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Abstract

Assume that two subspaces F and G of a unitary space are defined. .
as the ranges(or nullspacd of given rectangular matrices A and B.

Accurate numerical methods are developed for computing the principal

angles ek(F,G) and orthogonal sets of principal vectors uk 6 F and

vk c G, k = 1,2,..., q = dim(G) 2 dim(F). An important application in

statistics is computing the canonical correlations uk
= cos 8 k

between two sets of variates. A perturbation analysis shows that

the condition number for ek essentially is max(K(A),K(B)), where K

denotes the condition number of a matrix. The algorithms are

based on a preliminary &R-factorization of A and B (or AH and BH),

for which either the method of Householder transformations (HT) or

the modified Gram-Schmidt method (MGS) is used. Then cos Ok and

sin 0
k

are computed as the singular values of certain related matrices.

Experimental results are given, which indicates that MGS gives Bk

with equal precision and fewer arithmetic operations than HT. However,

HT gives principal vectors, which are orthogonal to working accuracy,

which is not in general true for MGS. Finally the case when A and/or

B are rank deficient is discussed.



.

1. Introduction

Let F and G be given subspaces of a unitary space Em, and assume that
. .

(1) P = dim(F) ;dim(G) = q 2 1.

The smallest angle el(F,G) = 0#[0,~/2j  between F and G is defined by

320s 91
H= max max u v , II IIu 2=1 1

u4F V(EG

Assume that the maximum is attained for u = ul and = VI. Then 82(F,G)

is defined as the smallest angle between the orthogonal complement of

F with respect to ul and that of G with respect to VI. Continuing in

this way until one of the subspaces is empty, we are led to the follow-

ing definition.

DEFINITION The principal angles ek&[0,n/2] between F and G are

recursively defined for k = 1,2,...,q  by

(2) cos 0
H H

k = max max u v = u vkk' uII II 2=' lldL=l

subject to the constraints

H HU.U = 0, v.v = 0, j = 1,2,...,k-1.
3 J

The vectors (ul,...,uq) and (VI, . . ..v
9
) are called principal vectors

of the pair of spaces.

We note that the principal vectors need not be uniquely defined, but

the principal angles always are. The vectors V = (vl,...,vq) form a

unitary basis for G and the vectors U = (u~,...,u~) can be complemented

with (p-q) unitary vectors so that (ul ,...,up) form a unitary basis for F.



It can also be shown that

H
Vk =

0, j # k ,  j = l ,. . . 3P9 k = l,...,q.
. .

For an introduction to these concepts we refer to [l]. An up to date

list of references can be found in [7].

Principal angles and vectors have many important applications in

statistics and numerical analysis. In [5] the statistical models of

canonical correlations,factor analysis and stochastic equations are

described in these terms. By taking the vectors uk corresponding to

cos 0k = 1 we get a unitary basis for the intersection of the two

spaces F and G. This has applications in the generalized eigenvalue

problem 1111. Other applications are found in the theory of approxi-

mate least squares [6] and in the computation of invariant subspaces

of a matrix [18].

The purpose of this paper is to develop new and more accurate methods

for computing principal angles and vectors, when the subspaces are

defined as the ranges (or nullspaces) of two given matrices A and B.

In section 2 we describe the standard method of computing canonical

correlations, and show why this method may give rise to a serious

loss of accuracy. Assuming that unitary bases for F and G are known

we derive in section 3 formulas for computing principal angles and

vectors from the singular values and vectors for certain matrices.

To find out how accurately the angles are defined in presence of

uncertainties in A and B, first order perturbation results are given

in section 4. In section 5 different numerical methods for computing

the unitary bases, and the use of the formulas from section 3, are

discussed with respect to efficiency and accuracy. The special problems

which arise when A and/or B are exactly or nearly rank deficient are

discussed in section 6. Finally some numerical results are given in

section 7.



2. Canonical correlations

For a matrix A we denote the range of A by R(A) and the nullspace of
. .

A by N(A),

(3) R(A) = (u(Ax = u) 9 N(A) = (xlAx = 0) .

In the problem of canonical correlations we have F = R(A), G = R(B)

where A and B are given rectangular matrices. Then, the canonical

correlations are equal to cos ok, and it can be shown that

(4) c o s  8 = uk k'Uk
= Ayk, vk = Bzk, k = 1,2,...,q,

where ak > 0 are eigenvalues and yk, zk properly normalized eigen---=
vectors to the generalized eigenvalue problem

(5)
0 AHB: :y\ / ADA

$
i = u II ,

i

F
lBHA O;;',z

Assume for convenience that A and B have full column rank. The standard

method [4] of computing canonical correlations is to compute AHA, BHB,

AHB and perform the Choleski decompositions

AHA = RsA, BHB = RsB,

where RA and RB are upper triangular.

The eigenvalue problem (5) is then equivalent to the eigenvalue problems

for a pair of Hermitian matrices

mH9 i = us pi, MHMb =0;2.i 1

where

M = (Ri)-'(AHB)Ril, pi = RAyi, Zi = RBzi

These can be solved by standard numerical methods.

3



When q = 1 and B = b, the principal angles and vectors are closely

related to the least squares problem of minimizing 1 lb - AxI 12. In

fact, with the notations above (but dropping subscripts), we have

y = 4lJJ4l29 z = lWll2~ (3 = ll~ll2Nbll2~

and (5) is reduced to

A%z = u AHA y, bHA y =ab z.%

But the first equation here is the normal equations for x = ay/z.

Thus the classical algorithm reduces for q = 1 to solution of the

normal equations by Choleski's method.

-=.

Lately it has been stressed by several authors that forming the

normal'equations in single precision involves a loss of information

which cannot be retrieved. For linear least squares problems other

methods without this disadvantage have been developed [2], [13] and

c 411 . Our aim in this paper is to generalize these methods to the

case when q > 1.



3. Solution using singular values

In most applications each subspace  is defined as the range, or the
. .

complement of the range, of a given matrix. In this case a unitary

basis for the subspace may be computed in a numerically stable way

by well known methods for the &R-decomposition of a matrix. These

methods will produce for an mxn matrix A, with m > n, a decomposition-

where rank (S) = p and Q = (a'(~") is unitary. Then Q' gives a unitary

basis for the range of A, R(A), and Q" a unitary basis for the comple-

ment R(A). Notice that the case when a subspace is defined as the null-

space N(AH) of a matrix AH is included, since N(AH) = R(A). The compu-

tation of unitary bases will be discussed in more detail in section 5

and 6, and we assume here that such bases have been obtained.

Recently an efficient and numerically stable algorithm for computing

the singular value decomposition [g] (SVD) of a matrix has been developed

I 411 . This algorithm will be our basic tool for computing principal angles

and vectors. The relation between singular values and our problem is clear

from the following theorem.

THEOREM 1. Assume that the columns of QA and QB form unitary bases for

two subspaces of a unitary space E?. Put

.
(7) M = QiQB,

and let the SVD of this pxq matrix be

(8)

where

M = Y C ZH, C = diag(ol,...,crq),

YHY = ZHZ = zzH = 1
Q



If we assume that

a1 2 02 1 . . . 2 aq
. .

then the principal angles and principal vectors associated with this

part of subspaces are given by

(9) cos 8 k = ok(M), U = QAY, v= z,QB

Proof: It is known I: I15 that the singular values and singular vectors

of a matrix M can be characterized by

(‘0) 'k = (YL >

IlYlla ““;;zll2 =’

= y$ 'k'

-=.

subject to

yfIyj.=zHzj=O, j = l ,...,k-1.

If we put

U = QAYC: R(QA), V = $zeR($),

then it follows that IIuII2 = llyll2, 1Iv1)2 = lIzI and

YHYj
H H H

= u u., z z. = v v.  l

3 3 J

Since 54 H H H
Y z = y QAQBz = u v, (10) is equivalent to

H
Uk = max cuHv, = UkVk

subject to
I Id I24 Id l2=1

H H
u u.

3
= v v. = 0,

3
j = l,...,k-1

Now (9) follows directly from the definition of principal angles

and vectors (2), which concludes the proof.



P’o 1’ :xial 1 angles 0
k

is not well dctcrmin~~d  from co:; 0 k
and wf: now

develop formulas for computing sin 0k. Let QA and Q1! ‘t)e defined as

in theorem 1. For convenience we .change  the notations slightly and

write (8) and (9) as

(8’) M = Y,CY$ c = diag (COS Ok),

(9’ > uA = QAyA' 'B = &ByB

We split QB according to

(‘1) &B = PAQB + (I - 'A)QB 3

where PA = %AQi is the orthogonal projection onto ii( Here

and hence the SVD of the matrix PAQB is given by

(12) 'A&B = UA C Yi , C = diag(cos Bk).

Since PA(I - PA) = 0 we get from squaring (11)

Q;tI - PA)2QB = I - Q; Pi QB = YB(I - C2)Y;

and it follows that the

. (13) ( I-PA IQ, = WASYi, s = diag(sin 0,).

Comparing (13) with (12 ) it is evident that WA gives the pricei@

vectors in the complement R(QA) associated with the pair of sub-

spaces (R(&A7, R(QB)).When P<cm the SVD of (I-PA)QB  can be computed

more economically from that of M, using

SVD of (I-PA)QB is given bY

(14) (I-PA)QBYB = WA'S.

7



We will for the rest of this section assume that in addition to

(1) we have
. .

p+a<m.--

This is no real

and we can work

Then dim(R(QA))

so that A A= 0.w%

restriction, since otherwise we have (m-p)+(m-q)L  m,

with the complements of R(QA) and R(QB) instead.

= m-p 2 q, and we can choose the mxq matrix WA in (13)

By analogy we have formulas similar to (12) and (13) related to the

splitting QA = pBQA + ( IwpB )QA )

( 1 5 )  --'PBQA=UBCY; , (1 - pB)QA = 'B s y; )

where again since m - q 2 p 2 q we can choose the mxq matrix W

Hv
B

so that WB B = 0. From (15) we get

uA = &AyA = 'UBC + W,S)Y,Hu, = (UBWB) ( "s > .

If we put
.

P
BJ

= UAUi = CUB WB) ( "s > u; 9

then, since R(QB) = R(UB), we have for any x e R(QR) that

We can now alwaysfind an mx(m-2q) matrix ZB such that (UB WB ZB)

is a unitary basis in Em. Then

(16) e.a B A = CUB ‘Bl z~) s c9

8



is the matrix of a unitary transformation, mapping R(QB > into R(Q
A

).

Its restriction to R(QB) is PB A, and it leaves all vectors in R(ZB)

unchanged. This transformation'is called a direct rotation [71 from.
R(aB) into R(QA). It is distingui‘shed from other unitary transforma-

tions Jo taking R($) into R(QA ) by the property that it minimizes

each unitarily invariant norm of (I -,P)H(I -p). If R(QB)/?R(QA) is

empty, then all ek < II/2 and the direct rotation is uniquZ3Zy deter-

mined.

Similarly we can construct a direct rotation taking R(UA) into (R(QB).

It is obvious that the relations between the two subspaces are very

completely characterized by the quantities C, S, U
A' 'A'

UB and WB.



4. Perturbation of principal angles

We consider here how the principal angles between R(A) and R(B)

changes when the elements in A and B are subject to perturbations.

We assume in this analysis that the matrices A and B are mxp and

mxq respectively, and have linearly independent columns. Consider

first a perturbation of A only,

AE = A + EE = (A + sE1) + sE2,

where we have split the perturbation in components in and orthogonal

to R(A),

-=.
El = PAE, E2 = (I-PA)E.

Let the polar decomposition of A+sEl be

A+sE1 = QAHA 9
H

&A&A = 13 HA positive definite.

Then, since R(A) = R(A+sEl),  QA gives a unitary basis for R(A).

To get a unitary basis for R(As) we note that for small absolute values

of & , the matrix

(17) (A+EE)H
-1
A

= &A + EF, F = (I-PA)E~i'

is nearly orthogonal. Since Q? =
H H
QAQAQAF = Q?AF = 0 we have

I - (cJ~+EF)~(Q~+EF)  = -c(FHQA + Q@ + O(c2> = o(E2).

Then from a series expansion for the unitary factor QA in the polar

decomposition of AsHi' 13) it follows that
E

(18) QAE = QA + EF + O(s2).

10



Premultiplying (IS) by PB we get

'B&A = PBQA + sPB(I-PA)EH;;l .
I2 . .

Using the well known inequalities for singular values, c 312 p* 30,

(Jk(A+B)  2 ok(A) +a#),  Uk(AB)  = ak(Akq(B),

k = 1,2,...,q,

we obtain

1 ak(pBQA ) - ok(PBQA)I 2 E: o~((PB(I-PA))~~(EH;;')  + O(s2)*
E

Now PB(I-PA) = UB diag(sin ok)< and since

ol(H;') = 1 /ap(A+EEl ) = l/op(A)+O(&

we have to first order in E

(19) IACOS  e,l 2 E sin Bmax ai(E)/op(A).

If instead we premultiply (20) by (I-PB), and proceed in the same

way we arrive at

(20)-
(Asin okI 2 E: cos emin o~(E)/~~(A).

NOW assume that both A and B are perturbed by 6A and 6B respectively,

where

11



Then to first order of approximation the perturbationsadd together

and we get from (19) and (20)

(21) IAcos ekl I, K*sin Omax  9 IA sin 8kl 2 K COS emin,

01 (A) al(B)
K=E -

A up(A) + cB aq(B)
- = cA K(A) + ELK

Thus again neglecting terms of higher order, we have

sin 0 cos 8 .
IA8kl < K*min( sin emax, mln)-

--. k
cos 0

k
= K'g(Bk).

The maximum of g(8) for 0 2 0 5 7r/2 is attained for 9 = arctan r

%l ax

It follows that

= (l+r2)+cos 8
min '

r = sin 8 max /COS  8min'

Qmax
2 (1 + cos-2(j +

min ) c o s  8min L fi

and finally

(22) I "k c L&K(A) + cBdB)).

) and K(B) are small, then the angles

I - -A‘-

We conclude that when both K(A

8
k

are well determined.

.
We note that if the columns in A are scaled, then K(A) will change,

but not R(A). Also the numerical algorithms for the &R-decomposition

have the property that, unless column pivoting is used, they give the

same numerical results independent of such a scaling. Therefore it is

often more relevant to take in (21) as condition number for A the number

K'(A) = min K(AD), D = diag(dl
D

,-,dp)*

12



1'1. 11~s been shown in [161I and [1'7] that K(AD) is not more than a factor

of P+ away from its minimum, if in AD all columns have equal L2-norm.

This suggests that A and B should'be assumed to be preconditioned so that

I lyl I. 2 = IIbjl12 = 1, i = I,...,p, j = l,...,q.

We remark that K'(A) is essentially the spanning precision of the basis

in R(A) provided by A as defined in [17].

13



5 Numerical methods

We assume in this section that the columns in A and B are linearly

independent. The singular and near singular case will be briefly

discussed in section 6. For convenience we also assume that A and B

are real matrices, although all algorithms given here can easily be

generalized to the complex case. Computed quantities will be marked

by a bar.

In order to get the orthogonal bases for F and G we need the QR-decom-

positions of the matrices A and B. We now describe two efficient

methods for computing these. In the method of Householder triangulari-

zations (HT) [13]. - orthogonal transformations of the type Qk = I - 2wkwl

are used, where

The mxp matrix A is then reduced to triangular form using premultipli-

cations
I' R

%
.=.Q2 Q1 A = ' A,}'f -)

j 0 / ) m-p

where wk is chosen so that annihilates the appropriate elements

in the k th column. Since
1
$ =Qp an orthogonal bases QA for R(A)

can then be computed by premultiplying the first p columns in the

unit matrix Im by the same transformations in reversed order,

I'1

QA =Q1 Q2...
?e

For this method a very satisfactory error analysis is given in 19 .I 1

14



Assume that floating point arithmetic with a mantissa of t binary

digits is used, and that inner-products are accumulated in double

precision wherever possible. Then there exists an exactly orthogonal

matrix Q such that the computed matrices satisfy

,/jy I. f1'
(23) QT(A + EA) = i o / ,-A\ <A = Q\$.;  + FA = Q; + FA,

1 lEAi tF = 12.5 p 2-tJI~IIF, )IFAIIF  = 12.5 P3'2  z-t,

w1~t~r~t~ Qr 'A is an exactly orthogonal basis f'or l<(A+E*). From this and
-

!I. ;i i ttt i I ttt’ ~2s 1, itrtttt,e 1’0 t- Q I{
wr* get-,

where ?i = (I$ Q”B’ and the constant 13 .O accounts f'or the rounding

errors in computing the product ?$ CR. We have ok('i) = co:; 'ii,, where
P.,
Ok arc the exact angJ.t:s between (A+EA) and (B+EB) . Thu:;, the diff’r~rc!ncv

between zk and Ok can be estimated from (22),

(25) I 'k - ebl < 12.5 c (pK(A)+qK(B))2+  .

Finally, the errors

using the procedure

as those in (24).

ok(M)-ok(M)  in computing the singular values of M,

in [14_1 , will be of the same order of magnitude

.
The error estimate given above is satisfactory, except when Ok << 1.

In this case, the errors in cos Ok from (24) will give rise to errors

in 8 k which may be much larger than those in (25). We return later

to the problem of accurately computing small angles.

15



An orthogonal basis QA for 'R(A)- = N(AT) can be obtained by applying

the transformations ak
, k = p, . . . ,1 to the last (m-p) columns in Im,. .

Qi = Ql Q2 . . . Qp l

Also in this case the estimate (23) for <A, (24) and (25) still hold

if the factor p312 is everywhere replaced by p(m-p> 112 .

The QR-decomposition of a matrix A can also be computed using the modified

Gram-Schmidt method (MGs) [21. ohe matrix A is then transformed in

p steps, A = Al, Az,...,A
P+l

= &A where

\ = (al ,. . . ,qk-,  , aLk),.  l l ,ajlk)l.

The matrix
%

+, , k = 1,2,. ..,p is computed by

qk = akk)/llakk)l12 , aik+') = (I-qkqE)aik), j > k ,

and the elements in the k th row of RA are

I I T (k)
2 3 rkj = Qk"j , j>k.

It has been shown in [2] p.

$A

10, 15 that the computed matrices FA and

satisfy

(26)

A + EA = cAEA , Il~,11, 2 1*5(~-1)2-~lIAll37  9

1 IQx - &AI I2 2 2P(p+lk(Ab2-t ,

where &ii is an exactly orthogonal basis for R(A+EA) and quantities of

order 2-2t have been neglected. With MGS &A will in general not be

orthogonal to working accuracy, and we cannot therefore hope to get

principal vectors which are nearly orthogonal. Also the condition

numbers K(A) and K(B) will enter in the estimate corresponding to (24).

However, since K(A) and K(B) already appear in (25),we can hope to get

the principal angles as accurately as with HT. Experimental results-
reported in section 7 will confirm that this actually seems to be the case.

16



An advantage with MGS is that the total number of multiplications

required to compute EA and GA is less than for HT, i.e.

. .

MGS: p2m , HT: 2p2(m9).
3

If only the principal angles are wanted, then the number of multi-

plications in the SVD-algorithm is approximately

Thus, when m >> p , the dominating work is in computing QA and QB

and in this case MGS requires only half as much work as HT.--.
If also the principal vectors are wanted, we must compute the full

SVD of M. Assuming two iterations per singular value, this requires

approximately

7S2(P + 3)

multiplications. To compute UA and UB a further mq(p+q) multipli-

cations are needed.

To get a basis for R(A) using MGS we have to apply the method to the

bordered matrix (A~I,), and after m steps pick out (m-p) appropriate

columns. Especially when (m-p) <cm, the number of multiplications

compares unfavourably with HT,

MGS: m2(m+2p), 2 3HT: 2mp(m-p) + 7~ .

In some applications, e.g. canonical correlations, we want to express

the principal vectors as linear combinations of the columns in A and B,

respectively. We have UA = QAYA = A(RilYA), and hence

17



where

uA = A XA, UB = B XB,

(27) xA
-1 -1

= RA YA, XB = RB.yB .

We remark that if we let xA and yB denote the computed matrices,

then A zA and B y will not in general be orthogonal to working
B -

accuracy even when HT is used.

We now turn to the problem of accurately determining small angles.

One method is to compute sin Bk from the SVD (13) of the matrix

--. G = (1 - PA)QB  = &B - &AM .

If we let z denote the corresponding matrix computed from &A" and ,%
then

Neglecting second order quantities,

I I G-%11 2 2 1 lFBl12 + 2l IFAl I2 + 2q1’22-t,

where the last term accounts for the final rounding of the elements
-e in G and c. Thus, if <

A and QB are computed by HT, we have from (23)

(28) 1 uk(G) - ak(G) 1 I, ‘3.2(q 312 + 2p3'2)2-t .

It follows that the singular values of the computed matrix E will

differ little from sin T , and thus small angles will be as accurately

determined as is allowed ky (25).

Since the matrix G is mrrq, computing the singular values of G will

require about 2mq2 multiplications. If however, UA and UB are available

we can obtain sin Bk accurately with fewer operations. We have

18



(29) (UB- UAC)T(uB- UAC) = I + C2 - 2C2 = diag(sin2ek)

and

(30) (UB- u,)T(u~- UA) = 2(1 - c) .

From the last equation we can compute 2 sin

_; 'k L d4

+ ek = (2(1 - cos 13,)) l/2 ,

which since 0 <

c o s  8 k'

accurately determines both sin ek and

We finally remark about an appearent imperfection of MGS. When A = B

(exactly) we will get GA = -Zj. The exact angles equals zero, but

since we only have the estimate--.

II 1 - $--I I2 2 2&+‘1) K (Ak+,

the singular values of z = may not be near one, which is the case

if HT is used. However, since E is symmetric, SVD will give YA5 YB

and therefore also UA=: UB. It follows that if (30) is used, also MGS

will yield angles which are near zero in this case. If however only

AZ B, then the rounding errors in computing QA and QB will not be

correlated, and in an ill-conditioned case, we will probably not get

angles near zero either with HT or MGS.

19



6. The singular case

We now consider the case when A and/or B does not have full column

rank. In this case, the problem of computing principal angles and

vectors is not well posed, since arbitrarily small perturbations in

A and B will change the rank of A and/or B. The main computational

difficulty then lies in assigning the correct rank to A and B. The

most satisfactory way of doing this generally is the following 181.

Let the m x p matrix A have the SVD

A =
T

'A DA 'A ' DA = diag(ck(A)).

-=.
Let c be a suitable tolerance and determine p" p from

(31)
n
c a?(A) 1. e2 <

i=p’+ I1

We then approximate A with an m x p matrix A' such that rank (A') = fi )

A'= (QTA  Ql) (VA VA )T, DA = diag(cl , . . . . cd),

where

have been partitioned consistently with the diagonal matrix. The matrix

B is approximated in the same way.

If instead of (1) we as.sume that

p’ = rank@) 1 rank(B') = q! 1 1,

then we can compute the principal angles and vectors associated with

R(A') and R(B') by the previously derived algorithms, where now QA and

s should replace QA and QB.e

20



In order to express the principal vectors of R(A!) as linear combina-

tions of columns in A', we must solve the compatible system

A' XA = UA = QA YA .

Since PA is an orthogonal basis for N(A), the general solution

can be written

where cA is an arbitrary matrix. It follows that by taking CA = 0

we get the unique solution which minimizes I ('xAI IF, c.f. [lb].
--.

Thus we should take

(32) xA
= VA rY$YA, XB = vB D;l"B 3

where xA is p x p' and XB is q X $.

The approach taken above also has the advantage that only one decompo-

sition, the SVD, is used throughout. It can, of course, also be used

in the non-singular case. However, computing the SVD of A and B, requires

much more work than computing the corresponding QR-decompositions.

In order to make the QR-methods work also in the singular case, column

pivoting must be used. This is usually done in such a way L2], PO] and

rl3-l that the triangular matrix R = (r..) satisfies
iJL -A

.

I rkk

Such a triangular

I2 = !I r..
i=k 13 I 2 ¶ k<jLn.

matrix is called normalized, and in particular the

sequence I+, lr22l , . . . . lrppl is non-increasing. In practice it

is often satisfactory to take the numerical rank of A to be pt if

for a suitable tolerance 6 we have

(33) I rp' P'
1 >*E > jr

-
I

p�+l,pr+l  l
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We then approximate A = QARA by a matrix A'= QARI of rank 19

by putting

r!. = r.., i(p',‘r!.=  0,
13 1J 13

i > p'.

It has been shown in 1201 how to obtain the solution (32) of minimum

length from this decomposition.

If we use the criterion (33), there is a risk of choosing p' too

large. Indeed, from the inequaliti&O]

3(bk+6k - 1)-1/21rkkl I, ok(A) 2 (n+k+l)1'21rkkl

it is seen that ak(A) may be much smaller than lrkkl .
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r[ . Test results

Some of the algorithms in section. 5 have been tested on the UNIVAC

1108 of Lund University. Single precision floating point numbers

are represented by a normalized 27 bit mantissa, whence the machine

precision is equal to 2
-26

a1.5  l 1 0
-8

.

We have taken F = R(A), where A is the m x p matrix

e O...O

0 e...O

1

e =9
1.( 11 m/p = k 3

i‘\ . . .
0 O...e--.

and k is an integer. Thus, A is already orthogonal, and QA = A.

Further, G = R(B) where B is the m x p Vandermonde matrix

B =

\
P-l

' Xm-l"xm-l 1

9 x. =
1

-l+S .

The condition number K(B) is known to grow exponentially with p,

when the ratio m/p is kept constant. These matrices A and B are

the ones appearing in [6]. There is exactly one vector, u = (l,l,.

. . ,1 )T , which belongs to both F and G, so there will be one minimum

angle e=o.

For the tests, the matrix B was generated in single precision.

The procedures for the QR-decompositions use column pivoting and

are apart from minor details identical with procedures published in

[21] and [22] . Inner products were not accumulated in double precision.

For checking purposes, a three termrecurrence  relation L663 was used

in double precision, to compute an exact single precision orthogonal

basis for R(B).

For m/p = 2 and p = 5(2)17, QA was computed both by the method of
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llorl::c~tloldcr and the modified Gram-Schmidt, mc~t,llocl  . '.l'h~*n  COT, Ok,

YA and YB were computed by the procedure  in [1)1] , and finally

*A and UH from (9'). The results-are shown in table 1, where

m(ok) = maxlak - TkJ,
k

F(U) = 111 - UTUIIF .

Notice,that because of rounding 0% to single precision and rounding

errors in the computation of the SVD, ak are not exact to single

precision.

For the Gram-Schmidt method, the predicted lack of orthogonality in

UH when K(@,) is large, is evident. However, there is no significant

difference in the accuracy of cos Bk between the two methods.

In table 2 we show for m = 26 and p = 13 the errors in cos rk

for each k.

For the same values of m and p, sin 8
k

were computed from the

singular values of both the matrix (I-PA)QB and the matrix (I-PB)QA.

The results in table 3 again show no significant difference between

the two methods. For the Gram-Schmidt method, the values of sin ek

differ somewhat between the two matrices, whereas the corresponding

values for the Householder method are almost identical. This is

confirmed by table 4, where, again for m = 26, p = 13, results for

each k are shown.

The authors are very pleased to acknowledge the help of Mr. Jan

Svensson, who carried out the tests described in this section.



Househdlder

Table 1

Gram-Schmidt

m P F@").J$ F(~B)q08 m(cos Bk)*108 F(ffA)*108  F@&108 &os F&lo8

10 5 11 15 4 15 12 10

14 7 27 35 10 24 76 12

18 9 37 28 26 33 202 21

22 11 30 46 40 47 2412 91

26 13 43 51 612 38 12129 913

30 15 57 63 1874 51 28602 1484

34 17 31 65 13051 56 344685 5417
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Table 2

m = 26 P = 13

Householder
. .

Gram-Schmidt

k cos sk
Aces 0k *lo8 cos s

k
Aces Bk408

1 0.99999979 2

2 o.99823279 8

3 0.99814388 - 33

4 0.99032719 15

5 o. 989.88868 12

6 0.97646035 - 47

7 0.96284652 51

8 0.94148868 - 33

9 0.91758598 8

10 0.87013517 - 186

11 0.76366349 612

12 0.06078814 1

13 0.01558465 - 60

o.gggggg8g 12

o.g98mo4 25

o.gg815o32 613

0.99031791 - 913

o.98989530 674

0.97646120 38

0.96284428 - 173

0.94148907 6

o.gln87o3 97

0.87013374 - 329

0.76365566 - 171

0.06078782 - 33

0.01558528 3
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Table 3

Householder 1) Gram-Schmidt 1)

._

m P m(sin Bk).108 m(sin "e,)*108 m(sin Fk)*108 m(sin Fk)o108

10 5 3 2 4 3

14 7 16 7 27 4

18 9 51 49 48 6

22 11 68 68 135 97

26 13 704 709 390 288

30 15 2367 2358 1173 1140

34 17 --. 16285 16281 5828 4501

sin S
k computed  as ak((I-PA)&B)9 sin Fk as ok((I-PB)QA)

27



m ='2G P = 13

Table 4

._

Householder 1) Gram-Schmidt 1)

-
k sin 8k Asin Fk Asin ?fk sin Sk Asin zk Asin yk

8

9

10

11

12

13

0.00000002 0 3 0.00000002 0

0.05942237 - 24 - 24 0.05942257 4

o.o6o8g812 129 129 o. 06089789 106

0.13875079 - 97 - 97 0.13875077 - 99

0.14184525 - 183 - 181 o. 14184804 96

o.2156g622 190 190 0.21569423 9

0.27004868 - 171 - 173 o.27oo4g85 - 54

0.33704409 108 109 0.33704250 - 51

o l w-53688 17 21 0.39753668 3

0.4928127' 344 343 0.49280659 - 272

0.64561398 - 704 - 709 0.64562460 358

o.gg815o45 78 3 0.99814761 - 206

0.99987832 90 6 o.ggg88132 390

1

5

67

30

- 28

5

- 41

- 37

- 70

288

3

0

0
sin S

k
computed as ak((I-PA)Q,.&  sin $ as @I-PB)QA)
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