
STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO A I M-15~

COMPUTER SC IENCE DEPARTMENT
REPORT NO. CS-241 AD732642

ON THE INFERENCE OF TURING MACHINES

FROM SAMPLE COMPUTAT IONS

BY

A. W. BIERMANN

OCTOBER 1971

NATloNii.~N'CAL
INFORMATION SERVICE
~ -

COMPUTER SC IENCE DEPARTMENT

STAN=ORD UNIVERSITY

STANFORD ARTIFICIAL INTELLIGENCE PROJEct
KEKJ AIM-152

ON THE INFEIlENCI OF TURING MACHINES

FP.<M SAMPLf. C<JoIlI'UTATIORS

by

A.W. Biermann

ocrOBEP. 1971

ABSTRACT: An algorithm is presented which when given a complete
description of a .et of Turing machine conputations.
finds a Turing machine which is capable of doing thOle
computations. This alaorithlll CaD serve a. the bash
for designing a trainable device which can be trained
to simulate any Turing .achine by baing led throuSh a
series of sample computations done by that machine. A
number of examples illustrate the use of the technique
and the possibility of its application to other types
of probl ...

The views and conclusions cont.ined in this document are those of the
authors and should not be interpreted as Decessarily represented the
official policies, either expressed or t.plled. of the Advanced Research
Projects Agency or the U.S. Government.

This research was supported by the Advanced Research Projects Agency of
the Department of Defense (5D-183) U.S.A., and the National Science
Foundation. Grant No. GJ-776.

1. Introduction

The traditional means fo~ obtaining the desired performance

from a computer is to write a program which epecifiee in ab.tract

notation and in cOlllplete detail exactly what 11 wanted. Thil paper

will be concerned with ~he problem of obtaining this performance from

the machine by giving it examplee of the dee ired computation and having

it program iuelf. We will be concerned with deaignina a trainable

Turing machine although the concepts prelented ar~ applicable in a much

more general context .s discussed in Section 4.

The Turing machine to be discussed here will have an infinite

one dimensional tape and will have the capability in one move to read

a symbol on the tape, print a new .,.bol to replace the oae just

read, and .tep risht or left one incr_ent on the tape. It will have

a deterministic finite-state ccntroller with a designated initial

state which will upon receiving an input symbol read from the tap.,

yield the symbol to be printed and the step direction (right or left)

to be made. A cCliputat10n will be defined to be the complete sequence

of moves which are execut-=d "y allllCh:1ne starting in its initial state

with its head on the left-most nonblank symbol of the tape and ending

at a halting condition with the device reading a symbol and in a state

such that no next move is defined. Initial tapes will be aaau.ed to

have only a finite number of aoablank ayabola, and we will be intere.ted

I

only in computations of finite length. A particular Turing machine

will be said to be able to execute a particular computation if when

given the initial tape associated with that computation, it goes

through the sequence of moves iu the computation and halts after the

last ~e.

Tape

finite-state
controller

Figure 1. A Turing Machine

read-write head

A m~ve will be vritten as a three symbol string with the

symbols representing, respectively, the s~l read, the sy.bol printed.

and the step direction (L or ~j. A computation involving j .oves will

be written as a j-tuple with the i-th move listed In the l-th position.

Thus a computation in which a machine reads an A, prints a B, and

2

steps right, and repeats this move three tLmes before halting will be

represented as (ABR,ABR,ABR).

We will be st~dying the following training model: A finite

set of computations which can be executed by some Turing ftKchine" are o

given to the trainable system. and this system finds a Turiag machine M}

which will correctly execute all of the given computations. Hopefully, if

the trainable system is given enough sample computations, it will find r.be

correct machine so that ~ is behaviorably equivalent to "0 for all

finite computations which " o
can execute. That is, M} will exactly

mimic Mo in all of its moves in any finite computation starting with any

initial tape. If this occurs. we will say that the trainable system has

learned the function computed by M • a

The existence of such a trainable computer is not surprising since

it is only necessary for it to begin enumeraring the class of all Turing

machines until it fiads one which can execute the given finite-set of comp-

utationa. If it yields a machine M} which 11 not eq\Oivalent to "0' we

need only give it an additional sample co.putation for "0 which it cannot

execute to cause the enumeration to continue. Since "0 is one of the

machines which will be eventually enu.erated, we can be aure that we can

force the system to eventually enumerate either "0 or aom. .. chlne equiva­

lent to it (for all finite computationl). When it doe., the Iystem will have

learned the function computed loy " and additional _ .. pie co.putaUona
o

from "0 will not cause it ~ ever yi~ld any other machine. This learning

model hal been studied by others and this type of arg\Blent bas been given

a number of times. particularly in papers on gr Ucal inference

(4,6.7.8 ,13. 14,22] •

From a practical point of view, on the other hand, we miaht

3

expect this type of learning by enumeration to be u.ele.. for two

reaaona. Fir.t of all. in order to l.arn any function it i. nece •• £cy

to check all of the function. Which precede it In the enu.eration. and

thia is likely to involve an aatronomical .. ount of computation even for

very modest proble.s. Secondly. it appear •• t fir.t glance that a huge

number of aample computation ... y be required before the ay.t .. will ever

enumerate a correct answer. It i. the purpoae of thia paper to deal with

both of these objections.

We will exhibit an algorithm which enu.erate. DOt Turing

machines but p.rts of Tur1na •• chine. and which carefully guide. it.

~Q.rch by intelligently uains information fra. the s .. ple ca.putationa.

Th~ .lgorithm finda ... chine which c.n execute the firat 1 .ave. in

the s .. ples and .earche. for a chanae which will enable it to execute the

first i+l movea. The proceaa 1. repeated for increa.lng i with

backtrackins when necellary. We wlll d.-onatrate that very large .olution

space. can be searched with only a few a.cODeSa or .inutea of ca.puter time,

and furthermore, th.t rel.tively faw a .. ple computation. are needed

before a correct .nswer i. found. For exaaple. in the next •• ction.

ve .earch for and find a three .tate aachlne ~.th a three .,abol alphabet

from. space of approxillately 69• 10,CT77 ,696 _chine.. We find that

it only take. one ... ,le r.aaputation involving eleven DOvea to force the

.earch to • correct anaver. and the co.puter flnda th,. answer in jUlt

over three secoadl.

The re.earch report.d here i. .n outgrowth of atudie. 1n

gr tic.l inference where the probl .. ia to infer • gr r fraD a finite

nwaber of sample. fro. its language. Many of th. relulta and 1c1ea~

4

presented in Biermann and Feldman (4), Feldman [7:. Feldman. et.al. [8).

Gold [131. Horning [141. Solomonoff [22] and others are directly applicable

to the current problem although their .. phalis il on gr r dilcovery.

These paperl contain a number of resultl concerning enUDeration metho~s

and techniques for choosing a "best" anawer.

One might also look for related research among the paperl which

have been written on automatic computer program Iynthelil (Amarel [1,21,

Manna And Waldinger [151. Slagle [21], Waldinger and Lee [231}but most

of these deal with a different formulation of the problem: Given a formal

description of a task to be performed. how can the for.ali .. be translated

into a computer program? This paper is concerned with problems of inference

from examples rather than a translation between formalisms.

HOst of the previously studied trainable systems have utilized

the technique of basing decisions on the values of certain stored

parameters and then have exhibited adaptive behavior by varying these

parameters. The perceptron (18), many pattern recognition systems [16,19].

and many aame playins programs (20) are examples of this type of learnina

system. The system described here uses an entirely different approach to

learning. finite-state machine synthesis. and the aature of its performance

is consequently dramatically different.

In the next sections. an algorithm for finding a Turing machine

capable of executing a given set of computations is given and a number

of examples demonstrating il~ ~~rformance are presented. In Section 4.

the generality of the approach will be demonstrated by solvins a progr ..

synthesis problem for a modern ca.puter. In Section 5. the probl .. of

computer program synthesis from input-output information only is discus.ed.

5

2. The Algorithm

The algorithm for finding a Turing machine which executes a

given .et of cu.putationa is given in Figures 4, 5. and 6. We will study

an exaaple before describing it in detail. Suppoae it is desired to

find a .. chi~e which .ort. A's and B'.; that is. the ~hine will

besin with its head at the left end of a raadoaly arranaed atrina of

A's a~~ B's and will rearrange the symbols until all of the A'.

precede all of the B'.. Our s .. ple coaputation will sort the atriag

BAA and will proceed as follows: The head .aves right until it finds

an A. It replaces the A with a B and then .oves left until it finds

either the left end of the tape or another A. It .aves right one atep,

puts the newly found A there, and then proceeds off to the right looking

for another A. The computation ia shown in Figure 2 and t. described

by the sequence (BBR,ABL,BBL • • }t ,BAR,BBR,ABL,BBL,AAi..BAR,BBR). A blank

symbol on the tape is written A.

CtJRRENT TAPE

~

* ,BA
.BBA
~BA
AfA
Ast
AVB
"BB
A,B AA,
MB.

FiJUre 2.

NEXT qE

BU
AIL
B81
_R
BAR
BBI
ABL
881
AAR
SAl.
BU

(halt)

An example computation. The poaition of
the head on the current tape is indicated by a dot.

6

For the moment, it will be assumed that we know that the

desired Turing machine has three states, and the strategy for finding

it will be to try to guess which of these states the machine is in

after each move in the computation. Beginning in state 1 (see Figure 3).

we guess that the machine goes to state 1 after the move BBR. After

ABL, we might again guess the device will go to state 1 except that this

would yield a contradiction with the neKt move BBL. (State 1 makes the

move BBR instead of BBL.) So we guess the device will be in state 2

after ABL. After similar arguments we decide the device may go to states

1 and 3 after moves BBL and R. However, attempts to find the state

after BAR all yield contradictions causing a revision in the guesses.

Perhaps the device goes to state 2 after move BBL. Then staces 3 and 1

are the next ~ choices to be made after moves _~ and BAR.

At this point, the next three choices became fixed as a logical consequence

of previous decisions so they are included and are parenthe.ized to

indicate this fact. After AAR, the only noncontradictory choice is 3

and the rest of the table follows tmmediately. The final machine (Figure

3, bot-· lID) is the correct answer, a Turing machine which sorts A's and

B's. Thus the trainable computer can learn to sort on the basis of one

sample computation.*

Notice that at ~~ch point the gues.ed state is the loweat

number whicn does not yield a contradiction with the tm.ediate next moves.

If a contradiction is found at any time for all poesib1e ehoices 1, 2, and

3, then the search is backed up to the l.st arbitrary choice, it is

* One can show that if this sort of procedure i. executed on any atrina
which begins with B and has at least two A'. in it, then the
resulting computation is satisfactory for trainina the .. chine to
sort.

7

en

C
u

rr
en

t
v
e
r
.
l
o
~

a
T

u
ri

n
g

 M
ar

"i
""

B
IlK

~

~
R A

iL

1
Il

L

~J
.

W
il

L

A
ll

..
1

~

~1
l
1

R

L

2
)

1
P

L

P
I

_

81
11

.
A

IIL

: 1
;

'I;
,

(1
)

1
:

(1
)

2

(1
)

I
I

2

(1
)

2

{
l:

"

11
)

fi
g

u
re

:

T
he

se

ar
ch

fe

r
a

T
u

rt
"'

 M
ac

hi
ne

.

H
ov

e.
 w

it
h

 g
u

e.
se

d
 s

ta
te

.
li

st
e
d

be

lo
w

 t
h
~
.

BB
L

K

lIA
R

B8

R
AB

L
B

IL

M
I.

11

\1
.

II
II

t

"

1

I
? -'

3 ,
(I

,
(:

)

(2
)

"
(1

)
(n

(2

)
I

,
(1

)
(1

)
.

incremented by one, and the search proceeds. In this way the spaee of

all possible three state machines is searched until the correct anawer

is found. If no three state .achine ean perform the eomputation, then the

back up will eventually reach the first move indicatins that the class

of fOl.·r state macbines should be ex.ined.

The notation of the algorithm must be defined. lNPUT ia an

array which holds sequentially each of the moves in each sample computation.

The last symbol read before a computation halt appears with an exclamation

point to indicate the end of the computation. Thu. in the example above,

the entries BBR,ABL,BBL,----,BBR would appear in positions 1 through

11 and would .~pear in position 12. Other sample coaputations would

have been entered in locations 13 and beyond.

The array STATE holds the guessed sequence of states with the

nonarbitrary chOices enclosed in parentheses. The array TRAM holds a

complet~ description of the momentarily guessed Turing nachine aDd is

updated eontl~uously as changes are made in StATE. Its exact form need

not be considered.

FUT(I,LEVEL) is a funetion Which yields the list of atates

which the current machine in TRAN will BO throush beginning in state I

if it makes the Maves INPUT(LEVEL),INPUT(LEVEL+l),-----. Often FUT

will yield an empty list because TRAM will not have transitions

corresponding to the Siven sequence of IIO"'S. In the ex..,le above, FtJT

(1,6)- (1,2,2) after move BBR and FL~{3,IO) - (1,1) after move BAR.

It may be that THAN is in contradiction with the given sequence of lIIOve.

either because it indicates the wrona print or step riSht or left instruction

or because INPUT indicatea a computation teDain&tion Cexcl ... tioa point)

9

FUT yieldl lilt X

r----I Compu te

Enter I into S~TE(LEVEL).
If X il not empty, enter
future Itatel (parentheli
ed) into STATE(LEVEL+l).
STATE(LEVEL+2), •••
See Figure 5 for detail.
(Incretaent LEVEL.)

P 2

YES B

FUT yieldl a contradi ion

ncrement 1. I exceede
then reduce LEVEL to

alt unparentheaized entry.
.. STAT!(LEVEL)+l. Delet

orrelpond1ns entries in
RAN. See Figure 6 for
atail.

ee LEVE O ?
(See Figure 6.)

Add the transition in IHPUT(LIVIL-l)
to the machine in TRAH fra. state
STATE(LEVEL-1) to state I.

Figure 4. The a18orit~

10

X is a list.

YES NO

STATE(LEVEL)-Parenthe8ize CAR{X)
X- CDR(X)
LEVEL- LEVEL + 1

.,

Figure 5. Enter newly proposed next state into STATE.
(If X is a list. CAR(X) is the first element of the li.t

and CDR(X) 1. a copy of X with the first element deleted.)

11

YES NO
I L _------4. Does INDel? .1------...

Reduce LEVEL to last un­
parenthesized entry in STATE,
Delete corresponding entries
frOID TRAN.

Delete entry in TRAN jU8t
made in step B.

~ ____ ~ __ ~I~D-o-e-S--l,-EV-E-~---O-~--~I~Y_E_S __ ~ __ ~ ____ ~

YES

----' tNO

II+-STATE(LEVEL) I
t

11"'1+1 't-------.....
YES t

Is I :> K'?

A tHO
Does I exceed the highest
previous state in STATE by
more than one?

NO

Figure 6. I increment and backtrack logic.

12

and TRAN does not. In either case, FUT yields a special symbol .eaning

"contradiction".

K is the currently hypothesized number of states, is initially

set at I, and is incremented until an acceptable machine is found. IND

is an indicator which is set at 1 if the currently considered move is the

first in a computation. IND 1s 0 otherwise. LEVEL is the index of

arrays INPUT and STATF. telling which entry is currently being considered.

and I is the proposed new state name to be entered into STATE(LEVEL).

Figures 4, 5, and 6 in conjunction with these definitions

completely describe the algorithm for the trainable computer. If the

contents of STATE are printed out each time the algorithm passes point

p. the entries in Figure 3 result for the example. Notice that the

search can be greatly reduced at point A in Figure 6 by requiring that

each previously unused state name I exceed the highest previously

used state name by exactly one. For example. if the first two entries

in STATE are «(1).2) aLui the search for a machine has failed, there is

no need to try «1).3) since 3 is simply a new name for the state 2.

Another important way to increase efficiency which is not shown

in Figure 4 is to include a test at point C vhich work3 as follows:

Compute FUT(l,J) for each J>LEVEL such that INPUT(J) is the be­

ginning of a computation. If in any case FUT(l.J) yield. a contradiction.

go to D. This helps to prevent the algorithm fra. .. king hypotheses on

the bash of one coaaputaUcn which will be fouDd to be WTOII& later when

other computations are examined. This feature was included in tbe ,roar_

which i. discussed in the next Section.

The algorithm thus exhaultively a .. r~hea the apace of K state

.achlnes for K. 1,2,3,---- until a machine ia found which can execute

the given s_ple cOlllputations. If the algorithm yielda a machine which

is only capable of doing the sample cOlllputations correctly but ia not

really the "right .. nswer", it can be siven additional s_ple computations

causing it to resume its search. Since a correct Turins machine exists

somewhere in the enumeration, it will be eventually found if enoush such

additional cOlllputations are included.

The efficiency of the alsorltt. can probably be lIIproved by

processing tb. s .. p1e co.putations in parallel. The method would be to

ex_ine all of the cOIDputationa whicb have been aUUlHd to be in sc.e

particular state and to look for the next tranaition from that atate

ueing the information frOil aU of the a .. ples at.ultaneously. Tbis

lIIethod hu the "vantage tbat it would not be dependent on the order in

which the a .. p1.s are presented and it would probably find cutoffs at an

earlier time in the searcb.

14

3. SOllIe Exper1llent. with the Alaorithll

The alloritha described above va. progr...ed in the Stanford

LISP 1.6 language. cOllplled and u.ed to find Turing .. achines which solve

various problems. The results are summarized in Figure 7 Where each

problem Is described and its solution liven. The computationl in colu.n

four are repreaented by their initial tapes. Thu. the .tring BAA

in problem 6 repreaenta the coaplete cODputation deacribed in the previoul

.ection. The amount of PDP-lO CPU time required to do the aearch in each

case is given in the laat column. The.e time. do not nece.sarily reprelent

the beat po.sible performance aince no unusual efforts were made to write

optimal code and LISP does not typically yield fast executions. Another

thing that should be mentioned is that repetitiona of the a_e caaputation

did not necessarily yield the s ... e cOllputation time because the n~ber

of internal garbage collection. vould vary frOll one te.t to the next. So

these time. .hould be considered to be only a kind of rough e.tt.ate of

the ... ount of effort required to obtain a .olution.

The fir.t set of computat1.OUII in each problem va. obtained

.s follows. The fir.t i initial tapes from the .et of alloved tapes (.ee

cn1umn three) were u.ed to generate 1 •• ple computation.. The.. i

cOllputations were input to the allorlthm and a aolution va. produced.

This proce •• vas completed for i - 1.2.3.--- until a correct answer

was found. The fint .et of cOllputations liven for each probl_ ia thu.

min1llal in the .en.e that if the la.t computation were deleted. the .et

would no longer be adequate for lnferrinl the correct anawer.

the answers to problem. one throush six could be inferred fraa

ju.t one •• ple computation and the .horteat .uch computation was found

15

.... 0
-.

PR
O

B
LL

11

D
E

S
C

R
JP

T
IO

N

1
.

H
a

rk
 X

 •
 s

o

u
t

to
 t

h
e

fi

rs
t

H
.

k
l!

tu
rn

to

th
e

b
,
,
~
l
n
n
l
n
l
:

o

f
th

e:

ta
p

"
 •

C
h

a
n

K
"

A
' s

L

o

C

',
.
I

r
.

~'
r

e"
ch

II

le

ft

u
n

tl

o
e

ta

p
e

,
c
ro

s
s

o

f(

o
n

e

C
.

S
c
a

rc
h

ro

r
a

n

:<
.

11
1

X

is

fn

ll
n

,l
.

ty
p

e

a
n

I

X
 a

t
th

e

b
c
,i

n
n

lo
\1

\
0

1

th
e

tl
lp

e
.

4
.

fo
r

"I
II

:h

B
 •
•
 u
lt

 0
(
(

on
e

A
.

5.

P
ri

n
t

an
 X

 o
n

th
e

ae
cO

R
d

A
 a

nd

re
tu

rn

to
 t

h
e

b
ea

tn
n

in
a

o
f

th
e

ta
p

e.

6.

S
o

rt
 A

'a
 a

nd
 B

' •
•

7
.

F
o

r
in

p
u

t
ca

pe
 "

X
V

,
c
h

e
c
k

 w
h

e
th

e
r

\l

a
q

u
a
l

th
e
 .

..
 "
.r

 ..
 o

f
Y

.

Tl
'R

Y
:;C

~
C
H
I
:
:
[

w
tl

tC
II

C

O
R

R
ES

 pm
:n

s
TO

T

il
E

SO

L
l'T

Y
O

X

GC
):::

XX

L

A
eM

cO
li/It

I

Ct
:M

L~

:R

t:U
L

M
it

~
 MI,

1
88

1.

X
X

L
_X

R

M
it

~B
:~
xX
L

A
.U

~

1
R

·

A
X

L
'

II~

(
"
"
'\

 I
IA

t1

a
B

L

SE
T

O
r

A
ttO

rn
:O

 I SE
T

or

 C
O

M
Pl

"T
A

TI
O

H
S

R
£Q

U
I.

tD
 T

O

D
IS

-

I"
M

TA

PE
S

C
O

V
ER

T

L
1U

lIC

~
C
"
l
N
E

..
I

\A
.I

1
}+

,

tA
t

R
.

M
,

,\B
J

I iAH}

,\
·I

I·
·[

A
j

I,
M

)

I
lA

o
8

,
M

,
A

B
.

8
8

,
A

M
.

I
.
 A

81
1

fA
II

II
)

i ..
.. R

.X
}+

LA

o
ft

,
X

,
A

A
.

A
ft.

A

X
,

IA
.

lB
.

BX

I
~
\
.

X
D

.
X

X
.

A
A

A
.

M
D

.
A

A
X

,
A

lA
.

A
B

B
,

I
A

IIX
]

i ·I
M

X
)

A
 'b

' ·
fA

 }
!(.

...
II

.
A

A
,

A
O

.
li

B
.

A
M

.
M

il
,

"'I
SI

I)

I{
A

IIB
}

{A
.I

I}
+

{A

,
B

,
M

,
A

I,

IA
.

lB
.

A
Io

A
,

M
il

,
.'IA

.
A

B
8,

1

M
)

{B
A

B
A

}
1

{A
.B

}+

[A
.

8
.

M
.

A
B

,
!I

A
.

B
B

.
A

A
A

,
A

A
B

,
A

lIA
)

!

8
M

(A
, B

) +
 X

iA
 .1

1)
 +

I{
 A

lIA
 ,
A

U
 •

B
rA

 •
II

U
 .A

A
le

A
.A

A
X

B
,A

ax
A

 ,A
IX

II
,

BA
 lI

A
, I

lA
X

II.
 O

le
A

 •
 II

B
D

 ,A
lrA

A
]

I(A
BX

IIA
.

A
D

.
BA

X
.U

)

C
ft

l
T

It
lE

R

E
Q

tll
1l

!D

(S
EC

O
N

D
S

)

(;
.1

.'
;

0
."

;:
-

2
.1

5

0
.7

;'

:~
.
17

1
.;;

,~,

I.
~'

ll

l.
:-

~

.,
 .

(.
6

;'
·?

3

5.
83

oJ
l

1
3

·1
,

22
.5

8

C
';

U

ID

ID

1n
"C

I DI

0
<

Q
.

DI

C

=
n

DI

ID

C

'Q
.

iD
':::

r
n

O

0
3

~

!:i

PR
O

BL
EM

D

E
SC

R
IP

T
IO

N

TU
RI

N
G

H

l.C
lIt

N
!:

W
HI

CH
 C

OR
RI

SP
ON

DS
 T

O
TH

E
SO

LU
TI

O
N

sr
r

O
F

At
t.o

wr
.n!

r:

;'
l'

T

TA
PE

S
i

S1
':T

nF

C

O
M

Pt
"T

A
T!

O
:-l

S
R

EQ
1'

lR
ED

T(

'I
P

IS
-

C
l'U

rI

M
E

RE

QU
IR

ED

"S
EC

O
N

D
S;

8
.

'J
.

ae
v

er
.e

 t
h

e
in

p
u

t
.t

r
i,

..

\l
s
i n

il
an

 .
1

 p
I.

",
",

t
M

it

lIA
R

O
\'

\l

ll
il
l

X
X

I.

,\A
M

!lH

M

11
,\1

-

{A
,l

i]
+

,\
-n

·-
t J

-}

C
O

\'l
':R

T

rR
 Il

1G

~1
AC

11
1l

\'
E

1
1

·
I I\A

 ,
B

,A
A

 ,A
R

,
M

,
B

R
,A

.U
 ,

A
A

S
,A

M
,A

B
R

, "'''
I,

:~
,:

\)

,\
!l

.\
 .A

 II
II

,I
IA

A
 ,

lI
A

R
 ,A

A
R

R
 J

. _
4.

*':
.

A
A

II
 ,

A
M

 ,A
R

R
, J

I.\
A

 ,
lI

A
R

 ,
M

R
R

]
~~

1"
~~

'5

1\
c\

A
,\

,,\
A

H
 ,A

lI
A

 ,
/\

 il
R

 ,
II

A
A

, M
II

,A
A

H
R

}
'I

?
 .

i4 .
 .:\

 ,
li
.A

A
.A

U
 1

 !i
Ii

 ,I
\.

\A
 t~

'
15

,
\H

I~
, n

Bl
~ "

~,
,,

\ .
A

;\
.-

\H

I:"
 I

.
._

 •

o
f

o
n

ly

tw
o

.y
.h

o
ls

,
fo

r
ea

ch

"
.a

rk
 0

1
(

o
n

c
It

..

.
("

-'
B

II
,,

\,
\A

R
I1

8
)

I
.' ..

 J"

I I
I

I
~.
_.
 __

__
 L

 __
__

__
_ .

__
_

l'
-

-
-

--
--

--
.-

-
.-

-
-
-
-

F1
11

1r
e

-:
.

E
x

p
ar

il
ll

cn
t.

nn

th

e
n

.i
n

a
"
,l

e

co
m

pu
te

r,

•
n.

e
.o

lu
tt

o
n

fo

ul
ld

 .
..

..
 c

o
rr

e
c
t
~
l
t
"
o
u
K
h

n
o

t
Id

c
n

ti
c
a
l

to

th
e
 m

ac
h

in
e

g
iv

e
n

il
l

c
o

lt
.n

tw

e.
 •

..
 S

·
b

d
c!

fl
n

ad

to
 b

tl

th
e

.e

t
oC

a
ll

o

c
ri

n
g

s
o

f
sy

m
h

o
ls

{r

om

s
e
t

S
in

c
lu

d
in

g

th
e

a
tr

in
g

 o
C

l'

I\
It

h

,.

er
o

(d
en

o
te

d
 A

 \
.

S
+

.
~'

.
{A

}

in each ca.e. These are included in the table along with their

computation tba.s. The algorithm usually found t~e answer in lell tt.e

then in the first exper~ent. Surprisingly. in several ca.es of the

first experiment. the first i-I of the i s.-ple computations could

be deleted without affecting the ability of the system to find a correct

anawer.

In the other probl the second set of s .. ple computations ia

simply representative &nd not necessarily min~al in any sense.

Occasionally the algorithm produced an answer which was different from

the one given but whi.ch waa Iltill correct. These instancel are 10

marked. the .. ount of search time required to find a solution is not an

easily predicted quantity a. indicated in problem eight. Adding a ... ple

computation to a let of coaputations which is already adequate for

inferring a correct answer can increase the total s.arch tt.e because

each newly proposed transition aust be checked for compatibility with thi.

computation a. well as the others. This addition can also decrease the

.earch t~e by enabling the alloritba to discover that it has .. de a wrong

decision at an earlier tt...

These problems were not chosen using any particular criterion

and are reprelentative of all of the experience gained with thil alaoritn..

One can expect sillllar perforunce on any probl_ which inyolvel about

four states or less in the control as long .. the total nu.ber of

transitionl is not areat. Sa.. s .. rch.s for four state and laraer .. chin.s

were terminated after lIbout ten .iout.s of cru tt.e without an &Dswer.

Machinel with a large nWilber of states can be found in a reasonabl.

18

amount of tt.e if the nuaber of transitions ia sufficiently ... 11.

For exa.ple, the machine which starts with a blank tape and types

out aquentially the twenty-six letters of the alphabet has tventy­

seven statea and was found in 104 seconds. The total .earch tt.e i. a

function of number of states, size of alphabet, number of tran.itions,

the order of the s .. ple computation., and the order of the tranlitions

within the coaputations.

When traini~ the system to do a coaputation, it ia necellary

to have a Iystaatic al80rithm in mind. There are an infinite number

of waya to get from any initial tape to any final tape, and a method

must be chosen which relults in n finite-.tate control. Clearly, it is

ea.y to find a Turing .achine which when given the number 11 yieldl the

number 13. However, it is not 10 easy to find a machine which when

given any prt.. number viII find the next prt.e number. If the sample

computations involve a naive scheme for getting from the initial tape

to the final tape, the resulting machine .. y never have the desired

capability although it viII alvaYI be able to reproduce the I .. ple

computations.

From a practical point of view, it is quite helpful to choose

a method for dOing the delired coaputation which the ayat .. can eaaily learn.

Thi. usually involvea finding a Icheue which requires a ... 11 nu.ber of

Itates. Notice that problema two, four, and nine involve e •• entially the

.... e computation but alphabet. of different dae were u.ed. 'l1le .. achine.

tended to be more difficult to find if they had .ore atates even if their

alphabet. were .ignificantly smaller.

19

4. On the pe.isn of an AutoprograJllller

The algorithm de.cribed in this paper i. designed to find a

finite-state control from sample input-output sequences and can be used

to find a controller or program for any I.omputer. In order to 1Hustrate

the general applicability of this technique, we will consider the

problem of writing a program which factors any natural number intv its

prbDe factora, and we will use a modern computer with regi.ters and

arit~etic operations.

It i. first necessary to find a sample computation and in this

example, we will factor 12 into its prime factors ~,2.3. We will store

the number to be factored in register Rl, the n~~ber to be divided into

Rl in R2, and the remainder and quotient for the division in register.

R3 and R4, respectively. The method will be to divide Rl by R2 and

then either print or incr~nt R2 depend1n€ on whether the remainder is

zero or not. If a prime factor is found, the nev quotient is entered

into il and the process i. continued. 1t~ sample computation i. traced

in Figure B. Certain steps are taken only if 80me particular condition

holda, and in such cases. that condition Is Indicated.

20

Condition C~and Rl 12 13 R4

Rl 0- read 12 0 a 0

12 0- 2 12 2 a 0

R4 0- Rl+R2. R3 ~ re.ainder 12 2 a 6

13 • () Rl 0- R4 6 2 a 6

print 12 6 @ a 6
R4 ... R1+R2. R3 - remainder 6 2 a 3

R3 • 0 Rl ... R4 :; 2 0 3
print 12 3 @ 0 3
14 ... Rl+R2. 13 0- remainder 3 2 1 1

120-12+1 3 3 1 1

R4 ... Rl+R2, R3 ... remainder 3 3 a 1

R3 .. a Rl ... 14 1 3 0 1

print 12 1 0) 0 1

Rl - 1 halt 1 3 0 1

Figure 8

A sample computation: Factorioz"12 into pr~es.

Since the only changes in the flow of the program result from

conditional tests, the inputs to the finite-state control are the results

of these tests. If no condition is listed, we will let S be the

standard input symbol. TIle finite-state control Which solves the problem

thus will yield a series of commands like those in the figure altering

the command sequence appropriately when the conditional tests so indicate.

Since the algorithm of Section 2 is designed to find Turing

machines, it requires in each move description a step left or a step

right coaaand. This is not applicable to the current problem and will

21

simply always be listed as R.

Now if we let each of the conditions (e.g •• R3 - 0) and each

of the commands (e.g., Rl _ read) be an abstract symbol. we can submit

the sample computation directlj to the algorithm without change:

[(5, Rl ~ read, R). (5, R2 _ 2, R). ------

(Rl- 1, halt, R)].

In this case, the LISP program computed for about eight seconds and

produced the finite-state controller of Figure 9.

It is a small change to make the finite-state controller into

a ca.puter program, and the flow diagram for this program appears in

Figure 1,0. If input symbols appear at a node which are not the standard

S, a conditional test must be inserted to implement the branching. The

resulting computer program will correctly extract the prUDe factors from

any positive integer. Since there is nothing special about either the

computer or the example problem, this method is clearly quite general.

Summarizing, we can find a computer program for executing

some algorithm from example computations which employ that algorithm.

We simply list sequentially, for each example, the ca.mands executed

by the algorithm including with each command any conditions which must

be checked before its execution. These sequences with the modifications

described above are then submitted to the algorithm of Section 2, and

the resulting finite-state controller can be directly converted into a

flow diagram for the computer program. The only alteration required is

the inclusion of conditional tests to check for conditions listed as input

symbols on the finite-state controller. The resulting computer program

22

9
SIRI ... read

S/R2 - 2
RI l/h.:...:a:..;;l.-t __ _

halt

Figure 9

Finite-state controller for finding prime factors.

R4 po Rl + R2

.. remainder

Figure 10

Flow diagram for _ computer program.

24

will correctly execute all of it. given example computationa and will

correctly execute the delired algorithm if it h .. been liven enough

ex.plel. We will call a IYltem which carriel out the abcve procell an

autoprOlrPll!!.

It il ~portant to note that the .utoprogr r al we define

it here doel not actually cre.te an algorithm for lolving • problem

where none exiated before. The algoritb. ~It be t.plicitly contained

in the ... ple computationa, and the method delcribed here It.ply finds

and make. explicit that algorithm by constructing a aatiafactory flow

diagr.. It 1118)' be true that the autoprogr-.r concept will not prove

to be a uleful aid to traditional cOlllputer prograamer. becaua. one mat

e.sentially write the progr. .. he 18 doing the ex .. ple.. However.

there are .ituation. such a. in • delk calcul.tor where an autoprogr..-er

might be quite uaeful. In this caae. the operation code. correspond to

key. on the machine and the u.er may not be a cOIIIputer progr_r. With

.n .utoprogr r built into the device. the uaer could begin doing hi.

repetitive ta.k in the usual way but .t aome point he could stop and allow

the key. to go on pulhing them.elva ••

25

5. Computer Program Synthesis from Input-output Pairs

Perhaps the next logical step after the auto programmer is

the development of a system which synthesizes computer programa from

input-output information only. The system would have no information

concerning how each output is obtained from its correspcndi.ng input and

would be faced with the problem of filling in all of the steps as

well as finding the progr~. The system could enumerate the set of

all possible sets of int~~ediate steps, find a progtam corresponding

to each set of comput~tions, and USE some criteria for choosing one

of the programs as its answet. This all appears to be well beyond the

range of possibility for any g~neral class of functions.

One a~proach to this problem was seriously illvestigated.

Suppose we are interested in automatically syntn~sizing computer programs

which use only finite memory and which yield as outputs, n-place binary

numbers where n is fixed for any particular program. Then it is

only necessary to find n finite-state automatons each of which

corresponds to one of the n binary places. Here we consider an

automaton to be a device which scans an input string once from left to

right and returns an output of 0 or 1. We synthesize for the th i place

an automaton which is capable of scanning each of the sample inputs and

returning in each case the ith place of the corresponding output. Finite-

state automata theory 1s well understood, and it is possible to obtain

convergence to the correct machine if enough input-output pairs are

known. The program synthesizer constructs the n automatO[i. and produces

a program which simulates them.

Such a system was developed and was vpry efficient a. a program

26

synthesizer because finite-state machine synthesis is very direct and

fast. Every program produced was completed in a few seconds of CPU

time and was executable on the PDP-lO system. However the requirements

for input-output data were very great because of the number of strings

required for synthesis of the individual automatons was large. For an

m-state automaton, most of the strings of length 2m-2 were needed

2m-2

before the machine could be synthesized and this amounts to ~ ri

i-O

strings for an r symbol input alphabet. As an example, the program

which counts the number 01 A's modulo 4 (thus n-2) i strings of A's and

B'S required nearly all of the 127 possible input strings of length six

or less before it could be produced. Eecent developments in grammatical

inference using man-machine int£'ractive capabilities [4] have snown how

to reduce this input requirement, but the fundamental difficulty is 11kelv

to remain.

Another great disadvantage of thLs 9y.J~em was its finite-state

memory limitation. Although every progrcm we writ~ Ises a iinite memory.

it is usually written as if the memory wcre infinite. We would never

be able to claUD that we had, say.writt .. n a program which enumerates the

prime numbers if we did not make this ass~~ption.

It may be that in terms of input requirements, th! best program

synthesizer will be some comp~omise between this appro~ch and the auto-

programmer which requires every intermediat:! step in each •. ,"'ple cOliputation.

Perhaps a method can be developed for givinr hints as to ~ow to do the

compLtation without having to include the actual steps.

27

6. Conclushm

In this paper, we think of a trainable machine as a manipulative

system with a finite-state controller, and the learning process for the

machine involves finding the correct controller. The approach is quite

general as demonstrated by the fact that it h~~ been applied to very

different types of problems. It is also important to note that the controller

can be found either by a traditional finite-state machine synthe.is method

or by some kind of search. The philosophy of the paper may be applied

in many ways, and the specific system9 discussed here should be thought

of as examples of a general approach.

28

7. Acknowledswnt

The author i8 gr.atly indebted to Prof ••• or J. A. Faldman

for many invaluable discualionl during the period of this rel.arch.

29

(1]

(2)

[4]

[5]

[6]

(8]

BIBLICX:RAPHY

S. Amarel. "On the Automatic Formation of a Computer Program which
Represents:' Theory". in Self Organizing Systems - 1962. editors:
Yovits, J.cobi. and Goldstein. Spartan Books. New York. 1962.

S. Amarel, "Representations and Modelling in Problems of Program
Formation". in Machine lntelligence 6. editors: Meltzer and Michie.
American Elsevier Publishing Company, Inc •• New York, 1971.

A.W. Biermann and J .A. Feldman, "On the Synthesis of Finite-St.te
Acceptors". A.I. Memo Nol 114, Computer Science Department, Stanford
University, April 1970.

A.W. Biermann and J.A. Feldman, "A Survey of Results in Gr..-tical
Inference". International Conference on Frontiers of Pattern Recognition,
University of Hawaii. Honolulu, Hawaii. Ja.1Uary 18-20. 1971.

M. Davis. Computability and Unsolv.bility. McGraw-Hill Book Ca.pany.
Inc •• New York. 1958.

J .A. Feldlllan. ''Firat Thoughts on Gr.-tical Inference", A.!. Memo
No. 55. Computer Science Department. Stanford University. August 1967.

J .A. Feldman. It~OIIIe Decidabllity Results on Gr Uc.l Inference and
COII'p1exity ". A.I. Memo No. 93.1, Computer Science Department,
Stanford University. May 1970.

J.A. Feldman. J.Gips, J.J. Horning, S. Reder. '~rammatical Complexity
and Inference". Technical Report No. CS 125, Computer Science Department,
Stanford University, June 1969.

[9] A. Gill, Introduction to the Theor of Finite-State Machin • HcGraw­
Hill Book Company. Inc •• New York. 1

[10) A. GUI. "Realization of Input-output Relations by Sequential Machines".
Journal of the Auoclation for Computing Machinery. Vol. 13, No.1.
pp. 33-42. 1966.

[11] S. Ginsburl. ''synthesis of Minimal-State Machines". IRE Tranl.etion.
on Electronic Computer •• Ec8. pp. 44l~49. 1959.

[12] S. Ginsburg. An Introduction to Matheaatic.1 Machine Theory. Addison­
Wealey PubUshing Ca.pany. Inc •• bad ins • Massachusetts, 1962.

[13] M. Gold. "Languqe Identification in the Lwit". Information and
control. Vol. 10. pp. 447 -474. 1967.

[14] J .J. Horning. "A Study of Gr_tica1 Inference". Technical Report
No. CS 139. Cc.puter Science Deparaaent. Stanford University, Aupst
1969·

30

BIBLIOGRAPHY
(Continued)

[151 Z. HIInna and R.J. Waldinger, ''Toward Automatic Program Synthesis",
Gom!unicatians of the A •• ociation for Computing HIIchinerx, Vol. 14,
No.3, pp. 151-J.65, 1971.

[161 J.M. Hendel and K.S. Fu, Adaptive, Learning, and Pattern Recognition
Sy.t Acad .. ic Pre.s, New York, 1970.

[171 M.L. Minaky, Computation: Finite and Infinite Machin!!. Prentice
Hall. Englewood Cliffs, New Jer.ey, 1967.

[181 M.L. Minsky and S. P~pert.Perseptroq.; An Introduction to Computational
Geometry. MIT Pre.s. Cambridge. Ma •• achu.ett., 1969.

[19] N.J. Nil •• on. Learning Machine., McGraw-Hill Book Company. Inc ••
New York, 1965.

[20] A.L. Samuel. '~ome Studies in Machine Learning U.ing the Came of
Checkers. II - Recent Progre •• ", IBM Journal of Re.earch and
Deyeloeent, Vol. 11. No.6. pp. 601-617. 1967.

[21] J. Slagle, ''Experillents with a Deductive Question-Answering Pr0lram".
CO!!Unication af the A"oclatlon for Coeputi9B ~~chinery, Volume 8,
No. 12. pp. 792-798, 1955.

[22] R. Solomonoff, '~ Formal Theory of Inductive Inference", InforllAt1oD
and Control. Vol. 7. pp. 1-22. pp. 224-254. 1964.

[231 R.J. Waldinger and R.C. T. Lee, "PR<Jl: A Step Toward AutOlllatic Progr_
Writing". Proceeding. of the International Joint Conference on
ArtifiCial Intelligence, Washington, D.C. 1969.

31

