
in

u

n
u

n
L.J

u

rn

LJ

ITi

u

n

u

n

u

STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-147

COMPUTER SC IENCE DEPARTMENT
REPORT NO. CS-216

REASONING BY ANALOGY WITH APPLICATIONS
TO HEUR ISTIC PROBLEM SOLVING: A CASE STUDY

(,"'<.3
,":';..

BY

ROBERT ELLIOT KLING

n

u

AUGUST 1971

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield, Va. 22151

u COMPUTER SC IENCE DEPARTMENT

STANFORD UN IVERS ITY

~l

!u

J

r~-"~--"·r;j"::,;·{iillSffT-ION Sr<LA.TElvIRN1 A
1 .~'"-.".__..._-- l _.

1 l~ppro"-l{~d for public release;
1 D"f~;f··';jOD Unlimited
L~.~_-~~ . - -- --

.:,-

OG
UUNNOIlliCEll

JUSTif ItATlOR .

RUFf SEGTIOii 0
o

n.. . ..
DlS.'ll18!lTiijlj/1~ilTi.A[iIW"l blllJES

lIIST. AmL ~WM S'!'r:~I~L

llL~'_J

Ti

T<

This procedure (ZORBA) is studied in detail for a resolution theorem

proving system. A set of algorithms (ZORBA-I) which automatically generates

an analogy between a new unproved theorem, TA, and a previously proved theorem,

T, is described in detail. ZORBA-I is implemented in LISP on a PDP-IO.

A large set of axioms, D, that is sufficient to prove a variety of

non-trival theorems is provided. The user supplies (1) TA; (2) T; and (3)

a proof of T, proof [T]. ZORBA-I outputs a set of axioms D' (Dr CD) which

it proposes for proving TA. The axioms in D-D' are deleted and a proof of

TA is attempted.

ZORBA-I creates an analogy, a, which consists of two submaps:

(1) a one-one map between the predicates that appear in

proof'[Il'] and D' ;

(2) a one-many map between the axioms that are used in

proof [T], called AXSET, and those in D'.

A complete. analogy o. includes all the predicates and axioms that

appear in proof[T]. A partial analogy contains only some of these. One

partial analogya k is an extension of another partial analogy a
j

, if one

of the submaps of a
j

is a restriction of the corresponding submap of a
k

•

ZORBA-I operates by developing a sequence of partial-analogies that

terminate in a complete a.

A program called INITAL-MAP creates the first partial analogy, aI'

by associating the predicates that appear in the statements of T and TA. A

second program (EXTENDER) uses a small set of operators which transform a

partial-analogy into an extended partial-analogy. It uses syntactic de­

scription of the clauses in AXSET to ins~igate searches through D to find

analogs for each clause. Each new clause association may create a new

partial-analogy. The sequence of partial analogies finally terminates in a

complete analogy which includes D' as a submap.

ZORBA-I is examined in terms of its empirical performance on paris

of analogous theorems drawn from abstact algebra. A D is chosen with 250 clauses

and D' is found for each of several theorems that requre only 5-20 axioms to

prove them. Analytical studies are included which show that ZORBA-I can be

useful to aid automatic theorem proving in many pragmatic cases while it may

be a detriment in certain specially contrived cases.

The limitation of ZORBA-Irs representation of an analogy are discussed

along with proposals for future research.

--.

REASONING BY ANALOGY WITH APPLICATIONS TO HEURISTIC
PROBLEM SOLVING: A CASE STUDY

BIBLIOGRAPHIC DATA
SHEET
4. Title and Subt it le

1
1. Report No.

STAN...71-CS -216
[2.

I AIM-147

3. Rec ipienr/s. Accession No.
'I"~ ~

5. Report Dat,e

August, 1971
6.

7. Author(s)
Robert Elliot Kling

9. Performing Organization Name and Address

Computer Science Department
Stanford University
Stanford, California 94305

12. Sponsor ing Organization Name and Address

Advanced Research Projects Agency

15. Supplementary Notes

8. Performing Organization Re pt ,
No.

10. Project/Task/Work Unit No.

11. Contract/Grant No.

SD-183

13. Type of Report & Period
Covered

14.

16. Abstracts An information-processing approach to reasoning by analogy is developed
that promises to increase the efficiency of heuristic deductive problem­
solving systems. When a deductive problem-solving system accesses a large set
of axioms more than sufficient to solve a particular problem, it will'often
create many irrelevent deductions that are derived from the unnecessary
axioms. These irrelevent deductions may be quite numerous and saturate the
memory of the problem solver before it solves the problem. At the current
state of the art, tbe most complex problems solved by automatic procedures
require less than two dozen axioms to solve. A data base twice this size
is sufficient to render any but the simplest problem unsolvable. In general,
there is no decision procedure which can be used ro restrict a data base
to a set of necessary axioms. Here, any analQgy with some previously solved
problem and a new unsolved problem is used to restrict the data base to a
small set of annronriate axioms.

17. Key Words and Document Analysis. 17•• Descriptors

17b. Identifiers/Open-Ended Terms

17e. COSATI Field/Group

18. Availability Statement

Release unlimited

FORM NTIS 3S (10-70)

19-. Security ClaSS (This

~e)~~tfT
2u. Security Class (This

Page ,
UNCLASSIFIED

21. No.' of Pages

191
22. Price

USCOMM-DC 40329-P71

STANFORD AR'rIFICIAL INTELLIGENCE PROJECT
MEMO AIM-147

COMPUTER SCIENCE DEPARTMENT REPORT
NO. CS 216

REASONING BY ANALOGY WITH APPLICATIONS TO
HEURISTIC PROBLEM SOLVING: A CASE STUDY

by

Robert Elliot Kling

AuC:ust 19(1

ABSTRACT: An information-processing approach to reasoning by analogy

is developed that promises to increase the efficiency of

heuristic deductive problem-solving systems. When a

deductive problem-solving system accesses a large set of

axioms more than sufficient to solve a particular problem,

it will often create many irrelevent deductions that are

derived from the unnecessary axioms. These irrelevent

deductions may be quite numerous and saturate the memory of

the problem solver before it solves the problem. At the

current state of the art, the most complex problems solved by

automatic procedures require less than two dozen axioms to

*This research was supported by the Advanced Research Projects Agency
of the Office of the Secretary of Defense under Contract SD-183.

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research
Projects Agency or the U.S. Government.

Reproduced in the USA. Available from the Clearing house for Federal
Scientific and Technical Information, Springfield, Virginia 22151.
Price: Full size copy $3.00; microfiche copy $.95.

, r

solve. A data base twice this size is sufficient to

render any but the simplest problem unsolvable. In general,

there is no decision procedure which can be used to restrict

a data base to a set of necessary axioms. Here, an analogy

with some previously solved problem and a new unsolved problem

is used to restrict the data base to a small set of appropriate

axioms.

This procedure (ZORBA) is studied in detail for a resolution

theorem proving system. A set of algorithms (ZORBA-I) which

automatically generates an analogy between a new unproved

theorem, T
A,

and a previously proved theorem, T, is described

in detail. ZORBA-I is implemented in LISP on a PDP-10.

A large set of axioms, D, that is sufficient to prove a

variety of non-trivial theorems is provided. The user supplies

(1) T
A;

(2) T; and (3) a proof of T, proof [T]. ZOR}~-I outputs

a set of axioms D' (D' c D) which it proposes for proving T
A•

The axioms in D-D' are deleted and a proof of TA is attempted.

ZORBA-I creates an analogy, C, which consists of two submaps:

(1) a one-one map between the predicates that appear in

proof[T] and D' ;

(2) a one-many map between the axioms that are used in

proof [T], called AXSET, and those in D'.

A complete analogy C includes all the predicates and

axioms that appear in proof[T]. A partial analogy contains only

some of these. One partial analogy ~ is an extension of

another partial analogy C., if one of the submaps of U. is
J J

a restriction of the corresponding submap Of~. ZORBA-I

ii

I I

,I)

~J

operates by developing a sequence of partial-analogies that

terminate in a complete a.

A program called INITIAL-MAP creates the first partial

analogy, a
l

, by associating the predicates that appear in the

statements of T and T
A.

A second program (EXTENDER) uses

a small set of operators which transform a partial-analogy

into an extended partial-analogy. It uses syntactic de­

scription of the clauses in AXSET to instigate searches

through D to find analogs for each clause. Each new

clause association may create a new partial-analogy. The

sequence of partial analogies finally terminates in a

complete analogy which includes D' as a submap.

ZORBA-I is examined in terms of its empirical performance

on paris of analogous theorems drawn from abstract algebra.

A D is chosen with 250 clauses and D' is found for each of

several theorems that require only 5-20 axioms to prove them.

Analytical studies are included which show that ZORBA-I can be

useful to aid automatic theorem proving in many pragmatic

cases while it may be a detriment in certain specially

contrived cases.

The limitation of ZORBA-I's representation of an analogy

are discussed along with proposals for future research.

iii

1"OlTh'WORD

This thesis is the first comprehensive report of a five-year

project that studied the use of analogies to aid deductive problem

solving. Some of the ideas presented here will appear in the pro­

fessional literature. Portions of Chapter III are to be presentedl

at the 1971 IFIP Conference held at Ljubljana, Yugoslavia. Chapters

III, IV, and V are to be presented
2

at the International Joint Confer­

ence on Artificial Intelligence, to be held in London, September 1971.

This research has been supported by the Advanced Research

Projects Agency and the National Aeronautics and Space Administration

under Contract NAS 12 -2221, and Rome Air Development Center under

Contract AF 30(602)-4147.

iv

~J

ACKNOWLEDGMENTS

In 1966, Professor Edward Feigenbaum suggested a study of reason­

ing by analogy as a fruitful area for a quarter research project. His

fertile suggestion gave rise to an elementary paradigm for exploiting

analogies to aid deductive problem solving. Two years and two para­

digms later, I developed the more elegant and successful approach

which is presented in this thesis. During the five years I needed

to complete this work, I was supported by the Artificial Intelligence

Laboratory of Stanford Research Institute. I appreciate the encourage­

ment offered me by Dr. Charles Rosen who supported this work through

periods of promise, through times of doubt and through episodes of

hopelessness. I also thank Dr. Bertram Raphael who maintained my sup­

port after he succeeded Dr. Rosen as head of the Artificial Intelli­

gence Laboratory. At various times I have had valuable conversations

with Professor Thomas Cover of Stanford and Drs. Robert Yates and

Peter Hart of S.R.I. regarding the use of analogies in deductive rea­

soning.

Professor Feigenbaum significantly aided my effort to find repre­

sentations and a language to express the fruits of this research.

v

CONTENTS

ABSTRACT

FOREWORD

ACKJ'irOWLEDGMENTS

I APPROACHES TO REASONING BY ANALOGY

A. Background

B. ZORBA in the Context of AI Research

C. ZORBA in the Context of Contemporary
Problem Solving Research in Psychology

D. Review of the Following Chapters

II AN INFORMATION-PROCESSING
APPROACH TO REASONING BY ANALOGY

A. Introduction

B. Criteria for Analogy

C. Varieties of Analogy

1. Change of Parameters
2. Generalization
3. Similar Relational Structures
4. Plans are Identical
5. Change of Representation
6. Common Subproblem ••.•

D. Information Transfer
Between Problem Solutions

1. Representations ..••
2. Plan .• •.
3. Object Language Level

E. Automated Use of Analogical Information

i

iv

v

1

1

4

10

13

14
14

15
16

17
17
18
20
23
25

27
28
28
30

30

•• 0 •

III AN INTRODUCTION TO ZORBA

A. Introduction

B. ZORBA Paradigm

C. Applications to Resolution Logic

D. ZORBA's Representation of an Analogy

vi

34
34

34
39
43

E. An Overview of the
Analogy-Generating Algorithm

IV A DESCRIPrION OF INITIAL-MAP

A. Introduction ..••••.

B. The Design of ATOMMATCH

C. The INITIAL-MAP Control structure

V AN ELEMENTARY DESCRIPrION OF EXTENDER

A. Introduction •.••.••.••

B. The Analogs of Clause Descriptions

C. Mapping Descriptions

D. The Candidate Image Set

E. Simple Versions of EXTENDER

VI EXPERIMENTS WITH ZORBA-I ••••

A. Introduction •.•••

B. Analogy Space

C. ZORBA-I in Action

D. An Example of MULTIMAP ••••

E. The Chunking Process

VII ANALYTICAL APPROACHES TO ZORBA-I

A. Introduction • • • • • • . • . •

B. Time-Space Analysis

C. Background on EXTENDER •••.••••

D. Worst-Case Analysis of EXTENDER

E. Necessary Conditions for an Analogy

VIII VARIATIONS OF ZORBA-I

A. Introduction

B. Variations of EXTENDER
for One-Many Predicate Maps .•••

C. Variations of INITIAL-MAP

D. Treating Constants

E. Relationship Between ZORBA-I and QA3

vii

45

51

51

53
56

65

65
66

67

70

72

78
78
79

81

96
104

110

110

113

115

116

127

130

130

131

137

139

140

IX ZORll1\ IN IU:'l'l\08PECT

1\PPJ';NDIX A - DEFINITIONn OIr' PHEDICNrE;j
AND THEIR SEMANI'IC TEMPLATES

c J

APPENDIX B

APPENTIIX C

REFERENCES

LISTING OF ALGBASE

ZORBA-I AS A USER SYSTEM

viii

149

154

186

189

r!l

m

n

n

LIST OF TABLES

'J.'aLJ.l(' 1. Ki.ndu of Information Help1ul
to 0.j\"J and 01':., • • • • • •

Table 8. Segment of Protocol from EXTENDER Search

n

u

n
u

n
LJ

Table 2.

Table 3.

Table }+ •

Table 5.

Table 6.

Table 7.

Summary of ZORBA-I Performance

Resolution Proof of Theorem Tl'

AXSIIT for ABSGPT (Theorem Tl)

Analogy Search Space for Tl' - T2' •

Complete Analogy (a
5

) for ABSGPT

Clauses from ALGBASE (Appendix B)
Analogous to AXSET for ABSGPT (Table 4)

77

82

85

86

88

n

rn

Table 9· Analogy Search Space for T5 - T6 Analogy .
Table 10. AXSET for Theorem Tc .

)

Table 11. SOME[aJ Ordered by erc
for MULTIMAP

.J

Table 12. Analogy-Space Search for T
3

- T4Without Chunk

Table 13. AXSET for Theorem T
3

100

101

10.5

105

106

Table 14. Analogy-Space Search for T
3

- T4with Chunk • • •• . ••. 109

rn

Table 15. Number of Predicate Maps
Consistent with Type Restrictions

Table 16. Worstbase Axiom Set

114

119

Table 17. statements, Figures, and AXSET
for Bisection Theorems 132

Table 18. Axioms Neede to Prove T
13'

and T14'

Table 19. Definitions of Predicate and
Function Symbols for Geometry

Table 20.

ix

133

146

is quite new, for I have developed an operationally specific model

for a kind of reasoning by analogy that has barely been studied in

the past.

Some writers have demonstrated the usefulness of analogies to

aid concept acquisition as a helpful adjunct to problem solving.

Wertheimer 's3* studies with school children (concept-acquisition) and

POlya 's
4,5 extensive examples of heuristic aids to problem solving

(concept-formation) are two cases in point. In addition, a few

experimental studies6 verify the usefulness of relevant experience.

However, none of these workers specify in any detail the cognitive

processes that are invoked to create, appreciate, and exploit analog­

ical information. Some artificial intelligence (AI) researchers have

created problem-solving7 and theorem-prOving8 and game-playing pro­

grams 9 that generate fewer irrelevant inferences or play a better

game (of bridge) based on the experiences they have had in the past.

However, each of the programs is designed to slowly improve from

problem to problem and "learns" to perform well only after exposure

to a large number of problems or games. While they develop a kind of

sophistication that is general for a particular domain of discourse-­

e.g., geometry, logic, bridge -- they are unable to extrapolate the

quite powerful problem-dependent information that we associ~~e with

learning by analogy.

Thus we face a difficult situation: We want to sbudy an impor­

tant cognitive process at an operational level of detail whieh (a)

has no adequate model in the problem-solving literature, and (b) is

unprecedented in existing computer-based problem-solving systems. t

*References are listed at the end of this thesis.

t The one AI program that exhibits a variety of analogical reasoning
in solving problems that appear on the Miller Analogies Test cannot
use the analogies it generates to assist some deductive problem­
solving system and contributes little to our discussion. It is
described in more detail in the next section of this chapter ..

2

u

n

u

n
LJ

u

rn

UJ

LU

IJ...I

'_J

The approach that I will explicate in the followinr:; chaptcr c i~;

devoted to desi£~ninr:; and LmpLemcrrtLng a new artil'icial system that is

8ui'l'icicntly complete to generate and exploit analogies between pairs

of fairly complex problems. It is able to substantially improve the

performance of a deductive problem-solving program that is associated

with it. In addition, its qualitative behavior resembles many fea-

t f h bl 1 " 10,11" 1 d" t d t"ures 0 uman pro em so vlng lnc u lng se , pro uc lve con-

fusion, developing relevant abstractions, evaluation of promising

leads, and the creation of partial solutions. The mechanisms that it

includes may well be imcorporated in some later simulation of human

analogical reasoning. This approach parallels a previous important

linkage between AI research and the simulation of cognitive proc­

esses. In 1964 Danield Bobrow
12

reported his development of a pro­

r:;ram that solved algebra word problems of the sort studied by high

school students. He had created a program that was sufficiently com­

plex to solve many problems of this class. After he reported his

work, Simon and Paige13 analyzed the problem-solving protocols of

high school and college students asked to solve similar problems.

They found many of the mechanisms that were used by people to be

represented in Bobrow's program. When we are researching a new area,

a research strategy that precedes a validated simulation model with a

model that is merely sufficient to perform the appropriate behavior

seems necessary. In order to create a sufficiency model, we first

need to find the set of operations necessary to produce our desired

behavior. While referring to computer simulation of perceptual
14processes, Gyr emphasizes this order and writes:

"It should also be pointed out that the above problems

require, first of all, research with the computer itself in

order to establish, for example, what internal organization

is required for the generation of a precept or capacity by

the computer. Following this, the computer behavior must

be compared with the behavior of living organisms."

3

The paradigm I will describe for reasoning by analogy can be

appreciated both as a novel advancement of contemporary AI technology

and as a fertile addition to the sparse psychological literature con­

cerned with reasoning by analogy as a cognitive process. For the

latter, it suggests a set of necessary operations that can be

included in a simulation model.

In the next chapter, I will begin to limit the kinds of problem

solving and analogies that we will stUdy. Several varieties of

analogy will be distinguished from the point of view of the kind of

information processing that is necessary to recognize and exploit

them. One class of analogies is selected for further stUdy. A

*paradigm (ZORBA) for utilizing this class of analogies is developed.

In addition, a particular instance of this paradigm (ZORBA-I) is

studied in detail for a particular kind of problem-solving system, a

resolution-logic theorem prover, which in turn is applied to a par­

ticular domain of discourse - abstract algebra. Thus, at each

stage our study will become increasingly specific. Consequently,

many recurrent terms will need to be redefined periodically. For

example, here I am content to allow the reader to use my preliminary

definition of an analogy as a sort of similarity. In the next chap­

ter, several varieties of analogy will be distinguished. Later

still, within the context of ZORBA-I, an analogy will be represented

as a particular set of one-one, one-many, and many-many mapQings.

The next two sections place ZORBA in the context of contemporary

AI and problem-solving research. This chapter concludes with a

brief outline of the dissertation.

B. ZORBA in the Context of AI Research

Although ZORBA is an unprecedented extension of AI into the

mechanical generation and exploitation of analogies to aid heuristic

*ZORBA is an acronym for (ZO) ~easoning ~ ~nalogy. Zorba was a
passionate, intuitive Greek, and many of our contemporaries consider
analogy an intuitive process outside the realm of reason.

4

problem solving, it draws many ideas from a long research tradition.

These include:

(1) ZORBA-I is associated with a particular heuristic problem

solver (resolution theorem prover) and necessarily relates

to many of its particular features

base, single rule of inference, etc.

e.g., axiomatic data

(2) ZORBA can easily be described by using many concepts that

are recurrent and basic in the heuristic problem-solving

literature. These include ideas such as a search space,

'_ J

legal-move generator, candidate-move ordering function,

and matching routines. ZORBA operates with a search

space in which each node is a special kind of mapping

("partial analogy") and has routines for generating suc­

cessor nodes ("descendant analogies") that contain more

information than their ancestry. When a node has several

descendants, an ordering function is invoked to select the

descendant most likely to be a valid extension of it.

Matching routines are invoked to create the set of possi­

ble extensions, in selecting the most plausible member of

this set, and in generating the actual extension. These

processes will be described in substantial detail in Chap­

ter IV.

(3) Specific AI programs have dealt with elementary forms of

reasoning by analogy and learning applied to heuristic

problem solvers.

this work here.

For completeness I want to describe

One program in the AI tradition stands out for its potential

relevance. In 1964, Tom Evans15 reported developing a system that

successfully solved problems from the Miller Analogies Test, a widely

used intelligence test. A testee is asked to

select one of five given figures that satisfy a given analogical

__ ~J

relationship. For example, which of (a) .•. (e) is to Diagram C as

5

lJiagrmn A :h, to Diac;rrun 13 in Figure 1 beLow? Evans' progr-am was

highl.y successful in solving many problems in this class and was one

of the most complex programs of its day. However, much of its com­

plexity was devoted to the pattern-recognition aspects of its activ­

ity -- e.g., separating G--1 into 0 and ~ rather

than G-- and J The algorithms he developed for actually

generating and testing his analogies are not described. In fact, he

admits attempting flall possible combinations fl of associations until he

finds an appropriate analogy. Fortunately, he is dealing with only

two or three (geometric) objects and the relations between them, and

he has to consider, at most, 10 to 20 possible mappings. In contrast,
II

some of the analogies we will treat in this thesis allow over 10 pos-

sible mappings (Chapter VII) from which we must select one analogy;

When Evans finally generates his analogy by his unspecified process,

he stops. He doesn't exploit his analogy to aid some other problem­

solving process. (Later in this introduction, we will discuss some

experiments by Dreistatdt who showed that people can use some simple

visual analogies to aid deductive problem solving.) Despite these

limitations, Evans does contribute two key ideas which are exploited

in ZORBA: (1) An analogy is viewed as a special kind of mapping, and

(2) an analogy between a picture Pl and a picture P2 can be derived

by matching a description Pl with a description of P2 and aS80ciating

the corresponding objects and relations.

ZORBA is concerned with the axioms and rules of inference used to

solvinG a deductive problem rather than the relations that describe a

two-dimensional diagram. Thus, the description (of axioms) it uses-x­

are quite different from Evans' picture description language. In

addition, the number of possible mappings it could generate if it

tried flall possible combinations fl of the relation it wants to associ­

ate are prohibitively large (Chapter VII). Thus, we need eXQlicit

heuristics for restricting the set of mappings to those that are most

plausible, and for selecting the best among these. Unfortunately, he

leaves us in the dark, and we must invent our processes anew.

*See Chapter III.

6

-..::J

A

c

,-

B

(a) (b)

A : B
as C : ?

(c)

(e)

v

(d)

FIGURE L SAMPLE ITEM FROM MILLER Al'JALOGIES TEST.

EVans' analogy is the only implemented AI program that treats

treats some of the problems explored here. In 1969, Joseph Becker16

sketched a model of induction and analogy for a semantic memory sys­

tem that added two ideas to the literature:

(1) An analogy is defined as a specific kind of one-one mapping

between kernels of a semantic net .16

(2) A means of creating an analogy between two situations that

were Itessentially analogous,1t differing in unessential

ways, is developed in terms of a weighting scheme.

Becker is interested in the processes that underly understanding

natural language and concept formation. His universe of discourse

deals with simple situations such as:

Sl: Peter the monkey ate two bananas at 3 :00 avm , on 'I'uesday ,

Peter is at the zoo.

S2: Harlow the monkey ate a banana for breakfast on Saturday

at home.

S3: Susan fed Harlow a banana in the park.

He is concerned with generalizing over sets of situations such as

Sl - 8
3

to Itinduce lt
: Itmonkeys eat bananas. 1t He gives analogy forma­

tion a crucial developmental role in the process by generating an

analogy between 81 and S2' and between 82 and S3' to induce his

generalization. He includes a means of scoring the relative impor­

tance of elementary facts that compose a situation. For example,

here, we want to neglect Susan's feeding Harlow (S3)' and Harlow's

eating on Saturday (82), to generate an analogy between 81 and 8
2,

I am purposely vague about the details of Becker's treatment since he

uses special representations and terminology that would demand too

much description to develop adequately in this introduction. This

work was a valuable gedanken piece since Becker explicated his anal­

ogy generation process in some detail, in contrast to Evans who

neglected to explicate this process at all. Unfortunately, Becker

8

nevC'r Lmp Lemcrrtcd hi,; model or reported ex t cns i.ons or var i.at.Lons of

his paradigm.

The AI literature dealing with analogical reasoning contains

only the two paradigms cited here. Any work relating analogy to

J problem solving must start from scratch.

(In Chapter II, we survey the kinds of information processing

required by various kinds of analogies.) Fortunately, many of the

processes required for non-trivial analogical reasoning (Chapters 111­

VI) can be carried out with the techniques that are well known to

artificial intelligence: tree-search,17 matching, etc. Since we are

using analogies to expedite the search for the solution of a new

problem, we need to relate our analogizing system to some existing

problem-solving system. The AI tradition provides several candidates

(Chapter III), and a resolution-logic system has been chosen as an

experimental vehicle for the approach that is developed here. This

particular problem-solving (theorem-proving) system has been

developed as part of a well defined research tradition that goes back

to the very first deductive problem solving system that was imple­

mented: the Logic Theorist of Newell, Shaw, and Simon
18.

From the

vantage point of heuristic theorem proving, the use of analogical

information that is developed here (Chapter III) is one kind of

heuristic for decreasing the search space that includes the desired

proof. In fact, ZORBA-I uses an analogy to select a small set of

axioms that are likely to be necessary for a problem solution from a

date base that includes considerably more (irrelevant) axioms.

Methods for selecting relevant axioms prior to solving a problem have

been an outstanding unresolved issue in the heuristic problem-solving

and theorem-proving fields. Here, we are able to provide a novel

approach to this important matter.

In summary, ZORBA-I provides a link between the heretofore sepa­

rate areas of reasoning by analogy, and heuristic problem solving.

Little work has been reported in the former area, and the research

reported in this dissertation breaks new ground in our understanding

9

of the process of analogy generation. Heuristic problem solving is

one of the classical areas of AI research, with a relatively rich tra­

dition of paradigms and important research issues. Our work falls

directly within this tradition by tackling an important unsolved

issue in heuristic problem solving (data-base reduction) by applying

analogical information within the context of a currently popular

problem-solving paradigm (resolution logic).

C. ZORBA in the Context of Contemporary Problem Solving Research

in Psychology

The use of analogies to aid problem-solving ability falls into

two classical areas of cognitive psychology: concept-formation and

problem-solving (or directed thinking). Unfortunately, very little of

the research literature is even peripherally relevant to the work that

is reported here. In 1969, Driestadt19 reported a clever experiment

that studied the use of (visual) analogies to aid the problem (puzzle)

solving task. He asked his subjects to solve several problems that

required a particular geometric configuration as a solution. For

example, a "tree planting problem" in which ten trees must be arranged

in five rows of four trees per row was presented. The problem state­

ment and its solution are shown in Figure 2. Some of his subjects

were shown a set of pictures that embodied a five-pointed star pattern

required for the solution. Different pictures contained a playing

card joker, a rocket zooming to the stars (Figure 2), and an aquarium

with starfish. These pictures were withheld from control subjects who

required significantly more time to solve these problems than subjects

who were presented with the pictorial aids. Dreistadt concluded that

visual analogies were a useful aid to this problem-solving task.

Dreistadt's work is progressive insofar as it is the only reported

research that directly relates the usefulness of analogies to problem­

solving speed. Unfortunately, he doesn't study the way his subjects

create the analogy and represent it to themselves.

10

Given data: 10 Trees

~-

Solution:

5 rows

4 trees/row

FIGURE 2. TREE PLANTING PROBLEM

11

Two styles of problem-solving research that potentially could aid

our understanding fail to be relevant for similar reasons:

(1) Some researchers pose problems to subjects that require

novel uses for familiar objects20 For example, a piece

of paper may have to be rolled into a tube to transfer

steel balls from one container to another. Various

studies have been conducted to learn how problem-solving

ability varies with a demonstration of the"appropriate

functions,lf irrelevant but superficially similar train­

ing problems, etc.

(2) Learning theorists
2 l

have long been concerned with trans­

fer of the solution rules of one problem set (training

set) to other related problems. In a typical experiment

a subject will be given a set of problems to solve. In

the course of solving them he will learn some rule that

applies to each problem in the set. He is then pre­

sented with a second problem set which requires a solu­

tion rule which may be similar, more general, or quite

different from the rule learned in solving the first

set. The subject's ease in solving the second set of

problems is studied as a function of the relationship

between the solution rules used in the first and second

problem sets.

Both these research styles openly develop their results at a

different level of generality than we need here. Most contemporary

psychologists are concerned with behaviors rather than consc.iousness.

The latter was exorcised from academic psychology near the turn of

the century in lieu of the former, which is more amenable to experi­

mental observation. Most experimental results are stated in

behavioral terms e.g., the use of visual analogies can aid some

kinds of problem solving. The description of underlying mechanisms

(other than S-R patterns) and representations necessary to develop an

information-processing model of the sort we want here require infer-

12

~, --~

ences about the contents of a person's consciousness that are unset­

tling to most contemporary experimental psychologists. A protocol

analysis in the spirit of Newel122 could conceivably be carried out

for many of the experiments reported in the literature, if the

researchers were more interested in the details of the ongoing inner

processes of their subjects. Unfortunately, we have no such reports

relating to the role of analogical reasoning in problem solving to

rely upon.

D. Preview of the Following Chapters

The remainder of this dissertation follows a simple pattern.

Chapter II is devoted to exploring the kinds of information that can

be transferred between analogous problems. It was originally writ­

ten as a solitary document in 1969, after ZORBA-I was conceived, and

before it was implemented. Its conceptual framework is a little dif­

ferent from that which appears in other chapters. All except Chap­

ter II were written after the bulk of experimental work was complete,

and provide a post-ZORBA view of reasoning by analogy. Chapter II is

included in its original version, since it provides an important

study that serves as a pre-ZORBA introduction. ZORBA is introduced

in Chapter III, and expounded in Chapters IV and V. The experimental

results appear in a table at the end of Chapter V and are inter­

spersed throughout Chapter VI. In contrast to the experimental

results, a set of interesting formal properties of the algorithms is

developed in Chapter VII. In particular, conditions under which the

use of analogies aids problem-solving efficiency are discussed. Chap­

ter VIII includes comments on extensions to ZORBA-I to include a

wider variety of analogies. We conclude with a retrospective glance

and suggestions for future research in Chapter IX. A brief note which

describes ZORBA-I as an implemented operating system appears as

Appendix C.

13

II

A. Introduction

AN INFORMATION-PROCESSING APPROACH

TO REASONING BY ANALOGY

n
u

n
1-)

il.
L;

Reasoning by analogy (REA) has been discussed in artificial

intelligence circles because of its extraordinary value in human

problem solving and its elusiveness to mechanization. Without an

ability to analogize, we would be unable to generalize, induce, or

theorize. Moreover, thinking would be rather tedious, as we would

have to solve each distinct problem afresh, without referring to pre­

vious experience. Fortunately the spectrum of similarities we are

able to exploit is rather wide, encompassing many types, each with

its own subvarieties. Unfortunately, we call much of this diverse

behavior "reasoning by analogy." Hopefully, in the near future, we

can develop some useful refinements for REA. For the present, I'll

simply describe some of the activities that are considered REA.

With respect to any particular kind of analogy, REA includes

the following activities:

n
u

o
n
l.Li

n
U

n
U

n
U

fl
U

n

U

n
U

(1) Given a particular problem, theorem, or situation (PTS)

find a previously known PTS that is analogous.

Given a PTS, produce a special kind of analogous PTS.

This would include producinc; the mechanical analog of an

electrical circuit, the n-dimensional analog of a

2-dimensional geometric theorem, the continuous analog

of a discrete function, the interpersonal analog of an

international conflict, the French analog of a Greek

idiom, etc.

Given an explanation of the functioning of some PTS, pro­

vide an explanation for the functioning of some analogous

PTS.

14

(4) Given two PTS's that are allegedly analogous, find at

least one coherent analogy between them.

(5) Given two analogous PTS's and a set of consequences of

observations drawn from one, infer an analogous set of

manageable proportions this discussion covers problems that can be

solved by deduction from some initial set of axioms , or der-Ived by

the application of a set of operations to a set of initial states, or

that can easily be transformed into this form. Although it is possi­

ble to fit a wide variety of problems24, including geometric construc­

tions, puzzles, and robot manipulation tasks, into this framework,

the majority of problems considered here are theorems in the usual

*sense. More structured than flreal-world problems,-fI this class

offers a decent starting point for any mechanized analogical problem

solving that hopes to be successful.

1. Change of Parameters

Two PTS's are recognizable as identical up to a change of

parameters - e.g.,

~J

I'
U

.if:

u.,

II =Sco (1 + i)-3 dx n> 0
-co r:

co

12 =s (n + if3 dx n>O .
-co

Computing II and 12 are "par-ame'ter-cvarLarrt II problems.

2. Generalization

In each pair of PTS, one is a generalization (or simplifi­

cation of the other:

(1) Let the pair of PTS be the 3-ring and 5-ring Tower

of Hanoi puzzles. The 5-ring puzzle is more

general than the 3-ring puzzle.

ii
U

n

(2) Tl: Given a triangle ABC, prove that the three

vertex-angle bisectors meet in a unique point.

Tl': The premises of Tl imply that this point is

the center of the inscribed circle.

T2: Given a tetrahedron WXYZ, prove that the bisec­

tors of any three dihedral angles that do not

meet in a common vertex intersect in a unique

point.

T2 ': The premises of T2 imply that this point is

the center of the inscribed sphere.

3. Similar Relational Structures

The pairs of theorems T3/T4 and T5/T6 are "relationally

isomorphic" when represented as graphs with nodes and links of

different types to represent relations and objects of different

classes. (The partitions of nodes and branches is, in effect,

a categorical semantics for the graph language.) In viewing

the proofs of these theorem pairs, one finds that they are

identical up to a set of substitutions (e.g., abelian group/

commutative ring, angle bisector/perpendicular bisector, etc.)

that results from the mapping associated with the analogy.

T3 : The bisectors of the three vertex angles of a

triangle intersect in a unique point that is

the center of the inscribed circle.

T4: The perpendicular bisectors of the three sides

of a triangle intersect in a unique point that

is the center of the circumscribed circle.

T5: The intersection of two abelian groups is an

abelian group.

T6: The intersection of two commutative rings is a

cOIDDlutative ring.

18

This class is an extension of the parameter-variant class,

and with some provision for mapping sets (clusters of nodes) into

sets of different cardinality, they may also include many gener­

alization-type analogies. Note that the relational isomorphism

is lllocalo tt

The preceding analogies were selected for their trans­

parency, but even isomorphisms can be complex. For example, con­

sider:

T7 : Let ABC and abc be two triangles in the same

plane defined within a k-dimensional finite

geometry over the Galois field GF[pnJ. Let

these triangles be perspective for a point 0,

such that 0, A, and a are collinear, 0, B, b

are collinear, and 0, C, c are collinear. Let

"be the point of intersection of AB and ab , /3
that of AC and ac, and a that of BC and bc.

Then the points cc, f3 , and "Y are collinear.

T8: Let X, Y, and Z be three sUbgroups of a geo­

metric set of sUbgroups of Gk such that no

one of them in the group is generated by the

other two. We select other subgroups of the

geometric set as follows: each of them is in

the group [X,Y,Z}; ° is any such subgroup not

contained in any one of the subgroups {X,Y},

{Y,Z}, [Z,X}; x,y,z are such subgroups dif­

ferent from O,x,y,z and contained respectively

in {O,X}, [O,Y}, and [O,Z}. Let~,t:" andY

be the subgroups of the geometric set of sub­

groups common to the respective pairs of groups

[X,Y},[x,YJ, [Y,Z},[y,z}, and [Z,X},[z,x}.

Then each of the two subgroups ~t, e, and lJ ,

is in the subgroup generated by the other two.

19

Every k-dimensional projective geometry over a Galois

field GF[pn] is capable of a concrete representation by an
(k+l)n) .abelian group of order p and type (1,1,1, •.• ,1 1f we con-

nconsider each subgroup of order p as a point in the geometric
25space. This association renders T7 logically equivalent and

relationally isomorphic to T8, although this correspondence is

hardly obvious.

4. Plans are Identical

Plans for the solution of each PTS are identical (at some

level of abstraction) - e.g.,

(1) T9: If a given affine transformation commutes with

every other affine transformation, then that

transformation is the identity.

lJ

T10: If a given affine transformation commutes with

all the translations, then that transformation

is also a translation (see Fig. 3 for proof

plan) .

(2) Tll: If F(w) is the Fourier transformation of f(t),

prove that e-jwtF(W) is the Fourier transforma­

tion of f(t-T).

T12: If F(w) is the Fourier transformation of f(b),

prove that (~) F~:) is the Fourier transforma­

tion of f(at) (see Fig. 4 for proof plan).

20

Parameterize
each trans~ormation

,Iir

Set up expression
~or commutivity

,Ir

Simplify expressions
(matrix and vector

manipulation)

Ir

Identify coef~icients

of matrix
and vector variables

Solve the associated
coe~ficient equations

,11'

Describe the resultant
trans~ormation

Translation

~-7 ~

IJ. =1<;+((
rV

Identity

FIGURE 3. PLAN FOR PROVING THEOREM 9 OR THEOREM 10.

21

',--)

Write the expression for the Fourier
transformation of the given function

Select a change of variables
that will reduce the kernel

~ 'w'x
of the integral to f(x)e J dx

Substitute the new variables
for the old

Simplify the kernel of the integral
jw'xto f(x)e - d.x

co
•. f

Substitute F(w') for S f(x)e- Jw xdx
-0)

FIGURE 4. PLAN FOR PROVING THEOREM 11 OR THEOREM 12

22

(3) T13: Let an arbitrary line t l intersect each of

three parallel lines sl' s2' s3 at points Pi'

P2' and P3' respectively. Let another arbi­

trary line t 2 intersect sl' s2' and s3 at

points ql' q2' and Q3' respectively. Then

T14: Let an arbitrary line t l intersect each of

three parallel planes sl' s2' and s3 at points

Pl' P2' and P3' respectively. Let another

arbitrary line t 2 intersect sl' s2' and s3 at

points Ql' ~, and Q3' respectively. Then

(See Fig. 5 for proof plan.)

Although a coherent planning language for this diverse

set of problems has not yet been written, it is clear that they

are "identical" at some level of abstraction easily accessible

to people.

5. Change of Representation

The solutions of both FrS's involve a common change of

representation and style of argument.

(1) Pi: Consider the classical truncated checkerboard

domino-covering problem.

P2 : Consider a 3 X 3 cubical apple with a worm on

its surface. The worm travels from cube to

adjacent cube, boring a hole without ever

23

Construction: Drop a line dl from PI .L to s3'
dl intersects s2 at a2 and s3 at ay
Drop a line d2 from ql 1 to s3'
d2 intersects s2 at b2 and s3 at by

..
Prove: (a) t.PIP2a2 ~ t.PI P3 a3

(b) Lglq2 b2 ~ .6.qlq3b3
by: 3 equal vertex angles imply "'Ns,

•
P2a2 --

Deduce: (a) PIP2
-- =-- --

P2a3 PIP3
-- --

(b)
"ib2 =

ql~

--
qlb3 qlq3

Corresponding parts of ~'s are in equal ratio.

~

(a)
-- --

Prove: Pla2 = qlb2

(b)
-- --
Pla2 = qlb3

by: Opposite sides of a rectangle are equal.

~
-- -- --

Deduce: (a) PIP2 + P2P3 = PIP3
-- -- --

(b) qlq2 + q2q3 = qlq3

from: Adjacent segments on same straight line.

..
-- --
PIP2 glq2

Deduce: =
-- --
P2P3 ~q3

from: Preceding equalities.

FIGURE 5. PLAN FOR PROVING THEOREM 13 OR THEOREM 14

24

returning to a previously drilled subcube.

Prove that it is impossible for the worm to

terminate his path in the centermost cube.

(2) If A is a matrix with transpose AT,

T15: (AT)T = A

T16: (A B)T = BT AT.

(3) If A is a matrix with inverse -1
A ,

T17 : (A-l)-l = A

T18: (A B)-l -1 -1
= B A •

Each of the preceding problem pairs entails similar repre­

sentations. The truncated checkerboard and the cubical apple

problems are both solved by coloring adjacent cells black and

white and then using a parity argument. If we restrict our­

selves to a simple operator-free matrix algebra, T15 and T16

are most easily proved by representing each matrix by its ijth

1 t d . 1 t' th ..th t d' t th .e emen an manlpu a lng e lJ erms accor lng 0 e specl-

fied computations. On the other hand, T17 and T18 are both

easily proved by simple algebraic operations. What a person

extrapolates from T15 to T16 or from T17 to T18 is a specific

representation in which problem-solving ability is enhanced.

(AT)- l -_ (A-l)T, heIf a person were faced with the problem

might be unsure of which representation to choose, and would

try either one. (It turns out that either representation

affords straightforward proofs.)

6. Common Subproblem

Both problems involve a common subproblem.

(1) Let A be a matrix with elements a .. and an irwerse
lJ

B. Then
""

25

and

b ..
lJ

det[A]

c ..
lJ

det [A]

n 1+'
= - (-1) J a .. c ..

2 lJ lJ
j=l

,__,

where c .. is the i-jth cofactor of A. Thus, the
lJ -1

computation of A and det[£] share the common sub-

problem of computing some cofactor of A.

(2) Consider a robot in a room full of scattered metal

furniture.

PI: The robot is asked to paint the floor of the

room.

F2: The robot is asked to replace each piece of

furniture with a similar wooden piece from the

next room.

Each of these problems can be solved by first clear­

ing all the metal furniture out of the given room,

and in that sense they are analogous.

Problems that involve only one common subproblem can be

really rather different and still allow useful problem-solving

extrapolations. Probably these extrapolations are best

regarded by treating the subproblems as substantial problems

unto themselves. For example, every time we encounter a trig­

onometric integral in solving some problem, we become better

integrators and increase our facility for rapidly guessing

appropriate substitutions. Thus, the extrapolation of inte­

gration techniques from one problem to another is due to

recognizing the need for our developed skill as an integrator,

rather than noting some gross aspects of problem structure.

26

D. Information Transfer Between Problem Solutions

A bold step toward REA will be taken when an automatic a.lgorithm

for creating an analogy between two problem statements is developed.

Presumably, such an algorithm need only know the two theorem state­

ments and have access to the data base of axioms. Even if one has a

detailed analogy that is limited to the relations and objects explic­

itly mentioned in the theorem statements, one still must know how to

use this information to accelerate the search for a solution.

While some useful information may be gleaned from this

"restricted analogy," much of the information in a proof of the new

theorem often involves additional relations, facts, and patterns of

inference that are absent from the problem statement. Any interest­

ing analogy-generating algorithm will need to operate upon theorem

proofs as well as theorem statements. The search for

analogous "additional information" helps pin down the viability and

level of abstraction that can be expected from a given analogy. If

we don't obtain much side information, we may believe that our

analogy is too specific. If we obtain too much, our analogy may be

too general.

In any but the most simple problems, the solution is derived in

terms of relations that do not appear in the problem statements.

Suppose we had a magical system that could offer information

helpful to proving an unknown theorem if it were given an analogous

proved theorem. What kind of interesting advice could we expect

from this program? At one extreme it might be clairvoyant and offer

a complete solution to the baffling problem. Short of such omnis­

cience, what kind of partial information would be helpful? ~eextbook

writers often append hints of two types to the problems they provide:

(1) Problem difficulty (easy, hard)

(2) "Hints" that include:

(a) Suggested representation

(b) Appropriate methods

27

(c) Relevant principles or theorems

(d) Valuable s,o:":;;J,'oblems.

In the second case, there seem to be three different levels of

"heuristic detail, " each with possible attendant information.

1. Representations

Representations are mentioned in Section C-5 of this

chapter.

A style of argument may be added e.g., induction,

parity, etc. Additional details such as which parameter to

induce on may be included.

2. Plan

Consider a problem solution as a sequence of states S.
J

and state transition operators P., as in Fig. 6 below:
J

FIGURE 6. A PLAN DEPICTED AS A SEQUENCE OF STATES

Although the depicted operators have unary inputs, several

inputs may be possible, as in inference from several inter-
26

mediate results (states) • Likewise, there may be several

outputs - e.g., a problem may be split into several intermedi­

ate subproblems. A plan is any sequence of state descriptions

and/or operator descriptions that parallels ffil alleged problem

solution. These descriptions are usually abstracted versions

(patterns) that may have several candidates in the object

28

language. In this sense they are weakly specified.

varieties of information may be offered as a plan:

Several

(1) A sequence of operations or methods may be specified

(Fig. 4).

(2) A sequence of patterns that describe the expected

state sequence (a state "monitor").

(3) A sequence of subgoals described in the object

language (Fig. 5).

A functional planning language needs at least four fea­

tures:

(1) Its own logic

(2) A well-defined nexus between the planning states/

methods and the object-language states/methods

(3) An ability to reference future results

(4) Some facility to manipulate data representations so

that the flow between different processes is smooth.

These features are integral to an autonomous planning sys­

tem. When we focus on the kinds of information that can be

extrapolated from problem to problem at a planning level we

find:

Plan, as described above

Estimates on the difficulty of various subproblems

Conditions describing when to terminate a process:
• I

"simply the kernel of an integral to f(x)e- Jw x

(Fig. 4)

(4) Operator inputs: "deduce Sj from Theorem Tk and

S "j-l"

This wealth of side information (nonsequential) associ­

ated with a plan can range in abstraction from being detailed

29

E.

in the object lanC;uCl(';c (a particular theorem) to some more

abstract description (~,.g., a theorem relating groups and homo­

morphisms, a sufficient condition for a set to be a group, etc.)

3. Object Language Level

(1) Explicit subproblems and lemmas (Fig, 5)

(2) Relevant theorems that will be used in the proof

(Fig. 5)

(3) The set of relations to be used in the problem solu­

tion

(4) Problem difficulty.

The set of relevant theorems need not be structured with

their relevant sUbgoals as in Fig. 5, but may be an unordered

set of which the PSS is conspicuously conscious.

It is now clear that the range of helpful advice is

rather broad, both in level of detail and degree of structure.

Although a restricted analogy could be generated first and the

"helpful information" later, it would be nice if some of it

were a byproduct of the analogy-generating program.

Automated Use of Analogical Information

In this section, I will combine several themes that have run

through this chapter and apply them to the automation of analogical

problem solving. First, I will summarize some of the key points

that I have mentioned in the preceding sections.

(1) The idea of analogy is ill defined. There are at least

several kinds of related analogies.

(2) Each of these analogical varieties would best be recog­

nized by somewhat different means.

30

(3) The kinds of information that are extrapolable between

analogous problems of each variety are quite different.

Thus, the algorithms and designs for using these diverse

types of information are likely to be qUite different.

(4) One of the key issues in extending analogical information

is knowing in advance the level of generalization. that

will hold for each analogized parameter, method, operation,

theorem, or fact.

(5) A set of strategy/planning languages that would allow an

appropriate degree of generality would be quite complex.

These facts imply:

(a)

(b)

*No analogy-oriented PSS (APSS) should be expected to

process all varieties of analogy, since each involves

a somewhat different style of information processing.

An APSS that attempts to extrapolate general sequen­

tial plan-like information or patterns of in~erence,

and attempts to actively direct a problem solver

that incrementally infers and tests inferences

against its supervisory schema would be quite com­

plex.

Many of the example problems presented in Section C of this

chapter push the limit of contemporary PSS and will probably be non­

trivial for any of the planning-oriented systems that will emerge in

the next few years. ThUS, we end up wanting to use analogical infor­

mation without creating plans or other forms of skeletal solution

structures.

The means of doing this are actually very simple if we review

our situation again. A typical APSS will have a large data base and

be presented with a pair of problems: One is unsolved and the other

* A PSS is alfproblem-solving system. If

31

has already been solved and its solution is available to the APSS.

I want to underscore a cri~ical way in which this situation differs

from the typical PSS. Most PSS' s work on a "mt.n.lma.L'' data base for

*which the user has selected an adequately small set of axioms . When

the data base of a typical PSS is expanded to include some irrelevant

axioms, they begin to generate a substantial set of irrelevant infer­

ences (due to the interaction of relevant and irrelevant axioms and

their descendent inferences). Consequently, they begin to flounder

in their search and may fail to solve problems that are easily

solvable with a minimal axiom set. To be concrete, consider a PSS

that uses 8 axioms to prove some theorem T with a search that gener­

ates 100 inferences for, say, a 20-step proof. Adding 10 more axioms

to the data base may force it to generate 500 inferences before find­

ing its 20-step proof. In a sense, these figures are doctored, since

a set of 10 axioms can be chosen that will have no appreciable effect

on the search-space size, while another set of 10 may be added that

can explode the search space almost arbitrarily.T

Since an APSS will be proving somewhat diverse theorems with a

(usually) common data base, it is in principle bound to seek proofs

in a context abundant in excessive and irrelevant data. One key

method for exploiting analogical information is to select a subset of

axioms appropriate for proving the new theorem. Then,

., .J

we are constricting the context in which theorem proving takes place

by narrowing the set of accessible axioms. The usual strategies of

the particular PSS can be used unmodified; the analogical information

*All known resolution systems17 and Gps27 operate this way. Gelern­
ter's Geometry theorem-prover28 is the only system that accessed a
superset of the necessary axioms. He used a special model to cut his
search space to include only relevant inferences.
t
In the first case, add axioms that use many distinct predicate let-

ters and many distinct function symbols. In the latter case, use
axioms with only one or two predicate letters, and choose axioms that
will resolve with most of the others, preferably recursively.

32

is merely used to narrow the context sufficiently to reduce the search

space to a more manageable size. Selecting an appropriate axiom set

is one of several kinds of information that may be added independently

of PSS strategy. A more complete and suggestive listing inc:ludes:

(1) Restricting the set of admissible relations

(2) Restricting the set of admissible operator symbols

(3) Restricting the set of admissible axioms

(4) Restricting the order of operator nesting

(5) Generating analogous subproblems, solving them, and

adding them as axioms.

This list can be extended, depending on the kinds of information used

by a particular PSS. Thus, if a PSS has a look-ahead estimator

(like REF-ARF)29, then that too may be analogized without modifying

the PSS structure. The key idea is that an effective means of

exploiting analogical information is to modify the context in which

a particular theorem prover operates, rather than subjecting it to a

planning-like scheme that supervises the sequence of its inference

making.

Now, the actual means for generating analogies and

extrapolating analogous axioms depends upon the representations and

PSS used. These details have been developed and implemented. for a

resolution-based theorem prover and are described in the following

chapters.

33

III AN INTRODUCTION TO ZORBA.

A. Introduction

ZORBA., outlined in this chapter, is a paradigm for handling some

kinds of analogies. This is the first instance of a system that

derives the analogical relationship between two problems and outputs

the kind of information that can be usefully employed by a problem­

solving system to expedite its search. As such, ZORBA is valuable

in three ways:

(1) It shows how nontrivial analogical reasoning (AR) can be

performed with the technical devices familiar to heuristic

programmers e.g., tree search, matching, and pruning.

(2) It provides a concrete information-processing framework

within which and against which one can pose and answer

questions germane to AR.

(3) Since it is implemented (in LISP), it is available as a

research tool as well as a gedanken tool.

The last two contributions are by far the most important, although

our attention will focus upon the first. In the 50's and 60's, many

researchers felt that analogical reasoning would be an important

addition to intelligent problem-solving programs. However, no sub­

stantial proposals were offered, and the idea of AR remained rather

nebulous, merely a hope. ZORBA may raise more questions of the

"what if?" variety than it answers. However, now, unlike the situ­

ation in 1968, we have an elementary framework for making these

questions and their answers operational.

B. ZORBA Paradigm

Although prior to ZORBA there were no concrete paradigms for AR,

there was an unarticulated undeveloped paradigm within the artificial

intelligence Zeitgeist. Suppose a problem solver had solved some

problem P and has its solution S. If a program is to solve a new,

analogous PA' it should do the following:

(1) Examine S and construct some plan (schema) S'

that could be used to generate S.

(2) Derive some analogy a: PA -? P.

(3) Construct a-l(s ') :::: S 'A'

(4) Execute S 'A to get SA' the solution to PA'

If P was solved by executing a plan, then S' would be available and

step 1 could be omitted. Although nobody has explicated this idea

in pUblications, from various conversations with workers in the

field, I have come to believe that the preceding description is

close to the paradigm that many would have pursued. As such, it

constitutes the (late-60's) conventional wisdom of artificial intel­

ligence. Certainly this (planning) paradigm is attractively ele­

gantl However, in 1969, when the research was begun, it was an

inappropriate approach for two reasons:

(1) There are no planning-oriented problem solvers that are

fully implemented and that operate in a domain with inter-

*esting nontrivial analogies. This state of affairs

probably will change in the next few years, but :It now

renders difficult any research that depends on the exist­

ence of such a system.

(2) Given the plans generated by such a system, it is hard to

know a priori at what level of generality the derived

*PLANNER30 at MIT and Q,A431 at SRI are two current planning··oriented
problem solvers under development. The first is partially imple­
mented and the second exists only on paper. It is not yet clear
what problem-solving power PLANNER will have, and how effective it
will be in domains with interesting analogies.

35

analogy will map into an executable analogous plan. If

s'A fails, is a t00 strong, or wrong? Should a be modi­

fied and a variant ;;/1 A computed, or should the sys t.em

J\.\~CP a, and jw; L bar-k up it[; planner and generate an

alternative subpLan using its own planning logic? At

best this is a rather complex research issue that would

involve a good planning-oriented problem solver as an

easily accessible research tool. At worst, the preceding

paradigm may be too simple and a suitable a may be devel­

oped interactively with how much successful problem-

solving has proceeded so far. (A complete a should not

be attempted before some problem solving begins and is

extended as needed in the course of solving P
A.)

Happily, there is an alternative approach that circumvents the

preceding difficulties. Consider a system that has solved some prob­

lem P and is posed with a new (analogous) P
A

to solve. Clearly, it

must operate on some large data base sufficient to solve both P and

PA (s ee Fig. 7). In addition to the subbase for solving P and PA

Theorems to
P

A

Data Base D

A

Theorems to solve

FIGURE 7. VENN DIAGRAM OF THEOREMS IN DATA BASE

there are likely to be even more theorems in the set D - (Dl U D
A).

Now, given P, it is impossible to infer a minimal D
1.

In practice, a

user may select some D2 s.t. Dl ~ D2 c D which the problem solver

will access to solve P. If one studies the searches that problem

solvers generate when they work with nonoptimal data bases, it is

obvious that many of the irrelevant inferences that are generated

are derived from the data-base assertion (theorems, axioms, facts) in

D - Dl (or D2 - Dl). In fact, as the number of theorems irrelevant

to the solution P becomes large, the number of irrelevant inferences

derived from this set begins to dominate the number of irrelevant

*inferences generated within Dl and its descendants alone. In fact,

while a problem solver might solve P given an adequate and small Dl,
it may be swamped and run out o~ space before a solution given a D2
that is much larger than needed. Clearly, one effective use of

analogical information would be to select a decent subset D2 of D

such that size[Dl] ~ size[D2] «size[D]. For example, a typical

theorem in algebra provable by QA332 - a resolution logic theorem

proof - may require only 10 axioms (Dl), while the full algebraic

data base has 250 axioms. If a system could select a D2 such that

size[D
2]

= 15 axioms, a massive saving in search could be obtained.

In fact, the theorem that would be unprovable on a D with size[D] =250

would now be provable.

A second kind of information that would be useful to help solve

P would be a set of lemmas (or sUbgoals) 11, ••. , 1. whose analogsA . J
a(11) , ••. a(1) could be solved by the system before attempting PA•

*Even given an optimal data base, a problem solver will generate some
irrelevant inferences.

i I n general, automatic problem solvers and theorem provers rUl1 out of
space rather than time when they fail to solve a problem. Ernst33
emphasizes this point with regard to GPS, and I have had similar
experiences with QA332, a resolution logic theorem prover.

37

J

*At this point I will not discuss how to recognize a lemma and

generate its analogt ; inst.~':::ij I merely want to note that lemmas may

be effectively used without using a planning language that forces

backup in case of failure. Suppose we somehow get O(Ll) , ••• O(L
j

) .

A typical planner would order the O(Li) , e.g., O(Ll) , a(~) ... etc.,

attempt to solve them in sequence, and stop if any lemma fails to be

solved. In contrast, we merely need to attempt each O(L.). If we
~ :I:

get a solution, we add O(L.) to the data base (like a theorem) and
~

continue with the next lemma. If we fail, we continue anyway. At

worst, we wasted some computation time. Each useful a(L.) decreasesa
the number of steps in the solution of P

A
and may decrease the depth

of the solution tree. Thus, lemmas are helpful in getting a faster

solution. Note, however, that a successful 0(1.) need not be used
J -

in the solution of PA. It is merely available. Thus, we are not

bound by the fail-backup orientation of sequential planning logics.

In summary, if we use analogical information to modify the

environment$ in which a problem solver operates, we can effectively

*Recognizing lemmas depends on the problem-solving system. For
example, in resolution logic, some good criteria for lemmahood are:

(1) A ground unit used more than twice (or k times) in a proof.
(2) A unit that is a merge.
(3) A claus e that is the "least descendant" of more than 2 (or k)

units.

tGenerating a lemma depends on the system's ability to associate
variables with variables, and the association may be tricky when
skolem functions are introduced.

tIn fact, under some conditions, the axioms used to solve 0(1i) may
be deleted from D2 so that size[D2] is decreased, and 0(1i) is not
attempted again inadvertently during the solution of PAD

~Here environment is synonymous with data base. But it can also
include permissible function orderings (in predicate calCUlUS) and
other kinds of restrictive information. Each rule restricting the
"environment" could be translated into an equivalent new decision
rule restricting the application of the inference procedures of the
problem solver. However, I find it easier to think of ZORBA in
terms of modified environments rather than (the equivalent) modi­
fied decision rules.

abbreviate the work a problem solver must perform. Of course, a

well-chosen environment will always lead to a more efficient search.

Usually, we have no idea how to tailor a subenvironment automati­

cally to a particular problem. Here we do it by exploiting its

analogy with a known solved problem. Now, the representations used,

the analogy-generating programs, and the types of additional infor­

mation output will depend on the problem-solving system (and even

the domain of application). Any further discussion needs to specify

these two items.

C. Applications to Resolution Logic

The preceding discussion referred to any problem solver, and is

just a proposal. Computer programs have been implemented to apply

this paradigm to a resolution-logic theorem prover, QA332• For the

class of analogies these programs handle, this is an accomplishment.

When we begin to focus on a particular paradigm, two issues are

more easily resolved:

(1) "VIThat kinds of information are most useful to provide

the problem solver?

(2) Which representations shall we use to describe the

analogies and handle the necessary data?

Actually, these two issues interact. For example, if we want

to study planning-level analogies, then we need a problem-solver

that can create and execute plans for the problems it attempts. In

turn, we expect to be passing it information that refers to its

sequence of plans, criteria for subgoal completion, etc. Many impor­

tant details of this research are affected by our choice of problem­

solving system. In addition, the classes of analogy we can stUdy

are affected by the kinds of problem-solver that we choose. Earlier

I noted that a planning-problem-solving system was not available

when this research was begun. In the beginning stage of this

research it was unclear how wide a variety of problem domains we

39

would like to consider. Both abstract algebra and plane geometry

are rich in analagous problems, and we wanted to be able to consider

at least both. Thus, rather than turning to a specialized problem­

solving system like Gelernter's GEOMETRy28 machine or Norton's

Group-Theorist29, we decided on a general-purpose system. Our

choice between a resolution-based system and a GPS-like system was

strongly influenced by the recent development of a relatively flexi­

ble resolution-theorem prover in the laboratory at Stanford Research

Institute where this research was carried out. In fact, this reso­

lution system, Q/l.3, was implemented in LISP on the SDs-94o, the same

*language and same machine on which ZORBA was to be imple.lnented. No

other, equally powerful problem-solving system was available in

either LISP or on the SDs-940 at that time. At least a year's work

was saved by opting to use Q/l.3 as an experimental vehicle.

Resolution is attractive on its own merits, as well:

(1) It is a highly popular inference system that is currently

receiving a vast amount of attention. The results of

ZORBA-I can be relatively easily related to other develop­

ments in this "hot" area of study.

(2) Resolution uses first-order predicate calculus, which has

substantial expressive power. Any problem whose solution

may be deduced from a set of first-order axioms in some

natural inference system can be transformed into a resolu­

tion theoremt . QA324 has been used to solve the monkey

*ZORBA progra~s were later converted to PDP-IO LISP when the SRI
Pxtificial Intelligence Laboratory changed machines.

tSince our discussion is shifting to resolution, our terminology
will shift from the language of problem solving to the language of
theorem-proving, with the following equivalences:

problem ~ theorem

solution ~proof

40

and bananas problem and the tower of Hanoi puzzle, handle

questions pertaining to drug interactions, nlake diagnostic

inferences in a simple medical application, and prove

theorems in geometry, algebra, and number theory.

(3) Practical resolution systems are more powerful than com­

peting systems like GPS. The resolution system allows more

natural representations for some applications, particularly

mathematics.

Resolution logic is an inference rule whose statements are called

clauses* 17. Thus, a resolution-oriented analogizer will deal with

clauses and their descriptions. In contrast, GPS uses sets of

objects to describe its states, and we would expect that an analogy

system devoted to GPS would deal with (complex) objects and their

attributes. Table 1 contrasts the kinds of information helpful to

QA3 and GPS. An analogy facility developed for GPS would be

GPS

oriented to its peculiar information structures instead of clauses.

Table 1

KINDS OF INFORMATION HELPFUL TO QA3 AND GPS

QA3 (Resolution)

Relevant axioms

Expected predicates

Lemmas

Ailiaissible function nestings

Relevant operators

Abbreviated difference table

Subgoals

Restrictions on opera­
tor applications

*A clause is an element in the conjunctive normal form of a skole-
mized wff in the predicate calculus. For example,
-person[x] V father[g(x);x] is the clause associated with:
Vx person[x] ~~y father[y;xJ (every person has a father).

41

I want to digress briefly and describe the kinds of theorems

that the implemented system, ZORBA-I, tackles. Briefly, they are

theorem pairs in domains that can be axiomatized without constants

(e.g., mathematics) and that have one-one maps between the:ir

predicates. The theorems are fairly hard for QA3 to solve. For

example, ZOHBA-I will be given proof of the theorem:

Tl: The intersection of two abelian groups is an abelian

group and is asked to generate an analogy with

T2: The intersection of two commutative rings is a commuta­

tive ring.

Given:

T3: A factor group G/H is simple iff H is a maximal normal

subgroup of G.

Generate an adequate analogy with

T4: A quotient ring A/c is simple iff C is a maximal ideal in A.

None of these theorems is trivial for contemporary theorem provers.

(See Table 2 in a later section, for a listing of additional theorem

pairs.) Tl has a 35-step proof and T
3

has a 50-step proof in a

decent axiomatization. A good theorem prover (QA3) generates about

200 inferences in searching for either proof when its data base is

minimized to the 13 axioms required for the proof of Tl or to the

12 axioms required for the proof of T
3•

If the data base is

increased to 20 to 30 reasonable axioms, the theorem prover may

generate 600 clauses and run out of space before a proof is found.

Note also that the predicates in the problem statement of these

theorems contain only a few of the predicates used in any proof.

Thus, Tl can be stated using only (INTERSECTION; ABELIAN}, but a

proof requires (GROUP; IN; TIMES; SUBSET; SUBGROUP; COMMUTATIVE} in

addition. Thus, while the first set is known to map into (INTERSEC­

TION, COMMUTATIVERING}, the second set can map into anything.

Figure 8 shows a set P including all the predicates in the data

base.

42

'._J

P

All
Predicates
in data base

D

FIGURE 8. VENN DIAGRAMS OF RELATIONS IN STATEMENTS T, TA' AND D'

We know P'l and P'2' the sets of predicates in the statements of the

new and old theorems, T
A

and T. In addition we know the predicates

PI in some proof of T (since we have a proof at hand). We need to

find the set P2 that contains the relations we expect in some proof

of T
A,

and we want a map a: a(PI) = P2'

Clearly, a wise method would be to find some a', a restriction

of a to P'l such that a'(p'l) = P'2' Then incrementally extend a' to

a'l' a'2' ... , each on larger domains until some a'(Pl) = P2. ZORBA-I

does this in such a way that each incremental extension picks up new

clauses that could be used in a proof of T
A,

In fact, if we get no

new clauses from an extended a'. is faulty. The next section will
J

describe the generation algorithm in a little more detail.

D. ZORBA's Representation of an Analogy

In the preceding sections I have implied that an analogy is some

kind of mapping. The ZORBA paradigm - e s g , using an analogy to

restrict the environment in which a theorem prover works -- does not

restrict this mapping very much. For different intuitively analogous

\.~ J
theorem pairs, this mapping would need to be able to associate predi­

cates (and axioms) in a one-one, one-many, or many-many fashion, pos-

sibly dependent on context. For other theorem pairs, one-one

mappings and context-free mappings are adequate. ZORBA-I is a par­

ticular set of algorithms that restricts its acceptable analogies to

those that map predicates one-one with no context dependence. It

between the variables that appear

n.l.Low.: one-many a;;[;oc:intions between ax i.omc - ('.1':., 011<' axiom oJ' (;]w

proved Lhoor-crn i:: au soc Lat.od with one or more axioms that will be USCtl

to prove the new, analoGous theorem. More explicity, a ZORBA-I anal­
p c v

0Gya is a relation a x a x a , where~

(1) a? is a one-one map between the predicates used in the

proof of the proved theorem T and the predicate used in the

proof of the unproved theorem T
A•

(2) aC is a one-many mapping between clauses. Each clause used

in the proof of T is associated with one or more clauses

from the data base D that ZORBA-I expects to use Ln prov­

ing T
A•

av is a many-many mapping

in the statement of T and those that appear in the state­

ment of T
A•

vDifferent sections of ZORBA-I use these various maps - e.g., a
and/or aP, and/or a C• Usually I will drop the superscript and simply

refer to "the analogy a." Thus, "the analog of an axiom axk under

analogy a" should be understood to mean aC[~], and will often be

mentioned simply as "the analog ofaxk•
1I

In the previous section I refer to a sequence of analogies

aI' ... ~. ZORBA-I usually does not develop aC
in one step. Rather,

it incrementally extends some limited analogy into one that maps a

few more variables, predicates, or clauses. This process is described

in full detail in the next few sections. Here, I just want to define

several terms that refer to this process. When I refer to "the

analogy between T and T II I refer to a mapping that includes every
A

variable in the statement of T, and every predicate and clause used in

the proof of T. This "compLet.e " mapping is obtained as the final

step of a sequence of mappings that contain the associations of some

predicates and some clauses. I refer to these incomplete mappings as

IIpartial analogies. 1I In addition, we are concerned with an important

44

Intuitively, when we add

relationship between two (partial) analogies. A (partial or com­

plete) analogy ~ is an "~x~~~ of a partial analogy a
j

if some of

a. - e.g., aP. , aC
. , aVo - is a submap restriction of the corres-

J J J J
ponding submap of ~ to a smaller domain.

a new predicate or clause association to a
j

so as to create ~, we

say that a
j

has been extended to ak • We are now ready to survey

ZORBA-I.

E. An Overview of the Analogy-Generating Algorithm

I want to describe the ZORBA-I algorithm in two stages, first

briefly in this section and then in greater detail in the following

two chapters. I will precede these descriptions by some background

on the representations and information available to the system.

ZORBA-I is presented with the following:

(1) A new theorem to prove, T
A•

(2) An analogous theorem T (chosen by the user) that has

already been proved.

(3) Proof[T], which is an ordered set of clauses, {ck}
s.t. Vk ck' is defined by:

(a) A clause in I T, or

(b) An axiom, or

(c) Derived by resolution from two clauses

j < k and i < k.c. and C.
l J

These three items Df information are problem-dependent. In

addition, the user specifies a "semantic templatell
fOT each predicate

in his language. This template associates a semantic category with

each predicate and predicate-place, and is used to help constrain the

predicate mappings to be meaningful. For example, structure[set

operator] is associated with the predicate "group." Thus, ZORBA-I

knows that "A" is a set and 11*" is an operator when it sees

group[A;*]. Currently, the predicate types (for algebra) are

45

STRUCTURE, RELATION, MAP, and RELSTRUCTURE; the variable types are

SET, OPERATOR, FUNCTION, and OBJECT.

In addition, ZORBA-I can make up a description descr[c] of any

clause c according to the following rules~

(1) 'ifp s.t. p and -, p appear in c, impcond[p] E descr[c].

(2) 'ifp s , t. p appears in c, pos[p] E descr[c] .

(3) 'ifp s.t. -, p appears in c, neg[p] E descr[c].

*Thus, the axiom, every abelian group is a group -- e.g.,

'if(x *) abelian[x;*] ~ group[x;*] is expressed by the clause

cl: -, abelian[x;*] V group[x;*], which is described by

neg[abelian], pos[group].

Each element of a description -- e.g., pos[group] is a lffeature lf of

the description. Each feature corresponds to one predicate, so the

number of features in a clause equals the number of predicates in the

clause. The theorem, the homomorphic image of a group is a group --

e s g , ,

'if (x Y *1 *2 cp)

hom[cp;x;y] A grouP[x;*l]

~ grouP[Y;*2] is expressed by the clause

c2: ~ hom[cp;x;y] V -, grouP[x;*l] V grouP[y;*2]

and is described by

neg[hom], impcond[group].

Two different clauses may have the same description.

Let:

c3~ -, intersection[x;y;z] V sUbset[x;y]

c4 : -, intersection[x;y;z] V sUbset[x;z].

*See Appendix A for the definitions and semantic templates of the
predicate letters.

46

Then:

descr[c
3

] = descr[c4] = neg[intersection], pos[subset].

Clause descriptions are used to characterize the axioms whose

analogs we seek. ZORBA-I selects as analogs clauses that have

*descriptions that are close to the analogs of the descriptions of

axioms in the known axion set. Although in a special context

ZORBA-I actually uses an ordering relation on a set of descriptions

to find a "best clause," it usually exploits a simpler approach,

We will say that a clause c satisfies a description

d iff d<:=, descr[c]. Thus, several clauses may satisfy the same

description.

Let:

c
5

: ,intersection[x;y;z] v,group[y;*] v,group(z;*] V gr-oup[x ;«]

c6: ,subgroup[x;y;*] V,subset(x;y].

Then, the following statements are true:

(1) [c2,c5} satisfy impcond(group]

(2) [cl'c2,c5
} satisfy pos[group]

(3) c l satisfies neg(abelian], pos[group]

(4) [c
3,c4,c6} satisfy pos[subset]

(5) c6 satisfies neg[subgroup], pos(subset]

(6) No clause of these six satisfies pos[intersection].

Clearly, if a description contains only a few features, then

several clauses may satisfy it.

The semantic templates are used during both the INITIAL-l~P

(when the predicates and variables in the theorem statements are

mapped) as well as in the EXTENDER, which adds additional predi-

*The "analog of a description" is defined in Chapter V.

cates needed for the proof of T
A

and finds a set of axioms to use

in proving TA• The clause descriptions are used only by EXTENDER.

I intend the brief description that follows to provide an

overview of ZORBA-I in preview to the next two chapters of text,

which describe it in considerable detail. In addition, this pre­

view section may be a helpful "roadmap" for reference when the

reader immerses himself in the details that follow later on.

ZORBA-I operates in two stages. INITIAL-MAP is applied to the

statements of T and TA to create an ai ' which is used by EXTENDER

to start its sequence of et: and o,v., which terminate in a complete
J J

0,. INITIAL-MAP starts without a priori information about the

analogy it is asked to help create. Both aP and aV are e~Qty when

it begins. INITIAL-MAP uses the pair of wffs that express T and

T
A

as well as the restrictions imposed by the semantic categories

to generate ai and a~ that include all the predicates and vari­

ables that appear in the two wffs. For example, the statements of

Tl - T2 can contain three of the nine predicates used in proof[TlJ,

and the statements of T
3

- T4 can contain five of the 12 predicates

used in proof[T
3J.

In brief, INITIAL-MAP provides a starting

point from which EXTENDER can develop a complete a.

The INITIAL-MAP uses an operator called

atommatch[atoml;atom2;aJ, which extends analogy by adding the predi­

cates and mapped variables of atoml and ato~ to analogy a. Thus,

*ATOMMATCH now limits ZORBA-I to analogies where atoms in the state-

ments of T and T
A

map one-one. INITIAL-MAP is a sophisticated

search program that sweeps ATOMMATCH over likely pairs of atoms,

one of which is from the statement of T, the other from the state­

ment of T
A•

Alternative analogies are kept in parallel (no backup),

and INITIAL-MAP terminates when it has found some analogy that

includes all the predicates in the theorem statements. This one is
p

output as 0,1 •

*Atoms, not predicates.

48

EXTENDER accepts a partial analogy generated by INITIAL-MAP and

uses it as the first term in 9. sequence of successive analogies a..
J

The axioms used in proof[T] are few in comparison to the size of the
c

large data base, and comprise the "domain" for a complete a. For

each axiom used in proof[T], we want to find a clause from the data

base that is analogous to it. The axioms used in proof[T] are called

AXSET and are used by EXTENDER in a special way. Each partial

analogy a~ is used to partition AXSET into three disjoint subsets
J

called all[Q,.], some[a.], and none[a.].
J J . J

pa., then
J

then ~

If an axiom is contained

in ALL, and mo st a~

sequence of analogies

~
belong to SOME and NONE. We want to develop a

Q,., j = 1, .•• n, that contain an increasingly
J

larger set of predicates and their analogs.

If all the predicates in an axiom a~ E AXSET are in

(L"k is in all[a.J; if some of its predicates are in a~ ,
J J

is in some[a.], and if none of its predicates are in Q,~, then ax
kJ J

is in none[Q,.]. For brevity, these sets will be called ALL, SOME,
J

and NONE, and their dependence on OJ will be implicit. This par-

tition is trivial to compute, and initially, none or a few are

in ALL, then by definition we know the analogs of each of its predi-

cates.

ations.

It can not assist us in learning about new predicate associ­

In contrast, we know nothing about the analogs of any of the

predicates used in axioms contained in NONE. Analog clauses for

these axioms are hard to deduce since we have no relevant information

to start a search. Unlike these two extreme cases, the axioms in

SOME are especially helpful and will become the focus of our atten­

tion. For each such axiom we know the analogs of some of its predi­

cates from Q,.. These provide sufficient information to begin a
J

search for the clauses that are analogous to them. When we finally

associate an axiom with its analog, we can match their respective

descriptions and associate the predicates of each that do not appear
p

on OJ' We can extend Q,j to a j +l, and thus the analogs of axioms

on SOME provide a bridge between the known and the unknown, between

the current Q,j and a descendent and thus the analogs of axioms

on SOME provide a bridge between the known and the unknown, between

the current a j and a descendent aj+lo When EXTENDER has satisfac­

torily terminated, ALL == AXSET, SOME == NONE == 1J. So the game becomes

finding some way to systematically move axioms from NONE to SOME to

ALL in a way that for each aXk moved, some analog aj(ax
k)

=: ax~ is

found that can be used in the proof of T
A

0 Moreover, each new asso-

ciation of clauses should help us extend aj~aj+l by providing

information about predicates not contained in a ..
J

The following chapters are devoted to a detailed explication of

ZORBA-I. INITIAL-MAP is a comparatively simple system and will be

covered in Chapter IV. EXTENDER is far more novel in its conception

and complex in its details. It will be introduced in Chapter IV and

examined in greater detail in Chapter V. I recommend that the seri-

ouse reader skim these two chapters to acquaint himself with most

of the concepts and a few examples. Such a prelude will illuminate

the following discussion like the bright sun burning off a morning

fog.

50

L--"

IV A DESCRIPTION OF INITIAL-MAP

A. Introduction

At heart, ZOHBA-I is a heur-Lst.Lc program designed to generate

analogies between theorem pairs stated in a subset of predicate calcu­

lus. It has been designed and implemented in a fairly modular manner

to facilitate understanding and ease of generalization. Thus, much

of the system can be described in algorit~nic terms. In this chapter

I hope to evoke some appreciation of the heuristic foundations of the

program while describing its operation ·with algorithmic clarity.

ZOHBA-I uses an interesting set of searching and matching routines,

which have been empirically designed, generalized, and tested on a

set of problem pairs (Tl - T2 and T
3

- T4 are fair representatives of

this set). The control structures of INITIAL-MAP and EXTENDER have

been designed to pass fairly similar structures to the various match

routines (described below). Thus, the following descriptions will

cover cases in which the structures to be mapped are fairly similar.

For example, most of the routines that match sets of items assume

that the sets are of equal cardinality and that they will map one­

one. Such assumptions are valid for a large class of interesting

analogies (such as the group-ring analogy in abstract algebra), and

simplify the description of the various procedures. Analogies that

require weaker assumptions and more complex procedures are described

in Chapter VIII.

In the previous chapter I provided a rationale for the design of

INITIAL-MAP and EXTENDER, which generate a restricted analogy and

expand it to cover all the relations and axioms necessary for the new

proof. ZOHBA-I can be easily expressed in terms of these two func­

tions as follows:

Zorbal[newwff;oldWff;AXSET*]~=

(1) Set analogies to the list of analogies generated by

initialmap[newwff;oldwff].

(2) Apply extender[analogy; AXSET] to each analogy or analogies.

51

(j) Return the resultant set of analogies.

The preceding description allows that there may be more than one

analogy generated by either INITIAL-MAP or EXTENDER. In practice,

however, each tends to generate but one (good) analogy. In the fol­

lowing paragraphs I will describe INITIAL-MAP in some detail. EXTEN­

DER will be discussed in the next chapter.

ZORBA-I is designed to find the analog of each axiom in AXSET

and thus create c{. The brief description of EXTENDER in the pre­

vious chapter suggests that if we know the analog of at least one

predicate in the domain of a P, then we can partition AXSET into

ALL, SOME, and NONE to start EXTENDER creating a series of partial

analogies °2 , a
3

, ..• that terminates in some complete an . The

algorithm for INITIAL-MAP that is described here is designed to find

an association between each predicate in the statement of ~~A with

each predicate that appears in the statement of T • For most inter-

esting theorems, the theorem statements are usually expressed with

more than one predicate. Consequently, INITIAL-MAP will typically

provide an ai that will have more than one predicate association

and that is more than sufficient to initiate EXTENDER. In Chap­

ter VIII, a simpler version of INITIAL-MAP that often works will be

described. Once the system gains some experience (creates some

analogies) in a particular domain, it could dispense with INITIAL­

MAP and use the analogs of those predicates that it found in the

past and appear in proof[T] as ai. However, here we will adopt a

quite conservative approach and show how a good ai can be developed

in the absence of any a priori predicate associations whatsoever.

INITIAL-MAP is designed to take two first-order predicate calcu­

lus wffs and attempt to generate a mapping between the predicates and

variables that appear in them. The variable mapping information is

used to assist INITIAL-MAP in mapping predicates in cases of seeming

ambiguity; INITIAL-MAP outputs a set of associated predicates that

*AXSET is the set of axioms that appears in proof[T].

52

appear in the statements of T
j
, and T. This restricted mapping is

used as a starting analogy by EXTENDER, which finds a complete

mapping for all the predicates used in proof[T]. As a by-product,

EXTENDER finds analogs for each of the axioms on AXSET. INITIAL-MAP

(unlike EXTENDER) does not reference AXSET, the set of axioms used to

prove T, and is SYmmetric with respect to caring which wff represents

the proved or unproved theorem. INITIAL-MAP uses atommatch[atoml;
ato~; a] as an operation to add the predicate/variable

information to analogy a. As its name hints, ATOMMATCH matches

the predicates and variables of its atomic arguments and adds the

resultant mapping to the developing analogy (a).

B. The Design of ATOMMATCH

ATOMMATCH is used as an elementary operation by every matching

routine in the INITIAL-MAP system (Figure 9). Thus, we will dis­

cuss it first, and then consider how INITIAL-MAP is organized to

apply it intelligently.

I MULTIMATCHl

. Cu.......-........=-----..
I TEMPSIFT

~,,----,
1A'I'OMMATCH

FIGURE 9. HIERARCHY OF MATCHING ROUTINES CALLED BY INITIAL-MAP

53

Consider how we might write an ATOMMATCH. Suppose atoml ~ld ato~

are of the same order (same number of variables) and each variable

place in each atom has the same semantic type. For example, let

atoml = intersection[xl;x2;x3]

atoffi2 intersection[Yl;Y2;Y3]

Clearly, we want

*intersection ~ intersection

and

1 = 1, 2, 3 •

• •• x]
n

and atom2 = q[Yl; •.• YmJ and p = q (thUS, n = m) and we will set

p~q

and

Xi ~ Yi' i = 1, 2, ••• , n ,

So far, ATOMMATCH is quite trivial.

n f m. For example, let

and

Suppose, however, p l q or

atom2 = ring[y; *2; +2]·

Clearly we want to associate the set x with the set y, and the

operator *1 with either or both of *2 and +2. ATOMMATCH can know

which variables represent sets, etc., by checking the semarrbic tem­

plates associated with group and ring. Now, the template associ­

ated with ring is structure[set;operator;operatorJ. We will map

*I will use the symbol "~" as in "x~, yt! to mean "x is associ-
ated with (analogous to) y."

54

variables with each other so as to preserve predicate place order­

ing and semantic type. To ~,-u.l.1.1e the unequal number of variables, we

will temporarily expand the atom grouP[x;*l] to include a dummy vari­

able of type operator, "dummyop ;" and will rewrite it as group [x ;)(-1;

dummyop]. The symbol lIdummyopll is used to expand either (or both)

atoms to be of the same order and ensure that a variable (possibly

dummy) of the same semantic type is in corresponding places in each

atom. Then life can map the variables one-one in order of appearance.

i_)

For example, we can associate

x~y

and

Then, we can remove dYIDmyop and rewrite

We can describe this process formall in two stages:

(1) Make the two atoms type-compatible and of the same order

by adding dunrrny variables whenever necessary.

Let

atoml = p[xl; •.• xn]

atom2 = q[Yl ••. Ym]

template[atoml] type[p] [type[xl]

template[atom2]

type[x]]
n

type[y]].
m

Furthermore, suppose that the ordering of the types is the same in

each template, even though the number of' variables of' each particular

type need not be identical for corresponding "type blocks." Thus,

in the preceding example, in both "gr-oup" and "ring" the type set

precedes the type operator. Each template has one set variable,

but a differing number of operator variables. Thus, we could par­

tition the ordered set of variables in atoml and atom2 by letting

some Xl and xl +l belong to the same partition if type[xlJ =
type[xl +l] . Now there are an equal number of partitions in both

55

atoml and atom
2.

into [[x], [*1]]'

brackets indicate

Returning to our example, we partition group[x;\]

and the ring[y;-*2;+2] into Cry], [*2;+2]]. (The

that the order of elements is preserved.)

(2) Map the partitioned subsets into each other, preserving

their order within the partitions, and map elemerxs into

elements if the two subsets have an equal number of ele­

ments.

This completes our brief description of ATOMMATCH. Fr-om now

on, we will consider ATOMMATCH as an elementary operation that ·will

expand the developing analogy to include a (possibly) new predicate

pair and (possibly) new pairs of variable associations. We need to

know how to select pairs of atoms from the statements of T and T
A

to

be ATOMMATCHedo

C. The INITIAL-MAP Control structure

We have two wffs representing T and T
A

as arguments of

INITIAL-MAP, and we want to find some way to slide ATOMMATCH over

pairs of atoms selected from the wffs. First, note that the syntax

of the wffs may be a helpful guide in selecting potential matches.

Suppose

T:A--) p(x)

TA:B --) q(y),

where A and B are any wffs and p and q are unary predicates.

We would presume that p ~ q (predicates)

x ~ y (variables)

and A ~ B (sub-wffs)

where we expect that wffs A and B would be decomposed down to

atoms for ATOMM.ATCH. If A and B had implication signs in them,

we could decompose them similarly. There are many possibilities for

the forms of T and TA • We find that if T and TA are clos ely

analogous, then their syntactic forms are likely to be very similar.

ZORBA considers T and T
A

to have the formats that can be repre­

sented by the generative grammar:

T -) (A ~) A)

INITIAL-MAP is designed to decompose the input wffs T and T
A

into associated syntactic substructures until a subwff is either an

k
atom p[xl ... xn] or a conjunction of atoms .A. Pi[xl

l=:l

x "]
2.1J ~

A+.. .,v

this point INITIAL-MAP enters a hierarchy of selecting and match­

ing routines (Figure 9) to decide which pairs of atoms shall be

ATOMMATCHed. Naturally, if the subwffs are just atom3, it calls

ATOMMATCH directly. otherwise, it enters a progt-am ~1j.erarchy

headed by a routine named SETMATCH, which selects appropriate atom

pairs from the sets of conjuncted atoms in the subwffs.

In the following discussion, the number of atoms conjuncted in

~_I

each set are assumed equal (k:::; ,t).

terms of its subfunctions as follows:

SET~1ATCH can be described in

__J

*setmatch[setl; set2; ana] :

(1) Partition the atoms in setl and set2 into subsets that

have identical semantic templates (a "semarrt.Lc partition tl
) .

Thus, if set
l

is groupj x ;«] A abelian[y;*] A Lrrtersec­

tion[z;x;y] the semantic partition will be

£{intersection[z;x;y]}}

since group and abelian are both of type struct[set;op].

(2) Select the partitions of set l and set2 that have but one

element and call these singl and sing
2,

respectively.

(3) The remaining partitions have more than one element, call

them mUltI and mult2, respectively.

*When an analogy a is referenced within the description of an algorit~
it will be represented as a variable ana wherever that is more convenient.

57

(4) Match the atoms in singl with those in sing
2

by executing

singlematch[singl;sing2;ana]
.

(5) Match the remaining atoms by executing

multimatch[multl; mult
2;ana].

SETNIATCH, SINGLEMATCH, and MULTIMATCH are all heuristically

designed one-pass matching strategies that make strong assLWlptions

about the nature of the theorem statements T and T
A

for an

analogous theorem pair.

SETMATCH assumes that the atoms in setl and set2 will map one­

one and that the semantic-partitions will map one-one. Suppose we

have a semantic partition:

partitionl

partition
2

Hatoml ato~HatoITJ atom4}Hatom5}

££atom6 ato~Hatoms atom9}HatomlOJ·

SETMATCH assumes that £ato~} and [atomI O} will correspond, rather

than [ato~} and, say, £atom6 ato~}. It calls SINGLEMATCH to

map the single-atom partitions onto the single-atom partitions.

In addition, it calls MULTIMATCH to map, in pairs, the par­

tions containing several atoms each.

MULTIMATCH assumes that the analogy will preserve semantic

type sufficiently well so that atoms within a particular partition

will correspond only to atoms in one other partition.

Thus,

then

if [atoml ato~} ~ [atom6 ato~}
I

atoml ~ atom6 or ato~

ato~ ~ atom6 or ato~.

It forbids matches across partitions, such as

atoml .~ atom6

ato~

atoITJ ato~, etc.

5S

'- __ J

SINGLEMATCH and MULTlllJATCH also share a common default condition.

If all but one of the elements of a set X are mapped with all but

one of the elements of a set Y, then these two elements are associ­

ated by default without any further decision making. In SINGLEMATCH

the sets X and Y are sets of atoms or partitions of atoms.

SINGLEMATCH[setl;set2;ana] may be easily described in terms of

this default condition and a function called

tempsift[sl;s2;testfn;ana]. TEMPSIFT applies testfn[x;y] to the

first element of sl and each successive element y of s2 until

it finds a y' E s2 such that testfn[x;y'] = T. It then executes

atommatch[x;y';ana],

increments to the next element of x' of sl' and seeks another

s" E s2' such that testfn[}(' ;y'] = T, etc. Thus, for every x E sl'

it finds the first y E s2 such that testfn[x;y] = T and executes

atommatch[x;Y;ana]. Typical testfn's check whether x and y have

the same semantic template or are analogs of each other according to

the developing analogy, ana.

Singlematch[setl;set2;ana] :

(1) If set l and set2 have but one element (llterminal default

conditionll), go to 8.

(2) Execute tempsift[set
l;set2;testfnl;ana], where testfnl[x;y]

is true iff x and y have the same semantic template.

(3) If setl and set2 are empty, go to 9.

If the terminal default condition is true, go to 8.

(4) Execute tempsift[set
l;set2;testfn2;ana],

where testfn
2[x;y]

is true iff the predicate letter in atom y is the analog

of the predicate letter of that in atom x according to

analogy ~.

(5) If setl and set2 are empty, go to 9.
If terminal default condition holds, go to 8.

59

(6) Execute tempsift[setl;set2;testf~;ana),where

testf~[x;y) is true iff the type of the predicate appear­

ing in atom x is the same as the semantic type of the

predicate appearing in atom y.

(7) If setl and set2 are empty, go to 9.
If the terminal default condition holds, go to 8.

otherwise print an error message and halt.

(8) Apply ATOMMATCH to the remaining atoms of setl and set2•

(9) STOP.

To illustrate the preceding algorithm with a simple example, let

setl tintersection[x;y;z], abeliangroup[x;*]}

set2 = {intersection[u;v;wJ, commutativering[u;*,+]}.

At step 2 we associate:

intersection[x;y;z] ~ intersection[u;v;w).

Then, since we satisfy the terminal default condition, we associate:

abelian[x;*) ~ commutativering[u;*;+).

MULTIMATCH is a little more complex than SINGLEMATCH. First

we need to decide which partitions are to be associated before asso-

ciating atoms within partitions. Suppose we have two sets of par-

titions, setl and set2• If both sets have but one partition each

(a common case), then we expect these to be associated by default

and declare them accordingly. Secondly, if in some partition of

setl there is an atom with predicate p that is known to be analog­

ous to predicate q, then the partition in set2 that contains q

should be associated with that which contains p. Remember that

these partitions were constructed on the basis of semantic templates.

Thus, while several atoms containing a predicate p may be in a

particular partition, there will be only one partition that contains

atoms with predicate p. Lastly, if in setl and set2 there is but

60

one partition that contains atoms whose predicates have the same

type - e.g., STRUCTURE, Ul<~L1We expect these partitions to be as so-

ciated. Let MULTIMATCHl name the function that actually associ-

(4)

,--_.J

.~ _J

ates atoms within a partition according to analogy ana.

Multimatch[setl;set2ana] : =

(1) If the terminal default condition for partitions holds,

go to 70

(2) Let pred[x] = the predicate letter of atom x.

For each partition y , sequence through each atom x E y.

If pred[x] is on analogy ana find the partition z E set2
such that the analog of pred[x] appears in z. Execute

MULTIMATCH1[y;z;ana] for each such pair y,z.

If the terminal default condition holds, go to 7.

If setl and set
2

are empty, go to 8.

For each partition y E set
l,

select the first atom x.

Find a partition z E set
2

such that the type of predi­

cates in z equals type[x]. If there is only one such

z E set2 , execute MULTIMATCH1[y;z;ana].

(5) If the terminal default condition holds, go to 7.
if setl and set2 are empty, go to 8.

(6) If setl or set
2

is still not exhausted, print an error

message and halt.

(7) Apply MULTIMATCHI to the remaining partitions in setl
and set

2
.

(8) STOP.

Each set of atoms in a partition has the same semantic template.

This property defines a partition. Thus, at the level of abstrac-

tion provided by the templates, all of these atoms are alike and

any differences need to be discriminated by other criteria. Let us

consider an example to motivate the design of MULTIMATCHl. The

61

T I contributes
3

theorem pair T
3

- T4 can be written as:

T; "If (g,m,x'*l) group[g;*l] /\

propernormal[m;g;*l] /\ fac~orstructure[x;g;m]

/\ simplegroup[x;*l] ~maximalgroup[m;g;*l]

T4 ~(r'n'y'* ,+) ring[r'* ,+] /\
v '" 2' 2 ' 2' 2

properideal[n;r;*2;+2] /\ factorstructure[y;r;n]

/\ simplering[y ;*2 ;+2] ~ maximalring[n;r ;*2 ;+2] .

First, ZORBA-I associates:

maximalgroup ~ maximalring

*1~ (*2' +2)

when it decomposes T; - T4 into subwffs distinguished by the syntax

of the implication sign. Later, an application of SINGLEMATCH adds:

propernormal ~ properideal

factorstructure ~ factor structure

x ~. y.

MULTIMATCH is passed one partition from each wff.

{group[g;*l]' simplegroup[x;*l]} ,

and T4 contributes

{ring[r;*2;+2]' simplering[y;*2;+2]} .

If we apply the MULTIMATCH algorithm just described to each of

these partitions, we find:

step 1.

step 2.

We do not satisfy the terminal default condition.

None of the predicates that appear in these par­

titions appear on the current analogy. We gather

no new information here.

62

step :3.

step 4.

We still do not satisfy the terminal default

condition.

We want to use MULTIMATCHI to associate the

atoms in these partitions.

Of these two partitions, the former pair have the template struc­

ture[set;operator] and the latter pair have structure[set;operator;

operator]. Fortunately, our analogy has variable mapping informa-

tion that is quite relevant here.

g~r

We know that:

We can assume that if some variable appears in only one atom in par­

tition, the analogous atom is one that contains its analog variable,

if it too appears in only one atom. For example, the variable "g"

appears only in group[g;*l], and its analog "r " app!'lars only in

ring[r;*2;+2]' So, we deduce:

group[g;*l] ~ ring[r;*2;+2] •

A similar argument based upon

x~y

leads us to deduce:

simplegrouP[x;*l] ~ simplering[y;*2; 2]

although we could have also deduced this last association by our

terminal default condition. Notice that "* 11 is not a discrimi-
I

nating variable since it appears in both group[g;*l] and

simplegrouP[x;*I]' After each atom pair is associated, we apply

ATOMMATCH to it to deduce more variable associations and update our

analogy.

The preceding description of MULTIMATCHI can be simplified

and generalized by realizing that we are just using a specialized

submap of the developing analogy to extend it further. This special

submap is just that mapping of variables where each variable appears

in only one atom of the partition. In the preceding example, the

submap was just:

g~r

Multimatch[partitionl;partition2;ana] : =

(1) Set t l to a list of variables that appear in only one

atom of partitionl•

(2) Set t 2 to similar list computed on partition2.

(3) Set anaprs = (x' ~ y/\X' E t l , s ' E t 2 and s ' is the ana­

log of x' by ~} .

(4) Execute tempsift[partitionl;partition2;testfn4;ana],
where testfn4[u;v] is true iff for some variable pair

x' ~ s ' anaprs variable x' appears in atom u and vari­

able s ' appears in atom v.

(5) STOP.

INITIAL-MAP has been completely described. At this point we

have sufficient machinery to generate a mapping between the predi­

cates and variables that appear in the statements of theorem pairs

such as Tl - T2 and T
3

- T4 • Next, we want to extend this map­

ping to include all the predicates that appeared in the proof of the

proved theorem T and are likely to appear in the proof of the new

theorem T
A•

In addition, we would like to pick up a small set of

axioms adequate for proving T
A.

EXTENDER performs both functions

and is described in the next two chapters.

64

V AN ELEMENTARY DESCRIPTION OF EXTENDER

A. Introduction

In the last chapter I described INITIAL-MAP in substantial

detail. In comparison, EXTENDER is a far more complex and subtle

system, which I will explicate here less completely. I intend to

accomplish several simple aims with this first exposition:

(1) Expose the reader to the motivation and rationale under­

lying the EXTENDER design.

(2) Convey some appreciation for the flavor of some well­

specified computational algorithms for creating an analogy.

Provide an intelligible, self-contained, introductory

account of EXTENDER adequate for the general reader, and

motivate the more sophisticated specialist to continue

into the next chapter for a more complete exposition.

The rationale of EXTENDER depends on a few simple related

ideas. I will begin by explicating these, then develop MAPDESCR

the clause-description mapping operation -- and conclude with a dis­

cussion of two simple versions of EXTENDER.

In the last section I suggested that our complete analogy could

be seen as the last map an in a series a
j

of increasingly more

complete analogies. Although we may be developing several such

series in parallel, they all begin with the same a l -- the analogy

produced by INITIAL-MAP. Each a. maps some subset of the predi-
J

cates that appear in the proof of theorem T. Each distinct subset

will, in general, lead to a different partition ofAXSET into

tALL, SOME, NONE} • When we search for the analog of an axiom

(clause), we will look for some clause that satisfies the analog of

its description under the current analogy.

B. The Analogs of Clause Descriptions

Each clause has a unique description, descr[c], which has been

introduced in Chapter III. We will denote the analog of

descr[c] by some analogy U. as U.[descr[c]]. O.[descr[c]] is
J J J

equal to a copy of descr[c] in which every predicate that appears in

U
j

is replaced by its analogous predicate. Predicates that are

absent from O. are left untouched. For example, suppose we have
J

a trivial 01:

Ul: abelian ~ commutativering

~: ,abelian[x;*] V group[x;*].

d7: neg[abelian], pos[group]. = descr[~]

Ul [d7] = neg[commutativering], pos[group].

Suppose we are seeking to extend Ul by finding the analog of

~. It is quite unlikely that we will find a clause that satisfies

this description, (Ul [d7])' since it would be derived from some

{rare) theorem that relates a condition on commutative rings to a

group structure. In any event, it would not be an analog of ~.

If we sought all the clauses that satisfied neg[commutativering], we

would be sure to include c8 and c
9

, which at least include c
8

,

the clause we desire:

c8: ,commutativering[x;*;+] V ring[x;*;+]

c
9

: ,commutativering[x;*;+] V commutative[*;x]

Thus, sometimes we want to search for clauses that satisfy descrip­

tions with features - e.g., neg[commutativering] - that contain

only predicates that appear on a particular analogy 0.. Now, what
J

we are doing is a four-step process:

Make a description d for an axiom clause c, descr[c].(1)

(2) Create an analog description

rent analogy, O..
J

66

U. [descr [c]] for the cur­
J

(4)

Delete from a.[descr[c]] any feature that contains a
J

predicate that uoes not appear in a.. Denote this
J

restriction of a.[descr[c]J to a. by a.[descr[c]].
J J J

Search the data base for clauses that satisfy

a.[descr[cJ] .
J

a.[descr] .
J

In our example, a[descr[c
7

]] = a l[d7
]] = neg[comnutativering]

a.[descr[c]] is a "restriction of the analog of the description of
J

c to analogy ar:." Since this phrase is quite cumbersome, we
J

will simply call it a "restricted description" and implicity under-

stand its dependence on ar:.
J

At different times EXTENDER may seek clauses that satisfy a

complete analogous description a.[descr] or just a restricted one
J

In summary, EXTENDER relies upon four key notions:

An ordered sequence of partial analogies(1)

(2)

a ..
J

A partition of the axioms used in proof[T] (AXSET) into

three disjoint sets: A.LL, SOME, and NONE.

(3) A search for clauses that satisfy the analogs of the

description of the clauses in proof[T].

(4) A restriction of our descriptions relative to an analogy

a., by including only those features with predicates
J

that appear in a.
J

C. Mapping Descriptions

INITIAL-l1AP used an operation called ATOM~TCH in a rather

clever way to extend its current analogy. Likewise, EXTENDER

uses an operation called MAPDESCR for a similar purpose. Both
c_)

operations use abstract descriptions in order to associate their

data: ATO~TCH uses the semantic template associated with a

predicate, and MAPDESCR uses the description of the clauses it is

associating. EXTENDER and INITIAl,-MAP differ in ti1at EXTENDER

generates a new partial analogy each time it activates MAPDESCR

(and the resultant mapping is new), while INITIAL-MAP uses

ATOMMATCH to expand one growing analogy.

Each partial analogy a
j

is derived from its anteceder~

a. 1 by adding:
J-

(1) An association of one clause ~E SOME with one or more

clauses from the data base.

(2) An association of the predicates in those clauses.

A simple example will illustrate this amply. If a
l

is the initial

analogy generated by INITIAL-MAP applied to the pair of theorems

Tl - T2, its predicate map is

abelian ~ commutativering

intersection ~ intersection.

Suppose we know that "t ~ "s: We would like to extend a l to a
2

by adding:

(2) abelian ~ commutativering

group ~ ring.

To motivate the structure of MAPDESCR, let us design a version

of it that would enable us to extend a l to a
2

in this example.

MAPDESCR is charged with mapping neg[abelian], posj group] (~) with

neg[commutativering], pos[ring] when it knows that:

Gl: abelian ~ commutativering

intersection ~. intersection.

First, we can eliminate neg[abelian] from ~ and

neg[commutativering] from d8 on the basis of aI' which associates

"abelian" and "commutativering."

al[neg[abelian]] = neg[commutativering]]. Now we are

68

simply left with associating pos[group] and pos[ring]. Since these

are the only two elements .i.ef't , have the same semantic type (STRUC­

TURE), and have the same feature (pos), we can map them by default

and add

group ~ ring

to

Now we can write a version of MAPDESCR that accepts as argu­

ments two clause descriptions and an analogy OJ:

mapdescr[descrl;descr,);O.] : =
L J

(1) Vx x E descrl s.t. Gj[x]E descr2, delete x from descrl
and 0j[x] from descr2• Thus, we exclude all those

features we know about from 0 ..
J

Vx x E descrl
appears in x

and descr2.

and x E descr2 ' map the predicate that

into itself and delete x from descrl

(3) In the remnants of descrl and descr2:

(a) If there are unique elements of descrl and descr2

that have the same feature -- e.g., pos -- and

semantically compatible predicates, associate those

terms and delete them from the remnant descriptions.

Here "semantic compatibility" means 1f same semantic

type."

(b) If more than one element of descrl and descr
2

have

the same feature -- e.g., pos -- then discriminate

within these elements on the basis of the semantic

types of their predicates.

(4) Return the resultant list of paired predicates.

Most often, in my algebra data base, a clause description consists

of two, three, or four features. EXTENDER ensures that some of

the predicates in any pair of clauses passed on to MAPDESCR are on

G. . Thus, by the time we reach step 3 of the MAPDESCR algorithm
J

we often have descfiptions of length one, which map trivially by

default, or descriptions of length two with different features -­

e.g., pos and neg. Thus, step 3b, which requires disambiguation

based on predicate types, occurs rarely in this domain (abstract

algebra).

When MAPDESCR returns a list of predicate pairs that result

from mapping the description of a clause cl(descrl, above) with the

description of a clause c
2(descr2, above) according to analogy G

j
,

it creates a new analogy G
j
+l• G

j
+l is the same as G

j
except

that:

(1) Its predicate map is the union of the one returned by

MAPDESCR and the one appearing on G..
J

(2) Its clause mapping is the union of the one appearing on

Gj and cl - c2 •

Thus, when EXTENDER is attempting to extend G., it creates
J

a new analogy G
j

+l, G
j

+2, etc. for each clause pair it maps when

those clauses were selected on the basis of information ina.. Of
J

course, there is a procedure to see whether the predicate associ-

ations of a new analogy have appeared in some previously gen~rated

analogy and thus prevent the creation of redundant analogies. In

this case the two corresponding clauses are added to each existing

analogy for which the predicate pairs returned by MAPDESCR are a

subset of its predicate map.

D. The Candidate Image Set

After I explicate one additional idea I can describe a simple

version of EXTENDER. When EXTENDER is extending G
j

it is

searching the large data base for some clause that is the analog of

70

an axiom ck E SOME. Now we could search for the set of clauses

that satisfy aj[descr[ck]~' but we will run into the difficulty

described earlier in this section. Thus we search for clauses that

satisfy a.[descr[ck]]. If a~ contains the correct analog for
J J

each predicate that appears on it, then the set of clauses C that

satisfy aj[descr[c
k]]

is guaranteed to contain the desired analog

of c
k

("image" of c
k).

We will refer to C as the "candidate

image set." Suppose that C has but one member, c I. Then we

know that c is the analog (image) of ck and should extend

a j -7 a j+1 by as sociating

c
k
~ c I

When the set of clauses that satisfies a restricted description con­

tains one member, we are guaranteed that it is the image clause we

seek if ~ does not contain any erroneous associations. Now, if
J

C is empty, we have reason to suspect the correctness of ~ and we
J

ought to stop developing this branch of the analogy search space.

On the other hand, if C has more than one member, and ~ is cor-
J

reet, we know that our desired image is in C. If we have a clause

c with description descr[c] and some analogy a j that contains

only one of the predicates in c , then a.[descr[c]] will have but
J

one feature and many clauses will satisfy it. If some later

analogy ~ (a~ ~ a~) includes another predicate from c in

addition to the one on a j, then a k[descr[cl l will have two fea­

tures and will be satisfied by fewer clauses than a.[descr[c]].
J

Thus, as sequences of analogies evolve, each clause will have

decreasingly fewer candidate images that satisfy its restricted

description.

To search for the clauses that satisfy the analog of a

restricted (short) description, EXTENDER invokes an operator

shortdescr[a.]. SHORTDESCR is a dependent on a. in three ways:
J J

(1) It searches for the analogs of clauses that appear on

SaVill (Which is different for each a.).
J

71

(2) It generates descriptions that include only the predi­

cates that appear explicitly in 0 .•
J

(3) It uses the predicate map 0 .•
J

SHORTDESCR returns a (possibly empty) list of axioms (from

SOME), each of which is paired with a set of clauses from the data

base that satisfy the analog of its restricted description. Each

axiom is guaranteed to have its analog under O. in its associated
J

"candidate image set." If we find no candidates at all, for any

aX
k

E SOME, then we know that U
j

contains sorre wrong predicate

associations, and we ought to mark it as "infertile" and discon­

tinue attempting to extend it. Of the images we find, we prefer

those axiom-candidate associations with but one candidate image. If

we apply MAPDESCR to each such pair, we can be sure that we have a

consistent extension of 0 ..
J

E. Simple Versions of EXTENDER

Let us consider a primitive version of EXTENDER, EXTEND1 ,

which exploits these few ideas.

Let analist ~ (01), the set of active analogies.

If O. is complete, STOP.
J

Partition AXSET into tALL, SOME, NONE} relative to 0 .•
J

Set imlist to shortdescr[o.J.
J

If imlist = ~,mark O. as BARREN and go to 7.
J

Set unimages to the subset of imlist that has only one

candidate analog for each axiom.

If unimages = ~, go to 7.

(6) Apply MAPDESCR to each axiom and its analog that appears

on unimages. If MAPDESCR adds a new analogy, add it to

the end of analist.

72

(7) If anulist i:; empty '. ~;TOP.

Ot.hcrwi s o , ,;('t OJ to the next element on analist. Go

to :.:'..

The success of EXTEND1 is highly dependent on the clauses in

the data base. If there are few clauses, then it is likely that some

~ E SOME will have but one image under SHORTDESCR at each itera-

tion and that EXTENDl will be successful. As the data base

~ -)

increases in size with ever more clauses involving predicates that

will appear in proof[T
A],

it becomes more likely that SHORTDESCR

will generate several images for every ~ E SOME in some iteration.

At this point it will fail to extend O. and miss the analogy alto-
J

gether. To remedy this situation, we need a way of dealing with

cases in which SHORTDESCR returns several candidate images for each

aXk E SOME. We need some way to select the clause from the candidate

set that is most likely to be the analog we seek. When EXTENDER

meets a situation of this sort, it orders all the images according to

their liklihood of being analogous to the a~ E AXSET with which

they are paired. I will initiate the description of one such order­

ing relation by a simple example.

Consider, for example, the clause cl O and an analogy 02 that

includes

intersection ~ intersection

subgroup ~, subring

C l O: subgroup[x;y;*] V ,group[x;*] V ,group[y;*] V ,subset[x;y]

dl O: neg[group], neg[subset], pos[subgroup]

73

Suppose our data base contains two clauses

isfy 02[dI O] ~

and cl2 that sat-

clI~ = sUbring[m;r;*;+] V,ideal[m;r;*;+]

dl l: neg(ideal, pos(subring)

cl2: sUbring[x;a;*;+] V,ring[a;*;+] V,ring[x;*;+]

V,subset[x;a]

dl2: = neg[ring], neg[subset], pos[subring] •

We can compare cI I and

dl O (relative to °2) •

descriptions relative to

cl2 by comparing dl l and dl2 with

We want a partial ordering of a set of

a target description and a particular

analogy -- e.g., a ~d[dl;d2;d OJ]

with respect to ~. A simple ~d

Let:

d' dl c .[d]
1 J

d' d2 0. [d]2 J

d' ;: d 0. [d]
J

that orders description dl
can be developed as follows:

d{O than d{l' so we select d~,

as the image of cl O under °2 "

it will add:

For d{ and d~ compute the number of features -- e.g., pos _. in com­

mon with d'.

The description with the most features in common is closest to

d. In our example, we have

d'lO neg[group], neg[subset]

d'll neg[ideal]

d'l2 neg[ring] ,neg[subs eti] "

Clearly, d~ is closer to

our closes description, and cl2
After MAPDESCR maps "io ,-..- cl2

74

group

subset

ring

subset

intersection

subgroup

group

subset

intersection

subgroup

ring

subset

A more sophisticated ~d can look at the semantic types of predicates

that share common features if two descriptions are equivalent under

the simple ~d described above. EXTENDER uses an operator called

MULTIMAP to select the best image (using ~d) for a clause that has

several candidate images with a restricted description under 0 ..
J

Exploiting this notion, we can write a more powerful EXTENDER

called EXTEND2.

(1) Let analist = (01 ••• OJ)' the list of active analogies.

start with analist = (01)'

If O. is complete, STOP.
J

Partition AXSET into {ALL, SOME, NONE} relative to 0 ..
J

set imlist to shortdescr[O.].
J

If imlist = ¢, mark O. astlinfertilelf and go to 8.
J

Set unimages to the subset of imlist that has only one

candidate analog for each axiom.

If unimages = ¢, go to 7.

(6) Apply MAPDESCR to each axiom and its analog that appears

on unimages. If MAPDESCR adds a new analogy, add it to

the end of analist. Go to 8.

75

(7) Apply MULTIMAP to imlist to select an optimal candidate

image under CPd for each axiom. Set unimages to this

list of axioms paired with best candidates. Go to 6.

(8) If analist is empty, STOP.

otherwise, set a. to the next element on analist.
J

to 2.

Go

This version of EX:TENDER is quite powerful and will handle a

wide variety of theorem pairs. The implemented versions of

EX:TENDER are far more complex than these simplified tutorial ver­

sions. They (1) allow backup, (2) have operations for combining a

set of partial analogies into a "larger" analogy consistent ,'lith

all of them, (3) have a sophisticated evaluation for deciding which

particular axiom-candidate set to pass to MULTIMAP (in lieu of

step 7 above), and (4) can often localize which predicate associ­

ations are contributing to an infertile analogy when one is generated.

Table 2 contains a brief summary of ZORBA-I's behavior when it is

applied to five T - TA pairs drawn from abstract algebra. The

number of partial analogies generated includes al generated by

INITIAL-MAP.

Table 2

SUNMili(\; uf ZORBA-I PERFORMANCE

!
Nwnber of Nwnber of Nwnber of Nwnber of Nwnber ofTheorem Predicates Predicates Axioms in Analog

PartialPairs in Theorem Mapped by Proof [T] Axioms AnalogiesFound byProof I-MAP EXTENDER
by ZORBA-I

Tl - T 9 3 13 15 52

T3 - T4 12 5 13 17 7

T5 - T6 8 3 21 23 5

~ - TS 5 4 6 7 2

T
9

- TI O 7 2 12 16 6

The intersection to two abelian groups is an abelian SUbgroup
of the parent group.

The intersection of two commutative rings is a commutative
subr-Lng of the parent rings.

A factor group G/H is simple if H is a maximal normal
SUbgroup of G.

A quotient ring Ajc is simple if C is a maximal ideal in A.

The intersection of two normal groups is a normal group.

The intersection of two ideals is an ideal.

The homomorphic image of a subgroup is a SUbgroup.

The homomorphic image of a subring is a subring.

The homomorphic image of an abelian group is an abelian group.

The homomorphic image of a commutative ring is a commutative
ring.

77

A. Introduction

VI EXFERll1ENTS WITH ZORBA- I

Our previous discussions have been rather abstract and have

drawn upon various examples in a piecemeal fashion. Now we are

ready to explore the behavior of ZORBA-I when it is applied to a

full-scale problem. In this exposition, descriptions of the

algorithms have preceded any experimental results. This ordering

is pedagogically motivated, to allow briefer explanations to accom­

pany the experiments that are reported here. Also, this order

parallels the history of ZORBA-I's development. These algorithms

were first conceived during the Winter of 1969 and briefly reported

at the Machine Intelligence Workshop held at Stanford University in

February of that year. They were favorably received, but required

implementation and experimental validation to test their value. At

that time several key ideas were visionary leaps. Attempting to

reduce the size of a data base used by a theorem prover by exploiting

an analogy was well conceived (on paper) at that time. A simple

form of EXTENDER involving clause descriptions and a sequence of

partial analogies were integral to the conception. All of these

ideas were developed in a testable form. But there were no guaran­

tees to their validity or value. For example, in the earliest con­

ception, clause descriptions were static through EXTENDER's search.

There were no guarantees that different descriptions might not be

needed at different stages of search. It turned out that both

approaches were needed. A static description, descr[c], is computed

for a clause. At each stage EXTENDER uses a select subset of this

description, based on a~ to compute a restricted description, to
J

search for analogous clauses. The notion of a restricted description,

as well as several refinements of EXTEND2 that are developed in this

chapter, were conceived after a crude version of ZORBA-I was imple­

mented. EXTENDER was developed in an interactive time-sharing

environment (using PDP-IO LISP). It is unlikely that the program

78

would have progressed very far with a paper and pencil approach only.

A data base of 239 clauses dealing with abstract algebra, called

ALGBASE (APpendix B) was created to provide a sizeable set of axioms.

No existing theorem prover could even attempt to prove any of the

theorems used in these experiments without trimming the data base

substantially. On one hand, the experience gained and the resultant

successes with this large data base were invaluable to developing

ZORBA-I. On the other hand, the massive size of the data base made

hand simulations infeasible. Even to simply decide which clauses

satisfy O.[descr[c]] for a particular analogy O. and clause c,
J J

it is helpful to have a computer to quickly search the data base.

At this stage of discussion, we experience a certain creative

tension. We have a set of fruitful, but untested ideas. Will they

work? I labored with ZORBA-I under this tension for over a year and

found the successes that I am presenting here.

ZORBA-I was developed by structuring it to run on two problem

pairs, Tl-T2 and T
3-T4 (Table 2). Later, it was run on the remaining

problem pair (Table 2) and successfully created the appropriate

analogies without difficulty. In the course of its development,

EXTEJlJDER underwent several changes. Each change was accompanied by

a new insight into the process of analogy generation. These insights

will be presented in this chapter along with the algorithms that

embody them. Prior to examining ZORBA-I's behavior in greater detail,

I want to introduce a representation that will simplify our 'under­

standing of ZORBA-I's operation.

B. Analogy Space

At the highest level, we can look at ZORBA-I's behavior in terms

of the partial analogies that it generates. Figure 10 pDrtrays a

simple space containing seven (partial) analogies.

79

SHORTDESCR

FIGURE 10.

SHORTDESCR

SHORTDESCR

A SAlv:IPLE ANALOGY SPACE

The arrows between the nodes that represent partial analpgies

are labeled with SHORTDESCR and MULTllIiliP, which were described in the

last chapter. Each of these is a search procedure for finding a

clause from the data base (here ALGBASE) that is likely to be analo­

gous to a clause in AXSET. The association of the clauses is used

to extend a partial analogy o. to ·0.-'-1 0 SHORTDESCR and MULTH1AP
J J'

can also be viewed as operators that extend (transform) one partial

analogy into a more complete partial analogy, A great deal of com-

putation is hidden below this level of description, but is determined

by it. For example, in Figure 10, 06 is extended from 04 by

SHORTDESCR. We know that 04 induces a un.i.que partition ofAXSET

into all[O~], some[o~], and nO(le[c~] (Chapter III). Since 06
is the only extension of 04 , we pres~~e that SHORTDESCR found only

one aXk E SOME with but one image, c
j

• We know that descr[ax
k

] is

matched with descr[c
j

] to create t~e new C6P •

80

A great deal of ZORBA-I's behavior can be concisely represented

by the analogy space representation of Figure 10. It presents

ZORBA's decision procedures explicitly by showing which partial

analogies are directly related, and, implicitly which operators

failed. For example, we know that shortdescr[O.] failed if MULTI-
J

MAP is used to extend 0.. Here each O. is the abstract set of
J J

maps defined in Chapter III. As our discussion unfolds, a partial

analogy will become more concrete as it is elaborated through vari­

ous examples.

C. ZORBA-I in Action

We are just about ready to watch ZORBA-I generate an analogy.

Let's consider the theorem pair Tl - T2.

T
l:

The int€rsection of two abelian groups is an abelian sub­

group of the parent groups.

T
2:

The intersection of two commutative rings is a commuta­

tive subring of the parent rings.

Suppose a theorem-prover (QA3) has proved Tl and wants to

prove T
2•

Furthermore, suppose it knows that Tl and T2 are analo­

gous.

ZORBA-I is given the following information:

*V(a b c *) abelian[a;x] V abelian[b;*] V inter-

section[c;a;b] ~ absubgroup[c;a;*]

(2) T2': V(x y z * +) commring[x;*;+] V commring[y;*;+]

V intersection[z;x;y] -£ommsubring[z;x;*;+].

*See Appendix A for the definitions of these predicate symbols

81

(3) The (resolution) proof tree of theorem Tl (Table 3) from

which it extracts AXSET, the set of axioms used in the proof

(Table Lf) .

These three items nre problem-dependent. In addition, ZORBA-I

can refer to the semantic template (Appendix A) of any predicate, and

it can access a large data base. In these experiments ALGBASE

(APpendix B) is the data base used.

V~len ZORBA-I starts on the problem just presented, it first exe­

cutes initial-map[T{; T~] to find analogs for the predicates inter­

section, abelian, and absubgroup with members of the set

[intersection, commring, commsubring}. This process was described

in some detail in Chapter III. INITIAL-MAP outputs a single analogy

a p.
1 . intersection

abelian

absubgroup

intersection

commring

commsubring •

Next, EXTENDER is applied to 01 and it attempts to find an

analog for each axiom in AXSET. In the process, it generates a

sequence of several analogies (Table 5) which terminates in a com­

plete analogy (Table 6).

Table 3

RESOLUTION PROOF OF THEOREM Tl (

*1 abelian[al, star4]

2 group] x , star] -abelian[x, star]

3 group [aI, star 4]

4 abelian[bl,star4]

negation of theorem

axiom

from 1,2

negation of theorem

con tin u e d

*See Appendix A for definition of predicate symbols and Appendix B
for description of clause format.

82

Table 3
Continued

5 group[bl,star4]

6 intersection[xl,al,bl]

7 group[k,star] - intersection[k,g,h]
-group[g,star] -group[h,star]

8 group[xl,star] -group[al,star]
-group[bl,star]

9 group[xl,star4] -group[al,star4]

10 group[xl,star4]

11 sUbset[x,y] -intersection[x,y,z]

12 sUbset[xl,al]

13 sUbgroup[h,g,star] -subset[h,g]
-group[g,star] -group[h,star]

14 sUbgroup[xl,al,star] -group[al,star]
-group[xl,star]

15 subgroup[xl,al,star4] -group[xl,star4]

16 sUbgroup[xl,al,star4]

17 -absubgroup[xl,al,star4]

18 absubgroup[x,y,star] -abelian[x,star]
-subgroup[x,y,star]

19 -abelian[xl,star4] -subgroup[xl,al,star4]

20 -abelian[xl,star4]

21 abelian[g,star] -group[g,star]
-commutative[star,g]

22 abelian[xl,star4] -commutative[star4,xl]

23 -commutative[star4,xl]

24 commutative[star,s] in[sk4[star,sl,s]

25 Ln] sk4 [star4 ,xl]

26 in[a,z] -in[a,x]
-intersection[x,y,z]

27 in[a,bl] -in[a,xl]

28 in[sk4[star4,xl]bl]

29 commutative[star,g] -abelian[g,star]

30 commutative[star4,bl]

negation of theorem

from 4,2

axiom

from 6,7

from 5,8

from 3,9

axiom

from 6,11

axiom

from 12 ,13

from 3,14

from 10,15

negation of theorem

axiom

from 17,18

from 16,19

axiom

from 10,21

from 20,22

axiom

from 23,24

axiom

from 6,26

from 25,27

axiom

from 4,29

L

Table 3
Continued

31

32

33

34

commutative[star,s] in[sk3[star,s]s] axiom

Ln]sk3 [star4 ,xl] ,xl] from 23,31

in[sk3[star4,xl],bl] from 32,27

commutative[star,s] -times[star,sk4[star,sl,sk3[star,s],c] .
axa.om

axiom

from 35,39

from 33,40

from 30,41

from 28,42

from 23,34

contradiction

-times [star4 , sk4 [starl~ ,xl] , sk3[star4 ,xl] , c]

commutative[star,s]
times[star,sk3[star,s],sk4[star,s],sk5[star,s]]

times[star4,sk3[star4,xl],sk4[star4,xl],sk5[star4,xl]] from 23

times[star,b,a,c] -inCa,s]
-in[b,s] -times[star,a,b,c]
-commutative[star,s]

times[star4,sk4[star4,xl],sk3[star4,xl],c] -in[sk3[star4,xl]s]
-in[sk4[star4,xl],s] -commutative[star4,s] from 37,38

-in[sk3[star4,xl],s] -in[sk4[star4,xl],s]
-commutative[star4,s]

- Ln] sk4[star4 ,x.l], b 1] - commutative [star4 , bl]

-in(sk4(star4,xl],b1]

39

40

37

38

41

42

43

84

Table 4

AXSET FOR ABSGPr (THEOREM T
l)

ABSGPr-l group[x;star] V-,abelian x;star]
neg[abelian] pos[group]

ABSGPr-2 group[k; star] V -,intersection[k;g;h] V -,group[g ;star]
V-,group[h; star]

neg[intersection] impcond[group]

ABSGPr-3 subset[x;y] V-,intersection[x;y ;z]
neg[intersection] pos[subset]

ABSGPr-4 subgr-oupj h j g ; star] V-,subset[h;g] V -,group[g; star]
V -,group[h;star]

neg[group] neg[subset] pos[subgroup]

ABSGPr-5 absubgroup[x;y; star] V-'abelian[x; star] V -,subgroup[x;y ; star]
neg[subgroup] neg[abelian] pos[absubgroup]

ABSGPr-6 abelian[g; star] V -,group[g; star] V -,connnutative[star ;g]
neg[commutative] neg[group pos[abelian]

ABSGPr-7 commutative[star;s] V in[sk4(star;s) ,s]
pos [in] pos [commutative]

ABSGPr-8 in[a ;z] V-'in[a ;x] V-'intersection[x;y ;z]
neg[intersection] impcond[in]

ABSGPr-9 commutative[star;g] V-'abelian[g;star]
neg[abelian] pos[commutative]

ABSGPr-10 connnutative[star;s] V in[sk3(star;s),s]
pcsj Ln] pos[commutative]

ABSGPr-ll commutative[star;s] V -times[star;sk4(star,s) , sk3(star;s),c]
pos[in] pos[connnutative]

ABSGPr-12 commutative[star;s] V times[star;sk3(star,s),sk4(star,s),
sk5 (star; s)]

pes [times] pos [connnutative]

ABSGPr-13 times[star;b;a;c] V-,in[a;s] V-,in[b;s] v-,times[star;a;b;c]
V -'commutative[star; s]

neg[commutative] neg [in] impcond[times]

85

Table 5

ANALOOY SEARCH SPACE FOR
Tl/ - T2 I

intersection ~ intersection
abelian~ abelian

abSu~gro~~ commring-",/

r;HORTDESCF.

ABSGPT-5 ~ AX127-1
(ABSGPT-1 ~ AX33-l
ABSGPT-2 ~ AX47-l)

ABSGPT-4 ~ AX12-l
(ABSGPT-3 ~ ([AX9-l;AX9-2})

ABSGPT-6 ~ AX38-1
(ABSGPT-9 ~ AX142-l)

MULTIMAP-l

subset ~ subset
group ~ ring

MULTlMAP-l

r--- a
! 4
~commlitative ~ commutative

~TIMAP-l

ABSGPT-13 ~ AX5l-1
(ABSGPT-7 ~ [AX5l-l, AX5l-2}
ABSGPT-8 ~ [AX60-l,AX6o-2,AX60-3}
ABSGPT-IO ~ [AX52-l, AX52-2}
ABSGPT-ll ~ AX52-4
ABSGPT-12 ~ AX52-3)

86

Table 6

COMPLRrE ANALOGY (°
5

) FOR ABSGP:r

intcrsection~ intersection

abelian~ commutative

absubgroup~ commsubring

subgroup ~ subring

subset ~ subset

group ~ ring

commutative ~ commutative

in·~ in

times ~ times

*ABSGP:r-l ~ AX33-1

ABSGP:r-2~ AX47-1

ABSGP:r-3 ~ [AX9-1; AX9-2}

ABSGrr -~. ~ AX12-1

ABSGP:r-5 ~ AX127-l

ABSGP:r-6 ~ AX38-l

ABSGP:r-7 ~ fAX5l-l; AX5l-2}

ABSGP:r-8 ~ [AX60-l; AX6o-2; AX60-3}

ABSGP:r-9 ~ AX142-l

ABSGP:r-lO ~ [AX52-l; AX52-2}

ABSGP:r-ll ~ AX52-4

ABSGP:r-12 ~ AX52-3

ABSGP:r-13 N AX5l-l

*The ABSGP:r-j axioms from AXSET appear in Table 4 and the AXn-k
axioms from ALGBASE appear in Table 7.

Table 7

CLAUSES FROM ALGBA,SE (Appendix B)

ANALOGOUS TO AXSET FOR ABSGP (Table 4)

AX9-1 sUbset[x,y] v,intersection[x,y,z]
neg[intersection], pos[subset]

AX9-2 subs e'tj x ,»] v,intersection[x,y,z]
neg[intersection], pos[subset]

AX12-1 subring[x,a,star,plus] v,ring[a,star,plus]
,subset[x,a] V ,ring[x, star ,plus]

neg[subset], neg[ring], pos[subring]

AX33-1 ring[r,star,plus] V,commring[r,star, plus]
neg[commring], pos[ring]

AX38-1 commring,star,plus] v-,ringer,star,plus]
,commutative[star;r]

neg[commutative] neg[ring] pos[commring]

AX47-1 ring[x,star,plus] V,ring[a,star,plus]
,ring[b , star ,plus] V ,intersection[x,a, b]

neg[intersection] impcond[ring]

AX5I-1 times[star,b,a,sk73[b,a,star,s]] V,in[a,s] V
,in[b , s l V,times [star ,a, b , sk73 [b ,a, star, s]] V
,commutative[star ,s]

neg[commutative] neg[in] impcond[times]

AX52-1 comm[star,s] V in[sk75[star,s] ,s]
pos[in] pos[commutative]

AX52-2 commutative[star,s] V in[sk76[star,s],s]
pos[in] pos[commutative]

AX52-3 commutative[star,s]vtimes[star,sk75[star,s],sk76[star,s]v
[star, s]]
pos[times] pos[commutative]

AX52-4 commutative [star, s] V,times [star, sk76[star, s] ,sk75 [star, s], c]
neg[times] pos[commutative]

AX6o-1 in[x,c]V ,in[x,a] V
,in[x, b] V,intersection[c ,a, b]

neg[intersection] impcond[in]

88

AX6o-2 in[x, b] V-,in[x,c] V
-,intersection[c ,a, b]

neg[intersection] impcond[in]

AX6o-3 in[x,a]v -, in[x,c] V
-,intersection[c,a,b]

neg[intersection] impcond[in]

AX127 -1 cormnsubring[x,y, star ,plus] V-,cormnring[x, star ,plus]
-,subring[x,y,star,plus]

neg[subring] neg[cormnring] pos[cormnsubring]

AX142-1 cormnutative[star ,r] V-,cormnring[r, star .p.lus]
neg[cormnring] pos[cormnutative]

AX142 -2 ring[r, star ,plus] V-, cormnring[r , star ,plus]
neg[cormnring] pos[ring]

AX143-1 cormnring[r , star ,plus] V-, cormnutative[star ,r]
-, ring[r, star ,plus]

neg[ring] neg[cormnutative] pos[cormnring]

89

l.J

J

)

Table 5 presents an elaborated version of the analogy space

search that was introduceu ~n Figure 10. Each partial analogy,

a., is depicted with the incremental information it adds to Q,. r '
J J-

For example, Q,3 is shown associating the predicates

commutative ~ commutative and the clauses ABSGPT-6 ~ AX38-1. This

means that

Q,~ = ~ U cOIT@utative ~ commutative.

Q,3 was created by associating the axiom ABSGPT-6 from .AXSET

(Table 4) with the clause AX38-1 from ALGBASE (Table 7).

The clause associations that appear in parentheses next to the

node representing 03 contain an association between ABSGPT-3

(from AXSET) and [AX9-1, AX9-2} (from ALGBASE). Both of these

clauses from ALGBASE satisfy 03[descr[ABSGPT-3]], and they are

associated after 03 is created: *
ABSGPT-3: ,intersection[x;y;z] V subset[x;y].

contains the analogs of hath predicates that appear in ABSGPT-3.

new information to a.id us in finding the

we can immedia.tely seek its

descendant partial analogy

aP
3

Consequently,

Certainly, no

addition, we can see that U
3

tion of an operator MULTIMAPl,

and will be described below.

analog after creating 03 .
Q,. (j > 3) will add any

J
analog of this axiom. In

is created from 02 by the applica­

which is a close relative of MULTIMAP

ZORBA-I generates a complete analogy

LJ

~--)

Os as the fifth term in a sequence of fertile partial analogies.

Now, this description of ZORBA-I is quite informative to a per­

son intimate with the algorithms employed. Substantial computation

that is integral to ZORBA-I iR unrepresented in Table 5 and needs to

*For simplicity we will refer to [AX9-1, AX9-2} as the image of
ABSGPT-3, since these two clauses are description-equivalent. We
will speak of (candidate) images of an axiom when these are two
or more sets of clauses that are not description-equivalent.

90

be elaborated for an uninitiated reader. For example, SHORTDESGR

searched for the images of many clauses (SOME) when extending a
l

and found that one clause (ABSGPr-5) had but one image. The

results of the other searches are omitted in the Itanalogy space pro-

tocol" represented in Table 5. MULTIMAPl is used to select a

likely image clause for an axiom that has more than candidate image

based on heuristic ordering function ~d (Chapter V).

Table 8 fills in a sample of this detail in portraying a little

of the information flow through SHORTDESCR. We can see that

shortdescr[al] finds at least one candidate image for each clause in

SOME. Only one axiom (ABSGPr-5 from Table 4) has only one candidate

image. It is passed onto MAPDESCR to create a~ from ai and the

predicate associations that arise from mapping the description of

ABSGPr-5 with the description ofAX127-1.

A new analogy a
2

is created and is checked to see whether
p pa
2

c a. for any a.. Here, the only analogy generated so far
- J J

is a~ i:. a~. (In fact, ai c a~ .) Referring to Table 7 we see

how a2 is created from a l by SHORTDESCR associating ABSGPr-5

with AX127-1. We can also see that this association adds

subgroup ~ subgroup

to ai and creates a larger ~

~: intersection ~ intersection

abelian ~ commring

abeligansubgp ~ commring

subgroup ~ subring •

Finally, a
2

is added to the list of active analogies, and since it

is the only unextended analogy, it is extended next.

91

Table 8

SEGME:N'I' OF PR0rOCOL FROM EXTENDER SEARCH

(a)

(generated by INITIAL-MAP)

_J

PARTITION AXSET

ALL = P
SOME = [ABSGPT-l; ABSGPT-2; ABSGPT-3; ABSGPT-5; ABSGPT-8;

ABSGPT-9}

NONE [ABSGPT-h; ABSGPT-7; ABSGPT-IO; ABSGPT-ll; ABSGPT-12;
ABSGPT-13}

APPLY SHORTDESCR TO SOME

ABSGPT-l has 7 candidate images under ai
ABSGPT-2 has 9 candidate images under aK
ABSGPT-3 has 9 candidate images under ai
ABSGPT-5 has 1 candidate image under ai
ABSGPT-6 has 6 candidate images under ai
ABSGPT-8 has 9 candidate images under ai
ABSGPT-9 has 7 candidate images under ai

Select axioms from AXSET with 1 candidate image

APPLY MAPSESCR to ABSGPT-5 and AXJ27-1

Create a
2

a
2

is a new partial analogy

Select the next partial analogy to extend: a
2

92

Table 8
(Concluded)

(b)

EXTRND 0,2

PARTITION AXSEr

ALL := [ABSGPr-5}

SOME := [ABSGPr-l, ABSGPr-2, ABSGPr-3, ABSGPT-4, ABSGPT-6,
ABSGPT-8, ABSGPT-9}

NONE := [ABSGPr-7, ABSGPT-lO, ABSGPT-ll, ABSGPT-12, ABSGPT-13}

APPLY SHORTDESCR to SOME

SELECT BUGSET SOME

BUTSET := tABSGPT-4}

ABSGPr-4 has 3 candidate images under 0,2

APPLY MULTIMAPI to ABSGPT-4 and its candidate images~

[AX12-l, AX126-2, AXl28-l}

ORDER the candidate image set by ~d: AX12-l is the best can­
didate

APPLY MAPDESCR to ABSGPT-4 and AX12-l

CREATE 0,3"

o,~ is a new partial analogy

SELECT the next partial analogy to extend: 0,3

EXTEND 0,3

PARTITION AXSET

ALL := [ABSGPT-l, ABSGPT-2, ABSGPT-3, ABSGPT-4, ABSGPT-5}

SOME := [ABSGPT-6, ABSGPT-8, ABSGPT-9}

NONE := [ABSGPT-7, ABSGPT-lO, ABSGPT-ll, ABSGPT-12, ABSGFT-13}

93

AXSE'T is

ready to

Par t iti oned with respect to a l' ('rable 8a) and we are
2 '

execute shortdescrL0
2

] in a little detail (Table 8a):

SOME[a
2

] : == [ABSGPI'-l, ABSGYf-2, ABSGPI'-3, .4.BSGP:r-4,

ABSGPI'-6, ABSGPr-8, ABSGPT-9}

ABSGPT-4: --Igroup[h,*] J v,group[g;*] V,subset[h;

V subgroup[h;g;*]

ABSGPI'-6: ,cmnm.utative [-lE- ;g] V -Igroup[g ;*] V abeLi.an] g; *1

pos[abelianJ.

J

Since a
2

P does not add any information to a
l

about addi-:~1..~'

predicates in ABSGPI'-6, the search for any clauses that satisfy i:

restricted de scrpt.Lo» w511 's -;'1cioU r; a l in shortdescr[Q,,]. In COL"
c:

trast, ~P did add -'c,he 8o:rJ cj b g of the predicate SUBGROUP which

appears in ABSGP:r-4:

p
c Ct

2
- [descr[ABSGPT-4] 0= posj subgroup],

We expect that Ct
2

will enhance our ability to search for the

analog of ABSGPr-4, but will add nothing to our search for the

analog of ABSGPr-6. ShortJescr[a] should seek the analog of
2

ABSGPr-4 (and any cLaus e s t:i1.(~t it similarly effects) and skip OVl",:

those clauses that do not contain predicates that Q
2
l' added to

alP. In this case, ABSGPr-4· is the only clause that Ct
2
l' informs

us about. (The only other clause in AXSET that references the

predicate SUBGROUP was used to create (
2

) , Often, but not in t.lri s

problem, the "budding set" contains several members.

a. 1 is the immediate parent of
J-ap

. l' whereJ-

Definition: An axiom ~. E some[O) is a member of budset LO}
includes some predicate l' that is contained (with analog)iff a~

in 0.1'
J

By limiting our searches in SHORTDESCR to BUDSET, we eliminate

much excess computation. For example, here some[(t2] contains seven

axioms, but we will only search for an extension to (t2 with one of

them. When the data base D is large, these searches are rather

costly, and the restriction of SHORTDESCR to BUDSET is important for

computational efficiency. In addition to this pragmatic issue, we

have an important theoretical observation. Suppose a clause a~

in budset[O.J fails to have an image under a.. If we can assume
J J

that the appropriate analog of ~ is in D and satisfies

a[descr[a~]] for the correct analogy 0, then we know that 0jP

contains at least one faulty predicate association. Clearly, this

improper association is in the set a. p
- (tP. l' since previously

J J-
(at 0j_l) we had either (1) no search ~ E none[a j_l]). The use

of BUDSET enables us to localize the error in a faulty a. when one
J

arises.

Let I S return to our discussion of EXTE:ND-3! s behavior with

T
1

- T2• Shortdescr[02] is invoked to search for the image of

budset[02] and finds that one axiom (ABSGPT-4) has an image set. It

then uses MULTIMAP-l to order the image set by CPd (Chapter V) and

associates ABSGPT-4 with the most likely candidate clause (AX12-1)

fromALGBASE. MAPDESCR is invoked again, and a new partial analogy,

03. is created. EXTE:NDER iterates again and continues its process

until it finds the complete analogy (Table 5).

By now the reader should have a good grasp of ZORBA-I's inner

processes. In order to follow its behavior through the remaining

experiments that it performed, I need to describe two operators that

extend a partial analogy. First, we need to explore MULTIMAP, which

was introduced in the last chapter with EXTENDER2. Then, we can

consider a new kind of operation (called CHUNK) which can accrete

("chunk") one "superanalogy" from merging two or more partial analo­

gies.

95

MULTIMAP was described (Chapter V) as an eA~ension process that

allows MAPDESCR to be app.i.Ieci to an axiom ~ E SOME, and the most

likely of several candidates that are ordered by a likelihood f'uric-

tion CfJd· A simple CfJd has already been outlined, and MULTIMAP

was described as applying MAPDESCR to each axiom with more than

one candidate image. In our preceding discussion we considered ct

simpler version of MULTIMAP,

attempts to extend a. only
J

had but one member with more

called MULTIMAPl. This operat.ton

if SHORTDESCR failed and buds et l-a .l
J

than one candidate image. These

candidates [c
j

} are ordered by CfJd and lf~ESCR, applied to

~ and the best clause, c~, under this ordering. This procedL~e

is adequate for generating an analogy for Tl - Tl (Table 5). This

particular problem is the only one of the difficult four (Table 2)

that can be solved with only SHORTDESCR and MULTD1APl. We need to

discuss how ZORBA-I behaves when SHORTDESCR fails and BtIDSET con-

tains several members, each with several candidate images, as well

as the behavior of ZORBA-I when SHORTDESCR succeeds with a BUDSET

with several members. We will discuss the first item next.

D. An Example of MULTIMAP

In our preceding example, each partial analogy could be extender.".

by the application of SHORTDESCR on MULTIMAPl. If shortdescr[a.]
J

failed, then only one clause (~) in budset had more than one can-

didate image. a. could be extended by ordering the candidate
J

image set by CfJd and associating the best candidate with ~o

This serendipitous 3xrangement occurs rarely if shortdescr[a.] fails,
J

Typically, if shortdeSCl'[Oj] faiJ.s, several clauses will have more

than one candidate image. We are then faced with two decisions:

(1) Which in BtIDSET shall we decide to map with their

candidate images?

(2) Which candidate image shall be selected for each clause?

issue here.

We have already decided the answer to Question 2 by using cpd

to order the candidates. Our answer to Question 1 is really at

We have several choices:

partial analogy by pairing only one

(1)

(2)

Extend ct. to several distinct partial ana.Logf.es by
J

pairing each axk BUDSET with its best candidate image

under

Extend ct. to one
J

axk E BUDSET with its best candidate image under 'Pd'

ZORBA-I chooses the last of these three alternatives for two

reasons:

(1) Two extensions of the same analogy often result in

redundant searches. (This issue is discussed in

Section E of this chapter.)

(2) More than one extension of an analogy at each sf.age of

iteration will enlarge the search space exponentially,

Now, we know (Chapter V) that if ct}descr(~)] yields

a candidate image set with more than one member, we can

expect that our desired image is in this set if a.p is
J

valid. If we extend ctj by mapping only one ax.k E BUD-

SET, we will pick up the remaining elements of BUDSET at

some other level (k>j) of iteration.

We need some cpc[cl;c2] that will order the clauses in BUDSET

based on their (heuristic) desirability. ZORBA-I uses tvro criteria

in ordering BUDSET (relative to ct.):
J

(1) If a clause cl' has more features available (based on

ctj[descr[c]] than a clause c2' we should prefer cl to

c
2'

Each feature available in the restricted descrip­

tion helps us narrow the search for its desirei candi­

date image.

(2) If two clauses cl and c2 are equivalent by the pre­

ceding criterion, tnen we might prefer c
l

to c
2

by a

second criterion. erd is a heuristic ordering function;

it might give us the wrong image for a particular clause.

If 'I,re add fewer new predicates to a.p
, we take less risk

J
in a. than if we add more predicates (and err).

J

ZORBA-I uses both criteria in their obvious order to create a

Since we have a erc that is oriented

will give us additional information

clause-ordering function er •
c

toward providing the clause that

at the least risk, MULTIMAP runs over SOME. Occasionally,

will prefer clauses that do not appear in BUDSET since their

restricted description has more features than that of any clause in

ruJDSET. (The following exrunple will illustrate this point more

full~) Using erc ' we can write MULTIMAP as follows:

[c.} .
J

creates a newa.p

J
exit.

of SOME.

from the data base that

described above.by erc

Find the set [c ~j} of clauses

satisfy O.[descr(ax
k)]

•
J .

Order [c
j

} by erd.

Select the best element

Apply MAPDESCR to aXk and cj' the best clause in

see if maPdescr[axk;c j] U

If so, create O. 1 and
J+

Set aX
k

to the next best element of bUdset[Oj].

Check to
p

°j+l .

(4)

(5)

(6)

Multimap[Q,.J :=- J

(1) Order budset[a.]
J

(2)

(3)

If all have been tried, execute an error. otherwise, go to (3).

We have just defined MULTlMAP as it is used by ZORBA-I. Both

erc and erd are treated as functional parameters, and we can have a

family of MULTIMAP operators with each one having a particular pair

of heuristic ordering functions and. erd •

We are now ready to consider a particular example, T
5

·· T6 ,

from Table 2. The analogy-space search for this pair of theorems

is shown in Table 9. SHORTDESCR and MULTIMAP are invoked a1ter-

nately to generate a final complete analogy G
5•

Since T
5

con­

cerns a property of intersecting normal groups, this problem pair is

referred to as INTNOR. The axioms (AXSET) are listed in Table 10

and the reader is referred to the listing of ALGBASE in Appendix B.

To check which axioms are paired with them in Table 9, let's

look at an iteration of EXTENDER that invokes MULTIMAP. EXTENDER

finds that shortdescr[G
3]

fails. It then orders some[03] as in

Table 11. These clauses fall into three erc-equivalent groups.

The first group, INTNOR-13 ..• INTNOR-19, could add one predicate to

~ and have two features available for a search. A second set

composed of [INTNOR-l, INTNOR-2, INTNOR-3, INTNOR-5} also could add

one predicate to ~ , but have a restricted description with only

one feature. The last set is composed of but one axiom, INTNOR-21,

which could add three predicates to 03P if its analog were found.

03P add subset~ subset to G2
P and bUdset[~] equals tINTNOR-5}.

However, we don't want to search for the image of INTNOR-5 in

The clauses ofpreference to any of the clauses preferred by erc '

the first set in Table 11 have fewer candidate images than the

clauses in the two lower-ranking sets. The last column lists the

number of clauses that satisfy G
3[descr[axk]]

for each aXk in

some[~]. If we choose a clause that has only three candidate

images in preference to one with nine, we can assume that cPd will

have an easier time in ordering the set. This is not necessarily

true, and is purely a heuristic decision. We decide to choose a

clause with the fewest candidate images to extend G
3.

Now, we

don't want to search for the candidate images of every axiom in

some[G
3

] , since these searches are expensive. Thus, we use the %
above to order clauses by their likelihood of having a small candi­

date image set. The criterion is simple: as the number of features

in a restricted description of a clause increases, its candidate

99

Table 9

ANAl:0liY ~n~CH SPACE FOR

T) - T6 .Al\fALCXJY

:--~\I

)Igroup ring
intersection ~ intersection

normal ~ ideal

From INITIAL-~ffiP

(INTNOR-4 ~ AX47-1)

INTNOR-20 ~ AXl28-1
(INTNOR-4 ~ AX47-1
INTNOR-9 ~ [AX148-1, AX149-1}
INTNOR-IO ~ [AX148-2, AX148-2}

MULTIMAP

°2
subgroup ~ subring

SHORTDESCR

INTNOR- 8 ~ AX12-1
(INTNOR-6 ~ tAX9-1, AX9-2}
INTNOR-ll ~ tAX148-3})

MULTIMAP

INTNOR-19 ~ [AX129-6, AX129-7, AX129-8}
([INTNOR-l, INTNOR-2, INTNOR-3} ~

£AX6o-1, AX6o-2, AX60-3}
INTNOR - 5 ~ AXIO-2
t INTNOR-16, INTNOR-17, INTNOR-18} ~

[AX129-6, AX129-7, p.x129-8})

SHORTDESCR

INTNOR-21 ~ [AXJ28-2, AX128-3,
AX128-4 }

°5
times ~ times

inverse ~ inverse

100

INTNOR-l

INTNOR-2

INTNOR-3

INTNOR-4

INTNOR-5

INTNOR-6

INTNOR-7

INTNOR-8

INTNOR-9

INTNOR-IO

INTNOR-ll

Table 10

AXSET FOR THEOREM T
5

.Wi&

The intersection of two normal groups is a normal
group

group[g;*] A normal[a;g;*] A normal[b;g;*]
A intersection[c ;a;b] -7 no rmal[c ;g;*]

in[x;c] v,in[x;a] V ,in[x;b] V ,intersection[c;a;b]
neg[intersection], impcond[in]

in[x;b] V ,in[x;c] V ,intersection[c;a;b]
neg[intersection], impcond[in]

Lnjx ;a] V ,in[x;c] V ,intersection[c ;a; b]
neg[intersection], impcond[in]

group[k; star] V ,intersection[k;g;h] V ,group [g ; star]
V ,group[h;star]

neg[intersection], impcond[group]

in[a,y] V ,in[a;x] V ,sybset[x;y]
neg[subset], impcond[in]

sUbset[x,y] V ,intersection[x;y;z]
neg[intersection], pos[subset]

subs et.j x ;z] V ,intersection[x;y;z]
neg[intersection], pos[subset]

sUbgroup[h;g;star] V ,group[h;star] V ,group[g;star]
V ,subset[h;g]

neg[subset], neg[group], pos[subgroup]

group[h;star] V -l subgroupj h j g ; star]
neg[subgroup], pos[group]

group[g; star] V ,subgroup[h; g; star]
neg[subgroup], pos[group]

sUbset[h;g] V ,subgroup[h;g;star]
neg[subgroup], pos[subset]

101

pas [normal]

INTNOR-12

Table 10
(Concluded)

norma.lj h tg t sbar] V ,subgrol1p[h;g;star] \j ,in[sk
52(star;g;h] ,h]

neg[in] neg[subgroup]

UITNOR-13 normal[h;g;star] V -s subgroupj h rg j st.ar] \I

,inverse[star; sk51(star ,g;h); sk49[star ,g,h)]
pos[inverse neg[subgroup] pos[normal]

INTNOR-14 normal[h;g;star] V ,subgroup[h,g,star] V
times[star;sk50(star,g;hJ; sk51[star,g;h];
sk52 [star;g ,h)]

pos[times] neg[subgroup] pos[normal]

INTNOR-15 norma.Lj h j g j s t ar] V -Isubgroup[h;g;star] V times[sta:::';
sk49(star;g;h); sk48(star;g;h); sk50(star;g;h)]

pos[times] neg[subgroup] pos[normal]

INTNOR-16 norma.l.I h j g ; star] V ,subgroup[h;g ; star]
V in[sk51(star;g,h) ;gJ

pos[in] neg[subgroup] pos[normal]

INTNOR-17 normal[h;g;starJ V ,subgroup[h;g;star]
V in[sk50(star;g;h); G]

pos[in] neg[subgroup] pos[normal]

INTNOR-18 normal[h;g;star V ,subgroup[h;g;star]
V in[sk49(star;g,h); g]

pos[in] neg[subgroup] pos[normal]

INTNOR-19 normal[h;g;star] V ,subgroup[h;g;star]
V in[skl.i8(star;g;h), Ii]

pos[in] neg[subgroup] pos[normal]

INTNOR-20 subgroup[h j g ; s't.ar] V ., normal[h;g; star]
neg[normal] pos[subgroup]

INTNOR-21 Lnj u ch] V ·-1 .irij hh jh] V -1 in[gg;g]
V ,in[y;g] V ,in[m;g] V -ltimes[star;gg;rJJ.;y]
V ,times [i~tar;y;m;u] V ., inverse[star ;m;ggJ
V ,normal[h;g;star]

neg[normal] neg[inverse] neg[times J Impcondj i,n]

102

Table 11

SOMEra] ORDERED BY CjJ FOR MULTIMAP
j c

The Predi- Number of

cate Axiom Clauses from

* Can Add to ALGBASE that
Axioms

aP Satisfy the

a
3[descr(c)]

Restricted3
Description

Set 1--
INTNOR-19 in neg[subring], posE ideal] :;;:

J

INTNOR-18 in neg[subring], posE ideal] :;;:
J

INTNOR-17 in neg[subring], pes] ideal] '"./

INTNOR-16 in neg[subring], pos[ideal] :;;:
J

INTNOR-15 times neg[subring], pes] ideal] :;;:
J

INTNOR-14 times neg[subring], pos[ideal] '"./

INTNOR-13 inverse neg[subring], pos[ideal] :;;:
J

INTNOR-J2 in neg[subring], pos[ideal] :;;:
J

Set 2--

INTNOR-5 in neg[subset] 9

INTNOR-3 in neg[intersection] 6

INTNOR-2 in neg[intersection] 6

INTNOR-2 in neg[intersection] 6

INTNOR-21 [in,
times,

inverse}

neg[ideal] 7

*See Table 10 for axioms corresponding to the names listed here.

103

image set decreases in size. Computing CPc is cheap and allows us

to cJ100~;C a Low-cr i ak cLaus e in advaricc of searching for its candidate

the clauses within the (three) sets in Table 11 are

MULTIMAP (defined above) just chooses the first

INTNOR-19 here. It uses this clause to extend

Now, all

cp -equivalent.
c

clause, which is

to 04. EXTENDER then iterates to consider extensions of 04.

Shortdescr[Q4] finds a single candidate image for an axiom in

some[04] and creates a final partial analogy, 05 (Table 9).

E. The Chunking Process

In our preceding discussion of SHORTDESCR, BUDSET contained

only one axiom at each stage of iteration. Extending OJ by

SHORTDESCR led to a unique extension 0j+l when it was successful.

In general, BUDSET has more than one member, and SHORTDESCR can be

successful in these cases too. In each such event, we can naturally

have several partial analogies, and each is a legitimate extension of

its immediate predecessor. A simple example of this phenomenon is

presented in Table 12 for an attempt to generate an analogy for

problem T
3

- T4 (Table 2). Partial-analogy 02 has two distinct

descendants by SHORTDESCR. Both add the associations of different

predicates to 02P, and they do not conflict. (See Tables 12 and

13.)

J

EXTENDER creates two distinct descendants, 03 and 04

(Table 12), and continues its search. When 03 is extended to

05 it adds HOM ~ HOM which is contained in 04P . 04 is extended

in rapid sequence to a6' ~, and 08. EXTENDER then extends 05 to

to 09' and extends 08 to 010 and finds that it has developed a

complete aP for this problem. Unfortunately, it developed a redun-
p p

dant line of search: 09 COlO· A substantial amount of work was

spent in developing 05 and 09 that may have been avoided. Suppose

we created a larger partial-analogy ail = a§ u O~. Since 03 and 04

104

Table J2

ANALOGY-SPACE SEARCH FOR T
3

- T
4

WITHOUT CHUNK

From initial-map

MAXTREE-14 ~

AX131-2

°1
pnormal ~ pideal

simplegroup ~ simplering
facts ~ facts
group ~ group

maxring ~ maxring

*MAXTREE-14 ~ AX131-2 MULTIMAP

°4
hom ~ hom
map ~ map

MAXTREE-J2 ~

AX132-l

SHORTDESCR

MULTIMAP

MULTD1AP
._--..K----....

MAXTREE-6 ~

[Axn8,
AX161-2}

°6
subset - subset

MULTIMAP

MAXTREE-8 ~

[AX133 - 1 ,
AX158-1,
AX159-1}

SHORTDESCR

MAXTREE-3 ~

AXJ2S-1

°9
subring ~ subring

C1
normal - ideal

MAXTREE-IO ~

AX16o-1

MULTIMAP

MAXT.REE-4 ~

AX12S-3

Os
identity~ identity

~O
subgroup-subring

*See Table 13 for definitions of the MAXTREE axioms.

105

MAXTREE-l

MAXTREE-2

MAXTREE-3

MAXTREE-4

MAXTREE-5

MAXTREE-6

MAXTREE-7

MAXTREE-8

MAXTREE-9

Table 13

AXSET FOR THEOREM T
3

If a factor group G/M is simple, M is a maximal
normal subgroup of G.

Group[g;*] A pnormal[m;g;*] A facts[x,g,m]
A simplegroup[x,*] ~maximal[m,g;*]

,ident[star ;x; g] V, pnormal[x ;g; star]
neg[pnormal] neg[ident]

normal[x;g,star] V ,pnormal[x;g;star]
neg [pnormal] pos[normal]

subgroupj xjg j st.ar] V ,normal[x;g;star]
neg[normal] pos[subgroup]

subs et.j h jg] V ,subgroup[h;g ; star]
neg[subgroup) pos[subset]

hom[hommap[star;n;g;x], g:x] V ,group[g;star]
V ,normal[n,g; star]

neg[facts] neg[normal] V neg[group] V pos[hom]

map[phi ,x ,map [x ; b ;a;phi] V -, hom[phi ;a, b]
V ,subset[x,a]

neg[subset] neg[hom] pos[map]

group[g;star] V,simplegroup[g,star]
neg[simplegroup] pos[group]

,identity[star2,y;b] V ,hom[f;a,b]
V ,group[a;starl] V ,group[b;star2]
V ,map[f,x;y] V identity[starl, xe a]

neg[map] neg[group] neg[hom] impcond[ident]

,normal[y; b ; star2] V ,identity[star ;x,g]
V ,psubset[x,g] V ,simplegroup[g;star]

neg[simplegroup] neg[psubset] pos[ident]
neg[normal]

106

MAXTREE-IO

M.AX.TREE-ll

MAJITREE- J2

MAXTREE-13

MAXTREE-14

Table 13

(Concluded)

normal[y;b ;star2] V ,groupe a; starl]
V ,group[b;star2] V ,group[b;star2]
V ,hom[phi;a;b] V ,map[phi;x;y]
V ,normal[x;a;starl]

neg[map] neg[hom] neg[group] impcond[normal]

psubset[x;g] V ,pnormal[x;g;star]

psubset[y;b] V ,hom[phi;a;b] V ,group[a;starl]
V ,group[b;star2]

neg[map] neg[group] neg[hom] impcond[psubset)

maximal[m;g;star] V ,group[g;star]
V ,pnormal[m;g;star]
V pnormal[otherset(star;g;m); g;star]

Lmpcondjpnorma.l.] neg[group] pos[maximal]

maximal[m;g;star] V ,group[g;star]
V ,pnormal[m;g ; star] psubset[m;otherset star ;g;m]

pos[subset] neg [pnormal] neg[group]
V pos [maximal]

are descended from the same partial-analogy 0,2 by SHORTDE;3CR and

they do not have conflicting associations, we expect that our super­

analogy will expedite our search. We need to define a new operator

called CHUNK, to create this new"large" partial analogy.

Definition: A partial-analogy o,~ is chunked from a set of

partial analogies {~} if:

(1) Each of the ~ are descendent from the same partial­

analogy o,. by SHORTDESCR.
J

(2) None of the o,k have conflicting associations in ~P---

e .g. , ~ has p ~ q and o,i.+2 has p ~ r.

107

A modified search is depicted in Table 14. A careful compari-

son between the searches with and without CHUNK is quite instructive.

Both develop identically up to Ct4· Cti5 (Table 14) = ~uaE

(Table 12).

Now, MAXTREE-8 is in all Ea
15

] and the node corresponding to U'5

(Table 12) is not developed. In our CHUNK-free search, a? adds

normal ~ ideal to 0,6P • In the search with CHUNK, that association

is carried directly from 0,3 to Ct
15

by CHUNK. Hence, it need not

be developed again. ChunkECt
3;a5]

is Ct
15

and quite easy to compute,

in contrast to every other partial-analogy which requires at least

one search through the data base to find a clause that satisfies a

given restricted description. If we disregard Ct
15

(the CHUNKED

partial-analogy) as a very low-cost item, then we see that the

search with CHUNK created only six partial-analogies in contrast to

the ten partial-analogies created in the search without CHUNK.

108

Table 14

ANALCGY-SPACE SEARCH FOR T
3

- T4 WITH CHUNK

------ -_._---_._-

MULTIMAP

°1
pnormal ~ ideal

simplegroup ~ simplering
facts ~ facts
group ~ ring

maximal ~ maxring

~
MAXTREE-14 ~ psubset ~

AX131-2

From initial-map

SHORTDESCR SHORTDESCR

MAXTREE-9 ~

AX137-2 °4
hom ~ hom
map ~ map

¥JAXTREE -12 ~

AX132-1

CHUNK ~ ~_.-.. CHUNK

MULTIMAP

MULTIMAP

subset

°15
normal ~ ideal

identity ~ identity
hom ~ hom
map ~ map

°17
subgroup ~ subring

MAXTREE-4 ~

AX-3

MAXTREE-6 ~

{AXllS-l,
AX161-1}

109

VII ANALYTICAL APPROACHES TO ZORBA-l

A. Introduction

Previously, we have treated ZORBA-I as a pragmatically moti-

vated and empirically developed system. We have informally studied

various experiments by the case analysis of particular examples. In

contrast, we will now study four properties of ZORBA-I from a formal

and analytic viewpoint:

(1) How the use of semantic types decreases the size of the

search space of admissible aPe

(2) How the use of an INITIAL-MAP prior to EXTENDER further

reduces this search space.

(3) Conditions for which an analogy will aid or hinder a reso­

lution theorem prover.

(4) Necessary conditions that AXSET and T
A

must satisfy for

EXTENDER to operate successfully.

ZORBA-I initiates its development of an analogy a without any

a priori information regarding associations between particular predi­

cate pairs. However, it does demand that associated predicates be

of the same semantic type. This restriction considerablY limits the

number of possible mappings that could qualify for aP, and will be

briefly discussed first.

Suppose ~ axioms are used to prove T and they reference P
T

predicates. Furthermore, suppose the data base D contains MD axioms

that include P
D

predicates. If we assume that our predicates and

axioms map are one-one, we can have:

axiom mappings

and

110

predicate mappings.

Each of these will associate one axiom (or predicate) used in proof[T]

with one axiom (or predicate) from the data base D. If ~ := 250,

M.r= 10, PD = 40, and P = 10, we have about 1024 axiom mappings
T

(250;) and about 1015 (40;) predicate mappings possible. Now
240; 30Z

let's look at the introduction of types. In ZORBA-I types are uti-

lized to maintain a meaningful analogy. For example, in geometry,

we prefer to associate a triangle with some other object such as a

tetrahedron, or regular polygon, rather than a relationship such as

bisect or parallel. A ZORBA-I user must specify a type for each

predicate. He can use these types to insist upon having certain

predicates map into predicates within the same equivalence class. Of

course, a user can default by declaring every predicate to be of one

type only, and thus allow a wider variety of mappings. Here, we want

to see how the number of possible predicate mappings is reduced by the

exploitation of types. For our purposes, here, a "type" will simply

be the label of an equivalence class of predicates.

P
Suppose we have t types, and let -f = KD' There are KD

predicates of each type in the data base D. Furthermore, let there

be ~ predicates of each type among the M.r predicates that appear in

proof[T] (t X~ = ~). Then, there are [KDZ] t possible

predicate mappings. (KD-K.r)!

Let P
D

= 36, and PT = 12; then the number of possible predicate

mappings is indicated in the table below:

111

t(number of types) \ t 1 t 2 t =: 3 t =: 4

12
1.64 x 10

In this artificial example, the inclusion of a new type reduces the

number of possible maps by a factor of 102• still, the number of

potential maps is large (about 10
10).

In the case of theorem

Tl - T2 and ALGBASE, the number of potential maps is 4.3 X 105

with any types at all. Of course, we are seeking just one good uP
in this large search space.

In the preceding analysis, we assume that each predicate can be

associated with any other predicate. In fact, ZORBA-I makes a more

restrictive assumption. INITIAL-MAP insists that a predicate that

appears in the statement of T be associated with a predicate that

*appears in the statement of T
A.

Again, artificially, suppose that

K predicates of each type appear in the statement of T. Then,

possible.

[
(KD - K)~ 1t

(~-KT+K)~
predicate associations are

If K =: 1, t =: 4, KD =: 9, and KT =: 3 (since PD =: 36 and P
T

=: 12),

then only 2049 mappings are permissible. Thus, breaking the crea­

tion of uP into two portions, creates an "additive" rather than

multiplicative effect on the combinatorial possibilities. Again, we

substantially diminish the size of our search space. These reduc­

tions are quite striking for the three real problems for which the

*Our artificiality is to suppose that there are an
predicates of each type. For example, ALGBASE has
distribution of predicate types: PROP-l; MAP-3;
RELATION-19; RELSTRUCTURE-l1.

112

equal number of
the following
STRUCTURE-8;

number of possible mappings have been completed in Table 15,> We

see that the effect of INITIAL-MAP and EXTENDER is to reduce

the possible number of mappings by several orders of magnitude. It

is also clear that EXTENDER allows the majority of possible map­

pin s .

B. Time-Space Analysis of the ZORBA-I Algorithm

In these few pages I want to outline an argument pertaining to

the efficiency of a theorem-proving system containing ZORBA-·I and

QA3 (e.g., generates an analogy to restrict the data base) to one

without ZORBA-I (e.g., does not restrict its data base).

Both the INITIAL-MAP and EXTENDER procedures of ZORBA-I are

predicate mapping procedures.

INITIAL-MAP associates each predicate that appears in the

statement of the unproved theorem TA with a predicate that appears

in the statement of the proved theorem T.

Since T and TA are both given, we know the set of possible

maps. Suppose TA (and T) each include Ps predicates in their

statements; then there are at most P! maps (assume one-one maps).
s

The addition of semantic types restricts the set of admissible predi-

cates that may be associated with a given predicate. For example,

if there are t types with P predicates per type in the theorem
s

statements, then the number of possible maps is

(= for k = 1).

Note:

[
eaSi l Y)
proved t > 1.

(P
T

= 12, and t = 3 ~ 12: > [4:]3, etc.).

113

Table I')

J\JUMBER OF PREDICATE MAPS CONSISTENT WITH TYPE RESTRICTION~~

--
Number of Predicates Number of Allowable Maps

Theorem- Theorem
No IInitial-I

Pair Total statements Decomposition Map Ext.endc; i

i I
~

109 105 ~

Tl - T2 9 :5 8.6 X 1 4.3 X ~
~

T
3

- T4 12 r: 2.5 X lOll 16 6.12 X 1~1)

109 ~
Tr:; - T6 8 3 1.2 X 1 5.4 X 10

4 ~
-' Ii

~

M
~=""'~

Tl: The intersection to two abelian groups is an

abelian subgroup of the parent group.

T2: The intersection of two commutative rings is a

commutative subring of the parent rings.

T
3

: A factor group G/H is simple if H is a maximal

normal subgroup of G.

T4 : A quotient ring Ajc is simple if C is a maximal

ideal in A.

T
5

: The intersection of two normal groups is a normal

group.

T6 : The intersection of two ideals is an ideal.

114

choices

for the map generated by EXTENDER (momentarily excluding type

restrictions). In practice, PD » PT » P: ' so that the number

of possible maps generated by INITIAL-MAP is much smaller than the

number of maps that could be generated by EXTENDER.

Thus the worst behavior of ZORBA-I is most likely to be induced

by the worst behavior of EXTENDER.

In my algebra data base:

PD = 40 - constant for all theorems

P
T

~ 10-12

P ~ 2-4
s

C• Background on EXTENDER

}

Theorem
Dependent

EXTENDER accepts a one-one association of predicates oui~ut by

INITIAL-MAP. Thus it knows the analogs of P predicates and must
s

find those of (PT - ps) more. Clearly, it does the most work if

P 1. (p must> 1.)s s-

Superficially EXTENDER works as follows:

(1) Take the current predicate map a~ and uses it to associate
J

some selected axiom a~ from proof[T] with some (hopefully)

analogous clause c
t

from the data base.

Use the current predicate map a~ to associate the predi­
J

cates ofaxk with those in Ct. a:~ has been chosen so that

some (but not all) of its predicates appear in a~. In this
J

association ofaxk,c
t

is used to learn the associations of

new predicates and create a new map a~+l which includes

the union of those on a~.
J

115

r:

Go to I (iterate until all predicates are on some aP)j .

Observation: In the best case, one axiom would include all

PT-Ps predicates and EXTENnER wouLd iterate only once, as illustrated

below:

Provided by
INITIAL-MAP

Some a x
k

has all

PT-Ps predicates

In addition, we assume that we select the correct c to associate
t

with it immediately, and that the clause-description-matching rou-

tine outputs only one predicate association.

Observation: If only one predicate is added at each iteration

of EXTENnER, we require P
T

- P
s

iterations to complete aP. Thus,

the maximum depth of the analogy search space is PT - Ps' minimally

1 (as above), and (of course) is usually in between 1 and (PT - p
s).

D. Worst-Case Analysis of EXTENnER

In this section I want to describe how EXTENnER may be ineffi-

cient when compared with a resolution system.

here are axiom systems that:

What we want to study

_ 1

'__J

(1) Force EXTENnER to generate a "maximum" number of partial

analogies in its search for aC
between T and T

A•

(2) Allow a resolution program (with an unsophisticated

strategy) to generate a "minimum" number of resolvents in

its search for a proof of T
A•

So, we are comparing the number of partial analogies generated

by EXTENnER with the number of clauses in a resolution search. If

vie really want to be exact we should compare:

116

nl • cost[partial analogy] + ~ • cost[resolvent]

with

~ • cost[resolvent]

where

nl = number of partial analogies generated by EXTENDER

number of nodes in resolution search with the EXT}~ER­

derived data base

number of nodes in resolution search without the smaller
data base provided by EXTENDER.

For now, we will simply compare nl with ~ under various con­

ditions. In a later section I will conrrnent on the relative costs

of generating a partial analogy in EXTENDER's search and generating

a resolvent in a resolution search.

I will explicate the following results:

(1) If a data base is explicit designed to befoul EXTENDER

and aid resolution, we can find conditions where nl » ~

(n2 = ~). Analogy seeking in this case decreases the

efficiency of the overall ZORBA-I-QA3 system.

(2) A few simple conditions on the axioms in a data base can

create searches where ~:::: nl' and n2 2: n
3•

Now, the

addition of analogy seeking may do no worse, and may sub­

stantially aid the performance of the resolution system.

These axiom systems are highly contrived (particularly for

nl = ~ = ~) and are of limited usefulness.

(3) Finally, we deduce from 2, above and the nature of' prag-

matically interesting axiom systems, that "i « n
3,

n2 « n
3,

and nl + n2 « ~.

In uncontrived cases, the addition of analogies can be a sub­

stantial aid to the system performance.

117

I'll begin by motivating the design of an axiom system to create

Condition 2 above and t.hen r-esurLc't it further to create Condition L

Let's consider how we may generate a worst-case for ZORBA.

First, we would like an analugy search tree as deep as possible.

From the preceding discussion, we want only to add one predicate

association to the analogy at each iteration.

A little thought will show you (as it showed me) that this cri­

terion forces the axioms used in proof[T] into a particular form.

Each clause must contain at most two predicates, each appearing in a

literal of opposite sign. In this case, a mapped clause can add

information about (at most) one predicate to the current ci3. Thus,

two predicate clauses force EXTENDER to generate a new a1? for each
J

predicate-pair added. Note that a clause may contain only one

predicate, or more than two literals.

and are admissible, while

In the following example,

(three predicates) is not:

cl: ,Pl[x;y] V Pl[y;x]

c2 : ,Pl[x;y] V ,Pl[x;z] P2[x;y;z]

c
3

: >Pl[x;y] V , P2[s ;y ; z] P3 [z ;x; y]

Let's consider a particular Ilworstll axiom system, and see how to

generate an associated Ilworstll axiom set, called WORSTBASE (Table 16).

118

Table 16

WORSTBASE AXIOM SET

C4 : Pl[a,b]

c
5:

,Pl[x;Y] V P2[y;x;g[x;y]]

c6: ,P2[x;y;z] V P
3[z;y;x]

'7: ,P
3[W;X;Y]

V P4[w;f[x;y]]

cS: ,P4[g[u;v];z] V P4[z;g[u;v]]

c
9

: ,P4[f[x;y] ;z] V P
5

[z ; f[x;y]]

c
I O

: ,P4[f[x;y];z] V P
5[f[X;y]]

C
ll

: , P
5

[X;y] V P
5[y;x]

V P6[x;x;y;y]

c
12

: -iP
15

[x ;Y;Y] ,P
15[Y;Y;x]

P16[x;x;y;y]

c
13:

,P
150[x;Y;h(Y)]

,P
150[h(Y)

;y;x] P16[x;x;y;y]

c14: ,P250[x;r[x]] V P16[x;y;y;x]

~5: ,P14[] V P150[]

c16 : ,P140[] V P15 []

c17 : ,P14 [] V P15 []

clS: ,P140[] V P150 []

119

Suppose TA is P16[c;c;d;d].

INITIAL-MAP will associate

ap e T1 ~ T1

l' 1:'6 1:'16

and associated with ai, SOME = [cl l}.
We want to have a data base in which cl l will potentially map i.nto

k-different clauses.

Consider two clauses, c12 and c
13:

c12 : ,P15[X;Y;y] V ,P15[Y;Y;X] V P16[x;x;y;y]

The description of

cull out both

restricted to

Also, the following equivalence shows that

description equivalent relative to Oi:
and are

descr[c
12]

descr[c
13]

neg[P15], pos[P16]

neg[P
150], pos[P16] 0

Thus, EXTENDER "Till generate two descendant analogies:

If we had a clause c14 in the data base, then we would. have still

a third descendent analogy, which adds P
5

~ P150.

c14 : ,P250[x;r[x;r[x]] V P16[x;y;y;x]

120

For the moment, let's create a data base that gives us just two alter­

natives at each stae;e:

a~ and a~ both create a SOME = tC9;cIO}

and we want clauses that will give us two alternatives for each

analogy.

Consider:

c
15

: ,P14[V P150[]

c16: ,P140[V P15[]

c
17

: ,P14[V P150[
] .

(Predicate arguments are irrelevent because we select candidates based

on predicate sign features, since only these appear in the clause

descriptions.)

a~ can associate cl O
associate it with either c

15

with either

or

c15 or c18 ' and a~ can

as illustrated in Figure 11.

t:

FIGURE 11. FRAGMENT OF ANALOGY SPACE FOR WORSTBASE.

121

In general, if we want to generate a maximally ambiguous data base

that will force k-ary branching in the analogy tree, we need k:

description-equivalent axioms in it for each axiom used in proof[T].

1 + nodes

In this case, there may actually be k-analogies. Suppose that actu-

ally only one clause of the form c v P20[] appears, so that at

the last level of search, one analogy emerges that includes all

K predicates.
s

Let's compare this situation with the behavior of the resolution

program. Suppose we just attempt to prove T
A

with the set of

axioms described above •

., T
A

will (in general) resolve with each of c
13

and

creating two resolvents, Rl and R2 (corresponding to a
2

in Figure 11).

c
12

,

and

Rl will resolve with c16 to produce an ~ (corresponding

to a6) , and with c
17

to produce an R4 (corresponding to 07).
Likewise, R2 will resolve with

resolvents (at least).

and to produce two

Each new analogy corresponds to the addition of a new predicate

association to its ancestor analogy.

In "resolution-space," we need to resolve two clauses to intro-

duce a new predicate into the search space. So, each partial

analogy corresponds to some resolution. However, if the axioms have

more than two literals per clause, we will need to have additional

resolutions (which don't introduce new predicates) to clash with

these "extra" literals. Thus, in general, our axiom sets are not

restricted to clauses of length two.

From the preceding d.Lscus sdon we can deduce:

122

T
A

may generate a

number of analogies

then a

contains two predicates (as specified above, and

tion symbols for reasons to be specified below),

resolution search for the proof of

number of resolutions equal to the

(1) If our data base is limited to two clauses, each of which

no func-

generated by EXTENDER in its search for the analogy

between T and T
A•

(2) If the data base contains an axiom set in wh.Lch each

clause contains at most two predicates, and the ll"JJD.ber of

literals in some clauses exceeds two, then EXTENDER will

generate fewer partial analogies in its search than a

resolution program proving 'rIA 'will in its search ,

The preceding statements non-formally state that the nUlllber of

partial analogies generated by EXTENDER will be less than or

(at worst) equal to the number of resolvents generated by a resolu­

tion search program (nl S ~).

Now let's look at a restriction of this axiom system that

creates a situation in which nl » ~ (analogy seeking is detri­

mental), and n2 2: ~). Consider a variant of c13, c ' 13' which

appears below with c12 and T
A•

c12: ,P15[x;y;y] V ,P15[y;y;x] V P16[x;x;y;y]

c{3: ,P150[x;Y;h[y]] V ,P150[h(y),y;x] V P16[x;y;y;y]

T
A:

P16[c;c;d;d] (from our previous discussion).

,T
A

will resolve with c12 but not with c
13,

since ,p16[c;c,d,d]

will unify with P16[x;x;y;y] but not with P16[x;y;y;y]. Here we

have a case in which two clauses (c 12 and c~3) are identical in

terms of their descriptions and are indistignuishable in analogy­

space, yet will not resolve with the same clause (here ,T
A)

and

hence do not generate equivalent resolvents in resolution space.

123

1 '11 paraphrase his situation. To get nl » ~ , we want to gener­

ate many more partial analogies than resolvents. Now, the axiom

system we developed in our previous discussion was designed so that

n
l

could equal D
j

(2-clauses). Each partial-analogy represents

one potential resolution. Now, suppose our axiom system is such

that clauses that are equivalent at the description level and are

expected to resolve in analogous ways do not in fact resolve.

For example, see Figure 12.

resolvent
between TA
and c'13 .

No
R'

2
X

\
\

\
\

\---_\...._--/' , -,
I R2 does not \
\ exist /

......._------~

FIGURE 12. COMPARISON OF THE ANALOGY SPACE AND

ITS ASSOCIATED RESOLUTION SPACE

*Now, in resolution space, R'2 may be attempted, but never created.

In contrast, a
2

is attempted and is added as a new analogy. Thus,

in analogy space, a
2

is indistinguishable from U
3

, and will lead

to descendent analogies (Figure 11) that will never have any equivalent

resolvents in the resolution search. In fact, if there are k

description-equivalent variants of each clause in proof[T] on the

data base, and each axiom in proof[T] is a 2-clause, then

*Notice that we name R2 before we say that it doesn't exist. This
is much like needing to describe a purple cow in order to point out
that none of those exist either.

124

kn-2_1

n = m-l and n
3

+l.
1 k-l

If k 2 and n = 10, n = 9 and n
3

256 ; if k 2,1
n 12, n = 11, and n

3
= 1024.1

Let us review these two cases and see what is at issue. In the

case of the first "bad" axiom system we simply let the axioms be

description-equivalent in such a way that EXTENDER could crec~e a

distinct partial analogy for each resolvent that could be created by

the resolution search procedure. In the second case, the "poor

axiom" system, we created axioms that did not resolve because appro­

priate literals would not unify, while (superficially) at the level of

clause descriptions, k-clauses at each level appear equivalerffi. In

passing, I want to note that the proofs for which resolution~·without­

EXTENDER searches are more efficient than resolution-with-EX,]~ENDER

searches are in linear-format with no axiom applied more than once.

These are a subset of "input proofs,,30 and it is known that only cer-

tain theorems may have a proof in this form.

proof format.

It is a very restricted

We have just considered two extreme cases. In the best case, we

develop just one partial analogy a2 since some clause in l~SET

contains all the predicates we need. In the worst case, we may gen­

erate many more analogies than resolvents since EXTENDER's descrip­

tions are insensitive to some features of resolution ~ e.g., when

two clauses unify. Nevertheless, we had to construe a special data

base to confuse EXTENDER. In the next few paragraphs I sha.Il,

describe how a "real" data base differs from our construed one.

In our creation of WORSTBASE (Table 16), we made three assump­

tions, none of which is true, in general. (Of course, all are true

for our contrived WORSTBASE but none is true in our more typical

ALGBASE.) The assumptions are as follows:

125

L

L I

(1) Each c Laus e cont.a.iris either one or two prcdice..te lctters.

This is a highly artifj.cial a.ssumpt.Lon that Lnt.er-act.s wH~h

other assumptions. In contrast, ALGBM3E contains 239

c Laus e s , of' which 98 have » predicate letters: 53 have II

predicate lettcrs, and 3 have') predicae;e letters (in

addition to 98 that contain predicate letters, and 7 +'lc t

contain one predicate letter.) Over 5CfjS of the clauses 1:1

ALGE/\DE contain more than 'two predicate letters.

(2) Each resolvent wiLl. resol.ve "lith some small number of

clauses -- appraxbnately ko Now, if each c Laus e contains

but 2 predicate letters and the data base contains relativ'el;v

many (say 10 to 50) predicates, then we expect each clause

could conceivably resolve with only a f'ew other clauses.

Again, this assumption is highly artificial. T;Te developed

our artificial data base in such a way that the possible

resolvents would be as f'ew as possible. However, most

ax i om systems are quite "rich" and 0,1101'/ many resolvents

(inferences). For example, in WORSTBASE, the negation of

In contrast ~clauses.k
l'

in ALGBASE, ,'I'l (Appendix B) will create 29 resolvents at

one level of inference, and --\1'3 caD. create 55 resolvents at

one level of inference. These resolvents can easily create

the theorem resolves with only

hundreds of resolvents at the next and deeper levels.

(3) At each level of the EXTEI'IDER search, there are k

description-equivalent candidate :Lmages 0 We created a situ-

aticn in wh.ich k near-Ly isomorphic axiom systems are

embedded in the same data ba3es~ ID. AIflBASE there ar e

3 Ck =: 3); group-ring; group-group, ring-ring 0 The f:Lnt is

the only "genuine" analogy, whl Le t.ho latter two are iden-

tities, r..P
v'l is rich enough to map some rtng-related

predicates into some groupo. related predicates at the out­

set -- e ,g 0, group~rinG or normal,~ideal ..- fwd consequently

126

rule out the spurious maps (identities) that provide 3-way

(k-way) branching. In a geometry data base, which

included properties of triangles, tetrahedrons, and regular

polygons, there could be two legitimate analogies:

triangle~tetrahedronand triangle~regular polygon. Again,

we expect the INITIAL-MAP of the problem statements to pro­

vide a ai that will select out the proper analogy.

All of these assumptions interact to create a data base WORSTBASE

that gives EXTENDER a comparatively hard time compared to unaided

resolution, while suggesting that more pragmatic axiom syst~ns will

give EXTENDER a much easier search than unaided resolution.

E. Necessary Conditions for an Analogy

ZORBA-I has three necessary conditions for creating an analogy.

The first, created by the form of ATOMMATCH, pertains to the form of

the statements of T and TA. In the statements of T and. TA'

atoms must map one-one from T to TA• Notice that we do not insist

that predicates map one-one. Consider an INITIAL-MAP between:

Tl l: The intersection of two abelian groups is an abelian

group,

and

T
l2:

The intersection of an abelian group and a commutative

ring is an abelian group.

Tl l': abelian[a;*l] Y abelian[b;*l]

Y intersection[c;a;b] -7abelian[c1;*1]

Tl2 ': abelian[x;*2] Y cornmring[y ;*2+2]

Y intersection[z;x;y] -7abelian[z;*2].

ATOMMATCH can associate

and

l27

at different times and handle many-one predicate maps -- e.g.,

abelian ~[auelian, commring}. However, the EXTENDER would need to

know (and it does not yet) how to handle this ambiguous irformation.

The second restriction is creat.ed by the extension of the anal­

ogy by finding image clauses that satisfy the incrementally Improved

analogy. To state this condition on the image clauses in a formal

way, I need to introduce some simple terminology. Let us say that a

say that "i and c2
PI to p', and c2
In general, we will

clause c bridges a set of predicates PI to another set of predi­

cates P2 iff:

PI c P2

PI n preds [c] of fJ

and (redundantly)

P2 n preds[c] f fJ

Now, consider two clauses, c
i

and c2• We will

bridge from PI to P2 if a pI and c
i

bridge from

bridges from p' to P2 • Hence , PI r=. pI r=. P2'

say that an tUlordered set of C of k clauses C bridges from PI to P2 iff

a p{, P'2 ••• Pk , and

(2) Vj , j = 2, ••• , k-l and c E C, and

c. bridges from P~ to pl. 1.
J J J+

128

Let us define:

Fr[T] = Predicates used in proof of To

preds[T] = Predicates used in statement of T.

a = Analogy from T to TAo

descr[c] = Description of clause c.

U[descr[c]] = Analog description of the description of

c under O.

ax[T] = Axioms used in proof of T.

(2) A neces sary condition for the EXTENDER to work is that:

:B: c = ax[T] and c bridges PrIT] to preds[T]

s.t. for O(c) = {CN, c l satisfies[descr[c']]} V c i E c

O(c) bridges from Pr[TA] to preds[T].

More verbally,~ subset of the axioms in the proof of T that

bridge from the domain of INITIAL-MAP to preds[T
A]

have a set of

image clauses under a that bridge the images of INITIAL-1M:? to

preds[T
A].

Thus, the proofs need not be isomorphic, but srune

restricted subset have a nearly isomorphic image similarly restricted

to the bridging condition.

129

A. Introduction

VIII VARIATIONS OF ZORBA-I

We have surveyed ZORBA-I by analyzing its structure (Chapter VII)

and examining its behavior on pairs of theorems drawn from abstract

algebra (Chapter VI). By design, it is limited to generating anal,

ogies for a subclass of the "r elationally similar" analogies described

in Chapter II.

ing assumptions:

In particular, ZORBA-I is restricted by the follow-

(1) uP is a one-one map.

(2) uP associates predicates of the same type.

(3) The axioms in AXSET are free of constants.

(4) The statements of T and T
A

are free of fUnction symbols.

(5) The atoms in the statements of T and T
A

can be associated

one-one.

These specifications are stated abstractly, and they limit the domains

to which ZORBA-I can be applied. Theorem pairs in abstract algebra

that exploit the group-ring analogy seem to satisfy Assumption 1,

while many interesting analogies in plane-geometry do not. Elimina­

ting constants from our axioms (Assumption 3) limits us to mathe­

matics and some puzzles. Almost every analogy I have seen preserves

semantic types (Assumption 2) for some suitable set of types.

If the strategies that are aceptable by the theorem-proving sys­

tem insist that an axiom is either in the data base or not considered

at all, then aC must be complete for ZORBA-I to give it useful

information. On the other hand, if the theorem prover can prefer

some axioms to others, then it could use an incomplete aC as a guide

for which axioms to prefer. In this chapter, we will consider vari-

ations of ZORBA-I that relax some of these restrictions.

130

B. Variations of EXTENDER for One-Many Predicate Maps

In EXTENDER, a? is limited to one-one predicate associations by

MAPDESCR (Chapter V), the algorithm that associates clause de scr-Lp­

tions. The version presented (and implemented) will halt if it can

not find a one-one mapping. Suppose we generalized MAPDESCR to create

one-many predicate mappings. A new algorithm of this sort would be

the product of some fresh research, but we will assume, for the illJment,

that we have one. Then we need to redefine the analog of a clw~se

description a~[descr[c]], to include our one-many associations. For
J

example, if:

descr[c]

and

~: p1 ~ {ql' q2}

P2 ~ q3

then Uj[descr[c]] may be the set fneg[ql], pos[q3]; neg[q2], pos[q3];

neg[qlJ, neg[q2], pos[q3]}'

We could consider a candidate image of c to be a clause that

satisfies any of these three descriptions.

Some of this discussion can be clarified by studying a simple

example. Consider the following pair of theorems:

T
14:

A point on the bisector of an angle is equidistant

from its sides.

T
13:

A point on the perpendicular bisector of a line seg­

ment is equidistant from its end points.

Table 17 contains statements of these theorems and illustrative

figures. Table 18 includes some of the axioms necessary to

prove them, and Table 19 contains definitions of the predicate sym­

bols used in the axioms. The two theorems can be proved by foll.owing

a similar plan (proving two right triangles congruent as a subgoal)

131

Table 17

STATEMENTS, FIGURES, AND AXSET FOR BISECTION THEOHEMS

x

y
W-----......-----::s...z

D

C

Figure for Theorem T14 Figure for Theorem T
13

perpendicular[line[D;B]; line[A;]

V perpendicular[line[D;C]line[C;A]

V abisect[line[D;A]; angle[A;ep[B;C]]

~ eqlen[line[B;D]; line[D;C]].

perpendicular [line [X; vl , line [w; zl l
V Ibisect[line[X;Y]; line[W;Z]]

~ eqlen[line[x;w]; line[x;z].

, ,)

132

'l'aI>J(~ IH

'1' . I JU~]) '1') I
1) 1.1

AXI: eqlen[line[x;y]; line[x;y]]

AX2: ,triangle[x;y;z] V ,ritang[y;ep[x;z]]

V ritriangle[y;x;z]

AX3: ,ritriangle[x;y;z] V ,ritriangle[u;v;w]

V ,eqlen[line[y ;z]; line [v ;w] J

V ,eqang[y;ep[x;z]; v; ep[u;w]]

V tcongruent[x;y;z;u;v;w]

AX4: ,tcongruent[x;y;z;u;v;wJ Veqlen[line[

AX5: ,abisect[line[y;u]; angle[x;ep[y;z]]]

V egang[y;ep[y;zJ; y; ep[x;u]]

AX6: ,abisect[line[x;y]; line[u;v]]

V ,intersect[r;line[x;y]; line[u;v]]

V eqlen[line[u;rJ; line[r;vJ]

AX{: ,ritriangle[x;y;z] V ,ritriangle[u;v;w]

,eqlen[line[x;y]; line[x; z]]

]; line []]

AX8: ,perpendicular[line[x;y]; line[u;v]]

V ,intersection[line[x;y]; line[u;vJ V ritang[z ;ep[u:;y] J

133

Table 19

DEFINITIONS OF PREDICATE AND FUNCTION SYMBOLS FOR GEOMETRY

abisect[line[x;y]; angle[u;ep[u;w] Line xy bisects uvw.

I~.J eqang[y; ep[x; z] ;v ;ep[u ;»]]

eqlen[line[x;y]; line[u;v]]

~ xyz

xy

-}: uvw.

uv

intersect[z;line[x;y]; line[u;v]

Ibisect[line[x;y]; line[u;v]]

perpendicular[line[x;y]line[u;v]]

ritang[y;ep[x;z]]

ritriangle[x;y;z]

tcongruent[x;y;z;u;v;w]

triangle[x;y;z]

Lines xy and uv intersect
at point z.

Line xy bisects line uv.

xy 1 uv •

1: xyz is a right-angle
vertex y and end points
rep] x and z ,

Points x, y and z form
a right triangle with
right-angle 1. xyz.

!::. xyz -= t::, uvw.

Points x, y and z form a
right triangle.

or by using analogous sets of axioms to prove each. Now, suppose

that we have proved T13 using axioms tAX1, AX4, AX6, AXT, AX8},

and want to find an analogous set of axioms to use in the proof of

T~4 • First, ZORBA-I would us e INITIAL-MAP to associate the atoms

in the statements of T'13 and T'14 to produce ai. The version of

INITIAL-MAP described in Chapter III will not work here since it

takes account neither of function symbols (ATOMMATCH) nor one-many

atom associations (SETMATCH). Suppose that INITIAL-MAP was appropri-
p

ately generalized and able to produce a partial analogy °1 •

oy: perpendicular ~ perpendicular

Ibisect ~ abisect

eqlen ~ eqlen

Now, ZORBA-I calls EXTENDER with 01 as its starting analogy. It par­

titions AXSET and computes

neg[abisect], pos[eqlen].

AX6 is the only clause in some[Ol] whose restricted description (with

respect to 01) has more than one feature. AXT, for example, has

neg[eqlen] as a description and we expect many clauses in a geometry

data base to satisfy this single feature. We want AX6, the defin­

ition of line bisection, to be associated with AX5, the definition

of angle bisection. Now AX5 satisfies 01[descr[AX6]], but has predi­

cate (intersect) which is not associated with any predicate in AX6.

We are assuming that our new MAPSECR (Chapter V) has been generalized

to handle associations of this sort. Suppose we associate AX6 with

AX5 and generate °2 :

135

aP •
2 . eqlen ~ [eqang, eqlen}

perpendicular ~ perpendicular

lbisect ~ abisect

We extend a
2

and compute:

some[a2J ::: [AX?, AX8} "

AX7 is the axiom used to prove the congruence of the two right

triangles for T'13" Now, we want to get the analogous axiom (AX3) to

use in the proof of T'14' First, compute

descr[AX7J neg[ritriangl~, neg[eqlenJ, pos [tcongruentJ.

- .)

We now have to create an G0[descr[AX?]] that can be satisfied by
c.

AX3. Either neg[eqlenJ or neg[eqlenJ, neg[eqangJ will suffice,

though ~d (Chapter V) would probably prefer the latter. Again,

MAPDESCR applied to AX7 and AX3 would need to handle the one-many map.

eqlen ~ [eqlen, eqang}

This example has been chosen for its (relative) simplicity. It

exemplifies some of the vagaries of analogies with one-many predicate

associations.

(1) Most predicates are associated one-one.

cates associate one-two or one-three.

Only a few predi-

(2) If a predicate p is associated with predicates q and

r: p ~ [q,r}; then p may be associated with q in

order to find the analog of one axiom, with r to find the

analog of a second axiom, and with both q and r to find

the analog of a third axiom. In this example, the associ-

ations
AXl ~ AX2

AX6 ~ AX5

AX{ ~ AX3

satisfy this pattern.

In the last paragraph I have outlined the kind of changes that

EXTENDER would require if analogies with one-many predicate maps

were to be allowed. Notice that we are still dealing with a class

of analogies that fit the ZORBA paradigm: a set of axioms analogous

to those of the proved theorem can prove our new theorem. In this

case, the correspondence between the predicates in which the axi~ns

are expressed is more complex than in the one-one case we have

examined in detail, while the axiom associations are still of the

same sort.

C. Variations of INITIAL-MAP

We have discussed the limitations imposed upon ZORBA-I by

EXTENDER. In addition, INITIAL-MAP imposes Restrictions 5 and 6

mentioned at the beginning of this chapter. The axioms used to

prove a theorem may include function symbols since EXTENDER, which

considers the axioms, ignores function symbols in its clause descrip-

tions. In fact, all of the algebra proofs described in Chapter iT

and VI use function symbols in the set of necessary axioms.

In the geometric example (T'13 and T '14) we have just considered,

theorem statements and axioms that rely heavily upon function symbols

provide a natural and elegant representation. It is possible to

rewrite these axioms without function symbols. For example,

lbisect[line[x;Y]i line[uiv]J becomes line[z;x;y] V line[w;u;v]

V Ibisect[z;wJ. However, a function-free axiomation requires longer

claus es and more (symmetry) axioms. ATOMMATCH (Chapter IV), the

operation that associates variables in clauses, would need to be

generalized to include function symbols and an ability to generate

more than one mapping when the functions allow syntactic symmetries.

In addition, the section of SETMATCH that associates atoms into sets

based on distinct analogous variables (Chapter IV) might use function

symbols to aid discriminations.

137

,_.1

.c-J

The version of INITIAL-MAP that is described in Chapter III is a

rather complex matching program that exploits the syntactic structure

of the wffs to decide which atoms are to be associated. INITIAL-MAP

performs a simple, crucial role in ZORBA-I - it creates ai. EXTENDER

needs ai for a starting point and cares neither how Ui is generated

nor whether it contains all the predicates used in the theorem state~

ments. ai need contain only one predicate to activate EXTENDER. If

ai contains more predicates, then it provides a more fertile beginning

for EXTENDER. In particular, some [al] will increase with the size of

ai. We saw (Chapter VII) that increasing the size of cii can drronati··

cally decrease the size of the total search space for aP. The point
D

of these observations is quite simple: we can often generate an ~i

with a much simpler version of INITIAL-MAP than was described in Chap­

ter III. Even when we generalize from one-one to one-many predicate

maps, we have kept our mapping type-invariant (Chapters III and VII).

Predicates that are associated must be of the same semantic type.

Again, we will presume that if a predicate appears in the state­

ment of a theorem T, then its analog will appear in the statement of

T
A.

Now, consider the following version of INITIAL-MAP, called

INITIAL-MAPl:

Initial-mapl[newwff;oldwff]: =

(1) Partition the predicates that appear in newwff by their

semantic type.

Do the same for the predicates that appear in oldwff.

(2) For each predicate partition of newwff that contains onIy

one element, pair it with the predicate partition of oldwff

that has the same type, if it has but one member.

(3) If this set of paired-predicates is non-empty, set it equal

to a~.

If it is empty, set ai to initial-map[oldwff;newwff] using

the algorithm of Chapter IV.

(4) stop and Whistle.

For example, let T13' and T14' mentioned earlier in this chapter be

oldwff and newwff respectively. Furthermore, let RELATION be the

semantic type of [perpendicular, Ibisect, abisect}, and EQREL be the

semantic type of the predicate eglen (Table 19). INITIAL-MAPI "rill

create UK = f eglen ~ c ql.cn] , We still might want to run INITD\L­

MAP on the two wffs to expand UK to include the remaining predicates

they contain. But we are not compelled to do this. This simpli­

fied version of INITIAL-MAP can be used either as a preprocessor or

as a substitute for it. It also provides some means for handling

wff pairs with non-isomorphic syntax when the semantic types are fine

enough to unambiguously associate predicates based on predicate types

only.

D. Treating Constants

In addition to restricting its predicate association to one-one

maps, ZORBA-I does not allow axiom systems that include constants.

In contrast to the one-many maps treated in the preceding paragraphs,

creating analogies in axiom systems that include constants will

probably require analysis algorithms different in spirit from

INITIAL-MAP and EXTENDER.

Consider a robot that is instructed to go from SRI to (a) an

office on its floor; (b) Stanford University; (c) San Francisco;

(d) New York City; (e) Chicago. These five problems could be stated

to Q/l.3 as

TI O: :B:S f at [robot ; office
5

; Sf]

Tl l: :B:s f at[robot; Stanford; Sf]

T12 : :B:sf at[robot; San Francisco; Sf]

T
13

: :B:S f at[robot; NYC; Sf]

T14 : :B:Sf at[robot; Chicago; Sf]

139

'< j

By trivial syntnctic matching we could associate office) with

Chicago, Stanford with [3an Francisco, etc. The robot's actions to

get from SRI to Stanford, San Francisco, New York City, or Chicago

are pairwise similar. But the INITIAL-MAP or EXTENDER would have

to know the "semanticsll of these (geographic) constants (with

respect to SRI) and the robot's actions to assess which problems are

adequately analogical and which action rules should be extrapolated

to the unsolved problem.

E. Relationship Between ZORBA-I and QA3

In the preceding section I have discussed the organization and

use of ZORBA-I independently of QA3. In this section, I merely want

to note how a change in QA3 can affect the way in which the analogi­

cal information output by ZORBA-I can be used.

The present version of ZORBA-I outputs a set of clauses that it

proposes as a restricted data base for proving T
A•

If every clause

in proof[T] has at least one image clause, then simply modifying the

QA3 data base is magnificently helpful. However, if the analogy is

weak and we have only a partial set of images, what can we do? If

every predicate used in the proof[T] has an image, we could restrict

our data base to just those clauses containing the image predicates.

Could we do better? And whaf do we do with a partial analogy in

wh'i.ch some clauses and some predicates have images, but not all of

either set have images? At this point we meet limitations imposed

by the design of QA3. All contemporary theorem provers, including

QA3, use a fairly homogeneous data base. QA3 does give preference

to short clauses, since it is built around the unit-preference strat­

egy. But it has no way of focusing primary attention on a select

subset of axioms A*, and attending to the remaining axioms in D-A*

only when the search is not progressing well. One can rig various

devices, such as making the clauses in A* "pseudo-units" that would

be attended to early. Or, with torch and sword, one could restruc-

140

ture QA3 around a"graded memory" which orders clauses according to a

user specified ordering function. Basically, we have to face the

fact that our contemporary strategies for theorem proving are designed

to be as optimal as possible in the absence of a priori problem­

dependent information. These optimal strategies are difficult to

reform to wisely exploit a priori hints and guides that are problem­

dependent. Various kinds of a priori information can be added. It

is a separate and sizeable research task to decide how to do it. I

presume, but do not know, that these comments extrapolate to other

problem-solving procedures. A system that is organized around

a priori hints, heretofore user-supplied, may look very different than

one that is designed to do its best on its own. QA3 was chosen

because it was available and saved years of work in developing a new

theorem prover that would be more suitable. However, further research

in AR may well benefit from focusing attention on a more flexible

theorem-proving system that can accept a wide range of "advice" from

the analogy generator.

141

IX ZORBA IN RETROSPECT

I should like to encapsulate some of the key concepts that are

implicit in ZORBA and embodied in ZORBA-I ~

(1) Some fairly interesting analogical reasoning can be handled

by modifying the environment in which a problem-solver

operates, rather than forcing the use of a sequential

planning language.

(2) Each problem-solver/theorem-prover will utilize different

a priori information and consequently will require different

analogy-generation programs tailored to its representations.

In Chapter III, I suggested how an analogy system oriented

toward GPS would differ from one oriented toward resolution

logic.

(3) A good analogy generator will output some information help­

ful to speeding up a problem search as a byproduct of a

successfully generated analogy.

(l~) Part of the problem of reasoning by analogy is to specify

precisely how the derived analogical information is to be

used by the problem solver. For the class of analogies

handled by ZORBA we tacitly assume that restricting our

data base is the means to exploit the analogy. For other

kinds of analogies (Chapter III) a wider variety of uses

may be suggested for the information to be derived from the

analogy. We would like a system to automatically decide

that one analogy can be used only to provide a particular

subgoal for the problem solver while another analogy can be

used to provide a complete plan and still another analogy

can be used only to suggest a particular set of axioms

without specifying the sequences they should be used in.

142

(5) An effective, nontrivial analogy generator can be adequately

built that uses a simple type theory and primitive semantic

selection rules.

(6) Although analogies are nonformal and are semantically

oriented, nontrivial analogies can be handled by a semi­

formal system wrapped around a highly formal theorem-prover.

The first and last remarks suggest a fertile research strategy.

Many good analogies are suggestive; the relational structures between

the solved and unsolved problems are similar, but not homomorphic.

In fact, their relationships are less well behaved than any of the

mappings in our mathematicized language. For example, the geometric

analogy described in Chapter VIII needs to allow a few predicates to

map one-many while most are mapped one-one. The restrictions on the

analogy a (Chapter III) were largely defined after most of ZORBA-I

was implemented. Much of the formalism employed in explaining the

algorithms is also post-hoc. Creating a formal description of

ZORBA-I has helped clarify and articulate such concepts as the

restrictions on aP and the analog description of a clause when aP

is one-many. ZORBA-I was pragmatically designed within the frame­

work of clause descriptions and sequences of partial analogies; fillY

procedure that worked for abstract algebra was acceptable. The

freedom from formalism in the early stages of this research focused

attention on a rich class of theorems regardless of their formal

properties. In contrast, a research strategy that attempted to

formally define an analogy at the outset and proceed with much rigor

most likely would have yielded a complete procedure for a less inter­

esting class of problems. The choice of a problem domain is tricky.

We want a wide variety of analogies. At the same time they must

entail sufficiently simple problems to be solved by our simple-minded

problem-solving systems. In mathematics both abstract algebra and

Euclidean geometry are "densen in anfl,logies between pairs of theorems

that are not very complex. In contrast, the analogies that can be

143

J

c)

exploited in number theory are between theorems that r cquf.ro tltcorlclll

provers much more powerful than we now have. We all

use analogies to aid solving problems and proving theorems, regard­

less of the area we are considering. However, most domains are

sparse in good nontrivial analqgies between simple problems. We

would be aided by a small catalog of the kinds of analogies we can

find at various levels of problem difficulty in different areas.

Such a study could refine the approach of Chapter II to include the

role of semantic types and restrictions on the submaps of a -- e.g.,

aPe

Even within the ZORBA paradigm we need at least two styles of

generating an analogy. ZORBA-I is an instance of one, and the com­

ments about treating constants in the context of robot manipulation

problems (Chapter VIII) calls for another, still undeveloped approach.

ZORBA-I passes only a modified data base to its associated

theorem prover. Much more information is latent e.g., how to use

a particular axiom. In resolution, for example, a ground-unit clause

may be needed only once in a proof, but generate a vast number of

irrelevent resolvents in the search for that proof. It may unify

with literals in many different clauses and be given a great deal of

attention in a unit-preference strategy. We need to learn how to

specify when such a unit should be used. More generally, we need to

learn how to specify and represent such information for a problem­

solving system.

PLANNER is a problem-solving system that has recently been

developed at M.I.T. It allows a user to specify whether a particular

theorem is to be used for forward inference or backward chaining. It

incorporates a flexible pattern matching language and appropriate

features to allow a user to select the theorems which may be used in

inference chains. From the point of view of problem-solving research

it makes little difference whether such advice is given by knowledg­

able persons or an analogy-generating program. From our point of

144

view, since PLANNER30 is designed to accept advice, it may be a superb

vehicle for handling a wider variety of analogical information if its

problem solving power is adequate. It is not yet clear whether

PIJ\.NNIi,'R can prove any of the theorems used in the experiments reported

here. If PLANNER were to be used as a target problem solving vehicle

for a new analogy system (call it ZORBA-II), then ZORBA-II would p.Lace

somewhat different constraints on its mappings than does ZORBA-I.

Table 20 depicts the English, wff, resolutions and PLANNER representa­

tions of two axioms that were found to be analogous by ZORBA-I (Chap­

ter VI). Resolution represents these wffs by one clause each while

PLANNER distinguishes two possible theorems which differ in their use.

A THANTE theorem is used to make a forward inference. For example,

(THANTE (X) (p X)(THASSERT (~X))) could assert (Q A) when the data

base includes (p A). In contrast, a THCONSE theorem is used for

backward chaining. (THCONSE (X) (Q X) (THGOAL (p X))) will be trtg­

gered to set up the goal (THGOAL (p A)) if it is ever attempting to

prove (Q A). The two uses correspond to the same wff:

V(x) p].x] -) q] x]

ZORBA-I has but one axiom map, aC
, which associates clauses one-many.

We would expect that ZORBA-II would have an axiom submap that associ­

ates THANTEs with THANTEs and a separate submap to associate THCONSEs

with THCONSEs. More verbally, if an axiom a~ was used to prove a

theorem T by backward chaining (THCONSE), we would expect the ana­

log Ofaxk would prove the analogy theorem T
A

by backward chaining

also. By using PLANNER theorem types, we can map local proof struc­

ture (under our analogy) by preserving theorem types under the analog

a.

I have purposely omitted two important issues:

(1) Given a theorem T how can we recognize a good analogous

theorem T from among the set of theorems we have proved?

(2) How do the representations we use affect our ability to per­

ceive and exploit analogies?

145

J

-~

Table 20

English:

Every abelian group is a group

predicate calculus wff: V(x *) abelian[x;*] ~group[x;*]

resolution clause: ,abelian[x;*] V group[x;*]

PLANNER consequent theorem:

(THCONSE (X *) (ABELIAN X *) (THGOAL (GROUP X *)))

PLANNER antecedant theorem:

(THA.NrE (X *) (GROUP X *) (THASSERT (ABELIAN X *)))

English:

Every commutative ring is a ring

predicate calculus wff: V(r * +) commring[r;*;+]~ring[r;*;+]

resolution clause: -lcommring[r;*;+] V ring[r;*;+]

PLAl\TNER consequent theorem:

(THCONSE (R * -) (COMMRING R * +) (THGOAL (RING R * +)))

PLANNER antecedent theorem:

(THA.NrE (R * +) (Ring R * +) (THASSERT (COMMRING R * +)))

Resolution and PLANNER Representations

146

The answers to these two interact. Within the set of al~ebra

thf'or('H1;: tTL' 1[';2 ••• TJ o } tllatwf'rc used a.: exampl.c.s in Chapters IV­

VII, the I'o.Ll.ow i.ng pr-ocoodur-e will satisfy problem (1):

(1) Convert T
A

from a wff to a clause and create its descrip­

tion. (Chapter III)

(2) Replace each predicate in the resultant description with

its semantic-type. ThUS, neg[group] will become

neg[structure].

(3) Search through memory to find the theorems that satisfy the

type-description of T
A.

Now, the forms of the theorem statements we have used are so nearly

isomorphic that this simple search will give us a small set of good

candidate analogs. A variant of ZORBA-I could be used to test which

of these few candidates create a complete 0, and we have solved our

problem.

Now, suppose that our theorem statements are not so similar.

Consider the following theorems:

'1'1 iJ(x y *)

abelian[x;*] A abelian[y;*] A intersection[z;x;y]

~ absubgroup[z;x;*]

'1'2 iJ(r;s;w;x;+)

commring[r;*;+] A commring[s;*;+] A intersection[w;x;+]

~ commsubring[w;r;*;+]

'1' I iJ(r;s;w;*;+)
2

commring[r;*;+] A commring[s;*;+] A intersection[w;*;+]

~ commutative[*;w] A ring[w;*;+] A sUbring[w;r;*;+]

Now, the procedures described in Chapters IV and VIII will easily

create the proper analogy between '1', and '1'2. '1'2 I is logically

147

L

equivalent to T2• The predicate t1commsubring' has been replaced with

its definition.

None of the procedures we have described will find the analogy

Tl - T2'·

(1) ai is no longer one-one. The predicate ABSUBGROUP now

has no analog that appears in the proof or statement of

T2 '.

(2) The predicates in the statemerrcs of Tl and T2' do not cor­

respond (INITIAL-MAP is foiled).

Unfortunately, a slight shift of form sabotages all of our algorithms.

This unhappy observation should be a starting point for future

research.

148

APPENDlX A

DEFINITIONS OF PREDICATES AND THEIR SEMANTIC TEMPLATES

Abelian[x;*] structure[set;operator]

x is an abelian group under the operation "*11

Absubgp(x;y;*] relstructure[set;set;operator]

x is an abelian subgroup of y under the operation "*".

Assoc [* ;S] relatione operator; set]

The set s is associative under the operation "*"

Closed[*;S] relation[operator;set]

The set s is closed under the operation "*11.

Commutative[*,S] relation[operator;set]

The set s is commutative under the operation 11*"

Commring[R;*;+] structure[set;operator;operator]

The set r is a commutative ring under the operations "*11 and

Commutativering[r;*;+] same as commring[r;*;+]

Commsubring[x;y;*;+] relstructure[set;set;operator;operator]

The set x is a commutative subring of the set y under the

operations 11 II and "+".

Cl~ing[x;*;+] structure[set;operator;operator]

The set x is a commutative ring with a multiplicative unit

under the operations "*" and "+11.

149

Dist[*;+ ;S] relat Lon] operator ;operator; set]

The operation * is distributive over the operation "+11 on the

set 11S 11.

Equalset[x;y] relation[set;set]

Set x equals set y.

Factorstructure[x;y;z] same as facts[x;y;z]

Facts[x;y;z] relation[set;set;set]

x = y/z.

Group[x;*] structure[set;operator]

The set x is a group under the operation "*" and the additive

operation "t-",

Ident[*;a;x] relation[operator;object;set]

A is the identy element of the set x under the operation "*".

In[x;S] relation[object;set]

x - S

Intersection[x;y;z]

x = y n z ,

relation[set;set;set]

Inv[*;a;S] relation[operator ;object ;set]

The inverse of a under operation 11*11 - e.g., a- l

Lassoc[*;S] relation[operator;set]

The set S is left-associative under the operation "*".

150

Ldist[*;+;S] relative[operator;operator;set]

The operation "*" is left-distributive over the operation"+"

Map[f;x;y] map[FN;set,set]

f map the set x into the set y. f:x -- y.

Map[f;a;b]

f[a] = b.

map[FN,object,object]

Maximal[x;y;*] relstructure[set,set,operator,operator]

x is a maximal subgroup of y under the operation 1f*11

Maximalgroup[x;y;*] same as maximal[x;y;*]

Maximalring[x;y;*;+] same as maxring[x;y;*;+]

Maxring[x;y;*;+] relstructure[set,set,operator,operator]

x is a maximal sUbring of y under the operation * and +.

Nonempty[S]

S =f ~.

prop[set]

Normal[x;y;*] relstructure[set,set,operator]

x is a normal subgroup of y under the operation l!*".

Pideal[x;y;*;+] relstructure[set,set,operator,operator]

x is a proper ideal of ring y under the operations "*If and 11+11.

Pnormal[x;y;*] relstructure[set,operator]

x is a proper-normal subgroup of y under the operation "*".

proper[same as pideal[x;y;*;+]

propernormal[x;y;x] same as pnormal[x;y;*]

151

Pnsubgroup[x;y;*] relstructure[set,set,operator]
set x is a proper normal subgroup of y under the set "*].

Psubset[s;y]

xcy.

relstructure[set,set]

Rassoc[*;S] relstructure[operator, operator , set]

The set S is right-associative under the operation 11*11.

Rdist[*;+S] relstructure[operator ,operator , set]

The operation "*ff is right-distributive over operation 11+'1

in the set S.

Ring[R;*;+] structure[set,operator,operator]

The set R is a ring under the multiplicative operation 11*]

and the additive operation "+".

Simplegroup[x;*] structure[set;operator]

The set x is a simplegroup under the operation "*11

Simplering[x;*;+ structure[set,operator,operator]

The set x is a simplering under the operation * and +

SUbgroup[x;y;*] relstructure[set;set;operator]

The set x is a subgroup of y under "*".

SUbring[x;y;*;+] relstructure[set,set,operator,operator]

The set x is a subring of the set y under "*" and '''+''.

SUbset[x;y]

x y.

relation[set,set]

152

L

Tirnes[*;x;y;z]

z = x * y.

relation[operation,object,object,objectJ

Unitring[S,*,+J structure[set,operator,operator]

The set S is a ring with a unit under 11*ll and lr+'ll.

Welldef[*;SJ relation[operator,set]

The operation ll*" is well defined on the set S.

153

APPENDIX B

LISTING OF ALGBASE

The following listing of the 239 clauses in ALGBASE uses the

predicate symbols defined in Appendix A. They are indexed by a

"clause name" to facilitate reference when considering the experi-

ments reported in Chapter VI. These names are indexed by two

parameters, n and k, in the format AXn-k. For example, AX3-2 and

AX5-3 are the names of two clauses in ALGBASE. The k-parameter

following the dash numbers a clause with respect to its parent wff,

AXn. The n-parameters are generated sequentially (by QA3) when­

ever a new wff enters its data base. Thus, the first wff entered

is named AXl and its clauses are named AXl-l, AXl-2, etc. IfAX25

is

v(x) p[x]---,> q[x] 1\ r[x],

then

AX25-1: -s p] x] V rl xl
and

AX25-2: ,p[x] V q] x]

(;.-~!

are its two derivative clauses. In principle, all clauses are

independent, while in practice the same skolem function may appear

in several clauses that are descendent from the same parent wff.

For example, see the clauses associated with AX52 that define the

predicate "commutative." Skolems functions that were automatically

generated by a prenex algorithm (in QA3) are denoted by SKj -- e.g.,

SK5.

The listings in this appendix were printed on a PDP-10 line

printer and conform to its type set. The or sign (V) is omitted

between literals, and the negation sign (,) appears as a dash (-).

Finally, the description of each clause (Chapter III) is printed

directly below it.

154

1. AX1_1 SU8GROUP[H,G,STARJ .NORMAL[H,G,STARJ

NEG[NORHALJ pOSCSU8GROUPJ

2. AX1.2 INlU,HJ .INCHH,HJ .INtGG,G] -IN(Y,GJ ~lNLM,GJ

wTIMES[STAR,GG,HH,YJ ~TIMESCSTAR,y,M'UJ .INVERSECSTAR,M,GGJ
.NORMALCH,G,STARJ

NEGCNORMALJ NEGCINVERSEJ NEGCTIMESJ IMPCQNOCINJ

3, AX2-1 NO~MAL[H,G,STARJ

-INCSK5[STAR,G,HJ'H]

NEGriNJ NEG[SUBGROUPJ POS(NORMALJ

4, AX2.2 NORMALCH,G,STARJ .SUBGROUPCH,G,STARJ
INVERSE[STAR,~K4(~TAR'G,HJ,5K2CSTAR'G,HJJ

POSCINVERSEJ NEG(SUBGROvPJ POS(NORMALJ

5. AX2-3 NORMALCH,G,STARJ eSUBGRQUPCH,G,STAR)
TIMES[STAR,SK3[STAR,G,H),SK4CSTAR,G,HJ,SK5CSTAR,G,HJJ

POS(TIMESJ NEGCSUBGROUPJ POSCNORMALJ

6, AX2-4 NORMALCH,G,STARJ -SUBGROUPCH,G,STAR)
TIMESCSTAR,SK2cSTAR,G,HJ,SK1CSTAR,G,HJ,SK3CSTAR,G,HJJ

POSCTIMESJ NEG[SUBGROUP] POS[NORMA~J

7. AX2~5 NORMALCH,G,SrARJ
INLSK4lSTAR,G,HJ,GJ

POSCINJ NEG[SUBGROUPJ PoSCNORMALJ

8, AX2-6 NORMAL[H,G,STAR)
INCSK3(STAR,G,HJ,GJ

PQSCINJ NEGlSUBGROUPJ POSCNORMALJ

~5

-SUBGROUPCH,G,STARJ

9, AX2.7 NORMAL[H,G,STARJ
INCSK2LSTAk,G,HJ,GJ

POS[INJ NEG[SUSGROUPJ POSCNORMALJ

10, AX2-8 N0R~AL(H,G,STAR]

INCSKllSTAR,G,HJ,HJ

POS[lNJ NEGCSU8GROUPJ POSCNORMALJ

.SUBGROUP(H,G,STARJ

iTl
lu

'l
u.!

UJ

en
LU

u

11, AX3~1 GROUP[H,STARJ ·SUBGROUPCH,G,STARJ

NEGCSU8GROUPJ POSCGROUPJ

12, AX3_2 GROUP(G,STAR) .SUBGROUPCH,G,STARJ

NEGrSUBGROUPJ POSCGROUPJ

13, AX3.3 SU8SET(H,GJ -SUBGROUPCH,G,STARJ

NEG[SUBGRQUPJ POSrSUBSETJ

14, AX4-1 SUBGHOUP(H,G,STARJ ~GROUPCH,STARJ .GROUPCG,STARJ
..SUB SE T(H, GJ

NEGLSU8SETJ NEG[GRQUPJ pQScSUBGROUPJ

u

u

n
LJ

15, AX5~1 NOkMALCX,Y,STARJ
..5 UB GR au PC x, Y, ST AR J

NEG(SUBGROUPJ NEGCABELIANJ POS(NORMALJ

16, AX6 .. :l,. SJ8GfnUP'CX,Y,STARJ
.SUBRING[X,y,STAR,PLUSJ

NEG[SUBRINGJ NEG(RI~GJ POSCSU8GROUPJ

• AS EL I ANt Y, 5T AR J

,;)", AI\.,l.7-..l.
",nloAUII"'''' T'\irrC'TaO

A8EL!ANCX,STARJ11, AX7"'1
pSU8GROUPrX,Y,STARJ

NEGCSUBGROUPJ IMPCONOCABELIANJ

18, AX8~1 SU8GROU Pr88,AA,STARJ ~HOM(F,AD8J .GRQUP[A,STARJ
wSU8GROUPCAA,A,SrA~J "'~AP1LF,AA,8BJ

NEGCMAPtJ NEG(GROUP) Nt:GCHOM] IMPCONDcSUBGROUPJ

34, AX21.1 GROUPCG,STAR] ~wELLOEF[STAR,GJ .ASSOCCSTAR~GJ
.1DENTITYCSTAR,E,GJ ~lNCSK12[STAR,GJ,G]

NEGCIN] NEGCIOlNTITYJ NEGCASSOCJ NEGCWELLDEFJ PQS(GROUPJ

35, AX21-2 GROUPCG,STAR] .WELLDEF[STAR,GJ .ASSOC[STAR,GJ
... IDENTITY[STAR,E,GJ INVERSE[STAR,SK12[STAR,G],SK11e STAR, GJ J

POSCINVERSEJ
POSCGROUpJ?J

NEGCASSOCJ NEGCWEL.LOIEFJ

36 AX21 ... 3 GHOUPCG,STARJ mWELLDEFCSTAR,GJ ftASSOcCSTAR,GJ
.IOENTITY[STAR,E,GJ IN[SK11CSTAR,GJ,GJ

POS~lNJ NEGeIDENTITYJ ~EGCASSOCJ NEG[WEL~OEFJ POSCGROUPJ

37, AX23-1 NORMALCN,G,STARJ ...GROUP[G,STARJ ..FACTSeX,G,NJ

NEG~rACTSJ NEGCGROUPJ POSCNORMALJ

n

38, AX24~1 FAC TS[SK13CSTAR, B, AJ , A, BJ
_NORMALCS,A,STARJ

NEGCNORMALJ NEG(GROUPJ POSCFACTS]

..GROUP(A,ST!~RJ

n
ILl

39, AX26"1
..GROUP [Y,S TARJ

..FACTStX,y,~]

fi
lL.l

NEGCGROUPJ NI:.GCFACTSJ POS[HOMJ

40, AX27-1 IUENTITY[STA~,8,X] ..GROUp[A,STARJ .FACTSCX,A,BJ

NEG[FACTSJ NlG[GRQUPJ POSCIDENTIiYJ

rn
u

n
U

! !

IJ

42. AX29-1 NORMAL(X,G,STARJ -GRQUp(G,STARJ
-NORHAL[A,G,STAHJ ~NORMAL(B,G,STAR) ·INTERSECTIONCX,A,8J

NEGlINTERSlCTIONJ NEGCG~OUPJ IMPCONDCNORMA~J

43. AX30 ... 1 NOf~MALU:3B,AA,STARJ -GROUPtA,STARJ
.NORMAL[B,A,STARJ _HOM(F.A,AAJ -MAP1Cf,B,B8J

NEG[MAP1] NEGCHOM] NEGCGROUPJ IMPCONOtNORMA~J

44, AX31-1
..GRO UPCH, STAR2 J
..MAP1(PHI,E,EEJ

INVERSECSTAR2,EE,HJ -GROUPCG,STAR1J
-HOM(PHI,G,HJ -INVERSECSTAR1,E,GJ

TIMESCSTAR2.81,82,83J .MAP1Cf,Al,81J
-MAP1~F,A3.B3J -TIMEstsTAR1,Al,A2,A3J

TIMESCSiA R2,81,B2,83J ..MAP1CF,Al,B1J
-MAP1C F,A3,83J -TIMESlSTAR1,Al,A2,A3J

'~ - .1

NEGcMAP1J NEG(HOM] NEGCGROUPJ IMPCONDCINVERSEJ

45. AX32"1
.MAPHF,A2,82J
GROUPCG.STAR1J

POSCGROUPJ NEGLMA P1] IMPCONOCTIMESJ

46. AX32-2
..MAPle F, A2 ,82J
GROUPCH,STAR2]

POSCGROUPJ NEG(MA P1] IMPCONQCTIMESJ

47. AX32 ..3
..MAP1C F, A2 ,82]
MAP[F,G,HJ

T!MES[STA R2 , 81, 82 , a 3J .MA P1 t F , Al , 81 J
-MAP1CF,A3,833 -TIMESCSTAR1,Al,A2,A3J

POS[MAPJ NEGLMAP1J IMPCONDCTIMESJ

48. AX32-4
..MAPHF,A2 p 8 2 J
..HOMCF,G,HJ

TIMESCSTA R2 , 81, B2 , B3J .MAP1CF,Al,81J
~MAP1[F,A3,B3J .TIMES~STAR1,Al,A2,A3J

i J

NEG(HOM] NEG[MA P1J IMPCONDCTIMESJ

160

49. AX33-1 RING(R,STAR,p~USJ eCOMMRINGCR,STAR,P~USJ

NEGCCOMMRINGJ POS[RINGJ

50. AX33~2 IN[A,RJ ~COMMRI~G(R,STAR,PLUSJ

NEGLCOMMRINGJ POS[lNJ

51, AX33-3 TIMES(STAR,B,A,CJ
wCO~MRING(R,STAR,PLUSJ

NEGCCOMMRINGJ IMPCONDCTIMESJ

52, AX34. 1 COMMRJNG(R,STAR,PLUSJ .RING[R,STAR,PLUSJ
.INCSK1?CPLUS,STAR,RJ,RJ -l NCSK1QCPLUS, STAR, RJ , RJ
wTIMEStSTAR,SK16(PLUS,STAR,RJ,SK15(PLUS,STAR,RJ,SK17(PLUS,ST
AR,R?J J)

NEG(TIMESJ NEGCIN) NEG[RING J POSCCOMMR1NGJ

53. AX34-2 COMHRINGcR,SrAR'pLUSJ ~RINGtR,STAR,pLUSJ
.IN(SK15CPLUS,STAR,RJ,RJ -lNCSK16CPLUS,STAR,RJ,RJ
TIMESCSTAR,SK15(PLUS,STAR,RJ,SK16(PLUS,STAR,RJ,SK17(PLUS,STA
R,R)?J J

POS(TIMESJ NEGrIN) NlG[RINGJ POSrcOMMRINGJ

54, AX35el RINGCR,STAR,pLUSJ -UNITRINGCR,STAR,PLUSJ

NEGCUNITRINGJ POS(RINGJ

55, AX35~2 IOENTITV(STAR,SK18~PLUS,STAR,RJ,RJ

.UNITRING(R,STAR,PLUS?J J

NEG(UNITRINGJ POS(tUENTITYJ

56, AX36~1 UNITRINGCR,STAR,pLUSJ
"10ENTITyrSTAR,El,RJ

NEGtloENTlTYJ NEG(RING] POSCUNITRINGJ
161

57. AX38.. 1 COr-1MR FJGC R, STAR ,PLUSJ
wCOMMUTATIVECSTAR,RJ

NEGCCOMMUTATIVEJ NEGCRINGJ POSCCOMMRINGJ

..RING CR , STAR, PI.. Us J

_ J

58. AX39-1 COMMUTATIvECPlUS,RJ -RINGCR,STAR,PLuSJ

NEG[RINGJ POS[cOMMUTATlvEJ

59. AX40~1 RDlSTCSTAR,PlUS,RJ ~RING(R,STAR,PLUSJ

N£GCRINGJ POS[RDISTJ

60. AX41-1 LDISTCSTAR,PLUS,RJ -RINGCR,STAR,PLUSJ

NEGCRINGJ POS[LOlSTJ

61. AX42-1 NONEMPTYCRJ ~RINGCR,STAR,PLUsJ

NEG[RINGJ POS[NONE~pTYJ

62. AX43-1 HOM[SK1 9CPLUS'STAR,t,Y,XJ,V,XJ
ftRINGCY,STAR,PLUSJ

NEG(RINGJ N£GCFACTSJ POS(HOMJ

63. AX44",1
... fACTS[X,A,BJ

NEG(FACTS) NlG[RI NGJ POSCIUEALJ

64. AX45-1 FACTSCSK20CPLUS,STAR,B,AJ,A,BJ
..RING[A,STAR,PlUSJ .IDEAL(B,A,STAR,PLUSJ

NEG[lDEALJ NEG[RINGJ POSCFACTSJ

162

65. AX46·1 RINGCB,STAR,PLUSJ .HOMcr,A,BJ -RINGCA,STAR,pLUSJ

NEGCHOMJ IHPCOND[RINGJ

66. AX47 w l RING(X,STAR,P~USJ .RING(A,STAR,PLUSJ
.RINGCB,STAR,PLUSJ -INTERSECTIONtX,A,BJ

NEGCINTERSEcTIONJ IMPCONDCRINGJ

67. AX49·1 TIMESCSTAR,E,X,XJ -IN(X,SJ -IDENTITYCSTAR,E,SJ

NEGCIDENTITYJ NEG(IN) POSCTIMESJ

68. AX49·2 rIMESCSTAR,x,E,XJ -INCX,SJ .IDENTITYCSTAR,E,SJ

NEGCIDENTITYJ NEGrINJ POSCTIMESJ

69. AX50-1 IDENTITYCSTAR,E,SJ INCSK21(S,E,STARJ,SJ

POS(INJ POS(IDENTITvJ

70. AX50~2 IOENTITY(STAR,E,SJ
~TIMES(STAR,SK21[S,E,STAR),E,SK21.CS,E?J. ,STAR)J
.TIHESCSTAR,E,SK21(S,E,STARJ,SK21CS,E,STARJJ

NEGCT1MESJ POSCIOENTITyJ

71, AX51.1 TIMESCSTAR,B,A,SK73CB,A,STAR,SJJ -INCA,S)
~INtB,SJ -TIMEstSTAR,A,8,SK73CB,A,STAR,SJJ
.COMMUTATIVECSTAR,SJ

NEGCCOMMUTATIVEJ NEGrINJ IMPCONOCTIMESJ

72. AX52 wl COMMUrArIVECSTAR,SJ INtSK75CSTAR,SJ,SJ

POSCIN~ POS(COMMUTATIVEJ

~.

L' J

I,)

~J

I j

73. AX52·2 COMMUTATIVECSTAR,SJ INCSK76CSTAR,SJ,SJ

POSCINJ POS[COMMUTATIVEJ

74. AX52-3 COMMUTATIVECSTAR,SJ
TIMEScSTAR,SK75[STAR,SJ,SK76[STAR,SJ,SK71J 1(STAR,SJ)

POSCTIMESJ POSCCOMMUTATIVEJ

75. AX52-4 COMMUTATIVE(STAR,SJ
.TIMESCSTAR,SK76 (STAR, SJ , SK75[STAR, S J , CJ

NEGCTIMESJ POS[COMMUTATIVEJ

76. AX53-1 IN(SK25CXJ,XJ -NONEMPTY[X)

NEG[NONEMPTYJ POS[IN)

77. AX54·1 rIMEs[sTAR,A,W,V) -INCA,SJ -INCa,SJ -IN[e,S)
-t N[SK26CC, B, A, STAR, SJ , SJ -lNt SK27tC,B,A,STAR,S),SJ
~INCSK28[C,8,A,STAR,SJ,SJ

-TIMESCSTAR,A,B, SK26(C,B,A,STAR,SJJ
-TIMES[STAR, SK26[C, 8 , A, STAR, S) , C, SK27CC,a,A,STAR,SJJ
·TIMESCSTA?J R,B,C,SK28[C,B,A,STAR,SJJ -ASSOCCSTAR,SJ

N£G(ASSOCJ NEG[IN) IMPCOND(TIMESJ

78. AX54-2 TIMESCSTAR,U,C,VJ -INcA,SJ -INcB,S) ·INce,S)
·IN[SK29[C,8,A,STA~,SJ,S) -IN[SK3~tC,B,A,STAR,SJ,SJ

~INlSK31[C,B,A,STAR,SJ,SJ

"TIMESCSTAR,B,C, SK31 (C, 8 , A, STAR, SJ J
~TIMES[STAR,A,SK31[C.B,A.STAR,SJ,SK30CC,B,A,STAR,SJJ

8TIMES[STA?] R,A,8,SK29CC,8,A,STAR,SJJ -ASSOCCSTAR,SJ

NEG(ASSOCJ NlG(IN] IMPCONO[TIMESJ

79. AX55-1 A~SOC[STAR,s] ~RASsOCtsTAR,SJ .~ASsOCtsTAR,SJ

NEG[LASSOCJ NEG[RASSOC) POS[ASSOCJ

164

80' AX56.1 TIMESCSTAR,a,A,tJ ·INCA,S)
'" 1DE NT IT vr 5TAR, E•SJ .. I :~v ER SE (S TA R, A. BJ

NEGCINVlRSEJ NEGCIDlNTITY] NEGCIN] poStTIMESJ

81. AX56~2 TIM£sCS TAR, A. 8 , [J -INCA,S)
.10[NTITYtSTAR,E,SJ ·INVERS[CSTAR,A.BJ

NEGtINVtRSEJ NEGCIDENTITY] NEGCIN] pOstTIMES)

82, AX57.1 INVERSEtSTAR,A,BJ INCA,SK38CSTAR,B,AJ]

poStINJ POSCINVERSEJ

83, AX57 ...2 INVERSE(SlAR,A,E,J INtB,SK38tsTAR,B,AJ)

POS(lNJ poStlNVERSEJ

.INta,S]

'--)

84. AX57-3 INVERSECSTAR,A,BJ
IOENTITYtSTAR,SK39CSTAR,8,AJ,SK38CSTAR,8,A?J JJ

POSCIDENTITYJ POS[INVERSEJ

65. AX57 w4

.TIMESCSTAR'A'B,SK39(STAR'B'AJJ
-T 1MESCSTAR,B,A,SK39[sTAR,B,AJJ

NEGtTIMESJ POSCINV£RSEJ

INVERSECSTAR,A,B)

66, AX58 wl INCe,SJ -INCA,SJ -INtB,SJ .TIMES(STAR,A,B,C)
..CI"OSEDlST AR,S J

NEGtcLOSEDJ NEGCTlrlESJ IMPCONDCINJ

67, AX59·1 CLOSEOCSTAR,SJ INCSK40CS,STARJ'SJ

POSCINJ POSCCLOSEOJ

r-

L J

, J

88. AX59.2 CLOSED(STAR,SJ I NrSK41CS, STARJ , SJ

POS[IN] POSCCLOSEUJ

89. AX59~3 CLOSEOCsTAR,SJ
TIMES[STAR,$K40~S,STAR],SK41CS,STARJ,S?J K42CS,STARJJ

POS[TI MESJ POSCC~OSEDJ

90. AX59.~ CLoSEDCSTAR,SJ -lNCSK42CS,STARJ,SJ

NEGrIN] POSCCLOSEOJ

91. Ax60"1 IN[X,C] .. lNCx,A] ... INtX,BJ ,dNTERSECTlON(C,A,BJ

NE G[INTE RS [C TI ON] IMPC Oi~ 0C1NJ

92. AX60"2 IN[X,BJ .. INex,CJ ... INTERSECTIONtC,A,BJ

NEGCINTEHSECTIONJ l~PCONDCINJ

93. AX6~·3 INCX,AJ .. INCx,CJ ~INTERSECTIONCC,A,BJ

NEGCINTERSECTIONJ IMPCONDCINJ

AX 61-1

\ __ J

-INCSK44CC,8,AJ,AJ .IN[SK44Ct,B,AJ,BJ

NEG[INJ POS[I~TERSECTIO~J

95. AX61_2 I~TERSECTIONCC,A,B]
IN[SK44lC,B,AJ,CJ

IMPCONOlINJ POSlINTERSECTIONJ

166

.lNCSK43CC,B,AJ,CJ

96. AX61-3 INTERSECTIONtC,A,BJ
.lN~SK44(C,8,AJ,AJ -INCSK44tC,8,AJ,BJ

IMPCONOtINJ POSCINTERSECTIONJ

97, AX61.4 INTERSECTION[C,A,8J
JNCSK44CC,8,AJ,CJ

POSCINJ POSCINTERSECTIO~J

98. AX61-5 INTERSECTIONCC,A,BJ
.INCSK44(C,B,A~,AJ -INCSK44(C,B,AJ,BJ

IMPCOND(INJ POSCINTERSECTIONJ

99, AX61.6 INTERSECTI0NCC,A,8J
INCSK44CC,B,AJ,CJ

POS(INJ POSCINTERSECTION]

INCSK43CC,8,AJ,B)

INtS K43CC,B,AJ,BJ

INtS K43CC, B, AJ , A)

INCSK43(C,8,AJ,AJ

100, AX62-1 INCA1,A] -MAP[F,A,BJ -MAP1CF,Al,B1J

NEGCMAP1J NEGlMAPJ POSCINJ

101. AX62-2 IN(Bl'BJ -~AP(F,A,8J -MAP1CF,A1,81J

NEGCMAP1J NEGlMAPJ POSCINJ

102. AX63-1 CLOSEOCSTAR,SJ -WELLDEFCSTAR,SJ

NEG(WELLOEFJ POS(CLOSEOJ

103, AX63-2 TIMESCST AR,A,8'SK45C B,A,S,STARJJ
-INCB,SJ -WELLDE~CSTAR'SJ

NEGCWELLDEFJ NEGtIN] POSCTIMESJ

l~

t _\

l '

wEl.l.OEF"[STAR,SJ

1214, 4X64t ..1 wEL.L.OEF'CSTAR,SJ
.TIMESCSTAR,SK~6CS,STAR),SK47[S,STARJ,CJ

NEG[TIMESJ NEGtCL,OSEDJ POSCWELL.OEFJ

105. AX64·2
IN(SK47[S,STARJ,SJ

POSCIN) NEGCCLOSEOJ POS[WEL.L.OEFJ

106. AX64 ... 3
IN(SK~6(S,STARJ,SJ

POSrINJ NEG[CLOSEDJ POSCWEL.LDEFJ

.CL.OSEOCS!AR,SJ

NEGCMAPJ IMPCONO[lNJ

NEGrIN] NEG(MAPJ POS(MAP1J

1~9, AX66 ... 1 INO,B] -HO"1(PHI,A,BJ -INCX,AJ .. MA P1CPHI,X,YJ

NEG(MAP1J NEGCHOMJ IMPCONOCINJ

110, AX67 ... 1 MA P1 [PSl , Y, XJ .HOMCPHl,A,BJ
.MAP1[pHI,x,YJ ... INVERSE(COMP,PSI,PHIJ

NEGLINVERSEJ NEGrIN) NEG[HOM] IMPCONDrMAP1J

111. AX68-1 NORMALCM,G,STARJ .PNSU8GROUPCM,G,STARJ

NEGCPNSUBGRQUPJ POS[NOR~ALJ

.1NrX,AJ

NEGCPNSUBGROUP] NEGrIOENTITYJ

113w AX68-3 wEQUALSET[M,GJ -PNSUBGRQUp[M,G,STARJ

NEG(PNSUBGROUPJ NEGCEQUALStTJ

114 i AX69-1 INVERSEcSTAR,G,FJ -INVERSECSTAR,F,GJ

IMPCOND[!NVERSEJ

l15 e AX70.1 INVEHSECCOMP,F,GJ -HOMCF,A,8J -HOMCG,B,A]

NEGtHOM) POSCINVERSEJ

IMPCONQ[HOMJ

117, AX73~1

8HOMCG,B,C]

IMPCONOCHOMJ

118, AX74-1 INTERSECTION[X,~,YJ .INTERSECTION[X,Y,~J

IMPCONOCINTERSECTIONJ

119, AX75-1 COMMRING[R,STAR,PLUS] .C1 RING[R,STAR,PLUSJ

NEGlC1RINGJ POStCOMMRINGJ

120, AX75-2 UNITRl~G(R,STAR,PLUSJ .C1RING(R,STAR,PLUSJ

NEGlC1RINGJ POSCUNITRINGJ

~o

121.

NEGCUNITRINGJ NEG[COMMRINGJ POS[C1RINGJ

122. A~77~1 DISTtSTAR1,STAR2,SJ
.RDISTlSTAR1,STAR2,SJ

NEGCRDISTJ NlG[LUlSTJ POS[UISTJ

123. AX78-1 CLOSED[STAR,S] .. RASSOCCSTAR,SJ

NEG(RASSOCJ POS(CLOSED]

124. AX78-2 TIMES[STA""A,y,WJ .. IN[A,SJ ... INca,S) -INCC,SJ
..TIMES[STAR,A,B,UJ 8TIMESlSTAR,U,C,VJ .TIMESCSTAR,B,C,Wj
..RASSOCCSTAR,SJ

NEG[RASSOCJ N[G[IN] IMPCONOCTIMESJ

125. AX79... 1 RA~SOCCSTAR,SJ -CLOSEOCSTAR,S)
..TIMES[STAR,SK66CS,STAR],SK70[S,STARJ,SK71tS,STARJJ .

NEGCTIMlSJ NEG[CLOS£OJ POS[RASSOC)

126. AX79 ... 2 RASSOC[STAR,SJ -CLOSEDCSTAR,SJ
TIMES(STAR,SK67[S,STARJ,SK68CS,STARJ,SK71CS,STARJJ

POSCTIMESJ NEGCCLOSEDJ POSCRASSOCJ

127. AX79·3 RASSOCCSTAR,SJ ..C~OSEDtSTAR,SJ
TIMES(STAR,SK69lS,STAR],SK68C S,STARJ,SK70tS,STARJJ

POSCTIMESJ NEG[CLOSEOJ POS[RASSOCJ

171

128, AX19~4 RASSOCCSTAR,S) ·CLOSEOCSTAR,S~
TIMES[STAR,SK66(S,STARJ,SK67CS,STARJ,SK69CS~STARJJ

POSCTIMESJ NEGCCLOSEOJ POSCRASSOCJ

129 , AX79 ... 5
INCSK68lS,STARJ,SJ

~ASSOC(STAR,SJ

RAS~OC(STAR,SJ

POSCINJ NEG(CLOSEOJ PQS(RASSOCJ

130, AX79-6
IN(SK67(S,STARJ,SJ

POSCINJ NEG(CLOSED] POS[RASSOCJ

131, AX79·7
INtSK66(S,STAR~,SJ

POSCINJ NEGcCLOSEOJ POSCRASSOCJ

132, AX80.1 CLOSEOCSTAR,SJ NLASSOCCSTAR,SJ

NEGCLASSOCJ POSCCLOSEOJ

..CL.OSEOCSiAR,S)

133, AX80.2 !IME~CSTAR,U,C,VJ .INCA,S] _INCa,S) .INte,S)
-TIMESCSTAR,B,C,wJ -rIMEsLsTAR,A,W,VJ -TIMESCSTAR,A,B,UJ
..LAS SO C(Sf AR , S J

NEGCLASSOCJ NEGCIN) IMPCONDCTIMESJ

134, AX8l"1 LASSOCCSTAR,SJ -cLOSED(STAR,SJ
.TIMESC STAR,SK63CS,STARJ,SK62CS,STARJ,SK64CS,STARJJ

NEGCTtMESJ NEGtCL,0SEOJ POSCL.ASSOCJ

135, AX81.2 lASSOC(STAR,SJ -CLOS£DCSTAR,SJ
TIMESCSTAR,SK60CS,STARJ,SK61CS,STARJ,SK63CS,STARJJ

POSCTIMESJ NEGtCL,OSEDJ POSCLASSOCJ

172

L

,.""

1~6. AX81-3 LASSOCCSTAR,SJ -CLOSiOCSYAR.SJ
TIMESCS TAR,SK6eLS,STAR],SK65C S,STARJ,SK64tS,STARJJ

POSCTIMESJ NEGCCLOSEDJ POSCLASSOCJ

137, AX81·4 LAsSOCCSTAR,SJ .CLOSEotsTAR,SJ
TIMESCSTAR,SK61(S,STARJ,SK62CS,STARJ,SK65tS,STARJJ

POSCTIMESJ NEGCCLOSEDJ POSCL,ASSOCJ

LASSOCCSTAR,S J

LASSOCCSTAR,SJ

136, AX81-5
INLSK6 2[S,STARJ,SJ

POSCINJ NEG(CLOSEDJ POS(LASSOCJ

139, AX81_6
INCSK61lS'STAR]'SJ

POSCIN] NEG[CLOSEDJ POS[LASSOC)

.CI..OSEDCSTAR,SJ

.CLOSEDq~T AR, S J

140' AX8l ... 7
INCSK60[S,SlARJ,SJ

L.ASSOCCSTAR,SJ .CL.OSEOCSIAR,SJ

POSCINJ NEGcCLOSEDJ POS[LASSQCJ

141, AX83.. 1 COMMUTATIVECSTAR,GJ -A8EL.IANCG,STA RJ

NEGC ABEL IAN] PQSCCOMMUTA Tl VE J

142, AX83.. 2 GROUP(G,STARJ -ABEL.IANCG,STARJ

NEGCABElIANJ PQS(GROUPJ

143, AX86_1 TI~ESCSTAR2,Bl,B2,B3J .MAP1tF,Al,81J
..MAPHF,A2,82J ..MAPte F,A3,B3J -TIMESCsTAR1,Al.A2,A3J
.GRQUP(G,STA R1 J .GROUPCH,STAR2J -HQMcr,G,HJ

NEGCHQMJ NEGCGROUPJ NEGCMAP1J IMPCONOCTIMESJ

173

144, AX87wl INCSK87tXj,XJ ~NONEMPTYCXJ

NEGENONEMPTYJ POSCINJ

145, AX90wl MAPtCOMp[F,rNVERSECFJJ,B,BJ -HOMCF,A,BJ

NEGCHOMJ POSCMAP]

146, AX92"'1
.MAPcP,AQBJ

147, AX92 ... 2 IN(!NVERSEFCY,A,8,FJ,AJ ""INcY,BJ ... MA PCF, A, 8J

NEGCMAPJ IMPCONoCIN]

148, AX93·1 MAP1C F,x,MApF[X,A,B,FJJ .INCX,AJ .MAPCF,A,BJ

NEG[MAPJ NEGCINJ PUStMAP1]

149, AX93·2 IN(MAPFeX, A, B, FJ , BJ -INCX,AJ -HAPeF,A,BJ

NEGCMAPJ IMPCONDCINJ

150, AX94-1 INCA1,A] ""MAPCF,A,BJ wMAP1CF,A1,B1J

NEG[MA P1J NEG[MAPJ POSCIN]

151. AX94.2 INtBl,SJ -MAPCF,A,BJ -MAP1CF,Al,B1J

NEG(MAP1J NEGCMAPJ POSC!NJ

NEG[MA P1J NEGCMAPJ POSCINJ

174

{ -

L.

'~)

153, AX95- 2 IN (Y , B) .M AP (P HI," , BJ .M A'1t PH I, X, YJ

NEG[MA P1J NEGCMAP) POS[INJ

15., AX96 .. 1 MAP1CCOkP(F,INVERSErF'JJ,Y,YJ
.INtY,S) ~MAP1Cr,lNVERSEF(Y,A,B,F'J,~J

NEG(IN) NEG(MAPJ IMPCONO(MAP1J

.M Ap[r , A , BJ

155, AX97-1 INCY,BJ .MAPCPHI,A,8J -INCX,AJ -MAP1CPHl,X,YJ

NEG(MAP1) N[GCHAPJ IMPCONDCINJ

1S0 , AX96-1 INLX,A] .MAPlr'Hl,A,I:;J -INCYd~J -MA"'lLI"Hl,}\,TJ

NEG(MAP1) NEGCMAPJ IMPCONOnNJ

157, AX99-1 GROUPCG,STAp) .HAXIMALCM,G'STARJ

NEGCMAXIMALJ POS(GROUPJ

158, AX99-2 PNORMALCM,G,STAR) -HAXIHALCM,G,STARJ

NEG(MAXIMALJ POS(PNORMALJ

159, AX99-3 .PSUBSETCH,OTHERSETCSTAR,G,MJJ
.PNORMALCOTHERSET[STA?J R,G,M),G,STARJ .M.XIMA~tM,G,STARJ

NEG(MAXIMALJ NEG(PNORM\L) NEGCPSU8SETJ

160, AX100 ..1 MAXIHALCM,G,STARJ -GRQUp(G,STARJ
.PNORMAL01,G,STARJ PNORMALCOTHERSETCSTAR,G,MJ,G,STARJ

IM PCONDCPNORMAL) NEGCGROUPJ POS(MAXIMALJ

161, AX100-2 MAXIMALCM,G,STARJ .GROUPCG,STAR)
..PNORMALrM,G,STARJ PSUaSETtM,OTHERSET(STAR,G,MJJ

POS(PSU8SETJ NEG(PNORMALJ NEGCGROUPJ POSCMAXIMALJ

175

170. AX105-1 MQ"CHOMMAPCSTAR,N,G,XJ,G,XJ
-NORMALCN,G,STARJ -fACTSCX,G,NJ

NEGCFACTSJ NEGCNOR~A~J NEGCGROUPJ POSCHOMJ

171. AX106~1 SUBGROUPCH,G,STARJ
-GROUPCG,STARJ MSUBSETC~,GJ

NEGCSU8SETJ NEG(GROUPJ pOS[SU8GROUPJ

..GROUPi~H,STARJ

-IDENTIT YCSTAR2,Y,BJ
..GROUPCB,STAR2J

172. AX107 ..1
.GROU PCA,STAR1J
IDENTITYCSTA R1 , X, A]

NEGCMAPJ NEGCGROUPJ NEG(HOM] IMPCONDCIDENTITYJ

173, AX108-1 IOENTITY(STAR2,Y,BJ
.GROUP[A,STAR1J .GROUP(B,STAR2J

.lDENTITY(STAR1,X'AJ

NEG[MAPJ NEGCGROUPJ NEG[HOM] I MPCONO(IOENTITyJ

..1-101"1 CF "~ , B]

.. MAF'CF,X,Y)

..HOMCPHI,A.8J

..MAP[I~Hl,X,YJ

174, AX10 9..1 PSUaSET(Y,BJ ..HOM(PHl'A,SJ ..GROUPCA,STA R1 J
.GROUPCB,STAR2J ..MAPCPHI'X,yJ -PSUBSETCX,AJ

NEG[MAPJ NEG(GROUPJ NEG(HOMJ IMPCONDtPSUBSETJ

175. AX110~1

..GROU PCB,STAR2J

.NORMAL(X,A,STAR1J

NORMA~(Y,8'STAR2J

... HOMCPHI,A,BJ
... GROUp(J~'STAR1J

... MAP(PHI,X,YJ

NEGCMAPJ NEGCHOMJ NEGCGROUPJ IMPCONOCNORMA~J

-NORMAL.C X, G, ST AR J

177. AX111 ..2 pSU8SETeX.GJ -PNORMAI..(X,G,STARJ

NEG(PNORMAU POSlPSUi:3SET]

178, AX111-3 -IDENTITYCSTAR,X,GJ .PNORHAI..CX,G,STAR]

NEG[PNORMALJ NEG[IJENTITYJ

179. AX112"'1 p;'.ijRMALCX,G,sTARJ
"PSUBSETeX,GJ IDENTITYCSTAR,X,GJ

POSCIDENTITYJ NEG(PSUBSETJ NEG(NQRMALJ POSCPNORMAI..J

180, AX113-1 SUBSETCX,Yl -pSu8sETtX,YJ

NEG[PSUBSETJ POSC SU8SETJ

181. AX113_2 -EQUALSETCX,YJ .PSUBSETeX,YJ

NEGLPSUBSETJ NEGtEQUALSETJ

182, AX114-1 SUBSET[X,VJ .PsUBSETtX,YJ

NEGC PSU8SETJ POSCSUbSETJ

183. AX115-1 pSuBsEr[X,vJ -SUBSET(X,YJ EQUAL.SETCX,YJ

POSC(QUALSETJ NEG(SU8SETJ PQS[PSUsSETJ

18., AX11 6- 1 pSuBsEr(X.tJ -pSUBSET[X,yJ -pSUBSETCY,lJ

IMPCOND[PSUsSETJ

185, AXi17-1 SUBGROUP[X,G,STARJ -NORMALCX,G,STARJ

NE G[NO RM AL j PO S[SU BG RO UP J

177

162. AX101~1 GROUPCH:STARJ -SUBGROUPCM,G,STARJ

NEGCSUBGROUPJ POSCCROUPJ

163, AX101~2 GROUPCG,STARJ -SU8GROUP[H~GgSTARJ

NEGCSUBGROUPJ POSCGROUPJ

164, AX101@3 SUBSETCH,G] ~SU8GROUP(H,G,STARJ

NEGCSUBGROUPJ POSCSUS5tTJ

165, AX102-1 GROUp(G,STARJ ~SIMpLEGROUPCG,STARJ

NEGCSIMPLEGROUPJ POSCGROUPJ

166. AX102-2 -NORMALlx,G,STARJ
.PSUBSETeX,GJ .SlMPLEGROUPCG,STARJ

NEG[SlMPLEGROUPJ NEGCPSUBSETJ POS[IDENTITYJ NEG[NORMA~J

167. AX103-1 SIMPLEGROUP(G,STARJ
NORMAL(SK91C STAR,G],G,STARJ

POS[NORMALJ NEGCGROuPJ POSCSIMPLEGROUP]

168, AX103~2 SIMPLEGROUPCG,STARJ
mlOENTITY(STAR,SK91CS TAR,GJ,GJ

NEGCI0ENTITYJ NEGCGROUPJ POS[SIMPLEGROUPJ

169. AX103-3 SIMPLEGROUPCG,STARJ
PSUBSE TCSK91CSTAR,GJ,GJ

POSCPSUSSETJ NEGtGROUPJ POSCSIMPLEGROUPJ

.GROUp[G,STARJ

.GROUPtG,STARJ

MAPCPMI,X,MAPF'(X,B,A,PHIJJ

t. _.J

186, AXile--l
..SuBSETlx,AJ

NEGlSU8SETJ NEGlHOMJ POSU1APJ

187, AX 118- 2
..SUBSETCX,AJ

SUB::>ET [r'lAPF(X, 8, A, PH IJ,8 J ..HOM (P HI , A, BJ

'-- .,'

'_'-.-J

NEGCHOMJ IMPCONOCSU8SETJ

188. AX119~1 IOENTITYCFACTSETOPCX,STAR,G,NJ,N,XJ
..NORMALlN,G,STARJ -FACTSCX,G,NJ

NEGCfAcTSJ NEGCNORMALJ POSCIOENTITYJ

189, AX120-1 EQUALSETeX,GJ ..NORMAL(N,G,sTARJ .rACTSCX,G,~J

.. IDENTITY(STAR,N,GJ

NEGCIDENTITYJ NEGCFACTSJ NlGCNORMALJ POSCEQUALSETJ

190, AX121-1 IDENrITVlSTAR,X,GJ
..FACTSeX,G,NJ -EQUALSETCX,GJ

NEGCEQUALSETJ NEG(FACTSJ NEGCNORMALJ PQSCIOENTITYJ

191. AX122-1 ~OHMALCG'G,STAR]

pQSCNORMALJ

192. AX123-1 EQUALSET(X,XJ

PQSC[QUALSETJ

193, AX124"1 ABELIA,~[X.,~TARJ .. ABSUBGROUp[X,Y,STARJ

NEGCABSUBGRQUPJ PQSCA8£LIANJ

179

194. AX124·2 SUBGROUP(X,Y,STARJ •• SSUBGROUPCX,Y,STARJ

Nt: Gt AS SU BG RO UP J PO Sc SU dG RO UP J

195, AX125-1 ABSUBGRUUP(X,Y,STARJ
.SU8GRQUPLX iy,STARJ

NEGCSUBGROUPJ NEGCA8ELIANJ POS[ABSUBGROUPJ

196. AX126~1

·COMMSUBRING~X,y,STAR,PLUSJ

NEGCCOMMSUBRINGJ PQSCCOMMRINGJ

197. AX126~2

.COMMSUBRINGeX,Y,STAR,PLUSJ

NEGCCOMMSua RINGJ POSCSUdR!I\iGJ

198. AX127-i COMMSU8RINGCX,Y,STAR,pLUSJ
-COMMRINGeX,STAR,PLUSJ .SUBRINGeX,Y,STAR,PLUS]

NEGCSU8RINGJ NEGCCOMMRINGJ POS(COMMSUBRINGJ

NEGCIOEALJ POSCSU8RINGJ

200, AX128-2 INC82,M] -INCA,M] .INC8,MJ -IN[X,HJ
.TIMESCSTAR,X,A,X1J .TIMES~STAR,A,X,X2J -lNVERSE(PLUS,81,BJ
~TIMES[PLUS,8,Bl,82J -loEALtM,R,STAR,PLUSJ

NEGCIDEALJ NEG[INVERS£J NEG(TIMESJ IMPCONOCINJ

2~1. AX128-3 INCX2,MJ 8INCA,MJ ·lN~8,MJ ~INCX,RJ

.TIMESCSTAR,X,A,X1J .TI~ES(STAR,A,X,X2J -INVERSECPLUS,Bl,BJ

.TIMESCPLUS,8,Bl,82J -IJEAL~M,R,STAR,PLUSJ

NEGCIDEALJ NEGCINVERSEJ NEGCTIMESJ IMPCONOCINJ

180

1 '

202. AX128-4 INCX1,MJ .INCA,M) -JNtB,MJ -IN[X,R]
.TIMESlSTAR,X,A,X1J ..T!MESCSTAR,A,X,X2] -INVERSECPLUS,81,·8J
..TIMESCPL.US, 8, 81 ,82) ... rDEALl 1-1, R, 5T AR ,PLUSJ

NEGCIOEALJ NEGCINVERSEJ ~EG(TIMESJ IMPCONOtlNJ

203. AX129-1 IDEAL[M,R,SrAR,pLUS] -SUBRINGCM,R,STAR,pLUSJ
~IN[SK98CPLUS,STAR,R,M],MJ -INCSK99CPLUS,STAR,R,M],MJ
-INCSK96[PLUS,STAH,R,MJ,MJ

NEGlINJ NEGCSU8 RINGJ PoSCIOlALJ

204, AX129-2 IDEAL[M,q,STAR,pLUSJ .SUBRINGCM,R,STAR,pLUSJ
TIMES[PLUS,SK94[PLUS,STAR,R,MJ,SK95CPLUS,STAR,R,MJ,SK96[PLUS
,STA?] R,R,H]J

POS[TIMESJ NEGCSU8RING] POSlIOEALJ

205, AX129 ... 3 IOEALCM,K,STAR,PLUSJ -SUBRINGtM,R,STAR,PL.USJ
1NVE RS E[PL US ,5 K95 [PL US , STAR, R, MJ , SK9 4(PL US , STAR, R, MJ J

POS[INVERSEJ NEGCSU8 RINGJ POS[IDEALJ

206. AX129-4 IDEAL[M,R,STAR,pLUSJ .SUBRINGCM'R,STAR,PLUSJ
TIMES[STAR,SK93LPLUS,STAR,R,M],SK97CP~US.STAR,R,MJ,SK99CP~US

,SlA?] R,R,MJ)

POSCTIMESJ NlGCSUSRINGJ POSCIDEA~J

207, AX129-5 IDEALCM,R,STAR,P~USJ -SUBRINGCM,R,STAR,PLUSJ
TIMESCSTAR,SK97CPLUS,STAR,R,MJ,SK93(P~US.STAR,R,MJ,SK98CPLUS

,STA?) R,R,M]]

208, Ax129-6 IOEAU M, R' STAR,PLUS) -SU8RINGCM,R,SrAR' pLUS)
INCSK97[PLUS,STAR,R,MJ,RJ

POSCINJ NEGCSU8RINGJ PQSCIUEALJ

181

209, AX129-7 lOEALCM'R'STAR,P~USJ ·SUBRINGCM~R;STA~,~LUS)
INCSK94(PLUS,STAR~R,MJ,MJ

FOSCINJ NEG~SU8RINGJ POStlOEALJ

210, AX129.8 IDEAL(M,R,STAR,PLUSJ .SUBRING(M,R,STAR,PLUSJ
INCSK93[PLUS,STAR,R,MJ,M]

PQSCINJ NEGCSU8RINGJ POSCIl)EALJ

211, AX1 3l2J " 1 RING(R,STAR,PLuSJ ... MAXRINGCA,R,STAR,PLuS:l

NEG~MAXRINGJ POSCRINGJ

NEGCMAXRINGJ POSCPIOEALJ

r -,

213, AX130-3
.PIDEA\..LOTHERSE?J
-MA XRI NGCA, R, STAR, PLUS]

..pSU8SETCA ,OTHERSE TtSrAR ,PLUS, A, RJ)
TCSTAR,PLUS,A,RJ,R,STAR,PLUSJ

NEGCMAXRINGJ NEG(PIOEALJ NEG(PSUBSETJ

214, AX131"'1 MAXRING(A,R,STAR,PLUSJ .RINGCR,STAR,PLUS]
.PIDEAL[A,R,STAR,PLUSJ
PIDEAL(OTHERSET[STAR,PLUS,A,RJ,R,STAR,PL?J US)

IMPCONOCPIOE,ALJ NEGCRINGJ PQS(MAXRINGJ

215. AX131-2 MAXRI~G[A,R,STAR,PLUSJ .RINGCR,sTAR,PLUsJ
.PIOEA~CA,R.STAR,PLUSJ PSU8SET[A,OTHERSETtSTAR,P~US,A,RJJ

POSCPSU8SETJ NEGCPIOEALJ NEG(RINGJ POSCMAXRINGJ

216, AX132 81

.RING[A,STAR1,PLUS1J

..PSU8SET(X,AJ

PSUBSEiCX,BJ
.RINGCB,STAR2,PLUS2J

",HOMLpHI,A,B]
..MAPCPHI,X,Y]

182

___ J

217• AX133-1 IDENTIT YCSTAR2,Y,BJ .RINGtA,STAR1,P~US1J

.RING[B,STAR2,P~US2J -HOMCPHI,A,BJ -MAPtPHI,X,Y)
·lOENTITYCSTAR1,X,~J

NEG[MAPJ N~G[HOMJ ~EG(RINGJ IMPCONO(IOENTITYJ

218. AX134-1 IJENTITYLFACTSETOplCX,STAR,P~US,R,AJ,A,XJ

-IOEAL(A,R,S?J TAR,PLUSJ -FAcTseX,R,AJ

NEG(PIDEALJ POS(lU£ALJ

220. AX135-2 PSUBSETCA,R,STAR,PLUSJ .PloeA~tA,R,STAR,PLUSJ

NEGCPIDEALJ POSCPSUbSETJ

221. AX135-3 -lOENTITVCSTAR,A,RJ -PIOEALCA,R,STAR,P~USJ

NEGCPIOEAL.J NEGl:I0Ei\lTITYJ

222. AX136-1 PID~AL.(A,R,STAR,PLUSJ -lDEA~CA,R,STAR,PLUSJ

.PSU8SETCA,R,STAR,PLUSJ YDENTITyCSTAR,A,RJ

POS(lOlNTtTYJ NEG[PSUSSETJ NEGCIOEALJ POSCPIDEALJ

223, AX137-1 RINGCR,STAR,pLU S) .SlMpLERINGCR,sTAR,PLUSJ

NEGCSIMPLERINGJ POSCRINGJ

2~4, AX137-2 -IDEALcY,R,STAR,PLUSJ IDENTITYCSTAR,Y,RJ
-PSUBSET(Y,R] -SIMPLERING[R,STAR,PLUSJ

NEGCSIMPI.ERINGJ NEGcPSugSETJ POSCIOENTITYJ NEGtlOF.:AL.~

225 A~lJ6el ~lMPLERINGtR,STAR,PLUSJ .RINGtR.STAR~P~USJ
IO£~LtsKla2CpLUS,STAR'RJ,RQST.R,pLUSJ

POSCIDEA~J NEGCRINGJ PCSCSlMPLER!NGJ

226, AX138~2 SIMPLERINGCR,STAR,PLUSJ
-IDENTITYCSTAR,SK102CPLUS,STAR,RJ,RJ

NEGCIDENTITYJ NEG[RINGJ POSCSIMPLERINGJ

227, AX138-3 SIMPLERING[R,STAR,PLUSJ wRtNG[R,STAR.P~USJ

PSUBSETCSK102CPLUS,STAR,RJ,RJ

POS(PSU8SETJ NEG(RINGJ POSCSIMPLERINGJ

228, AX142.1 COMMUTATIVECSTAR,RJ -COMMRINGCR,STAR,PLUSJ

NEGCCOMMRINGJ PDSCCOMMUTATIVEJ

229, AX142.2 KINGCR,STAR,PLUSJ ·COMMRINGCR,STAR,P~USJ

NEGCCOMMRINGJ POSCRINGJ

230' AX143-1 COMMRINGCR,STAR,PLUSJ
.RINGCR,STAR,PLUSJ

NEGCRINGJ NEGCCOMMUTATIVEJ POSCCOMMRINGJ

231. AX148 g1 RINGCA,STAR,PLUSJ ~SUBRINGCA,8,STAR,PLUSJ

NEGtSUBRINGJ POSCRINGJ

232. AX148~2 RINGCB,STAR,PLUSJ .SU8RINGCA,8,STAR,PLU?J

NEG(SUBRINGJ POSCRINGJ

l~

~IDENTITYtPLUS2,Y,BJ

wRINGCB,STAR2,PLUS2J

4IDENTIT YtSTAR2,Y,BJ
"RJ NGt B, STAR2, PLUS2J

233. AX1~8·3 SUBSETCA,8] ·SUBRINGCA,B,STAR,P~USJ

NEGCSUaRINGJ POSCSUBSET)

234. AX158·1
~RINGCA,STAR1,PLUS1J

IOENTITYCPLUS1,X,AJ

NEGCMAPJ NEG(RINGJ NEG[HOMJ IMPCONDCIOENTITYJ

235. AX159-1
~RING(A,STAR1,PLUS1J

IDENTJTYCSTAR1,X,AJ

NEG[MAPJ NEG(RINGJ ~EGCHOMJ IMPCONOCIOENTITYJ

-HOMCf,A,B)
-MAPtF,X,YJ

-HOMer,A,B)
-MAPtF',X,V]

236. AX160-1 IDEALC8B,AA,STAR,pLUSJ -RINC(A,STAR,pLUSJ
-JDEALCB,A,STAR,PLUSJ "HOM(F',A,AAJ -MAPCF',B,BBJ

NEGCMAPJ NEGCHOHJ NEGCRINGJ IMPCONDCIOEALJ

237. Ax161 ... 1
..S UB SET[Ai, A)

NEGCSUSSETJ NEGCHOMJ POStMAPJ

.H OM ~F' , A,a J

,--

238, AX162.1 GROUPC8,STAR2J -HOMCPHl,A,8J -CROUPCA,STAR1J

NEGCHOMJ IMPCONDCGROUPJ

239, AX165~1 HOMCF,ASu8,BSU8J .HOMCr,A,BJ .SUBSETtA~U8,AJ
.MAP(F',ASUB,BSUBJ

NEG[MAPJ NEGCSUBSETJ IMPCONDCHOMJ

185

\ ..'

L_i

APPENDIX C

ZORBA-I AS A USER SYSTEM

ZORBA-I hac; been implemented in LISP on a Die;ital Equipment

Corporation PDP-IO Computer used in an interactive (time-sharing)

mode. The (interpreted) system uses lOOK of LISP words which are

divided as follows:

25K Basic LISP System;

10K Special LISP Trace Package;

15K (QA3) Functions used to maintain the data base, prenex

wffs into clauses;

25K ALGBASE loaded into QA3 t s data base;

15K ZORBA-I including I/O for analogies;

10K Freespace for running programs.

lOOK Total

I designed ZORBA-I empirically. Algorithms were coded for the

information flows I understood. When I was in doubt or didntt know

how to handle a particular decision, I would program a break point

that enables me to communicate with the LISP EVAL at that point in

the program. I could interrogate the state of ZORBA-I, edit func­

tions, execute various I/O operations, and continue running the

program in order to design the needed sections of the ZORBA-I

algorithms.

Without such flexible interactive facility, it is doubtful that

ZORBA-I could have been developed at all.

In principle, ZORBA-I and QA3 are intimately linked while in

practice they are barely connected.

In principle, the operating procedure for ZORBA-I WQuld be:

(1) Load the ZORBA-I system on the PDP-IO.

(2) Select a theorem TA to prove and an analogous theorem T that

186

has been proved.

(3) Load the elata-base, evg , ALG,RASE from disk or tape.

(4) Load the resolution tree (saved from the run of QA:3 when

T was proved) from disk or tape.

(5) Execute ZORBA-I[TA;T] to create an analogy Ct.

(6) Delete all clauses from the data base which do not appear

in the bnage of nC
•

(7) Call QA3 to prove T
A

using the restricted data base.

Two practical reasons inhibit these last two steps in the Imp.Lc­

mented system:

(1) The version of QA3 that runs on the PDP-lO is incompatible

with the QA3 memory structures which ZORBA-I inherited

from its initial implementation on the SDs-940. Substan­

tial work would need to be done to render the two com­

patible again.

(2) The full blown QA3 system would demand an additional 15K

of code and possibly additional f'ree space , The resultant

system would be ~ l15K in size and would exceed the memory

capacity of the PDP-lO LISP system at Stanford Research

Institute. In practice, QA3 could be loaded after

ZORBA-I was run by deleting the ZORBA-I code after use.

QA3's code would be deleted and ZORBA-I's code would be

reloaded to run the next analogy problem. Conse~lently,

ZORBA-I has been run as an independent system from QA3.

Two theorems (T2 and T4) were run on the PDP-lO version of

QA3 using the data bases output by ZORBA-I after it gen­

erated an analogy with Tl and T
3

respectively. ~rhe QA3

search was, in fact, quite small (~100 clauses) and it

187

found the tVIO proofs easily. other theorems in the experi­

mental set required special QA3 strategies that were not

converted to the PDP-IO. Consequently, the impact of

ZORBA-I on restricting their QA3 search was not explictly

tested.

188

-- ~

REFERENCES

1. R. E. Kling, "Reas oni.nr; by AnaLogy as an Aid to Heur Ls t Lc 'I'hcor cm
Proving," Presented at tile IFIP Conference 1971, Ljubljana,
YUf,oslavia, August 23-~'8, 1971.

Max Wertheimer, Productive Thinking, (Harper, 1959).

H. E. Kling, "A Paradivn for Reasoning by Analogy," to appear in
Artificial Intelligence.

~ .s
2 .

,-,
3

4
~_--.J

G. Polya, Induction and Analogy in Mathematics,
University Press, Princeton, N. J. 1954).

(Princeton

5. G. Polya, Mathematical Discovery, Vols. I and II, (John Wiley and
Sons, New York, 1962).

6. H. G. Birch, "The Relation of Previous Experience to Insightful
Problem Solving, It J. Comp. Psych., Vol.38, pp. 367 -383 (1945).

7 . J. R. Quinlan, "A Task-Independent Experience Gathering Scheme
for a Problem Solver," Proceedings of the International Joint Con­
ference on Artificial Intelligence, D. E. Walker and L. M. Norton,
Eds., Washington, D. C., 7-9 May 1969.

8. J. H. Slagle and C. D. Farrell, "Experiments in Automatic Learn­
ing for a Multipurpose Heuristic Program, II J. ACM, Vol. 14,
No.2, pp. 91-98 (1971).

9. D. A. Waterman, "Genere,lization Learninr; Techniques for Automa­
tine; the Learning of Heuristics," Artificial Intellic;ence, Vol. I,
No.1, ;3princ;, (1970).

10. A. Newell, J. C. Shaw, and H. A. Simon, "Elements of a Theory of
Human Problem Solving," Psychological Review, Vol. 65 , pp.151-166,
(1958) .

11. Rudolf Arnheim, Visual Thinking, (University of California Press,
Berkeley, California, 1969).

12. D. Bobrow, "A Question-Answering System for High School Algebra
Word Problems," AFIPS Conference Proceedings, Vol. 26, part I,
(Spartan Books, New York, 1964).

13. J. M. Paige and H. A. Simon,IICognitive Processes in Solving
Algebra Word Problems" in Problem Solving: Hesearch Method and
Theory, B. Kleinmontz, Ed. (John Wiley and Sons, 1966).

189

15·

16.

17·

18.

J·OIIJIW. Gyr, J'olm ~). Brown , HicJurtond. Wl..!py, und Arthur Zl\r1Ull,
"Computer ~amu1ntion and P::ycholol~icu.J 'I'hcor Lou of Pcrec~ption,"

P~cho10eical Bulletin, Vol. 65, No.5, pp. 174-192, (196(;).

T. G. Evans, 1!A Heuristic Program to Solve Geometric-Analogy
Problems," Ph.D. Thesis, Department of Mathematics, M.I.~~.,

(May 1963).

J. Becker, "The Modelling of Simple Analogic and Inductive Pro­
cesses in a Semantic Memory System,1I Proceedings of the Inter­
national Joint Conference on Artificial Intelligence, D. E. WaTher
and L. M. Norton, Eds., Washington, D. C., 7-9 May 1969.

N. Nilsson, Problem Solving Methods in Artificial Intelligenc~,

(McGraw Hill Book Co., 1971).

A. Newell, J. Shaw, and H. A. Simon, "Empirical Exploration with
the Logic Theory Machine,1I Computers and Thought.

19· R. Dreistadt, liThe Use of Pictorial Analogies and
Obtaining Insights in Creative Problem Solving,1I
Psychology, Vol. 71, No.2, pp. 159-175 (1969).

Incubation in
Journal of

20 G. A. Davis, "Curr errt status of Research and Theory in Human
Problem Solving, II Psychological Bulletin, Vol. 66, No.1, pp.36-54
(1966).

21. A. DiVesta,IITransfer of Solution Rules in Problem Solving,1I
J. of Ed. Psych., Vol. 58, No.6, Part 1, pp. 319-326 (1967).

22. A. Newell, liOn the Analysis of Human Problem Solving Protocols, II
Artificial Intelligence Report, Carnegie Institute of Technology,
Pittsburgh, Pennsylvania (1966).

23. G. Polya, Induction and Analogy in Mathematics, Ibid., p. 13.

24.

25.

26.

C. Green, IIApplications of Theorem Proving to Problem Solving,1I
Proceedings of the International Joint Conference on Artificial
Intelligence, Ibid.

R. D. Charmichael, Introduction to the Theory of Groups of
Finite Order, (Dover Publications, 1956).

E. J. Sandewall, IIConcepts and Methods for Heuristic Search,1I
Proceedings of the International Joint Conference on Artificial
Intelligence, D. E. Walker and L. M. Norton, Eds., Washington,
D. C., 7-9 May 1969.

190

27. A. Newell and H. A. Simon, "GP3, A Problem-Solving Program that
Simulates Human Thought," Computer and Thought.

28. H. Gelernter, "Realization of a Geometry Theorem-Proving Machine,lt
Computers and Thought, E. Feigenbaum and J. Feldman, Eds.,
(McGraw Hill Book Co., 1963).

29. R. E. Fikes, ltREF-ARF: A System for Solving Problems Stated as
Procedures," Artificial Intelligence, Vol. 1, Number 1,
(Spring 1970).

30. C. Hewitt, "PLANNER: A Language for Theorem Proving in RObots,1I
Proceedings of the International Joint Conference on Artificial
Intelligence, D. E. Walker and L. M. Norton, Eds., Washington,
D. C., 7-9 May 1969.

31. J. F. Rulifson, R. A. Waldringer, and J. A. Derksen, "A Language
for WritinG Problem-Solving Programs," to be presented at the
IFIP Congress 1971, Ljubljana, Yugoslavia, August 23-28, 1971.

32. C. C. Green, "Theorem-Proving by Resolution as a Basis for
Question-Answering Systems," Machine Intelligence 4, B. Meltzer
and D. Michie, Eds. (American Elsevier, N. Y., 1969).

33. G. Ernst, "Some Issues of Representation in a General Problem
Solver," Proceedings of the Spring Joint Computer Conference,
1967) .

31+. C. L. Chang, "The Unit Proof and the Input Proof in Theorem
Provi.ng ;" J. ACM, Vol. 17, No.4, pp. 698-71J7.

191

