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1. Introduction 

The traditional means fo~ obtaining the desired performance 

from a computer is to write a program which epecifiee in ab.tract 

notation and in cOlllplete detail exactly what 11 wanted. Thil paper 

will be concerned with ~he problem of obtaining this performance from 

the machine by giving it examplee of the dee ired computation and having 

it program iuelf. We will be concerned with deaignina a trainable 

Turing machine although the concepts prelented ar~ applicable in a much 

more general context .s discussed in Section 4. 

The Turing machine to be discussed here will have an infinite 

one dimensional tape and will have the capability in one move to read 

a symbol on the tape, print a new .,.bol to replace the oae just 

read, and .tep risht or left one incr_ent on the tape. It will have 

a deterministic finite-state ccntroller with a designated initial 

state which will upon receiving an input symbol read from the tap., 

yield the symbol to be printed and the step direction (right or left) 

to be made. A cCliputat10n will be defined to be the complete sequence 

of moves which are execut-=d "y allllCh:1ne starting in its initial state 

with its head on the left-most nonblank symbol of the tape and ending 

at a halting condition with the device reading a symbol and in a state 

such that no next move is defined. Initial tapes will be aaau.ed to 

have only a finite number of aoablank ayabola, and we will be intere.ted 
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only in computations of finite length. A particular Turing machine 

will be said to be able to execute a particular computation if when 

given the initial tape associated with that computation, it goes 

through the sequence of moves iu the computation and halts after the 

last ~e. 

Tape 

finite-state 
controller 

Figure 1. A Turing Machine 

read-write head 

A m~ve will be vritten as a three symbol string with the 

symbols representing, respectively, the s~l read, the sy.bol printed. 

and the step direction (L or ~j. A computation involving j .oves will 

be written as a j-tuple with the i-th move listed In the l-th position. 

Thus a computation in which a machine reads an A, prints a B, and 
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steps right, and repeats this move three tLmes before halting will be 

represented as (ABR,ABR,ABR). 

We will be st~dying the following training model: A finite 

set of computations which can be executed by some Turing ftKchine" are o 

given to the trainable system. and this system finds a Turiag machine M} 

which will correctly execute all of the given computations. Hopefully, if 

the trainable system is given enough sample computations, it will find r.be 

correct machine so that ~ is behaviorably equivalent to "0 for all 

finite computations which " o 
can execute. That is, M} will exactly 

mimic Mo in all of its moves in any finite computation starting with any 

initial tape. If this occurs. we will say that the trainable system has 

learned the function computed by M • a 

The existence of such a trainable computer is not surprising since 

it is only necessary for it to begin enumeraring the class of all Turing 

machines until it fiads one which can execute the given finite-set of comp-

utationa. If it yields a machine M} which 11 not eq\Oivalent to "0' we 

need only give it an additional sample co.putation for "0 which it cannot 

execute to cause the enumeration to continue. Since "0 is one of the 

machines which will be eventually enu.erated, we can be aure that we can 

force the system to eventually enumerate either "0 or aom. .. chlne equiva­

lent to it (for all finite computationl). When it doe., the Iystem will have 

learned the function computed loy " and additional _ .. pie co.putaUona 
o 

from "0 will not cause it ~ ever yi~ld any other machine. This learning 

model hal been studied by others and this type of arg\Blent bas been given 

a number of times. particularly in papers on gr ..... Ucal inference 

(4,6.7.8 ,13. 14,22] • 

From a practical point of view, on the other hand, we miaht 
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expect this type of learning by enumeration to be u.ele.. for two 

reaaona. Fir.t of all. in order to l.arn any function it i. nece •• £cy 

to check all of the function. Which precede it In the enu.eration. and 

thia is likely to involve an aatronomical .. ount of computation even for 

very modest proble.s. Secondly. it appear •• t fir.t glance that a huge 

number of aample computation ... y be required before the ay.t .. will ever 

enumerate a correct answer. It i. the purpoae of thia paper to deal with 

both of these objections. 

We will exhibit an algorithm which enu.erate. DOt Turing 

machines but p.rts of Tur1na •• chine. and which carefully guide. it. 

~Q.rch by intelligently uains information fra. the s .. ple ca.putationa. 

Th~ .lgorithm finda ... chine which c.n execute the firat 1 .ave. in 

the s .. ples and .earche. for a chanae which will enable it to execute the 

first i+l movea. The proceaa 1. repeated for increa.lng i with 

backtrackins when necellary. We wlll d.-onatrate that very large .olution 

space. can be searched with only a few a.cODeSa or .inutea of ca.puter time, 

and furthermore, th.t rel.tively faw a .. ple computation. are needed 

before a correct .nswer i. found. For exaaple. in the next •• ction. 

ve .earch for and find a three .tate aachlne ~.th a three .,abol alphabet 

from. space of approxillately 69• 10,CT77 ,696 _chine.. We find that 

it only take. one ... ,le r.aaputation involving eleven DOvea to force the 

.earch to • correct anaver. and the co.puter flnda th,. answer in jUlt 

over three secoadl. 

The re.earch report.d here i. .n outgrowth of atudie. 1n 

gr .... tic.l inference where the probl .. ia to infer • gr .... r fraD a finite 

nwaber of sample. fro. its language. Many of th. relulta and 1c1ea~ 
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presented in Biermann and Feldman (4), Feldman [7:. Feldman. et.al. [8). 

Gold [131. Horning [141. Solomonoff [22] and others are directly applicable 

to the current problem although their .. phalis il on gr .... r dilcovery. 

These paperl contain a number of resultl concerning enUDeration metho~s 

and techniques for choosing a "best" anawer. 

One might also look for related research among the paperl which 

have been written on automatic computer program Iynthelil (Amarel [1,21, 

Manna And Waldinger [151. Slagle [21], Waldinger and Lee [231}but most 

of these deal with a different formulation of the problem: Given a formal 

description of a task to be performed. how can the for.ali .. be translated 

into a computer program? This paper is concerned with problems of inference 

from examples rather than a translation between formalisms. 

HOst of the previously studied trainable systems have utilized 

the technique of basing decisions on the values of certain stored 

parameters and then have exhibited adaptive behavior by varying these 

parameters. The perceptron (18), many pattern recognition systems [16,19]. 

and many aame playins programs (20) are examples of this type of learnina 

system. The system described here uses an entirely different approach to 

learning. finite-state machine synthesis. and the aature of its performance 

is consequently dramatically different. 

In the next sections. an algorithm for finding a Turing machine 

capable of executing a given set of computations is given and a number 

of examples demonstrating il~ ~~rformance are presented. In Section 4. 

the generality of the approach will be demonstrated by solvins a progr .. 

synthesis problem for a modern ca.puter. In Section 5. the probl .. of 

computer program synthesis from input-output information only is discus.ed. 
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2. The Algorithm 

The algorithm for finding a Turing machine which executes a 

given .et of cu.putationa is given in Figures 4, 5. and 6. We will study 

an exaaple before describing it in detail. Suppoae it is desired to 

find a .. chi~e which .ort. A's and B'.; that is. the ~hine will 

besin with its head at the left end of a raadoaly arranaed atrina of 

A's a~~ B's and will rearrange the symbols until all of the A'. 

precede all of the B'.. Our s .. ple coaputation will sort the atriag 

BAA and will proceed as follows: The head .aves right until it finds 

an A. It replaces the A with a B and then .oves left until it finds 

either the left end of the tape or another A. It .aves right one atep, 

puts the newly found A there, and then proceeds off to the right looking 

for another A. The computation ia shown in Figure 2 and t. described 

by the sequence (BBR,ABL,BBL • • }t ,BAR,BBR,ABL,BBL,AAi..BAR,BBR). A blank 

symbol on the tape is written A. 

CtJRRENT TAPE 

~ 

* ,BA 
.BBA 
~BA 
AfA 
Ast 
AVB 
"BB 
A,B AA, 
MB. 

FiJUre 2. 

NEXT qE 

BU 
AIL 
B81 
_R 
BAR 
BBI 
ABL 
881 
AAR 
SAl. 
BU 

(halt) 

An example computation. The poaition of 
the head on the current tape is indicated by a dot. 
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For the moment, it will be assumed that we know that the 

desired Turing machine has three states, and the strategy for finding 

it will be to try to guess which of these states the machine is in 

after each move in the computation. Beginning in state 1 (see Figure 3). 

we guess that the machine goes to state 1 after the move BBR. After 

ABL, we might again guess the device will go to state 1 except that this 

would yield a contradiction with the neKt move BBL. (State 1 makes the 

move BBR instead of BBL.) So we guess the device will be in state 2 

after ABL. After similar arguments we decide the device may go to states 

1 and 3 after moves BBL and R. However, attempts to find the state 

after BAR all yield contradictions causing a revision in the guesses. 

Perhaps the device goes to state 2 after move BBL. Then staces 3 and 1 

are the next ~ choices to be made after moves _~ and BAR. 

At this point, the next three choices became fixed as a logical consequence 

of previous decisions so they are included and are parenthe.ized to 

indicate this fact. After AAR, the only noncontradictory choice is 3 

and the rest of the table follows tmmediately. The final machine (Figure 

3, bot-· lID) is the correct answer, a Turing machine which sorts A's and 

B's. Thus the trainable computer can learn to sort on the basis of one 

sample computation.* 

Notice that at ~~ch point the gues.ed state is the loweat 

number whicn does not yield a contradiction with the tm.ediate next moves. 

If a contradiction is found at any time for all poesib1e ehoices 1, 2, and 

3, then the search is backed up to the l.st arbitrary choice, it is 

* One can show that if this sort of procedure i. executed on any atrina 
which begins with B and has at least two A'. in it, then the 
resulting computation is satisfactory for trainina the .. chine to 
sort. 
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incremented by one, and the search proceeds. In this way the spaee of 

all possible three state machines is searched until the correct anawer 

is found. If no three state .achine ean perform the eomputation, then the 

back up will eventually reach the first move indicatins that the class 

of fOl.·r state macbines should be ex.ined. 

The notation of the algorithm must be defined. lNPUT ia an 

array which holds sequentially each of the moves in each sample computation. 

The last symbol read before a computation halt appears with an exclamation 

point to indicate the end of the computation. Thu. in the example above, 

the entries BBR,ABL,BBL,----,BBR would appear in positions 1 through 

11 and would .~pear in position 12. Other sample coaputations would 

have been entered in locations 13 and beyond. 

The array STATE holds the guessed sequence of states with the 

nonarbitrary chOices enclosed in parentheses. The array TRAM holds a 

complet~ description of the momentarily guessed Turing nachine aDd is 

updated eontl~uously as changes are made in StATE. Its exact form need 

not be considered. 

FUT(I,LEVEL) is a funetion Which yields the list of atates 

which the current machine in TRAN will BO throush beginning in state I 

if it makes the Maves INPUT(LEVEL),INPUT(LEVEL+l),-----. Often FUT 

will yield an empty list because TRAM will not have transitions 

corresponding to the Siven sequence of IIO"'S. In the ex..,le above, FtJT 

(1,6)- (1,2,2) after move BBR and FL~{3,IO) - (1,1) after move BAR. 

It may be that THAN is in contradiction with the given sequence of lIIOve. 

either because it indicates the wrona print or step riSht or left instruction 

or because INPUT indicatea a computation teDain&tion Cexcl ... tioa point) 
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FUT yieldl lilt X 

r----I Compu te 

Enter I into S~TE(LEVEL). 
If X il not empty, enter 
future Itatel (parentheli 
ed) into STATE(LEVEL+l). 
STATE(LEVEL+2), ••• 
See Figure 5 for detail. 
(Incretaent LEVEL.) 

P 2 

YES B 

FUT yieldl a contradi ion 

ncrement 1. I exceede 
then reduce LEVEL to 

alt unparentheaized entry. 
.. STAT!(LEVEL)+l. Delet 

orrelpond1ns entries in 
RAN. See Figure 6 for 
atail. 

ee LEVE .... O ? 
(See Figure 6.) 

Add the transition in IHPUT(LIVIL-l) 
to the machine in TRAH fra. state 
STATE(LEVEL-1) to state I. 

Figure 4. The a18orit~ 
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X is a list. 

YES NO 

STATE(LEVEL)-Parenthe8ize CAR{X) 
X- CDR(X) 
LEVEL- LEVEL + 1 

., 

Figure 5. Enter newly proposed next state into STATE. 
(If X is a list. CAR(X) is the first element of the li.t 

and CDR(X) 1. a copy of X with the first element deleted.) 
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YES NO 
I L _------4. Does INDel? .1------... 

Reduce LEVEL to last un­
parenthesized entry in STATE, 
Delete corresponding entries 
frOID TRAN. 

Delete entry in TRAN jU8t 
made in step B. 

~ ____ ~ __ ~I~D-o-e-S--l,-EV-E-~---O-~--~I~Y_E_S __ ~ __ ~ ____ ~ 

YES 

----' tNO 

II+-STATE(LEVEL) I 
t 

11"'1+1 't-------..... 
YES t 

Is I :> K'? 

A tHO 
Does I exceed the highest 
previous state in STATE by 
more than one? 

NO 

Figure 6. I increment and backtrack logic. 
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and TRAN does not. In either case, FUT yields a special symbol .eaning 

"contradiction". 

K is the currently hypothesized number of states, is initially 

set at I, and is incremented until an acceptable machine is found. IND 

is an indicator which is set at 1 if the currently considered move is the 

first in a computation. IND 1s 0 otherwise. LEVEL is the index of 

arrays INPUT and STATF. telling which entry is currently being considered. 

and I is the proposed new state name to be entered into STATE(LEVEL). 

Figures 4, 5, and 6 in conjunction with these definitions 

completely describe the algorithm for the trainable computer. If the 

contents of STATE are printed out each time the algorithm passes point 

p. the entries in Figure 3 result for the example. Notice that the 

search can be greatly reduced at point A in Figure 6 by requiring that 

each previously unused state name I exceed the highest previously 

used state name by exactly one. For example. if the first two entries 

in STATE are «(1).2) aLui the search for a machine has failed, there is 

no need to try «1).3) since 3 is simply a new name for the state 2. 

Another important way to increase efficiency which is not shown 

in Figure 4 is to include a test at point C vhich work3 as follows: 

Compute FUT(l,J) for each J>LEVEL such that INPUT(J) is the be­

ginning of a computation. If in any case FUT(l.J) yield. a contradiction. 

go to D. This helps to prevent the algorithm fra. .. king hypotheses on 

the bash of one coaaputaUcn which will be fouDd to be WTOII& later when 

other computations are examined. This feature was included in tbe ,roar_ 

which i. discussed in the next Section. 



The algorithm thus exhaultively a .. r~hea the apace of K state 

.achlnes for K. 1,2,3,---- until a machine ia found which can execute 

the given s_ple cOlllputations. If the algorithm yielda a machine which 

is only capable of doing the sample cOlllputations correctly but ia not 

really the "right .. nswer", it can be siven additional s_ple computations 

causing it to resume its search. Since a correct Turins machine exists 

somewhere in the enumeration, it will be eventually found if enoush such 

additional cOlllputations are included. 

The efficiency of the alsorltt. can probably be lIIproved by 

processing tb. s .. p1e co.putations in parallel. The method would be to 

ex_ine all of the cOIDputationa whicb have been aUUlHd to be in sc.e 

particular state and to look for the next tranaition from that atate 

ueing the information frOil aU of the a .. ples at.ultaneously. Tbis 

lIIethod hu the "vantage tbat it would not be dependent on the order in 

which the a .. p1.s are presented and it would probably find cutoffs at an 

earlier time in the searcb. 
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3. SOllIe Exper1llent. with the Alaorithll 

The alloritha described above va. progr...ed in the Stanford 

LISP 1.6 language. cOllplled and u.ed to find Turing .. achines which solve 

various problems. The results are summarized in Figure 7 Where each 

problem Is described and its solution liven. The computationl in colu.n 

four are repreaented by their initial tapes. Thu. the .tring BAA 

in problem 6 repreaenta the coaplete cODputation deacribed in the previoul 

.ection. The amount of PDP-lO CPU time required to do the aearch in each 

case is given in the laat column. The.e time. do not nece.sarily reprelent 

the beat po.sible performance aince no unusual efforts were made to write 

optimal code and LISP does not typically yield fast executions. Another 

thing that should be mentioned is that repetitiona of the a_e caaputation 

did not necessarily yield the s ... e cOllputation time because the n~ber 

of internal garbage collection. vould vary frOll one te.t to the next. So 

these time. .hould be considered to be only a kind of rough e.tt.ate of 

the ... ount of effort required to obtain a .olution. 

The fir.t set of computat1.OUII in each problem va. obtained 

.s follows. The fir.t i initial tapes from the .et of alloved tapes (.ee 

cn1umn three) were u.ed to generate 1 •• ple computation.. The.. i 

cOllputations were input to the allorlthm and a aolution va. produced. 

This proce •• vas completed for i - 1.2.3.--- until a correct answer 

was found. The fint .et of cOllputations liven for each probl_ ia thu. 

min1llal in the .en.e that if the la.t computation were deleted. the .et 

would no longer be adequate for lnferrinl the correct anawer. 

the answers to problem. one throush six could be inferred fraa 

ju.t one •• ple computation and the .horteat .uch computation was found 
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in each ca.e. These are included in the table along with their 

computation tba.s. The algorithm usually found t~e answer in lell tt.e 

then in the first exper~ent. Surprisingly. in several ca.es of the 

first experiment. the first i-I of the i s.-ple computations could 

be deleted without affecting the ability of the system to find a correct 

anawer. 

In the other probl .... the second set of s .. ple computations ia 

simply representative &nd not necessarily min~al in any sense. 

Occasionally the algorithm produced an answer which was different from 

the one given but whi.ch waa Iltill correct. These instancel are 10 

marked. the .. ount of search time required to find a solution is not an 

easily predicted quantity a. indicated in problem eight. Adding a ... ple 

computation to a let of coaputations which is already adequate for 

inferring a correct answer can increase the total s.arch tt.e because 

each newly proposed transition aust be checked for compatibility with thi. 

computation a. well as the others. This addition can also decrease the 

.earch t~e by enabling the alloritba to discover that it has .. de a wrong 

decision at an earlier tt... 

These problems were not chosen using any particular criterion 

and are reprelentative of all of the experience gained with thil alaoritn.. 

One can expect sillllar perforunce on any probl_ which inyolvel about 

four states or less in the control as long .. the total nu.ber of 

transitionl is not areat. Sa.. s .. rch.s for four state and laraer .. chin.s 

were terminated after lIbout ten .iout.s of cru tt.e without an &Dswer. 

Machinel with a large nWilber of states can be found in a reasonabl. 
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amount of tt.e if the nuaber of transitions ia sufficiently ... 11. 

For exa.ple, the machine which starts with a blank tape and types 

out aquentially the twenty-six letters of the alphabet has tventy­

seven statea and was found in 104 seconds. The total .earch tt.e i. a 

function of number of states, size of alphabet, number of tran.itions, 

the order of the s .. ple computation., and the order of the tranlitions 

within the coaputations. 

When traini~ the system to do a coaputation, it ia necellary 

to have a Iystaatic al80rithm in mind. There are an infinite number 

of waya to get from any initial tape to any final tape, and a method 

must be chosen which relults in n finite-.tate control. Clearly, it is 

ea.y to find a Turing .achine which when given the number 11 yieldl the 

number 13. However, it is not 10 easy to find a machine which when 

given any prt.. number viII find the next prt.e number. If the sample 

computations involve a naive scheme for getting from the initial tape 

to the final tape, the resulting machine .. y never have the desired 

capability although it viII alvaYI be able to reproduce the I .. ple 

computations. 

From a practical point of view, it is quite helpful to choose 

a method for dOing the delired coaputation which the ayat .. can eaaily learn. 

Thi. usually involvea finding a Icheue which requires a ... 11 nu.ber of 

Itates. Notice that problema two, four, and nine involve e •• entially the 

.... e computation but alphabet. of different dae were u.ed. 'l1le .. achine. 

tended to be more difficult to find if they had .ore atates even if their 

alphabet. were .ignificantly smaller. 
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4. On the pe.isn of an AutoprograJllller 

The algorithm de.cribed in this paper i. designed to find a 

finite-state control from sample input-output sequences and can be used 

to find a controller or program for any I.omputer. In order to 1Hustrate 

the general applicability of this technique, we will consider the 

problem of writing a program which factors any natural number intv its 

prbDe factora, and we will use a modern computer with regi.ters and 

arit~etic operations. 

It i. first necessary to find a sample computation and in this 

example, we will factor 12 into its prime factors ~,2.3. We will store 

the number to be factored in register Rl, the n~~ber to be divided into 

Rl in R2, and the remainder and quotient for the division in register. 

R3 and R4, respectively. The method will be to divide Rl by R2 and 

then either print or incr~nt R2 depend1n€ on whether the remainder is 

zero or not. If a prime factor is found, the nev quotient is entered 

into il and the process i. continued. 1t~ sample computation i. traced 

in Figure B. Certain steps are taken only if 80me particular condition 

holda, and in such cases. that condition Is Indicated. 
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Condition C~and Rl 12 13 R4 

Rl 0- read 12 0 a 0 

12 0- 2 12 2 a 0 

R4 0- Rl+R2. R3 ~ re.ainder 12 2 a 6 

13 • () Rl 0- R4 6 2 a 6 

print 12 6 @ a 6 
R4 ... R1+R2. R3 - remainder 6 2 a 3 

R3 • 0 Rl ... R4 :; 2 0 3 
print 12 3 @ 0 3 
14 ... Rl+R2. 13 0- remainder 3 2 1 1 

120-12+1 3 3 1 1 

R4 ... Rl+R2, R3 ... remainder 3 3 a 1 

R3 .. a Rl ... 14 1 3 0 1 

print 12 1 0) 0 1 

Rl - 1 halt 1 3 0 1 

Figure 8 

A sample computation: Factorioz"12 into pr~es. 

Since the only changes in the flow of the program result from 

conditional tests, the inputs to the finite-state control are the results 

of these tests. If no condition is listed, we will let S be the 

standard input symbol. TIle finite-state control Which solves the problem 

thus will yield a series of commands like those in the figure altering 

the command sequence appropriately when the conditional tests so indicate. 

Since the algorithm of Section 2 is designed to find Turing 

machines, it requires in each move description a step left or a step 

right coaaand. This is not applicable to the current problem and will 

21 



simply always be listed as R. 

Now if we let each of the conditions (e.g •• R3 - 0) and each 

of the commands (e.g., Rl _ read) be an abstract symbol. we can submit 

the sample computation directlj to the algorithm without change: 

[(5, Rl ~ read, R). (5, R2 _ 2, R). ------

(Rl- 1, halt, R)]. 

In this case, the LISP program computed for about eight seconds and 

produced the finite-state controller of Figure 9. 

It is a small change to make the finite-state controller into 

a ca.puter program, and the flow diagram for this program appears in 

Figure 1,0. If input symbols appear at a node which are not the standard 

S, a conditional test must be inserted to implement the branching. The 

resulting computer program will correctly extract the prUDe factors from 

any positive integer. Since there is nothing special about either the 

computer or the example problem, this method is clearly quite general. 

Summarizing, we can find a computer program for executing 

some algorithm from example computations which employ that algorithm. 

We simply list sequentially, for each example, the ca.mands executed 

by the algorithm including with each command any conditions which must 

be checked before its execution. These sequences with the modifications 

described above are then submitted to the algorithm of Section 2, and 

the resulting finite-state controller can be directly converted into a 

flow diagram for the computer program. The only alteration required is 

the inclusion of conditional tests to check for conditions listed as input 

symbols on the finite-state controller. The resulting computer program 

22 



9 
SIRI ... read 

S/R2 - 2 
RI l/h.:...:a:..;;l.-t __ _ 

halt 

Figure 9 

Finite-state controller for finding prime factors. 



R4 po Rl + R2 

.. remainder 

Figure 10 

Flow diagram for _ computer program. 
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will correctly execute all of it. given example computationa and will 

correctly execute the delired algorithm if it h .. been liven enough 

ex.plel. We will call a IYltem which carriel out the abcve procell an 

autoprOlrPll!!. 

It il ~portant to note that the .utoprogr .... r al we define 

it here doel not actually cre.te an algorithm for lolving • problem 

where none exiated before. The algoritb. ~It be t.plicitly contained 

in the ... ple computationa, and the method delcribed here It.ply finds 

and make. explicit that algorithm by constructing a aatiafactory flow 

diagr.. It 1118)' be true that the autoprogr-.r concept will not prove 

to be a uleful aid to traditional cOlllputer prograamer. becaua. one mat 

e.sentially write the progr. .. he 18 doing the ex .. ple.. However. 

there are .ituation. such a. in • delk calcul.tor where an autoprogr..-er 

might be quite uaeful. In this caae. the operation code. correspond to 

key. on the machine and the u.er may not be a cOIIIputer progr_r. With 

.n .utoprogr .... r built into the device. the uaer could begin doing hi. 

repetitive ta.k in the usual way but .t aome point he could stop and allow 

the key. to go on pulhing them.elva •• 
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5. Computer Program Synthesis from Input-output Pairs 

Perhaps the next logical step after the auto programmer is 

the development of a system which synthesizes computer programa from 

input-output information only. The system would have no information 

concerning how each output is obtained from its correspcndi.ng input and 

would be faced with the problem of filling in all of the steps as 

well as finding the progr~. The system could enumerate the set of 

all possible sets of int~~ediate steps, find a progtam corresponding 

to each set of comput~tions, and USE some criteria for choosing one 

of the programs as its answet. This all appears to be well beyond the 

range of possibility for any g~neral class of functions. 

One a~proach to this problem was seriously illvestigated. 

Suppose we are interested in automatically syntn~sizing computer programs 

which use only finite memory and which yield as outputs, n-place binary 

numbers where n is fixed for any particular program. Then it is 

only necessary to find n finite-state automatons each of which 

corresponds to one of the n binary places. Here we consider an 

automaton to be a device which scans an input string once from left to 

right and returns an output of 0 or 1. We synthesize for the th i place 

an automaton which is capable of scanning each of the sample inputs and 

returning in each case the ith place of the corresponding output. Finite-

state automata theory 1s well understood, and it is possible to obtain 

convergence to the correct machine if enough input-output pairs are 

known. The program synthesizer constructs the n automatO[i. and produces 

a program which simulates them. 

Such a system was developed and was vpry efficient a. a program 

26 



synthesizer because finite-state machine synthesis is very direct and 

fast. Every program produced was completed in a few seconds of CPU 

time and was executable on the PDP-lO system. However the requirements 

for input-output data were very great because of the number of strings 

required for synthesis of the individual automatons was large. For an 

m-state automaton, most of the strings of length 2m-2 were needed 

2m-2 

before the machine could be synthesized and this amounts to ~ ri 

i-O 

strings for an r symbol input alphabet. As an example, the program 

which counts the number 01 A's modulo 4 (thus n-2) i .... strings of A's and 

B'S required nearly all of the 127 possible input strings of length six 

or less before it could be produced. Eecent developments in grammatical 

inference using man-machine int£'ractive capabilities [4] have snown how 

to reduce this input requirement, but the fundamental difficulty is 11kelv 

to remain. 

Another great disadvantage of thLs 9y.J~em was its finite-state 

memory limitation. Although every progrcm we writ~ Ises a iinite memory. 

it is usually written as if the memory wcre infinite. We would never 

be able to claUD that we had, say.writt .. n a program which enumerates the 

prime numbers if we did not make this ass~~ption. 

It may be that in terms of input requirements, th! best program 

synthesizer will be some comp~omise between this appro~ch and the auto-

programmer which requires every intermediat:! step in each •. ,"'ple cOliputation. 

Perhaps a method can be developed for givinr hints as to ~ow to do the 

compLtation without having to include the actual steps. 

27 



6. Conclushm 

In this paper, we think of a trainable machine as a manipulative 

system with a finite-state controller, and the learning process for the 

machine involves finding the correct controller. The approach is quite 

general as demonstrated by the fact that it h~~ been applied to very 

different types of problems. It is also important to note that the controller 

can be found either by a traditional finite-state machine synthe.is method 

or by some kind of search. The philosophy of the paper may be applied 

in many ways, and the specific system9 discussed here should be thought 

of as examples of a general approach. 
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