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Abstract

Dynamic memories are commonly constructed as circulating shift
registers, and thus have access times that are pProportional to the
size of memory. When each word in a dynamic memory is connected to
r words, r = 2, access time can be proportional to the base r logarithm
of the size of memory., This paper describes a memory that achieves
minimum access time for r = 2. The memory can also be operated in an
efficient binary search mode. Slight variations of the interconnection
patterns lead to a memory that is well suited for FFT and certain matrix

computations,
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I. Introduction

Xa some memory technologies, the storage mediunm inherently requires
that there be g steady-state circulation of data. Examples of such
memories include magnetic diums and disks, MOS shift registers, and
magnetic bubble memories., 1In this paper, we shall refer to such memories

&8s dynamic memories,

For practical reasons, data movement in dynamic memories is normally
cyclic. In the case of the magnetic drum, data is stored on the circum-
Zerence of the drum, so that the rotation of the drum relative to a fixed
head produces the cyclical movement of the data, MOS shift-register
memories are commonly constructed as circulating shift registers although
there is nc constraint that forces such memories to use the cyélic inter-
connection pattern,

Given the constraint that data must be mo&ed continuously in a dynamic
memory, the cycliical structure of the memory causes difficulty in achie-

ving simultaneousiy both a large storage capacity and a short access time,
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In a cyclic memory, the access time to a randomly selected item increases
linearly with the size of the memory. In this paper we investigate
dynamic memories in which access time increases logarithmically with the
size of memory. In particular, we embed an interconnection pattern called

the perfect shuffle into the memory. The results reported are directly

applicable to MOS and magnetic bubble memories, but, unfortunately, cannot
be applied to magnetic drums and disks.

In section II of this paper we derive the lower bound on access time
that can be achieved in dynamic memories with enhanced interconnections.
In section III, we describe a dynamic memory which actually meets this
bound. By modifying the control of this memory, it can also be used in
a search mode with an efficiency that rivals the efficiency of random
access memories, The search mode of operation is discussed in Section IV.
Another type of shift register, which is described in Section V, also makes
use of the perfect shuffle, and is of importance for Fast Fourier

Transform computations and for certain two-dimensional matrix computations.

II. A lower bound on minimum access time

The model of a dynamic memory that we adopt is one in which the data
in memory is permuted in one of r different ways at each clock time. Thus
each word in memory is connected to up to r other words.

One word in memory is distinguished as an input-output port. All
data transfers between memory and the external world must go through
the input-output word. In order to access a specific item, we must find
where the item is in memory, and route it to the input-output port by a

sequence of moves along the r interconnection patterns,



4@




When r=1, the cyclic interconnection pattern is the only one that
is suitable for a dynamic memory because it is the only permutation that
places every word in memory on a path to the input-output word. Consequently,
for r = 1, worst case access time is N-1, and average access time is
(N-1)/2, where N is the size of memory. (For average access time we make
the usual assumptions of uniform and independent distribution of accesses.)

When v 2 2, access time can grow as the base r logarithm of N instead

of linearly in N, as we show in the lemma below, |

Lemma: A lower bound on the minimum worst case access time for a dynamic

memory with r interconnection patterns is M(r,N) where M(r,N) is the

smallest integer that satisfies

rM(r,N)+1 _

r -1

Proof: At each clock time, we choose between 1 of r paths, so that the
number of words that can be accessed in M clock times cannot exceed the
M .
i

number or r-ary sequences of length M or less. But this number is igo r =

(rMﬂLl - 1)/(r-1) which proves the lemma.

As N becomes large, M(r,N) grows as log (r-1) + log N = log  N.
The bound is tabulated for various values of r and N in the Table I.
The table has been constructed using the assumption that one item is
available in zero cycles.

In the following section we present a pair of permutations that achieves
minimum access time for r = 2, and N of the form N = 2m. Note that

M(2,N) = rlog2 (N+1) - 1] = log, N in this case,






TABLE I
L 16 32 6k 128 256 512 1024
2 L 5 6 7 G 9 10
1 3 3 I 5 6 6 6
1 2 3 3 L L > 2
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ITI. The Perfect Shuffle Shift Register s
The perfect shuffle permutation pattern is shown in Fig., 1. The
pattern takes its name from the fact that it is analogous to shuffling
cards in a deck of playing cards. The memory cells on the left of Fig. 1
are shuffled by dividing the cells into two groups with a "cut" in the
middle of the memory. The memory cells on the right receive data from
the memory cells on the left by interlacing data from the two groups
Jjust as the two halves of a deck of Playing cards are interlaced when
undergoing a perfect shuffie,
Several properties of the perfect shuffle interconnection pattern
have appeared in earlier papers, and are summarized below. (Pease, 1968;

Batcher, 1968; Stone, 1971). For a derivation of the properties see Stone (1971).

Let N = 2m, m > 1. and let the integers O,1,...,N-1 be stored in a
memory of the type shown in Fig. 2. Then the memory has the following
properties,

Property 1: A perfect shuffle moves the integer i to cell S(i)

where S(i) is given by

S(x) =2x for 0 €£x < N/2 -1
= 23-N+1 for N/2 s x < N-1
Property 1': If the binary representation of i is
1= +1 24,4 im_lzm"l

then S(i) has the binary representation

2m-1

. . . L A2
S(i) = i tigr2+ipr2” + 4 io



Property 2: Consider the N/2 adjacent pairs of cells in this memory, as

shown in Fig. 3. When the integers O,1,... N-1 are placed in memory in
ascending order, then the integers that are paired in adjacent cells
differ only in the coefficient of 2° in their binary expansions., After
cne shuffle, paired integers differ only in the coefficient of 2m—1 in
their binary representations. After J shuffles, the paired integers
differ only in the coefficient of 2m-j in their binary expansions,

1 < J < m, Censequently, after any number of shuffles, paired integers
differ by precisely one coefficient in their binary expansions.

We shall make use of these properties of the perfect shuffle to
construct a dynamic shift register memory containing N words in which
every word_can be accessed in no more than 1og2 N clock times,

A diagram of the shift register memory for N = 8 appears in Fig. L,
Each word is connected to two other words in the register. The solid lines
show the perfect shuffle connections. The dotted lines connect words

in a pattern which is related to the perfect shuffle and is called the

exchange-shuffle, Fig. S5a shows the exchange-shuffle interconnection

pattern in isolation, The relationship to the perfect shuffle is made

clear by Fig. 5b where we see that the exchange-shuffle is the permutation

obtained by exchanging adjacent even-odd pairs of items, then shuffling

them. By assumption, in Fig. 4 when a control signal EXCHANGE-SHUFFLE

is applied, the data is shifted along the exchange-~shuffle interconnections.
The three small registers shown in Fig. 4, are part of the addressing

circuitry for the memory. Each contains three bits in the figure, and,

in general, they contain log2 N bits for dynamic memories with N words.



The A register is an address register that holds the address of the word
to be accessed, The S register contains the address of the word that is
currently in Word O of the memory, and the C register is a circulating
shift register that always contains a single 1 bit, The S and C registers,
together, describe precisely how the words are permuted in memory at any
given instant. The memory data register that interfaces to the.outside
worid is the word labeled "O",

The memory access mechanism is based upon the following notions. The

S regiéter holds the address of the item that is currently in Word O.

However, the S register alone does not describe the current permutation of

the words in memory because up to m = 1og2 N perfect shuffles can be
applied to the memory, each resulting in a distinct permutation of the
data in memory, while each shuffle leaves the contents of Word o fixed.
After any number of shuffles the addresses of items in aBieven—odd pairs
differ by precisely one coefficient in their binary expansion, Moreover,
the coefficient is the same coefficient for all pairs. We call this
coeifficient the pivot bit. From the properties of the perfect shuffle,
we see that the action of a shuffle causes the pivot bit to move cycli-

1 m-2

cally in the sequence o™ ,2 ,...,21,20,2m_1

» etc. The C register
contains a 1 in the pivot bit position, and O's elsewhere. After each

shuffle, the C register is updated by cyclically shifting the 1 to a
position of less significance as shown in Fig. L. The s register is
not altered after a shuffle, since the contents of Word O are unchanged

by a shuffle,

The actions that occur when the exchange-shuffle interconnections
are used are best described by assuming that the exchange-shuffle is

actually a combination of two distinct shifts as shown in Fig. 5b. Thus
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we shall consider only what happens when the data is permuted by the
exchange operation shown in Fig. 5b, since we already know what happens

when z shuffle ocours.,

Since an exchange modifies the contents of Word O, the S register

must be updated after an exchange. Note that the pivot bit is not affected

by an exchange, so that no change is made to the C register after an
exchange. Note also that the pivot bit indicates exactly where the
addresses associated with Word O and Word 1 differ so that the updating
action for S register after an exchange is the following.

S «€-5 ® C
(The operator "@' is the EXCLUSIVE OR operator)

At this point the addressing algorithm should be evident. To
access an item, it has to be placed in Word O, and thus its address must
appear in the S register. If the address is already in the S register
then the item is immediately available. If the address is not already in
the S register, then we can place it there by complementing appropriate
bits in the S register. But the S register is modified in the pivot bit
position by an exchange, and the pivot bit position is altered by a
perfect shuffle., The following algorithm in an ALGOL-like language shows
how to generate a sequence of shuffles and exchange-shuffles to access

any item from any given state of the memory.



LOOP: 4if A = S then go to DONE;

[acaraatl

if AAC#A 8 A C then

Esgég QSEEEEE the addresses differ in the pivot

bit position. An EXCHANGE brings them into agreement;
§ Em=we § B C;
EXCHANGE-SHUFFLE;

end

Egﬁigicomment the addresses agree in the pivot bit
position go that only a SHUFFLE is needed;
SHUFFLE;

end;

lararad

comment a SHUFFLE 1s performed on both branches of the

conditional statement above. Hence, the C register must

be updated, and the pivot bit is moved;

CYCLE(C);

go to LOOP

DONE: Comment the item with address A is now in Word O;

e e e



Figure 6 shows two examples of the access algorithm, 1In the examples,
the mamory contains the integer i in the 1th address to enable the reader
to observe the permutations of the addresses that occur during access.

The access algorithm clearly requires no more than 1og2 N cycles
because the S register contains log2 N bits, and the pbrocessing of each
bit takes exactly one cycle. In some cases, accesses can be done in fewer
than log2 N cycles, but this does not appear to have a significant effect
on average access time. If we assume that address accesses are independent
and identically distributed with a uniform distribution, then half of the
accesses will require m = log2 N cycles because in half of the cases the
mth pivot bit of the address will disagree with the mthpivot bit of the
S register. By similar reasoning, m-1 are required a quarter of the time,

m-2 an eighth of the time, etc. Thus, T, the average access time is given by

m (i m -(i+1 m _
r-x 2yl ony o S -1
i=0 i=0 i=0

= m(lna'(m+9)—[1-2'm (14m/2) ]

= M- 1+2—m

R

m-1 = (log,, N)-1

We obtain an average access time of 1og2 N when accesses are made to the

addresses in numerical order since successive addresses then always differ in

the least significant bit.
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IV, Efficient Searching of a Shift Register Memory

The memory in Fig. L can be used for searching as well as for random
access addressing, with the access times for the two modes differing
only by a small constant factor. The search algorithm is nothing more
than an adaptation of the familiar binary search algorithm,

(Cf. Gear, 1969 ).

Assume that the items in memory are sorted in ascending order on
their search key. When a search begins, the item may be at any address
in the interval bounded by O and N-1. The first probe is made at the
half-way point in this interval. Since N is even, the address may be
either N/2 or(N/Q)_l,but we find it convenient to select N/2 as the probe
address. (In general, we always break ties by selecting the even address.)
If the item is at the probe address, the search terminates. If not, and
the probe address contains an item with a lower key than the one for which
we are searching, then our search can be limited to the interval bounded
by(N/Q)_land N-1. 1If the probe finds a higher key, then the search interval
is bounded by O and(N/B)—l. In either case we probe at an address at the
mid-point of the interval. The probing process is on successively smaller
intervals repeated until either the search terminates successfully or the
search fails on an interval of size 1,

To operate the memory of Fig. 4 in a search mode, we assume that
access is made to Word 1 rather than to Word O. The memory is initially
placed in the state in which the address associated with Word O is the O
address, and the pivot bit is the most significant bit in the C register.

In this state, the address associated with Word 1 is N/2, which is the
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address of the first probe. If the search does not terminate after the
first probe, then the second probe must be made at address N/2 + N/k or
at address N/4 depending on whether the search key is respectively greater
than or less than the probe key. In the former case, the next item to
probe is placed in Word 1 by the exchange-shuffle permutation, whereas
in the latter case the shuffle permutation properly sets up the second
probe. After the first probe and each successive probe the effect of a
shuffle is to move the pivot bit to a less significant position, and
thereby cause probes to occur at addresses that are successively N/2,
N/4, N/8, ... higher than the address in the S register. Thus we obtain
a succession of intervals of decreasing size. The exchange forces the
succeeding probe to occur in the upper half of an interval instead of in
the lower half of an interval because it causes the S register to increase
by half of a probe interval.
The complete search algorithm is given below.
comment we assume that the register named KEY contains the search
key, that S contains O, and that C contains a 1 in its high order
bit position;
LOOP: iﬁ KEY = WORD [1] 3222’52'32 FOUNDIT;
it Cc =1 2233(53'33 NOTFOUND;
if KEYSWORD [1] then
begin comment increase the S register to force the next probe
to occur in the upper half of the search interval. This
requires an EXCHANGE;
S «— § & C;
EXCHANGE-SHUFFLE;

end
AP



else

e e et ad

begin comment the next probe 1s to be in the lower half of the

gearch interval,
SHUFFLE;
end,
fa a2 o]
CYCLE(C);
go to LOOP;
FOUNDIT: comment the search was successful.

I e e e

The item is at address S @ C;

NOTFOUND: comment at this point the search was not successful;

O

When the memory is in the proper initial state at most log2 N probes

are required to search a memory with N words. To place the memory in

the proper initial state we must force a O into the S register, then place

the pivot bit in the proper position, 1In the worst case, 1og2 N cycles

are required to initialize the S register, and, after initializing the S

register, the pivot bit may have to be moved an additional (log2 N) -1

places. Hence, the worst case access time in search mode is
Under the usual assumption of uniform distribution of search
average time for a successful search after initialization is
m=-1 = (1og2 N) - 1 cycles,. (This computation is the same as
in the previous section.) We have previously shown that the

required to place the S register in a specified state is m-1

3(10g2 N) - 1.
keys, the
approximately
that outlined
average time

cycles. After

initialization of the S register, the pivot bit may be in any of m positions.

If these are uniformly distributed, then (m—l)/2 cycles are required to

initialize the C register. Thus on the average 5(m—1)/2 cycles are required
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to access an arbitrary item in search mode.

We have left an important question unanswered with respect to
efficient search operation of the memory. In search mode we require that
the items be ordered in memory. If all of the items are sorted in a
batch, then they can be sorted in approximately k N 1og2 N cycles of a
random access memory where k is a small constant., Although it is still
an cpen question if sorting can be done in a shift register memory in a time
proportional to N 1og2 N, it is quite clear that no more than k N (1og2 N)2

cycles are required to sort since each cycle of a random access

memory can be simulated by 1og2 N or fewer cycles of a shift register memory.

In a conventional cyclic dynamic memory, sorting requires kN2 cycles
which is substantially less efficient than the memory we have described.

It is frequently the case that searching operations are inter-
spersed with insertions and deletions of data in memory. In such a case,
sorting after each insertion and deletion is much less efficient than
other methods. Inca dynamic memory, a crude method for inserting and
deleting without sorting is to embed a cyclic interconnection pattern in
memory, and perform the insertion or deletion during a sequence of N
cyclic shifts of the memory.

More elegant methods for inserting and deleting are based on methods
that require times proportional to 1og2 N when performed in a random access
memory. These methods are based upon inserting items as leaves of trees.
In particular, the AVL tree algorithm is directly adaptable to our problem,

[Adelson - vel'ski? and Landis, 1962; Foster,1965 ]. Since it requires a
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time proportional to 1og2 N for both insertion and deletion in a random
access memory, the time cannot exceed k(log2 N)2 for some constant k
in the shift register memory,

In summary, it appears to be feasible to operate a shift register
memory efficiently in search mode, and somewhat less efficiently for
insertions, deletions, and sorting. It is rather interesting that
searching can be done in a time that is within a constant factor of the
binary search time in a random access memory. When we view the problem
in a larger context and include the overhead of sorting, insertion, and

deletion, we see that access constraints do materially affect the

efficiency of the memory. The questions of efficiency are still unresolved

however, in that there may exist sorting, insertion, and deletion algorithms

that are better than those proposed here. 1In any case, for sufficiently
large N, the shift register memory is substantially more effective for

searching than a cyclically organized memory,
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V. Other applications of the perfect shuffle interconnection pattern,

The memory described in the previcus sections quite clearly has
gocd characteristics that suggest it is of practical imporiance. However,
it is not the only candidate for implementation, and it is of value to
consider other interconnection patterns. 1In this section we investigate
a memory which makes a perfect shuffle and a cyclic interconnection
pattern as shown in Fig. 7. This memory is more effective for the applica-
tions mentioned below than is the memory described in previous sections.
The applications are adaptations of algorithms for parallel processors

(Stone, 1971).

The first application of the perfect shuffle is in a Fast Fourier
Transform algorithm that is due to Pease ( 1968). A cursory examination of
the FFT algorithm shows that in the first pass of the data, the items
combined have indices that differ m-1 in the coefficient of 2m—1 in their
binary expansions. On the second pass, the indices differ in the
coefficient of 2m—2’ and the ith pass they differ in the coefficient of
Em—i. Fig. 8 shows the pairs of items that are combined for N — 8.

We see the familiar behavior of a shift pivot bit, and note that we can
pair the appropriate items with a perfect shuffle. To perform the Fast
Fourier Transform, we use the perfect shuffle once between passes. During
each pass, pairs of items in even-odd pairs of words are using operands,
producing results for the same pair of words. The entire memory is cycled
during each pass. After 1og2 N passes, the Fourier Transform has been
computed in memory, but the items are scrambled in what is known as reversez

binary order. Reordering the items is somewhat of a problem, and to do



this efficiently we require some other mechanism, For special purpose
FFT processors, it appears to be advantageous to embed an interconnection

in memory for doing the reordering.

Another application‘suggested in Stone (1971) is that cf taking a
transpose of a matrix, If A is a matrix of dimension 2S b4 2t where the
size of memory N = QSt, then A can be changed from row major ordering to
column major ordering in shuffles, and from column major to row major
in t shuffles, Therefore, it is possible to access the elements of A
sequentially both by rows and by columns in a shift register memory at
the cost of a small overhead in time. Matrices with dimensions that are not
powers of 2 can be transposed by storing them as upper left submatrices
of matrices that do have dimensions that are power cf 2. A dynamic memory
that uses only the cyclic interconnection pattern is extremely inefficient
for matrix processing when matrices have to be assessed both by row and
by columns. To access a matrix of size 2° x 2t by columns when it is
stored by rows requires 2t complete circulations of the memory since one
column can be accessed during each complete circulation. Thus, for the
matrix transpose, t shuffles and N complete circulations of the shift
register memory in Fig, 7 do the job of 2t- N circulations of a conventional

cyclic dynamic memory.
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VI. Summary and conclusions

The results in Section II show the tradecff between complexity of
interconnections and access time in a dynamic memory. The value r=p
appears to have favorable characteristics for small memories, We have
shown one way of achieving the best possible access time with two inter-
connection patterns, but undoubtedly there are many pairs of permutations
that can perform equally well. A problem that remains unanswered at
this time concerns the existence of permutations that achieve the access
time bounds, but have desirable characteristics that the perfect shuffile
memory does not have,

In particular, an important consideration for MOS shift register
memories is the planarity cof the interconnection pattern. For technologies
in which interconnections should be planar, or cross-overs should be
infrequent, there may be some difficulty in implementing the shift register
connections described here. Obviously, the cyclic interconnection is a
planar pattern, and therefore is advantageous for such technologies,

The results in this paper also have relevance to the problem of data
communication in parallel processors. If each word in a dynamic memory
corresponds to a processor in a parallel processor, then the interconnec-~
tion patterns given here have the property that a particular datum can be
transferred from any processor to a specified processor in minimum time.

In Section V, we briefly mentioned a memory in which the perfect
shuffle and the cyclic patterns are combined. This pair of interconnections

is extremely interesting to study, and is as yet incompletely understood.
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Apparently, combinations of these two permutations can place the memory

in more states than are reachable using the pair of interconnections of

Section III. This could be very advantageous for some applications. The

utility of the pair of interconnections would be significantly enhanced

if an efficient access method were discovered,
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Fig. 2. A dynamic memory with the perfect shuffle interconnection
pattern. N = 8,
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Fig, 3. Adjacent pairs of cells in a perfect shuffle interconnection
pattern., N = 8.
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Memory Contents

Word
O 0 I N 5
1 L 6 5 1

no
s
o
(@)
=

3 5 2 T 0
L 2 5 o 7
> 6 7 1 3
6 3 1 2 6
7 7 3 3 2
A 101 101 101 101
S -+ 000 100 100 101
C 100 010 001 100
Actions: Exchange Shuffle Exchange-
Shuffle Shuffle
0 5 1 3
1 1 3 o)
2 i 5 1
3 0 7 0
L 7 0 7
> 3 2 6
6 6 5
7 2 6 L
A 011 011 011
S 101 001 011
C 100 010 001
Action: Exchange Exchange

Shuffle Shuffle

Fig. 6. Examples of memory access in a perfect shuffle shift
register memory.
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A shift register memory which uses the perfect shuffle and
the cyclic shift interconnections. N = 8.
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Fig. 8. Data flow in a Fast Fourier Transform computation. N = 8,
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