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The Average Height of Planted Plane Trees

*
by N. G. de BNiJn’ D. E. Kn“bh’ and S. 0. Rice

Abstract
An asymptotic expression for the average height of a planted plane
tree is derived, based on an asymptotic series for sums such as

2
Zk)l Cnink)d(k) and zk>1 eX/n d(k) , where d(n) is the

number of divisors of n .
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The Average Height of Plamted Flane Trees

by B. G. 4o Bruijm, D. K. Kmth, and 8. O. Rice

A planted plane tree (scmetines called an ordered tree) is & rooted tres which has been embedded in
the plane so that the relative order of subtrees at each bramch is part of its structure. In this paper
we shmll say simply “tree” instead of "planted plane tree", following the custom of computer sciemtista.

The hejght of & tree ie the umber of nodes on & saximal simple path startiag st the root. Por
exangle, there are exactly 5 trees with five nodes and height b, namely

P AAA

The neight of a tree is of int in compwting b it repe the size of a stack used in

algorithns that traverse the tree [3; p. 317-318]. Our goal iln this paper ix to study the average heignt
of a tree with n nodes, estuming that all a-node tress are egually likely. The corresponding prodlem for
or{ented (1.e., rooted, unordered) trees has beam solved by Renyi and Bsekeres (6. Our principal results
are stated in equations (32) amd (34) below.

Trees agpear in many disguices, and im garticular there i3 & natural correspondence between trees of
height <h and discrets rendam walks 1n & Streight line, with absorbimg barriers at 0 ead hvl . If ve
"wander around” & tree with n n0des, &4 shown by the dotted limes in Figure 1, the vertical component of
nuccessive positions described & path of leagth 2n-1 fram 1 to 0 ; for example, the path in Figure 1 i3
1,2,%,2,1,2,5,2,5,4,3,4,3,4,5,2,1,2,3,2,5,2,1,0 . (This is ome way a gambler can lose §1 before wiraing 95.)

Thie tion, eted ty T, E. Harris in 1952 [2], is clearly reversible.
The height of trees plays & similar role in the classical ballot prodlem: How many ways are there
to arrange n btelluts for candidate A and n for candidate B in such & way that the mmber of votes
for A never lags behind the mumber for B , as the ballots are counted, but A 18 never more thean h
votes &need? The ansver is the number of trees with ntl nodes and beight < htl , again by the comstruction

indicated in Pigare 1. The ballot sequence corresponding to that tree is AAMMABAABABADIPAARARS .

[V I 5 I

Figure 1. A tre¢ as & rendom walk.



We shall begia our stully of the asymptotic properties of height by reviewing some knowm results.
et A_ 0 the mmber of trees with n nodes and height < h , and lat
am) - Tays®

be the corresponding genereting fumetion. We obtain all trees with beight < bh+l by taking & root
sode end stteching nevo or more subtress each of which has haight < B ; therefore

Ay (8) =51 s ax) « A% 0 A ()70 L)
“2/(1-A) ,  for b20

Clearly Ao(l)-o. This relstion yields a siapls recurremce for the numbers A v

(©

(2)

Ml ® ALmate T Anomeado,n et ALpeaAp,n ¢ fOF B 22,020, (3)

fram which 1t 18 easy tO prepare & tadbls of the first few vaiues:

aml 2 3 [ 5 6 7 8
=1 1 0 0 0 0 [ ° o
he2 1 1 1 1 1 1 1 1
held 1 1 2 [ 8 16 32 [
hak 1 1 H 5 B N 8 23
hes$ 1 1 2 5 W M 122 365
he6 1 1 2 5 1 k2 131 M7

Binee 50 tres with a nodes can have & height greater tham n , we have

a2
L =) I F L
the wall-lmosn formula for the totel mmber of tress with n nodes [cf. 3 p. 399).
Iterstion of (2) yields & comtinwel frectioa represestation of \(I).o.g.
s

Hw - =g

T

mmwummmmx«---mx—zwm,

(s)
&(I) - %:Ta‘ ’

BB =0 4 mx) 21, p (0) cps) - @y (s) .

™e sclution to this recurremce is

o - (Y G

(%)

(5)

(6)

(71



and the form of this solution suggests setting t = 1 /(b cos’ @). We cbtan

w\ e
h cos” @ ain &(2 cos a)

9
A'(l. eu! 0) 2 cos @ u.n(h'].)e
Incidentally it ia sasy to verify that ph(-l) is the Pibomacci number 'h » and that
(h-l—l 3 .
Ppls) =  J-%) » for h>1 ; (10)
o<k <h

this leads to ancther recurrence for the h B

Stnee B (5)7 -y, (1), ;(2) = 71, there is o einple gmerating function for the mumber of trees
with n nodes and height exactly h .,
n
| 3
A (z) - A (2) - W OINE] i (1)

this formuls ves recently derived by Krewerss [b, p. 37}.

Gince B 18 & polynamial of degree L(h-1)/2 | » the roots of ph(z) =0 are L1l/(4 cune(J-/h)) ’
for 1 <3 <hb/2 ; and we obtain a partisl frection expension of the gemereting functiom,

2o

NI N =a R T (12)

LTz (DM con” 90)8)

@y, - I/ (B

Sw o by o;.&.l-%&.—%”a, "an‘ﬁ' for m21. (L)

This leads inmediately to the "explicit® forwuls

A FIT A" oan® ;I.-'! coa™2 ﬁ , for n>2 . (n)
1<ysn/2
(T¢. 4s rether remarkable that this formula gives & constant value for fixed n and &l bk >n . It is
perhaps even more ramarkable that Lagrange deri-ed a formuls in 1775 which essentially includes this as
u special case! See |5, p. 247 |: Feller {1, p. 322) cbserves that the formula has been rediscoversd wamy times,
aithough it sppears in many texts on probability in comnectian with the equivaleat “gambler’s ruin®
probiem.) As & special case of (14} we have the asymptotic formuls

~ o7 ten’ (—i)eu‘2‘(~—i) , Mxed h, n =w. (19)



Arother interesting sxpression for M can be derived Ly applying complex variable theory. We

have ()
R I O
(o) .
- & S 0w I‘_—“;‘;I R)
whare

by (6) end (8). Simce

u = uj{-_g R Qamn)
1441-Ms
2

l-—‘j (18)

(1eu)

wehave uw s when (3] << 1 ; hemce we may chamge varisbles in (16) to obtain

(or) n
- SR L Tt - I a9)
') -9
In other words 1s the cosfficient of W 1a (1-u)(1+u) 2 2(1") / (1-4™1) . Some
A
sisplificetion now when we 1der the of treas with height grester thea b :
T At
(0+) bl
o R L e = S @)
') -a

It follows thet

i+ EGR) - (2) (2) -

The sYerage Reight of a tree vith n nodes 1s 8, /A , vbare S  is the (finite) oum

————

8 - h§1 Blhu, - Aypey) n§1 BBy, by - By

S
(0v)

h

1 [} 2 ne2 '}
- 1 L-u)°1 3 %
I - (- ) hgl len

() o 2,0 w2 k
. 1.0)202 ax .
= S T EY 313:1 (M) @)



(As usual, d4(k) denotes the mumber of positive divisors of k .) Therefore

8pe1 " u§1 et ((n‘?k) ) 2("2’..) * (“"?") . “

Ve shall now proceed to obtain an asymptotic series for the sum

f () - a(k) , fixet a, n e ; (2h)

and thie will lead to an esymptotic series for sn .
Lot x = (k-a) /n . By Stirling's approximation we have

n

2 2 ﬁ
meks | up(-?n(ﬁ' 3‘7,:0 )6(5!0 %‘-0 ...)-r;- (x‘oxhb...)&o(lzn")), (25)
n

*c

vhen k >n e

for all fixed ¢ >0 . Therefore the sum of all terms for k » n" €ea in (24) 18 negligible, being
o(n™) for all n >0, and e may take x - 0(n"#*€) 4n (25).
We now turn to the asymptotic behavior of the functiom

2
g(n = lEL axeX /™ | fixedb, n-w. (26)

Again the terms for kgn”‘ are negligible, so we can use (25) to express f in terms of g :

2 2
£,(0) = go(n) + 2 g (n) - & g (n) + ﬁ;’,l g,(n) - ;f, ()

3 3
SEEm "'—)’,2 650 - By a(n) ¢ o7 pom)) (@n
n n’

In principle such an expansion t_:w be carried out as ft—r u we like, hence the protlem of obtsining an
asymptotic expansion for r.(n) reduces to the analogous problem for 'b(") -
The behavior of ch(n) can be derived by starting with the well-known formula

ctim
- ﬁj r(z)x"%as , e>»0, x>1 , (28)

c-le

obtained, for example, bty Fourlcr inversion of [(c+ ‘mit) . Then since ((1.);. z. >i 'l(l)/lv‘ we (ind



crim
1 s b-2%
&n) - : HI n" r(s)k a(k)dz
k31 cote

ctie
- 2 ] of reesy)® e (29)
c-im

ware now ¢ > §(b+1) . Let q be o fized posttive mmber. When Re(s) 24, ((8) < o([s|%'}) ws
s <~ | and since n’r(:) gets mall on vertical lines we can shift the line of integration to the left
a8 far as we plense if we only take the residues into account. There is a double pole at z = 4(b*l) ,
and pospibly sape simple poles at 3 = 0,+1,-2,... . Lt w s g-j(btl) ; ve have

ar(a)g(2a-0)” « ™D T} (14 wtin 2) ¢ 0(w)) - (1e (D) 007 (5 o T e 00

where #(z) = ['(2) /T(z) , hence the residus at the double pole is
n‘(b.l)r(.(b'l’)(% Inn+ % e((pel)) +9) . %)

T™e residue at s = +k 1is

L 4 4
R T LT 1)
T e
(2ket+1)” Kt
which 15 Almost always 3ero when b is even. The mm of (30) and (31) for all k > 0 gives an asymptotic
series for ‘b(') . Hemce wo Dave, for all = >0,

u“(n) %Gnn#(ir-%m;l)ﬂ’%oo(n") B

2

&,(n) n%nhmEnO ﬁ-ﬁn’loo(n
e -gVmmne Gegr-fumamdmeon® ; %2)

etc. These formulas have besn verified by comguter calculation; for example, when n = 10,
oln) = 39002 et Vminas @y -fmdmei-so0m.

Returning to our origimml problem about trees, ve have

g -
1
=5 et R CRR A
S~
- Egyn) —"5 &(n} ¢ 0(>/2 10g n) (33)
n

by (8), (3), (h), ana (77), end this equals /o Yo dnPeo(n"/2 1og n) . We bave proved, n
particular, the rnllowing result:



Theorem. The average height of a planted plane tree with n nodes, considering all such “vess to be

equally likely, 1is
fw oot bign . (%)

The same method can be used to cbtain as wany further terms of the expanaion as desired. The factor

loy, n in the error term turns out to be unnecessary.

We wish to thank Prof. John Riordan for pointing out references (2] and (k).
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