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Abstract

Assune that two subspaces F and G of a unitary space are defined

as the ranges(or nullspaces of given rectangular matrices A and B.
Accurate nunerical nethods are devel oped for conputing the principal
angl es ek(F,G) and orthogonal sets of principal vectors Uy, € F and

v € G k =1,2,..., g =din{G < din(F). An inportant application in
statistics is conputing the canonical correlations o) = COS 8
between two sets of variates. A perturbation analysis shows that

the condition nunber for 6 essentially is max(x(A),x(B)), where «
denotes the condition nunber of a matrix. The algorithns are

based on a prelimnary &R-factorization of A and B (or A and BH),
for which either the nmethod of Househol der transformations (HT) or
the nodified G am Schmdt nethod (MSS) is used. Then cos 6, and

sin 8 are conputed as the singular values of certain related matrices.
Experimental results are given, which indicates that MSS gives 6,
with equal precision and fewer arithmetic operations than HI. However,
HT gives principal vectors, which are orthogonal to working accuracy,
which is not in general true for M. Finally the case when A and/or
B are rank deficient is discussed.



1. Introduction

Let F and G be given subspaces of a unitary space £, and assune that
(1) p=dimF) >aim(G)=q > 1.

The snall est angle 6,(F,G) = elé[o,n/z] between F and G is defined by

'coselznaxrraxul'k/, Hnup2 =1 |lvllz =1
uéF veG

Assume that the maximumis attained for u =u; and v = v,. Then 68,(F,G)
is defined as the smallest angle between the orthogonal conplenent of

F with respect to u; and that of Gwth respect to v;. Continuing in
this way until one of the subspaces is enpty, we are led to the fol | ow
ing definition.

DEFI NI TION The princi pal angl es eke[o,n/ej between F and G are
recursively defined for k =1,2,...,q9 by

(2) COS 8 = max max utl = uE\k, [ullo=1 |lv]],=1
ueF veG
subject to the constraints
ul.-lu = 0, v.l-\lr = 0, J T 1,2,...,k-1.
J J
The vectors (u1,...,uq) and (vy,. . .,vq) are called principal vectors
of the pair of spaces.

W note that the principal vectors need not be uniquely defined, but
the principal angles always are. The vectors V = (vl,...,vq) forma
unitary basis for G and the vectors U = (ul,...,uq) can be conpl emented

with (p-q) unitary vectors so that (ul,..-,up) forma unitary basis for F.



[t can al so be shown that

u?v=0, P #K, G=1,.. .0, k=1,...0

For an introduction to these concepts we refer to [I]. An up to date
list of references can be found in [7].

Principal angles and vectors have many inportant applications in

statistics and nunerical analysis. In [5] the statistical nodels of
canoni cal correlations,factor anal ysis and stochastic equations are
described in these terms. By taking the vectors U corresponding to
Cos 8, = 1 we get a unitary basis for the intersection of the two

spaces F and G This has applications in the generalized eigenval ue
probl em ﬁ1]. O her applications are found in the theory of approxi-
mate | east squares [6] and in the conputation of invariant subspaces

of a matrix [18].

The purpose of this paper is to devel op new and nore accurate methods
for conputing principal angles and vectors, when the subspaces are
defined as the ranges (or nullspaces) of two given matrices A and B.
In section 2 we describe the standard method of conputing canonical
correlations, and show why this method may give rise to a serious

| oss of accuracy. Assumng that unitary bases for F and G are known
we derive in section 3 formulas for conputing principal angles and
vectors from the singular values and vectors for certain matrices.

To find out how accurately the angles are defined in presence of
uncertainties in A and B, first order perturbation results are given
in section 4. In section 5different nunmerical nmethods for conputing
the unitary bases, and the use of the fornulas fromsection 3, are

di scussed with respect to efficiency and accuracy. The special problens
whi ch arise when A and/or B are exactly or nearly rank deficient are
discussed in section 6.Finally some nunerical results are given in
section T.



2. Canonical correlations

For a matrix A we denote the range of A by R(A) and the nul |l space of
A by N(A), |

(3) R(A) = {u|Ax = u}, N(A) = {x|Ax = 0} .

In the problemof canonical correlations we have F = R(A), G= R(B)
where A and B are given rectangul ar matrices. Then, the canoni cal
correlations are equal to cos 6,5 and it can be shown that

(&) cos ek =0k, Uy = Ayk, Ve = Bz, , k = 1,2,...,Q,

k
wher e Oy > 0 are eigenval ues and Vo 2y properly normalized eigen-
vectors to the generalized eigenval ue probl em

/0 afp Vooy { A 0.y
(5) “ =0 L ‘

Assume for conveni ence that A and B have full colum rank. The standard
nmet hod [h] of conputing canonical correlations is to conmpute AHA, BHB,
H

A"B and perform the Chol eski deconpositions
H _ —
AA = RXRA, BB = RR

where R, and RB are upper triangular.

The eigenval ue problem (5) is then equivalent to the eigenval ue probl ems
for a pair of Hermtian matrices

Ho _ 2 = 2
MM.?i —oi yi, MH'M Zi = of 21

wher e
By

M = (R,

Ho\-1 _ _
A"B)Rg 5 9, = R,y;, 2, = Rpz.

These can be solved by standard numerical methods.



Wien q = 1 and B = b, the principal angles and vectors are closely
related to the |east squares problem of nininizing ||b - Ax||,. In
fact, with the notations above (but dropping subscripts), we have

y = x/||&x|{2, 2z = 1/||vll2s o = ||ax]|]2/]]v]]2,
and (5)is reduced to

Aoz = o afay, bA Yy = o bbz.

But the first equation here is the normal equations for x = oy/z.
Thus the classical algorithmreduces for g = 1to solution of the
normal equations by Choleski's method.

Lately it has been stressed by several authors that forming the
nornal " equations in single precision involves a |oss of infornation
which cannot be retrieved. For |inear |east squares problens other
met hods without this disadvantage have been devel oped [2],[13] and
[4). Qur aimin this paper is to generalize these methods to the
case when q > 1.



3. Solution using singular val ues

In most applications each subspace is defined as the range, or the
conpl ement of the range, of a gi ven matrix. In this case a unitary
basis for the subspace may be conputed in a nunerically stable way
by well known methods for the &R-deconposition of a matrix. These
nethods will produce for an mxn matrix A with m > n, a deconposition
n=@la () ke
where rank (s) = p and Q = (Q'|Q") is unitary. Then Q' gives a unitary
basis for the range of A R(A), and Q" a unitary basis for the conple-
ment R(A). Notice that the case when a subspace is defined as the null-
space n(af) of a matrix A is incl uded, since n(aly = R(A). The conpu-
tation of unitary bases will be discussed in nore detail in section 5
and 6,and we assune here that such bases have been obt ai ned.

Recently an efficient and nunerically stable algorithmfor conputing

the singular value deconposition [9] (SVD) of a matrix has been devel oped
[w]. This algorithmwi |l be our basic tool for computing principal angles
and vectors. The relation between singular values and our problemis clear
fromthe follow ng theorem

THEOREM 1. Assune that the colums of Q, and Qg formunitary bases for
two subspaces of a unitary space £, Put

_H
(7) M = QQp,
and let the SVD of this pxq matrix be

(8) M=Y Czl, C= aiagloy,...,0.),
wher e



[f we assume that

012022 .. .20,

then the principal angles and principal vectors associated with this

part of subspaces are given by

(9) cos Ok = ok(M), U =QAY, V= Q3Z'

Proof: It is known [15]that the singular values and singular vectors
of a matrix M can be characterized by

_H
(10) O = max (yH'Mz) _ykM Z, 5
Hyllz =l1z]]2 =1
subject to
y-H,y;J-—zzJ=0, j o= 1,... k1
If we put

U=Qqye€R(Q), v=Qz€ERQ,

then it follows that ||ul]|, = |l¥ll2s |Ivll2 =1]z]]|2 and
i U.HU. H VH
y yj Cl j, ® xj Cl Y. .

Si nce \}{Mz = yHQ'ZQBz = qu, (10) is equivalent to

_ H _H
o = mx (uv) = WV
, | ull2=] |v]]2=1

subject to
H _ H ) i
u uj =v vJ = 0, J = 1,..., k-1

Now (9) follows directly fromthe definition of principal angles
and vectors (2), which concludes the proof.



For usmal 1 angl es 0 is not well determined from cos 6y and we NOW
develop formulas for conputing sin . Let q, and Q, be defined as
in theoremi1. For convenience we change the notations slightly and
wite (8) and (9) as

(8") M= Y, C Yg, c = diag (cos 6

A ),

k
(91) Up = %ty U = Y5

W split Qp according to

(11) QB=PAQB+(I —PA)QB,
wher e Py =7:,2AQ£I is the orthogonal projection onto R(QA). Here

_ H, _ _ H
P = 9,8, = QM=QYC Y, ,

and hence the SVD of the matrix P\Qy is given by

= H = di
(12) PQy = U, CYy, C = diag(cos ak).
Since PA(I - Py = 0 we get from squaring (11)
H _ 2 — _AH o2 - _ a2yl
Qp(I - Py)2Q, = | - Qp PF Qp = Y (I - C2)Yy
and it follows that the svo of (I-P,)Q, is given by
(13) (I-P, )qy = W, S Yg, s = diag(sin #8,).

Conparing (3 with (2) it is evident that W, gives the prircirel
vectors in the conplement R(Q,) associated with the pair of sub-
spaces (R(Q, ), R(QB)).When p<<m the SVD of (I-PA)QB can be conput ed
more economcally fromthat of M using

(1) (1-P,)QyY, = W,°S



W will for the rest of this section assune that in addition to
(1) we have

P+q<m.

This is no real restriction, since otherwise we have (m-p)+(m-q)< m
and we can work with the conpl enments of R(QA) and R(QB) i nst ead.
Then dim(R (Q 1(R(Q,)) = mp > g, and we can choose the mxq matrix W, in (13)

S0 thathiJ 0.

By anal ogy we have fornulas simlar to (12) and (13) related to the
splitting Q =P +(I-P,)Q, ,
(15) “pa@ =U CYl (I -P)Q =W, s Yo

B*A B A B’®A ~ "B A
where again since m- q > p > q we can choose the mxq matrix V\é
so that bfiu = 0. From (15) we get

Uy = QY, = (UBC + wBs)aanrA = (UBWB) ( s )
If we put
_ H _ C H
PB,A = UpUg = (UB WB) ( S ) Ug »

t hen, since R(QB)

R(UB), we have for any y ¢ R(QB) t hat

Py yX€R(Q), |[xll2= |17y il

W can now al waysfind an mx(m-2q) matri x Zg such t hat (UB Wy ZB)
is aunitary basis in Em Then

c -s vl

B

! 0 .

(16) £ A (B Blz Ks o s
H
0 1) \2g ;



is the matrix of a unitary transformation, mapping R(QB) into R(QA).
Its restriction to R(QB) S Pp po and it leaves all vectors in R(ZB)
unchanged. This transformation'is called a _direct rotation [ﬂ from
R(QB) into R(QA). It is distingui‘shed fromother unitary transforma-
tions P taking R(Q,B) into R(QA) by the property that it mnimzes

each unitarily invariant normof (I -P)1-p). If R(QB)/'YW is

enpty, then all B, < n/2 and the direct rotation i s uniquely deter-

m ned.
Simlarly we can construct a direct rotation taking R(UA) into (R(QB).
It is obvious that the relations between the two subspaces are very

conpletely characterized by the quantities C, S, U, Wys Up and We.



L. Perturbation of principal angles

V¢ consider here how the principal angles between R(A) and R(B)
changes when the elenents in A and B are subject to perturbations.
W assunme in this analysis that the matrices A and B are mxp and
mxq respectively, and have linearly independent colums. Consider
first a perturbation of A only,

A =A+¢€E= (A + €E) + €E,p,

€

where we have split the perturbation in conponents in and orthogonal
to R(A),

Ey = P,E, By = (I—PA)E.
Let the polar deconposition of A+eE; be

A+eEy = QH, QEQA =I, H positive definite,.
Then, since R(A) = R(A+eE;), Q, gives a unitary basis for R(A).

To get a unitary basis for R(Ae) we note that for small absol ute val ues
of ¢ , the matrix

(17) (A+€E) 1= QA + EF, F= (I-P )EH_1

HA /Bl
: , i, _ H H, =
I's nearly orthogonal. Since QF = QQ,Q,F = Q;[PAF = 0 we have

| - (QureF)(Qu+eF) = —e(Flg, + QF) + 0(e?) = 0(e?).

Then from a series expansion for the unitary factor Q in the polar
deconposi tion of AEH; [3) it follows that ¢

(18) Q = Q *eF+ 0(e?).
€

10



Premul tiplying (18)byP,weget

PBQAE = PgQy * P

-1
B(I P JEH, .

Using the well known inequalities for singular values, [123 p. 30,

(AB) = o,(A)o;(B),

o (A*B) < o K K

() +01(B), o

k =1,2,...,q,
we obtain

Iok(PBQAE) - ok(PBQA)| < e 01((PB(I-PA))01(EH;\1) + 0(e?).

Now PB(I—PA) = U_ diag(sin ek)wﬁ and since

B

oy (K, ') = /o (AteBy ) = 1/0 (A)+0(e),

we have to first order in ¢

(19) |acose |<e sin 6 ol(E)/op(A).

If instead we premultiply (20) by (I—PB), and proceed in the same
way we arrive at

(20) |asin 6] < ecos eminol(E)/op(A).

Nowassune that both A and B are perturbed by §A and &B respectively,
wher e

[16a]12/11a]]2 < ea, |]6B]]2/]1Bl]2 < ep.

——

11



Then to first order of approximation the perturbationsadd together
and we get from (19) and (20)

(@d)) |Acos Skl < Kesin® s |a sin ek' < K C0Se . >
0’1(A) Ul(B)
K=¢, W + €p oq(B) =€, (A) + EBK(B)

Thus agai n neglecting terns of higher order, we have

sin 8 COS 8 .
max mln)

. )'
H
sin Gk cos ek

|Aek| < Kemin( = K-g(6

k

The maxi mumof g(8) for 0 < 8 < w/2is attained for 6 = arctan r

= 2 i. = gj .
&ox (14r%)<2cos 6 _. , I sin enax/cos em

m n n'

[t follows that

-2 ¥ A
gy < (1 + cos 8. )FC0Se < V2

A

and finally

(22) 88, | ¢ V2le k(A) + epk(B)).

W conclude that when both x(A) and x(B) are snmall, then the angles
ek are well determ ned.

Ve note that if the colums in A are scaled, then «x(A) will change,

but not R(A). Also the nunerical algorithns for the &R-deconposition
have the property that, unless colum pivoting is used, they give the
same numerical results independent of such a scaling. Therefore it is
often nore relevant to take in (21) as condition nunber for A the nunber

x'(A) = min «(AD), D= diag(dl,...,dp).
D

12



It has been shown in [16] and [17] that «(AD) is not more than a factor
of p& away fromits mninum if in AD all colums have equal L,-norm.
This suggests that A and B shoul d' be assunmed to be preconditioned so that

||ai||2=||bj||2=1, i=1,...,p, j = 1,..05q.

Ve remark that «'(A) is essentially the spanning precision of the basis
in R(A) provided by A as defined in [17].

13



5  Nunerical nethods

W assume in this section that the colums in A and B are linearly
i ndependent. The singular and near singular case will be briefly

di scussed in section 6. For convenience we al so assune that A and B
are real matrices, although all algorithns given here can easily be
generalized to the conplex case. Conputed quantities wll be marked
by a bar.

In order to get the orthogonal bases for F and G we need the QR-decom-
positions of the matrices A and B. W now describe two efficient
nethods for conputing these. In the method of _Househol der triangulari-
zations (HT) [13] orthogonal transformations of the type Q =1- 2wkwg
are used, where

T
W, = (O,...,O,wkk,...,wmk) . Ilwk||2 = 1.
The mxp matrix A is then reduced to triangular form using premultipli-
cations
VP
|

i Ma
0/t mp

Qp---Qz Q A=
where w is chosen so that Ql} anni hilates the appropriate elenents
in the k th colum. Since Q,; = Q. an orthogonal bases , for R(A)
can then be conputed by premultiplying the first p colums in the
unit matrix I by the sane transformations in reversed order,

i I

Q. =Q Q... g
A ¥ o)

For this nmethod a very satisfactory error analysis is given in[191

14



Assume that floating point arithnetic with a mantissa of t binary
digits is used, and that inner-products are accunulated in double
preci sion wherever possible. Then there exists an exactly orthogonal
matri x Q such that the conputed matrices satisfy

/

(23) QA+ E) =15, Q=Qig *+F=q+F,
-t - 3/2 -t
HEA[]F = 12.5 p 2 ||A||F, HFAHF = 12.5 p 2 7,

where @ is an exactly orthogonal basis f'or R(A+EA). Fromthis and

ool omio | owr es b imate tor Q“ Wer gt

~ i AN}
. OI(M - M) . 13.0(p / + g / )

{:h) \’|ak(ﬁ) - nk(hdl

where M = szi. Qy and the constant 13 .0 accounts f'or the rounding
errors in conputing the product _QJ}; 'dB. We have ok('M) S ”(')k, wher e
Gk arc the exact angles between (A+EA) and (B+EB) . Thus, the differcnce

bet ween ?}k and 6, can be estimated from (22),

(25) 8, -0, | <12.5 /2 (pk(A)+ac(B))27Y .

Finally, the errors Ek(ﬁ)-ck(ﬁ) in conputing the singular values of M,
using the procedure in [14] , will be of the same order of magnitude
as those in (24).

The error estimate given above is satisfactory, except when 6, << L.
In this case, the errors in cos 6, from(24) will give rise to errors
in 6y whi ch may be much |arger than those in (25). W return later

to the problem of accurately conputing small angles.

15



An orthogonal basis Q) for R(A) = N(AT) can be obtained by applying
the transformations Q k =p, . . .1 to the last (mp) colums in I

0
QA =Q1Q . . . Qp <Im—p)

Also in this case the estimate (23) for Q', (24) and (25) still hold
if the factor p3/2 is everywhere replaced by p(m-p)1/2,

The QR-deconposition of a matrix A can also be conputed using the nmodified
GamSchnidt nethod  (MGs) [2]. The matrix A is then transformed in

p steps, A=A, Az,...,ApH = Q, wher e

k
Akﬁ(ql,. sy 1a}({k),...,a; )).

The matrix Ak+1 , k =1,2,...,p is conputed by

(k k 1 .
gk = ay )/HB]({ )||2 , a§k+ ) (I-qkqg)agk), I >k,
and the elenents in the k th row of RA are
k T (k .
rkk = {laf{ )||2 > rkj = qkag ) , J > k.

It has been shown in [2] p. 10, 15 that the conputed matrices ﬁA and
EA satisfy

a = R, Bl < 1.5(e-127 (Al
(26) _
| leg - Qll, < 2p(p+1)k(A)e2™t

wher e ngits an exactly orthogonal basis ff)r R(A+EA) and quantities of

have been neglected. Wth MSS Q will in general not be
orthogonal to working accuracy, and we cannot therefore hope to get
principal vectors which are nearly orthogonal. Al so the condition
nunbers «(A) and «(B) will enter in the estimate corresponding to (24).
However, since k(A) and «(B) al ready appear in (25),we can hope to get
the principal angles as accurately as with HT. Experinental results

reported in section 7w ll confirmthat this actually seens to be the case.

order 2

16



An advantage with MSS is that the total number of nultiplications

required to conpute R, and q, is less than for HT, i.e.

MSS: p2m | HT: 2p2(m-§).

If only the principal angles are wanted, then the number of nulti-
plications in the SVD-algorithm is approxi mtely

2q%(p - %)-

Thus, when m>> p , the donminating work is in conputing Q and Q
and in this case MSS requires only half as nmuch work as HT

If also the principal vectors are wanted, we nust conpute the full
SVD of M Assuming two iterations per singular value, this requires
approxi mat el y

10)

1(p + o

4

and U_ a further mq(p+q) multipli-

nul tiplications. To conpute Uy B

cations are needed.

To get a basis for R(A) using MES we have to apply the nethod to the
bordered matrix (A|I ), and after m steps pick out (mp) appropriate
colums. Especially when (mp) <<m, the nunber of multiplications
conpares unfavourably with HT,

MGS: m2(m+2p), HT: 2mp(m-p) + §2'p3.

In some applications, e.g. canonical correlations, we want to express
the principal vectors as linear conmbinations of the colums in A and B,

respectively. W have U, = = A(R;1YA), and hence

A= QY

17



wher e

- _ -
(27) Xp = By Ypo X5 = Ry
W remark that if we let X, and iB denote the conputed matrices,

A
then A Xy and B Xg will not in general be orthogonal to working
accuracy even when HT is used.

Ve now turn to the problem of accurately determning small angles.
One nmethod is to conmpute sin 6, fromthe SVD (13) of the matrix

G =(I-Py)ay =qy - QM

If we let & denote the corresponding matrix conputed from Q and @

t hen
= = 7= W = =T T Tyam
Qp + 9(Q)Qp) = G + (I-q,Q, )F, + (Q4F + Frap)Qg -
Negl ecting second order quantities,
1/22—t

G-G|| <||F 2| |F 2 ,
16 =11 <11Fgll +2lI7,l1 + 20
where the last termaccounts for the final rounding of the elenents

inMand G. Thus, if Q and g, are conputed by HT, we have from (23)

(28) | 6,(3) - o (a) | < 13.2(a3/2 + 2p3/3)07t .

k
It follows that the singular values of the conputed nmatrix G will
differ little fromsin '&k., and thus small angles will be as accurately
determned as is allowed by (25).

Since the matrix Gis mxq, conputing the singular values of G wll
requi re about 2mg? nultiplications. If however, Uy and Uy are available
we can obtain sin 6, accurately with fewer operations. Ve have

18



T

(29) (Up= U,C) (U~ U,C) = 1+ c? - 2¢? = diag(sinzek)
and
(30) (Up- u)NU- U,) = 2(T - )
B A B “A’ ~ :
. C1 _ 1/2
From the |ast equation we can conpute 2 sin 28 = (2(1 - cos ek)) ,
whi ch since O_<_l 6, <m/k accurately determnes both sin 6, and

2 k
CO0S Gk.

W finally remark about an appearent inperfection of MSS. Wen A =B
(exactly) we will get EA = EB The exact angles equals zero, but
since we only have the estimate

T - EXQAl |, < 2p(p¥1) <(8)2°%,

the singular values of M = 'QiEA may not be near one, which is the case
if HT is used. However, since M is symretric, SVD will give Y= Yy
and therefore also Uy= Ug. It follows that if (30) is used, also MsS
will yield angles which are near zero in this case. If however only
Az~ B, then the rounding errors in conputing Q and Qg wi Il not be
correlated, and in an ill-conditioned case, we will probably not get

angles near zero either with HT or MGS.

19



6. The sinqul ar case

Ve now consi der the case when A and/or B does not have full colum
rank. In this case, the problem of conputing principal angles and
vectors is not well posed, since arbitrarily small perturbations in
A and B will change the rank of A and/or B. The main conputational
difficulty then lies in assigning the correct rank to A and B. The
most satisfactory way of doing this generally is the following [8].
Let the mx p matrix A have the SVD

A=g, D -

A Vi, D, = diag(o(A)).

Let € be a suitable tol erance and deternine p'< p from
n

n
(31) I a2A) cef<]o¥(a) .
i=p'+ 1t i=p'

V¢ then approximate A with an mx p matrix A such that rank (A") =7,
A= (q Q")(UA °> (VA v )T, D' = giag(o v,)
A A A’ A 1 e

wher e
Q = (Q) @), v, = (V) V"A)

have been partitioned consistently with the diagonal matrix. The matrix
B is approximated in the same way.

If instead of (1) we assume that
p'= rank(A') > rank(B) = ¢ > 1,
then we can conpute the principal angles and vectors associated with

R(A") and R(B) by the previously derived algorithms, where now Q) and
Qg should replace QA and Q.

20



In order to express the principal vectors of R(A) as |inear conbina-
tions of colums in A, we nust solve the conpatible system

! = -0
A XA = UA =@ YA .

Since v\ is an orthogonal basis for N(A), the general solution

can be witten

_ -1
X, = Vi DY+ C,
where C, is an arbitrary matrix. It follows that by taking CA=0
we get the unique solution which nininizes |[X,||g, c.f. [14].
Thus we should take

-1 —1
= ' =
(32) Xy = V') Dy Yy, Xg = Vi D ¥p,

wher e X, is pxp and XBis q x q.

The approach taken above al so has the advantage that only one deconpo-
sition, the SVD, is used throughout. It can, of course, also be used

in the non-singular case. However, conputing the SVD of A and B, requires
much nore work than computing the correspondi ng QR-deconpositions.

In order to make the QR-nethods work also in the singular case, colum
pivoting must be used. This is usually done in such a way [2], [10] and
[13] that the triangular matrix R=(r..) satisfies

J
r. |2=7%|r...[? , k<j<n.
kk 12k 1)
Such a triangular matrix is called normalized, and in particular the
sequence |r11|,|r 2|, C |er| is non-increasing. In practice it
2 _ .
is often satisfactory to take the nunerical rank of A to be p'if
for a suitable tolerance ¢ we have

(33)

| >7e > |

Ty ERRE2R]
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We then approximate A = QuR, by a matrix A= QR of rank ¢
by putting

b, = i ', r.. = i >p.
ri.fl rl.J., i<rp', r_1J 0, p

It has been shown in [20] how to obtain the solution (32) of ninimum
length from this deconposition.

If we use the criterion (33), there is a risk of choosing p' too
large. Indeed, from the inequalities[10]

3(uKe6K - 1)_1/2|rkkl < o (A) < (n+k+1)1/2|

Txk |

it is seen that ck(A) may be nuch snaller than |rkk| .
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. Test results

Sone of the algorithns in section. 5 have been tested on the UNI VAC
1108 of Lund University. Single precision floating point nunbers
are represented by a nornalized 27 bit mantissa, whence the nmachine

precision is equal to 2% 1.5.108

W have taken F = R(A), where A is the mx p matrix

e O..0O 1
A=__1_.0 e...O, e=] mp =k
3 %
~ 0O O...e

and k is an integer. Thus, A is already orthogonal, and @, = A
Further, G = R(B) where B is the mx p Vandernonde matri x

1 Xp . X:(E)’-1

1 Xjooo x?—1 o1
B= . X.1 = -1+ Y

1 X . xp_I

m-1°"""m-1

The condition nunber «(B) is known to grow exponentially with p,

when the ratio mp is kept constant. These matrices A and B are

the ones appearing in [6] There is exactly one vector, u =(1,1,.
,1)T, whi ch belongs to both F and G so there will be one m ninum

angle 6 = 0.

For the tests, the matrix B was generated in single precision.

The procedures for the QR-deconpositions use colum pivoting and
are apart frommnor details identical with procedures published in
[21] and [22] . Inner products were not accunulated in double precision.
For checking purposes, a three term recurrence relation [6] was used
in double precision, to conpute an exact single precision orthogonal
basis for R(B).

For mp =2 and p = 5(2)17, Q, was conputed both by the nethod of
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llouseholder and the nodi fied Gam Schm dt, method . Then cos CK,
YA and Y, were computed by the procedure in [1h], and finally
u, and UB from(9'). The results-are shown in table 1, where
m(o,) = max|o, - 0. |, F(U =]|1- vlu|]
k Kk k'’ F-
Notice,that because of rounding O to single precision and rounding

errors in the conputation of the SVD, o, are not exact to single

k
preci sion.

For the Gam Schmdt nethod, the predicted |ack of orthogonality in
Ug when «(B) is large, is evident. However, there is no significant
difference in the accuracy of cos 6, between the two nethods.

In table 2 we show for m= 26 and p = 13the errors in cos 0.
for each k.

For the sanme values of mand p, sin 6, were conputed from the
singul ar values of both the matrix (I-PA)QB and the matrix (I—PB)QA.
The results in table 3 again show no significant difference between
the two nethods. For the Gam Schmidt method, the values of sin 6,
differ somewhat between the two matrices, whereas the corresponding
values for the Househol der nethod are alnmost identical. This is
confirnmed by table 4, where, again for m= 26, p = 13, results for
each k are shown.

The authors are very pleased to acknow edge the help of M. Jan
Svensson, who carried out the tests described in this section.
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Table 1

Househd! der G am Schmi dt

— — —_ - - 53Y.108
m p F(U,)-108 F(Up)108 m(cos 6,)°108 F(U,)-10% F(Up)-108 m(cos 6)-10

10 5 11 15 L 15 12 10
1 7 27 35 10 2k 76 12
18 9 37 28 26 33 202 21
22 11 30 46 40 47 2412 91
26 13 43 51 612 38 12129 913
30 15 57 63 1874 51 28602 1484
34 17 51 65 13051 56 344685 5417
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Table 2

m= 26 p =13
Househol der G am Schmi dt

k oS Ek Acos ek-1o8 cos Ek Acos 6#-108
1 0.99999979 2 0.99999989 12
2 0.99823279 8 0.9982330L 25
3 0.99814388 33 0.99815032 613
4 0.99032719 15 0.99031791 913
5 0. 98988868 12 0.98989530 6TL
6 0.97646035 47 0.97646120 38
7 0.96284652 51 0.9628L4428 173
8 0.94148868 33 0.94148907 6
9 0.91758598 8 0.91758703 97
10 0.87013517 186 0.87013374 329
1 0.763663k49 612 0.76365566 171
12 0.06078814 1 0.06078782 33
13 0.01558465 60 0.01558528 3
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Table 3

Househol der 1) G am Schmi dt 1)

in B Ye1n8 s % Y.108 i A Y.1n8 i ¥ Y.108
m p m(sin ek) 108 m(sin ek) 10 m(sin ek) 108 n(sin Apk) 10
10 §5 3 2 4 3
o7 16 7 27 4
18 9 51 e} 48 6
22 11 68 68 135 97
26 13 704 T09 390 288
30 15 2367 2358 1173 1140
34 17 --. 16285 16281 5828 4501

1)
sin Ek computedasok((I—PA)QB), sin fé'k as ck((I—PB)QA)
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Table &4

1)

sin 6, conput ed as Gk((I-—PA)QB), sin 6, as ok((I—PB)QA)

28

m= 26 p=13
Househol der R G am Schm dt ")

k sin Ek Asin Ek Asin ’é'k sin Ek Asin 'e'k Asin ’é,k
1 0.00000002 0 3 0.00000002 0 1
2 0.05942237 - 24 - 2L 0.059L42257 4 5
3 0.06089812 129 129 0. 06089789 106 67
L 0.13875079 - 97 - 97 0.13875077 99 30
5 0.14184525 - 183 - 181 0. 14184804 96
6 0.21569622 190 190 0. 21569423 9 - 28
7 0.27004868 - 171 - 173 0.27004985 54 5
8 0.33704409 108 109 0.3370L4250 51 - 4
9 0.39753688 17 21 0.39753668 3 - 37

10 0.149281275 344 343 0.49280659 272 - 70

11 0.64561398 - 704 - 709 0.64562460 358 288

12 0.998150L45 78 3 0.99814761 206 3

13 0.99987832 90 6 0.99988132 390 0
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