AD-738 570

INDUCTIVE METHODS FOR PROVING
PROPERTIES OF PROGRAMS

Z. Manna, et al

Stanford University
Stanford, California

November 1971

éDZISTiRJBUTED BY:

National Tachmcal Infomatlen Service
U. S. DEPARTMENT OF COMMERCE

AD 738570

ri e a—

STANFORD ARTIFICIAL INTELLIGENCE PROJECT

MEMO AlIM-154

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS 243

INDUCTIVE METHODS FOR PROVING
PROPERTIES OF PROGRAMS

BY
ZOHAR MANNA
STEPHEN NESS
JEAN VUILLEMIN

NOVEMBER 1971

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE

Springtield, Va. 22131

C OMPUTER SCIENCE DEPARTMENT

N O T1 C E
THIS DOCUMENT HAS BEEN REPRODUCED FROM
THE BEST COPY FURNISHED US BY THE SPONSOR-
ING AGENCY. ALTHOUGH IT IS RECOGNIZED
THAT CERTAIN PORTIONS ARE ILLEGIBLE, 1T
IS BEING RELEASED IN THE INTEREST OF MAK-
ING AVAILABLE AS MUCH INFORMATION AS
POSSIBLE. |

e

STANFORD ARTIFICIAL INTELLIGENCE FROJECT November 197
MEMO AIM-15L

O

P

COMPUTER SCIENCE DEPARTMENT REPORT

NO. CS 2L3

ABSTRACT:

INDUCTIVE METHODS FOR PROVING
PROPERTIES OF FROGRAMS*

by
Zohar Manna
Stephen ljess
Jean Vuillemin

We have two main purposes in this paper. First, we
clarify and extend known results about computation of
recursive programs, emphasizing the difference between
the theoretical and practicel approaches. Secondly,”we—
present and examine various known metheods for proving
properties of recursive programs. We discuss in detail
two powerful inductive methods, computational induction
and structural induction, illustrating their applica-
tions by various examples. Wevalso briefly discuss some
other related methods.

e o
Our aim in this work is to introduce inductive methods to
as wide a class of readers &s possible and to demonstrate
their power as practical techniques. We ask the forgive-
ness of our more theoretical-minded colleagues for our
occasional choice of clarity over precision.

*The research was supported by the Advanced Research Projects Agency of
the Office of the Secretary of Defense under Contract SD-183.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the

official policies, either expressed or implied, of the Advanced Research

Projects Agency or the U.S. Government.

Reproduced in the USA. Available from the Clearinghouse for Federal
Scientific and Technical Information, Springfield, Virginia 22151.
Price: Full size copy $3.00; microfiche copy $.95.

INDUCTIVE METHODS FOR PROVING PROPERTIES OF PROGRAMS

ZOSAR MAIGLA, STERMEN !

Computer ©

£5S, JEA WUILLER

by -t
e e saa

gtanford University
Stanford, Zalifornia

Abstract

we have two main purposes in this paper.
First, weo clarify and extend ¥nown resultc about
computation of recursive proirans, cmphazizing
the differe =a between the theoretical and practi-
¢al approac.cs. Sccondly, we prosent and exemine
various knoot methods for proving prepertles of
recurcive programs. We discuss in detalil two
powerful inluctive methods, corpatationnl induc-
tienm nnd stiuctural induction, illustrating their
applicaticns by waricus examples, We also briefly
digeurs gome other related methods.

Gur ai= in this work iz to introduce induc-
tive methods to sg wide s class of readers as
ponsible and to descnstrate thelr power as practi-
28l techniques. We agk the forgiveness of cur
mare thecretical-minded collesgues for our ccca=
gional choice of clarity over precision.

Introductlon

Many different inductive nethods have been
used £o prooe properties of prograns. Well-known
rethods inciude for example recursion induction,
structural (nduction, inductive assertions, compus
sational iniuction, truncation induction, and
fixedpoint induction. Our intention in thiz paper
iz to prescnt and cxamine these methods, ifllustra-
ting their applicaticu for proving properties of
recurcive programs.

In Section I we give the theoret fcal back-
cround pneccrsary to underctand the fixelipoint
approach to reCursive programs {essentinlly follow-
ing Scott (1379, 10701} as well as the practical
coemputatic:zl approsch. We emphasize that while
exizting inucuctive methods prove propevrties of the
tipast Tix~dipoint functicn' of & reursive progras,
in practice the function computed by some fommon
computation rules differs from it. We briefly
suggest Yfixedpoint? computation rules whick ssgurc
that the coopated function is identical to the
leazt fixeipoint.

In Secticn 11 we exanine compu taticnal induce
tion methols, l.e., methods in which the {induction
17 Bezed on the zheps of the computation. We
firgt preront the extremely simple induction method
intrcduces by Scott fdeBakker and Seott [1%99],
Scott {15 -]}. Examples are presented which imiro-
duce varicuc applicstions of the method. We alzo
digcuzs ancther computational induction method,
typuncation induction fMorris f19711). A related
method, called Tixedpoint induction, ie described
in ?ar:': 13‘ 33:

We descvibe the stwactural induction methed
snd itz application for proving propertics of
programe in Section IIL. Talp method was ruggested
explicitly by Burstall [1969]), although 1t was
often used previcusly, for exarmple by HeCarthy and
Painter {1 +7] for proving ine correctness of a
compiler ani by Floyd [1%77] for proving termina-
tion of flcwchart programs. Our intention In
thig section iz to emphasize, by means of appro=-

priately chosen cuwrples, that the choice of &
suitavle partial ordering on the data gtructure
and & muitable inducticn mypothesis leads Lo simple
ard clear fnductive proofs. Althoush we chow that
coeputatienal Induction and structural induction
are escemtially cqulvalent, there are practical
reasons Tor meeping both of them In mind., Compu-
satienal inmdustion iz best sulted for proving the
correctness nnd equivalence of Prograns, and
becauge of itz simplicity it is particularly con-
venient for machine implementatlon (Milner {1472,
16725])+ On the other hand, termination of
prograns 1o ususlly casier to ghow by structural
induction.

in Secticn IV, we introduce twe gdditional
methods: recursion induction (MeCarthy [194351),
which wag actuslly the first =ethod proposed for
proving properties of recursive programs, and
imductive aszertions {introduced by Floyd {15€7]
and Neur |10 7] ror flowchart programg and generas
1fzed by Manns and Pruell [1g70] for recursive
progranc). We show that any proof by these methods
can be effectively translated o a proof by compu-
tational induction.

. RECURSIVE PROGRAMS

-

e apmmenti. FOT
cxanple, the quotient funciion x/y , mapping
Rxk [pairs of real munbers)

sonsidered to have no value if y =0 . Partial

tnto R, 1s usunlly

funetions arise naturally In connect ion with compu~
tation, ag & computing process muy give results
for some arpoents and run indefinitely for cthers.
1n developing 2 theory for handiing partial
Ametions it iz conmvenient to introduce the special
element w o repregent the value undefinced. We
tet D' dencte D U fw], assuning «fD by con-
venticn: when D is the cartesian product
4 "

Alx...:ﬁn,we let D be Alx...uai.

_

Tne recoarch reporied here was supporied by the
advanced Regearch Projects Anendy of the Office of
the Secretary of Defence under Centract S0-183.

Any partial function ¢ mapping D’_ into 3,
zay then be considered as & total function zapping
by iawo D; i if T iz undefined for dr.sl » we
let 7{d) re w.

Since we shall consider compositions of
partial 'nmctianz; we may need to compute functions
with zome arguments being undefined. Thus we must
extend every function mapping D, into D; to s
function mapping D‘i into 1}; i such extensions
are discussed in the next section. Partial predi-
cates are of course a fpecial case, since a par-
tial predicate is o partial functicn into

{true, falze] .

The Ordering € cn the Domain

To define appropriate extensions of partial
functione from Bl into na to total functione
froe D; into D; s Wwe Tirst Introduce the
partial ordering € on every extended domain
2" . The partisl ordering c iz intended to
correspond to the notion 'is lesr defined than',
and accordingly we define it by letting wco 4
for all 4cD’ . Note that distinct elements of
are unrelated by C: for distinmet & ana &
in D, neither agd nor bt cas holde. If DY
it the cartesian produet A'«x... XA s we iefine
(al,...,an) > (bl,.-.»,bn) when 8, C v fer
cach 1, 1 <i<n.

Examplc. I D = {a,5} , then D° - {a,b,5} and
(DxD)" = (W), (@8), (8,0); v vy (a5, (bya), (b, b3]
The partial orderings on 3 and (x5’ are
deseribed in the diagras=s below, where each cone
necting line indicates that the lower element iz
less delined than the upper element. {Lines ime
plied by transitivity or reflexivity are not
chown.) a

i

= A partial ordering iz a binary relation which
i reflexive ((¥a){aca]) , antisymetric
{{(va,d)facbab Camsa iz {dentical to b)),
and transitive {{¥a,b,c)]a SbAabCcwace}).
Az usual, we write acd if ach and a is
not idemtical o b, agb if act does
not hold, ete,

a b {a,a) {a,b) {b,a) {byb)
\.n, {a, &} (W n) (a4 1) (‘-’* 3
& el { e F1oy)
~—N 2
{pw)
3 ©oxp)* « p*xp*

Honectonie Functions

Ay function f computed by o progrem has the
broperty that whenever the input X is less defined

than the input v, the cutput f(x} 45 less

defined than £(y) . We therefore require that the
extended function f from n; into n; be

nonotonie, i.e.,

Xxgy implies f(x) c f{y) .

I

¥e let (D -D‘,} dencte the set of all =monotonic
functions from D, inte D .

1 2
If ¢ has only one argument, monotonicity

[

requires that f£{w) be ., with one exception:

Y
he constant function f{x) = ¢ for sll x¢D .

Te o~
o

has many arguments, l.c., Dl B :‘;31 esv XA
it may have rmany different ronotonic extensionz.
A particularly important extenmszion of any function
iz called the matural extencion, defined by lctting
:‘{:zl,.u,in}* be W whenever at least one of the

2, iz w.~

functions corputed by

This corresponds intuitively to the
prograns which rmust inow all

it

helr inputs before besinning excoution {e.g.,
Algol eall oy value).
Examplez. {a)

X in D into itszelr, I obviously ronotomic.

The identity funetion, mapping any

{&} The
x/y , extended to a total function by letting xjfo
be W for mny

iotient function, napping (x,¥) into
X in R, becomes monctomie by

let x/@ and wfy be w
in R’ -

the natural extenszion:
for amy x and y
{¢) The cquality predicate mapping DxD into
{trug, false} can be extended in the following
particulary interesting ways:
{1} The natural exteazion (weak equality),
denoted by a , yields the value w whenever
&t leazt one of its arguments iz @ . The weax
equality predicate iré of course monctonic.

- f

=~ We azpume a1l the functions of our exazples to
be naturally extended, unless otherwize noted.

(11} Ancther extension (strong equality),

denoted by = , yields the value true when

toth arsuments are w and false when exactly
ohe ariument iz w) in other words,
and only if Xcy and ycx . The strong
equal.t_, preﬁen.e iz net & monotonic mapping

XxXsy ir

from o x2 inte {tru rue, false,w} , since
(W& s @d) it (Wed)d(ded) (fee,

falze f “rue) for deD .

{d}) The if-then-slse functien, mapping
{true,false} xDxD into p » 15 defincd for any
a,bL by letting

the value of (if true then a elsc b} be &,
and

the value of (if false then & else b) be b,

It can be extended to a :oncrtmlc function mapping
[t_r_ue,“n.ac} xd" xd" imo p* by letting, for
any l;bln ¥

the valuve of {1f trae then a elre w) be &,
{i

he value of AL false then w else b) be o,
ani
the value of {1 w then a elee b) be w.

Note that tnis is 0ot the natural extension of
if-then-clze, -
Compozition of Funciions

An ivportant ¢peration on functione i compo-
siticn, whiich sllows functions to be defines in

terms of simpler functionz. If ¢ is & function
Troe Dl Lo :ﬁ ad g & function frem D
into Dt

hen the c:rggltim aof £ and £

iz the -n.‘: tion from 21 intc :> defined by
elf(x}} for every x in Dl . If. iz easy to
show that, if and g arve monotonic functions,
S0 iz their compositicn.

Examples. (a} The funetion f » Siven by
f{x} = (4 & = O then 1 else x) , is definecd by
compozition of the weak equality predicate, the
constant functionz O and 1, the identity
Tunction, and the if-then-else function. GSince

&1l these functicns are monctenie, £ iz moncteonic.

(b} The function ¢ » 8lven by f{x) =

(if x & w then O elze 1} , define2 using th
noomonotonic predicate =, fz not monotonie,
since flo) =0 and 1{0) a 1 we o,
but f(@) £ £(0)).

{1!5!,

{e} The functions f;’l and E‘E y Siven by

£,{2) = g(if plx) then 5y (%) elze n(x))
and
.;'E,ix) s i p{x) then '-..n {x)) else b(h?{x}):

are defined by composition of if-then-clse, p, g,
hl and h, . If B, 2, hl and h, are rono-
- e

tanie, 1’1 and f, arc monotenic., There iz an

interesting relation botween these wo functions:
{i) Six) g r(x} forany x; (1) 1r
alw) = w, <hen {x) l(x} for any x . We

shall uge theze rem.l*a fand a sim{lar result when
£ hac ceveral arguments) often in later proofs. n

The Ordering C on Functions

Let f and ¢ be wo nenotonic functions
mapping D; into D; - We say that
" £ i7 less defined than 6" i £{x) c g(x)
fer any x in n’l : this relation is Indeed a
partial ordering on {131 - u;_) « Two functiens
end o arc equal, fwg, iff Tce amd gc
{that iz, 2 . irr & 2} = g{x)
ch;) « We denote by 1 the function which is
always undefined: Xxz) Is w for any x-_D: .
Lote that Qo ¢

fcgs read

(&3

]

lor every

Tor mmy funstion .

Infinite intreasing coquences
¥
L. :", o= :‘ T ese of funeticnsz in ial - 0.}
0 o- -— 2
are called e‘min:. It esn be chown that mny chain
-
= Da} »

which has the characterictic

haz x unique lizmit function inm (D;
denoted by lim'!‘ii
properties that I, g li.:{ri] for every L, and

for any functicm g guch that :z‘. cg for

every 4 , we have 11:.-.{1‘1} CE - ;
i
Exarple. Consider the seguence of functions

!‘_,.fl,... over the natural numbers defined by
fx} = {if x < 1 then %! elze w) This zequence
g\ ¥ = {if x <1 then else

iz & chain, az ,’.“i c f'*l for every 1 ;

lim{2,} ia2 the factorial function.
1 ! o

Continucus Functionsls

We now consider & function T rapping the
set of functions (D] = D) into itself, called a
functional; thas isy = ;akos any =monotonic
function £ az its argument ana wields a mono-
tonic function t{f] az it value. as for

functions, it is natural to restrict curselves to
monctonic functionals, l.e., 1t such that fgg
irplies ziflctig] forall £ and g in

(.ﬁ; - D;} . For our purposes, hiowever, ve require
that functionals satisfy s sironger property,

called continuity:
¢hain of fmctions

v iz continuous if for any

foc_:!lgtzg...

ve have

il erinlesiflc ...

'Eli’“‘i}] 8 liﬂ{‘-‘ifii} .

We usually specify a functicnal ¥ by campo-
gition of known monctonic functions and the func-
tion variable F , denoted by <tiF}{x) ; when F
is replaced by any imown menotonic function £,
the compesition rules determine tigi{x} . It
can easily be shown that any functional defined by
composition of monotonic functiomz and the function
variable F iz ¢ontimous.

Ex ez, f{a) The jdentity functional *
defines vy 7v.{F}{x) = ¥{x} , =apping any § Iin
(0} =D.) into itself, is clearly continous.

(v} The censtant functional 1 defined by
t[FHx} = g{x) , mapping any [in [{}; -D;'j
intc the function g , iz continuous.

fe} The functional 7 defined by t[FHx) =

(if x = C then 1 elze F(x+l)} is constructed by
composition of monotomic functione (if-ihen-else ,
additiern, weak cquality, and the constant functions
0 and 1) and the function variable F; It iz
therefore continuous. Given any monotonic function
g over the integers, 7t(g] iz another monotonic
function over the integers:

if g =0, then tlgl(x) = {if x = O then 1 glge w) s

if g(x) = x-1, then *{g)(x) = (if x =0 then 1 else X).

(4) The functional t defined by [FH{x) =
{if wx{F(x) = x] then P{x} elgew) ic monotonic
but not contimucus; if we conzider the chain

8, S & C -+ Where gy {x) = (£ x <4 then x
elre @) , *r{gtl] foruny 1 so that
1?{1-'[311} =) , whereas -ft.li.a(gi}i is the

identity function. =]

The funda~ental property of a continuous
functional ¢ r~apping {B;_ -DE) into itself is
kst 1t has & unigue least-fixedpoint ?‘ , having
tihe two characteristic propertles: §, = -r{F‘,j

and, for any

£, o~uz{z] izplies ?‘Eﬁ .

We can cocpute F, as the limit of the chain
Actiflct7lR] g ... 83 follovs Irom Kleene's
first recursion theorem [1950].

Examples. ALl the functicnals in the following
exampler are defined by composition of monotenic
functions and the function variadle ¥ and are
tharefore continucus by construction and have
unique least fixedpoints.
fa) The functional T oOver {}t* o-!i*} s given by
iP)ix) = {if x = O then 1 else Fi{x+1)})} ,
has as fixedpoints the functions
’;':{:) ® (1€ x = O then 1 eise n}

for each nrH’ .
The least ficedpoint i
Fe(x) » {i£x =0 then 1 else w) .

{t} The only ijand therefore least) fixedpoint of
the functicnal T

{Fi{x) =

is i‘!fx} =z

over the integers glven by
if x > 100 then x-10 else F(F(x+11))
if x > 100 then x-10 else 91 .
{c) The ’f‘-mét.ionn % over the inmtegers, defined
by

t{!"](xz,:t.?} =

it %y w Xy then xgtl eise F(xl,F(xl-.l,xe,*i)} "
hse az fixedpoints the functicns
f{xl,xz} = x01,
lxppx) = Af % 2% then x01 else o1 4 and
h{"‘.‘;’xe) e if {x; 2 xg) A (xy=x, even)

then xz*l elge W,

the latter being the least fixedpoint F {Morriz
[1368]). >
'y

We consider a functional T over {ﬁ; 5
to be given by coordinate functionals

‘l".‘"‘n s S0 that 71?1, ---o-,?n] iz

(‘-'lzi“lpn-q,?njjvtc,fni?l, -c-’?n]) « It follows
directly from the definition of the ordering on
{n; -D:_}n that t iz continuous if{ each L2
iz continuous. A continuous functional t over
{n;_ - E};}“ has & unique least fixedpoint
F, = {F_ 3+++,F_) ; that iz
T 71 11-:
(a) ¥
b
(b) For any fixedpoint g = {31“““‘1-\} of ¢,
L P € rtilgl,...,gn} for all i
(1<t<n), F cg Torall %
=*= t, =%

1 QJF,; "."P‘? } for.&ll 1,1 S f<n g
1 n -

(t<tgn) .

Exsmnie. Consider the funeticnal ?EFI,P:,] [
(0 [F P 1w, (7P 1) over
(Rt ~5*)?, where:

TFPFHx) = (12 x « 0 then 1

else !-‘1{ x=1} + ?E{x-}.))

and

12{."1,?2}(3) ® (if X = O then 0 tlse ?Q{x-l}).
For any nel’ , the pair (5,sB,) defined by

gn{x} % (if x=0 v x=1 then 1 else {x-1)'n+1)

and

f(x) z (if x = © then © else n)

n —— —
1 L i - ¥ 3.4 X
iz 2 Tinedpoint of 1 , zince <, ¥ tzggn,hn} and
b, = 22{‘::1’“::! {and therefore (z:n; R) =

tla,h i), The least fixedpolnt iz the pair:

«

iIfx.0wxelthen 1 elze w} ,
{if x -0 then 0 else w)) .

i

Recurzive Prozrars

So far, wn have been concerncd only with
functions conzidered abstracily, as purely rathe-
metical obfectz. For example, we thought of the
Tactorisl Munction az a certain -apping between
arguments and valuesz, without considering how the
mapping iz specified. Tc continue our dizcussion
we must introduce at this point s “programming
langusge™ Tor specifying functiions. A function
will be specified by u piece of code in the ymntax
of the lancuage and then will be oxecuted accord-
ing to computation rules siven ty the so-mzntice of

the language.
In the rest of this paper we use for {1ilustra-

tiocn a particularly simple lanpunge, chosen because
of it3 rinilevities to familiar langusces such ac
ALGOL or L}SP.:j & progras in our langusge,
called a recursive definition or recursive prograz,
iz of the form

F{x) <= ziF)}{x)

where TiF]{x} Iz an cxpression representing com-
position of !mown ronotonic runctions and prodi-
<ates and the :’m:::'r:ic.n variable F , applied to the
individual variable X .— For exnmple, the
following is & program for camputing the factorial
Tunction:

F(x) <= 1f x = @ then 1 olse x-F{x-1} .
Thiz program rezembles the ALGOL declaration

integser procedure fz);

2= if x = O then 1 slse x%f{x-1);
and the LISP definition

DEFINE {{
{F (LREpA {X}{comn ((ZEROP X) 1)
(Z {(TDEs X {F (S X))

Of course cur progra=s are meaningless until
we desceribe the semantics of our langsuaze, f.c.;
0w to compute the function defined by a progran.
The next step is therefore to cive gomputation
rules Tor executing programz. Cur aim ig to char-
acterize the rules such that for every progras
Flx} <= vir¥{x) the corputed function wiil be
exattly the least Tixedpeint E‘T .

Y pithough cur prosrasming language is very fim-
pic, it iz powerful enough to express sny
"partial recurcive™ funmction, hence bty Churchts
thesic any "cocpuisble™ function {see, for
example, Minsky [1%7]).

e/ We shall purposely be vague in our definitions
in thiz section to avoid the introduction of
the notion of sthemaz und interpretations.

For a formal approach, gee Nannz and Pruell
[2970] or Cadtou {1972].

C=putation Sequence

Let F{x) <= 7{F1{x} be a progras over scme
imaln O . Foroa siven input value 4aep' {for
4}y thie progran I executed by censtrueting a
seguence of term:s t;'tl”‘a“" » Smllicd & Sempua-
tation rejuence for d , as follows:

{1} 7The first term z,_)
{2} Foremeh i1, & >0, the tem tiyy s
ottained from t g in two steps: first

is F{d) ;

{a) substitut.on: same occurrences of F
{see below) in t, 4&re replaced by
t{F] simulitanec.”'y; and then

{L) simplification: iuown functions and
predicates are replaced by their values,
whenever possible, until no further
simplifications can be nade;

{3} The sequence iz finite and tn is the Tinal
term in the gequence if and only if no fur-
Lher substitution or simplification can be
appiied to tn {that is, when tn iz an
element of ' b5

Cecputstion Rules
A computation rule T tells us whichk occur-

rences of ¥ zhould be repisced by t{F! in each
subatitution step. For a given computation rule
€ , the program defines a partial functicn ?c
mapping 3 into 0 as Tallows: 1If for input
4D thue computation sequence for 4 is finite,
¥e say that Fc(d.) iz defined and FC(:'.) 2t
if the computation sequence for d is infinite,
we say thas ?c{d} T .

The following arc examples of typical compu =
tation rules:

(a) Klemne's computation rule: Replace all

occurrences of F simultanesusly. We dencte

the computed function by ?X .

{b} leftrost-innermozt rule: Replace only the
leftmost-innermost occurrence of F (that
is, the leftmost occurrence of F with all
argiments free of Flz j. We denote the
cocputed function by I-‘u « Thiz Iz the rule
which corresponds to the ususl stack-imple~
mentation of recursion for lansuages like
LICP or ALGCL. Any procedure evalustes all
its argueents bofore cxecution.

(¢} leftnost outermost rule: Replace omly tae
leftrnost-outer=ost occurrence of £ . We

denote the compsted funciion ny :-"m -

Examnic 1. We consider the recursive definiticn of
the Mol-function®™ over the integers:

F{x} <- 12 x > 100 then x-10 elze F{F{zell}) .

We illustrate the computation tequences for X = @9
uging the three rules.

{8} Using Xleene's rule:

Yy iz F(99)
if 35 > 100 then 29-10
else F(F{91l)) [cubstitution]
t, iz F(F(110)) {zi=plification]

if {if 110 > 100 then 11010
else F(F{110+11))] > 100
then [£f 110 > 100 then 110-10
elze F{F{l10¢11}) J-l0
elze F(F{[Lf 120 > 10
then 110-10
else F(F{110011)) }11))

[substitution]

t, is F{F{1i11))
T £ {4£ 121 > 100 thea 1110
elge F(F{LL1+11})] > 10
then [if 111 > 100 then 11)-10
else F(F{111+11))]-10
else F{F{Iif 111 > 120

—_—

[si=piification]

then 111-1D
slze P{F{111¢11}) }+11})}
{substitution}

i, i 9. [simplification]

In short, omitting simplifications and underlining
the oocurrences of F used for substitution:
E(99) - E(£(119)) - E(E(111)) =91 . Tiua,

?};{99} a9l .

(b) Using the leftmost-innermos: rules:

E(29) <F(E(110)) =E(100) =F(£(121))} ~F(101) =41 .
Tims, E‘u{?}} =31 .

{c)} Using the leftmosi-ocutermost rule:

F{99) - F(r{110})

- 1f P{210) >120 g}g F{110}~10 else F{P{F(110}+11)}
~ S(F(FI0)+11)) < ...

= 1f P{110)}+11 > 100 then F{110)-) else ...

-3 -0,

Thur, :-‘w{gg) = 91 .

11

A Lmportant property of :-‘c ghould be
menticned at this point (Cadiocu {1572]):

Tor eny ¢ tation rule € , the sormuted Sumevlion
E': it lszs defined than the least fixedpoint,
Tetes Fo ©F, » but they ave nct necessarily
egual.

A progran ray consist in general of & systes
of retursive definitions of the form

?1{:':) < ‘11?1’"‘*?:1}(’—‘)

F %) <= TolFppeen P HR)

LN}

-

F (2} <= = [Flt'l“t‘ ;{35) »

where each \‘1 iz an expression representing &
composition of known monctonic functions and
predicates end the function variables

applied to the individual variables
%= (Xys+403%,} - The generalizaticn of the com-
putatior rules to gystems of recursive defini-
tions iz straicitferward; the computed function
Fc of the systen can be descoribed as

Fopunay¥
FypFoonnse n

(?C ,!-‘.. ,.u,l"c b » where each ?c is computed
n i

The results of this sectic:
sive definitions.

£ desaridbed above.

t11l held for mystems of rec
cFlupeint Cooputatt
ALl the methods ¢

for proving properties of
procrass degerited in the rest of thls paper are
bazed on the arruxmption that the coputed function
Lo the leart fiiedpoint.

intercoicd anly

8 ot We are therefore

in the computation rules that yield
fixedpoint. We ©all such computation
ruler firedpoint computation rules.

Let al}’l,...,!‘xlid} dencte any term, where
we use superseripic to distinguish the indiviiual

oceurrenzes of F In . Suppofe ¢

+ we choose
for substitution the occurrences I, eve,Fe (Tor
secce 1, 1<E<k) of F in a. We zay that
this iz 2 safe substitution if:

{W!’i' weay ?k}atﬂ: ccapih T

Intultively, the subziitution iz zafe if the wmlucs
of F""l,.n,rk are nct relevant: as long as
are not imcwn, the walue of

s W T T

¥
seaspl

%
AF T eeey T4 cannat bc ictermined; hence, there
is no need to coopute ¥ }',...,. % 2t thnis point.

A sefe sommntation rule {5 any cooputation

ule which uses only safe substitutions. It can Le

chowm that any mafe oomputation rule [z 3 fixedpaint

Por example, since

¢ and the lefizost-cutcrworst rule are
Tale, they are both Uixcdpoint rules.

The leftrwst=tfmermost rule, however, iz not
gafc. The Jollowing oxsople illustrates o proyras
the leftmost-
Snnermost rule is not a fixedpoint rule.

for which F,. £ £ o8 that i,

Exarple 2. Consider the progras over the integers
P{x,¥} <= if x = O then 1 else F(x-1,F{x-y,¥})

The leazt fixedpoint iz

T

H

F(%x) o (if x >0 then 1 else @)

We campute F{1,0)
camputation rule:
F{1,0) = F{0:£{1,0) = F{O,F{0,F{1,0))) = ..

using the lefMmost-innermcst

and $o one The Sequence is infinite, and therefor

r 1,0 . In ¢
w(;): n fact

I-‘LI{x,;.r] ® ($f x=0 v {x>0Ay >0 {y divides x})
then 1 else @} ,

which iz =trictly less defined than £ .

T
Thiz exzmple iz closely related to an example of

Morris [1o05]. 5

In practice, the fixedpoint computation rules
described so far (Kleene's rule and the lefimosti-
outermost rule} lead 2o very inefficlent computae
tions. In the rest of this gection we describe and
f1ustrate a fixedpoint computation rule, called

the noyral computation rule, which leads to effi-
»

cient computations. In fect; since our computstian
rules do net allew the reuse of previously coamputed
the normal comput
can be showm to perform the minirum pozeible mumber
of gubstitutions {Vuillemin [1072]).

By this rale, .’.1*1 iz obtained froem t by
substitutin: <{¥! for one cccurrence of F
to roplace the
t-cutermost 'occurrence of F oin t, by

values of the progran, ation rule

Shozen as follows:
leftms
TiF] , and start to evalante the neceszary %ests &n
the new term, in order to eliminate the {f-then-sise
connectives. I thiz is pozsible, we are done.

we try fin

Qthervise, wo choose a now oosurrence of F in
t, waich corresponds 1o the first F owe had %o
".;_:‘. <uring the previour evalustion, ani repear
the Process.

In cther words, the {dex it to delny the
esalustion of the arpsmments of the Tunmction vari-
able: T as much as possidle. This rale is
juite close to Algol €0 "eall by name" Tor pro-
cedures. However, there are twe Important
differencea: {a) absclutely no zide offects
are allowed, and (b} each argument of the
procedures iz evaluated at mcst once, nmmely the
firet time (i ever) it iz necded.

We dencte the cozputed function by I-‘R « The
normal rule iz safe, and it iz therefore a Tixed-
pint rule. The rule can be i=plemented in
progrooming languages with almost no cverhead,
and provides an attractive alternative %o call
by walue, which iz not a fixedpoint rule, and
call by nane, which is not efficicnt.

Exarnle . Conzider the programs over the natural
mmbers

Fixyy) <= Af x =0 then yl

glse if y =0 then F{x-1,1)

else Fix-1,F{,y-1)).

We ghall compute F{Z,1) wusing the normmal compu-

taticn rule. The cecurrence of F chosen Tor
substitution i underlined,

B(5,1) = F{L,F{a,0)) - Fr(A1(3,1))

g

03 (I;EQG,?‘EI,-"))) "E“flr?"‘lle)*i)

e

(L, E(2y1)*1) = F(1,3) ~F(0,F{1,2})

H
i

(1,2)41 = F(0,F{1,1))+1 ~ F(1,1)+2

¥
f

L]
b

-

{1,0))+2 = P13 = F{0,1)¢3 =5

(]

]

Hote <kat in }"‘El,g{.’?,a}) s for exarple, the
inner cceourrence of F war chofen for substitue
tion, rince trying to substitute for the outer F
would lead to
if1 =0 then ...
else if #(2,0) = O then ...

else ... »

which requires testing for the value of F{2,0) .

We compare below the nmumber of cubgbitetlons
requi-od Jor each computation rule o this

exarple.

Lor=a: rule: 1L
Remels raler 23
Leftmesteimnermost: 1L

Pt T i ¥ -
Leftrcot-outer=ost:

nad

?.._.{.\:,1.'} & F,{x,y} 1z mown as "Ackermannta
functien® . This functicn s of cpeeial interest
in recursive Munctiom theory because it grows
faster than any primitive recursive Amctions
for example, r_:{s,c) =1, s‘,!(;,l) =5,

Fo{22) =7,

2 P33 = 61, and

Consider the program over the

Exarple L.

irtegers:

F{xs¥} < if x = 0 then 1 clse F{x=-L,F{x=-y:¥)) »

we shall ccmpate F(Z,1) , using the normal

carputation rules
£(21) = £(3,7(3,1))

...2{{},:—‘{1-?{1,1},?{1,1}}} -1 .

We agcnin compare the substituticns reguired:
licrmal rule: 3
floene®s rule: 7
Leftrost~innermost: 7

lefMoost-outer=osty 3

17, COPUTATICHAL DOUCTION

Tic Pirst methoa we chall dezevibe l: com-
ceptually very simple: in order Te prove sme
propert. of & progran, wWe show that I Iz an
imrarisst during the courge of the computation.

For si=plicity, we shall firct eplain the
rethod {or gi=ple prograzs, concisting of a
single recursive definition, then gemeralize to
more cosplex programI.

Cesputotional Inducticn for & Single Recurcive
Definition

Tc prove the property P{F] of the functicn
F’r defined by F <s tiF] 5y it &g sulficlent te:

{&} Check that P 1z true before starting the
Cmﬁ‘.m, 1-0*-. P(ﬂ)

{t)] Show thaty 1f P 5 true at one step of the
curpatation, it remaing true after the next
£1¢7y ie€., P{F) implies P{r{F]} for
every F .

In gt

~vom PLY) and YPIP(T) = PIT{F])], infer P(E) «

-
Since thiszs rule o not valld for any P~

Ll
we ehall only concider admissitble pmiicatcz—'

&

£
-
X =

Corcider, for example, the recurcive delin
ticr over the natural members Fix) < &
shen 1 elge %+F{x-1} , and the preilcate

Piot: oxdPis) s w A x fwl o Then PR} and
YriP(F) = B{z(7]}] hold; since K (x) iz a
total ction (the fastorial function),
P) deer not hold,

o
A clmnse AP of simireiblc predicates can be
defined a1

(3Py = (AP) A [AP) | YRLEP)
(EPY = (EP) v (FP) | Q(X) | afTi(R) ¢ BIFi{x}

swhere Q%) iz any first order predicate,
and z and 8 are two contimucus fTunctionals.

;o eon un

c
and B are two continuous

Im thic care, the Jjustification of the
prinafple ip casyy L1 2] 2 Q] and

¥riaiF] o 8T

any 3

®

Tnerefore, since Bz 101} c 8lF,] for

afr an) c8ir,] . By definition of

the lizit, this

&nd,

alF,) = alitsl}(A]) s 1= ale*(al}

Exarmle 2.

a

pltes = af'iall c sle,d,

teing continucus,

BiF_} .

T

{1}

%

wWe wigh to ghow that the progran

F(x) <= if p{x) then x else F{F(n(x}))

defines un idempotent Duncticne i.0., that

:-‘_E:I T :-“ « Oy p and h, we understand respecs
T
+ively any naturally extended part predic and
function. We prove PIF) wrMM’
_....--"‘
& 2 —TFc
F’:: 2 F ; Leey FT? (= } A g §‘F} +

{a} Show PUL

b+

s fRix)) =

=

1]

{La€ay s'__,ﬂ z 3l

1-'{{_:1..) definiticon of R

if plu) then @
F

@ deflnition of
if @ then & elze b

) . definition of

tions of tnequalitics:

e —

(L} Sucd YR{P(F) = P(r{F])) , i.e.,

Y (FFeFa E‘?‘S{E‘} = v[F!
e FIFH)) = 7 (4f pix) ihet £ -
else F{F(n{x))))
definition of 7
= if p(x) then F(x)
else F (F(F(h(x))))
distributing F'_{
over conditional,
since F (W) = w
% if p(x} then x
cise 7 (F(F(u(x))))

definition of !-',‘

ven x
- else F(F{h{x)))

]
-
s]
i
-~
"
it
o
l§

Induction hypothesis

= T[Fi{x} . definition of <

=¥
-

The next example usez as forain the set 2‘
of finito strings over a siven finite alphabet T
includin.- the oeply siring A . There arc three
tasic functions:

- hix} ives the head (first letter} of the

string x 3

t{x] oives the tail of the string x
% with {is first letter removed);

“-x concatenates the letter & 4o the

tring x

{i-l}o,

Yor exaple, ®{ED) = 3 » KD} =C5L,
B+CD = BCD . There functicns satisfy the following
propertics, for every xeT and yc:‘ :

BIxey) = X, t(xey) =y, xey 4 A ’

and 4 AwR(p)et(y) -y

Extwnple 2. The program

F(%,3) <= (if x = then 5 else K{x}-F(z(x),¥))
defines the append function F (x5} , denoted
X*¥ « We shall show that append iz ascociative

& This cvotem fz sometimes called flinear LIOP'.
There is no difficuity inwvolved in generalizing
our proefs Lo real LISP pro-rass.

{i.e., that xs(3%z) w {(x*y)}*2 } by proving P{?g} 3
where P(F) iz P{x,y)%z = Fi{xyy*2) «
fa) PHY) :
x,3)*z 2 wrn definition of

2 ifwa= j then =

cire h{w)~(t{w)*z)

definition of append

E W gince w =] iz w

o Axvy,2) . definition of Q

(v} WFP(F) = P(x[FI))

TIFI(x,5*2) = if x = A then ye:
else hix)-F{e(x),y*=z)

definition nf ¢

= _!_t_’ X w § then yez
elze h(x)«(F(t(x),5)*e)
induction hypothesis
= ir A then yez
2lze (h{x)}-F{t({x),y))*=
definition of append
2 {if x = A then ¥

else h{x)-F{t{x),y))*=
dictributing append
over conditional,
sie rz z @
= t{FHgy)es .
definition of ¢ -
Thiz procf was done formally with the IOF proof
cnecker {(Ullner [19728}).

Parallel Induction
We chall now present an application of compu-

tation induction ts proving praperties of two
programs: F <= v{F] and G <= oG] . To prove
P(E)3,) 5 where P(F,G) 1z an adnissible
predicate,~ it is sufficient to;

:’r That iz, a conjunction of inequalitics
alF 5] ¢ BlF,6] , where a mng 8 are contin-
uous funetionsls,

#

{a) Prove P{LY) ;

(b} Show that P(F,G) implies P(z(F],slc])
forany F and G .

That is,
frec PUELDY ang (Y5,5)IP(5,3) o Plri{ri,={a}}

infer P{l‘-‘g-,ca) *

Exacple 3. Consider the prograns
?{3'1:?2:3'5} <= ify, =0 then Y5
% Ftyl'llyg’yfl}'g}
Clyps¥ps¥y) <= ify) =0 then y,
elise G(ylvl,:.-e*wl-l).

We wunt to zhow that both programs may be used to
ccmpute the fquaring function; more precisely,
that I‘t(x,a,xf} = G,{x,0} for any natural nusber
X . Let

P(F,0): YWy [Py, x(x-5),%) = G(y,x°=y)] .

We shall prove P(FI,G,) which, for y = x ,
simplifTies to E‘{x,ﬂ,x) = G (x,0) .

(8) P : Ryx(x-3),x) = Ayx°-vd) by
defirition of .

() (Y0} {P(5,5) = P(x{Fl,olG])] :

TIFI(yx(x-3)5%) = if v = 0
then x{x-0}
else Fly-1,x(x-y)*x,x)

i‘.g;{no
2

then x
glse Fy-lyx{x={y-1)),x}
®if vy =0
then »
elze G(y-1,x"(3-1)%)
induction hypothesis
=ify=0
then x2-02
else G(y-1, (x°=y)e2y-1)
= o[G)(y,¥" %) . =

Example k. Consider the two programs(Morris [1971)
P(x,y)} <= if p(x) thea y else h(F{k(x),¥))
G(x,¥) <~ £f p(x) then y else G(k(x),h(y}) ,

where p stands for any naturally extended partianl
predicate, and b and k for any naturally exten-
ded partisl functions. In order to prove that
EREN I Gy{%,¥} for all x and y, we thall
cencider
P(7G): Yol r(,) = G{x;¥}ia

(alx,n{)) - HMERSS. ;3‘ .
We prove P{I-‘,,Jaj s wWhich implies 26, az
follows:

(e} PLO) :

0,5) = 2xy)] A R06B(5)) = 8@x9))1 ,
since h{w) =w .

(v} (¥5,6){P(F,G) = P(z(Fl,c[G])] :

(2} =[Fi{x,7) = &f p(x) then y
elze n(F(x(x),¥})

s L€ p(x) then ¥
elze k{G(k(x),¥))

industion hypothesis

5

]

* 1f p(x) then y
else G(k(x},h(¥}}

induct lon hypothesis

= o[5](x¥) -

(2} cleHx,n(¥)) = 1L p(x) then h{y)
else G(x(x),57(x))
= 1f p(x) then K(y)
else n(G(k(x),h(y)))

induction hypothesis

© h{s!ii{xﬁ)) * -—

Corputational Induction for a Set of Recursive
Definitions

We shall state the computational induction
prineiple for x program concisting of two recursive
definitions,

¥y <= 11{5‘1,?2}

?2 <= ¥2§F1,?2] 3
the generslization to a syztenof n (n >2)
recyrsive definitions is straightforward.
Te prove ?{?11,%2} y Where 'P(}‘l,r-‘a) iz an

admizeible predicate, iW fs sufficient to:

(a} Prove PO,AY)
{b} Show that, for anl ?1 and 32,

P(?li?a) L'-'iPliQs P{:l{?lﬁyei’rzt?lrrel) o
That is,
from PR, and (¥7,,5,) {PiF,7) =

Flr ?2}} 1,

infer #{F_,F_} .
R

In the following examples, we omit variables
and parentheses whenever possible.

mz}ﬁ Ev

Fy <= if p then FiF h else Fag

Congider the prograz

F, <= if q then rszrl elte ™

?3 <= if p then ?31?1zh oclse !','r‘,‘g

Fi <= ifq 2hen I'I-‘L?3 else b
inwnich p amd 9 sztand for any naturally ex-
tende! pertial predicates, and Ty85 and 1 for

any raturally extended partial functionz. T¢ prove

that ?11 & P ‘ ¥ et ?f?l’?q‘-ﬁ’ Fh) be
(Fy e7) A {I»‘ = 7} ; we show that

P{?tl,bta, m‘h} az follows:

(a) PLYauayil) ¢
=0} A @M s true since) e
ﬁS} L WZ, ."’FL} {I‘f}'}., ----,th =

R I LR I

zlfrl,'i‘e, =sFy] 12 p then FiF b else P8
= if p then ?*f’.ﬁ‘hh else !‘i‘kg
=50 <. =t

induction hypethesis

FpFF 3 Fyl
1:.:{?135‘2,?5,?5} = if q then T F, else ™
= M{if q then ?EFI cize h)
® £(ifq then 7, ¥, else h)
induction hypothesiz
" f{“'jj ?"“p"rh” .

i |
—

Iransformations which Leave F, Invarisnt

0

We can use computaticnsl induction to prove
useful thecrem: asous recursive de*initions. Fop
exanple, if we =odify 8 recursive definition
F <= ¥{?! Uy replacing some occurrences of P in
T[P] by either ={F] or F, + the function come
puted by the new proyras is prc.,lxcly Lthe
eriginal ?,: .

To prove this, let uz write TIF] s v{F,7],
where we use the second arguzent in t'[F,F] to
distinguish the occurrences of F which we wish
to replace. wWe define + EFI = t*{Pr{F]] and

L] m ey, F.1s our .,a.u is to show that
1-' x F‘l v ?12 - We show this in two steps:

in) {r;_, Q?*r} and {I«' c?) - This part iz
i

easy since by derinition of % and Tos

= f P -
E u‘flll’?i !1‘2{?,1 - That ig, 7 iz a

Tixedpoint of beth = 3 amd T, , therefore,

-
it iz more defined than both F and ¥ .
T2 ta

() (F,2?) and (F 7 } + Thiz can be
Y T =T,

<

shown by cemputaticnal induction. (Hint:
prove KF,, e } where P{.l,}‘__,,?:'} is
°1

{(Fy cr,}-&u-‘ c?)a{?l._rirli}n{? SEI)

Exsmple ©. To prove that Flz) <= ifx»10 then
X=10 else F{F{x+*1%}} and G(x) <= if x> 10 then
X=i0 else Gx+l) define the same function over
the natural nu=bers, ong duzt has to replace
F{x+13} by the value of Ft{xr.l_},} » which iz x+2

since x¢13 > 1o . _%-i

Example 7. Consider the Tellewing program (Morris
{19711)% over the positive natural numbers:

i‘{x} <= if % = 1 then O
else {(if even(x)
then F,(x/2)
else ?xE:mI})

5

?_,{x) <z {fxa=l Lthen ¢ else F,i‘*“‘(x})

L It iz not imown whether the functicn E o(x} is

defined for all =x or not; a computer p;ogrm
Checked that it is defined for a1l positive

integers up tog j*ms .

x} <z if x = 1thenl
elge (if even(x)
thar x/2
‘."13'.‘ Ei\ 'r‘u S‘:l}}} *

We ghall prove that F, = F hy “rang=
Ty L 4

forminy the definiticn of Py and F, respec-
tivelr, until we reach the same recursive defini-
tion.

¥irst, ¥ =T,
T

y Where:

jiFlx) = (3£ x = 1 then O
else (if even(x)
then F{x/2)
else 7, [FI(3x+1)}) -

Since [odd{x) and x > 1] imply [even(Dxel)
and ‘x#l > 1lj,

Fi{x) = (if x = 1then O
else {if even(x}
then #{x/2)

clse !-‘{—-} 1 .

f?‘tl where TR{F,F.] =% nr.;-sl-A”s
2 2 - v

10!-%

wlF,F e e {ifx =1
sl DIt

then &

]

1ge (if even{x)
then F,(x/2)

""lmn

else T (F . [F.{

wnfF, T Hx) s {(ifxe1
- - e 6
glse {if even{x)
Tien I";,(::,-—"Q)

elze £ (5, (5, (<50
JE 5

The result F_F = F iz essily establiched

T, Ty T,
from the definition of ?2 by considering the
three cases for x = 1 :

true, false,
uniefined{®) . Thus

1?‘,{?2,&}(:;} v (if x = 1hen?
cige (iF even(x}

then }‘3(2!3)

r ().
2

%
[
L]
"

|

2
Pinally, we consider

3(F,F,l(x) = (i x = 1 then O
elee (if even(x)

=

'*' 5{‘!“)
clse ¥ (—-—)})

Cleariy ¢{F_,F,] mtlF,} ; since F sF and

7i

F, =¥, , we establisn F_ 0= Fz

u as desired. -

2 1 2 i

for the progras=:

i 3
Pl <= if p then F:?g?ez’ else g
F,<= if q then F.h else &
F,o D then F,F T clge ¢
?2. <= {f q then F??,n else T &

we first change the definitions of :‘l. asd Fy 0

I"1 <= if p then F F, F.f else g
T &
and
Fy <= 1f q thea L ¥.h clse ?_: B oa

3
-

L]
respectively, and then prove by corputational
induction that:

(F, = F,} A 'i'_'!»’r PoeF) .
3 y
Tre reader chomll be aware of Lhe difTiculties

involved in provins that F_ = F_ without the
"1 °3
above modificationt. 3

Truncation Induction

1f for some continucus funclionxl T we define

i
the zequence of functions £ by letting 1
&
:"i 2t i0l] , $+e.,

@ .0 ana 1'1.311{!'&} for all idH »

then the zame argurent used to establish the valid-
ity of compatational industicon alro shows the
wmiidity of the i‘nuwiﬁ.g very similar rule:

frow P(f%) and (niemyie(el) ep(eithyy
inter B(F,) .

The resemdlance of thir rule to the usual —athe-
catical inducticn on natural numbers sussests that
we consider a similar rule using complete induc-
tion over natural .-::.-.-:berz.:’{ Morriz [1971] celled
It truncation inducticn. Hore precisely,

In order to prove P(E) , P{F) beingan
adniszible predicate, we show that for any natursl
musber 1§, the truth of P{r) forall <t
irplfes the truth of P(f)) . That is,

from (¥1M) [((¥Sen such thar § <O)R(L)]arich)) ,
infer P{:P!} .

The validity of this rule is cstablished by first
using induction on N to show that P(") tholds
Tor. =1l nelf ; one can then use the proof civen

sbove for the validity of computational inducticn.

When the progrds consists of & system of
recursive definitions zuch as

I"l <ﬂ fl[Pl-'""Fk}

»
-

?k <‘ Tki?z’ -v‘,rkl F 2
ve let 2 be ..., o1 L
{slzri},...,fk{!"'}} » and £, be (FT}.”“’F?::) 3

the truncation induction rule iz then precisely
the sax+ az above.

Example 5. (Morrie [19711). We ceonszider azain
{gee Example %) the two programs:
F{x,¥) <= (if p{x) then v elze h(F(k(x}, }))
G{xsy) <= (4f p(x) then ¥ else o{u{x),%(¥})})s

whers p stands for any naturally extendeq partial
predmats, wnd h oand X
tended partial functions.

In order to prove that both prograss define

the same function, we check that ¢ = 5= ,

for any naturally ex-

-

< when applied %o matural nunbers, Shese twp
inductions are rgquivalent; *iuz truncation
induction and compotational imduction ars
equivelent fro;m a theoretical point of
view. ZRqperience in using both methods shows
thet they are slsc equivalent in practiice.

1k

&, g

oA n

= and that £ o g" for il nawD o, (¥e
treat the cases for n < 0 and n o= 1 separately,

since to prove I = & we have 1o use the induc-

tion hypothesis for teth n-1 and n-2 .}
{a) !‘gxcgz d2aR.
Sy
ixay) 2 1 p(x) then ¥ eise B((k(xoy))

y tlse w

T g Q
m 1f p(x) then y else g (k{x),hiy))
e gx,y) -

{} ::;'E..;r' for n>»2:

x,1) = if pix} theas y else hi:’"'lfbt,f)}
definition of 2:1

1
{1’1:?3)

induction nypcthesis [n-1)

® if p(x} then y else R{g

= if px}

then ¥
Rt

eise h{if p{k(x})

then y

n-2,.2,
else g& T{k"{x),ufy}n}

definition of °1

-
I

p{x) then v
gize (if pik{x})
then h{y)

-

2. 2,
else hg” TI{xT{x),R{y)))

]

if pix) then y
zise (if plk{x)}
hiy)
nel o
B (R {x)a0(x)

hypothesis {n-2)

then
else
Sraae

induction
3

% if p(x) then y else i“‘l{k{x)oh(:ﬁ}.’
definition of ¢ %

=
= 12 pix) then ¥ elze g ~(k(x),h{y))

induction hypothesis {n-l1)

n

= g (%) - definition of g

g

=3
It iz often usefMil 2o define slightly different
i

Sequences of functionz 7 and then apply a gener-
alized fore of ?.m::::n:.l‘m induction, 23 fllustrated
in the next example. Kleene's first recursion

theorem can again be used %o eztablish the

validity of such generalized truncation induction
rules,

Example 10. We consider sgain the prograx
F <= 47 p then § else ¥ ¥
where 3 is the identity function. We zhall prove

that L A S‘t « For this purpose wve define the
sequence of functions l'i in the following way:
P . a
2 =210
2 2 4f p then 5 e1ze ™M gor n>0;
note that for n »2, it is not necezsarily tne
cage that ' = 1“{0] .
¥e shall prove the desired result by genera-
lized truncation induction, letting the induction
hypothezis b= '_,.n*}inh? = fn’h .
We firct check the cases n = 0 and n w1
(the details are onitted); then, asctuming that

the indvcticn hypothesis is true for all i <n »
we get

F'Efvzuzmﬁfgpthm.sehc tmltnh)

definition of £H°

* if pthen £ e1ze UL,
*
E if p then § elee £ -1y,
sl

definition of ¢
% if p then J elze me!n*Sh

induction hypothesis
. Y definition of £¥

. ned el
By complete induction, it follows that £e
Y oty mai g e Kleene's theorem can be
used to establish that ?,‘!‘T ® i‘t s A% desired. -

IIi. STRUCTURAL INDUCTION

One faniliar method of proving aszertions on
the domain ¥ of natural nuzbers iz thst of
complete industion: in order te Prove that the
statement Plc) £ true for every natural mumber
€, we gshow that for any natural nmumber s » the
truth of P{b)} formll b ca inplies the truth
of Pla} .

That is,

13

from (¥aeD}{{i¥ecd z.t. b < a}P{b} ! = Pla)]},
infer (Yoed)plc) .

Since this Induction rule is not valid fo-
-

every ordered domain,~ we sball first charact srize
the ordered domaing which are feoodt for indotion.
We then prezent a general rule for proving states
ments over guch doemalng, called structural induc-
tion; complete induction, sz well sz many other
well-inown induction rulez, iz a special case of
Structursl induction. Finally, we zive zeveral
exarples using structural induction to prove pro-
perties of recursively defined functicns.

Well-founded Setp

A partially ordered set (5, <} ccncists of a
fet § and a partial erdering < on S .:/ A
partially ordered set (S, «} which centains no
infinize decreasing tequense ay > sl > 2, > e

of elementz of S iz called a well-founded set.

Exarples. (a}) The set of all real pusbers between
¢ and 1, with the usual ordering <, is partisl-
1y ordered but not well-founded {consider the in-

v

It

Lo X
finite decreasing cequence ST >E >)

3

L £

(b} The set 1 of integers, with the usual
ordering £« is partially ordered tut not well-
founded (consider O > <1 > -2 n ... :

{c} The ze* N of natural mumbers, with the usus}

ordering <, i wellefounded,

-
{4} if £ iz anv alphabet, then the get T of
all finite strincs over T (i.2., csquences of
letters of T), with the subzstring relation
(Wy <%, $£f w iz o substring of ¥, }, §z 7
~founded.
wellefounded -

Structural Inducticn

We may now ctate snd prove the rule of struce
R 22
tural inducticn on well-founded sets, oo Suppose

oy
ey Lt iz valid over the natural nusbers with

ordering £ burt Zails over the integers with
ordering £ {conzider P which is alwvays
faige).

wwf

— licte that the ordering need not Sa total, i@,
it Is porsivle that for zome u:beS ; neither
& <b nor b <a mBolds. !

mbl—f
Structural induction is sorelizes also crlled
Hoetherian induction. wWhen the ordering «
iz total, t.6., ax<b or t = & holds for
any &,%5 , it is callsd transfinite induction.

AL L s i

P i3 & total predicate over the well-founded set
(5,«} . 12 forany a in 5, we can prove that
tne srutn »f Pla} iz irplied by the truth of
P(x)} for all <3, then P{e} iz true for

every ¢ in 3 . That is:

frem (¥aeSH{{¥beS 3.t b <alP(b)] = Pa)} ,
infer (¥zeS)P{e) .

To prove the validity of thuis role, we thow
4rat if the assumptiop &5 satisfied, there can be
no elemens in § for which P does not holl
Comzider the set A of elements &¢5 such that
Pla) is false. Let us asmme that A is nonesply.
Then, there is & least element 3. such that
ax “G for any A<k 1 othawise: there would be
an infirite descending sequence ir S . Then, for
amy element b such that bo<a, , plE) =ust
hold; that is, (¥beS 2.3, b -:IQ}P{b} » But
the asrurprion then implies that P{a,a) y in come
tradiotion with the fact that agd‘ +« Therelore
A must bte empty, l.€., P{e} must hold for all
elemerts <8 .

Applicaticns .

we now give geveral examples using structural
inducticn to prove properties of recursive
Prosrani. Such proofs require suitable
shoices of both the partial ordering < and of the
predicate P . Scme of the examples paow that tne
partial crdering to be chosex is not slvays the
usual partial ordering on the domain., OQther exan-
ples illusirate that it iz often uzelul o prove a
=ore general regult than the desired thecres.

Example 1. {Cadfou) Factorial functicns.
Consider the two prograns
.l{:} <= if x = O then 1 else x'F, -‘k-..)
and
[Fa(x) < F4(x,0,2)

r}{;,y,;) <= if x =y then = else F.{x,y1,{y*1)2)

F ami F_ compute XU = L1e3+...ex foroevery
Ty T,
xci in wwo different ways: ¥ by ‘geing up’

2
feor O %o x and TQ by 'going down* from X
) ;
to O . ¥We wish to show that 1-“ t}‘,l . The
2
proof uses the predicate P(x) @

Ting A8 pecepd 3 = ('-..".',x.-.:‘d

—
S’

(fy 8¢, ¥ > xME, {7557, (y-x}} s 5, (¥1] »

€, t

e -

“r.
-

and the usual ordering oo aatural nunbers.

IfT x =90, P\:‘} is '}'[. {}at;i (}'}} ®

£ (¥)] , which is clearly %rze by e‘!nst'

If x>0, we azsume P(x*} for all X' <X
and zhow P{x) .

For any ¥ Sa.%t. ¥ D> X,

$aw=X, T, (3ex)) 2 B, {y,y-nely(y=xe1)-F, (y-x))
"3 *3 Ty
definition of ¥
T2
{gince x ™ Q)
= {,, »x’l,. {yex+l}

= induction Nypothesis

(ginse (x-1} <x and (x=1} € ¥}

i
holds for

Siven & partially cndered get (S, <) , we

fire vhe lexicoscraphic ordering « on netuples

n
af slements of S {(i.e.p on elemenmts of § } by

Yy i

A osas AR 0=

1.1 bi-Lﬁ xi c:‘.ti for some 1,

.
i<n. I iz easy 0 show that iF (5. <}
is well-founded, 2otz (5", <) . Fer exarple,

Fcr the ural nusbers v"..h the usual
riering <, tne set (N7, <) i3 well-
. S
foandeds (n.ena) <€ {m,Lmy 8T o, <=, O
- - - 4 - - - -

(n, == Az, c=) (mcte that e.ge
(1;1’.”3\ < \-»vw-)}

=)
For the alphabet T = [A,8p.003} th the
weunl ordering A < B < T < see < Ty the 322

{':3, f} of words of length trree Is well-

founded. llote that this is the ususl
elphabetic order: C:8er ACK « BAT « CAD «
:ﬁ'r -

Exa~ple 2, Ackermann®s functfen.
Conslder the Progras
Alx,y) <= if x=0 then 1
gise if y <O then A(x-1, 1}
else A{x-1,A{x,y-1)).

We wish to show that k_'fx,y) is defined for
By Xyl , i.e., that the Somputation of %{’z,y}
always terminates., We thall use the structural
induction rule applied on {132,5) + Asguming
2

that .ﬁi(x’,y‘) is defined for any {x*,¥") zuecy
that (x',y7) 2({%:¥) , we chow that .-\’{x,y}

=ust alse be defined.

(a) i x=0, termination iz obvicus,

{b) If x40 ang ¥ =0, we note that
{x=1,1% g &y, o by the inducticn hypo~
thesis %{x-l,l} iz defined. Thus
A,:{x,y} iz alzo defined,

(e) Finally, ir « £0 and y 4o »

(% ¥-13 :; {X¥) ana AT(::,;:-J) iz therefore
defined by the fndnst fam hypothesis; then,
recardless of the value of A‘_{x,y-l} 3
(x-&.:\,{x,;wi)} f {65} ani the desired
result follows by another application of the
induction hypoinesis. -

In each of the preceding examples we ured the
most natural ordering on the dorain o perfom the
structural induction. 1In the next exarple it iz

natural to yze x scoewnat surprising ordering.

Exampls 3, {Burstall). The al-function.
The Glefunction :-‘1 iz defired ty the fol-
lrwing PTOZras over the intesers:

F{x) < i x> ihen X-12 elce F{Fix+11)} .,
We wish Lo show that ?? g, where o is

glx) = gx:-&')’)}?_.gx-l:s&& @1 .
The proos is by stwustyeal induction or the well-

founded zot (I, <) , where 1 iz the integers
and < is defined s follows:

i7

Xy it y<x<lm
{where < iz the usual ordering
thug 101 « 1) < Fh % ema p but
02 kit .
well-Tounied,
Suppoze ?‘,{y} = 8{¥) for all yer susy that
¥ <X . Wezust show thas Fo{x} = o(x} .
{1}

(x)

on the intekers);
for exaxple, \‘\\

{oe can essily check that {7, €} is

For x> 10, }‘;:{3:3 B o{x) tiil‘ﬂ:tl;,‘-

For 100 »x >%, ?’{’.'c} = ?1{?!{»11}} Y
Ft{xil} » and since x+1 « x weo have
??{x) z ?1{::*}.} = g{x*1} by the induction
asmmptlon. But g{xel} = 91 = g{x) ,
fore ?‘,(x} ® gix) .

Finally, for x < 90 - ?'{x} = Pf(?‘f(ﬂl‘.)} »
and since x+11 < x we have ?‘{x) =
E:r-:r#mn)) * R (elx*11)) by induction. 3us
e{x*11) = 31 , and we know by induction that
F(01) = g(01) w91, 2o F(x) = P (s(xe11)) »
F(91) * 91 w g(x) , as desired.

there.

(e}

We could altermatively have Proven
property by structural induction on the
bers with the usual oxdering =, uging
complicated predicate P{n): (WxcId[x > 100-n o
?rix} ® (%)} » The reader should note that the
deznils of thiz proof and of the above proef are
precizely the sare.

the above
natural num-
the more

Since the set (I, <) of fMnits strings -
with the substring relation is well=founded, we =3
= the following
ezample ¥e ufe an induction rule that can essily
be derived from structupal induction, namely:

use it for structural induection.

froc P and (=) (x4 A PIER)) < B(x)]

infer (¥oer)pig) .

Example M. The reverse function.

The program reverze »

reverse{x} <= F{x,4)
FlX,y) <« if x < g then v else F{t(x),h(x)-y) ,

cives as value over T the string made up of the
letters of X in reverge order. For example, if
T = {A.3,C} then reverse{ACBR) = BECA .

we wizh to provk that reverse{x) is dct'.iiied
and that reverse{reverse{x}) = x for all xef

ar

Sourse, proving that reverse has this property

does not show that it actually reverscs all words:
many othier functioms, e.g. the identity funmetion,
alze satisfy thiz properiy.

1. 7o prove that reverse{x) iz alusy:s defined,
we let

P(x) be (¥yeT)IE,(x,3) tis defined] .

{a} If x = 2, then F.(x,¥} sy, and thus
!:r(x.y} iz defined.

(8} If x4 A, since t{x) <x we may
aszune that F*r (tix},2)} is defined for
any = ; therefore i{'(t{x},h{x}'y}
iz defined for all yer® . Thus
?‘Ex,y) ig defired for any y .

It fellows by structura® I.duction that

I-‘,(x,y) is defined for all x,yttn s and in

particular, since reverse(x) = ??(x,a) "

reverse(x) is defined for all x& .

2. To prove reversel{reverse(x)) = x we let

P{x} te (‘!y(.z‘}{rmrse(?,‘ (x3)) =
!‘:r{}‘sx}! -

{2} If x = A, then for any ¥ we have
rmr:e(?‘fx,‘y)) = reverze(y) =
A = F iy .

(¢} IT x4 A, then forany y we have
reverse(F (x,7))

® reverse(F (t(x),h{x}e¥))

definition of ?’r
{zince x / &)

= F (n{x} v, t(x))
induction hypothesis
{zince x > t(x))

£ (% h(x) -t (x)
definiticn of ?1,

{zince hix}sy £ A)
& !"(}',x} .

Therefore m{g(x,}')) ® F{¥x) for
all x,:fr:' i in particular, for ¥y =47,
reverze{revercel{x)) = -marae{!"(x,a}} =
?‘{A,x} ® X ; az desired. 5
Other properties of reversze may easily be
Proven by structural inductfon. In particular,
Lthe follewing sxarmple uuen the properties that,

-
or any 3,b¢f and xeT :
{1) reverse{x*a} = a-reversze(x) ,

(i1) reverse{a-x} = reverse(<}*z , ana

(i1} gpeverse(a-{x*t)} = u~{reverse{x)*a} .

Hiample 5. Ancther reverze functien.
¥We wish to rhow that the program {due to
Agherert)

R{x) <= ££ % =
Lthen &
sise §f t{x) =A

then x

else a{R(t(x)}) R(n(x) ‘R{L(R{tIx)})))

algo defines a reversing function on ;".'* s leta,
that R (x) = reverse(x) for ali x<I' . locte
+that this program uses only one recursive defing-
tion. '

In the proof we shall use the following lerma
characterizing the elamemts of T : for any
.\;4:2‘ s elther x = X, or XL (lecs; Tfx) =4),
or x = ys(w¥z) for zome y, W', and zep .
The lemma 1z easy to prove by s ctrajghtforward
structural induction.

We now pmvf that %_:
Z;<), where < is the following
partial ordering:

: reverze by structural
=200

induction on

X4y iff x is a substiring of ¥ er x Ir
a gubztiring of reversely) . One can check that
®
{L ;<) iz well=Tounded.

Using the above lemma, the proof may be done
in three parts.

(a) x=3: B (x} = A = reverze(x) .
{b} x<T = !g(x) ® X = reverse(x) .
{0} x = ye{w*z} for some wef , W , 2L :
R, (x}
2 h(R,itix))}'R,(hfx}'&,{t(ﬂ,(‘hfx}}))}
definition of R%
s h(R, (w2)) B (7R (t(R (v*2))))
since hix) =y t{x)awez
= hireverse(w*z)) R, (¥+R_(t{reverse(w*z))))

* induction hypotheszis
{since wez < x)

= hf:~rems¢{w})wi:_,!(y--n’(t.;':-re-;cr:ciw}5})

property (!} of reverse

L]

2R (v*R (reverse(v)))
properties of hoanl t
® o3, {yereversel reverselwt})

induction mypotheris
.
{zince reverselw) <x)

= :«nf{y-w) properwy of reverse
proven in previcus
exanple

B zereverse{yew) induction hypothesis
{gince ¥.¥ < X]

s z.(reverse(w)*y) property (11} of reverse

x reverse{x)

We conclude that R, {x) = reverse(x} for all
xeD , 8z desired,

3

rizon between C

=t itational Induction and
Structural Induction

Lt L

Alrtough computatlonal inductlon and struct-

ural induction appear to be guite different
nf.hm’ we :'.-n'(l show
methed cor

other.

now ey procf using one

n be tranciated to a proof uzing the

{2) Tran tom from Cooputational Induction
to Structural Induction

Melinmg the principle of structural induction
ypothesiz PN and YF{P(F) =0tiFDh
where PIF) is taken to be Arl e 8iF] fer

simplicity, we mugt prove P{?!} . Tor +hat pur-

and the o

pose, we shall conzider & well-Tounded ordering <
sver T which regerbles the computation of
alF,] as !‘olla'c:i:; x =y iff the ¥lecne compu-
tation coquence— of :JE}“‘,!{:) is shorter ihan
that of a{rfliy‘} . Ucing the definitiom, it is
straight forward to show that

(4xed") {{ (¥yed’ zuch that v < RG] = 2]
where Q(x} iz Q{F Ux) < 8lF, Hx) s b:, gtruce
tural induction, it follows t':.a‘.. {?w:: Yalx) 5
fa€ey Pfi—“} "

= Note that reverse{w) < x , which iz ‘r.,rm
because reverseiw) is n :ut\awr.m,
nwrst:(xs , a2 may be seen from Wr“g (2}
of YeUerie.

ﬂi.m-. an z.t. 1IRNx) # @ and PR rw.

Howerer, 1T we restrict

property (111) of reverse

{t) Iranslation from Stn
Sompotational Ir.lu:.".m‘

tursl Inductlion %o

Unlike ocwputatlensl imductics, structural
inducticn ray be used to prove general sathematical
thesress, rather than just properties of progrems.
> sursclves to proving pro-
perties of ;::-:'-_',r:'-:.;s,-‘- uilner [197.00] has shown
enge srrustural inmdustion sam be nlecly reploeed by
computstional Industion. Tue next two examples
$1lustrate the use of this technique in cases where

more direct cooputational induction fails.

Deample £, Fastorisl functicns.
Congider again the two programs of Exazple 1:
Tl(x) <= if x = O then 1 elze x'?}'(x-l‘) 5

and
F (&) <= Fo(%01)

[1]

F.ixy,2) <= if x - ¥ the

e

eclse ?a_(x:?n)(}""l} 3

Since F': and 2"1 are cooputed differently, the
1 [
equivalence F g cannat bhe proven directly

Ty T,
by computaticnal induction. lowever, Wo fan consi-
der the dcealn of natural nusbers te be recursively

defined by the progras

nunterts) <= if & - O then true else nusber{x=1},
Lol =2 pod o B AR b e o

and procesd to prove by computaticnal induztion on

(%5} {fx >y vwrrer{x} i (7, (“‘,-‘,_ {y=x}) =
Fp (301}) :

The procf can mow be carried on, following the steps
of the proof of Dxarple 1. -

-

Lxawple 7. Reverze @ unction.
Carsider ascnin the progras of Example &

defining the reverse function:
revergal{x) <= FiX,A)

Pix,v} <= Aif x = A then ¥ eise Flaix),nix))

We shall show shat reverse(x} "(i.ees !_‘4::,3))
i3 defined Tor any x in ‘_" . For this purpose,

we characterize the elements of ty the progran

2

= Nere precizoly, when the well-founded ordering
san be recursively defined.

word(x} <= o{word}{x} , where
SRy = {if x = 4 then tru. elsze G{t{x)}).
Fe et BIRG) be (Ya,yer){[6(x) Avord(y)] o

¥ori(Fiey))} .

(a) P,Q) : Q) A ¥ord{y}] & word(il(x,y))

reduces to wCw .,

(v} ¥r,0lPF,G) = P(v{Fl,elc])] :

{216](x) A word(y)}

EAf x = A then word(y)
eise Git(x)) a word(y)

definition of 2

* LI x = A then word(y)
£lze G(t{x)} A word(h(x)-y)

definition of wora

in
I

X = & then werd(y)
else word(F{t{x),nlx) +H
induction kypothesis

T word(v{Fi{x,¥}) . definition or z

Lerefors, by computational induction, we nave:

{xord(x) A word(y)] ¢ vord(F, (x,5))
for ail x,:fr‘..." ¥
which for ¥ = g gives word{x) <
¥ord{reverselx)) ;
and {ts

feve, reverse(x) iz definea

value iz a word whenever x iz s word. 3

IV. OTHER METHCDS

In this section, we present two additional
methods for proving properties of prograsms: re-
curslion Induction and inductive icsertions. We
show that any proof by either of theze methods can
be effectively translated into a proof by compu-
tationel induction {and therefore alse into a
proof by structural induction).

Recursicn Induction

To prove the equivalence of two functions ¢
and :‘2 ever some subdomsin 8§ of D s l.e.,
that :’ltx} = r‘?{x} for all xeS, it iz suffi.

clent to fingd 3 functional 7 such that:

5

€3] I, is & fixedpoint of 1, Loes, I o. 1{!‘1},
{0} £, if & Tixedpoint of =« s Leee, £ a =[],
and

{c} ?‘{x} is defined for any x in S,

The justification of thiz rule is easy: by
definition of ¥, » we know that 5‘?(:) o 1'1{:)
and ?,r{x) c !‘2(1} » for any x in D ; therefore,
for any x in §, gince I-‘T{xj iz defines,
?;{x} = i‘l{x} = !'2(.10 .

Exazple 1. (McCarthy [1963b]). We consider sgain
the function reverse , defined in Pxampie &
{Section ¥). We wish to prove by recursion induc-
tion that

reverce{x*y) = reverse{y) *reverse{x)

for all :.wt‘ .

For this purpese we choose the functional =«

defined by

*IFI(%y) = 42 « « A then reverse(y)
else Pe(x),y)*n{x) .

Then using known properties of * and reverse »
we get that

in} reverse(x*y} i3 a fixedpoint of 1 s since

reverse{x+*y) = _z__x: X = A
then reversze(y}
reverse{ (hfx) "t{x})*y)

= A

olge

fx

b

il

;

3

reverse{y)
 reverse{h{x}-(t{x)*¥)}).
= A

reversely) .
{re*:erse{t{x}'}'}}‘h{x) .

el
[
L
]

"

"'4

2
5

-
e
"
-]

(v)

reverze{y)} * reverse{x)
tince

iz a fixedpoint of ¢ ,

reverse{y)} * reverse{x)

EIfX =a
Lthen reverse(y)ea
reverse(y) * reverse(x)

=

elze

il x

Lhen reverse{y}

else reveraeo(y) + fuverse(t{x}}*h{x})

® ifx=A

—_—

thex reverse(y)

else [reverze(y) * reverse{t{x}})=i{x} .

e} E (%)

re ghown bty & straightforward induction on x.

-
iz defined for every x,2<%L , as can

Exanple 2. We conzlider a2 systenm over the natural
nunbers in which the primitives are the predicate
zero{x} ({true only when x iz ¢ }, the prede-

cessor function pred{x} (where pred{0) iz 0O},
and the successor function suce{x) . In thie

systez the progras
add{x,y) <= if zero(x)
then y
elze add{pred(x),suce(y))

defines the addition Tunction. We wish to prove
that suce(add(x,y)} = add(x,gucc{y)} for all
X,y by recursion induction.

We concider the functional Y defined as

*[Fl{x,y) = (1if zero(x}
then suce(y)
elae F{pred(x),zucc{y}}} .

The reader can easily verify that both functions

suce(eddix,¥)}} eand add{x,suec(y)} are fixedpoints

of 1 . Furtherrore, an easy induction on x shows

*hat Fg{x,:,'J is defined for any x and ¥ in L,

which completes the proof. -

It
example

iz interesting Lo coopare the preceding
with Exasple L of Section
sidered the progras

2; where we oon-

G{x,¥) <= if p{x) then ¥

——

else G{k{x),n{xr}}
and proved that

5%y} ® G,060(y)) for all x and y .

1f we interpret pix) as zeroix) , k(x} =as
predix} , and h{y) as muce(y) , G (%¥)

tecomes add{x,y} , and the proofl ithat

w5 (x,y) = G,{x,h(y)} 1z actually another proof
that cuccfadd{x,y)} » add(x,succ(¥)} . It is
interesting to note that the algebralc manipula-
ticnz uzed in doth proofs are the same. However,
the proof Ly recursion induction needed an ariument
of teminntion; if we conzider the deflinition
G{x,¥} <= if p{x) tnen y else G{k{x),h(y)} with
no specific interpretation innmind for p, %k and

% , no arpument for the temmination of 'SJ is

iz alway:z

in

pozsible {since, for
fulse, ':::
'idﬂ(lr"..-‘}' =

by recurzion inductlen {Morris {(19710).

tance, if pix)
ts never defined}. A property like

-.'?3{.:.'::{:,')} therefore cannol te proven

An intercsting special case of reeursion in-
duction; for which no proof of Ltermimatiar is
needed, was dezcribed in Section 2. To prove lne
eguivalence of two recursively defined functions,
cne can try to modify each definiticn until both
definitions are the same, using transformation:s
which leave the

fixedpolnt unchanged. Thisz method

was illustrated by Exa~ples © and 7 of Section 2.

It iz casy to show that every prool by recur-

sion inducticn can be effectively translated to z
Hint:

proof Ly computational inductien. nsguse

flxﬁfli and !‘_,a![rz} and prove P{F_}»
where P(F) iz (fFc i) a(Fcf) .

Irnductive Asgertion Nethod

The mort widely uvsed method for proving pro-

perties of flowchart progranms, called the Inductive

mesepsions method, was suggested by Flopd [1967]}.

We shall iilustrate the method and !tz relation to
computational inducticn on & cizple flowchari

progras.

We wigh to show that the above flowchart pro-
gran over
funetion,
To do thiz, we srsocinte & predicate called an
inductive assertion ;{x.yl,:z_;} with the poiu:
iabelled in the progras, and show & ‘mast
Ye true for the wvaluel &F the variasblez ¥ yr¥p

the natural nu=bers computes the factarial

f.0.; = = x1 , whenever it terminates.

that

whenever oxecution o progras vexc (> palnt Q.

Thus, we =ust show (a} nat toe asscertion hold:

.

when polnt @ 43 first remched sfter starting
execution (i.e., that Q(x,0,1} holds) and
(b} that {t remaing true when one £oes arcund the
locp from 2 to O (i.e., that ylﬁxnﬁfx.}'l,}'z)
implies Qlx,v 41,{3'1‘2) -32) « To prove the
desired result we finally show {(c) that = = x1
follows from the azsertiom ;{x,yl.ya} when the
Progran terminates {(f.e., that ¥ nan(x,yl,ya)
implies ¥, = %1 }e

We take Qr{z,:;l,ye) %o be ¥a = :,'1! - Then:
(8} Qu(x,0,1) 48 1 -0t .

(b} We assume y, 4 x ana Qe(%y.,¥.) & fee.,
Yol Then Qulxyrli(yyri)ey,) s
(9y*3)+y, = (¥, fee., {y*1) -yt »
(5’;1}! .

{e)} ¥e ascure ¥ % oand Quixyy,w,) ,» fees,
¥o = ¥;! 5 then Yo = ¥t = xt as desirea.

To show that the procf by inductive asrer-
tions corresponds to = cemputaticnal induction
proof in a natural way, we must first translate
ihe flowchart progra= intc a recursive progran.
Following the technigque of MeCarthy {1963a), we
Tind tnat the output 2 of the above fiowchars
program iz computed by tke progran

facy(x) <= F{x,0,1),

?(x,yl,:.".__‘} < 42 ¥y e x
then ¥
else !“(x;}'l*}l{rl"l} ‘5'2) *

We ghall prove by computational induction that
& {x,0,1) = xt , i.e., that the value of Fe {2,051}
iz x! whenewer F_{x,0,1) ig defined. Ne take
P{F} to be the ral_imrsm; admizsitle predicate:

(¥, 35560 I~ 0y 7y00,) v (F{xyy%,) = 1)

Obriously P} holds. To show thas P(F)} »
P(t{F]) for every function F, we tonsider two
cazes: either ¥y % %X, in which case the proof
follows directly from {¢) above, or ¥1 £x,
which follows directly from {b).

By computational induction we therefore have
"'{F‘) T Wr(xsb’r??] v ii‘?{x,yl,;.rz} coxt}
Tor all Xp¥ya¥ali o But zince thx,t},}.) iz
known from (-:} to hold, we cenclude that
:I:r(x,o,:;} € x1, as dezired.

Hanng and Pnuell [1970] generalized the inmduse
tive azserticns rethod to apply to recursive pro-
gTans. Iy their zmethod it follows that the recur-
sive program above canputes tae factorial function,

when it terminates, if mnd only if there ex

e
1]
o
2]
g

mductive'h:aerttm ;{:,:.-1,32,:} such that
M2} QU0 ,2) = 2 = x{]

A ¥Ry ez} (312 v, - x
Ihen Q{xrln'lr:v'e;}’e}
else Y[R30, (¥y* 1) -7, t) =
iy pyat) i} o,
is true. (The formula implies that -{(1,1;1,52,:)
iz true Wvhenever Ei%ypsy,) = 2 .)

The reader may easily check that the above
formula iz satisfied by taking the predicate
Q}-w(x‘l"l'ye’zj to be .."'.-yl! = yz-:ﬁ + which proves
that ??{x,:}.l} c x! as degired. < The difference
between the aszsertions Q?{x,yz,;;?} and
Q‘,‘m(z,:.'l,;.";, 2z} should be nmoted: 2?{11:,3'1,)'2}
represents all possible values of the variables

b

3¥y0), &t arc a during executlon, while

g, {x,:.-l,:;;,,:} represents the relation between the

final value of = and the initial value of x r ¥y

and 7, when computation starto at arc a .
Az in the case of flowchawst prograszs, the

proof by the Manns-Prnueli metkod can canily be
tranclated into s proof by coeputaticnal inducticn,
taring the predicate P(F) to be

(‘-'xr;‘l.sn_f!-‘}E-‘fx.yl-:eh,}-'f-.j oy oxt] .

(]
(1

further illurtrate the uze of the inductive
norertion method, we bricfly present m less fami-
lisr example. We shall show that for any natural
numter X the flowchart progras given below, when-
ever it terminates, computes the smallest natural
nuzber greater than /X , l.e., that 2z <x<
{:f‘i)2 .

-d

= Given an inductive azscrtion u?(x,;".:,-_g for the
flowchart progras, one can take the pralicate
Lplee¥p¥ord) slven by Qulxyy,5.) = (z=xt)
and check that 1% alszo oatizfies the ztove
formian. However, the predicate obtalned in this
way 1z less natural than the noedigate Q,?
given atove.

We must show that there ic an inductive
aczerticy Ql%y¥y2 YY) such that:
{¥xei)R%,0,1,1)
A (”‘!yzr?niys’fﬁ) E:l{x.ryli:fgti'z)
[- -

= ify, >x

=

then yi £x < {yz*l}e

elge %,y 1,70V 2, ¥,42)]

iz true. ¥We take q}. Lo e

vy Sx3 A ly, = (2 1°) A (3, = 20y%0)
’
The recder rmay check that thiz asgertion shows
correctness as desired.

*The correcponding recursive pregran is

sgri(x} <= Fix,0,1,1)
Flay¥yadop¥z) <= Ly, >x

then v,

% f’{ﬁ,}’l*i,yﬁ*_\,.'502';,:,':’,{_’)]
and the Mmmna-Pruelf formula is

2

(x,ze B} Q(x,0,1,1,2) » 2° < x < 2}
A {Y-’:r}ﬂfm :‘-';{_‘_: Yo > X
:"Lﬂ 1{3‘:?1!:"3:}'«::}'1)
clse "»"-{-'-L(x,.}‘l!l,. 3. t,,),h?,':‘l
- i(z-.:fl.:u:,,.fnb .
This is satisfied by Taking Qalbh¥p¥o,iosl to
be

[

ify, >x then ¥y :'.
eise {.-}1} “'(-'.‘rl}(.a -'1)*\3‘9 a’;) X

< (:"""1) *(:-3‘1'}{:;;*1)*5'2 .

Acknowledizents., ¥We are indebted to Robin Milner
for many =-...41:|'in.r dizcussions.

REFERINCES

FRSTALL {19791, R. M. Burztall, "Proving Propers
tiez of Prograums by Structural Inducticn”.
Computer Journal, Vol. 12, pp. Li-48 {1963).

CADTOU [1972). J. M. Cadlou, "Recursive Definitions
of Partisl Functions and Their Computations®,
Ph.D. Theclis, Cozputer Soience Department,
Stanford Univercity {to appesr).

JeBANKER and S00TT [1s9a). J. W. deBakker and Dans
Scoty, "A Theory of Programs", Unpublished menmo.,
August 1949,

FLOYD E]."?r'-?!. R. We Floyd, "Azsignlrz Meanings to
Progra=s". In Proceedingse of ¢ Sympesiun in
Applied Mathemgtics, Vol. 19. Mathematical
Aspect: of O ster Science, Pp. 10-22 [
ST ‘;cm-t.. « Providence, Rhode Izland,
Azerican Mathematical Society {1997}

VLEENE [1950). 5. C. Eleene, Introduction to Heta-
. mathematics, . Van lioctrand, Princetlon, liew
Jersey {1%90).

WOLIA and I-*s FLI [‘ 72 }. Zohar Manna and Amir
Prueli, "Fermalizgticn of ’Proper*ics ef‘ Panc-
tionnl Progsranms™, JACH, Vol. 17, No. I (July
1570), pp. 959-560.

MoCARTHY [1902al. John McCartly, "Towards a Mathe-
ratical Science of Computation™; In Information
Procerzing: Proceedines of IFIP 2, pp. 21-25,
{ed. Co M. Popplewell). Ansterdar, North
Holland {1373},

MOCARTHY [19¢3b). Joln Mclarthy, “A Basis for a

Mathemationl Theory of Computation™. InCoeputer
Prosrarming and Formal Syctess, pp. 33-70 [edz.
P.. Braffort and I Hirechoerg). Amcteordam, lNorth

né {107:). Alze in Proceedingt of the
wrstern Joint Corputer Conlerence, pp- 225=258.
liew Yorz, Spartan Hooks (1001},

MeCARTHY and PAINTER [1o7 1. John McCarthy and |
Je Aw Painter, "C c*ro"m g of s Compiler for
Arithretic Fxpresgions™. In Proceedings of &
Smpocius in Applied Mathematics, Vel. 19.
tathe=aticnl Azpects of Cooputer Cclence,

PL« S whl. f{eida J. L. octwartz). Providence,
Rhode felnnd, American Mathemabieal Soelety (1967h

MILER {1372a). Robin Milner, "Logic for Computable
Punctlions - Deseription of n Machine Implementa-
tion™, Computer Sclence report, Stanford Univer-
sity {to appcar}.

MILNER [1075% 1. ery "Implementation and
Application: cf‘ Seob egis for Computable
Bun~tions™, presented at tne conference Proving

\zgertiong Abocut Prograns, las Cruces, Hew
ico (January 19723,

MISEY [1977). Marvin *”.'.:.-':;., Com
and Infinite Machines, Prentice

MORRIS {1968]. James H. Morris, "Lambda-Calculus
Model:z of Prograrming Languages"; Pa.D. Thesis,
Projeet MAC, M.I.T. (MAC-TR=57). Decembter 1948,

HoRRIS [1971]. James H. Morris, "Ancther Retur-
sion Induction Principle™, TACM, Voi. ik, Ia. 5,
Pp. I51-25% (May 1971).

HAUR {13°7}. Peter Naur, "Proof of Algorithmr by
cme?nl Snapshots™, BIT; Vol. 9y pp. 310-316
(a4 .

PARY [1%€3]. David Park, "Fixpoint Ipduction and
Proof:z of Program Properties™. In Hachine
Irtelligence S5 {eds. B. Meltzer and D. Michice),
Edinturgn University Press (1569).

SCOTT {1969). Dana Seott, "A Type Theoretical
Alternative to ISWIM, CUCH, OWHY". Unpubliched
notes, Oxford University {19€G).

500TT [1970]« Dana Scott, "Cutline of a Mathema-
tical Theory cf Computation®, Oxferd University
Cormput ing ladoratory, Prograrming Research
Group, Technical Monograph PRG-2 (Hovember 1970}.

VUILLEMIN {1972} Jean Vuillenmin, "Proof Techni-
ques for Recursive Programs™, Ph.D. Thesis,
Computer Science Department, Stanford University
{to eppear).

