from the definition of ¢. The theorem follows by induction. 

Theorem 8.4: The first path generated by the pathfinding algorithm is 

a cycle. Each other path is a simple path having exactly two 

vertices (the endpoints of the path) in common and no edges in 

co~~on with previously generated paths. 

Proof: If a generated path p is of length one, it is obviously 

* f = LOWPrI( v) by Theorem 8.3. simple. If p: s -+ v -+ --+ f J then 

63 



Since G is biconnected, f < sunless s = 1 by Lemma 6.2. 

Thus the initial path begins at vertex 1 and is a cycle, and .ll 

other paths are simple. 

Corollary 8. 5 : * If p: s ~ f is one of the generated paths, then 

* ~ f~s in T. 

Proof: Immediate from the proof"'above, since LOWFrl(v) is an 

ancestor of v, for every vertex v in G • 

Lemma 8.6: Let be two generated paths 

such that 
~ 

in T . Suppose that Pl is found before P2 . 

~ 

Proof: Since s2 is a descendant of sl in T, :path Pl cO:l.ld have 

reached f 2 , but instead reached fl. By Theorem 8." fl ~ f2 

Lemma 8.7: 

1,fhich have the same start vertex. Let vl be the second vertex 

of Pl' let v 2 be the second vertex of P2' and suppose that 

Pl is found before P2. Then we have: 

Proof: 

(i) fl ::; f2 

(ii) Suppose fl = f2 If PI is of length greater than 

one and LOWPT2(vl ) < s , when P2 is of length greater 

than one and LOWPr2(v2) « s . 

Vertex VI appears before vertex v2 in the adjacency list of 

vertex s, because path PI is generated before path P2. The 

leMla follows immediately from Definitions 8.2 and 8.,. 
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Le."TIllla 8.8: * 
-)(. 

Let Pl: sl ~ fl and P2: s2 ~ f2 be two generated 

paths. Suppose that sl ~ s2 and that Pl is found before P2 

during the pathfinding * process. Then sl -+ s2 . 

Proof: This result is immediate. The vertex numbering is such that 

the only vertices v which are examined after sl is first 

reached during pathfinding and such that v ~ sl are the descendants 

of Remember, the numbering scheme is backwards. 

We know that a single depth-first search of a possibly planar 

graph G requires time proportional to V. (Remember, we have checked 

that E ~ 3V - 6 .) The machinations perf'ormed during the three searches 

necessary to find paths all require only 0(1) time per step of the 

search process. Thus the total time spent on the three searches is 

O(V) • We have also seen that the sorting used to con~truct the adjacency 

structure A requires O(V) time. Therefore the complete .path 

-'. 

generation process has a time bound lin~ar in V. The space rell'lired 

is also obviously linear in V. 

If G is not biconnected, the paths generated will not all be 

simple. In fact, any path passing from one biconnected component to 

another cannot possibly be simple. There are two ways in which s~~ple 

paths may not be generated. One way is illustrated in Figure 8.3. The 

path in the figure eonsists of a simple path from v to w followed 

by a cycle which loops at w. Vertex w is an articulation point of 

the graph. The region R is separated from the rest of the graph by 

vertex w. The planarity testing algorithm will handle paths of the 

type "aut otr. at ic ally " ; the paths in region R do not interact with those 

in the rest of the graph. Figure 8.4 illustrates the only other 



possibility. vertex w is a dead end (a vertex of degree one). If 

such a vertex is reached during path generation, the edge leading to it 

is deleted from the graph and ignored. (This is accomplished by test A 

in procedure PATHFINDER.) The presence or absence of the deleted edge 

does not affect the planarity of the graph. Although this is only an 

intuitive justification for the dispensability of the biconnectivity 

assumption, one may easily verify this fact using the results below. 
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v (start) 

Figure 8.3: A non-simple path. 

w (dead end) 

1 , (start; of path) 

Figure 8.4: A dead-end branch. 



'9. Embedding of Paths 

We have learned how to partition a biconnected graph G into a 

set of simple paths, such that each path has only its endpoints in common 

with previous paths, and each edge occurs in exactly one path. In this 

chapter we discover how to embed these paths in the plane. Every path, 

when it is placed, has at most two,possible embeddi~gs with respect to 

paths pla.ced earlier, and we shall cha.racterize these possibilities. 

Assume tha,t the paths found in G are numbered from 1 to 

E - V+ 1 in the order they have been generated; path one is the initial 

cycle. We may associate a unique path with each vertex; namely the 

lowest numbered path to COr.t:l:i.li. that vertex. We shall distinguish three 

types of paths; these paths interact in different ,rays. The 1'irst 

type of path is the initial cycle; it is unique. The other two types 

are given by the following definition • 

Definition 9.1: p: s 
." 
.~ f be a sh\pJ.e path generated by the 

-l(. 

pathfinding algorithm. Let PO: So ~ fO be the earliest generated 

path containing s. If i'0 < f , then p is called a normal 

path. fa = f then p is called a special path. The case 

fO > f cl1nnut C';.:cur by Lem7;",a 8.6. 

Let us j·,"agine embed.ii~lG the paths in t~e plane on,= a"v a time in 

the orde: they art:; ccnerated. The re~ .... lts which follow give a specifi-

cation 0-:: the p'..>ssible :;;:,lacements of a path, in ~:ela.tion to previously 

embedd:=c'! j;iCl.ths. 
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Theorem 9.1: Let p be a generated path in a biconnected planar 

graph G. Suppose the previously generated paths have been 

embedded in the plane. Then there are two possible ways to add 

p to the embedding, at least one of which may be extended to 

give a planar embedding of the ent ire graph. 

Proof: The theorem does not claim that there are only two possible 

ways to insert the :path p. It merely asserts that there are 

two placements of p to which -w"e may restrict our attention 

without affecting the planarity of G. The proof requires consi-

deration of the three different types of pa~hs and follows from the 

next three lemmas, which characterize the two embeddings for each 

of the three types of paths. Without loss of generality we may 

assmne that G is embedded in the plane in such a way that the 

-+ 
arcs of the spanning tree T of G point "up" in the plane and 

-+ 
no frond passes under the root of T . 

-+ 
Def'inition 9.2: Let P with root 1 be a palm tree embedded in the 

plane, with tree arcs pointing "up" and no frond passing under 
-+ -l(-

vertex 1. Let (v,w) be a frond of P, with x -> w -. y -+ v . 

(If w = 1 , add an extra tree arc x -t 1 to the embedding, with 

vertex x directly Lelow vertex 1.) Frond (v,w) is said to 

* :lescend on the right (of branch 1 -+ v) if the order of edges 

clockwj:;e around w is (x,w) , (w,y) , (v,w) . Frond (v,w) is 

* said to descend on the left (of branch 1 -+ v) if the order of edges 

clockwise ~round w is (x,w) , (v,w) , (w,y) . Figure 9.1 illustrates 

this definitim. 
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w lc- ..... 

(a) (b) 

Figure 9.1: Position of fronds in a planar palm tree. 

(a) Frond descends on right. 

(b) Frond de:;;cends on left. 
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* Lemma 9.2: Let p: 1 ~ 1 be the initial cycle of G. Then 

Theorem 9.1 is true for p. 

Proof: Figure 9.2 illustrates the two possible embeddings for the 

initial cycle. If the tree arcs of the cycle are drawn upwards in 

the plane, the frond which forms the last arc of the cycle may 

descend either on the left side or-.on the rtght side of the tree 

ar~s, giving respectively the left embedding and the right embedding. 

* * Lemma 9.3: Let p: s ~ f be a normal path of G. Let PO: So ~ fo 

be the earliest path containing s and suppose that x ~ s. Then 

Theorem 9.1 i~ true for p, and without loss of generality p 

may be inserted into one of the two faces in the partial embedding 

having the edge (x,s) on its boundary. 

Proof: Let be the paths already embedded which contain 

vertex s, in the order they occur clockwise around s beginning 

from arc x -t S We w~ll show that without loss· of generality p 

may be embedded either t.o the left of Pl' with its frond descending 
.j(-

on the left of branch 1 -> s or to the rig1i'~ of Pn' with its 

-* 
frond descending on the right of 1 - s Thus suppose we 'fish 

to place p so that its frond descends on the right. 

* (path s ). Suppose p: s ~ f Pn starts at Let c be 
n n n 

* the cycle formed by Pn and the branch f -s . If f <f and n n 

the frond of p descends on the right, p must be place::d to the 

right of p by Lemma 3.7 and Definition 9.2, since the frond of 
n 

p and the first edge o~" p lnust be on the same side of c 
n 

(Figure 9.3(a)). This argument also shows that p must be to the 
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(~ 

Figure 9.2: Embedding of a cycle. 

(a) Left embedding. 

(b) Right embedding. 
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right of Po in the ordering of paths about s. 

Suppose f = f , n 
* p: s - v - -- f , and LOWPI'2(v) < s . 

Consider a frond e whose tail is a d.escendant of y and whose 

head is LOWPT2(v) . If the frond of p descends on the right 

then so does e, applying Lemma 3.7 to cycle cO' e, and the 

frond of p . Applying Lemma 3.7 to c , 
n e , and the first edge 

of P shows that p must be placed to the right of p in the 
n 

ordering cf paths about s (Figure 9.3(b)). 

* If f = f , and either p has length 1 or p: s -> v -> ---> f 
n 

with LOWPI'2(v) > s , then either p has length 1 or - n 

* p : s -> v - --> f with T"OWPT2(v) > s , by Lemma 8.7. In this n n n -

case (s,f) is a bial~iculation point pair in G, as may be 

proved in the same way as Lemma 6.2. Path p may be plac ed either 

to the right or to the left of p without affectine!; the planarity 
n 

of G [Har 69]. Without loss of generality we place p to the 

right of p (Figure 9.3(c)). 
n 

* We must still consider what happens when p : s ~ s 
n n 

(path 

Pn finishes at s ). In this case some earlier path 

* * * (If f s Pk: s -. s -> v ~ fk has v - s Pk= Po ' sk = So . 
k 11 

Otherwise sk = s .) The argument above applies to Pk . F.m'ther, 

if c is the cycle formed by Pn' the part of Pk following 

vertex v, * the bl'anch v -> S ,and the branch 
n 

* fk - s , then 

both ends of p must be on the same side of c. Lemma 3.7 shows 

that P must be placed to the right of p in the ordering of 
n 

po.~~hs ab0Ut s. (Figure 9. 4( d) ) • 

The entire argument presented here is symmetric with respect 

to left and right, so without loss of gene:r.ality we ma~r embed P in 
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fO 

f=f n 

s 

(a) (b) 

(c) (d) 

Po 

Figure 9.3 : Embedding of a normal path p with start point on PO. 

(a) Int eract ion with path Pn'. fn < f. 

(b) Interaction with path Pn' f = f, n P has two connections. 

(c) Interaction with path Pn' f = f, n P has only one connection. 

(d) Interaction with path p , n f = n s. 



one of two places; either at the left end of the sequence of paths 

ordered around s, with ~ts frond descending on the left (the 

left embedding); or, at the right end of the sequence of paths, 

with ~'';s frond descending on the right (the right embedding). 

Lennna ~.4: * Let p: s ~ f be a special path of G . 

be the earliest path containing s and suppose that x -+ s . Then 

Theor'em 9.1 is true for p, and without loss of generality p may 

be inserted into one of the two faces :i.n the partia1 embedding 

having edge (x, s) on its boundary. 

Proof: Assume that path PO is embedded with its frond descending on 

the right. An argument similar to the proof of Lemme. 9.3 shows 

that p may be embedded at the left end (the left embedding) or 

at the right end (the right embedding) of the sequence of previously 

embedded paths ordered clockwise around s beginning from arc 

x -+ s • 

The location of the frond of p is not fixed by th~s argument; 

" 

we must determine '",hether it descends on the left /B':i.de or on the 
/' 

right side of the branch 1:' s. Figure 9.~/tllustrates the three 
I/~ 

possibilities. If' p has the right embed,d:ing its frond descends 
~ 

on the Tight, as in Figure 9.4(b). If/~ has the left embedding, 

its frond also descends on the rig~~aS in Figure 9.4(a). If 

" , / 
f = 1 , this is true because th~l embedding 9.4(c) in which the 

! 

frond descends on the left i~~OPOlOgical1Y equivalen~ (on the 
,/ 

sphel'e) to 9.4(a) and may ;S'e ignored. An induction argument shews 
I' 

that I'Te may chOOSE: embeddiing 9.4{8.) instead of 9.4(c) for all 
i 

special paths witt, finish; vertex 1. 
i 
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If f 1= 1 , then we must have + f -+ v -+ s with LOWPrl(v) < f , 

by Lemma 6.2. (G is biconnected .• ) * Thus some path pI: s t => fl , 

* with s I on v -> s and fl < f , has already been embedded. 

* AJ?Illying Lenuna :5.7 to the cycle Co formed by Po and f -> So ' 

and to the cycle c l formed. by P I * and fl -+ Sl , shows that the 

embedding illustrated in Figure 9.4(c) is impossible. 

Hence the frond of p descends on the same side as the frond 

of PO' independent of p'S embedding. This is the differe~ce 

between normal and special paths. 

Definition 9.2: Let G be a biconnected planar graph. Suppose that 

the pathfinding algorithm is aJ?Illied to G, partitioning it into 

a set of paths. Consider a planar representation of G such that 

each generated path has the left embedding or the right embedding 

as defined above. Such a representation is called a standard 

planar representation of G . 

Given this definition, Theorem 9.1 becomes: 

Theorem 9.4: Every biconnected planar graph G has a standarQ planar 

representation. 

The proofs of the lenunas above depenct heavily upon the ordering 

determined by ¢ and used to construct the adjacency structure A. 

In particular, paths would not be restricted to only t"TO possible embeddings 

if LOVlF1'2 had ~10t been used in the ordering. Having determined. the 

possible path placements, we must determine hOi" paths behave within 

these restrictions. This is the subject of the next chapter. 
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s 

f 

(a) (b) 

p 

f 

(c) 

Fig-ure 9.4: Embedding of special path p with start vertex on path PO. 

(a) Left embedding. 

(b) Right embedding. 

(c) Embedding equ.ivalent to (a) if f:: 1 and impossible 

ot.herwise. 
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10. Dependence 

Each path may be added to the planar representation we are 

constructing in at most two different ways. Even within these restric-

tions the placement of paths is not arbitrary; embedding a path in a 

certain way may affect the embedding of oth0r paths. In this chapter we 

analyze these additional path interactions, which are in fact suffi~ient 

to determine the planarity of the graph. 

Fig'.rre 10.1 shows the paths generated when the pathfinding algoritbm 

j s applied to one cf' the Kuratowski subgraphs. Using LeniJllf' 3.7 it is 

easy to show that paths B and C must have different embeddings in 

any planar embedding of K3,3. S:iJnilarly, B and D must have different 

embeddings, and C and D must have different embeddings. Thus 

cannot possibly be plE. :':l'.', since there are only two possible embedding8 

for each path. We wish to carry out an analysis of this sort for an 

arbitrary graph G. 

* * Lemma 10.1: Let 1'1: sl ~ v ~ 1'1 and P2: 82 ~ 1'2 be two paths 

generated when the pathfinding algorithm is applied to a biconnected 
-)to 

planar graph G. Suppose path P2 is normal. If v~ s2 and 

1'1 < 1'2 < sl ' then Pl and P2 have the same embeddir'.g in any 

standard planar representation of G • 

Proof: Path P2 must be generated after Pl' because vertex s2 is 

not reached during p~thfinding until after Pl is generated 

* (v..:. s2) . If w is the highest numbered ancestor of s2 on the 

* path Pl ' v<w . Let PO: So '-'< 
-(" be the earliest path 
'(j 

l.mtaining vertex sl . The edge sl -4 v and the frond of P2 

must be on the same side of the cycle fOl~ed by Po and the 
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A: (1,2,:;,4, 5) 6, 1) 

B: (0,3) 

c: (5,2) 

D: (4,1) 

( c) 

Figlr'e 10.1: Relationship of paths in IS,:;­
(a) Graph. 

(b) Generated palm tree. 

(e) Generated paths. 

79 

\ 
\ 

\ 

\ 

I 
I 

/ 



* branch fa -+ so' By Lemma ~). 7, PI and P2 must have the 

same embedding (Figure 10.2). 

Lemma 10.2: Let 

paths in G. Suppose PI is generated before P2 

* is normal. If s2 is on the branch fl -+ sl and 

and that 

then Pl and P2 must have different embeddings in any standard 

planar representation of G • 

* Proof: Let e be the first edge of s2 -+ sl' Edge e and the 

frond of Pl must be embedded on the same side of the cycle 

* formed by P2 and f2 -), s2' Lemma 3.7 implies that Pl and P2 

have different embeddings (Figure 10.3). 

* Lemma 10.3: and P2 : s2 ~ f2 be two normal paths 

in G generated by the pathfinding algorithm. Suppose Pl is 

generated before P2 . Let v be the second vertex on the branch 

* fl -+ sl' If v S s2 < sl and f2 < fl then Pl and P2 must 

have different embeddings in any standard planar representation 

of G • 

Proof: The numbers of the descenuonts of v form an interval (v,v+k) . 

Since Let ~T be the highest 

numbered commcn ancestor of and If 3
2 

= w , the lem;na 

follows from Lemma 10.2. * otherwise, let p: w -+ x ~ f' be the 

* generated path such that x -+ 3 2 , Paths p and PI must have 

different embeddings by Ie:runa 10.2 and paths P bond P2 must heve 

the same embedding by Lemma 10.1. This gives the lemma. 
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f'2 

Po 

f'1 
f'2 

(a) (b) 

Figure 10.2: ELINE relation between a path Pl e,Ld a norlllo.l 

path .P2 • 

(a) Pc:.th Pl normal. 

(b) Path P1 special. 
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ILINK relation between a nonnal path PI and another 

path P2' 
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Definition 10.1: Let G be a biconnected graph. Suppose the 

pathfinding algoritbm is appl.ied to G to yield a set of 

edge-disjoint paths which contl'1tn all the edges of G. Let 

tx} be a set of variables, one for each of the paths. Let R p 

be the smallest set of relations containing" x = X "for 
Pl P2 

each pair oE paths PI' P2 related as in Lemma 10.1, 

containing "x '= x "for each 'pair of paths Pl' P2 related 
PI P2 

as in Lenrrna 10.2, and containi.ng "x f x "for each pair of 
PI P2 

paths PI' ~2 related as in Lemma 10.3. (The inequalities 

based on Lemma 10.3 are redundant, but are added for convenience.) 

R is called the dependency relation of G. Let D be a graph 

having the paths of G as vertices, and having two types of edges 

(links). If " x /~P2 "ER then (Pl,P2) is an ELINK in D 
Pl 

If "x fx "ER , then (Pl,P2) is an ILINK in D . Then D 
PI P2 

is called the ~endency graph of G . 

Theorem 10.4: Let G be a biconnected graph with a ~ependency relation 

R and a dependency graph D. If G is planar, then R is 

satisfiable over a two-element domain. Equivalently, the vertices 

of D (the paths in G) may be colored with two colors so that 

any two paths ;io~j,1e' by an ILINK are colored differently, and any 

two paths joined by an ELINK are colored the same. 

Proof: This res1:1t follO\'Ts from Theorem 9.4 and ti:~: th-ree lemmas 

above. If G is planar, then G has a standp_l'd planar rc~resen-

tation. We color the v~rtices of D with the color:3 "left" and. 

":right" accord:i.ng to tL!2 embeddillgs of the corresponding paths in 

some st.:mdard ~')lana.r re:;;:.'.cesentation of G. Lemmas 10.1 and 10.2 
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guarantee that th~ coloring satisfies the restrictions imposed 

by ~he links in D 

The planarity test is based upon the fact that the c,Q!W8rse to 

Theorem 10.4 is true; 2-coloring the dependency graph D gives a corr.plete 

test for the planarity of the original graph G. Before we verify this 

fact, 1'le shall show that the structure of the dependency graph D is 

related not only to the planarity of the original graph G but also to 

the connectivity properties of G (Since the proofs below are rather 

involved and are not directly rel;>.ted to the planarity algorithm, anyone 

interested only in planarity may skip the remainder of this chapter.) 

Our objective is to show that the con.!1ected components of Dare 

related in a simple way to the triconnectivity of G . 

Lemma 10.5: Let G = (V, e.) be a triconnected graph. S"lppOSe the 

pathfinding algorithm is applied to G, giving a set of paths 1'lith 

a dependency graph D . 

be two generated paths such that Pl is the earliest path containing 

vert e);' s2' a..l1d PI is not the :!,r:.itial cycle. Then Pl and P2 

are in the same cOlmected component of D . 

Proof: The proof of this lemma is conplicated. Consider Figure 10.4. 

If sl > f2 > fl ~ (Pl,P2) is an ELINK in D and there is nothing 

to prove. If f2 ? sl ' P2 is normal; if f2 = fl , P2 is 

special. In either of these cases, (PI,P2) is not a lin},;: in D . 
Let S = lP2 } . vie prove the lemma by adding paths to 8 one by 

one. Each path added to S ,-rill be cc>nnected tc in D . 

Eventually a path connected to Pl in D' will be added to S . We 
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(a) (b) 

Figure 10.4: Connection in dependency graph to be proved. 

(a) Second path normal, no link. 

(b) Second path linked to first. 

(c) Second path special. 

.f.. 
-- ''-2 

(c) 



use one extension method if S cont~ins only normal paths ana 

another extension method if S contains at least one special 

path. 

Extension method J. 

Suppose S is a collection of normal paths generated by 

extension method 1 from the initial set t.P2}.· Let So be the 

highest numbered endpoint of tl. path in S and let fa be the 

lowest numbered endpoint of a path in S. Both So and fa lie 

on p:3.th P
l

' This may be proved by induction on the paths added 

to S. Let W == Wo U Up€S Wp ,where fa ~ Vo and Vo is on 

* * path P1' Wo = tW1 I va -+ w' & 'I (so -+ w')}, and if 

* p: 3 ~ V => f , * W = fW" Iv ~ w" 1. There must "be a generated pl. , 

* path P3: s3 => f3 with one endpoint in W and the other endpoint 

in V -W - tSo,fo} ,where V is thE! set of vertices of G. 

otherwise G is not triconnected, since (so' fO) would be a 

biarticulation point pair in U. Either f3 is a proper ancestor 

of fa, or s3 is a proper descendant of So . 

Suppose f3 is a proper ancestor of fO • Let w be the 

first comrJon ancestor of and We have 

* and w is on the branch fa ~ sO' (Vertex s3 cannot lie in any 

W because a path with start vertex in some Wends at a p p 

descendant of fa by Lemma 8.6.) 

We may in I'act assume that because * :r::: w ~ x => 1'1 

* with x -t s3 has finish vert e.'C at least as low as f 3 by Lemma 8.6. 

We may extend the set of paths S by adding 1'3 . Path p" 
:J 

must be joined by an ILINK to some path p already in S, since 
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every' point on except and lies between the 

start and f:L."1.ish vertices of Soml;) path in S. This may be proved 

by induction on the paths added to S. If f3 ~ sl ' then 1>3 is 

normal, and we may use extension method 1 for the next step. If 

fO < f3 < So ,then 1>3 is joined by an ILINX to PI and we are 

done. If f3 = fO ' 

for the next step. 

P3 is special, and we use extension method 2 

Suppose that s3 is a proper descendant of sO' Then vertex 

* f3 must lie on the branch fO ~ So We may assume that 1'3 is 

normal, zince some :path whose start vertex is an ancestor of s3 

and whose finish vertex is f.~ must be normal, and we may select 
.J 

Such a normal path 1'3 may be chosen so that 

s3 f sO' otberwise G is not triconnected, since (SO,fO) is 

a biarticulation point pair in G . Then path 1'3 must be joined 

by an ILINK to some path l' in S as in the case above. 

L~t vT be the highest nT'Jnbereu ancestor of s3 which lies 
-l(-

on 1'1 . J~et :94: w ::) f4 be the path whose first vertex is w and 

whose first edge leads to an ancestor of s3' Then 1'3 and 1'4 

are joined by an ELINK or are identical. If f4 ~ 81 then we may 

add 1'4 to S and apply extension method 1 for the next step 

(Figure 10·5(a)). If fl < f4 < sl then 1>4 

by an ELINK and we are done (Figure 10.5(b)). 

and are joined 

add 1'3 and 1>4 to S and shift to extension method 2 for the 

ne:rt step (Figure 10.5(c)). 
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(a) (b) 

Figure 10.5: . Extension of set via an ILINK with a normal path. 

(a) Path P
3 

normal, P4 normal. 

(b) Path P4 linked to Pl· . 

(c) Path P4 special. 
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" 

Extension meth0d 2: 

We know/how to extend a collection of normal paths. Suppose 

we add 

method 

i 

" ,. 
a iPecial path to the 

,.-
a;bove to continue the 
.I 

set S. We use a variation of the 

extension process. Let v > fl be 

the s~cond lowest endpoint of a path in S. Let 
I 

,: -l(. 

W =,/fy' \gu( v ~ u ~ w' & u is on a path in S U [Pl}}. Then there 

! * i;-- some generated path P3: s3 :) f3 from a ll0in+, in W to a point 

lIn V - W - tV, f l}. Such a path must t erminat e on the branch 

* ./ fl ~ v. (The point v will always be on the path Pl .) We may 

assume that is normal, since some normal path has finish 

vE,rtex f3 and has an ancestor of s3 as its start vertex and we 

ma: r l!hoos e this path as P3 . 

Let w be the first ancestor of lying on one of the 

paths in S or on Pl. If vertex w is on Pl' path P3 will 

either be connected with one of the normal paths in S, applying 

Lemma 10.3, or with one of the s.l:'ecial paths in S ,t:Lpp:L~ting 

Lemme. 10.2. In either case, is cor~'1ected 

to P2 in D (see Figure lO.6(a),(b)). Vertex w cannot be on 

one of the normal paths in S. If w is on one of the special 

paths p in S, then P3 is connccte~ by an FLINK to p as 

illustrated in Figure lU.6(c), and thus P3 is connected to P2 

in D • 

If 

If f3 < sl' (Pl']?5) is an ELINK in D and the lemma holds. 

L > sl ' we may add P3 )-
to D and apply extension method 2 

again. 

Extension methods 1 a..."1d 2 enabl~ us to indefinit.ely enlarge 

the set S of paths connected to P2 in D. Since there are only 



(a) 

Figure lo.6: 

s 

(c) 

f =f 
l 

is 
I 3 

(b) 

Extension of set containing a special path. 

(a) Connection with normal path p < py 

(b) Connection ~i':~L. special path p < P3. 

(c) Connection via an ELINX with a special path. 



a finite number of paths in the graph G, the process must stop. 

This can only happen when a connection bet.ween Pl and some path 

in S is discovere4. ~t then Pl and P2 are in the srune 

connected component of D. This completes the proof'. 

Lemma 10.6: Let G be a triconnected graph. S~ppose the pathfinding 

algorithm is applied to G, giving a set of paths. Let Pl and 

P2 be two paths whose start vertices lie on the initial cycle c • 

Then Pl and P2 lie in the same connected component of D, 

the dependency graph of G • 

Proof': Figure 10.7 illustrates the possible interrelationships between 

paths Pl , 112 ' and c . We 11se the extension methods o.escribed 

in the proof of Lemma 10.5 to give a set S of 1,aths connected to 

one of the paths Pl or ?2' enlarging the set until a connection 

in D between Pl and P2 is f01.md. 

In Figure lO·7(b),(e) paths Pl and P2 are directly linked 

in D. In Figure lO.7(a) we may extend the set U>2} using 

extension method 2 until a connection with Pl is formed. In 

Figure 10.7(c) we may extend the set tP2} using extens~on method 1 

until either a connection with Pl is found ')r Figure 10.7 (a) is 

created; this case we have already handled. In Figure 10.7(d) we 

may extend the set tI>2} using extension method l, until we either 

find a connection with P2 or we create Figu:ee lO. 7 (a) (already 

discussed). In Figure 10.7(f) we may extend the set tP2 } 

using extension method 1 until we get a link with Pl . 

In I"igu:re 10.7 (.:5) we may extend the set tI>2} using extension 

method l until we get a connection with Pl or we 
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(a) (b) 

(d) ( e) (f) 

Figure 10.7: Two paths starting on initial cycle. 

(a) Paths Pl' P2 special. 

(b), ( c), ( d) Path Pl special, path P2 normal. 

(e), (r), (g) Paths Pl' P2 normal. 
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produce Figure lO.7(c) or lO.7(f) (both already handled). Thus 

1'1 and 1'2 are connected in D • 

Now we can prove our main result, giving a relationship between 

the triconnectivity of a graph G and the connectivity of its dependency 

graph D • 

Theorem 10.7: Let G be a biconnected graph with four or more 

vertices. Suppose the pathfinding process is applied to G to 

give a set of paths. Let D be the correcponding dependency graph 

of G. Then G is triconnected if and only if G has no vertices 

of degree two and D consists of exactly two connected components. 

Proof: Suppose G is triconnected. Then G must have no vertices 

of degree two. Examine D • The initial cycle forms a connected 

component of D ; it is connected to no other paths., Any two paths 

with start vertices on the initial cycle are in the same connected 

component of D by Lemma 10.6. * J!'urther, if 1': s ~ f is a path 

whose start vertex s is not on the initial cycle, then l' is 

connected in D to the earliest path containing s, by Lemma ~0.5. 

An induction argument shows that l' is connected in D to some 

path with start vertex on the initial cycle. Th1....;'; all paths except 

the initial cycle form the second and last connected cOIr.l'onent of D 

Conversely, suppose G is not triconnected. Assume further 

that G does not have a vertex of dE.~gree two and that removal of 

vertices a and b disconnects vertices v and winG. When 

a and b are removed, Gfalls into several connected pieces. 

Let R be the piece containing vertex v. We may assume without 
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loss of generality that the first edge of the initial.cycle generated 

by the pathfinding process does not lie in R. Add the edge (a, b) 

to R to form a new graph . Gl and add the edge (a, b) to G-R 

to form a (multi-) graph G
2

• The construction is illustrated in 

Figure 10.S. 

It is easy to see that both Gl and (;·2 must be biconnected. 

Then the pathfinding process may be applied to graphs G
l 

and G
2 

to Give a set of paths identical to those in G, with one 

exception. The first pC'.th found in G which has an edge in G
l 

will become two pa.ths, one being the initial cycle c l in Gl and 

the other being a path in G2 containing the edge (a,b) . Since 

both G
l 

and G2 have ~t least one vertex of degree 3, at least 

two paths are generated in each gra?h. Thus if Dl is the 

dependency graph of G
l

, it will have at least two connected 

components (one being the initie..J. cycle c l ). If D2 is the 

dependency graph of G2 it '-Till also have at least two connected 

components. The dependency gr~ph D cf G must then have at 

least three connected components, because D is isomorphic to 

Dl U D2 - {c
11· This completes the proof. 



Figure lO. 8 : 

(:a) (b) 

Analysis of the dependency gra~r. of a non-triconnected 

graph. 

(a) The original graph G. 

(b) Transformation into two graphs Gl and G2 • 
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ll. Constructing the Der,cndency Subgraph 

Since the pathfinding a~ ,:;"6rithm generates E-V+l paths in a 

biconnected graph G 'T.dth V vertices and E edges, the gra}?h D 

of dependencies between these paths may contain as many as (E-V+l) (E-V)/2 

edges. If the entire planarity algoritbm is to have a linear time bound, 

\ 

the number of dependencies must be restricted somehow. We are interest~d 

in coloring the dependency graph using two colors. If a two-colorable 

graph is connected, it has a unique coloring with two colors. This fact 

suggests that we construct only a subgraph of the entire dependency 

[raph. If this f'ubgraph has the same connected components as D, and 

if ~~y 2-coloring of D exists, then the possible 2-colorings of the two 

graphs are identical. We can thus generate a single 2-coloring of the 
, 

sub graph and test this coloring to discover if it is a 2-color:ing of the 

entire dependency graph. Such a test requires only O(V) time~ as we 

shall see. 

Hence our objective is to construct e subgraph DS of the c,lependency 

graph D such that DS has O(V) edges and DS has the same 

connected com}?onents as D . This is not so easy, and a detailed yet 

intuitive description of the process is hard to present. The basic 

idea is to keep track of groups of paths connected together by various 

types of links. Each groul' of paths is repr~sented by a single path. 

These group representative~; are stored on stacks and each new path 

discovered during pathfinding is .:'!olill>ared with the top paths on the 

stacks to discover whether any new links should be constructed. 

Four stacks are used to store paths. One sta.ck (ASTACK) contains 

all t.he paths with an edge on the branch leading to the current vertE'-x 



being examined ,luring tbe pathfinding search. The other three stacks 

contain paths, each of which represents a connected cociponent in the 

dependency subgraph of the paths found so fa:r. Three stacks are used 

because three types of links in D are handled separately. A path on 

llISTACK represents a group of normal paths conne~ted by ILThr:K' s. A path 

on ISSTACK represents a group of normal paths connected together via 

ILINK's with special paths and! normal paths. Only normal paths are 

----:pl:a:t.'"eQ .• on ISSTACK and llISTACK. A pa.th on ESTACK represents a group of . ..... .... 

paths co~~ -Ijogether by ELllIK' s. Procedure PATHFTh"TIER, modified to 

construct the d~ subgraph as it finds paths, appears below. 

procedure PATHFIND~'1; 
for w in the adjacen~ list of v do 

. ~ 

if v -+ w then 4-

pegin 

if So = 0 then 

begin 

s . - V' ____ 0-'- , 

end: --' 
PATHFINDER(w) ; 

delete fromASTACK, ESTACK all paths PI with s(PI ) ~ v; 

delete frOlll JNS'l'ACK, ISSTACK all paths PI with f(PI) ? v; 

IH: while (S(HIGHPATH(v)) > s(top of INSTACK)) and 

(v < s(top of INSTACK)) and 

(HIGHPATH(v) < top of INSTACK) do 

begin 

construct ILINK between HIGHP,~(v) and 

top of L~ST.ACK; 

delete top path on :mSTACK; 

end; 
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restore last path (if any) deleted f'rom INST.ACK by ill; 

HIGHPATH(v) := 0; 

end 

else comment v --> w; 

begin 

p := p+l; 

s(p) := s ; o 
f(p) := w; 

So := 0; 

add to:p path on ASTACK to ESTACK; 

if f(top of ASTACK) 1= w do 

begin 

El: while w < s (t op of ESTAC K) 

IN: 

FIX: 

IS: 

begin 

construct ELINK between p and top of ESTACK; 

delete top path on ESTACK; 

end; 

restore last path (i': any) removed f'rom ESTACK by B l; 

while f(p) 'S f(top of INSTACK) and 

s(p) < s(top of INSTACK) do 

begin 

construct ILINK between p and top of INSTACK; 

delete top path on INSTACK; 

end; 

while f(p) < f(top of ISSTACK) and 

s(p) < s(top of ISSTACK) do delete top path 

on ISSTACK; 

add p to INSTACK; 

a.dd p to ISSTACK; 

if s(p) > s(HIGH'p.ATH(W)) then HIGHP.ATH(w) := p; 

end 

else 

begin comment p is special; 

while f(p) < f(top of ISSTACK) and 

s(p) < s(top of ISSTACK) and 

S(-tiOp of stack) =5 s(p) + RANGE(s(p) do 



begin 

construct IL:mK between p and top of ISSTACK; 

delete top path on ISSTACK; 

end 

restore last path (if any) deleted from ISSTACK by IS; 

end; 

if s(p) < v then add p to ASTPi:K; 

end; 

Definition 11.1: Let G be a biconnected g:l.'aph. Let D be the 

dependency graph corresponding to a set of paths in G generated 

by the pathfinding algorithm. The subgraph DS of D which is 

constructed by the dependency construction algorithm given above 

is called the dependency subgrapb DS • 

Since procedure PATHFINDER has suddenly become reasonably complicated, 

a few observations may be useful. Pa.ths are numbered from 1 to E-V+l 

as they are generated. The only information about a path p which is 

necessary to the algorithm is the s"i;art vertex s(p) and the finish 

vertex f(p) of the path. If v is a vertex, RANGE (v) is the number 

of descendants of v in the tree T of the generated palm tree. The 

descendants of v are all the vertices w such that v::5 Vi" ::5 v+ RANGE(v) . 

The calculation of RANGE (v) is easy and may be done during the first 

depth-first search; we have omitted the calculation for simplicity. If 

v -+ w and w is an ancestor of the vertex currently being e..xamined by 

the search procedure.. HIGRPATH(v) is the normal path p with the 

highest start vertex s(p) such that· w ::5 s(p) :S "1+ RANGE(W) and p has 

finish vertex f(p) = v. HIGHPATH(v) depends not only upon v but 
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upon w. However, since HIGHPATH(V,wl ) and HIGHPAT.H(V,w2) are 

nevar used at the same time a single variable may be used to store 

both. 

Consider ASTACK and ESTACK. If path PI occurs above path P2 

on one of these stacks, f(P2) $ f(Pl) and s(P2) < s(Pl) . Paths on 

INSTACK and ISSTACK are always in order according to the value of their 

finish vertices, highest on top. If two paths on one of these stacks 

have the Selue finish vertex, the one with the larger start yertex is 

J.ower. It is easy to verif'y these properties. 

stat emerlt s ill and IN construct ILINKr s between normal paths. 

Statement IS constructs ILINKr s between normal and special paths. 

Statement El constructs ELINK' s. Statement FIX keeps the paths on 

ISSTACK in the order described above. The tests indicated in thesp-

statements implement the criteria for path dependence described in 

Chapter 10. 

'.rheorem ll.l: Let G be a biconnected graph and let DS be a 

dependency subgraph constructed for G based upon some set of 

generated paths. Let D be the complete dependency graph of the 

same set of paths. Then DS is a sub graph of D and the connected 

components of DS and D are identical with respect to the 

vertices they contain. 

Proof: It is easy to verif'y that DS is a sub graph of D ; this follows 

from the fact that each link constructed in statements ill, IN , 

IS , and El is indeed a link in D. The second part of the 

theorem is a little more troublesome. lie must show that given any 

link between paths in D, there is a sequence of links joining the 
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two paths in DS. The three types of links in D are illustrated 

in Figure 11.1; the next three lemmas give the proofs for these 

cases. 

* Lemma 11.2: Let and 1': s ~ f be tvlO paths generated 

by the pathfinding algorithm such tha"!; Po is f'ound before I' 

and (PO' p) is an ELINK in the dependency graph D. Then Po 

and I' are connected in the dependency sub graph DS generated 

by PATHFINDER. 

-)(. 

Proof: We know that So ~ v -+ s , where v is the second vertex on 

* path Po . The branch So -+ s contains edges from several paths. 

Let these paths be pO,Pl' •. ·,pn 
in the order their edges appear 

* along So -+ s . Let Pn+l = I' . If Po and I' are joined by an 

ELINK in D , (pi,p) is an ELINK in D for all l.:5 i .:5 n , since 

I' is normal and s(p
i

) > So for all 1 < i < n. When path P
i
+l 

is discovered, path p. is placed on ESTACK. If an EL~lK between 
~ 

Pi and Pi+l is not i.mmediately created by statement y, then 

is placed just above p. 
~ 

on ESTACK, since the next path placed 

on ESTACK is p
i
+

l
• Path Pi may subsequently be removed from 

ESTACK only if Pi becomes linked to Pi+l via an ELINK in DS . 

Consider the situation when p is discovered. Path I' is placed on 
n 

top of ESTACK. Let k = minfi 1Pi is on ES';rACK when I' is found} . 

'rhen Po must be connected to Pk in DS. This follows by 

induction from the observation above. But an ELINK between p and 

all paths Pi on ESTACK will be constructed by statement Y when 
I 

p is found, and this ineludes p
k

• Thus a connection between p 

and Po exists in DS. This verifies the lemma. 
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So Pl 
Pl 

I , 
I 

f s2 

P2 

P2 

fO f2 

(a) (b) (c) 

Figure 11.1: Links in D. 

(a) ELINK. Path p is normal. 

(b) ILINK. Paths 1'l' Il2 are nonnal. 

(c) ILINK. Path III is nonnal, path P2 special. 
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Lemma 11..3: Let be two normal paths 

generated when the pathfinding algorithm is applied to G, such 

that (Pl,P2) is an ILINK in the dependency graph D of G. 

Then Pl and P? are connected in the dependency subgraFh DS • 

Proof: Without loss of generality we may assume that Pl < P2. The 

proof of this lemma is complicated. We shall use induction on the 

number of the path P2. The base of the induction as well as the 

induction step will follow from the argument below. Thus suppose 

that the lemma holds if P2 < k. Let P2 = k. Let v be the 

* second vertex on fl -+ sl. vIe may assume that occurs on the 

* branch fl -+ sl ' since the lin};:.s in D resulting from Lemma 10.3 

are redundant. 

We shall consider what happens between the time path Pl is 

discovered and the time vertex fl is reexamined during the search. 

We shall assume that PI and P2 do not become connected in DS 

during this period. (If they do become connected, the lemma is true 

for P2 = k .) We shall pay close attention to two paths. One, 

called P3' occurs on nmTACK when P2 is discovered and is 

connected to The other, called P4' occurs on 

INSTACK when vertex fl is reexamined and is connected to P2 

in DS . 

When Pl is discovered it is placed on INSTACK. We may prove 

by induction on the path number that when P2 is found, there is a 

path P3 on INSTACK such that 

* s2 -+ S (1') , and f(P3) ~ 1'1 . 
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Lenuna 8.6, and an ILINK between P2 an.d P, will be formed by IN 

when P2 is discovered. (This fact is easy to prove.) Hence we 

may assume that f(p,):5 f2 • 

Path P2 is also placed on INSTACK when it is discovered. 

We may prove by inducti0n on the path number that when vertex fl 

is reexamined d.uring the search, there is a path P4 on INSTACK 

such that P4 is connected to J:i2 in DS ' v:5 s (P4) < sl 

and f(P4):5 f2 . Thus let p be a path on INSTACK such that 

v :5 s(p) < sl' f(p):5 f2 ' and p is connected to P2 in DS • 

/my path p' found between the time p is found and the 

time fl is reexamined satisfies v:5 s(p') < sl' Thus if P 

is removed from INSTACK by statement IN during this time, p becomes 

connected to a path p' on INSTACK with v:5 s (p') < sl and 

f(p') < f(p) :5 f2 . 

Suppose path p is removed from INSTACK by statement 1lI 

Path p will be connected in DS to HIGHPA..'1'H(w) , for some 

vertex w > v. If s(HIGHPATH(w)):5 sl ,then p must be 

connected in DS to some path p' which remains on INSTACK and 

which satisfies v:5 s(p') < sl and f(p'):5 f(p) :5 f 2 • If' 

s (HIGHPATH(w)) > sl ,then f(HIGHPATH(w)) must lie on the branch 

fl ! s2' If path Pl is found aJ:"'ter HIGHPATH(w), Pl and 

HIGHPATH(w) are connected in DS by the induction hypothesis. 

If path Pl is found before HIGHPATH(w) , then HIGHPATH(W) must 

start at a descendant of sl by Lenuna 8.8. Path Pl must still 

be on INSTACK when HIGHPATH(w) is added, since all vertices examined 

between the time Pl is found and the t.ime HIGHP.ATH(w) is found 

are descendants of sl' Thus both Pl and HIGHPATH(w) must be 
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connected to ~, in DS ' and PI and ?2 are connected in DS 

it follows by induction from the previous paragraphs that 

when of' is reexamined, there is a path P4 on INSTACK such ~l 

that P4 is connected to P2 in DS ' v S s(P4) < sl and 

f(P4) S f2 . lilhen fl is again reached during the sear~h, an 

ILINK will be constructed between HIGHPATH(f
l

) and path P4 by 

statement IH, since S (HIGHPATH(f
l
)) ~ sl (This fact is easy 

to prove.) Thus we need only show that P, and HIGHPATH(fJ.) are 

connected in DS ' since P2 , P4 ' and HIGHPATH(fl ) are connected 

in DS ' and PI and P, are co~~ected in DS . 

If HIGHPATH(f
l

) :::: PI the result is inrmediate. Assume 

HIGHPATH (f 1) is found aft er PI Then S(HIGHPATH(f
l
)) is a 

descendant of sl by Lemma 8.8. Path PI must still be on INSTACK 

when HIGHPATH(fl ) is found and added to INSTACK, since e.ll vertices 

examined between the time PI is found and the time HIGHPATH(f1 ) 

is found are descendants of 

both connected to P
3 

in DS and the lemma holds. 

Suppose that HIGHPATH(fl ) is found before PI. If 

HIGHPATH(f1 ) is found after P,' then HIGHPATH(f1 ) must be 

placed on INSTACK while P3 is lower on INSTACK, and P,l' P, ' 

and HIGHPATH(f1 ) must all be conneded in DS. Thus we may 

further assume that HIGHPATH(fl ) is found before P3 . 

We have two more cases. If s(P3) ~ s(HIGHP~I(fl)) , 

are 

is a dese endant of s (HIGHPATH (f 1)) by Lemma 8.8. This means that 

fl S f(P3) by Lemma 8.6, which is a contradiction. If 

s(P3) < s(HIGHPATH(fl )) ,then (HIGHPATH(f1),P3) is an ILINK in D, 

and HIGHPATH(fl ) and P3 are connected in DS by the induction 
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hypothesis. Therefore in any case P3 and HIGHPATH (f
l

) are 

connected in DS ' which means that PI and P2 are connected 

in DS. This completes the proof of both the base of the 

induction and the induction step, and the lemma is true in general. 

Lemma. 11. 4: 

special path generated by the pathfi~ding algorithm. 8uppose that 

(Pl,P2) is an ILINK in the complete dependency graph D. Then 

Pl and P2 are joined b-:'T a sequence of links in the dependency 

subgraph DS • 

Proof: We know that PI < P2 by the definition of this type of ILINK 

(Lemma 1.0 .2). Any path which starts at a descendant of s2 must 

finish at a vertex not smaller than f2 ,.--since the fLrst path through 

s2 finishes at f 2 • Any :path which starts at a descendant. of s2 

and which finishes at fr> must be special for the same reason. 
<=-

When Pl is discovered it is placed on ISSTACK. If PI is removed 

from ISSTACK before P2 is found, PI wiD. be linked in DS to 

some other path on ISSTACK with finish vertex greater than f2 and 

start vertex greater than s2' as an examination of statements IS 

and FIX shows. (If FIX removes paths from ISSTACK, the next path 

added to ISSTACK is linked in DS to thE removed paths, by 

Lemma 11.3.) When P2 is discovered, an ILINK will be formed by 

statement IS bet1-leen P2 and all paths on top of ISSTACK with a 

finish vertex greater than f
2

, including the pat~ on ISSTACK to 

which PI is connected in DS The lemma followc. 

The proof of Theorem 11.1 is :iJnmediate from the three lemmas above, 

because all the possible links in D have been cons'ldl'red. 
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Theorem ll.5: If G is a biconnected planar graph with V vertices 

and E edges, the number of edges in any dependency subgraph DS 

of G is bounded by 9V. 

Proof: The number of paths (ignoring the initial cycl.e) is E-V. Let 

N be the number of normal paths and let S be the number of special 

paths. Every time a path is found, a path may be added to ESTACK. 

Every ti.me more than one ELINK is formed by statement El, a path 

is removed from ESTACK. Thus the number of ELINKs in DS is 

bounded by 2(E-V) S 4v. Each normal path is added to INSTACK 

once and to ISSTACK once. Each time a vertex is re-examined during 

the search one ILINK may be formed by statement nr without 

deleting any paths from INSTACK. Each time a special path is found 

an ILINK may be formed by statement IS without deleting any paths 

from ISSTACK. Thus the number of ILINKs formed is bounded by 

2N + V+ S ~ 2(E-V) + V < 5V. Thus the total number of links in Ds 

is bounded by 9V. 

Theorems ll.l and 11.5 imply that the dependency sub graph DS has 

exactly the necessary properties. Now we are a1most done; we must still 

examine the algoritlun used to check a coloring of D, and we must prmre 

the converse of Theorem 10.4. w'-~ attend to these matters inehe ne.."d 

chapter. 
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12. Coloring the Dependency Subgraph 

After the dependency subgraph DS is constructed by the pathfinding 

algorithm, it must still be colored using two colors. This is accomplished 

very simply using a depth-first search. A path is chosen and colored 

arbitrarily, either "left" or "right". Each time a new path is reached 

by traversing a link in D~, the path is colored according to the color 
'" 

of the :path at the other end of the link and the type of' link. Each 

time a link between two path~ already colored is traversed, the colors 

of the paths are checked to see if' they are consistent with the type of 

the link. One search on each connected component of' DS will pro!'luce 

a coloring of' Ds if' such a colori;1g exists. A program i'or this purpose 

is presented below. 

begin 

procedure P.ATHMARKER(v); 

f'or w in the adjacency list of v in DS do 

if w is not yet colorec_ then 

begin 

if (v,w) i:3 an ELINK then COLOR(W) := COLOR(v); 

elsr: COLOR(w) := -COLOR(v); 

PATHMARKER (w) ; 

end 

else if' ((v,w) is an ILINK and COLOR(v) = COLOR(W)) 

or ((v,w) is an ELINK and COLOR(v) 1= COLOR(w)} 

then go to no::~planareYit; 

for w a vertex in DS if w is not yet colored then 

begir. 

COLOR(w) := 1; 

PATHMARKER (w) ; 

end; 
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If the dependency graph DS is not colorable using two colors, 

then the original graph is not planar. However, the conve:;:se is not 

necessarily true. Given a coloring of DS ' we must discover if this 

coloring satisfies the constraints of the entire dependency graph D . 

Our test for this property uses four stacl{.s; ALEFT, ILEFT, ARIGHT, and 

IRIGHT. 

Imagine repeating the pathfinding process, now knowing which 

embedding the paths will be given as they are found. Consider a path l' 

which is col'::>red "left". We compare this path -vTith the path PIon top 

of ARIGHT, which is a previously found path with the riGht embedding. 

If l' and PI are joined by an SLINK in D, then D is not coi0rable 

using two colors. We also compare p with the path P2 on top of 

ILEFr. Path 1'2 is a previously found path with the left. embedding. 

If (P,P2) is an ILINK in D, then D is not colorable using two 

colors. Having performed these tests, we place p on top of ALEFT 

and ILEFT if it is normal, and on top of only ALEFr if it is special. 

Path p is treated similarly if it is colored "right". 

This process is carried out for each pa-t.h in the orde:::- that the 

paths were found. Stacks ALEFT and ARIGHT are cont:inuousl.y updated so 

that they contain only paths with edges on the tree branch leading to 

the start vertex of the next path. Stacks ILEFT and IRIGHT are 

continuously updated so that they contain only paths whose finish vertex 

is a proper a..l1cestor of the start vertex of the next path. A program 

for the color checking process appears below. 
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procedure COLORCH~K; 

for i := 1 until E-V+l do 

begin 

delete from ALEFT, ARIGHT all paths p with s(p) ? s(i); 

delete from ILEFT, IRIGHT all paths p with f(p) ~ s(i); 

if COLOR(i) = 1 then 

begin 

if i is normal then 

begin 

if f( i) < s(top of ARIGHT) then go to 

nonplanare::~it ; 

if f(i) < f(top of IltEFT) and 

sCi) < s(top of ILEFT) ~hen go to 

nonplanarexit; 

put i on top of ALEFT, ILEFT; 

end 

else comment i is special;· 

beg~ 

end 

if f(i) < f(top of ILEFT) and 

sCi) < s(top of ILEFT) and 

s(i)+RANGE(s(i)) ~ s(top of ILEFT) then 

go to nonplanarexit; 

put i on top of foJ£FT; 

end; 

else if i is normal then 

begin 

if f( i) < s (top of ALEFT) then go to nonplanarexit; 

if f(i) < f(top of IRIGHT) and 

s(i) < s(top of IRIGHT) then 

go to nonplanarexit; 

put i on top of ARIGHT) IRIGHT; 

end 

else if i is normal t:hen 
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begin 

if f(i) < s(top of ALEFT) then go to nonplanarexit; 

if f( i) < f (top of IRIGHT) and 

s(i) < s(top of IRIGHT) then 

go tC' nonplanarexit; 

put i on top of ARIGHT, IRIGHT; 

end 

else comment i is special; 

begin 

end' --' 

if f(i) < f(top of IRIGHT) and 

s(i) < s(top of IRIGHT) and 

s(i) + RANGE(s(i)) ? s(top of ILEFT) then 

go to nonplanarexit; 

put i on top of ARIGHT; 

end; 

Theorem 12.1: Let G be a biconnected graph with complete dependency 

graph D and dependency subgraph DS • . If D is colora1.)le using 

two colo:r:'s, then any coloring of DS will pass the test given by 

COLORCHECK. Conversely, if D is not colorable using two colors, 

then any coloring of DS will fail the test given by COLORCHll!K. 

Proof: -- By Theorem 11.1, DS and D have the same connected components. 

If' D is colorable using two colors, then the possible two-colorings 

of DS are exactly the same as the possible t~o-colorings of D • 

Thus an'j" two-coloring of DS must, pass the test given by COLORCHECK, 

since COLORCHECK merely verifies that (!olors are consiste~-;'lj ac:r0~S 

certain links of D • 

Conversely, su~gose D is not colorable using two colors. 

Suppose a coloring of DS is given. Then two paths Pl and P2 

ill 



must be colored compatibly in DS but incompatibly in D. There 

are two cases; Pl and P2 may be colored the same or they may be 

colored aifferently. 

Suppose (Pl' P2) is an ELINK in D and that Pl and P2 are 

colored differently. Withou'i:; loss of generality we may assume that 

P
l 

is found before P
2

, that P
l 

is colored "left II, and that P2 

is colored "right". When P
l 

is found it is placed on ALEFT. 

Path P l will still be on ALEFT when P2 is found. By the proof 

of Lemma 11.2, P2 will be joined by an ELINK in D to all paths 

above and including Pl on ALEFr. Thus the color checl~ will fail 

when P2 is tested . 

. Suppose (P
l
,P

2
) is an ILINK in D and that P

l 
and P2 are 

colored the same. Without loss of generality we may assume that Pl 

is found before 1'2 and that Pl and P2 are colored "left". We 

prove by induction on the number of paths P2 that the color check 

fails. 

below. 

The base step and the induction step follow from the argument 

Thus suppose that the color check fails if P ... < k. Let c 

* We may assume that s (P2) lies on the branch f(Pl )"'" s(Pl ) , 

since the links in D resulting from Lerruna 10.3 are redundant. 

Path P
l 

is on ILEFT when path P2 is found. Consider the 

path p on top of HEFT wllen P2 is tested. Path P must have 

* s(P2) ~ s(p) . If f(p) > f(P2) then s(p) > s(P2) by Lemma 8.6 

and (P,P2) is an ILINK in D Thus the color check will fail, 

since P2 is colored "left.". 

Hence we may as~ume that f(p) ~ f(P2) . If s(p) < s(pl ) 

then (p,P
l

) is an ILINK in D and the color check will fail by 

the induction hypothesis. If s(p)? s(pl ) then s(p) is a 
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descendant of S(Pl) by Lemma 8.8. This is impossible slllce 

f(p) S f(P2) < f(Pl ) and p was fOUIld after Pl. Thus in any 

case the (:olor check rails. By induction the color check fails for 

all P2 • Therefore the theorem is true. 

Theorem 12.2: Let G be a biconnected graph with a dependency graph D . 

If the vertices of D (the paths found in G) may be colored with 

two colors conSistently with the links in n, then G is planar. 

Proof: Suppose a coloring of D with the colors "left" and "right" 

is given. Consider building an embedding of G in the. plane one 

path at a time in the order the patl:.s were found, using the left 

embedding as defined in Chapter 9 if the path is colored "left" 

and the right embedding if the path is colored "right". We shall 

show that the embedding may be completed satisfactorily to give a 
, 

planar em.bedding of the ent ire graph G • 

* Suppose to the conc:rary that some path p: s ~ f may not 

be added to the embedding without crossing some other path. 

Without loss of generality we may assume that p is colored "left". 

Suppose p is a nOl~al path. Path p must cross some edge 

(v,w) 

(v,w) 

either entering or leaving the branch * f .... s . 

is on a path Pl and leaves the branch * f .... s 

Suppose 

on the left 

as in Figure 12.1. Path Pl is found before path p. Thus there 

is some path P2 which starts at v and proceeds up the branch 

* v .... s. Since p is normal, p and P2 must be connected by an 
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ELINK in D • But P2 is found after PI and thus l?2 cannot 

have the left embedding, since the edge (v,w) is to the left of 

the first edge of P2 (see Figure 12.1). This contradiction shows 

that no such edge (v,w) exists. 

Suppose some edge (v,w) on path PI enters the branch 

* f ' ... s on the left as illustrated in Figure 12.2. We may assume 

that PI is normal, since if PI is special same normal path whose 

start vertex is an ancestor of s(PI ) must have finish vertex w 

* and must ent er on the left of the branch f -> s. (See ;Jemma 9.4.) 

cannot lie on the branch * f -> s by Lemma 8.f). 

Thus s(Pl ) > s(p) . But then (p,PI ) is an ILINK in D. This 

is impossible because P and Pl have the same color. 

Thus every normal path may be successfully er:J.bedded. Suppose 

* p: s ~ f is a special path whose embedding is blocked. Let 

* PO: So .... V ~ fO be the normal path with highest start vertex such 

* .;: that f -- So -> v -> s. If f = 0 , let Po be t.he initial cycle. 

Such a path Po must exist since G is biconnected. Without 

loss of generality we may assume that both p and Po are 

embedded on the left. We know that no path blocked the placerr.ent 

of PO' Path :p may only be blocked by a path PI starting 

fram a descendant of s and finishing at a vertex on the branch 

* f .... s as illustrated in Figure 12.3. We may assume that PI is 

normal, since same normal path whose start vertex is a descendant 

of s must terminate at ..:(P
l

) on the same :~ide of th'.: branch 

* 1 -> s as Pl. Path PI must ha.ve the left embedding. Further, 

s(PI ) f s , since if s(PI ) = s, PI would have f(P1) ~ f • 
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s 

Figure 12.1: * Blockage of a normal path p: s ~ f by a path Pl 

leaving f -+* s. 
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w 

f 

Figure 12.2: Blockage of a normal path p: s ~* f by a path P
l 

entering f -f s. 
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.", 
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r 
s 

f 

Figure 12. ,3: Blockage of a spec ial path p: s ::::;* f by a path 

entering f _* s. 
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But (~'~l) must be an ILINK in D, which is impossible since ~ 

and ~l have the same color. Thus the placement of a s~ecial ~at~ .. <···· 

cannot be blocked, and the entire gra~h G may be embedded in the 

~lane. 

Theorem 12.3: Let G be a biconnected gra~h. Let DS be a de~endency 

subgra~h constructed for G. Testing a two-coloring of DS using 

the color checking algorithm COLORCHECK gives a necessary and 

sufficient condition for the ~lanarity of G. This algorithm 

requires O(V) time and space, if G has V vertices and E edges. 

Proof: The correctness of the ~lanarity test follows from Theorem 12.1, 

Theorem 12.2, and all the previous results. It is easy to verify 

that the entire algorithm requires O(V) time and space, since 

E ::; 3V - 6 in a planar grapll. A little extra work will show that 

the planarity algoritr~ works correctly even if the graph is not 

first divided into biconnected components. 

With this result, we have come to the end of the line. For further 

enlightenment, Figure 12.4 illustrates an application of the planarity 

algorithm. 
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3 2 

(a) (b) 

A: (1,2,3,1) 

B: (3,4,1) 

c: (4,7,1) .A 

D: (7,2) C 
E: (4,5,1) 

F: (5,6,1) 

( 6,3) 
I 

G: 

H: (5,2) B 
E 

(c) (d) 

Figure 12.4: Application of the planarity algorithm. 

(a) Nonp1anar graph 

(b) Generated palm tree 

(c) Paths 

(d) Dependency sub graph (not 2-colorab1e) 
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13. Implementation and Exper:ilnent s 

The connectivity, biconnectivity, and planarity algorithms were 

programmed in Algol W, the Stanford University version of Algol [Sit 71], 

and run on an IBM 361J/67. Program listings appear in the appendix. 

The programs were extensively tested. The planarity algo!'itbm ''las 

applied to a group of planar and nonplanar graphs to verify that the 

implementation ,'las correct. The algorithm was also applied to a series 

of randomly generated complete planar graphs, in order to determine the 

e2C.!?erimental running time. 

The test graphs were gene~ated by starting with a complete graph 

of three vel~ices (Figure 13.1(a)). At each step, a triangular face 

of the graph was selected at random and split into three new triangular 

faces by adding one vertex and. three edges, as in Figure 13 .l(b). A graph 

of this type has the property that V = 3E - 6 ; no new edge may be added 

without destroying the planarity of the graph. Although not all complete 

planar graphs can be generated by dividing triangular faces in this way 

(see Figure 13.2 for instance), the test graphs seemed to give the 

planarity program a satisfactory workout. 

The test results are given in Figure 13.3 and plotted in Figure 13.4. 

A least squares fit gave: 

(1) T = .0l25V - .07 

where T is the time in seconds ruld V is the number of edges in the 

graph. The program indeed requires time linear in the number of vertices 

of the graph. The data may be surrunarized in another way: the program 

will analyze a graph at the rate of 80 vertices/second (or faster, if 

E < 3V - 6 ). Non-planar graphs genel'ally require less time than planar 
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3 2 

(a) 

> 

(b) 

Figure 13.1: Construction of random com:p1ete :planar gra:phs. 

(a) Initial gra:ph. 

(b) Addition of a vertex by s:p1itting a randomly selected 

face. 
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3 

2 1 

Figure l3.2: A cam:plete planar graph which can,not be generated by 

the process in Figure 13.1. 
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Tjme to determine planarity 
V (vertices) E (edges) (seconds) 

20 54 0.22 
40 ll4 0.46 
60 174 0·72 
80 234 0·97 

100 294 1.23 
150 444 1.60 
200 594 2.58 
250 744 3.03 
300 894 3.87 
400 ll94 4.62 
500 1494 6.07 
600 1794 7·25 
700 2094 9·02 
800 2394 10.28 

900 2694 10·95 

Figure 13 .3: Results of' rwming the planarity program on randomly 

generated complete planar graphs (E = 3V-6) . 
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Figure 13.4.: Graph of running time of pl.a.narity t.e::rt on 

canplete planar graphs. 

+ Experimental points. 

Least squares fit: T = .0125V - .07 
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ones, since the algorithm halts as soon as the graph is found 'to be 

non-planar. The planarity program was space-limited rather than time­

limited; a 1000 vertex, 2994 edge graph could not be analyzed in t.he 

space available (417,792 bytes) although no more than 12.5 seconds 

would be required for processing such a graph. No special care was 

taken in conserving storage space; C!areful reprogramming or use of 

auxiliary storage devices would allow much larger graphs to be analyzed. 

It is di:fficult to compare the experimental running times of 

different algorithms, since implementations and machines vary greatly. 

However, an algorithm devised by Bruno, Steiglitz, and Weinberg [Bru 70] 

required about 30 seconds to process the 28 vertex planar graph in 

Figure 1.").5, using an IBM 360/65. The algortthm presented here required 

0.4 seconds to construct a planar representation of the same graph. 

The time discrepancy would be much greater on J_arger graphs. The 

experimental results were quite satisfactory, and they demonstrate th:;l.t 

the planarity algorithm presented here is of significant practical 

as well as theoretical value. 

126 



Figure 13.5: Graph analyzed using the algorithm of BnL~o, et. al., 

~nd using the depth-first search method. 
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14. Conclusions 

The depth-first search process has applications beyond those 

presented here. For instance, Theorem 10.7 demonstrates a relationship 

between the txiconnectivity of a graph G and the connected components 

(If any dependency graph D of G. Using this result it is easy to 

discover in a (V, E) spac e and time whether a graph is triconnected. 

Given a graph G, a dependency subgraph DS for G is constructed. 

The number of connected components of D~ is found, and Theorems 10.7 
.:> 

and ll.l are applied to resolve the question. An elaboration of thi:: 

procedure gives an algorithm for dividing a graph into tricOlmected 

components, using O(V,E) time ana space. Such an algoritlli~ will be 

described in detail in a future paper. 

Hopcroft [Hop 71aJ has presented an alg(lrithm for determining 

whether two triconnected planar graphs are isomorphic. His algorithm 

requires O(V log V) time. Combining this algorithm with t.he cOlmeC!t-

ivity, bicOlLl1f'lCtivity, triconnectivity, and planarity algorithms, it is 

possible to construct an algorithm which de~ermines in O(V) space arcd 

O(V log V) time whether two arbitrary planar graphs are isomorphic 

[Hop 7lb]. This algorithm may be modified to enumerate all planar grapb3 

of various kinr:s, or to construct canonical representations of planar 

graphs. Tn(;. planar isomorphism algorithm promises to be of great yalue 

to chemists, since most molecules may be represented as planar g:t'aphs. 

A canonical form for molecules, wh::.:!h follows from ·~,he isomorphism 

. a;Lgorithm, may greatly speed searches of the chemical literatul'f~. 

We have so far considered only propertieG of I.Ula.irected graphs. 

However, directed graphs may also be explored in a depth-first mannc':. 
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The structure which results, called i:l. jungle, is more complicated than 

a palm tree, but it is still very usefUl. For example, the strongly 

conneeted components of a directed graph may be discovered in O(V,E) 

time using depth-fi!'st search [Tar 71]. 

Depth-first search has been widely used by researche~s in artificial 

intelligence and combinatorics. The algoritbrns presented here demonstrate 

t:le value of this technique as a s:,rstematic method of analyzing graphs. 
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VI. Appendix: Program Listings 



This section contains listings of the procedures needed to buil.d 

the connectivity and biconnectivity algorithms, and the listing of a 

complete implementation of the planarity algorithm. The prog-rams are 

written in Algol W. The reader may notice some differences between 

the programs here and the procedures discussed in the text; these are 

mostly a matter of convenience. Further, the comments occurring in 

the programs may not be completely lucid. The reader is strongly 

urged to implement the algorithms himself, but if he is 

lazy, the planarity program accepts data in the following form: 

"problem name" 

V 

E 

Vl V2 

V3 v4 

V2E-l V2E 

(a character string identifying the problem) 

(the number of vertices in the graph) 

(the number of edges in the graph) 

(pairs of integers denoting the endpoints of 

the edges of the graph) 

This sequence may be repeated for each graph to be analyzed. 
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utility procedures for CONNECT and BICONmX::T 

Pl,Il(EOUHl:. ACD2(LI~rt::(;i:.d VA .. UE A,U;HIf'LG":l\ AHRI\Y STI\C'«*) 
I ~ 'i' E <: E R V 1\ L lJ~: H ES U il' I? T H) ; 

COMMENT ~*************************¥************************ 
* HOCr.DUriE TO ADi] VA.i.ucS A, jj ro STI\CK "STACK" AND 
* INCRl:ASE .:5rl\CI\ pulNfi:.ri IIi:JL,u iH 2. 
**********************************************************; 
PTB:=P'i'R+2; 
ST A C !< (PT R- 1) : = A; 
stACK (PTR) :=f 

t:Nn; 

PJOCtnUrE NEXTLINK(INTEGBS VALUi:. ~Ul~T,VAL); 

flEGIN 

COMMFNT *************************************************** 
* PROCl:.DUrlE TO ADD DIRJ:;CTED "U\.iC; (POINT, VAL) TO 
* STRUCTnJAL REPH~SENIArlU~ Uk a GliAPH. 

* * GLC~AL VARIAHLlS: 
* Ii E A D (" i- 1 : : V + 2 * t:) , N r; A r ( 1 : : V + 2. * E): S 'i'R U C1' U R A L 
* ?ErRES~~TArlON UP ~u~ G~A2li. 

* FREEN~XT: cuaR~Nt LAST h~f~Y IN N~XT AR~AY. 

*********************************¥************************ . • 
PREENEX~:=F~E~NEXT.l; 
l>IBXT (H::'SNE)'T) :=NC:Xl'(PUINT) 

N~; X T (F 0 I NT) : = I:' f< EE N u'r ; 
!HAD (FBEP>.JEX'f) :=VAL 

EN!); 

EITEGFR FFOCEnU?F HIN(INTE:~EH 'WALUL A,B); 

CCMMEN~ ***************************************************** 
<, FRO C F D i! f:~ T J CO 1'; J:l U l' E L' H c: U .L ~ UliJ d 0 F TWO pn E G r; it S • 

~**.**.******************************.*****.****************: 
IF A<r ~H~N A ELSE d; 
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Recursive cOImectivity procedure 

??OCEDURE CO»NECT(INTBGHR VALU~ V,E; lNl'EGER RESULT CPTR; 
IN'lEGER ARRAY EOG.E:LISr,C01'lPONEN'rS(*»; 

P C':GHl 
COMMENT ***************************.*********************** 
* PROCEDUhE TO FIND THE CON~ECr~D COMPONENTS OF A 
* GRAPH • .. 
* PARAMETERS: 
* VwE: IN?UT NUdBER U~ VL~tIC~S AND EDGES OF THE 
* GRAPH. 
* EDGElIST(1::2*E): INPUT LIST OF EDGES OF GRAPH. 
* COt'lPONENTS(1::3*E): OUTPUT i.IST OF EDGES OF 
* CCMPONE~TS fOUND. ~ACd COMPONENT IS PRECEDED BY 
* AN ENTRY GIVING IdE Nil~5Hh OF EDGES OF THE 
* CCMPONENT. 
* CPTR: OU1~UT ~OINT~H TO LA~T ENTRY IN COMPONENTS. , 

* * GLOBAL VARIABLES: 
* HEAD(V+l::V+2*E) ,NEAT{1::V+2*E): STRUC!rURAL 
* REPRESENTATION U~ THE GriAPh (UNDIRECtED, NO 
* CROSS-LINKS) • : 
* f~EENEXT: LAST ENTrtY IN ~4Ar ARRAY. 

* * LOCAL V~RIABLES: 

* NUMBER (1::V+1); AHt,AY FOll NUMBERING THE VERTICES 
* DURING i.lEPTiI-fIRSr Sl';Ai.{CH. 
* CODE: CUR~ENT HIGh~ST V~~T~X NUMBER. 
* POIN1: CURa~Nf 20INr d3ING BXAMINED DURIN~ SEARCd. 
* V2: NEXT ~OIN'r TO fiL::'XALHNiW DURING SgARCH. 
* OLDPTR: POSITION IN ~OMPONHNTS TO PLACE E VALUE OF 
* NExr COMPONENT. 
"+: 

* GLOEAL PROCEDURES: 
* AD02,NEXTLINK. 

'" * A RECURSIVE DEPTH-FlriSf SEAHCH PROCEDURE IS USED TJ 
* EXAMINE CON~ECTED CUftkJN~NTS OF THE ,GRAPH • 
• *.****.**.*****«**********************~******************: 
IN T F c: ERA f. ~ A Y N U:-l1:J EN ( 1 : : V + 1) ; . 
I~TEGEH COOE,POINT,V2,OLDPTH; 
PhOCErURE cnNN~CTOR(INT~G~R VALU~ ~UINT, OlDPT): 
CC~MENT ************************************************* 
* RECURSIVE PHOCEDUR~ TO FINU A CONNECTED COMPONENT, 
* USINC,; DLi!TIi-r'lH~1' SEABCd. 

* * P~RAr.E12rlS: 

* peINT: STAHTPUINi OF SEA~Ctl. 
* OLDPT: PRBVIOUS srAhr~UIN~. 

'* 
* GLCcAL VARIA3LES: 
* SEE CONNECT FOR U~~ChlPiION. 

* 
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* GLC~AL PROCEDUa~fl: 

* ADJ2. 

* * EX~MI~E ~hCri iJG~ UJf Ui 2ulNT. 

*********************** •• **.****************************. , 
~PJLE NEXl(2UINt»O DO 

r·EGIN 

>. 
0. 

EO 
OU 

.!::QI 

-0::0 
QI..!!! 
u·-
:110 
-0> 
010 

... -0.", 
Q)Q) 

0:..;0 

CO~MEHT ********************************************* 
* V;' IS HEAD Of 1:.LJ\.11. £.IEl..LTE EDGE FRor'l 

* sra~~rUHA~ RE~h~~~wfAriJN. 

****************************************************. , 
V ~~ = =-:1 E IU (~J r~ J( l' ( ~O..L in) ) ; 

;-;SXT (lCI N1.·) : =1'\ Exr (N.l:."U: (rOi:-lt)) ; 

CO~M~rr ********************************************* 
* 1(1\::> i'l;.c C:U-iE uidl SLIU(;H':::T) IN THE OThER 

* [;l~'E";fluN? lr" :.lv, LUH'; tOR ANOTHER 2DGB. 

****************************************************. . , 
r ~ ( ~ U i'i;j E fi (V 2) < NUN B E i.\ {P (j L~ r ) ) AND (V 2 ... = 0 L n p r ) THE N 

D?GI:) 

CC~.i ::N'i' * ** * ** *** * * * * ** *** ** **** *** * * *** ******** * 
* AUJ BO~E TU CU~20~~~1. 

************************************************. , 
AD D2 (PO IN T , V 2, ell ~i &:' v;~ 1:. id.::J, C f'T R) ; 

CCM~[N~ ****.**********.************************* 
* lij~S A N~ioi PUJ.L~I i.l.t.l:.t~ FOUND? 

******~*************************************
****. , 

IF:: tI :-j d E R ( V 2) = 0 T ri c. N 
:- ::;,; n 

CO~~~Nl ******.**.*************************** 
* :L 1/ ?011d t uU l'i J. NU :~li ERn. 

************~.******************************
. . 

;-l U i·j J E h ( V L) : = Cd lJ E.: = CULL:: + 1 : 

COn.) E:~ r ***** ~* ** Ij<.* ~ ** * ** * *.:. *** *** ** ** ** **** * 
* n;- : .. " .... ~.:. ,\ J~!:·l.i-FI]S'7 ~-)E!\I,CJ I:'l\0l1 THE 

* ~\;:.. ; d 1 .Ii 11 • 

****** ••• $*** •• ****************************. 
CCNNECr0~(Vi,~Ur~1) 

F :J f: 

, 

1: ~l V; 

C~~~~~T .*.****************************************** 
* CQt\S'u<llC'!' Ti-iC; "';·.i.ciJC.i'UnitL .\J:.c't\2S::NTArION OF THE 

* ,'PIIEl. 

~~************************.*****.*******************; 

r F " L '" :... X:' : =- '/ ; 



END; 

FOF I:=1 UNTIL V 00 NBXT(1):=O; 

YOF 1:=1 UNrIL ~ DO 

f:".:GIN 

COMMENT ***************************************** 
* EACH EUGE OCCUHS TWICE, ONCE FOR EACH 

* ENDPOINT. 

***********$************************************; 
~EXTLINK (ELlGELISf(2*I-1) ,ElhiEl.J.ST(2*I)); 

NEXTLINK (c.uGELlST (2*1) , EDGJ!:LI31' ,2*I-1» ; 

END; 
CO~MENT ********************************************* 
* INITIALIZE VAHIaBLE~ FOR SEARCH. 

*************#**************************************; 
CP'IR:=O; 
FOH1T: =1 ; 
POE 1:=1 UNTIL V+1 uO NUMBE.Ii(I):=O; 
WHIlE POINT<=V DO 

EEGIN 
COM~EKT **~***********************************

*** 

* EACH EXECUTION 0F CU~NECrOR SEARCHES A 

* CONNECTED COl.'l,llONENI. AfTER EACH SEAPCH, 

* FIND AN UNNUMdEHED V£HlEX lND SEARCH AGAIN. 

* REPEAT UNTIL ALL VEkrICES ARE INVESfIGATED. 

************************************************: 
NU M5 RR (i?orcn) : =CODE: = 1; 
OLD~TR:=CPTR:=CPTR+1; 

'~CNNECTOR(PuINr,O) ; 
CO~MENT ***************************************** 
* COMPUTE NU~BER OF EDG~5 UF COftPONENT. 

****.*******************************************; 
COMPONENTS (OLDPTR) := (CPTR-ULDPTR) DIV 2; 

W!IIi.E NU:1BEcl (POINT) .... =0 DO t:'OINT:=POINT+1: 

END 
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Recursive biconnectivity procedure 

p:F'c.::rlll!'F r:ICnN~!;.'C'i (IiHC:GF:~~ Vi\LU.r. V,.:.; L!JTEGEf;' RP.SUL1' BPTft; 
INTE~E~ ~PRAY ED~~LrSl~~ICUM~O~E~iS(*}); 

n r~GI r 
CO~~F~T *********.*****.*¥*******.**********~************** 
~'< rl\CCEDUl\!:.; 'i'j Fnu Tt,~ UiCuN.jLCTE.D COMPONEl'J'rS OF A 
* :'~ II Ai' H • 

* * FAFA~~TEbS: 
'* V,l: INPUi ~UMdEK Uf V~nTiC~5 A~D EDGES OF THE 
* r;L{APii. 
* ~ ;) GEL i S 1 ( 1 : : L * .:;): .di hd' .I..i...) r ;) F F D G E S U F G RAP H • 
* l'ICO~r'U~'~;~TS(1::3*t.): UdJ.'HJ.i. LIST Or EDGES OF 
,~ CG~~~'0i'.LWIS fOJ~'·.j. Ei,,-,. CJ:',PONENT IS PHECEDEO ilY 
* IU :NTRY GIVHG 1';jj:,: 1,tl../L'li,;L:t OF EDGES OF THE 

* 
'* 
* 
* 
* 

* 
* 
".. 

* 
* 
~, 

* 
* 
* 
* 
'* 
* 
* 
* 
'¢: 

C:':~'20NENT~ 

EPTF: outPUT PJ1~1~d TU ~A5r ENTRY OF BICOMPONENTS. 
" L 

(iU::l1\.L VAnll'dLE<;: l~ 

r~:AD(V+1::V+~*t;) ,iIL .. i..ill::V+G*!::): ST!.'WCrURAL 8l:;prL.::­
.ir.;HA'l'IOU OF r::i1:: .jHAi'd (UNUTRECTED, NO CROSS­
Ln::\S). 

F r r EN:::: x T : 1. A;jj' E.r.i.' R l: IN :4 t:'( l' A R RAY. 

LCC~L VARIAULES: i 
t-.'L·lnF.j,~(1::V+l): ,f,nr!A'i I:' __ j,\ .~u~l3ERING THE VERTICES 

DurIN:; DEtlTH-Fir.U3T S.f:.idh:li. 
cr)~::: (;Ui\t<E~r dl,\';Llu:.ll.' V":.nl'i:.i.. NtI:~f3FR. 
""G"'Sl'ACK('·· ',*L". "'1\" . '0::> LIs'r ()f,' ~D'~ES .:., v ~., -. , ' , •• r ~-, II.' ,~ . ~ /:( Ii. \3 L r ,. ~ . ~~ '" 

!',X,LlIlhr> D[)HIN!,. ~.c."J\Lll. 

I,: tl'1.' :-: PO g T Lh Tv i .... A ~ T E l~ i' ld 1 :,1 E II G F S r A C K • 
POIN1: CU~~~Nr ~~i~lu~~~G L~A~IN~D DURING SEAhCH. 
V2: NEXr ~Ol~r r~ UL EiA61N~U PUPING SEARCH. 
l~\~tiLC;H)1': LO",POIttl t'Ui., UJ..COi~NECTED PART OF GRAPri 

i\i.~Ciff; I\ND INCL{~Lll~G V2.. 
OLD;::Td: i;l,J.::ill'IUh llN JICu·1i.J01~ENTS '1'0 ?LA(;!:,; E VALU;:; 

UF ~EXr COArO~1N~. 
\ 

,3LCti\L i.?i:\OCL;)Oll:'::S: \ 
MrN,A~D2,~E~T~lN~L 

\ 

i\ f.'1::CUfi.jIVC: i..Jr.:l:'.i.;i-r-~j,i;:il .:ir.:l>lCU PriOCF!)[JHE IS USED 1'J 
DTVlDE ifii:: :';l·At>u.i'dl:. LO",u:.:)l i!tJINl' HEACHA:.l1E FPn;1 fiit: 
c un;, D 1 P U lilT 'II .1. T il !J tJ L G U 1 i~ ,; T.i t{ 0 U G 1I PHI:: V IOU SLY 
SFrIFCl-:F:J POLN'I'.:j IS ('i,1.CuLA1.:...tJ. 'I'lIIS INFLlRMA't'ION 
lIT LOWS D~'It;tdlliHtION uJ: Iur, Ait!.ICULA1'IO?1 POINTS ANLJ 
DIVlSION Of Tn!:; JRAFiI. 

*******~***************** •• **** •• *************************. 
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* Vl IS DEAD 0F rH~ ~DGE. VELETE EDGE PROK 
* STRUCTU~AL 8hPh~SENTATluN. 

***~************************************************; 
V2 :=HEAD (NEXT (POIN'f» i 
NEXT(PCINT} :=NEXT(N.E'(T(POINT» i 

CCMMENT ********************************************* 
* HlS THE ~UGE ~EEN S~ARCHeD IN THE OTHER 
* DIRECTION? I~ su, LOOK rUR ANOTHER EDGE. 
****************************************************; 
IF (NUMB ER (V 2) <NU ~BER (POINT) ) AND (V 2 .... =OLDPT) THEN 

BEGIN 
CO~ctENT ***************************************** 
* ADD EDG~ TO EDGE~TACK. 

************************************************; 
ADC2(PUINT,V2,EDGLSTACK,E~rR): 

CCMMENT ***************************************** 
* HAS A NEW POINT BEEN FOUND? 
************************************************; 
IF NUMBER(V2}=D TrlEN 

flEGIN 
COMdENT ************************************* 
* NEW P01NT FOUND. NUMBER IT. 
****************************.***************: 

INTEGER !\HHIIY NUMBER(l::V+l); 
INTEGER ARPAY EDGJ:.:SrACK(1::2*E); 
INTEGER CODE,EPTR,POINT,V2,NE~Lu~pr,OLDPTR; 
PROCEDUHE BICONNECTOR(INTEGER VALUE RESULT POINT,JLDPr, 

LOWPOINT) ; 
COMME~r ************************************************* * RECURSIV~ PrlOCEOUHE 10 SEAhCri A CONNECTED CO~PON~NT 
* A'D FI~D ITS HICUNN~CTiD COM~ONENTS USING DEPTH-
* FIRST SEARCH. 

* * PARAMETERS: 
* FeINT: STAarpOINT OF ~EARCH, UNCHANGED DURING 
* EXECUTIUN. 
* GLDPT: PR~VIOUS ~lARrrOINr, UNCHANGED DURIN~ 
* EXECUTION. 
* LOWPOINT: OUTPUT UF 1u~Esr POINT REACHABLE ON A 
* PArH FOU~U DURING S~ARCH FORWARD. 

* * GLOEA~ VARIAdLES: 
* SE~ BICONNfCT FO~ OE~Cdl~rION • 
... 
" GLOE.P.L PRUCEllURES: 
~ MIN,ADD2. 

* * EXAMINE EACH EDGE OUT OF ~UINT. 

******************************************************** . 
WHILE NEXT(POINT»O DO 

PEl-;IN 

• 

CCH~ENT ******************~************************** 
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NUI18Eh{V2) :=COD1:;:=COD1+1; 
CO~MENT *****¥******************************* 
* INIIIA'.l.L a .J!::t''lI1-f'IFST Sf ARCH FlWrl THE 
* N E (J Fll 1 :~ .i. • 

******************************~~************. • 
NEiiLO"Pf:=V+1; 
~ICONliECT0~(W2,iOl~T,NLWLOWPT) ; 
COH~ENT ************************************* 
* Nul'E ftial ALTlliJUGIi GLOBAL VAiUABLf VI. 
* IS CliANuiU, i~S ~ALUE IS RESTaRED UPON 
* HXI£ YrlUM lH1S ~~OCEDUkE. 3ECALCULATE 
* LOI'Il?OINl'. 
********************************************. , 
LOWPOINT:=Ml~(LU~~OINr,NEWLOWPT); 

COM3ENT ****¥*********¥********************** 
* IS POINT AN ARllCULATION POINT Of TH~ 
* GRAPH? 
********************************************. • 
IF NEiiLOWP'~>=NUi1JER \!:lUINT) THEN 

CC~MERT **********.********************** 
* PullvI' l~ dN ARTICllLATION POINt. 
* OUrpUf ~~GcS OF COMPONENT FROM 
* EvGE;51.'A~i<. 

****************************************. 
OLDP~h:=~frh:=~~i~+l; 

~U~1~ ~U~b~bL~vG~31~CK(ErTR-1)>NOMBE~ 

(t'LJiL'd') DO 
3BbiN 

AVDL {J.:,i.Jl3!:.::HACK (E:PTR-1) , EDGES'rACK 
(.:.t-';' rl) , ol;';tJ:1PONEN1'S, BPTR) ; 

t::P T z\ : = t. fJ l' n - 2 
.:;~ 0; 

• 

C0~~ENr .*******.************************ 
'" Auu LA~i ~VGE. 

********~******.************************; 
AOD2 (POiNT, V L. t !3H .. lH;PO:n;NTS, RI?TP) ; 

E 2 r R : = E:.i? L L\ - 2 ; 

C J ; 1 ,'I L ~~ '1' * * "I' * * * 'I' * * *- * * * * lI< * * * * * * * * * * * * * * * * * * * COJrUr~ ~U~oJ.:,H OP EDGES OF 
* CCHi 2 J ~ r.: N 1 • 
***~************************************; 
!31C0:1PO,'it;,HS (Ui.DPTR):= (Ei?1'R-OLDPTR) DIV' 2; 

c.JD 
L~l 0 

f: S~: 
C'J:l.; ~:;J r ** *** *** >l' ** ** *** * * ****~, ** ** ***** ****** * 
* ~~~ PUINr ~Ji FOU~0. gECALCULArE LOWPOI~1' • 
• ****~****.***********************************; 
LJ~~J:N~:=MI~lLJ~PUi~r,~~~8B&(V2» 
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COMaENT ******~***************************************~**** 
* CONSTRUCT THE SfRUCTUHAL RHPRE~ENTATION OF THE GRAPH. 
**********************************************************~ 
FflEENEXT:=V; 
FOR 1:=1 UNTIL V DO NEXl'(I) :=0; 
FOR I: =1 UNTIL L DO 

BEGIN 
COMMENT *********************************************** * EACH EDGH OCCURS TWICE, ONCE FOR ~ACH ENDPOINT. 
******************************************************; 
NJ::XTLINK (BDGELIST (-i*I-l) ,t;DG..t:l.ISr (2*1» i 
NEXTl.INK (t:DGELISr (,l*.I) I Ei)ut.Lol~l' (~*1-1» 

END; 
COMMENT **************~************************************ 
* INITIALIZE VARIABLES FO~ SEARCH. 
*****************~**************************************** . 
EP1'R:=O; 
l3PT~:=O: 
POINT':=1; 
V2:=0; 
fOR 1:=1 UNTIL V+l DO NUMBBH (1) :=0, 
WHILE PCINI<=V DO 

BF'GIN 

• 

(CMMENT *********************************************** 

?ND; 

* E~CH EXECUTIO~ OF BICUNN~:TOe SEARCHES A 
* CON~EC~~D COM~ONhNT Of THB GRAPH. AFTER EACH 
* SEARCrl, FIND AN UNNU~BiRED VERTEX AND SEARCH 
* A~AIN. ilEPBAT UNTIL ALL VERrCES ARE EXAMINED. 
****************************************************** . 
NUI1DER (POINr) :=C,)U£::=1; 
~EWLOWPT:=V+1; 

BICONNECTOR(POINT,V2,NEw10Wf'T) ; 
WHILE NUMBER(POINT)~=O UU POINT:=POINT+1 

END; 
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Complete program implementing the planarity algorithm 

~EGIN 

I N 7 I:. ,; E h V,; .. ; 

S1'Hl~li(RO) ~A~IE; 

NODJ::Xr: 
(. ::. A 1l....L'lA..'1 E ~ ; 

nEAD(V,:::) : 

W P. I 1 r~ ( N ld~ E ) 
,oj R I T F. (" r I i" :::.. , IT' J :~ F. (' ) ) 

WtlITF'(ltV=II,V,"l:.=", E); 

EE,}l'l! 
INT~GER FREENEXT; 
r !~ '1- .i..:. I.: i.:: i< II F. E A Y [l i::l' •• ) (V + 1 : : V + 2 '9< 2 ) 
INTEGER AIHIAY ~a:xr(l:;V+)'*i:.); 

[' i~ () C i:: U U i1!: t\ i X r LIN r\ (I N i' ;:: (.; 1:;; it II A L U J:. 1:- U 1 N r , V A L) ; 
]I EGI;~ 

COMMENT *************************'9<************************* 

..;.. 
0. 

eO 
OV 

.!:CII 

-0:0 
CII...!!! 

* PJOCEDU~E TO ADU DIH~CTBD ~uGE (POINT,VAL) TO 
* STRUCTUnAL ftEfHESE~~ATIO~ 0r ~ GRAPH. 
* * GLObAL VAHIABLSS: 
* !i.i:-A~(V+'::V+2*B) ,.'H:..(T(1::V+2*E): STRUCTURAL 
* ~EPiH~SE~TA-rlON Ol Tll!.: lii:\APii • 
* FkFEH8XT: CUa~ENT LaSi L~rKk IN NEXT ARR~Y. 

u·-::."' -0> 
0"' .. -

****************************'9<*****************************; 
i" F !~ .1:. N E Xl: = f F Fi-: ~l E; AT + 1 ; 

0.", 
CIICII 

C1I:...o 
N:':).T (r~!!n:LHX~; :=N2:Af (i:'IJINl') 
r!EXT (penl"') :=fREENLXr; 
!IF.~D (fH~al!::X'I) : ==Vi\L 

~ND: 

CC~NE~T *******~*********.****.*'9<************************ 
* CaNjl~UCT sr~UCTUndL n~~rlLS~~!ATION FOR FIBST 
* S:::F,Cii. 
******************************~*************************. 

FEGD 
IN T E:~ ;;: t< V 1 , V 2 ; 

i'" ii F E :~ F. X T : = V ; 
? 0 ~ I: = 1 U N i'I1. \j D IJ :~ E )( T (i.) : == U ; 

fOP 1:= 1 U~TIL E n0 
REG IN 

:0:- 1\ 00 N (V 1 , V 2) ; 
NfX'lLINK (Vl,V2): 
NEXTLIlH (V2,Vl); 

!'NIl; 
i .. , .:: "1 E ( .. T I :1 .. : AfT r: ~.: ~:; E T UP",:' I ~ll:: ( 1) ) 
END; 
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BEGIN 
INTEGBR CUR,EDGE: 
UTEGER AHRAY PA'Ili,NUrlBER(1::V) i 
I'HEGFR ARRAY lOWpr1,LUWPT2,LiANu.i!:P(1: :V); 
INTEGEB 7\RRAY COLOH(1::E-V+1); 
INTSGER ARRAY S,F(O:!E-V+l); 
INTEGER ABRlI't EDGESTACK(1::2*E); 
3 00 LEA NFL A G ; 
I~TEGEr V2,CODE,POINT,STAclTPOINT,PATdNU~BER; 

INTEGER APTR,¥PTR,XNPTR; 
I~TEGER EPTR,STARTPATH,XSPTR; 
INTEGER ~RPTR,ALPTR,XLPTR,XRPTR; 

INTEGER EDGEFREE; 
INTEGER ARRAY NEXr~DGE(1::7*E-5*V+2); 
INTZGER ARRAY HEADEDGE (E-V+1:: 7*E-~*V+2) ; 
BOOLEAN ARE I\Y LINKTYPE (E-V+1:: 7*E-5*V +2) ; 
FOOLEAN ~RRiIY NEwNUOE(1::E-V+2) i 
PROCEDURE ACD2(IN~EGER VALUE A,B;IN~EuER ARRAY 

INTEGER VALUE RESULT PTR); 
BEGIN 

STACK (*) ; 

CO~MENT *************************************************** * PROCEDURE TO ADD VALUES A, B rJ STACK "STACK" AND 
* INCREASE STACK POINTEit "P£H" IH 2. 

***************.***********************~****************~*; 
PTR:=FTR+2 ; 
5T A C K (PT R- 1) : = A ; 
t.;TACK (PTB) :=E 

END; 
PROCEDURE EDGEI,INK (ItHEGER VAl.OE A, B) ; 

BEGIN 
EDGEFREE:~EDGEFREE+l; 

NI:;XTElJGE (EuGEFREE) :=NEXr.r:DGE (A) ; 
NEXTEDGE (A.) :=EDGEFREE; 
H FAD E DG E (E D G E? R E E) : = B ; 

EN [); 
INTEGER PROCEDURE lUN{INTEGER VALUE A,B). 

CCMMENT ***************************************************** * PROCEDURE TO CO~PUlE rdE fiINI~UM OF TWO INTEGERS. 
**********************~*************************************; 
IF A<P THEN A ELSE R; 

INTEGER PROCEDURE MAA(INTEG~R VALUt A,8); 
IF A)B THEN A ELSE S; 

PROCEDURE ACD3(INTEGEd VALUE A,B,C;INTEGER ARRAY STACK(*); 
INTEGER VALUE R~SULT PTR); 

BEGIN 
PIH:=PTP'+3; 
S'I A C K (P '!' p- 2) : = A ; 
STACK(PTB-1} :=13; 
ST AC K (PT p.) : =c: 

END; 
PROCEDURE XLINK{lNTEGt:R 'fALUI:: X,Y); 

BEGIN 
WPITE't"XLINKI1) ; 

GO 'IO NONPLANAREXIT; 
END; 

PROC EOUF E Y LINK (INT8GJ:;H V Al.U E i., Y.) • 
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EEGH 
\\FI'T'E (" YLi N:\") 

G (J T C IJ) N P L " :H d, X II ; 
I:.ND; 

rf,OCEDlJRE P~F.SfAt{Cti(INTEGJ.:.ii VAL..,':; RESULT POINT,OLDPT); 

CO~MENT ************************************************* 
* PhCCFLJUHi TO S~A!~Crl Cu~NiLL::lJ COME'ONENT AND COMPUTE 
* 10't;[ClN1' VALIJl:.S. 
* I' 1\ F 1\ ~ :~ T Eft S .: 
* POINT: CUR~ENT ~ulNT. 
* OLDPT: ~~EVIOUSLY 3~AriCu~D POINT. 
* GL03A~ VAHIABLES: 
* HPAD(V+1::V+L*E),id:::.>;.T(1::V+2*F.): 5TRUCTURA.l. 
* p.Ert\ES.c::~TATIJN ui: lihat-'d (UNDIHECTED, NO CROSS-
* LINK::» • 
* V2: N~XT POINl S~~HChhU. 
* NUMn~H(1::V): CO~::>l:.cu'l'lVE SEUCH NUMBER OF A 
* VEFTEA. 
* Ct)DE: HiG.1ESr CO:1SELUTIVr.; SEaRCH NUMBER. 
* t, x 'j ~~ i:: ~lU ;'1 (1 : : V): L U w J:. S .1. L' U 1 ~ T 1~ E A C [I A B L c: r H R 0 [J G H 
* K~~ t.uGES FRO~ ~ ~lVt~ ~uI~r. 

* GLOEAL PRuCl:.OUdES: 
* ~llN, AI.lD2. 
* THIS 2POCEDUR~ Of£hA£~~ AS A~Y orHEN DEPTH-FIRST 
* SEARed. 
*~*********~*********¥************~*********************; 
,,[I ILl': NfX'l'WOTlE'»O DO 

[lEGIN 
V 2:= HEilL> (NEXT (POIN'I') ) ; 
NFXT(P(lINi') :==NEX'IlNiXT (PO.!.iJ'f»); 
I ? ( N lJ 1", LI i:. l~ (V 2) < N lnL3 i i\ (P J LH J ) 1U, D (V 2 -. == () L D P T ) T if E H 

~:~(; IN 

.;... 
a. 

EO 
OV 

':111 
-0::0 
111.2 v·-
:::I III 

-0> 
o III 
'--
A.'" 
III III 

0:-0 

t ~i IJ ; 

it [) [).2 ( FU 1 NT, V 2. , E u G i..:i '1 d ~ K , .; t?i.' ?) ; 
If ~UM9~R(V2)=0 iilEN 

r'::,Jrx 
;j u ~ 1.) E R (V 2) : = C () J.t..: = COD;;. + 1 : 
h{ S ..i Z A i1 \.. d ( V 2. , ::' (j 1 ;~ ::") ; 
IF LU\oi?1'1 ('I4.} <LuwJ:lT1 (t'uINT) TrlE~ 

,~c,'; B 
1.Lloi P I2 (t' u 1:-'.1.) : == 1,1 L~ (L OW PT 2 (V 2) , 

10,oii:'1'1li:'lHl~r» ; 
l.J~t'Tl (i'JINI) :=i.t)wl:'1'1 ('12); 

i::~ D 
ELSZ If l.t.);~!n' lV2)=LUi'ii?T1 (?OINT) l'Hl::N 

10 ... P12 (PuL'. ~') :=!'lir. (i..J;oiPT2 (V2), 

r ... J :1 

l.O~ 21'2 (l'O,dlL) ) 
r:LS::' 1uwl'T2l~Ull~r) :=t!I~(LOWPTl (V2), 

L '.L~ i? r 2 (~' \.J 1 NT) ) ; 

ZLSJ; If NU:1.El\ (VL) <"1.UI,L'11 (,c'OINT) THRN 
t": Li Ii:! 

L~)I'I?T2 (POINT) : =l.u~2fl (l:';JIN'l:') ; 
LOllPT1 (POIN'i') :==NU;'loLf:(V2}; 

UD 
E T. 5 I:; I F ;~ U .hl ~ R (V ~) > i. 0 It d' 1 (i:' 0 I WI' ) T l:I E N 

r u w p'l.' 2 (P l) I N 1') : = .. .1 N (h J ,·li.) i:, It (V 2) , LO W P T 2 (P 0 I N r) ) 



PROCFDURE SECONUSEARCHER(INTEG~~ VALUE RESULT POINT); 
CO fl\l"1ENT ******** ****** ******* ** *** ****** ***************** * PROCEDURE TO SEAHCH GRA~h IN DESIRED ORDER AND 
* RENUMBER VERTICl:;S FUR TtilCONNECTOR. STRUCTURAL 
* REPRESENTATION OF GuAPrl IS IN DIRECTED PORM. 

* * PA RAMETEHS: 
* PCIN~: CUHRENT ~uINT bElNG EXAMINED. 
*************************~******************************; 
WHILE NEXT(POINT»O DO 

FEGIN 
V2 :=HEAD (NEXT (POINT» ; 
NEXT(FOINT):=NEXT(NEXT(POINT»; 
IF NUMBER(V2)=O THEN 

END; 

BEGIN 
NOM i3i:: d ( V 2) : = CO D 1;; : = CuD .r.. + 1 ; 
SECu N DSE ARCHER (V 2) ; 

ADD2 (NUMBER(POINT) ,NUl.iBER(Vi) ,EDGESTACK,EPTR); 
END; 

PROCEDURE PATHftAaKER(INTEGE~ VA~UE POINT); 
WHILE NEXTEJGE(POINT)~=O DO 

FEGIN 
EDGE:=NEXTEDGE (POINT) i 
V2:=HEAOEDGE (.I:;DGE) ; 
NEXTEDGE(PQINT) :==NEX£EDGl:;(l!.lJGE); 
IF COLOd(V2)=O THEN 

BEGIN 
IF LINKTYP;:; (EUGE) IHt:N COl.Q.R (V2):= 

COLOR (POIN;f) r;LSE COLOR (V2) : =3-COLOR (POINT) ; 
W R IT E (II CO LO R ( " , V 2 , ") == " , CO LI) B (V 2) ) ; 

END 
ELSE IF (COLOR (V~) =COL.lJii (PUINT» = .. LINKTYPE (EDGE) THEN 

R EG It~ 

\Ii R I T F: (" CO NfL I C 'f IN PAT H iiA H K E t< ") ; 

END; 
GO TO NONPLANArl2; 

IF ~f.WNUD8(v2) THEN 
E1EGIN 

NEwNODE(V2) :=FALSf.; 
I:' ATfH1ARKE;i\ (V 2) ; 

END; 
END; 

PPOCEDtlBf SORT; 
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\ ..... 

E EG I tl 
CCM~E~T ********************************************* 
* PEOCEDU~E TO SUdl ~~~LS iO GIVE ADJACENCY 
* S~~UCTU~6 U~EU dY ~AlnflNJING SEABCH. 
* LGCAL VAHIAuLL~: 

* ~E~rSORT(1::i*~+L): LiNKS FOR HUCKET SORT. 
* SORTP'Il(2*V+l::~*V+l:.): TAIL OF EDGE IN 
* bUCKET. 
* SOai'PT2{2*'1+1:;';::*V+E): HEAD OP EDIGE IN 
* DUCK £T. 
* Fi.{t:ESO_~n: ':'ASI l:.:'l.l.'i,:1 ... l~ NEXTSahT. 
* SOR~p~a: ~01bf~ct U~~0 10 EMPTY BUCKETS AFr~H 

* SOuTo 
*********************~******************************, • 
INTEGl:.N FHEBSO~T,SOhl~TR; 

IN l' E G E R lu<f( A Y ~ ~ 1.1::>0 it i ( 1: : ~ * V"'':;) : 
IN'l':::~-;E[: AHdAY SOiHPT1,'::>Ohlt'i'i{L*V+1: :2*V+E); 
CC1MFNT ********************************************* 
* INITIALIlE FOb ~U~il~G ~ThGFS ACCORDING TO 
* lO~ESf PUINT h~ACnAULL FrlOM HEAD AND FOR 
* CJNSTHUCTIN~ NEW ADJACENCY STRUCTURE. 
*********************¥******************************' 
Ffl FP.SOP"I': =2* V; 
f' h ? E ~: F X'f : = L * V ; 
FON 1:=1 UNTIL 2*V UU NEXi~O~r(I):=O; 

, 

CO~ME~T ********************************************* 
* INSiJT ~ACH 3DG~ 1~T0 A bUCKET. EAC" BUCKtT 
* IS ~ LIST at EliGES. ~~JICF OF BUCKET DEPENDS 
* FIJST ON ~'r~~ciUM VA~ilE AND SECOND ON WHErHEH 
* T.d;~P·.I.'2 1:5 Nut:rtIiVIAL. 

****************************************************; 
fOH 1:=2 sr~p 2 UNTiL 2*~ 0U 

8EGIN 
fPf~su~r:=fREESO~Tt1; 

~ 
a. eO o u 

.!:C1J 

"A QI..!!! 
u·-
::.ttI ,,> 
o ttl 
L-
e.':;; 
C1J .. 

"'-0 

CC~~ENT ***************************************** 
* ?LACE ~~D201N1S at ~C~E IN BUCKET. 
************************************************: 
SOFTPTl (fEEESOP."£) ;=J:.D<.;;:'S'l.'ACK (I-1); 
v 2 : = SUR 'l' P r 2 (F R E E SOP. '1') : = t. D li 1::5'1' 1\ C K (I) ; 

If NU'1i>i!:rt (V 2) <NUHiJLL\ (::>U.tTt'.i.l (FRr:.c:so'n)) THEN 
n'::GI ~I 

CO~~E~r.**********~*****~******************** 
* PAtH Tv L0WtS~ PulNT IS SI~GLE EDGE • 
*******************¥************************. , 
l~ EXT S 0 iU (F H E 1:. ::; 0 d T) = = lh. A. T S 0 R T (2 * N U 11 BE R (V 2) - 1) ; 
,~ EAT S 0 H l' (2 * N U d d l:. i:\ ('~ 2) - 1) : = F R F. E SO R'I ; 



EN!); 

r2:GIN 
CO~MEN! ************************************* 
* PATH TU LOWhSr PUINT IS INDIRECT. 
********************~***************$*******; 
If :UwPT2 ('1L) )=NUnuft< (S()R'l~PTl (FR~ESORT) I THEN 

f3r.GIN 
~E X T SO IlT (l"tiE.t:;::iU Ltf) : = NE X.T SORfr (2*L OWl?T 1 (V.2) 

- 1) ; 
NExrSOta (2* .. 01i211 (V2)-1) :=FREESORT 

EN D 
c.:LS:': 

!3 C.; IN 
NHXrSORr(tHE~~Jar):=NEXTSORT(2*LOWprl(Y2) 

) ; 
NEXTSORT (2*i,Owi!T1 (V2» :=FREESORT 

1:.NO 

CCMMENT ***************~***************************** 
* F~ETY clUCKETS ANU CUNSfRUCT STRUCTURAL 
* ?~PRiS~NTATION. ~DG~S WILL BE IN REVERSE OF 
* n~SIhJU adDEd. rH~S IS CORRECTED BY NEKT 
* SE AHCti. 
***********************~****************************: 
FOR 1:=1 UNTIL 2*V DO 

BEGlt" 
SO fiT PTH: =N!::'( rSUb.l (I) ; 
~HrLE SO~TPTrl~=O Du 

l1iliIN 
IH.: XT Ll:'JK (son: n', (SO rll' 21'R) , SO RT PT2 (SO HI' PTR) ) ; 
SOrirpTR:=N~XTSUH1(::iUdrpTR) 

EN D 
END 

EN i.) ~ 

Ii E>3*V-6 7f~N GJ TO NO~PLR~~h£A1T; 

CO~MENT *********.*************************************** 
* INIrIALI~E A~O hUN FI~ST SE~hCH TO COMPUTE 
* lCWPOIN'l'S. 
********************************************************. , . 
FOF 1:=1 UNIIL V DO 

:: FGB 
NTl'HlEh(I) :=0; 
LOWFTl (I) : =LO\r;?'!'2 (I) :=V+l; 

END; 
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I!CINT:-=;;:PT~:=O; 

V:~:=t-.[j:1!\H (1) ::COD~:=l; 
rrESr:AFc;i(V2,POINT) ; 
FI)i' I: =1 UNTIL 'v DO IE' 10iH'T2 Ii} )=NUfmER (I) THEN 

LOWPT2 (1) :=LO,.PTl (1) ; 

F : l? I: =;1 TI N TIL V ;; f) ~ U .1 f:j ;:; H (I) : = U ; 
EPTR:=O; 
rOIN'T': =CCDl:.:-=l; 
P AT I! ( 1) : = 1 ; 
S(O):=F(O):=O; . 
S~CONDSFARC9Erl(FOrNT) ; 
F ,i"i!: E N 1'; X T : = V : 
r'OR T:=1 UNTIL)': JO N':':;XTLI~IK(LDG~S'l'Ii~1'~(L*I-l),E.DGESTlICK(2*1»; 
APr p ; ::: Y [ 1 ii: = X ~ P'l' Ii ; = U; -l 

X'3PTR:=O; 

::; fAHTPCIN1':=O; 
P,\T:iNlTt1FlEii: ='; 

3 E (;r N 
P l:\ () C E D U I( E P t\ 'I d F r. ~ DELi:( 1 Wi. .c:.; 1:.1, V A J... U;:. 1L:: S U L T POI NT) : 

~HILE NEXT(POINT),::::0 DO 
PEGIN 

V 2 ::::: H F. AD (N:::"{ T (PO IN T) ) ; 
N'~ :~ T ( P 01 NT) ::::: N BAr (iJ 1:..1..':" (.tIO .ll~ 'I) ) ; 

..If,I1E ("20prr IS", FCI~ll, "Vi. IS", V2) ; , 

IF STA~rpOI5T=0 THEN 
AE G It! 

ST~hTPOINT::::POINT; 
no; 

IF V2)rOI~1 TH~N 
P3GIN 

R A r: G E? ("oj 2) :::: CUr. ; 
PATH (V2) :=[lAThi'JUl'111~h; 
p r, 'I Ii f' IN U 1::. R (V 2) : 
Clili'::::V.;:-1: 
S T A ~\'l [Iv 1 N 1" : = I) : 
\'. :; I L ~ P U I N l' < ::: Y (i l:' I: ri) 1)0 Y i.l 1" q ! ~ Y P T R - 2 : 
WHILE [l0INT <=A(Ar'lrt) iJO Al:'TR~=~PTR-2; 

~JIL£ POINr<=XN(X~~r~) UU ~NPTR:=XNPTR-3: 
v,'l!lL':: POINT <=A~ (.C:>l'I.{) 00 XSPTR:=X5PTR-3; 
FL!\G:=r'ALSC:; 
w:II.i..E (HI.3:1l'ATli (2*.r'OILH-l) )XN (XN'PTR-1») AND 

( t' U I N T <..;, N ( X l'i l:' I Ii - 1) ) AND 
(clIllrl.C'l\Tti l2*t>IJltlT) (Mi (XN?TR-2)) DO 

FLA\:i:=rrttlE; 
E:)J.:.L.i..NK (1I1Gbe ... lli(L*'POINT) ,XN (XNP1'~-2»; 

U:ITl:. ("JI~';;!i'1\'fil ).lIt\~", x:.; ( .... NPTH-2) ,dlt,;j1L;i\Ttl\~'l'!?01NT)): 

i!: l) G C; L It~ K ,;0. (A is .I:' 'I it - 2) , H I G H PAT H ( 2 * POI ~ T) ) : 
LINKTU!i (.::.i)1l1:.1"L\Ei::-1) :=LI NKTYPE (EDllEFhEE) 

:=fALSt.; 
AN?l'h: =ANP'H;-j; 

E i~ j) ; 

r~ ~L~~ rH~~ ~N~Tj::::X~~rd+J: 

fi I l; i! PAT h (2 * p til Dl T) ; :.: h I \:i ih iI. T 11 (2 * POI NT - 1) : :::: 0 : 
E 'f!) 

ELSr. 
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BEGIN 
~RITE{"PATHNUMBER I5",PATHNUMBER."5TABTPOIHT 15",5TARTPOINT."V2 I5",V2,; 

5(PATHNUMBER):=STARTPOINT; 
F{PATHNU~BEB):=V2: 
FLAG:~FALSE; 

IF A(&PTR),=O THEN ADD2(A(APTB-1),A(APTR),Y,YPTR) . 
9 

IF F{A(APTR-1)~=V2 THEN 
BEGIN COMKENT PATH IS MOH81L; 

WHILE V2 < Y(YPTR) DO 
BEGIN 

EDGELINK(PATBHUABER,Y(IPTR-1»; 
WRITE (nIl-INK", Y (YPTR-1) , PATHNUKBEB) : 

EDGELINK (1 (YPTR-1) , PATHNUKBER) ; 
LIHKTYPE(EDGEFREE-1)::LINKTYPE(BDGEFRE~ := 

TRUE; 
FLAG~=TRUE; 

Y PTR :=YPTR-2; 
END; 

IF FLAG THEN YPTR:=YPTR+2; 
FLAG:=FAL5E; 

WHILE(V2<XN(XNP~Rt)AND(STARTPOINT<XN 
(XNPTR-1» DO 
BEGIN 

WRITi:: ('IX1INK",PATH!lU~BER,IN (XNPTR-2)); 
EDGELINK(PATHNU~BER.IH(XNPTR-2); 
EDGELINK(XN(KNPTB-2}.PATHHU8BEB) ; 
LINKTYPE (EDGEFREE-1) ~=LItlKTY PE (BDGEFBEE) : = 

FALSE; 
XNPTR:=XNPTR-3; 

END: 
WRILE(V2<X5{X5PTR»AND(STARTPOINT<X5(15PTR-1» 

DO XSPTR:=XSPTR-3; 
IF 5TABTPOINT>HIGHPATH(2*Y2-1) THEN 

BEGIN 
HIGHPATH(2*V2-1):=STARTPOINT; 
HIGHPATH(2*V2) :=PATHNUKBER; 

END; 
ADD3(PATHNUKBER,STARTPOINT.V2,XN,XNPT~) ; 
ADD3(PATHNUMBER,STARTPOINT.V2,XS,X5PTI) ; 

END 
ELSE 

BEGIN COMMENT PATH IS SPECIAL; 
WHILE(V2<X5(XSPTR»AND (STARTPOINT<XS 

(XSPTR-1»lND(lS!XSPTR-1) <=RANGEP 
(STARTPOINT» DO 

BEGIN 
PLAG:=TRUE; 

WRITE("SPECIAL XLINK",PATHNUMBER,XS(XS?TR-2»: 
EDGELINK(PATRNU~BER,XS~5PTR-2»): 
EDGELINK(X5{XSPTR-2),PATHNOMBER); 
LINKTYPE(EDGEFREE-1):=LINKTIPE(EDGEFREE) := 

FALSE; 
XSPTR: =X SP'T.'R·· 3; 

END; 
IF FLAG THEN X5PTR:=I5PTR+3; 

END: 
IF POINT,=5TARTPOINT THEN 
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END; 

ADD2(PlTHNUMBER,STARTPOINT,A,APTR) ; 
P1THNU~BER:=PATHNUMBER+l; 
STARTPOINT:=O; 

END 

INTEGER ARRAY A,Y(-1::2*E); 
INTEGER ARRAY XN ,X5(-2::3*E); 

INTEGER ARRAY HIGBPATH(1::2*V); 
Y(-1) :=Y(O):=A.(-'I) :=1(0' :=XN(-2) :=XU(O,:=O; 
IS{-2):=X5(O):=O; 
X N (,. 1) : ='X 5 (- 1) : = V + 1 ; 
FOR 1:=1 UNTIL 2*V DO HIGHP1TH(I) :=0; 
EDGEPREE:=E-V+l; 
FOR 1:=1 UNTIL 1*E-5*V+2 DO NEXTEDGE(I,:=O; 
V2:=1; 
CUR :=V'; RANGEP (1) :=V; 
PATHFINDER(V2); 

ERD; 

PATHNunBER:~PATaNUMBER-l: 

FOR I:=l ONTILcE-V+l DO COLOR(l) :=0: 
FOR I:=2 UNTIL PATHNUMBER+l DO NEWNODE(I):=TBUEj 
STABTPATH:= 1 ; 
WHILE SToARTPATH<:PATHNUftBER DO 

BEGIN 
COLOR(STARTPATH):=l; 
NEWNODE(STARTPATH) :=FALSE; 
PATHMARKER{STARTPATH) : 
WHILE,NEWNODE(STARTPATH) DO STARTPATH:=STARTPATH+l; 

END; 

BEGIN 
PROCEDURE COLORCHECK; 

FOR I:=1 UNTIL PATHNUMBER DO 
BEGIN 

POINT: =S (I) ; 
V2 :=F (I) ; 

WHILE P01NT<=ALEFT(ALPTR) DO ALPTR:=ALPTR-2; 
WHILE POINT<=ARIGHT(ABPTR) DO ABPTR:=ARPTR-2; 
WHILE POINT<=XLEFT(XLPTR) DO XLPTR~=XLPTR-2; 
WHILE POINT<=XRIGHT(XRPTR) DO XRPTR:=XRPTR-2; 

IF COLOR(l)=' THEN 
BEGIN 

IF { F (PATH (POINT) ) .,=V 2) THEN 
BEGIN 

IF V2<ARIGHT(ARPTR} THEN 
BEGIN 

EllD ; 

iRITE("CONFLICT IN ARIGHT". I, ARIGHT(ARPTR-1); 
GO TO NONPLANAREXIT; 

iF V2<XLEFT(XLPTR) THEN 
BEGIN 

WRITE("CONFLICT IN ILEFT~,I,XLEFT(XLPTR-'»; 
GO TO NONPLANAREXIT; 

END; 
ADD2 (I,V2,XLEFT,XLPTR); 

END 
ELSE IF(V2<XLEFT(XLPTB)AND( S(XLEFT(XLPTR 

-1»<=RANGEP(POINT»THEN 
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BEGIN 
WRITE("SPECIAL CONFLICT",I,XLEFT(XLPTR-1)}; 

GO TO NONPLANABEXIT; 
BND; 

ADD2(I,POINT,ALEFT,ALPTR); 
END 

ELSE 
BEGIN 

IF ( F(PATH(POINT»~=V2) THEN 
BEGIN 

IF V2(lLEFT(lLPTR) THEN 
BEGIN 

WBITE ("CONFLICT IN ALEFT", I, lLEFT (lLPTR-1»; 
GO TO NONPLANABEXIT; 

END: 
IP V2<XRIGHT(IRPTR) THEM 

BEGIN 
VRITE("CONFLICT IN KHIGBT",I,XRIGHT(IRPTR-l»; 

GO TO NONPLANAREIIT: 
END; 

BEGIN 

ADD2(I,V2,XRIGHT,XRPTB): 
END 

ELSE IF(V2(XRIGHT(XBPTR»AND( 
(XRPTB-l)<=RAP.GEP(POINT)} THEN 

WRITE("SPECIAL CONFLICT",I,XRIGHT(XRPTR-l): 
GO TO NONPLAH1REXIT; 

. END; 

END; 
ADD2(I,POINT,ARIGHT,ARPTR); 
" 

END-,. , 

S (XBIGHT 

INTEGER ARRAY ALEFT,ARIGHT,XLEFT,XBIGBTt-1::2*E); 

,ARPTR: = ALPTR: = XRPT R: =XLPTR :=0; 
ALEFT(O) :=ARIGHT~):=XLEFT(O):=XBIGHT(~:=O; 

ALEFT(-1):=lRIGHT(-1) :=XLEPT(-l):=XRIGHT(-l) :=0; 

COLOBCHECK; 
END; 

WkITE ("PLANAR") ; 
WRITE("TIMEn,TII!E(l» ; 
GO TO DONE; 
NONPLANABEXIT: ; NONPLANAR2:WBITE("NONPLANAR~; 

DO~E: GO TO NODEIT; 
END; 

END; 
END. 
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