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This procedure (ZORBA) is studied in detail for a resolution theorem
proving system. A set of algorithms (ZORBA-I) which automstically generates
an analogy between a new unproved theorem, T

A
T, is described in detail. ZORBA-I is implemented in LISP on a PDP-10.

, and a previously proved theorem,

A large set of axioms, D, that is sufficient to prove a variety of
non-trival theorems is provided. The user supplies (1) Tps (2) T3 and (3)
a proof of T, proof [T]. ZORBA-I outputs a set of axioms D' (D' € D) which
it proposes for proving T,. The axioms in D-D' are deleted and a proof of

A
T, is attempted.

: ZORBA-I creates an analogy, ¢, Which consists of two submaps:

(1) a one-one map between the predicates that appear in

proof[T] and D';
(2) a one-many map between the axioms that are used in
proof [T], called AXSET, and those in D'.

A complete analogy & includes all the predicates and axioms that
appear in proof[T]. A partial analogy contains only some of these. One
partial analogycxk is an extension of another partial analogy aj, if one
of the submaps of os is a restriction of the corresponding submap of oy
ZORBA-T operates by developing a sequence of partial-analogies that
terminate in a complete «.

A program called INITAL-MAP creates the first partial analogy, 5

by associating the predicates that appear in the statements of T and TA. A

second program (EXTENDER) uses a small set of operators which transform a

partial-analogy into an extended partial-analogy. It uses syntactic de-
scription of the clauses in AXSET to instigate searches through D to find

analogs for each clause. Each new clause association may create a new

partial-analogy. The sequence of partial analogies finally terminates in a
complete analogy which includes D' as a submap.

ZORBA-T is examined in terms of its empirical performance on paris

of analogous theorems drawn from abstact algebra. A D is chosen with 250 clauses
and D' is found for each of several theorems that requre only 5-2C axioms to
prove them. Analytical studies are included which show that ZORBA-I can be
useful to aid automatic theorem proving in many pragmatic cases while it may
be a detriment in certain specially contrived cases.

The limitation of ZORBA-I's representation of an analogy are discussed

along with proposals for future research.
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solve. A data base twice this size is sufficient to
render any but the simplest problem unsolvable. In genersal,
there is no decision procedure which can be used to restrict

a date base to a set of necessary axioms. Here, an snalogy
with some previously solved problem and a new unsolved problem
is used to restrict the data base to a small set of appropriaté
axioms.

This procedure (ZORBA) is studied in detail for s resolution
theorem proving system. A set of algorithms (ZORBA-I) which
automatically generates an analogy between a new unproved
theorem, TA, and a previously proved theorem, T, is described
in detail. ZORBA-I is implemented in LISP on a PDP-10.

A large set of axioms, D, that is sufficient to prove a
variety of non-trivial theorems is provided. The user supplies
(1) T,5 (2) T; and (3) a proof of T, proof [T]. ZORFA-I outputs
a set of axioms D' (D' ¢ D) which it proposes for proving T, .

A

The axioms in D-D' are deleted and a proof of T, is attempted.

A
ZORBA-I creates an analogy, ¢, which consists of two submaps:
(1) a one-one map between the predicates that appear in
proof[T] and D';
(2) a one-many map between the axioms that are used in
proof [T], called AXSET, and those in D'.
A complete analogy @ includes all the predicates and
axioms that appear in proof[T]. A partial analogy contains only
some of thege. One partial analogy ak is an extension of

another partial analogy aj’ if one of the submaps of aj is

a restriction of the corresponding submap of ak' ZORBRA-T

ii



Operates by developing a sequence of partial-analogies that
terminate in a complete (.
A program called INITIAL-MAP creates the first partial

analogy, 0., by associating the predicates that appear in the

l)
statements of T and TA. A second program (EXTENDER) uses
a small set of operators which transform a partial-analogy
into an extended partial-analogy. It uses syntactic de-
scription of the clauses in AXSET to instigate searches
through D to find analogs for each clause. Each new
clause assoclation may create a new partial-analogy. The
sequence of partial analogies finally terminates in a
complete analogy which includes D' as a submap.

ZORBA-TI is examined in texrmg of its empirical performance
on paris of analogous theorems drawn from abstract algebra.
A D is chosen with 250 clauses and D' is found for each of
several theorems that require only 5-20 axioms to prove them.
Analytical studies are included which show that ZORBA-I can be
useful to aid automatic theorem proving in many pragmatic
cases while it may be a detriment in certain specially
contrived cases.

The limitation of ZORBA-I's representation of an analogy

are discussed along with proposals for future research.
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FOREWORD

This thesis is the first comprehensive report of a five-year
project that studied the use of analogies to aid deductive problem
solving. Some of the ideas presented here will appear in the pro-
fessional literature. Portions of Chapter III are to be presentedl
at the 1971 IFIP Conference held at Ljubljana, Yugoslavia. Chapters
111, IV, and V are to be presented2 at the International Joint Confer-
ence on Artificial Intelligence, to be held in London, September 1971.

This research has been supported by the Advanced Research
Projects Agency and the Natlonal Aeronautics and Space Administration
under Contract NAS 12 -2221, and Rome Air Development Center under
Contract AF 30(602)-L147.

iv






T
B S

[

i

ACKNOWLEDGMENTS

In 1966, Professor Edward Feigenbaum suggested a study of reason-
ing by analogy as a fruitful area for a quarter research project. His
fertile suggestion gave rise to an elementary paradigm for exploiting
anglogies to ald deductive problem solving. Two years and two para-
digms later, I developed the more elegant and successful gpproach
which is presented in this thesis. During the five years I needed
to complete this work, I was supported by the Artificial Intelligence
Laboratory of Stanford Research Institute. I appreciate the encourage-~
ment offered me by Dr. Charles Rosen who supported this work through
periods of promise, through times of doubt and through episodes of
hopelessness. I also thank Dr. Bertram Raphael who maintained my sup-
port after he succeeded Dr. Rosen as head of the Artificial Intelli-
gence Laboratory. At various times I have had valuable conversations
with Professor Thomas Cover of Stanford and Drs. Robert Yates and
Peter Hart of S.R.I. regarding the use of analogies in deductive rea-

soning.

Professor Ieigenbaum significantly aided my effort to find repre-

sentations and a language to express the frults of this research.






(-

CONTENTS

ABSTRACT e e e e e e e e e e e e e e e e e e e e
FOREWORD e e e e e e e e e e e e e e e e e e e
ACKNOWLEDGMENTS v v o 4 v v 4 o o o o o o o o o
I APPROACHES TO REASONING BY ANALOGY . e
A. Background e e e e e e e e e e e e e
B. ZORBA in the Context of AI Research .
C. ZORBA in the Context of Contemporary
Problem Solving Research in Psychology
D. Review of the Following Chapters

IT AN INFORMATION-FROCESSING

11T

A,

E.

APPROACH TO REASONING BY ANALOGY « 0 e e

Introduction e e e e e e e
Criteria for Analogy e e e 4 e e e
Varieties of Analogy e o e e e e 4 e .
1. Change of Parameters e e e e e e
2. Generalization e e e e e e e e
%, Qimilar Relational Structures . . .
. Plans are Identical . . . . . . . .
5. Change of Representation e e e e e
6. Common Subproblem . . . . . . .
Information Transfer

Between Problem Solutions . . . . .
l. Representations . . . ¢« ¢« « ¢« ¢ « .
2. Plan e e e s e e e e e e e e e
5. Object Language Level e e e e e

Automated Use of Analogical Information

AN TNTRODUCTION TO ZORBA e e s e e e e e s

A.

B
C.
D

Introduction . . . . o o v v ¢ & o .
ZORBA Paradigm e e e e e e e e e e
Applications to Resolution Logic . .

ZORBA's Representation of an Analogy .

vi

10
15

1
1h

5
16
17
L7
18
20

25
25

27

28
28
30

30

3h
3k
3h
39
b3



VI

VII

VIII

E. An Overview of the

Analogy-Generating Algorithm . e s

A DESCRIPTION OF INITIAL-MAP . . . ..

A. Introduction e 4 e e e e e 4 e e s

B. The Design of ATOMMATCH

C. The INITIAL-MAP Control Structure

AN ELEMENTARY DESCRIPTION OF EXTENDER

A. Introduction o e e e e s

B. The Analogs of Clause Descriptions

€. Mapping Descriptions e e e e e s

D. The Candidate Image Set . .

E. Simple Versions of EXTENDER . . « .

EXPERIMENTS WITH ZORBA-I o e s s o o
Introduction e v e e e 4 e e s e s

B. Analogy Space .+ .+ ¢ ¢ o o+ o« o o

C. ZORBA-T in Action . . . . . .

D. An Example of MULTIMAP e o e o o o

E. The Chunking Process ¢ s e e e e e

ANALYTICAL APPROACHES TO ZORBA-I

A. Introduction e e e e e e e e e
Time-Space Analysis .

Background on EXTENDER e e e s e s
Worst~Case Analysis of EXTENDER

H O Q W

Necessary Conditions for an Analogy

VARTATTIONS OF ZORBA~I . « & ¢ ¢« o ¢« ¢ o &

A. Introduction e e s e e s v e e e

B. Variations of EXTENDER
for One-Many Predicate Maps

C. Variations of INITIAL-MAP . .
Treating Constants

E. Relatlonship Between ZORBA~I and QA3

vii

L5

51
51
o3
56

65
65
66
67
70
72

78
78
79
81
96
10k

110
110
113
115
116
127

130
130

131
57

139
140



X Z0RBA IN RETROSPLCT

APPTNDIX A — DEIINITTONG O PREDICATES

AND THEIR SIMANTIC TEMPLATES

APPENDIX B — LISTING OF ALGBASE

APPENDIX C — ZORBA-I AS A USER SYSTEM

REFERENCES e e e e e

.

viii

149
15k
186
189






.0

c.D

S

U

CET

r 3

m

&

=

LIST OF TABLES

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

L.

5.
6.

7.

8.
9.
10.

11.

13.
1.

15.

16.

17.

18.
19.

20.

Kinds ot Inlformation llelplul
to QA% and G5 . . . L

Summary of ZORBA-I Performance

Resolution Proof of Theorem Tl'

AXSET for ABSGPT (Theorem Tl) .

4
1~ 5

Complete Analogy (a5) for ABSGPT

Analogy Search Space for T

Clauses from ALGBASE (Appendix B)

Analogous to AXSET for ABSGPT (Table 4)

Segment of Protocol from EXTENDER Search .

Analogy Search Space for T5

AXSET for Theorem T5 e e e e e

SOME[aﬁ] Ordered by 0 for MULTIMAP .

Analogy-Space Search for TB\— TM
Without Chunk . . . . 7. . .

AXSET for Theorem T5 e e e e e

Analogy~Space Search for T5 - T&
with Chunk . . . « . . 7. . .

Number of Predicate Maps

Consistent with Type Restrictions

Worstbase Axiom Set v e e e e

Statements, Figures, and AXSET
for Bisection Theorems

Axioms Neede to Prove Tl5

Definitions of Predicate and
Function Symbols for Geometry

ix

/

4 /
and Tllt

- T6 Analogy

1
7
82
85
86

38

100
101

105

105

106

109

11k

119

152

130

k6




is quite new, for I have developed an operationally specific model

for a kind of reasoning by analogy that has barely been studied in
the past.

Some writers have demonstrated the usefulness of analogies to
aid concept acquisition as a helpful adjunct to problem solving.

. 3%
Wertheimer's

4,5

studies with school children (concept-acguisition) and
Polya's extensive examples of heuristic aids to problem solving
(concept—formation) are two cases in point. In addition, a few
experimental studies6 verify the usefulness of relevant experience.
However, none of these workers specify in any detail the cognitive
processes that are invoked to create, appreciate, and exploit analog~
ical information. Some artificial intelligence (AI) researchers have

7

created problem-solving and theorem-proving and game-playing pro-
grams9 that generate fewer irrelevant inferences or play a better
game (of bridge) based on the experiences they have had in the past.
However, each of the programs is designed to slowly improve from
problem to problem and "learns" to perform well only after exposure
to a large number of problems or games. While they develop a kind of
sophistication that is general for a particular domain of digcourse —
e.g., geometry, logic, bridge — they are unable to extrapolate the
quite powerful problem-dependent information that we associafie with

learning by analogy.

Thus we face a difficult situation: We want to study an impor-
tant cognitive process at an operational level of detail which (a)
has no adequate model in the problem-solving literature, and (b) is

unprecedented in existing computer-based problem-golving systems.T

*
References are listed at the end of this thesis.

*The one AI program that exhibits a variety of analogical reasoning
in solving problems that appear on the Miller Analogies Test cannot
use the analogies it generates to assist some deductive problem=-
solving system and contributes little to our discussion. It is
described in more detail in the next section of this chapter.



The approach that I will explicate in the following chapters is
devoted to desipgning and implementing a new artificial system that is
sufficiently complete to generate and exploit analogies between pairs
of fairly complex problems. It is able to substantially improve the
performance of a deductive problem-solving program that is associated
with it. In addition, its qualitative behavior resembles many fea-

tures of human problen solvinglo’ll

including set, productive con-
Tusion, developing relevant abstractions, evalustion of promising
leads, and the creation of partial solutions. The mechanisms that it
includes may well be imcorporated in some later simulation of human
analogical reasoning. This approach parallels a previous important
linkage between AT research and the simulation of cognitive proc-
esses. In 1964 Danield Bobrow12 reported his development of a pro-
gram that solved algebra word problems of the sort studied by high
school sgtudents. He had created a program that was sufficiently com-
plex to solve many problems of this class. After he reported his

15

work, Simon and Paige analyzed the problem~solving protocols of
high school and college students asked to solve similar problems.
They found many of the mechanisms that were used by people to be
represented in Bobrow's program. When we are researching a new area,
a research strategy that precedes a validated simulation model with a
model that is merely sufficient to perform the appropriate behavior
seems necessary. In order to create a sufficiency model, we first
need to find the set of operations necessary to produce our desired
behavior. While referring to computer simulation of perceptual
processes, Gy‘rllL emphasizes this order and writes:
"It should also be pointed out that the above problems

require, first of all, research with the computer itself in

order to establish, for example, what internal organization

is required for the generation of a precept or capacity by

the computer. Following this, the computer behavior must

be compared with the behavior of living organisms."



The paradigm I will describe for reasoning by analogy can be
appreciated both as a novel advancement of contemporary AI technology
and as a fertile addition to the sparse psychological literature con-
cerned with reasoning by analogy as a cognitive process. For the
latter, it suggests a set of necessary operations that can be

ineluded in a simulation model.

In the next chapter, I will begin to limit the kinds of problem
solving and analogies that we will study. Several varieties of
analogy will be distinguished from the point of view of the kind of
information processing that is necessary to recognize and exploit
them. One class of analogies is selected for further study. A
paradigm (ZORBA*) for utilizing this class of analogies is developed.
In addition, a particular instance of this paradigm (ZORBA-I) is
studied in detail for a particular kind of problem-solving system, a
resolution~-logic theorem prover, which in turn is applied to a par-
ticular domain of discourse — abstract algebra. Thus, at each
stage our study will become increasingly specific. Consequently,
many recurrent terms will need to be redefined periodically. For
example, here I am content to allow the reader to use my preliminary
definition of an analogy as a sort of similarity. In the next chap~
ter, several varieties of analogy will be distinguished. Later
still, within the context of ZORBA~I, an anslogy will be represented

as a particular set of one-one, one-many, and many-many mappings.

The next two sections place ZORBA in the context of contemporary
AT and problem-solving research. This chapter concludes with a

brief outline of the dissertation.

B. ZORBA in the Context of AT Research

Although ZORBA is an unprecedented extension of AI into the

mechanical generagtion and exploitgtion of analogies to gid heuristic

*ZORBA is an acronym for (Z0) Reasoning By Analogy. Zorba was a
passionate, intuitive Greek, and many of our contemporaries consider
analogy an intuitive process outside the realm of reason.



problem solving, it draws many ideas from a long research tradition.

These include:

(1) ZORBA-I is associated with a particular heuristic problem
solver (resolution theorem prover) and necessarily relates
to many of its particular features — e.g., axiomatic data

base, single rule of inference, etc.

(2) ZORBA can easily be described by using many concepts that
are recurrent and basic in the heuristic problem-solving
literature. These include ideas such as a search space,
legal-move generator, candidate-move ordering function,
and matching routines. ZORBA operates with a search
space in which each node is a special kind of mapping
("partial analogy") and has routines for generating suc-
cessor nodes ("descendant analogies") that contain more
information than their ancestry. When a node has several
descendants, an ordering function is invoked to select the
descendant most likely to be a valid extension of it.
Matching routines are invoked to create the set of possi-
ble extensions, in selecting the most plausible member of
this set, and in generating the actual extension. These
procegses will be described in substantial detail in Chap-~

ter IV.

(3) Specific AI programs have dealt with elementary forms of
reasoning by analogy and learning applied to heuristic
problem solvers. For completeness I want to describe

this work here.

One program in the AI tradition stands out for its potential
relevance. In 1964, Tom Evan315 reported developing a system that
successfully solved problems from the Miller Analogies Test, a widely
used intelligence test. A testee is asked to
select one of five given figures that satisfy a given analogical

relationship. For example, which of (a)...(e) is to Diagram C as



Diggram A is Lo Diagram B in Figure 1 below? Kvans' program was
highly successful in solving many problems in this class and was one
of the most complex programs of its day. However, much of its com~
plexity was devoted to the pattern-recognition aspects of its activ-
ity —~ e.g., separatlng (:59_{ into <::> ——-1 rather
than (:E}- . The algorithms he developed for actually
generating and testlng his analogies are not described. In fact, he
admits attempting "all possible combinations" of associations until he
finds an appropriate analogy. Fortunately, he is dealing with only
two or three (geometric) objects and the relations between them, and
he has to consider, at most, 10 to 20 possible mappings. In contrast,
gsome of the analogies we will treat in this thesis allow over ldubos—
sible mappings (Chapter VII) from which we must select one analogy!
When Evans finally generates his analogy by his unspecified process,
he stops. He doesn't exploit his analogy to aid some other problem-
solving process. (Later in this introduction, we will discuss some
experiments by Dreistatdt who showed that people can use some simple
visual analogies to aid deductive problem solving.) Despite these
limitations, Evans does contribute two key ideas which are exploited
in ZORBA: (1) An analogy is viewed as a special kind of mapping, and
(2) an analogy between a picture Pl and g picture Pé can be derived
by matching a description Pl with a description of Pé and assoclating

the corresponding objects and relations.

ZORBA is concerned with the axioms and rules of inference used to
solving a deductive problem rather than the relations that describe a
two-dimensional diagram. Thus, the description (of axioms) it uses™
are quite different from Evans' picture description language. In
addition, the number of possible mappings it could generate if it
tried "all possible combinations"” of the relation it wants to associ-
ate are prohibitively large (Chapter VII). Thus, we need explicit
heuristics for restricting the set of mappings to those that are most
plausible, and for selecting the best among these. Unfortunately, he

leaves us in the dark, and we must invent our processes anew.

*3ee Chapter ITI.



FIGURE 1.

A

SAMPLE ITEM

as

FROM MILLER ANALOGIES TEST.

(c)

(a)



Tivans' analogy is the only implemented AI program that treats
treats some of the problems explored here. In 1969, Joseph Beckerl6
sketched a model of induction and analogy for a semantic memory sys-
tem that added two ideas to the literature:

(1) An analogy is defined as a specific kind of one-one mapping

between kernels of a semantic net.16

(2) A means of creating an analogy between two situations that
were "egsentlally analogous,! differing in unessential

ways, is developed in terms of a weighting scheme.

Becker is interested in the processes that underly understanding
natural language and concept formation. His universe of discourse

deals with simple situations such as:

Sl: Peter the monkey ate two bananas at 3:00 a.m. on Tuesday.

Peter is at the zoo.
S.: Harlow the monkey ate a banana for breakfast on Saturday

at home.

ST Susan fed Harlow a banana in the park.

3

He is concerned with generalizing over sets of situations such as
Sl - S5 to "induce": '"monkeys eat bananas." He gives analogy forma-

tion a crucial developmental role in the process by generating an

analogy between S and 82, and between S and S_, to induce his

’
generalization. He includes a means of scorlnz the relative impor-
tance of elementary facts that compose a situation. For example,
here, we want to neglect Susan's feeding Harlow (S ), and Harlow's
eating on Saturday (S ), to generate an analogy between Sl and 82

I am purposely vague about the details of Becker's treatment since he
uses special representations and terminology that would demand too
much description to develop adequately in this introduction. This
work was a valuable gedanken piece since Becker explicated his anal-
ogy generation process in some detail, in contrast to Evans who

neglected to explicate this process at all. Unfortunately, Becker



never implemented his model or reported extensionsg or variations of

his paradigm.

The AI literature dealing with analogical reasoning contains
only the two paradigms cited here. Any work relating analogy to

problem solving must start from scratch.

(In Chapter II, we survey the kinds of information processing
required by various kinds of analogies.) Fortunately, many of the
processes required for non-trivial analogical reasoning (Chapters ITI-
VI) can be carried out with the techniques that are well known to

Iy

artificial intelligence: tree-search, matching, etc. Since we are
using analogies to expedite the search for the solution of a new
problem, we need to relate our analogizing system to some existing
problem-golving system. The AT tradition provides several candidates
(Chapter III), and a resolution-logic system has been chosen as an
experimental vehicle for the approach that is developed here. This
particular problem-solving (theorem-proving) system has been
developed as part of a well defined resgearch tradition that goes back
to the very first deductive problem solving system that was imple-
mented: the Logic Theorist of Newell, Shaw, and Simonl8. From the
vantage point of heuristic theorem proving, the use of analogical
information that is developed here (Chapter III) is one kind of
heuristic for decreasing the search space that includes the desired
proof. In fact, ZORBA-I uses an analogy to select a small set of
axioms that are likely to be necessary for a problem solution from a
date base that includes considerably more (irrelevant) axioms.
Methods for selecting relevant axioms prior to solving a problem have
been an outstanding unresolved issue in the heuristic problem-solving
and theorem-proving fields. Here, we are able to provide a novel

approach to this important matter.

In summary, ZORBA-I provides a link between the heretofore sepa-
rate areas of reasoning by analogy, and heuristic problem solving.
Little work has been reported in the former-area, and the research

reported in this dissertation breaks new ground in our understanding




of the process of analogy generation. Heuristic problem solving is
one of the classical areas of AI research, with a relatlvely rich tra-
dition of paradigms end important research issues. Our work falls
directly within this tradition by tackling an important unsolved
issue in heuristic problem solving (data-base reduction) by applying
analogical information within the context of a currently popular

problem-solving paradigm (resolution logic).

C. ZORBA in the Context of Contemporary Problem Solving Research

in Psychology

The use of analogies to aid problem-solving ability falls into
two classical areas of cognitive psychology: concept~formation and
problem-solving (or directed thinking). Unfortunately, very little of
the research literature is even peripherally relevant to the work that
is reported here. In 1969, Driestadt19 reported a clever experiment
that studied the use of (visual) analogies to aid the problem (puzzle)
solving task. He asked his subjects to solve seversl problems that
required a particular geometric configuration as a solution. For
example, a "tree planting problem" in which ten trees must be arranged
in five rows of four trees per row was presented. The problem state~
ment and its solution are shown in Figure 2. Some of his subjects
were shown a set of pictures that embodied a five-pointed star pattern
required for the solution. Different pictures contained a playing
card joker, a rocket zooming to the stars (Figure 2), and an aquarium
with starfish. These pictures were withheld from control subjects who
required significantly more time to solve these problems than subjects
who were presented with the pictorisl aids. Dreistadt concluded that
visual analogies were a useful aid to this problem~solving task.
Dreistadt's work is progressive insofar as it is the only reported
research that directly relates the usefulness of analogies to problem~
solving speed. Unfortunately, he doesn't study the way his subjects

create the analogy and represent it to themselves.
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5 rows

Solution: L trees/row

Associated Pictures:
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- FIGURE 2. TREE PLANTING PROBLEM
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Two styles of problem~-solving research that potentially could aid

our understanding fail to be relevant for similar reasons:

(1) Some researchers pose problems to subjects that require
novel uses for familiar objectsgo. For example, a piece
of paper may have to be rolled into a tube to transfer
steel balls from one container to another. Various
studies have been conducted to learn how problem~solving
ability varies with a demonstration of the "appropriate

1

functions," irrelevant but superficially similar train-

ing problems, etc.

(2) Learning theorists= . have long been concerned with trans-
fer of the solution rules of one problem set (training
set) to other related problems. In a typical experiment
a subject will be given a set of problems to solve. In
the course of solving them he will learn some rule that
applies to each problem in the set. He is then pre-
sented with a second problem set which requires a solu-
tion rule which may be similar, more general, or quite
different from the rule learned in solving the first
set. The subject's ease in solving the second set of
problems is studied as a function of the relationship
between the solution rules used in the first and second

problem sets.

Both thege research styles openly develop their results at a
different level of generality than we need here. Most contemporary
psychologists are concerned with behaviors rather than consciousgness.
The latter was exorcised from academic psychology near the turn of
the century in lieu of the former, which is more amenable to experi-
mental observation. Most experimental results are stated in
behavioral terms — e.g., the use of visual analogies can aid some
kinds of problem solving. The description of underlying mechanisms
(other than S-R patterns) and representations necessary to develop an

information-processing model of the sort we want here require infer-

12



ences about the contents of a person's consciousness that are unset-
tling to most contemporary experimental psychologists. A protocol
analysis in the spirit of Newe1122 could conceivably be carried out
for many of the experiments reported in the literature, if the
researchers were more interested in the details of the ongoing inner
processes of their subjects. Unfortunately, we have no such reports
relating to the role of analogical reasoning in problem solving to

rely upon.

D. Preview of the Following Chapters

The remainder of this dissertation follows a simple pattern.
Chapter II is devoted to exploring the kinds of information that can
be transferred between analogous problems. It was originally writ-
ten as a solitary document in 1969, after ZORBA-I was conceived, and
before it was implemented. Its conceptual framework is a little dif-
ferent from that which appears in other chapters. All except Chap-
ter I were written after the bulk of experimental work was complete,
and provide a post-ZORBA view of reasoning by analogy. Chapter II is
included in its original version, since it provides an important
study that serves as a pre-ZORBA introduction. ZORBA is introduced
in Chapter III, and expounded in Chapters IV and V. The experimental
results appear in a table at the end of Chapter V and are inter-
spersed throughout Chapter VI. In contrast to the experimental
results, a set of interesting formal properties of the algorithms is
developed in Chapter VII. In particular, conditions under which the
use of analogies alds problem-solving efficiency are discussed. Chap-~
ter VIII includes comments on extensions to ZORBA-I to include a
wider variety of analogiles. We conclude with a retrospective glance
and suggestions for future research in Chapter IX. A brief note which
describes ZORBA-I as an implemented operating system gppears as

Appendix C.
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II AN INFORMATION-PROCESSING APPROACH
TO REASONING BY ANALOGY

A. Introduction

Reasoning by analogy (RBA) has been discussed in artificial
intelligence circles because of its extraordinary value in human
problem solving and its elusiveness to mechanization. Without an
ability to analogize, we would be unable to generalize, induce, or
theorize. Moreover, thinking would be rather tedious, as we would
have to solve each distinct problem afregh, without referring to pre-
vious experience. Fortunately the spectrum of similarities we are
able to exploit is rather wide, encompassing many types, each with
its own subvarieties. Unfortunately, we call much of this diverse
behavior "reasoning by analogy."  Hopefully, in the near future, we
can develop some useful refinements for RBA. For the present, I'll

gsimply describe some of the activities that are considered RBA,

With respect to any particular kind of analogy, RRBA includes

the following activities:

(1) @Given a particular problem, theorem, or situation (PTS)

find a previously known PTS that is analogous.

(2) Given a PIS, produce a special kind of analogous PTS.
This would include producing the mechanical analog of an
electrical circuit, the n-dimensional analog of a
2-dimensional geometric theorem, the continuous analog
of a discrete function, the infterpersonal analog of an
international conflict, the French analog of a Greek

idiom, etc.

(3) Given an explanation of the functioning of some PTS, pro-
vide an explanation for the functioning of some analogous
TS,

14
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(4) Given two PTS's that are allegedly analogous, find at

least one coherent analogy between them.

(5) Given two analogous PIS's and a set of consequences of

observations drawn from one, infer an analogous set of

P N N R e YT A Al AnrratdAana et FhAa Adkhhan

-

manageable proportions this discussion covers problems that can be
solved by deduction from some initial set of axioms, or derived by
the application of a set of operations to a set of initial states, or
that can easily be transformed into this form. Although it is possi=-
ble to fit a wide variety of problemsgh, including geometric construc-
tions, puzzles, and robot manipulation tasks, into this framework,

the majority of problems considered here are theorems in the usual
sense*. More structured than "real-world problems," this class
offers a decent starting point for any mechanized analogical problem

solving that hopes to be successful.

1. Change of Parameters

Two PIS's are recognizable as identical up to a change of

parameters — e.g.,

Il=j‘ 1+) 2 ax , n>0
-0

[e o]
12=j (n+x2)-5dx , n>0.

-0

Computing Il and 12 are 'parameter~variant" problems.

2. Generalization

In each pair of PTS, one is a generalization (or simplifi-

cation of the other:

(1) Let the pair of PTS be the 3-ring and 5-ring Tower
of Hanoi puzzles. The 5-ring puzzle is more

genergl than the 3-ring puzzle.



(2) Tl: Given a triangle ABC, prove that the three

vertex-angle bisectors meet in g unique point.

T1’: The premises of Tl imply that this point is

the center of the inscribed circle.

2 Given a tetrahedron WXYZ, prove that the bigsec-
tors of any three dihedral angles that do not
meet in a common vertex intersect in a unigque

point.

T2’: The premises of T2 imply that this point is

the center of the inscribed sﬁhere.

3. Similar Relational Structures

The pairs of theorems T3/T4 and T5/T6 are "relationally
isomorphic" when represented as graphs with nodes and links of
different types to represent relations and objects of different
classes. (The partitions of nodes and branches is, in effect,
a categorical semantics for the graph language.) In viewing
the proofs of these theorem pairs, one finds that they are
identical up to a set of substitutions (e.g., abelian group/
commutative ring, angle bisector/perpendicular bisector, etc.)

that results from the mapping associated with the analogy.

T3: The bisectors of the three vertex angles of a
triangle intersect in a unique point that is

the center of the inscribed circle.

T4 : The perpendicular bisectors of the three sides
of a triangle intersect in a unique point that

is the center of the circumscribed circle.

™ The intersection of two abelian groups is an

abelian group.

T6: The intersection of two commutative rings is a

commutative ring.

18



This class is an extension of the parameter-variant class,

and with some provision for mapping sets (clusters of nodes) into

sets of different cardinality, they may also include many gener-

alization-type analogies. Note that the relational isomorphism

is "local.™

The preceding analogies were selected for their trans-

parency, but even isomorphismg can be complex. For example, con-

sider:

T( ¢

T8

Let ABC and abe be two triangles in the same
plane defined within a k-dimensional finite
geometry over the Galois field GF[pn]. Let
these triangles be perspective for a point O,
such that 0, A, and g are collinear, O, B, b
are collinear, and O, C, ¢ are collinear. Let
« be the point of intersection of AB and ab, S
that of AC and ac, and & that of BC and bc.

Then the points &,8 , and Y are collinear.

Let X, Y, and Z be three subgroups of a geo-
metric set of subgroups of Gk such that no

one of them in the group is generated by the
other two. We select other subgroups of the
geometric set as follows: each of them is in
the group {X,Y,2}; O is any such subgroup not
contained in any one of the subgroups {X,Y},
1Y,2}, {z,X}; x,y,2 are such subgroups aif-
ferent from 0,x,y,z and contained respectively
in {0,X}, {0,Y}, and {0,2}. Let m, &, and v
be the subgroups of the geometric set of sub-
groups common to the respective pairs of groups
(X,Y},{x,y8, (Y,2},{y,2}, and {Z,X},{z,x].
Then each of the two subgroups (4, €, and V,

is in the subgroup generated by the other two.

19
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Every k~dimensiocnal projective geometry over a Galois
field GF[pn] is capable of a concrete representation by an

+
(k+1)n and type (1,1,1,...,1) if we con~

abelian group of order p
consider each subgroup of order pn as a point in the geometric
space.,25 This association renders T7 logically equivalent and
relationally isomorphic to T8, although this correspondence is

hardly obvious.

L, Plans are Identical

Plans for the solution of each PTS are identical (at some

level of abstraction) — e.g.,

(1) T19: If a given affine transformation commutes with
every other affine transformation, then that

transformation is the identity.

T10: If a given affine transformation commutes with
all the translations, then that transformation
is also a translation (see Fig. 3 for proof
plan).

(2) T11l: 1If F(w) is the Fourier transformation of f£(t),
prove that e~JWtF(w) is the Fourier transforma-
tion of f(t-T).
T12: If F(w) is the Fourier transformation of f(b),
W

prove that (éj FGEQ is the Fourier transforma-
tion of f(at) (see Fig. 4 for proof plan).

20



Parameterize
each transformation

Set up expression
for commutivity

FIGURE 3.

l

Simplify expressions
(matrix and vector
manipulation)

Identify coefficients
of matrix
and vector variables

Solve the assoclated
coefficient equations

Describe the resultant
transformation

Affine

f: Eg - §3

Vo= AT+
Translation

- - -

M=£€+a
Identity

- -

M =18

PLAN FOR PROVING THEOREM 9 OR THEOREM 1O.
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Write the expression for the Fourier
transformation of the given function

Jf,

Select a change of variables
that will reduce the kernel

- é.
of the integral to f(x)e ™" *ax

Substitute the new variables
for the old

1

Simplify the kernel of the integral
« 1
to fx)e 9V *ax

o]

Substitute F(w') for f £{x)

-0

.
e IV de

FIGURE L. PLAN FOR PROVING THECREM 11 OR THEOREM 12
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(3) T13:

T14 :

Let an arbitrary line Ll intersect each of

three parallel lines s at points Py>

l’ S23 85
pg, and pB, respectively. Let another arbi-

trary line {2 intersect s and s, at

1 Sp2 3
points qy> oo and q5, regpectively. Then

P12 Q%

PoPs 93

Let an arbitrary line &l intersect each of

three parallel planes s X and s, at points

12 8 3
P1> Poo and p5, respectively. Let another

arbitrary line LE intersect s 02 and s, at

1° S 3
points Ay G and q5, respectively. Then

P1Ps 4%

(See Fig. 5 for proof plan.)

Although a coherent planning language for this diverse

set of problems has not yet been written, it is clear that they

are "identical" at some level of abstraction easily accessible

to people.

5. Change of Representation

The solutions of both PIS's involve a common change of

representation and style of argument.

(1) P1:

Consider the classical truncated checkerboard

domino-covering problem.

Consider a 3 X 3 cubical apple with a worm on
its surface. The worm travels from cube to

adjacent cube, boring a hole without ever

23



Construction: Drop a line dy from py | to Sz .
dy intersects s, at a, and $3 at ax .
Drop a line d, from g7 L to $3
do intersects s, at by and S3 at b;.
Prove: (a) AP Ppay ~ AP Pxas
(b) Agygby ~ Agyazbs
by: 3 equal vertex angles imply ~A's.
A
Deduce: (a) ‘272 _ PP
P2a5 P1P5
q,b a
() 2 . B
q1Ps dy9
Corresponding parts of ~A's are in equal ratio.
Prove: (a) P2, = 4y,
(b)  pa, = gbs
by : Opposite sides of a rectangle are equal.
A
Deduce: (a) Dypy + DoPs = P1Px
(b)) ajap * apas = a0
from: Adjacent segments on same straight line.
PPy 9 4
Deduce: =
P2P5 q2q5
from: Preceding equalities.

FIGURE 5. PLAN FOR PROVING THEOREM 13 OR THEOREM 1k
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returning to a previously drilled subcube.
Prove that it is impossible for the worm to

terminate his path in the centermost cube.
(2) If A is a matrix with transpose AT,
T15:  (a0)T = 4
T16: (4 B)T = BT AT
(3) If A is a matrix with inverse A—l,

T17 : (A"l)'l A

It

il

T18: (A B)‘l gt a7t

.

Fach of the preceding problem pairs entails similar repre-
sentations. The truncated checkerboard and the cubical apple
problems are both solved by coloring adjacent cells black and
white and then using a parity argument. If we restrict our-~
selves to a simple operator-free matrix algebra, T15 and T16
are most easily proved by representing each matrix by its ijth
element and manipulating the ijth terms according to the speci-
fied computations. On the other hand, T17 and T18 are both
easily proved by simple algebraic operations. What a person
extrapolates from T15 to T16 or from T17 to T18 is a specific
representation in which problem-solving ability is enhanced.

If a person were faced with the problem (AT)_l = (A-l)T, he
might be unsure of which representation to choose, and would
try either one. (It turns out that either representation

affords straightforward proofs.)

6. Common Subproblem

Both problems involve a common subproblem.

(1) Let A be a matrix with elements aij and an inverse

B. Then

25



1d det[A]
and
n 1+]
det{A]l = = (-1 ..
(4] = 2 ()™M e
Jj=1

where Cs s is the i—jth cofactor of A, Thus, the
computation of A—l and det[A] share the common sub-

problem of computing some cofactor of A.

(2) Consider a robot in a room full of scattered metal

furniture.

P1l: The robot is asked to paint the floor of the

room.

P2: The robot is asked to replace each piece of
furniture with a similar wooden piece from the

next room.

Fach of these problems can be solved by first clear-
ing all the metal furniture out of the given room,

and in that sense they are analogous.

Problems that involve only one common subproblem can be
really rather different and still allow useful problem-solving
extrapolations. Probably these extrapolations are best
regarded by treating the subproblems as substantial problems
unto themselves. For example, every time we encounter a trig-

onometric integral in solving some problem, we become better

' integrators and increase our facility for rapidly guessing

appropriate substitutions. Thus, the extrapolation of inte-
gration techniques from one problem to another is due to
recognizing the need for our developed skill as an integrator,

rather than noting some gross aspects of problem structure.
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D. Information Transfer Between Problem Solutions

A bold step toward RBA will be taken when an automatic algorithm
for creating an analogy between two problem statements is developed.
Presumably, such an algorithm need only know the two theorem state-
ments and have access to the data base of axioms. Even if one has a
detailed anslogy that is limited to the relations and objects explic~
itly mentioned in the theorem statements, one still must know how to
use this information to accelerate the search for a solution.

While some useful information may be gleaned from this

"restricted analogy,"

much of the information in a proof of the new
theorem often involves additional relations, facts, and patterns of
inference that are absent from the problem statement. Any interest-
ing analogy-generating algorithm will need to operate upon theorem
proofs as well as theorem statements. The search for

analogous "additional information"” helps pin down the viability and
level of abstraction that can be expected from a given analogy. If
we don't obtain much side information, we may believe that our
analogy is too specific., If we obtain too much, our analogy may be

too general.

In any but the most simple problems, the solution is derived in

terms of relations that do not appear in the problem statements.

Suppose we had a magical system that could offer information
helpful to proving an unknown theorem 1f it were given an analogous
proved theorem. What kind of interesting advice could we expect
from this program? At one extreme it might be clairvoyant and offer
a complete solution to the baffling problem. Short of such omnis-
cience, what kind of partial information would be helpful? Textbook
writers often append hints of two types to the problems they provide:

(1) Problem difficulty (easy, hard)
(2) "Hints" that include:
(a) Suggested representation

(b) Appropriate methods

27



(¢c) Relevani principles or theorems
(a) Valuable s-tproblems.

In the second case, there seem to be three different levels of

"heuristic detail," each with possible attendant information.

. 1. Repregentations

— Representations are mentioned in Section C-5 of this

chapter.

A style of argument may be added — e.g., induction,
parity, etc. Additional details such as which parameter to

o induce on may be included.

2. Plan

Congider a problem solution as a sequence of states Sj

and state transition operators Pj’ as in Fig. 6 below:

P
1 2 3
B (HS—— -

- FIGURE 6. A PLAN DEPICTED AS A SEQUENCE OF STATES

Although the depicted operators have unary inputs, several
inputs may be possible, as in inference from several inter=-
mediate results (states)26. Likewise, there may be several
fy outputs —e.g., a problem may be split into seversl intermedi=
ate subproblems. A plan is any sequence of state descriptions
and/or operator descriptions that parallels an alleged problem
solution. These descriptions are usually abstracted versions

(patterns) that may have several candidates in the object

28



language. In this sense they are weakly specified. Several

varieties of information may be offered as a plan:

(1) A sequence of operations or methods may be specified
(Fig. 4).

(2) A sequence of patterns that describe the expected

state sequence (a state "monitor").

(3) A sequence of subgoals described in the object

language (Fig. 5).

A functional planning language needs at least four fea-

tures:
(1) TIts own logic

(2) A well-defined nexus between the planning states/
methods and the object-language states/methods

(3) An ability to reference future results

(4) Some facility to manipulate data representations so

that the flow between different processes is smooth.

These features are integral to an sutonomous planning sys-
tem. When we focus on the kinds of information that can be
extrapolated from problem to problem gt a planning level we
find:

(1) Plan, as described above
(2) Estimates on the difficulty of various subproblems

(3) Conditions describing when to terminate a process:

PO §
"simply the kernel of an integral to fx)e " *
(Fig. 4)
(4) Operator inputs: "deduce Sj from Theorem T, and
1"
851

This wealth of side information (nonsequential) associ-

ated with a plan can range in abstraction from being detailed
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in the object language (a particular theorem) to some more
abstract description {:.g., a theorem relating groups and homo-

morphisms, a sufficient condition for a set to be a group, etc.)

3. Object Language Level

(1) Explicit subproblems and lemmas (Fig. 5)

(2) Relevant theorems that will be used in the proof
(Fig. 5)

(3) The set of relations to be used in the problem solu-

tion
() Problem difficulty.

The set of relevant theorems need not be structured with
their relevant subgoals as in Fig. 5, but may be an unordered

get of which the PSS is conspicuously conscious,

It is now clear that the range of helpful advice is
rather broad, both in level of detail and degree of structure.
Although a restricted analogy could be generated first and the
"helpful information" later, it would be nice if some of 1t

were a byproduct of the analogy-~genersting programnm.

E. Automated Use of Analogical Information

In this section, I will combine several themes that have run
through this chapter and apply them to the automation of analogical
problem solving. First, I will summarize some of the key points

that I have mentioned in the preceding sections.

(1) The idea of analogy is ill defined. There are at least

several kinds of relafted analogies.

(2) FEach of these analogical varieties would best be recog-

nized by somewhat different means.
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(3) The kinds of information that are extrapolable between
analogous problems of each variety are quite different.
Thus, the algorithms and designs for using these diverse

types of information are likely to be quite different.

(4) One of the key issues in extending analogical information
is knowing in advance the level of generalization that
will hold for each anglogized parameter, method, operation,

theorem, or fact.

(5) A set of strategy/planning languages that would allow an
appropriate degree of generality would be quite complex.

These facts imply:

*
(a) No analogy-oriented PSS (APSS) should be expected to
process all varieties of analogy, since each involves

a somewhat different style of information processing.

(b) An APSS that attempts to extrapolate general sequen-
tial plan-like information or patterns of inference,
and attempts to actively direct a problem solver
that incrementally infers and tests inferences
against its supervisory schema would be quite com-

plex.

Many of the example problems presented in Section C of this
chapter push the limit of contemporary PSS and will probably be non-
trivial for any of the planning-oriented systems that will emerge in
the next few years. Thus, we end up wanting to use analogical infor-
mation without creating plans or other forms of skeletal solution

structures.

The means of doing this are actually very simple if we review
our situation again. A typical APSS will have a large data base and

be presented with a pair of problems: One is unsolved and the other

* A PSS is a "problem-solving system."
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has already been solved and its solution is available to the APSS.

I want to underscore a crivical way in which this situation differs
from the typical PSS. Most PSS's work on a "minimal" data base for
which the user has selected an adequately small set of axioms*, When
the data base of a typical PSS is expanded to include some irrelevant
axioms, they begin to generate a substantial set of irrelevant infer-
ences (due to the interaction of relevant and irrelevant axioms and
their descendent inferences). Consequently, they begin to flounder
in their search and may fail to solve problems that are easgily
solvable with a minimal axiom set. To be concrete, consider a PSS
that uses 8 axioms to prove some theorem T with a search that gener-
ates 100 inferences for, say, a 20-gstep proof. Adding 10 more axioms
to the data base may force it to generate 500 inferences before find-
ing its 20-step proof. In a sense, these figures are doctored, since
a set of 10 axioms can be chosen that will have no appreciable effect
on the search-space size, while another set of 10 may be added that

can explode the search space almost arbitraril:y.+

Since an APSS will be proving somewhat diverse theorems with a
(usually) common data base, it is in principle bound to seek proofs
in a context abundant in excessive and irrelevant data. One key
method for exploiting analogical information is to select a subset of
axioms appropriate for proving the new theorem. Then,
we are constricting the context in which theorem proving takes place
by narrowing the set of accessible axioms. The usual strategies of

the particular PSS can be used uhmodified; the analogical information

*A11 known resolution systemsl7 and GPSQ7 operate this way. Gelern-
ter's Geometry theorem—prover2 is the only system that accessed a
superset of the necessary axioms. He used a special model to cut his
search space to include only relevant inferences.

In the first case, add axioms that use many distinct predicate let-
ters and many distinct function symbols. In the latter case, use
axloms with only one or two predicate letters, and choose axioms that
will resolve with most of the others, preferably recursively.
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is merely used to narrow the context sufficiently to reduce the search
space to a more manageable size. Selecting an appropriate sxiom set
is one of several kinds of information that may be added independently

of PSS strategy. A more complete and suggestive listing includes:
(1) Restricting the set of admissible relations
(2) Restricting the set of admissible operator symbols
(3) Restricting the set of admissible axioms
(4) Restricting the order of operator nesting

(5) Generating analogous subproblems, solving them, and

adding them as axioms.

This list can be extended, depending on the kinds of information used
by a particular PSS. Thus, if a PSS has a look~ghead estimstor
(like REF-ARF)29, then that too may be analogized without modifying
the PSS structure. The key idea is that an effective means of
exploiting analogical information is to modify the context in which

a particular theorem prover operates, rather than subjecting it to g
planning-like scheme that supervises the sequence of its inference

making.

Now, the actual means for generating analogies and
extrapolating analogous axioms depends upon the representations and
PSS used. These details have been developed and implemented for a
resolution-based theorem prover and are described in the following

chapters.
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II1 AN INTRODUCTION TO ZORBA

A. Introduction

ZORBA, outlined in this chapter, is a paradigm for handling some
kinds of analogies. This is the first instance of a system that
derives the analogical relationship between two problems and outputs
the kind of information that can be usefully employed by a problem-
solving system to expedite its search. As such, ZORBA is valuable

in three ways:

(1) It shows how nontrivial analogical reasoning (AR) can be
performed with the technical devices familiar to heuristic

programmers — e.g., tree search, matching, and pruning.

(2) It provides a concrete information-processing framework
within which and against which one can pose and answer

gquestions germane to AR.

(3) Since it is implemented (in LISP), it is available as a

research tool as well as a gedanken tool.

The last two contributions are by far the most important, although
our attention will focus upon the first. In the 50's and 60's, many
researchers felt that analogical reasoning would be an important
addition to intelligent problem-solving programs. However, no sub-
stantial proposals were offered, and the idea of AR remained rather
nebulous, merely a hope. ZORBA may ralse more questions of the
"what if?" variety than it answers. However, now, unlike the situ~-
ation in 1968, we have an elementary framework for making these

guestions and their answers operational.

B.  ZORBA Paradigm

Although prior to ZORBA there were no concrete paradigms for AR,
there was an unarticulated undeveloped paradigm within the artificial

intelligence Zeitgeist. Suppose a problem golver had solved some
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problem P and has its solution S. If a program is to solve a new,

analogous P,, it should do the following:

A?

(1) Examine § and construct some plan (schema) S’
that could be usged to generate S.

(2) Derive some analogy @: Py, = P.

(3) Construct a-l(S') = SiA.

(4)  Execute S'A to get §,, the solution %o P,.

If P was solved by executing a plan, then S’ would be available and
Step 1 could be omitted. Although nobody has explicated this idea
in publications, from various conversations with workers in the
field, I have come to believe that the preceding description is
close to the paradigm that many would have pursued. As such, it
constitutes the (late-60's) conventional wisdom of artificial intel-
ligence. Certainly this (planning) paradigm is attractively ele-
gant! However, in 1969, when the research was begun, it was an

inappropriate approach for two reasons:

(1) There are no planning-oriented problem solvers that are
fully implemented and that operate in a domain with inter-
esting nontrivial analogies*. This state of affairs
probably will change in the next few years, but it now
renders difficult any research that depends on the exist~

ence of such a system.

(2) Given the plans generated by such a system, it is hard to

know a priori at what level of generality the derived

*
PLANNERBO at MIT and QAhBl at SRI are two current planning-oriented

problem solvers under development. The first is partially imple-
mented and the second exists only on psper. It is not yet clear
what problem~solving power PLANNER will have, and how effective it
will be in domains with interesting analogies.
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analogy willl map into an executable analogous plan., If

S'A fails, is @ too strong, or wrong? Should ¢ be modi-
ficd and a variant S”A computed, or should the system
keep @, and just back up its planner and generate an
alternative subplan using its own planning logic? At
best this 1s a rather complex research issue that would
involve a good planning-oriented problem solver as an
easily accessible research tool. At worst, the preceding
paradigm may be too simple and a suitable Q may be devel-
oped interactively with how much successful problem-
solving has proceeded so far. (A complete @ should not
be attempted before some problem solving begins and is
extended as needed in the course of solving EA.)

Happilly, there is an alternative approach that circumvents the
preceding difficulties. Consider a system that has solved some prob-
lem P and is posed with a new (analogous) PA to solve, Clearly, it
must operate on some large data base sufficient to solve both P and

PA (see Fig. 7). In addition to the subbase for solving P and PA

. Dl DA
Theorems to solve Theorems to solve
P
A “A
Data Base D

FIGURE 7. VENN DIAGRAM OF THEOREMS IN DATA BASE

there are likely to be even more theorems in the set D - (Dl U DA).

Now, given P, it is impossible to infer a minimal D In practice, a

1
user may select some D2 s«t. D, C D2 < D which the problem solver

will access to solve P. If one studies the gearches that problem
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solvers generate when they work with nonoptimal data bases, it is
obvious that many of the irrelevant inferences that are generated

are derived from the data-base assertion (theorems, axioms, facts) in
D - Di (or D, - Dl). In fact, as the number of theorems irrelevant
to the solution P becomes large, the number of irrelevant inferences
derived from this set begins to dominate the number of irrelevant
inferences generated within Dy and its descendants alone*. In fact,
while a problem solver might solve P given an adequate and small Dl’
it may be swamped and run out of spé%e before a solution giveh g D2
that is much larger than needed . Clearly, one effective use of
analogical information would be to select s decent subset D2 of D
such that size[Dl] < size[Dg] << size[D]. For example, a typical

3 a resolution logic theorem

theorem in algebra provable by QA3
proof - may require only 10 axioms (Dl), while the full algebraic
data base has 250 axioms. If a system could select a D2 such that
size[D2] = 15 axioms, a massive saving in search could be obtained.
In fact, the theorem that would be unprovable on a D with size[D] =250

would now be provable.

A second kind of information that would be useful to help solve
P, would be a set of lemmas (or subgoals) Lys eee s Lj whose analogs

Q(Ll), ves a(Lj) could be solved by the system before attempting PA.

*
Even given an optimal data base, a problem solver will generate some

irrelevant inferences.

*In general, automatic problem solvers and theorem provers run out of
space rather than time when they fail to solve a problem. ErnstdD
emphasizes this point with regard to GPS, and I have had similar
experiences with QA3“~, a resolution logic theorem prover.
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At this point I will not discuss how to recognize g lemmd* and
generate its analogn inst~23, I merely want to note that lemmas may
be effectively used without using a planning language that forces
backup in case of failure. Suppose we somehow get Q(Ll), coe G(Lj).
A typical planner would order the a(Li), €.8., G(Ll), G(IQ) .eo etc.,
attempt to solve them in sequence, and stop if any lemma fails to be
solved. In contrast, we merely need to attempt each G(Li). ¢If we
get a solution, we add G(Li) to the data base (like a theorem) and
continue with the next lemma. If we fail, we continue anyway. At
worst, we wasted some computation time. Each useful G(Li) decreases
the number of steps in the solution of PA and may decrease the depth
of the solution tree. Thus, lemmas are helpful in getting a faster
solution. Note, however, that a successful a(Lj) need not be used
in the soluticn of PA' It is merely available. Thus, we are not
bound by the fail~backup orientation of sequential planning logics.

In summary, if we use analogical information to modify the

enviromment” in which a problem solver operates, we can effectively

*Recognizing lemmas depends on the problem-solving system. For
example, in resolution logic, some good criteria for lemmahood are:
(1) A ground unit used more than twice (or k times) in a proof.
(2) A unit that is a merge.
(3) A clause that is the "least descendant" of more than 2 (or k)
units.

TGenerating a lemma depends on the system's ability to associate
variables with variables, and the association may be tricky when
skolem functions are introduced.

iIn fact, under some conditions, the axloms used to solve O(Li) may
be deleted from.D2 so that size[Dg] is decreased, and a(Li) is not

attempted again inadvertently during the solution of PA'

$Here environment is synonymous with data base. But it can also
include permissible function orderings (in predicate calculus) and
other kinds of restrictive information. Each rule restricting the
"enviromment" could be translated into an equivalent new decision
rule restricting the application of the inference procedures of the
problem solver. However, I find it easier to think of ZORBA in
terms of modified environments rather than (the equivalent) modi-
fied decision rules.
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abbreviate the work a problem solver must perform. ‘'Of course, a
well-chosen enviromment will always lead to a more efficient search.
Usually, we have no idea how to tailor a subenvironment automati-
cally to a particular problem. Here we do it by exploiting its
analogy with a known solved problem. Now, the representations used,
the analogy-generating programs, and the types of additional infor-
mation output will depend on the problem-solving system (and even
the domain of application). Any further discussion needs to specify

these two items.

c. Applications to Resolution Logic

The preceding discussion referred to any problem solver, and ig
just a proposal. Computer programs have been implemented to apply
this paradigm to a resolution-logic theorem prover, QABBE. For the

class of analogies these programs handle, this is an accomplighment.

When we begin to focus on a particular paradigm, two issues are

more easily resolved:

(1) What kinds of information are most useful to provide

the problem solver?

(2) Which representations shall we use to describe the

analogies and handle the necessary data?

Actually, these two igsueg interact. For example, if we want
to study planning-level analogies, then we need a problem~solver
that can create and execute plans for the problems it attempts. In
turn, we expect to be passing it information that refers to its
sequence of plans, criteria for subgoal completion, etc. Many impor-
tant detgils of this research are affected by our choice of problem-
solving system. In addition, the classes of analogy we can study
are affected by the kinds of problem-solver that we choose. Farlier
I noted that a planning-problem=~solving system was not available
when +this research was begun. In the beginning stage of this

research it was unclear how wide g variety of problem domsins we
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would like to consider. Both abstract algebra and plane geometry
are rich in analagous problems; and we wanted to be able to consider
at least both. Thus, rather than turning to g specialized problem-
solving system like Gelernter's GEOMETRY28 machine or Norton's
Group-Theoristeg, we decided on a general-purpose system. Our
choice between a resolution-based system and a GPS~like system was
strongly influenced by the recent development of a relatively flexi-
ble resolution~theorem prover in the laboratory at Stanford Research
Institute where this research was carried out. In fact, this reso-
lution system, QA3, was implemented in LISP on the SDS-940, the same
language and same machine on which ZORBA was to be implemented*. No
other, equally powerful problem-solving system was available in
either LISP or on the $DS-940 at that time. At least a year's work

was saved by opting to use QA3 as an experimental vehicle.
Resolution is attractive on its own merits, as well:

(l) It is a highly popular inference system that is currently
receiving a vast amount of gttention. The results of
ZORBA-I can be relatively easily related to other develop~

ments in this "hot" area of study.

(2) Resolution uses first-order predicate calculus, which has
substantial expressive power. Any problem whose solution
may be deduced from a set of first-order axioms in some
natural inference system can be transformed into a resolu-

tion theoremf. _ Q,AéglL has been used to solve the monkey

*
ZORBA programs were later converted to PDP-10 LISP when the SRI
Artificial Intelligence Laboratory changed machines.

TSince our discussion is shifting to resolution, our terminoclogy
will shift from the language of problem solving to the language of
theorem-proving, with the following equivalences:

problem ~ theorem

solution ~ proof
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and bananas problem and the tower of Hanol puzzle, handle
guestions pertaining to drug interactions, make diagnostic
inferences in a simple medical epplication, and prove

theorems in geometry, algebra, and number theory.

(3) Practical resolution systems are more powerful than com-
peting systems like GPS. The resolution system allows more
natural representations for some applications, particularly
mathematics.

Resolution logic is an inference rule whose statements are called
clauses* IT. Thus, a resolution-oriented anslogizer will deal with
clauses and their descriptions. In contrast, GPS uses sets of
objects to describe its states, and we would expect that an analogy
system devoted to GPS would deal with (complex) objects and their
attributes. Table 1 contrasts the kinds of information helpful to
QA3 and GPs. An analogy facility developed for GPS would be

oriented to its peculiar information structures instead of clauses.

Table 1

KINDS OF INFORMATION HELFFUL TO QA3 AND GPS

QA3 (Resolution) GPS
Relevant axioms Relevant operators
Expected predicates Abbreviated difference table
Lemmas Subgoals
Admissible function nestings Restrictions on opera-~

tor applications

A clause is an element in the conjunctive normal form of a skole-
mized wff in the predicate calculus. For example,
—person[x] v father[g(x);x] is the clause associated with:
¥x person[x] —dy father{y:x] (every person has a father).

L1



I want to digress briefly and describe the kinds of theorems
that the implemented system, ZORBA~I, tackles. Briefly, they are
theorem pairs in domains that can be axiomatized without constants
(e.g., mathematics) and that have one-one maps between their
predicates. The theorems are fairly hard for QA3 to solve. For

example, ZORBA-T will be given proof of the theorem:

TL: The intersection of two abelian groups is an abelian

group and is asked to generate an analogy with

T2 : The intersection of two commutgtive rings is a commuta-~
tive ring.
Given:
T3 : A factor group G/H is simple iff H is a maximal normal

subgroup of G.
Generate an adequate analogy with
Th: A quotient ring A/C is simple iff C is a maximal ideal in A.

None of these theorems is trivial for contemporary theorem provers.
(See Table 2 in a later section, for a listing of additional theorem

pairs.) T, has a 35~step proof and T5 hags a 50-step proof in g

decent axiimatization. A good theorem prover (QA3) generates about
200 inferences in searching for either proof when its data base is
minimized to the 13 axioms required for the proof of Tl or to the

12 axioms required for the proof of TB' If the data base is
increased to 20 to 30 reasonable axioms, the theorem prover may
generate 600 clauses and run out of space before a proof is found.
Note also that the predicates in the problem statement of these
theorems contain only a few of the predicates used in any proof.
Thus, Tl can be stated using only {INTERSECTION; ABELIAN}, but a
proof requires {GROUP; IN; TIMES; SUBSET; SUBGROUP; COMMUTATIVE} in
addition. Thus, while the first set is known to map into {INTERSEC-

TION, COMMUTATIVERING}, the second set can map into anything.

Figure 8 shows a set P including all the predicstes in the data

base.
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All
Predicates
in data base

I

D

FIGURE 8. VENN DIAGRAMS OF RELATIONS IN STATEMENTS T, T,, AND D'

AS

We know P'l and P’ , the sets of predicates in the statements of the

29
- new and old theorems, TA and T. In addition we know the predicates
Pl in some proof of T (since we have a proof at hand). We need to

find the set Eé that contains the relations we expect in some proof

of TA’ and we want a map Q(: O(Pl) = Eé.

Clearly, a wise method would be to find some @, a restriction
of @ to P’l such that a’(P'l) = P'g.
a'l, a’g, ..., each on larger domains until some a'(Pl) = B,. ZORBA-I

Then incrementally extend G’ to

does this in such a way that each incremental extension picks up new
clauses that could be used in a proof of TAo In fact, if we get no
new clauses from an extended a'j is faulty. The next section will

describe the generation algorithm in a little more detail.

D. ZORBA's Representation of an Analogy

In the preceding sections I have implied that an analogy is some
3 kind of mapping. The ZORBA paradigm — e.g., using an analogy to

i restrict the environment in which a theorem prover works =— does not
restrict this mepping very much. For different intuitively analogous
theorem pairs, this mapping would need to be able to associate predi-
cates (and axioms) in a one~one, one-many, or many-many fashion, pos-
gibly dependent on context. For other theorem pailrs, one-one
mappings and context-free mappings are adequate. ZORBA~I is a par-
tlcular set of algorithms that restricts its acceptable analogies to

those that map predicates one-one with no context dependence. It
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allow: onc-many assocliations between axioms — e.p., one axiom of the
proved theorem i associabed with one or more axioms that will be used
to prove the new, analogous theorem. More explicity, a ZORBA-I anal-

ogy @ is a relation aP X ac X av, where:

(1) ap is a one-one map between the predicates used in the
proof of the proved theorem T and the predicate used in the .
proof of the unproved theorem TA'
(2) ac is a bne—many mapping between clauses. Each clause used
in the proof of T is assoclated with one or more clauses
from the data base D that ZORBA-I expects to use in prov-
ing TA'
(3) OV is a many-many mapping between the variables that appear
in the statement of T and those that appear in the state-
f L]
ment o ?A
Different sections of ZORBA~I use these various maps — e.g., dv
and/or ap, and/or ac. Usually I will drop the superscript and simply
refer to "the analogy @." Thus, "the analog of an axiom axy under
analogy Q" should be understood to mean ac[axk], and will often be

mentioned simply as 'the analog of axk."

In the previous section I refer to a sequence of analogies
Gl’ ces ak. ZORBA-I usually does not develop ac in one step. Rather,
it incrementally extends some limited analogy into one that maps a
few more variables, predicates, or clauses. This process is described
in full detail in the next few sections. Here, I just want to define
several terms that refer to this process. When I refer to "the
analogy between T and IA" I refer to a mapping that includes every
variable in the statement of T, and every predicate and clause used in
the proof of T. This "complete" mapping is obtained as the final
step of a sequence of mappings that contain the associatilons of some
predicates and some clauses. I refer to these incomplete mappings as

"partial analogies." In addition, we are concerned with an important
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relationship between two (partial) analogies. A (partial or com-

plete) analogy ak is an extension of a partial analogy aj if gome of

P C v
Qj e-gw@j:ajaaj

ponding submap of 0, to a smaller domain., Intuitively, when we add

— 1is a submap restriction of the corres~-
a new predicate or clause association to @j so as to create ak, we

say that aj has been extended to ak, We are now ready to survey
ZORBA-I.

E. An Overview of the Analogy-Generating Algorithm

I want to describe the ZORBA-I algorithm in two stages, first
briefly in this section and then in greater detail in the following
two chapters. I will precede these descriptions by some background

on the representations and information available to the system.
ZORBA-I 1s presented with the following:

(1) A new theorem to prove, T

A
(2)  An analogous theorem T (chosen by the user) that has
already been proved.

(3) Proof[T], which is an ordered set of clauses, {ck}

s.t. Tk Cyo is defined by:
(a) A clause in - T, or
(b) An axiom, or

(¢c) Derived by resolution from two clauses

s and Cj J<kand i<k,

These three itemg of information are problem~dependent. In
addition, the user specifies a "semantic template" for each predicate
in his language. This template associates a semantic category with
each predicate and predicate-place, and is used to help constrain the
predicate mappings to be meaningful. For example, structure[set
operator] is associated with the predicate "group."  Thus, ZORBA~I
knows that "A" is a set and "¥" is an operator when it sees

group[A;¥].  Currently, the predicate types (for algebra) are
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STRUCTURE, RELATION, MAP, and RELSTRUCTURE; the variable types are
SET, OPERATOR, FUNCTION, and OBJECT.

In addition, ZORBA~I can make up a description descr{c] of any

clause ¢ according to the following rules:
(1) VP s.t. P and — p appear in c, impcond[pl € descrc].
(2) Vp s.t. D appears in c, pos[p] € descr[cl.

(3) VP s.t. - D appears in c, neg[pl] € descr[c].

*
Thus, the axiom, every abelian group is a group = €.8.,

¥(x *) abelian[x;*¥] — group[x;¥] — is expressed by the clause
¢yt abelian[x;¥] Vv group[x;¥], which is described by
neglabelian], pos{group].

Each element of a description — e.g., pos[group] — is a "feature" of
the description. Each feature corresponds to one predicate, so the
number of features in a clause equals the number of predicates in the
clause. The theorem, the homomorphic image of a group is a group --—
.8,
v (xy * % o)
hom[qsx;y] A group[x;*

1
—>group[y;*é] — is expressed by the clause

¢yt vhomlgsxsy] vV — group[x;* 1 v group[y;¥,]

and is described by

neg[hom}, impcond[group].
Two different clauses may have the same description.
Tet:

¢, — intersection[x:y;z] Vv subset{x;y]

3

¢, — intersection[x;y;z] V subset[x;z].

*
See Appendix A for the definitions and semantic templates of the
predicate letters.
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Then:
descr[CB] = descr[cu] = neg[ intersection], pos[subset].

Clause descriptions are used to characterize the axioms whose
analogs we seek. ZORBA-I selects as analogs clauses that have
descriptions that are close to the analogs of the descriptions* of
axioms in the known axion set. Although in a special context
ZORBA~-I actually uses an ordering relation on a set of descriptions

1

to find a "best clause," it usually exploits a simpler approach.

We will say that a clause c gatisfies a description
d iff d ¢ descrlcl. Thus, several clauses may satisfy the same

description.
Let:
05:»ﬂintersection[x;y;z]\wqgroup[y;*] V—grouplz:¥] v grouplx;¥]
ch — subgroup[x:y;¥] v—subset{x;y].
Then, the following sbatements are true:
(1) {02,c5} satisfy impcond[group]
(2) {cl,cg,CS} satisfy pos[group]
(3) ¢y satisfies negl[abelian], pos[group]
(L) {CB,Cu,C6} satisfy pos[subset]
(5) cg satisfies neg[ subgroup], pos[subset]

(6) No clause of these six satisfies pos[intersection].

Clearly, if a description contains only a few features, then

several clauses may satisfy it.

The semantic templates are used during both the INITIAL-MAP
(when the predicates and variables in the theorem statements are
mapped) as well as in the EXTENDER, which adds additional predi-

x
The "analog of a description”" is defined in Chapter V.
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cates needed for the proof of TA and finds a set of axioms to use

in proving TA' The clause descriptions are used only by EXTENDER.

I intend the brief description that follows to provide an
overview of ZORBA-I in preview to the next two chapters of text,
which describe it in considerable detail. In addition, this pre-
view section may be a helpful "roadmap" for reference when the

reader immerses himsgelf in the details that follow later on.

ZORBA~I operates in two stages. INITIAL-MAP is applied to the
statements of T and TA to create an aﬁ , which is used by EXTENDER
to start its sequence of ag and dg, which terminate in a complete
a. INITTAI~MAP starts without a priori information about the
analogy it is asked to help create. Both ap and av are empty when
it begins. INTTIAL-MAP uses the pair of wffs that express T and
TA as well as the restrictions imposed by the semantic categories
to generate Gﬁ and G{ that include all the predicates and vari-
ables that appear in the two wffs. For example, the statements of
T. - T. can contain three of the nine predicates used in proof[Tl],

1 2

and the statements of T5 - T)+ can contain five of the 12 predicates
used in proof[T 1. 1In brief, INITIAL-MAP provides a starting

point from whlch EXTENDER can develop a complete (.

The INITIAL~-MAP uses an operator called
atommatch[atoml,ato 5G], which extends analogy by adding the predi-

cates and mgpped variables of atom, and atom2 to analogy 0. Thus,

ATOMMATCH now limits ZORBA-I to anilogles where atoms in the state~
ments of T and TA map one-one. INITTAL-MAP is & sophisticated
search program that sweeps ATOMMATCH over likely pairs of atoms,

one of which is from the statement of T, the other from the state-
ment of TA. Alternative analogies are kept in parallel (no backup),
and INITIAL-MAP terminates when it has found some analogy that
includes all the predicabes in the theorem statements. This one is

output as GE.

*
Atomg, not predicates.
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EXTENDER accepts a partial analogy generated by INITIAL-MAP and
uses it as the first term in a sequence of succegsive analogieg aj.
The axioms used in proof[T] are few in comparison to the size of the
large data base, and comprise the "domain" for a complete a®. For
each axiom used in proof[T], we want to find a clause from the data
base that is analogous to it. The axioms used in proof[T] are called
AXSET and are used by EXTENDER in a special way. Each partial
analogy OP is used to partition AXSET into three disjoint subsets
called ali[a.], some[a.], and none[a.].

If all the predicates in an ax1om.axk € AXSET are in @p then

ax, 1is in all[a 1; if some of its predicates are in ag then ax,

k
is 1in some[aj], and if none of its predicates are in a?,

is in none[aj]. For brevity, these sets will be called ALL, SOME,

then axy,
and NONE, and theilr dependence on aj will be implicit. This par=~
tition is trivial to compute, and initially, none or a few ax, —are
in ALL, and most axy, belong to SOME and NONE, We want to develop a
sequence of analogies aj’ g=1, ... n, that contain an increasingly
larger set of predicates and their analogs. If an axiom is contained
in ALL, then by definition we know the analogs of each of its predi-
cates. It can not assist us in learning about new predicate associ-
ations. In contrast, we know nothing about the analogs of any of the
predicates used in axioms contained in NONE. Analog clauses for
these axioms are hard to deduce since we have no relevant information
to start a search. Unlike these two extreme cases, the axioms in
SOME are especially helpful and will become the focus of our atten-
tion. For each such axiom we know the anslogs of some of its predi-
cates from Gj . These provide sufficient information to begin s
search for the clauses that are analogous to them. When we finaglly
associate an axiom with its analog, we can match their respective
descriptions and associgte the predicates of each that do not appear
on a We can extend a to a 12 and thus the analogs of axioms
on SOME provide a bridge between the known and the unknown, between

and thus the analogs of axioms

the current Q. and a descendent aj+l’
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on SOME provide a bridge bebtween the known and the unknown, between
the current aj and a descendent Oj+l° When EXTENDER has satisfac-
torily terminated, ALL = AXSET, SOME = NONE = ﬁ. 30 the game becomes
finding some way to systematically move axioms from NONE to SOME to
ALL in a way that for each ax, moved, some analog aj(axk) = ax! 1is

k
found that can be used in the proof of TA o Moreover, each new gsso-
ciation of clauses should help us extend Qj—aaj+l by providing

information about predicates not contained in aj'

The following chapters are devoted to a detailed explication of
ZORBA-T. INITIAL-MAP is a comparatively simple system and will be
covered in Chapter IV. FXTENDER is far more novel in its conception
and complex in its details. It will be introduced in Chsgpter IV and
examined in greater detail in Chapter V. I recommend that the seri-
ouse reader skim these *two chapters to acquaint himself with most
of the concepts and a few examples. Such a prelude will illuminate
the following discussion like the bright sun burning off a morning

fog.
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IV A DESCRIPTION OF INITIAL-MAP

A. Introduction

At heart, ZORBA-I 1s a heuristic program designed to generate
analogies between theorem pairs stated in a subset of predicate calcu-~
lus. It has been designed and implemented in a fairly modular manner
to facilitate understanding and ease of generalization. Thus, much
of the system can be described in algorithmic terms. In this chapter
I hope to evoke some appreciation of the heuristic foundations of the
program while describing its operation with algorithmic clarity.
ZORBA-I uses an interesting set of searching and matching routines,
which have been empirically designed, generalized, and tested on a

set of problem pairs (Tl - T2 and T_ =~ Th are fair representatives of

this set). The control structuresBOf INITIAL~MAP and EXTENDER have
been degigned to pags fairly similar structures to the various match
routines (described below). Thus, the following descriptions will
cover cases in which the structures to be mapped are fgairly similar.
For example, most of the routines that match sets of items assume
that the sets are of equal cardinallty and that they will map one-
one. Such assumptions are valid for a large class of interesting
analogies (such as the group-ring analogy in abstract algebra), and
simplify the description of the various procedures. Anglogies that

require weaker assumptions and more complex procedures are described

in Chapter VIII.

In the previous chapter I provided a rationale for the design of
INITIAL-MAP and EXTENDER, which generate a restricted analogy and
expand it to cover all the relaticns and axioms necessary for the new
proof. ZORBA~I can be easily expressed in terms of these two func-

tions as follows:
Zorbal[newwff;oldwff;AXSET*]3:

(1) Set analogies to the list of analogies generated by
initialmap[newwff ;oldwff].
(2)  Apply extender[analogy; AXSET] to each analogy or analogies.
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(5) Return the resultant set of analogies.

The preceding description allows that there may be more than one
analogy generated by either INITIAL-MAP or EXTENDER. In practice,
however, each tends to generate but one (good) analogy. In the fol-
lowing paragraphs I will describe INITIAL-MAP in some debail., EXTEN~
DER will be discussed in the next chapter.

ZORBA-I is designed to find the analog of each axiom in AXSET
and thus create OC. The brief description of EXTENDER in the pre-
vious chapter suggests that if we know the analog of at least one
predicate in the domain of ap, then we can partition AXSET into -
ALL, SOME, and NONE to start EXTENDER creating a series of partial
analogies ag’ OB, ... that termingtes in some complete an. The
algorithm for INITIAL-MAP that is described here is designed to find
an assocliation between each predicate in the statement of 'TA with
each predicate that appears in the statement of T. For most inter-
esting theorems, the theorem statements are usually expressed with
more than one predicate. Congequently, INITIAL-MAP will typically
provide an @ﬁ that will have more than one predicate assoclation
and that is more than sufficient to initiate EXTENDER. In Chap-
ter VIII, a simpler version of INITIAL-MAP that often works will be
described. Once the system gains some experience (creates some
analogies) in a particular domain, it could dispense with INITIAL-
MAP and use the analogs of those predicates that it found in the
past and appear in proof[T] as @ﬁ. However, here we will adopt a
guite conservative approach and show how a good Oﬁ can be developed

in the absence of any a priori predicate associations whatsoever.

INITIAL-MAP is designed to take two first-order predicate calcu-
lus wffs and attempt to generate s mapping between the predicates and
variables that appear in themn. The varisble mapping information is
used to assist INITIAL-MAP in mspping predicates in cases of seeming

ambiguity; INITTIAL-MAP outputs a set of associated predicates that

*
AXSET is the set of axioms that appears in proof[T].
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gppear in the statements of Tﬁ_and T. This restricted mapping is
used as a starting analogy by EXTENDER, which finds a complete
mapping for all the predicates used in proof[T}. As a by=-product,
EXTENDER finds analogs for each of the axioms on AXSET. IWITIAL~MAP
(unlike EXTENDER) does not reference AXSET, the set of axioms used to
prove T, and is symmetric with respect to caring which wff represents
the proved or unproved theoren. INITIAL~-MAP wuses atommatch[ataml;
atom2; al asg an operation to add the predicate/variable

information to analogy Q. As its name hints, ATOMMATCH matches
the predicates and variables of its atomic arguments and adds the

resultant mapping to the developing analogy {(a).

B. The Degign of ATOMMATCH

ATOMMATCH 1is used as an elementary operation by every matching
routine in the INITIAL-MAP system (Figure 9). Thus, we will dis-
cuss it first, and then consider how INITIAL-MAP is organized %o
apply it intelligently.

TNITTAL-MAP |

[ aromarcs | | sEmmarc |

S INGLEMATCH | [ MU IMATCH
|
r 1
ATCMMATCH TEMPS TFT | MUTTDMATCHL
L
|
ATOMMATCH TEMPS TFT ATOMMATCH
| ATOMMATCH

FIGURE 9. HIERARCHY OF MATCHING ROUTINES CALLED BY INITTAL-MAP

o3



Consider how we might write an ATOMMATCH. Suppose atoml and atom2
are of the same order (same number of variables) and each variable

place in each atom has the same semantic type. For example, let

atom, = 1ntersect10n[xl;x2;x3]
atom.2 = 1ntersect10n[yl;yé;y3]
Clearly, we want
*

intersection ~ intersection
and

X~ ¥y s 1=1,2,3.
So, if atoml = p[xl; cee xn]

and atom, = q[yl; cee ym] and p = q (thus, n =m) and we will set

b~q
and
X~ Y5 1=1,2, tesy s

So far, ATOMMATCH is quite trivial. Suppose, however, b # q or

n # m. For example, let

]

it

atom group[x; *

1 1

and

i

atomg ring[y; *25 +é].

Clearly we want to associate the set x with the set y, and the

operator *l with either or both of *é and +2. ATOMMATCH can know
which variables represent sets, etc., by checking the semantic tem=-
plates associated with group and ring. Now, the template associ-

ated with ring is structure[set;operator;operator]. We will map

" 1

* . . . .
I will use the symbol " " as in to mean "x is associ=-

ated with (analogous to) y."

X~y
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variables with each other so as to preserve predicate place order-
ing and semantic type. To huwdle the unequal number of variables, we
will temporarily expand the atom group[x;*l] to include a dummy varil-
able of type operator, "dummycp,” and will rewrite it as group[x;*lg
dummyop] . The symbol "dummyop" is used to expand either (or both)
atoms to be of the same order and ensure that a variable (possibly
dummy ) of the same semantic type is in corresponding places in each
atom. Then we can mep the variables one-~one in order of appearance.

For example, we can associate

X~y
and
(*lbdwm:yop) ~ <*2?+2>°
Then, we can remove dymmyop and rewrite

¥ o (% .
1~ (Fgstp)
We can describe this process formall in two stages:

(1) Make the two atoms type-compatible and of the same order

by adding dummy varisbles whenever necessary.

Let

atoml = p[xl; oo xn]

atom2 = q[yl coo ym]
template[atoml] = typelp] [type[xl] cen type[xn]]
template[atom2] = typel gl [type[yl] cos type[ym]].

Furthermore, suppose that the ordering of the types is the same in
each template, even though the number of variables of each particular
type need not be identical for correspending "type blocks."  Thus,
in the preceding example, in both "group" and "ring” the type set
precedes the type operator. FEach template has cne EEE’variable,
but a differing number of operator variables. Thus, we could par-
tition the ordered set of variables in afcom:L and atom2 by letting

some X, and X belong to the same partition if type[xl]

1 i+l
type[xl+l]u Now there are an equal number of partiticns in both
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atoml and atomzo Returning to our example, we partition group[x;*i
into [[x], [*l]], and the ring[y;*2;+é] into [[y], [*25+2]]' (The

brackets indicate that the order of elements is preserved.)

(2) Map the partitioned subsetg into each other, preserving
their order within the partitions, and map elemerts into
elements 1f the two subsets have an equal number of ele-

ments.

This completes our brief description of ATOMMATCH. From now
on, we will consider ATOMMATCH as an elementary operation that will
expand the developing analogy to include a (possibly) new predicate
pair and (possibly) new pairs of variable associations. We need to
know how to select pairs of atoms from the statements of T and T, to

A
be ATOMMATCHed.

C. The INITIAL-MAP Control Structure

We have two wffs representing T and jA as arguments of
INITIAL-MAP, and we want to find some way to slide ATOMMATCH over
palrs of atoms selected from the wffs, First, note that the syntax

of the wffs may be a helpful gulde in selecting potential matches.

Suppose
T:A - p(x)
T, B —aly)s

where A and B are any wifs and p and g are unary predicates.

We would presume that p ~ g (predicates)
X ~y (variables)
and A ~ B (sub~wffs)
where we expect that wffs A and B would be decomposed dewn to
atoms for ATOMMATCH. If A and B had implication signs in them,
we could decompose them similarly. There are many possibilities for
the forms of T and TA° We find that 1f T and T are closely

A
analogous, then their syntactic forms are likely to be very similar.
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ZORBA considers T and TA to have the formats that can be repre-

sented by the generative grammar:

T *)(A - A)

5

A —>p[xl - xn]A\p[Xl ew x 1o

INITTAL-MAP is designed to decompose the input wffs T and TA
into associated syntactic substructures until a subwff is either an

k
aton p[xl ces xn] or g conjunction of atoms A pi[xl - X%}a AL
i=1 ~ -

this point INITIAL-MAP enters a hierarchy of selecting and match-
ing routines (Figure 9) +to decide which pairs of atoms shall be
ATOMMATCHed.. Naturally, 1f the subwffs are just atoms, it calls
ATOMMATCH directly. Otherwise, it enters a program nierarchy
headed by a routine named SEIMATCH, which selects appropriate abtom

pairs from the sets of conjuncted atoms in the subwifs.

In the following discussion, the number of atoms conjuncted in
each set are assumed equal (k = £). SEIMATCH can be described in

terms of its subfunctions as follows:
*
Setmatch[setl; setg; anal

(1) Partition the atoms in set, and set, into subsets that
have identical semantic templates (a "semantic partition™).
Thus, if se’cl is group[x;¥] A abelian[y;*] A intersec-
tion[z;x;y] the semantic partition will be
{{intersection[z;x;y]}}

since group and agbellian are both of type §§;uct[set;op]e

(2) Select the partitiong of setl and set2 that have but one

element and call these Singl and singgj respectively.

(3) The remaining partitions have more than one element; call

them multl and multg, regpectively.

*, . sio s ¢ .
When an analogy (0 is referenced within the description of an algorithm,
it will be represented as a variable ana wherever that is more convenient.
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(L) Match the atoms in singl with those in sing2 by executing

singlematch[sing1;singggana].

(5) Match the remaining atoms by executing

multimatch[multl; multegana].

SETMATCH, SINGLEMATCH, and MULTIMATCH are all heuristically
designed one-pass matching strategles that make strong assumptions
about the nature of the theorem statements T and TA for an

analogous theorem pair.

SETMATCH assumes that the atoms in setl and set2 will mep one-
one and that the semantic-partitions will map one-one. Suppose we

have a semantic partition:

partition, = {{atom, atomg}{atom5 atomu}}{atomS}

2
SETMATCH assumes that {atomS} and {atomlo}
than {atomE} and, say, {atomg atomY}. It calls SINGLEMATCH to

partition, = {{atom6 atomY}{atom8 atom9}}{atomlo}.

will correspond, rather

map the single~atom partitions onto the single-atom partitions.

In addition, it calls MULTIMATCH +to map, in pairs, the par-

tions containing several atoms each.

MULTIMATCH assumes that the analogy will preserve semantic
type sufficiently well so that atoms within a particular partition

will correspond only to atoms in one other partition.

Thus, if {atom, atomg} ~ {atomg atom,}
then atomlfw atom6 or atom,7
atom2 m»atom6 or atom7°

It forbids matches across partitions, such as

atom1- atom6
atom2 m/atomB

atom5 m/atomY, etc.
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SINGLEMATCH and MULTIMATCH also share a common default condition.
If all but one of the elements of a set X are mapped with all but
one of the elements of a set Y, then these two elements are associ-
ated by default without any further decision making. In SINGLEMATCH

the sets X and Y are sets of atoms or partitions of atoms.

SINGLEMATCH[setl;set2;ana] may be easily described in terms of
this default condition and a function called
sl;sggtestfn;ana]. TEMPSIFT applies testfn[x;y] to the

first element of S, and each successive element y of 85 until

it finds a y’ ¢ s, such that testfnlx;y’]l = T. It then executes

tempsift[

atommateh[x;y’sanal,

increments to the next element of %’ of s,, and seeks another

v o€ S5 such that testfn[x”;y"] = T, etc. Thus, for every x € 815
it findg the first y € S5 such that testfn[x;y]l = T and executes
atommatch[x3¥ ;anal. Typical testfn's check whether x and y have
the same semantic template or are analogs of each other according to

the developing analogy, ana.
Singlematch[setl;setggana]: =

(1) 1If set, and set, have but one element ("terminal default
s

condition"), go to 8.

(2)  Execute tempsift[setl;set2;testfnl;ana], where testfnl[xgy]

is true iff x and y have the same semantic template.

(3) 1If set, and set, are empty, go to 9.

If the terminal default condition is true, go to 8.

() Execute tempsift[seﬁl;setg;testfnggana], where testfng[xgy]
is true iff the predicate letter in atom y is the analog
of the predicate letter of that in atom =x according to

analogy ana.

(5) 1If set, and set, are empty, go to 9.
If terminal default condition holds, go to 8.
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(6) Execute tempsift[setl;set25testfn5;ana}, where
testfna[xsy] is true iff the type of the predicate appear-
ing in atom x 1is the same as the semantic type of the

predicate appearing in atom y.

(v) 1Ir set; and set, are empty, go to 9.
If the terminal default condition holds, go to 8.

Otherwise print an error megsage and halt.
(8) Apply ATOMMATCH +to the remaining atoms of set, and set,.
(9) STOP.
To illustrate the preceding algorithm with a simple example, let

setl = {intersection[x;y;z], abeliangroup[x;%*]}

]

set

o {intersection[u;v;iw], commutativering[u;¥*,+]1}.

At Step 2 we associate:
intersection[x;y;z] ~ intersection[u;viw].

Then, since we satisfy the terminal default condition, we assoclate:
abelian[x;*] ~ commutativering[u;*;+].

MULTIMATCH 1is a little more complex than SINGLEMATCH. First
we need to decide which partitions are to be assoclated before asso~
ciabting agtoms within partitions. Suppose we have two sets of par~
titions, setl and setg. If both sets have but one partition each
(a common case), then we expect these to be associated by default
and declare them accordingly. Secondly, if in some partition of
set, there is an atom with predicate p that is known to be analog-
ous to predicate ¢, then the partition in set2 that contains ¢
should be assoclated with that which contains p. Remember that
these partitions were constructed on the basis of semantic templates.
Thus, while several atoms containing a predicate p may be in a
particular partition, there will be only one partition that contains

atoms with predicate p. Lastly, if in setl and set2 there 1s but
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one partition that containg atoms whose predicates have the same
type — e.g., STRUCTURE, then we expect these partitions to be asso-
ciated. Let MULTIMATCHL nsme the function that actually associ-

ates atoms within a partition according to analogy ana.
Multimatch[setl;setgana]: =

(1) If the terminal default condition for partitions holds,
go to 7.

(2) Let pred[x] = the predicate letter of atom x.
For each partition y , sequence through each atom x € y.
If pred[x] is on analogy ana find the partition z € set,
such that the analog of pred[x] appears in =z. Execute
MULTIMATCH1{yv;z;anal for each such pair y,z.

(5) If the terminal default condition holds, go to 7.

If setl and set, are empty, go to 8.

2

(k)  For each partition y € setl, select the first atom x.
Find a partition =z € set2 such that the type of predi-
cates in z equals type[x]. If there is only one such
z € set,, execute MULTIMATCHL[ y;z;anal .

(5) If the terminal default condition holds, go to 7.
if Setl and set2 are empty, go to 8.

(6) 1If set; or set, is still not exhausted, print an error

message and halt.

(7) Apply MULTIMATCH1 to the remaining partitions in set)

and setg.
(8)  sTOP.

Each set of atoms in a partition has the same semantic template.
This property defines a partition. Thus, at the level of abstrac~
tion provided by the templates, all of these atoms are alike and
any differences need to be discriminated by other criteria. Let us

consider an example to motivate the design of MULTIMATCHL. The
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theorem pair T5 - TLL can be written as:

T, ¥ (g:mx,%)) group[gs*)] A
propernormal[m;g; l] A factorstructure[x;g;m]
A simplegroup[x;*l] —>maximalgroup[m;g;*l]

T): ¥(rinsys¥,5+,) ringlr;¥, 4,1 A

properideal[n;r;* 1 A factorstructure[y;r;n]

2372
A simplering[y;*é;+2] —amaXimalring[n;r;*é;+é].
First, ZORBA-I associates:
maximalgroup ~ maximalring
m~ n
g~
¥~ (s 1)

when it decomposes Té - Tﬁ into subwffs distinguished by the syntax

of the implication sign. Later, an application of SINGLEMATCH adds:
propernormal ~ properidegl
factorstructure ~ factorstructure
X~ Y

MULTIMATCH is passed one partition from each wff. Té contributes
{group[g;*,], simplegroup[x;*, 1}

and Tﬁ contributes

{ring[r;*,; ], simplering[y ;¥ ]}

27
If we gpply the MULTIMATCH algorithm just described to each of

these partitions, we find:
Step 1. We do not satisfy the terminal default condition.

Step 2. None of the predicates that appear in these par-
titions appear on the current analogy. We gather

no new information here.
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Step 3.  We still do not satisfy the terminal default

condition.

Step 4. We want to use MULTIMATCHL +to associate the

atoms in these partitions.

Of these two partitions, the former pair have the template struc-
ture[ set ;operator] and the latter pailr have structure[set;operator;
operator]. Fortunately, our analogy has variable mapping informa-

tion that is quite relevant here. We know that:
g~r
X~

We can assume that if some variable appears in only one atom in par-
tition, the analogous atom is one that contains its analog variable,
if it too appears in only one atom. For example, the variable "g"
appears only in group[g;*l], and its analog '"r" appears only in

ring[r;*é;+é]. So, we deduce:
group[g;* ] ~ ring[r;* ;4,1 .
A similar argument based upon
X~y
leads us to deduce:
simplegroup[x;*l] Azsimplering[y;*é; 2]

although we could have also deduced this last associlation by our
terminal default condition. Notice that ”*l” is not a discrimi-
nating variable since it appears in both group[g;*l] and
simplegroup[x;*l]. After each atom pair is associated, we apply
ATOMMATCH to it to deduce more variable associations and update our

analogy.

The preceding description of MULTIMATCHL can be simplified
and generalized by realizing that we are Just using a specialized

submap of the developing analogy to extend it further. This special
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submap is just that mapping of variables where each variable appears
in only one atom of the partition. In the preceding example, the

submap was Just:
g~ T
X~y o
Multimatch[partitionl;partitione;ana]: =

(1) set &l to a list of variables that appear in only one

atom of partitionl.

(2) set 1, to similar list computed on partition,.

(3) Set anaprs = {x’' ~ y'|x’ € 45 vy’ e 1, and y! is the ana-

log of x' by ana} .

(4) Execute tempsift[partitionl;partition2;testfnu;ana],
where testfnh[u;v] is true iff for some variable pair
x' ~y’ anaprs variable x’ appears in atom u and vari-

able y’ appears in atom V.

(5) sTOP.

INITIAL-MAP has been completely described. At this point we
have sufficient machinery to generate a mapping between the predi-
cates and variables that appear in the statements of theorem palrs
such as T, - T2 and T5 - T4° Next, we want to extend this map-
ping to include all the predicates that appeared in the proof of the
proved theorem T and are likely to agppear in the proof of the new
theoren TA' In addition, we would like to pick up a small set of
axiloms adequate for proving T, . EXTENDER performs both functions

A
and is described in the next two chapters.
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V AN ELEMENTARY DESCRIPTION OF EXTFENDER

A. Introduction

In the last chapter I described INITIAL-MAP in substantial
detail. In comparison, EXTENDER is a far more complex and subtle
system, which I will explicate here less completely. I intend to

accomplish several simple aims with this first exposition:

(1) Expose the reader to the motivation and rationale under-

lying the EXTENDER design.

(2) Convey some appreciation for the flavor of some well-

specified computational algorithms for creating an analogy.

(3) Provide an intelligible, self~-contained, introductory
account of EXTENDER adequate for the general reader, and
motivate the more sophisticated specislist to continue

into the next chapter for a more complete exposition.

The rationale of EXTENDER depends on s few simple related
ideas. I will begin by explicating these, then develop MAPDESCR -—
the clause-description mapping operation ~— and conclude with a dis-

cussion of two simple versions of EXTENDER.

In the last section I suggested that our complete analogy could
be seen as the last map an in a series Qj of increasingly more
complete analogies. Although we may be developing several such

series in parallel, they all begin with the same (@, -— the analogy

produced by INITIAL-MAP. Each Qj maps some subiet of the predi-
cates that appear in the proof of theorem T. Each distinct subset
will, in general, lead to a different partition of AXSET into

{ALL, SOME, NONE}. When we search for the analog of an axiom
(clause), we will look for some clause that satisfies the analog of

its description under the current analogy.

65




B. The Analogs of Clause Descriptions

Each clause has a unique description, descr[c], which has been
introduced in Chapter IIT. We will denote the analog of
descr{c] by some analogy aj as @j[descr[c]]. aj[descr[c]] is
equal to a copy of descr[c] in which every predicate that appears in
aj is replaced by its analogous predicate. Predicates that are
absent from aj are left untouched. For example, suppose we have

a trivial al:
al: abelian ~ commutativering
QY: —abelian[x;*¥] v group|x;*].
d7: neglabelian], pos{group]. = descr[c7]
a; [d7] = neg[ commutativering], pos[group].

Suppose we are seeking to extend al by finding the analog of
c7. It is quite unlikely that we will find a clause that satisfies
this description, (al[dY])’ since it would be derived from some
{rare) theorem that relates a condition on commutative rings to a
group structure. In any event, it would not be an analog of c7.
If we sought all the clauses that satisfied neg[commutativeringl, we

would be sure to include cg and which at least include g »

09,

the clause we desire:
% —commutativering[x;¥;+] vV ring[x;¥;+]

c —commutativering[x;¥;+] V commutativel*;x]

9:
Thus, sometimes we want to search for clauses that satisfy descrip-
tions with features — e.g., neg[commutativering] - that contain
only predicates that appear on a particular analogy aj . Now, what

we are doing is a four-step process:
(1) Make a description d for an axiom clause c¢ , descr[c].

(2) Create an analog description aj [ descr[c]] for the cur-

rent analogy, aj .
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(3) Delete from aj[descr[c]] any feature that contains a
predicate that does not appear in Gj. Denote this

restriction of aj[descr[c]] to aj by aj[descr[c]].

%) Search the data base for clauses that satisfy
aj[descr[c]].

In our example, a[descr[c7]] = al[d7]] = neg[ commutativering]
@j[descr[c]] is a "restriction of the analog of the description of

" Since this phrase is quite cumbersome, we

¢ 1o analogy G?.
will simply call it a "restricted description" and implicity under-

stand its dependence on a?.

At different times EXTENDER may seek clauses that satisfy a
complete analogous description aj[descr] or just a restricted one

aj[descr]. In summary, EXTENDER relieg upon four key notions:
1 An ordered sequence of partial analogies (..
d J

(2) A partition of the axioms used in proof[T] (AXSET) into
three disjoint sets: ALL, SOME, and NONE.

(5) A search for clauses that satisfy the analogs of the

description of the clauses in proof[T].

(L) A restriction of our descriptions relative to an analogy
@j’ by including only those features with predicates

that appear in aj“

C. Mapping Descriptiong

INITIAL-MAP used an operation called ATOMMATCH in a rather
clever way to extend its current analogy. Likewise, EXTENDER
uses an operation called MAPDESCR for a similar purpose. Both
operations use abstract descriptions in order to associate their
data: ATOMMATCH wuses the semantic template associated with a
predicate, and MAPDESCR uses the description of the clauses it is
assoclating. EXTENDER and INITTAL~MAP differ in that EXTENDER
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generates a new partial analogy each time it activates MAPDESCR
(and the resultant mapping is new), while INITIAL-MAP uses
ATOMMATCH +to expand one growing analogy.

Each partial analogy Qj 1g derived from its antecedent
aj—l by adding:
(1) An association of one clause axke SOME with one or more

clauses from the data base.
(2)  An association of the predicates in those clauses.

A simple example will illustrate this amply. If al ig the initial
analogy generated by INITIAL-MAP applied to the pair of theorems

T, - T

1 5 its predicate map 1s

abelian ~ commutativering

intersection ~ intersection.

Suppose we know that c7 ~ Cg - We would like to extend CI.L to 02
by adding:

(1) Q7 ~ Cg
(2)  abelian ~ commutativering
group ~ ring.

To motivate the structure of MAPDESCR, let us design a version
of it that would enable us to extend @l to @, in this example.
MAPDESCR is charged with mapping neglabelian], pos[groupl (d7) with

neg[ commutativering], pos[ring] when it knows that:
al: abelian ~ commutativering
intersection ~ intersection.

First, we can eliminagte neg[abelian] from d7 and
neg[ commutativering] from d8 on the basis of al’ which assoclates

"

"abelian" and "commutativering."

al[neg[abelian]] = neg[commutativering]]. Now we are
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simply left with associating pos[group] and pos[ring]. Since these
are the only two elements .Lef't, have the same semantic type (STRUC-
TURE), and have the same feature (pos), we can map them by default
and add

group ~ ring

to 02

Now we can write a version of MAFPDESCR that accepts as argu=-

ments two clause descriptions and an analogy aj:
mapdescr|[descr. ;descr, ;3.1 : =
1 2°77

(1) Vvx x € descr, s.t. Qj[X]E descr,., delete =x from descr

1 1

and aj[x] from descr,. Thus, we exclude all those

features we know about from Gj.

(2) vx x € descr., and x € descr, , map the predicate that

1
appears in x dnto itself and delete x from descrl
and descr2.
(3) In the remnants of descrl and descr2:
(a) If there are unique elements of descrl and descr2

that have the same fegature — e.g., pos — and
semantically compatible predicates, associate those
terms and delete them from the remnant descriptions.
Here "semantic compatibility" means "same semantic

type."

(b) If more than one element of descrl and descr2 have

the same feature — e.g., pos -~ then discriminate

within these elements on the basis of the semantic

types of their predicates.

(4) Return the resultant list of paired predicates.
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Most often, in my algebra data base, a clause description consists
of two, three, or four features. EXTENDER ensures that some of
the predicates in any pair of clauses passed on to MAPDESCR are on
aj' Thus, by the time we reach Step 3 of the MAPDESCR algorithm
we often have deSC{iptions of length one, which map trivially by .
default, or descriptions of length two with different features —
e.g., Pos and neg. Thus, Step 3b, which requires disambiguation
based on predicate types, occurs rarely in this domain (abstract

algebra).

When MAPDESCR returns a list of predicate pairs that result
from mapping the description of a clause cl(descrl, above) with the
description of a clause 02(
it creates a new analogy aj+l' a
that:

(1) Its predicate map is the union of the one returned by

deser, , above) according to analogy aj,

541 is the same as aj except

MAPDESCR and the one appearing on aj'

(2) Its clause mapping is the union of the one appearing on

aj and cl ~/c2 .

Thus, when EXTENDER is attempting to extend aj’ it creates

a new analogy aj+l’ etc., for each clause pair it maps when

aj+2 ?
those clauses were selected on the basis of information in ‘aj . of
course, there is a procedure to see whether the predicate associ-~
ations of a new analogy have appeared in some previously generated
anglogy and thus prevent the creation of redundant analogies. In
this case the two corregponding clauses are added to each existing
analogy for which the predicate pairs returned by MAPDESCR are a

subset of its predicate map.

D. The Candidate Image Set

After I explicate one additional idea I can describe a simple
version of FEXTENDER. When EXTENDER is extending aj it 1is

searching the large data base for some clause that is the analog of
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an axiom Ce € SOME. Now we could search for the set of clauses
that satisfy aj[descr[ck}], but we will run into the difficulty
described earlier in this section. Thus we search for clauses that
satisfy aj[descr[ck]]. If ag contains the correct analog for
each predicate that appears on it, then the set of clauses C that

satisfy aj[descr[ck]] is guaranteed to contain the desired analog

of e, ("image"™ of Cy ). We will refer to C as the "candidate
image set.” Suppose that C has but one member, c’ . Then we
know that ¢ is the analog (image) of c, and should extend
Qj _>aj+l by associating

cp ~ e’ .

When the set of clauses that satisfies a restricted description con-
tains one member, we are guaranteed that it is the image clause we
seek if OP does not contain any erroneous associlations. Now, if
C is empty, we have reagson to suspect the correctness of a? and we
ought to stop developing this branch of the analogy search space.

On the other hand, if € has more than one member, and G? is cor-
rect, we know that our desired image is in C. If we have a clause
¢ with description descr[c] and some analogy aj that contains
only one of the predicates in c¢ , then aj[descr[c]] will have but
one feature and many clauses will satisfy it. If some later
analogy (. (a? g;ai) includes another predicate from c¢ in
addition to the one on Oj’ then ak[descr[c]] will have two fea-
tures and will be satisfied by fewer clauses than aj[descr[c]].
Thus, as sequences of analogies evolve, each clause will have
decreasingly fewer candidate images that satisfy its restricted

description.

To search for the clauses that satisfy the analog of a
restricted (short) description, EXTENDER invokes an operator
shortdescr[aj]. SHORTDESCR is a dependent on aj in three ways:

(1) It searches for the analogs of clauses that appear on

SOME (which is different for each aj).
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(2) It generates descriptions that include only the predi-
cates that appear explicitly in aj.

(3) It uses the predicate map aj'

SHORTDESCR returns a (possibly empty) list of axioms (from
SOME), each of which is paired with a set of clauses from the data
base that satisfy the analog of its restricted description. Fach
axiom ig guaranteed to have its analog under aj in its associlated
"candidate image set." If we find no candidates at all, for any

axy € SOME, then we know that a contains some wrong predicate

associations, and we ought to mari it as "infertile" and discon-
tinue attempting to extend it. Of the images we find, we prefer
those axiom-candidate associations with but one candidate image. If
‘we apply MAPDESCR to each such pair, we can be sure that we have a

consistent extension of Qj'

E. Simple Versions of EXTENDER

Let us consider a primitive version of EXTENDER, EXTENDIL,

which exploits these few ideas.

Extendl[al;AXSET]:=

(1) Let analist = (al), the set of active analogies.
(2) 1If aj is complete, STOP.
(3) Partition AXSET into {ALL, SOME, NONE} relative to Q..

(4) set imlist to shortdescr[aj].
If imlist = ¢, mark aj as BARREN and go to 7.

(5) Set unimages to the subset of imlist that has only one
candidate analog for each axiom.

If unimages = ¢, go to 7.

(6) Apply MAPDESCR to each axiom and its analog that appears
on unimages. If MAPDESCR adds a new analogy, add it to

the end of analist.
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(7) I analist is cmpty., STOP.

Otherwise, sot aj to the next element on analist. Go

to 2.

The success of EXTENDL dis highly dependent on the clauses in
the data base. If there are few clauses, then it is likely that some
axy, € SOME will have but one image under SHORTDESCR at esch itera-
tion and that EXTENDL will be successful. As the data base
increases in size with ever more clauses involving predicates that
will appear in proof[TA], it becomes more likely that SHORTDESCR
will generate several images for every ax, € SOME in some iteration.
At this point it will fail to extend aj and miss the analogy alto=-
gether. To remedy this situation, we need a way of dealing with
cases in which SHORTDESCR returns several candidate images for each
ax, € SOME. We need some way to select the clause from the candidate
set that is most likely to be the anglog we seek. When EXTENDER
meets a situation of this sort, it orders all the images according to
their liklihood of being analogous to the ax, € AXSET with which
they are paired. I will initiate the description of one such order-~

ing relation by a simple example.

Consider, for example, the clause ¢ and an analogy 02 that

10
includes
intersection ~ intersection
subgroup ~ subring
c1p:  subgroup[x3y;*] V. —group[x;¥] vV —group[y;*¥] v —subset[x;y]
dyq: negfgroup], negl[subset], pos{subgroup]
GQ[le} = pos|subring].
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Suppose our data base contains two clauses ¢ and ¢ that sat-

11 12
isfy ag[dlo] :

Cyqt = subring[m;r;¥;+] v —ideal[m;r;¥;+]

dyqt = neg(ideal, pos(subring)

Cipt subring[xsa;¥;+] V-aringla;¥;+] v ring[x;¥;+]
V —subset[x;al

dl2: = neg[ringl, neglsubset], pos[subring] .

We can compare and ¢ by comparing dll and 4 with

‘11 12 12
d, (relative to QB) . We want a partial ordering of a set of
deseriptions relative to a target description and a particular

1
with respect to . A simple can be developed as follows:
®a

analogy — €.g8., a @d[dl;dggd aj] —~ that orders description 4

Let:
d; =dy - Gj[d]
d) = dy - aj[d]
a’ =4 - aj[d] .

For di and dé compute the number of features — e.g., pos — in com-

mon with d’.

The description with the most features in common is closest to

d. In our example, we have

dllO = neg[group] , neg[subset]
7 _ .
d 11 = neg[ideall]
d'12 = neg[ring],neg[subset] .
! . Il ! I'4

Clearly, d12 is closer to le than dll’ so we select d12’
our cloges description, and Cip a8 the image of 10 under 02-
After MAPDESCR maps ¢io ~ Cip it will add:
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group

subset

to G, to

G§3

~ ring

~ subset

create an Q.

5

intersection ~ intersection
subgroup ~ subgroup
group ~ ring

subset ~ subset .

A more sophisticated gy can look st the semantic types of predicates

that share
the gimple

common features if two descriptions are equivalent under

¢y described above.  EXTENDER uses an operator called

MULTIMAP to select the best image (using ¢d) for a clause that has

several candidate images with a restricted description under aj.

Exploiting

this notion, we can write a more powerful EXTENDER

called EXTEND2.

Extendz[al;.AXSET]: =

(1)

(2)
(3)
()

(5)

Let analist = (al . Qj), the list of active analogies.
Start with analist = (al).
ir Qj is complete, STOP.
Partition AXSET dinto {ALL, SOME, NONE} relative to a-

Set imlist to shortdescr[aj].
If imlist = @, mark aj as "infertile" and go to 8.

Set unimages to the subset of imlist that has only one
candidate analog for each axiom.

If unimages = ¢,'go to 7.

Apply MAPDESCR to each axiom and its analog that appears
on unimages. If MAPDESCR adds a new analogy, add it to
the end of analist. Go to 8.
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(7) Apply MULTIMAP to imlist to select an optimal candidste
image under 93 for each axiom. Set unimages 1o this

list of axioms paired with best candidates. Go to 6.

(8) If analist is empty, STOP.
Otherwise, set aj to the next element on analist. Go
to 2.

This version of EXTENDER 1s quite powerful and will handle a
wide variety of theorem pairs. The implemented versions of
EXTENDER are far more complex than these simplified tutorial ver-
sions. They (1) allow backup, (2) have operations for combining a
set of partial analogies into a "larger" analogy consistent with
all of them, (%) have a sophisticated evaluation for deciding which
particular axiom-candidate set to pass to MULTIMAP (in lieu of
Step 7 above), and (4) can often localize which predicate associ~
ations are contributing to an infertile analogy when one is generated.
Table 2 contains a briefl summary of ZORBA~I's behavior when it is
applied to five T - TA pairs drawn from abstract algebra. The
number of partial analogies generated includes al generated by
INITTATL~MAP.
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Table 2
SUMMAKY OF ZORBA-I PERFORMANCE

Theopen | Womber of | Number of | Number of NX‘QZEZ °f | Number of
eore Predicates | Predicates | Axioms in 208 Partial
Pairs . ‘ Axioms .
in Theorem | Mapped by | Proof [T] Found by Analogies
Proof TI-MAP EXTENDER by ZORBA-I
T, - T, 9 5 15 15 5
T5 - Th 12 5 13 17 T
T5 - Tg 8 3 21 23 5
T9 - T, 7 2 12 16 6
Tl : The intersection to two abelian groups is an abelian subgroup
of the parent group.
T2 : The intersection of two commutative rings is a commutative
subring of the parent rings.
T. : A factor group G/H is simple if H is a maximal normal
5 subgroup of G.
Tu : A quotient ring A/C is simple if C is a maximal ideal in A.
T5 : The intersection of two normal groups is a normal group.
T6 : The intersection of two ideals is an ideal.
T7 : The homomorphic image of a subgroup is a subgroup.
T8 : The homomorphic image of a subring is a subring.
T9 : The homomorphic image of an abelian group is an abelian group.
Tloz The homomorphic image of a commutative ring is a commutative

ring.






VI  EXPERIMENTS WITH ZORBA-T

A. Introduction

Our previous discussions have been rather abstract and have
drawn upon various examples in a piecemeal fashion. Now we are
ready to explore the behavior of ZORBA-I when it is applied to a
full-scale problem. In this exposition, descriptions of the
algorithms have preceded any experimental results. This ordering
is pedagogically motivated, to allow briefer explanations to accom~
pany the experiments that are reported here. Also, ‘this order
parallels the history of ZORBA-I's development. These algorithms
were first conceived during the Winter of 1969 and briefly reported
at the Machine Intelligence Workshop held at Stanford University in
February of that year. They were favorably received, but required
implementation and experimental validation to tesgt their value. At
that time several key ideas were visionary leaps. Attempting to
reduce the size of a data base used by a theorem prover by exploiting
an analogy was well conceived (on paper) at that time. A simple
form of EXTENDER involving clause descriptions and a sequence of
partial analogies were integral to the conception. All of these
ideas were developed in a testable form. But there were no guaran-
tees to their validity or value. For example, in the earliest con-
ception, clause descriptions were static through EXTENDER's search.
There were no guarantees that different descriptions might not be
needed‘at different stages of search. It turned out that both
approaches were needed. A static description, descr[c], is computed
for a clause. At each stage EXTENDER uses a gelect subset of this

description, based on G?

to compute a restricted description, to
search for analogous clauses. The notion of a restricted description,
as well as several refinements of EXTEND2 that are developed in this
chapter, were conceived after a crude version of ZORBA-I was imple-
mented. EXTENDER was developed in an interactive time-gharing

environment (using PDP-10 LISP). It is unlikely that the program
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would have progressed very far with a paper and pencil approach only.
A data base of 239 clauses dealing with abstract algebra, called
AIGRASE (Appendix B) was created to provide a sizeable set of axioms.
No existing theorem prover could even attempt to prove any of the
theorems used in these experiments without trimming the data base
substantially. On one hand, the experience gained and the resultant
successes with this large data base were invaluable to developing
ZORBA-T, On the other hand, the massive size of the data base made
hand simulations infeasible. Even to simply decide which clauses
satisfy @j[descr[c]] for a particular analogy aj and clause ¢,

it is helpful to have a computer to quickly search the data base.

At this stage of discussion, we experience a certain creative
tension. We have a set of fruitful, but untested ideas. Will they
work? I labored with ZORBA-I under this tension for over a year and

found the succesges that I am presenting here.

ZORBA-I was developed by structuring it to run on two problem

pairs, Tl—T2 and T 'Tu (Table 2). Later, it was run on the remaining

problem pair (Tablz 2) and successfully created the appropriate
analogies without difficulty. In the course of its development,
EXTENDER underwent several changes. FEach change was accompanied by

a new insight into the process of analogy generation. These insights
will be presented in this chapter along with the glgorithms that
embody them. Prior to examining ZORBA-I's behavior in greater detail,
I want to introduce a representation that will simplify our under-

gtanding of ZORBA-~I's operation.

B. Analogy Space

At the highegt level, we can look at ZORBA-I's behavior in terms
of the partial analogies that it generates. IFigure 10 portrays a

simple space containing seven (partial) analogies.
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1 MULTIMAP

SHORTDESCR . SHORTDESCR

MULTIMAP

FIGURE 10. A SAMPLE ANALOGY SPACE

The arrows between the nodes that represent partial analogies
are labeled with SHORTDESCR and MULTIMAP, which were described in the
last chapter. Each of these is a search procedure for finding a
clause from the data base (here ALGBASE) that is likely to be analo-
gous to a clause in AXSET. The association of the clauses is used
to extend a partial analogy aj to :aj+l° SHORTDESCR and MULTIMAP
can also be viewed as operators that extend (transform) one partial
analogy into a more complete partial analogy. A grealt deal of com-
putation is hidden below this level of description, but is determined
by it. For example, in Figure 10, Gg is extended from ay, by
SHORTDESCR.  We know that ah induces a unique partition of AXSET
into all[af], some[aﬁ], and none[@i] (Chapter III). Since g
is the only extension of @u’ we presume that SHORTDESCR found only
one ax, € SOME with but one image, Cj' We know that descr[axk] is

matched with descr[cj] to create the new a6p.
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A great deal of ZORBA~I's behavior can be concisely represented
by the analogy space representation of Figure 10. It presents
ZORBA's decision procedures explicitly by showing which partial
analogies are directly related, and, implicitly which operators
failed. For example, we know that shortdescr[aj] failed if MULTTI-
MAP is used to extend aj' Here each Gj is the abstract set of
mgps defined in Chapter III. As our discussion unfolds, a partial
analogy will become more concrete as it is elaborated through vari-

ous examples.

c. ZORBA-I in Action

We are just about ready to watch ZORBRA-I generate an analogy.

Let's consider the theorem pair Tl - T2.

Tl: The intersection of two abelian groups is an abelian sub-
group of the parent groups.
T : The intersection of two commutative rings is a commuta~

tive subring of the parent rings.

Suppose a theorem~prover (QA3) has proved T, and wants to

1
prove T2. Furthermore, suppose 1t knows that Tl and T2 are anglo-

gous .
ZORBA-I is given the following information:

(1) o, x
1 : ¥Y(a b c ¥) abelian[a;x] v abelian[b;*] Vv inber-

section[csaib] — absubgroup[c;a;*]

() TQI: V(x y z ¥ +) commring[x;¥;+] vV commring[y;¥;+]

vV intersection{z;x;y] —commsubring|z;x;¥;+].

*
See Appendix A for the definitions of these predicate symbols
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L (3) The (resolution) proof tree of theorem T, (Table 3) from
which 1t extracts AXSET, the set of axioms used in the proof

(Table L).

These three items are problem-dependent. In addition, ZORBA-I
can refer to the semantic template (Appendix A) of any predicate, and
it can access a large data base. In these experiments ALGBASE

(Appendix B) is the data base used.

When ZORBA-I starts on the problem just presented, it first exe-
cutes initial—map[Ti; Té] to find analogs for the predicates inter-
section, abelian, and absubgroup with members of the set
{intersection, commring, commsubring}. This process was described

in some detail in Chapter III. INITIAL-MAP outputs a single analogy
a .

K
Glp: intersection ~ dintersection

. abelian ~ comuring

- absubgroup -~ commsubring -

’ Next, EXTENDER is applied to @, and it attempts to find an

. analog for each axiom 1n AXSET. In the process, it generates a

- sequence of several analogies (Table 5) which terminates in a com-

- plete analogy (Table 6).

Table 3
RESOLUTION PROOF OF THEOREM Tl'

o 1 *abelian[al, starh] negation of theorem
2  group[x, star]-abelian[x, star] axiom

| 3  grouplal,star 4] from 1,2
- 4 abelian[bl,stark] negation of theoyem

continued

*
See Appendix A for definition of predicate symbols and Appendix B
for description of clause format.
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10
11

13

1L

15
16
17
18

19
20
21

22
23
2L
25
26

27
28
29
30

Table 3
Continued

group[ bl,stark]
intersection[xl,al,bl]

group[k,star] - intersection[k,g,hl
~grouplg,star] ~groupl[h,star]

group[xl,star] -group[al,star]
-group|bl,star]

group[x1l,stark] -group[al,stark]
group| x1,stark]

subset[x,y] -intersection[x,y,z]
subset[xl,al]

subgrouplh,g,star} -subset[h,g]
-group[g,star] -group[h,star]

subgroup[xl,al,star] -group[al,star]
-group|[x1l,star]

subgroup[xl,al,stark] -group[xl,stark]
subgroup[xl,al,stark]
~absubgroup[xl,al,stark]

absubgroup[x,y,star] ~-abelian[x,star]
~subgroup[x,y,star]

~abelian[xl,stark] ~subgroup[xl,al,stark]
~-abelian[xl,stark]

abelian[g,star] -group[g,star]
~commutative[ star,g]

abelian[x1,starl] -commutative[starh,x1]
~commutative[ stark ,x1]

commutative[ star,s] in[sk4[star,sl,s]
in[ skh [ stark ,x1]

infa,z] -in[a,x]
~intersection[x,y,z]

inla,bl] -in[a,x1]
in[ skl [stark ,x1]bl]
commutative[star,g] -abelian[g,star]

commutativel stark,bl]
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negation of theorem

from 4,2
axiom

from 6,7
from 5,8
from 3,9

axiom
from 6,11

axiom

from 12,13
from 3,14
from 10,15

negation of theorem

axiom
from17,18
from 16,19

axiom
from 10,21
from 20,22
axiom

from 23,24

axiom

from 6,26
from 25,27
axiom

from 4,29



31
30
33
34

35

27
38

39

Lo

L1
Lo
b3

Table 3

Continued

commutative[ star,s] in[sk3[star,s]s] axiom
in[sk3[stark ,x1] ,x1] from 23,31
in[sk3[stark,x1],bl] from 32,27
commutative[star,s] -times[star,skh[star,sl,skB[star,s],c]axiom
~times[stark,skh[stark,x1],sk3[stark,x1],c] from 23,34
commutativelstar,s]

times[star,sk3[star,s],skk[star,s],sk5[star,s]] axiom

times[ stark ,sk3[stark ,x1] ,skk[stark ,x1],sk5[stark,x1]] from 23

times[star,b,a,c] -inf[a,s]
-in[b,s] -times[star,a,b,c]

-commutativel star,s] axiom
times[ starl ,skd[stark ,x1],sk3[ stark ,x1],c] -in[sk3[stark,x1]s]
-in[skb[stark ,x1],s] ~commutative[stark,s] from 37,38
-in[sk3[stark,x1],s] ~in[sk4[stark,x1],s]

~-commutative[ stark,s] from 35,39
-in[ ski[stark ,x1], b 1]~-commutative[ stark ,bl] from 33,40
-in[ski[stark,x1],bl] from 30,41
contradiction from 28,42




ABSGPT~1

ABSGPT~2

ABSGPT-3

ABSGPT-k

ABSGPT-5

ABSGPT-6

ABSGPT~T

ABSGPT-8

ABSGPT-9

ABSGPT~10

ABSGPT-11

ABSGPT~12

ABSGPT~13

Table L
AXSET FOR ABSGPT (THEOREM Tl)

group[x;star] V—abelian x;star]
negl[abelian] pos[groupl

groupl[k;star] V —intersection[k;g;h] Vv —group[g;star]
V —group[h;star]
negl[intersection]  impcondfgroup]

subset[x;y] V—intersection]x;y;z]
neglintersection]  pos[subset]

subgroup[ h;g;star] V—subset[h;g] VvV —group[g;star]
V —group[h;istar]
neg[group] neg[subset]  pos|subgroup]

absubgroup[x;y;star] V abelian[x;star] vV —subgroup[x;y;star]
neg[ subgroup] neglabelian] pos[absubgroup]

abelian[g;star] v qgroup[g;star] V qcomutative[star;g]
negl[commutative] neglgroup pos[abelian]

commutative[star;s] v in[skk(star;s),s]
pos[in]  pos[commutative]

inlasz] v—in[ajsx] v intersection[x;y;z]
negl intersection] impcond[in]

commutative[ star;g] vV Tabelian[gsstar]
neglabelian]  pos[commutative]

cormutative[star;s] v in[sk3(star;s),s]
pos[in]  pos[commutative]

commutative[ star;s] vV —times[star;skh(star,s), sk3(star;s),c]
pos[in]  pos[commutative]

commutative[star;s] V times[star;sk3(star,s),skk(star,s),
sk5 (star;s)]
pos[times]  pos[commutativel]

times[star;bsa;c] vin[ajs] vin[bss] v—times[star;a;b;c]

V "icommutative[ star;s]
neg[ commutative] neg[in]  impcond[times]
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Table 5

ANATOGY SEARCH SPACE FOR

Tl-! - Tg[

1

intersection ~ intersection
abelian ~ abelian

absubgroup ~ commring /./

SHORTDESCR
¥
ABSGPT-5 ~ AX127-1 )
(ﬁgggi:; . fx?; j) \\S\ubgroup ~ subring
¢ MULTTMAP-1
a
ABSGPT-k ~ AX12-1 3
(ABSCPT-3 ~ ({AX9-1;AX9-2}) subset ~ subset
' group ~ ring
MUTIIMAP-1
) 4
ABSGPT-6 ~ AX38-1 / q,

(ABSGPT-9 ~ AX142-1) ‘ ]
\commutative ~ commutative
—

MULTIMAP-1
{J

ABSGPT-13 ~ AX51-1 a_

(ABSGPT-7 ~ [AX51-1, AX51-2} 7

ABSGPT-8 ~ {AX60-1,AX60~2,AX60-3} in~ in

ABSGPT-10 ~ {AX52-1, AX52-27
ABSGPT-11 ~ AX52-k
ABSGPT-12 ~ AX52-3%)

times ~ times

S SOOI
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Table 6

COMPLETE ANALOGY (a5) FOR ABSGPT

intersection ~ intersection
abelian ~ commutative
absubgroup ™~ commsubring
subgroup ~ subring

subset ™~ subgset

group ~ ring

commutative ~ commutative
in ~ in

times ~ times

ABSGPT-1 ~ AX33-1

ABSGPT-2 ~ AX4T7 -1

ABSGPT~-3 ~ {AXO~1; AX9-2}
ABSGPT-4 ~ AX12-1

ABSGPT~-5 ~ AX127-1

ABSGPT-6 ~ AX38-1

ABSGPT~7 ~ {AX51-1; AX51-2}
ABSGPT-8 ~ {AX60-1; AX60-2; AX60-3}
ABSGPT=-9 ~ AX142-1
ABSGPT-10 ~ {AX52-1; AX52-2}
ABSGPT~11 ~ AX52-L

ABSGPT~12 ~ AX52~3

ABSGPT-13 ~ AX51-1

% .
The ABSGPT~; axioms from AXSET appear in Table 4 and the AXn-k
axioms from ALGBASE appear in Table 7.
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AX9-1

AXO-2

AX55-1

AX38-1
AXLT -1

AX51-1

AX52-~1
AX52-2

AX52-3

AX52-L

AX60-1

Table 7

CLAUSES FROM ALGRASE (Appendix B)
ANALOGOUS TO AXSET FOR ABSGP {Table L)

subset{x,y] Vv —~intersection[x,y,z]
neg[intersection], pos[subset]

subset[x,z] V —intersection[x,y,z]
neg[intersection]), pos[subset]

subring[x,a,star,plus] V —ringla,star,plus]
—subset[x,a] V —ring[x,star,plus]
neg[subset], neg[ringl, pos[subring]

ring[r,star,plus] V —wcommringr,star, plus]
neg[comringl, pos[ring]

commring,star,plus] V-ringer,star,plus]
—comnmutativelstar;r]
neg[ commutative] neg[ring] pos[commring]

ring[x,star,plus) V —ringfa,star,plus]
—ring[b,star,plus] V —intersection[x,a,b]
neg[intersection] impcond|[ring]

times|[ star,b,a,sk73[b,a,star,s]] V—-infa,s] v
—in[b,s]V—times[star,a,b,sk73[b,a,star,s]]V
—commutative[ star,s]

negl coomutative] negl[in] impcond[times]

comm[star,s] V in[sk75[star,s],s]
pos[in] pos[commutative]

commutative[star,s] Vv in[sk76[star,s],s]
pog[in] pos|commutative]

‘commutative[star,s]vtimes[star,sk75[star,sl,sk76[star,s]v
[star.,s]]
pos[times] pos|commutative]

commutative[star,s]v-times|star,sk76[star,s],sk75[star, g], cl
neg[times] pos[commutative]

in{x,clV —in[x,a]V

—in[x,b]lV—intersection[c,a,b]
neglintersection] impcond[inl]
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AX60-2

AX60-3

AX127 -1

AX1L2-1

AX142 -2

AX1h3-1

in[x,b] v—in[x,c] v
—intersection[c,a,b]
neglintersection] impcond[in]

in[x,a]\/ﬂin[x,c] \
—intersection[c,a,b]
negl[intersection] impcond[in]

commsubring|x,y,star,plus] V wcommringx,star,plus]
—subring[x,y,star ,plus]
neg[ subring] negfcomring] pos|commsubring]

commutative[ star,r]Vv—commring[r,star,plus]
neg[ commring] pos[commutative]

ring[r,star,pluslv—commring[r,star,plus]
negf commring] pos[ring]

comnring[r,star,plus] v —commutative[star,r]

—ringlr,star,plus]
neglring] negl[commutative] pos[commring]
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Table 5 presents an elaborated version of the analogy space
search that was introduced in Figure 10. Each partiasl analogy,

@j , 1is depicted with the incremental information it adds to aj-l'
For example, @ is shown associating the predicates

3
commutative ~ commutative and the clauses ABSGPT-6 ~ AX38-1. This

means that

ap = Gg U commutative =~ commutative.

3
05 was created by associating the axiom ABSGPT-6 from AXSET

(Table 4) with the clause AX38-1 from AIGBASE (Table 7).

The clause assoclations that appear in parentheses next to the
node representing QB contain an association between ABSGPT~3
(from AXSET) and {AX9-1, AX9-2} (from AIGBASE). Both of these

clauses from AILGBASE satisfy QB[descr[ABSGPT—B]], and they are

associlated after @ is created : ¥

3
ABSGPT-3: —intersection[x;y;z] V subset[x;y].

P
a

Consequently, we can immediately seek its analog after creating .

contains the analogs of both predicates that appear in ABSGPT-3.

Certainly, no descendant partial analogy aj (3 > 3) will add any
new information to aid us in finding the analog of this axiom. In
addition, we can see that Q

3
tion of an operator MULTIMAPL, which is a close relative of MULTIMAP

is created from a2 by the applica-

and will be described below. ZORBA~I generates a complete analogy

8. as the fifth term in a sequence of fertile partial analogles.

5
Now, this description of ZORBA~I is quite informative to a per-
son intimate with the algorithms employed. Substantial computation

that is integral to ZORBA-1 is unrepresented in Table 5 and needs to

"For simplicity we will refer to [AX9-1, AX9-2} as the image of
ABSGPT-3, since these two clauses are description-equivalent. We
will speak of (candidate) images of an axiom when these are two
or more sets of clauses that are not description~equivalent.
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be elaborated for an uninitiated reader. For example, SHORTDESCR
searched for the images of many clauses (SOME) when extending a,
and found that one clause (ABSGPT-5) had but one image. The
results of the other searches are omitted in the "analogy space pro-
tocol" represented in Table 5. MULTIMAPL is used to select a
likely image clause for an axiom that has more than candidate image

based on heuristic ordering function g, (Chapter V).

Table 8 fills in a sample of this detail in portraying a little
of the information flow through SHORTDESCR. We can see that
shortdescr[al] finds at least one candidate image for each clause in
SOME. Only one axiom (ABSGPT~5 from Table 4) has only one candidate
imgge. It is passed onto MAFDESCR to create ag
predicate assoclations that arise from mapping the description of

ABSGPT-5 with the description of AX1ZT7-1.

from aﬁ and the

A new analogy 02 is created and is checked to see whether

ag 95@? for any aj. Here, the only anaslogy generated so far

is Gg(zrag . (In fact, O€<: Qg . ) Referring to Table 7 we see
how ag is created from al by SHORTDESCR associating ABSGPT-5

with AX127-~1. We can also see that this association adds

subgroup ~ subgroup
to aﬁ and creates a larger ag

D

a, : intersection ~ intersection 0
abelian ~ commring
abeligansubgp ~ commring
subgroup ~~ subring .

Finally, @2 is added to the list of active analogies, and since it

is the only unextended analogy, it is extended next.
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Table 8
SEGMENT OF PROTOCOL FROM FXTENDER SEARCH

(a)

EXTEND al (generated by INITIAL~MAP)

PARTITION AXSET
AIL =

SOME

1f

{ABSGPT-1; ABSGPT~2; ABSGPT-~%; ABSGPT-5; ABSGPI-8;
ABSGPT-9}

NORE

i

{ABSGPT-4 ; ABSGPT-T; ABSGPT-10; ABSGPT-11; ABSGPT-12;
ABSGPT~13}

APPLY SHORTDESCR TO SOME

ABSGPT~1  has 7 candidate images under aﬁ

ABSGPT-2  has 9 candidate images under aﬁ

ABSGPT~% has candidate images under aﬁ

9
ABSGPT~5  has 1 candidate image under aﬁ
6

ABSGPT-6  has 6 candidate images under aﬁ

ABSGPT-8 has 9 candidate images under aﬁ

ABSGPT~9 has 7 candidate images under ag

Select axiomg from AXSET with 1 candidate image
APPLY MAPSESCR to ABSGPT-5 and AX127-1

Create Gg

02 is a new partial analogy

Select the next partial analogy to extend: @2
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Table 8
(Concluded)

(b)

EXTEND ag

PARTTTION AXSET
ALL = {ABSGPT-5}

SOME = {ABSGPT-1, ABSGPT~2, ABSGPT-3, ABSGPT-4, ABSGPT-6,
ABSGPT-8, ABSGPT-9}
NONE = {ABSGPT-7, ABSGPT-10, ABSGPT-11, ABSGPT-12, ABSGPT-13}

APPLY SHORTDESCR to SOME
SELECT BUGSET SOME
BUTSET = {ABSGPT-4}
ABSGPT-4 has % candidate images under a,

APPLY MULTIMAPL to ABSGPT-4 and its candidate images:
(AX12-1, AX126-2, AX128-1}

ORDER the candidate image set by Pq AX12-1 ig the best can=
didate

APPLY MAPDESCR to ABSGPT-4 and AX12-1

CREATE 03.
ap is a new partial analogy

3
SELECT the next partial analogy to extend: 65

EXTEND 63

PARTITION AXSET

ALL = {ABSGPT-1, ABSGPT-2, ABSGPT-3, ABSGPT-4, ABSGPT-5}
SOME = {ABSGPT-6, ABSGPT-8, ABSGPT-9}

NONE = {ABSGPT~7, ABSGPT'-10, ABSGPT-1l, ABSGPT-12, ABSGFT-13}

1l

Il
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AXSET is partitioned with respect to @2p (Table 8a), and we are
ready to execute shortdescr{@ ] in a little detail (Table 8a):

SOME[CEE]: = {ABSCPT-1, ABSGPT-2, ABSGPT~3, ABSGPT-~L,
ABSGPT-0, ABSGPT~3, ABSGPT~9}

ABSGPT-L : —group[ h,*]] V —group[g;*] Vv osubset[h;e?
Vv subgroupl[h;g;*]

ABSGPT=6 ; —commutative[*;g] V —grouplg;¥] v avelian(g;*]

alp[descr[ABSGPT~6] = agp[descr[ABSGPT~6} = posf[abelian].

Since @, P does not add any infcocrmation to al about addinio.:

2

predicates in ABSGPT-6, the search for any clauses that satisfy %,

regtricted dsscepticn will Tz fdevitical in shortdescr[am]. In corn-
<

trast, agp did add the analog of the predicatbte SUBGROUP which

appears in ABSGPT~L :

alp[descr[ABSGPTmh]] o Qgp[descr[ABSGPT—h] = pos|subgroup] .

We expect that G2 will enhance our ability to search for the
analog of ABSGPT-4, but will add nothing to our search for the
analog of ABSGPT-6. Shortdescr[ag] should seek the analog of
ABSGPT-4 (and any clanses that it similarly effects) and skip over
those clauses that do not contain predicates that Ggp added to
le. In this case, ABSGPT-L4 is the only cleuse that @QP informs
us about. {(The only other clause in AXSET that references the
predicate SUBGROUP was used to create GQ). Often, but not in this

problem, the "budding set" containg several members.

Definition: An axiom ax, € some[dj] is a member of budset {@j]
iff axy includes some predicate p ‘that is contained (with analog)

3 P - P N 3 2 4 . K]
in aj G 517 where “3-1 ig the ilmmediagte parent of @jc
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By limiting our searches in SHORTDESCR to BUDSET, we eliminate
much excess computation. For example, here some[ag] contains seven
axioms, but we will only search for an extension to 02 with one of
them. When the data base D 1s large, these searches are rather
costly, and the restriction of SHORTDESCR to BUDSET is imporftant for
computational efficiency. In addition to this pragmatic issue, we
have an important theoretical observation. Suppose a clause axy
in budset[@j] fails to have an image under 03“ If we can assume
that the appropriate analog of ax, is in D and satisfies
a[descr[axk]] for the correct analogy @, then we know that @jp
containg at least one faulty predicate association. Clearly, this
improper association is in the set a.p - Qp._l, since previously
(at Gj-l) we had either (1) no search ax, € none[aj_l]). The use
of BUDSET enables us to localize the error in a faulty Gj when one

arises.

Let's return to our discussion of EXTEND=3's behavior with
T, - T, Shortdescr[ag] is invoked to search for the image of
budset[ag] and finds that one axiom (ABSGPT-4) has an image set. It
then uses MULTIMAP-1 to order the image set by o, (Chapter V) and
associates ABSGPT-4 with the most likely candidate clause (AX12~1)
from ALGBASE.  MAPDESCR is invoked again, and a new partial analogy,
65° is created. EXTENDER iterates again and continues its process
until it finds the complete analogy (Table 5).

By now the reader should have a good grasp of ZORBA-I's inner
processes. In order to follow its behavior through the remaining
experiments that it performed, I need to describe two operators that
extend a partial analogy. First, we need to explore MULTIMAP, which
was introduced in the last chaplber with EXTENDERZ2. Then, we can
consider a new kind of operation (called CHUNK) which can accrete

("chunk') one "superanalogy" from merging two or more partial analo-

gles.

%



MULTIMAP was described (Chapter V) as an extension process that
allows MAPDESCR to be applied to an axiom ax, € SCOME, and the most
likely of several candidates that are ordered by a likelihood func-
tion 04 A simple 04 has already been outlined, and MULTIMAP
was described as applying MAPDESCR to each axiom with more than
one candidate image. In our preceding discussion we considered s
simpler version of MULTIMAP, called MULTIMAPL, This operablon
attempts to extend aj only if SHORTDESCR failed and budset[@j]
had but one member with more than one candidate image. These
candidates {cj} are ordered by 04 and MAPDESCR, applied to
ax and the best clause, Cps under this ordering. This procedure
is adequate for generating an analogy for Tl - Tl (Table 5). This
particular problem is the only one of the difficult four (Table 2
that can be solved with only SHORTDESCR and MULTIMAPL. We need ho
discuss how ZORBA~I behaves when SHORTDESCR fails and BUDSET con-
tains several members, each with several candidate images, as well
as the behavior of ZORBA-I when SHORTDESCR succeeds with a BUDSET

with several members., We will discuss the first item next.

D. An Example of MULTIMAP

In our preceding example, each partial analogy could be extended
by the application of SHORTDESCR on MULTIMAPL, If shortdescr[aj]
failed, then only one clause (axk) in budset had more than one can-
didate image. aj could be extended by ordering the candidate
image set by 94 and associating the best candlidate with ax,

This serendipitous arrangement occurs rarely if shortdescr[aj] fails.
Typically, if shortdescr[aj] failsg, several clauses will have more

than one candidate image. We are then faced with twc decisions:

(1)  vhich in BUDSET shall we decide to map with their
aXy

candidate images?

(2) Which candidate image shall be selected for each clause?
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We have already decided the answer to Question 2 by using d
to order the candidates. Our answer to Question 1 is really at

issue here. We have several choices:

(1) Extend Gj to several distinct partial analogies by

pairing each ax, BUDSET with its best candidate image

k
under Pq°
(2) Extend aj to one partial analogy by pairing only one

axy € BUDSET with its best candidate image under 9q°

ZORBA~I chooses the last of these three alterngtives for two

reasomns:

(1) Two extensions of the same analogy often result in
redundant searches. (This issue is discussed in

Section E of this chapter.)

(2) More than one extension of an analogy at each stage of

iteration will enlarge the search space exponentiaglly.

Now, we know (Chapter V) that if aj[descr(axk)] yields

a candidate image set with more than one member, we can
expect that our desired image is in this set if ajp is
valid. If we extend @j by mapping only one ax, € BUD-
SET, we will pick up the remaining elements of BUDSET at

some other level (k>j) of iteration.

We need some @C[cl;cg] that will order the clausesg in BUDSET
based on their (heuristic) desirability. ZORBA-I uses two criteria

in ordering BUDSET (relative to Qj):

(1) If a clause ¢, has more features available (based on

Gj[descr[c]] than a clause c,, We should prefer cy to

Cpe Each feature available in the restricted descrip-

tion helps us harrow the search for its desired candi-

date image.



(2) If two clauses ¢, and ¢, are equivalent by the pre-

ceding criterion,Ltnen we might prefer ¢y to ¢, by a
sccond criterion. ¢d>is a heuristic ordering function;
it might give us the wrong image for a particular clause.
If we add fewer new predicates to Q.p, we take less risk

in aj than if we add more predicates (and err).

ZORBA-I uses both criteria in their obvious order to create a
clause~-ordering function 9.- Since we have a R that is oriented
toward providing the clause that will give us additional information
at the least risk, MULTIMAP runs 9, over SOME. Occasionally, 9,
will prefer clauses that do not appear in BUDSET since their
restricted description has more features than that of any clause in
BUDSET. (The following example will illustrate this point more
fully.) Using ¢,> we can write MULTIMAP as follows:

Multimap[aj]:=
(l) Order budset[aj] by P, described above.
(2) Select the best element axy, of SOME.

(3) Find the set {Cj} of clauses from the data base that

satisfy aj[descr(axk)] .
(&)  Order {cj} by -

(5) Apply MAPDESCR to ax._ and ¢35 the best clause in {éj}.

k
(6) Check to see if mapdescr[axk;cj] U ajp creates a new
D - .
Gj+l . If so, create Gj+l and exit.

(7) set ax, to the next best element of budset[aj].
If all have been tried, execute an error. Otherwise, go to (3).

We have just defined MULTIMAP as it is used by ZORRBRA-~I. Both
9. and g are treated as functional parameters, and we can have a
family of MULTIMAP operators with each one having a particular pair

of heuristic ordering functions R and 94
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We are now ready to consider a particular example, T5 - T6,
from Table 2. The analogy-space search for this pair of theorems
is shown in Table 9. SHORTDESCR and MULTIMAP are invoked alber-

. Since T on-
5 5 °©
cerns a property of intersecting normal groups, this problem pair is

referred to as INTNOR. The axioms (AXSET) are listed in Table 10

nately to generate a final complete analogy @

and the reader is referred to the listing of ALGBASE in Appendix B.

To check which axioms are paired with them in Table 9, let's
look at an iteration of EXTENDER that invokes MULIIMAP. EXTENDER
finds that shortdescr[QB] fails. It then orders some[GB] as in
Table 11. These clauses fall into three @C—equivalent groups .

The first group, INTNOR-13...INTNOR-19, could add one predicate to
ag and have two features available for a search. A second set
composed of {INTNOR-l, INTNOR-2, INTNOR-3, INTNOR-5} also could add
one predicate to Og , but have a restricted description with only
one feature. The last set 1s composed of but one axiom, INTNOR~21,
which could add three predicates to QBP

a3p add subset ~ subset to @2P and budset[ag] equals {INTNOR-51}.

if its analog were found.

However, we don't want to search for the image of INTNOR-5 in
preference to any of the clauses preferred by P, The clauses of
the first set in Table 11 have fewer candidate images than the

clauses in the two lower-ranking sets. The lasgt column lists the

number of clauses that satisfy 05[descr[axk]] for each axy in

some[@B]. If we choose g clause that has only three candidate
images in preference to one with nine, we can assume that 93 will
have an eagier time in ordering the get. This is not necegsarily
true, and 1ls purely a heuristic decision. We decide to choose a
clause with the fewest candidate images to extend a5° Now, we
don't want to search for the candidate images of every axiom in
some[QB], since these searches are expensive. Thus, we use the 9.
above to order clauses by their likelihood of having a small candi=~

date image set. The criterion is simple: as the number of features

in a restricted description of a clause increases, 1ts candidate
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Table 9

ANALOGY SEARCH SPACE TOR

T - T( ANALOGY
D p

From INITIAL-MAP
(INTNOR-4 ~ AXW7-1)

intersection

1

group ~ ring
~ intersection
normal < ideal

INTNOR~20 ~ AX128-1 lWLT.T_MAP
(INTNOR=k ~ AX47-1
INTNOR-9 ~ {AX148-1, AX149-11} a
INTWOR-10 ~ {AXIN8-2, AX148-2} 2
subgroup ~ subring
SHORTDESCR
A
INTNOR- 8 ~ Ax12-1 0
(INTNOR-6 ~ [AX9-1, AX9-2} .
INTNOR-11 ~ {AX148-31) \ Subset ~ subset

0

|

INTNOR-19 ~ {AX129-6, AX129-7, AX129-8}

({ INTNOR-1, INTNOR-2, INTNOR-3} ~
{AX60-1, AX60-2, AX60-31}

INTNOR-5 ~ AX10-2

{INTNOR-16, INTNOR-17, INTNOR-18} ~
{AX129~6, AX129-7, AX129-8})

INTNOR~-21 ~ {AX128—23 AX128-%,
AX128-4)

SHORTDESCR

5

times ~ times
inverse ~ inverse
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Table 10

AXSET FOR THEOREM T5

T

T

INTNOR~1

INTNOR-2

INTNOR~3

TNTNOR~4

INTNOR~5

INTNOR-6

INTNOR~T

INTNOR-8

INTNOR-9

INTWOR~10

INTNOR-11

57°

The intersection of two normsl groups is a normal
group

grouplg;*] A normalla;g;¥] A normall[b;g;¥]
A intersection[c;a;b]l —normalc;g;¥]

in{x;c] v—in[xjal v —in[x;b] vV —intersection|c;a;b]
neg[intersection], impcond|in]

in[x;bl vV —inf[xjc] V —intersection[ciasb]
neglintersection], impcond[in]

in[xjal Vv —in[x;c] V —intersection[c;a;b]
neglintersection], impcond[in]

group[k;star] v —intersection[k;g;h] v —group|g;star]
V —grouplh;star]
neglintersection], impcond[group]

infa,y] v —in[a;x] Vv —sybset[x;y]
negf subset], impcond{in)]

subset[x,y] V —intersection[x;y;z]
negl intersection], pos[subset]

subset[x;z] V —intersection|x;y;z]
negl intersection], pos[subset]

subgroup[hjgistar] Vv —grouplh;star] v —group[g;star]
V —subset[h;g]
negl subset], neg[groupl, pos|subgroup]

group[hjstar] Vv --subgroup[h;g;star]
neg| subgroup], pos[group]

grouplgsstar] Vv —subgroup[h;g;star]
neg[ subgroup] , pos[group]

subset[h;g]l vV —subgrouplh;g;star]
neg[ subgroup] , pos[subset]

101




Table 10
{Concluded)

INTNOR~12

INTNOR~13

INTNOR~14

TNTNOR-15

INTNOR-16

INTNOR=-17

INTNOR~18

INTNOR-19

INTNOR-20

INTNOR~-21

normal[hjgistar] Vv —subgrouplh;g;star]
(star;gsh];hl
neg[in] negl subgroup] pos[ normal]

normallh;g;star] V — subgroup[h;g;star]

Voo in[ sk

Y

—inverse[star;sk51l(star;g;h); skk9[star;gsn)l
pos[inverse  neg[subgroup] pos[normal]

normal{h;g;star] V —subgrouplh;g;star]

A

times[star;sk50(star;g;hl; skS51[star;g;hl;

sk52[star;gsh)]

pos{times] negl[subgroup] pos[normsal]

normall[hsg;star] V —subgrouplh;g;star] v times[star;

skh9(star;gsh); skh8(star;g;h); sk50(star;g;h)]
pos[times] neg[subgroup]  pos{normsl]

normallh;ig;star] Vv —subgroup[h;g;star]
v in[sk51(star;g;h) gl
pos[in]  negfsubgroup]  pos[normal]

normall[hjg;star] Vv —subgroup[h;g;star]
v in[sk50(star;gsh); Gl
pos[in]  neg[subgroup]  pos[normal]

normall{h;g;star V —subgroup[h;g;star]
v in[skh9(starsg;h); gl
pos[in]  neglsubgroup] pos[normal]

normallh;g;star] Vv — subgroup[h;g;star]
v in[skk8(star;g;n); HI
pos[in]  neg[subgroupl  pos[normal]

subgrouplh;g;star] v ——normal[h;g;star]
neg[normal]  pos[subgroup]

in[ush}] v —in[hhsh] v —in[eg;el]

vV —in[yigl v —in[m;gl v —times|ster;gg;hh;y]
V —times[star;ysmsu] v —inverse[starim;gg]

V —normall[h;g;star]
neg[normal ] neg[inverse] neg[times ]

impcond] inj

52

RETETER
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Table 11

SOME[Gj] ORDERED BY R FOR MULTIMAP

The Fredi- gEZE:Zsogram
e e e
Axioms ap Satis?y the
’ 0ldesc (c)] beseription
Set 1
INTNOR-19 in negf subring], pos[ideal] z
INTNOR~18 in neg[ subring], pos[ideal] Z
INTNOR-17 in neg[ subring], pos[ideal] 3
INTNOR~16 in neg[ subringl, pos[ideall] 2
INTNOR-15 times neg[ subring], pos[ideal] z
INTNOR~-1k4 times neg[ subringl, pos[ideal] Z
INTNOR~13 inverse neg| subring], pos[ideal] Z
INTNOR~12 in neg[ subring], pos[ideal] z
Set 2
INTNOR-5 in negf subset] 9
INTNOR-3 in neg[intersection] 6
INTNOR-2 in neglintersection] 6
INTNOR-2 in negl intersection] 6
Set 3
INTNOR~-21 { in, neg[ideall] 7
timeg,
inverse }

*
See Table 10 for axioms corresponding to the names listed here.
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image sel decreases in size. Computing 9, 1s cheap and allows us
Lo choose a low-risk clause in advance of searching for its candidate

image sot.

Now, all the clauses within the (three) sets in Table 1l are
¢ -equivalent.  MULTIMAP (defined above) just chooses the first
clause, which is ININOR~19 here. It uses this clause to extend 33
to au. EXTENDER then iterates to consider extensions of @u.
Shortdescr[@u] finds a single candidate image for an axiom in

some[au] and creates a final partial analogy, QS (Table 9).

E. The Chunking Process

In our preceding discussilon of SHORTDESCR, BUDSET contained
only one axiom at each stage of iteration. Extending Gj by
SHORTDESCR led to a unique extension aj+l when it was successful.
In general, BUDSET has more than one member, and SHORTDESCR can be
successful in these cases too. In each such event, we can naturally
have several partial analogles, and each is a legitimate extension of
its immediate predecessor. A simple example of this phenomenon is
pregented in Table 12 for an attempt to generate an analogy for
problem T

5
descendants by SHORTDESCR. Both add the associations of different

- T, (Table 2).  Partial-analogy @, has two distinct

predicates to @2p , and they do not conflict. (See Tables 12 and
15.)

EXTENDER creates two distinct descendants, a5 and ah

(Table 12), and continues its search. When a5 is extended to
a5 it adds HOM ~ HOM which is contained in ahp' 0, 1is extended

in rapid sequence %o @6= G7, and 08. EXTENDER then extends 05 to

to 09, and extends ag to alO and Tinds that it has developed a

complete QP for this problem. Unfortunately, it developed a redun-

P

dant line of search: a9<: a?o. A substantial amount of work was

spent in developing QO and (@, that may have been avoided. Suppose

> 9
we created a larger partial-analogy Gﬁl = G% U aﬁ. Since 03 and GM
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Table 12

ANALOGY~SPACE SEARCH FOR T5 - TlL WITHOUT CHUNK

From initial-map a

1
pnormal ~ pideal
MAXTREE-14 ~ gimplegroup ~ simplering
AX131-2 facts ~ facts

group ~ group
maxring ~ maxring

*
MAXTREE-14 ~ AX131-2 MULTIMAP

SHORTDESCR SHORTDESCR

HAKTRRE-9 - a MAXTREE-12
AX1AT -2 - ~
5 normal ~ ideal AX132-1

identity ~ identity
SHORTDESCR ! wLTIMAP
MAXTREE-8 ~ 0g MAXTREE-6 ~
{AX]—55'19 subset ~ subset {AXll8’
AX158-1, AX161-2)
AX159-1}
MULTTMAP MULTIMAP
A
Q
9 4 MAXTREE-10 ~
MAXTREE-3 ~ | subring ~subring normal~ ideal llggE
AX128-1 AX100-1
SHORTDESCR
3 MAXTREE-Q ~
Qg AX137-2

identity~ identity

MULTIMAP
G’lO MAXTREE-L ~
subgroup™subring AX128-3

*3ee Table 13 for definitions of the MAXTREE axioms.
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Table 153

AXSET FOR THEOREM T5

T : If a factor group G/M is simple, M is a maximal
normal subgroup of G.

Grouplgs*] A pnormal[m;g:;*] A facts[x;g;m]
A simplegroup[x;*] - maximal[m;g;*]

MAXTREE-1 —ident[star;x;g] V—opnormallx;g;star]
neg[pnormal] neglident]

MAXTREE~2 normall[x;g;star] V —pnormal[x;g;star]
neg[pnormal] pos[normal]

MAXTREE~3 subgroup{ x;g;star] V —normal[x;g;star]
neg[normal] pos[subgroup]

MAXTREE~4 subset[h;g]l V —subgroup[h;g;star]
negl subgroup} pos[subset]

MAXTREE =5 hom[hommap[ star;nig:x]; g:x] v —grouplg;star]
V —normal[n;g;star]
neg[ facts] neg[normal] v neg[group] V pos[hom]

MAXTREE-6 map|[phisxmap [ x3bjasphi] V — hom{phi;a;b]
V —subset[x;al
neg[subset] neglhom]  pos[map]

MAXTREE~T grouplgsstar] vV —simplegroup[g;star]
neg[ simplegroup] pos[group]

MAXTREE~-8 —identity[star2;y;b]l V —hom[f3a;b]
V —grouplajstarl] Vv —group[b;star2]
v —map[fix;y] VvV identity[starl; x:al
neg[map] negl[group] neglhom]  impcond[ident]

MAXTREE~-9 —normall[y;bsstar2] Vv —identity[star;x;gl
V —psubset[x;g]l V —simplegrouplg;star]
neg[simplegroup] negl{psubset] pos[ident]
neg[ normal]
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Table 13
(Concluded)

MAXTREE-10 normal{y;b;star2] v —groupla;starl]
V —group[b;star2] Vv —group[b;star2]
vV —hom[phija;b] Vv —map[phi;x;y]
V —normal[x;a;starl]
neg[map] negl[hom] neg[group] impcond[normall

MAXTREE-11 psubset[x;g]l V —pnormal{x;g;star] -

MAXTREE~12 psubset{y:b]l V —hom[phija;b]l Vv —group[a;starl]
V —group[b;star?i
neg[map] neg[group] neglhom] impcond[psubset]

MAXTREE~-13 = maximal[m;g;star] Vv —grouplg;star]
V —pnormal[m;g;star]
V pnormal[otherset(star;g;m); g;star]
impcond[pnormal] neglgroup] pos[maximal]

MAXTREE~ 11 maximal[m;g;star] VvV —group[g;star]
V —pnormal[m;g;star] psubset[m;otherset star;g;m]
pos[subset] neg[pnormal] neglgroupl]
V pos[maximall]

are descended from the same partial-analogy a2 by SHORTDESCR and
they do not have conflicting associations, we expect that our super-
analogy will expedite our search. We need to define a new operator

called CHUNK, to create this new "large” partial analogy.

Definition: A partial-analogy @, is chunked from a set of

s
partial analogies {ak} if:
(1) Each of the ak are descendent from the same partial-
analogy @j by SHORIDESCR.

(2) None of the Q.

have conflicting associations in ak? —
e.8., ai has p ~ q and G£+2 has D ~r.
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(3) @, =U, a -

A modified search is depicted in Table 14. A careful compari-
son between the searches with and without CHUNK is quite instructive.
Both develop identically up to @ 0?15 (Table 14) = al;uaﬁ
(Table 12).

Now, MAXTREE-8 is in all[alS] and the node corresponding to .

(Table 12) is not developed. In our CHUNK-free search, @$ adds ’
normal ~ ideal to a6p. In the search with CHUNK, that association
is carried directly from a5 to 615 by CHUNK. Hence, it need not
be developed again. Chunk{GB;QB] is 315 and quite easy to compute,
in contrast to every other partial-analogy which requires at least
one gearch through the data base to find a clause that satisfies a
given restricted description. If we disregard 015 (the CHUNKED
partial-analogy) as a very low-cost item, then we see that the

search with CHUNK created only six partiasl-analogies in contrast to

the ten partial-~analogies created in the search without CHUNK.
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Table 14

ANALOGY~-SPACE SEARCH FOR T5 -1, WITH CHUNK

From initial-map ay
pnormal ~ ideal
simplegroup ~ simplering
facts ~ facts
group ~ ring
maximal ~ maxring

MAXTREE-1L ~ psubset ~ psubset
AX131-2

SHORTDESCR SHORTDESCR
WAXmégEf ~ % MAXTRER-12 ~
normal ~ ideal hom ~ hom AX132-1
ldentity ~ identity map ~ map

CHUNK

normal ~ ideal
identity ~ identity
hom ~ hom
map ~ map

é, MULTIMAP

MAXTREE-O ~ a .

{AX118-1, 1

AX161- -1} subset ~ subset
MULTIMAP
: a
MAXTREE-4 ~ 17
AX-3 subgroup ~ subring
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VII  ANALYTTICAL APPROACHES TO ZORBA~1

A. Introduction

Previously, we have treated ZORBA-I as a pragmatically moti-
vated and empirically developed system. We have informally studied
various experiments by the case gnalysis of particular examples. 1In
contrast, we will now study four properties of ZORBA~-I from a formal

and analytic viewpoint:

(1) How the use of semantic types decreases the size of the

search space of admissible GF,

(2) How the use of an INITIAL-MAP prior to EXTENDER further

reduces this search space.

(3) Conditions for which an analogy will aid or hinder & reso-

lution theorem prover.

() Necessary conditions that AXSET and T, must satisfy for
EXTENDER to operate successfully.

ZORBA-I initiates its development of an analogy @ without any
a priori information regarding associations between particular predi-
cate pairs. However, it does demand that associated predicates be
of the same semantic type. This restriction conslderably limits the
number of possible mappings that could qualify for QP, and will be

briefly discussed first.

Suppose MT axioms are used to prove T and they reference E&

predicates. Furthermore, suppose the data base D contains Mb axioms
that include PD
axioms map are one-one, we can have:

MDI
(M ~ )1

predicates. If we assume that our predicates and

axiom mappings

and
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(P - P! predicate mappings.

Each of these will associate one axiom (or predicate) used in proof[T]
with one axiom (or predicate) from the data base D.  If My = 250,
MT = 10, PD =40, and P, = 10, we have about 1074 axiom mappings

T
250: and about lO15 ho: predicate mappings possible. Now
2Lo! 301

let's look at the introduction of types. In ZORBA-I types are uti-
lized to maintain a meaningful analogy. For example, in geometry,
we prefer to assoclate a triangle with some other object such as a

tetrahedron, or regular polygon, rather than a relationship such as

bisect or parallel. A ZORBA-I user must specify a type for each

predicate. He can use these types to insist upon having certain
predicates map into predicates within the same equivalence class. Of
course, a user can default by declaring every predicate to be of one
type only., and thus allow a wider varieby of mappings. Here, we want
to see how the number of possible predicate mappings is reduced by the
exploitation of types. For our purposes, here, a "type'" will simply

be the label of an equivalence class of predicates.

Suppose we have t +types, and let PD _ .
T 5

predicates of each type in the data base D. Furthermore, let there

There are Kb

be KT predicates of each type among the MT predicates that appear in
proof[T] (t x KT = MT). Then, there are Kbl % possible
(Kp-Kyp)?

Let PD = 36, and PT = 12; then the number of possible predicate

predicate mappings.

mappings is indicated in the table below:
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t (number of types)\ t =1 | t =2 t =3 £ =1

KD; , 6 x 107 | 1.69 x 10
(K - Ky |

KszT/t; KI,=PI/t PD=56 B =12

1

In this artificial example, the inclusion of a new type reduces the
number of possible maps by a factor of 102. Still, the number of
potential maps is large (about lOlO). In the case of theorem

T, - T, and ALGBASE, the number of potential maps is b3 x 10
with any types at all. Of course, we are seeking just one good ap

in this large search space.

In the preceding analysis, we assume that each predicate can be
associated with any other predicate. In fact, ZORBA-I makes a more
restrictive assumption. INITIAL~-MAP insists that a predicate that
appears in the statement of T be associated with a predicate that

*
appears in the statement of T Again, artificially, suppose that

A
K predicates of each type appear in the statement of T. Then,

(KD -K)! 1t
(KD-KT+K)I

Kl + predicate associations are

possible.

IfK=l,t=lL,KD=9,andKT=5(since.PD=36andPT=12),
then only 2049 mappings are permissible. Thus, breaking the crea-
tion of QP into two portions, creates an "additive" rather than
multiplicative effect on the combinatorial pcssibilities. Again, we
substantially diminish the size of our search space. These reduc-

tions are quite striking for the three real problems for which the

*Our artificiality is to suppose that there are an equal number of
predicates of each type. For example, ALGBASE has the following
distribution of predicate bypes: PROP-1l; MAP-3; STRUCTURE-8;
RELATION~19; RELSTRUCTURE-~11.
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number of possible mappings have been completed in Table 15. We
see that the effect of INITTAL-MAP and EXTENDER is to reduce
the possible number of mappings by several orders of magnitude. It
is also clear that EXTENDER allows the majority of possible map-

pin s.

B. Time~Space Analysis of the ZORBA~I Algorithm

In these few pages I want to outline an argument pertaining to
the efficiency of a theorem-proving system containing ZORBA-I and
QA% (e.g., generates an analogy to restrict the data base) to one

without ZORBA~I (e.g., does not restrict its data base).

Both the INITIAL~MAP and EXTENDER procedures of ZORBA~I are

predicate mapping procedures.

INITTIAL-MAP associates each predicate that appears in the
statement of the unproved theorem TA with a predicate that appears

in the statement of the proved theorem T.

Since T and TA are both given, we know the set of possible

maps.  Suppose T, (and T) each include P predicates in their
statements; then there are at most PSL maps (assume one-one maps ).
The addition of semantic types restricts the set of admigsible predi-
cates that may be associated with a given predicate. For example,
if there are t types with PS predicgtes per type in the theorem

statements, then the number of possible maps is

{(%—) ] : (t <PT) (= for k = 1).

Note: Py t
PT' > t_ i [easily l £ 1.

proved

=12, and t =3 —»12! > [41]5, etc.).
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Table 15

NUMBER OF PREDICATE MAPS CONSISTENT WITH TYPE RESTRICTIONS

Number of Predicates Number of Allowable Maps
Theorem= Theorem No Tnitial-
Pair Total Statements Decomposition Map Extende:
. C
Tl - T2 9 A 8.6 x lO) 1 4.3 x l05
_ 1 3
T, - T, 12 5 2.5 x 107t 16 6.12 x 107
9 . i
T - T6 8 5 l.2 x 10 1 5.4 x 10
Tl: The intersection to two abelian groups is an
abelian subgroup of the parent group.
TQ: The intersection of two commutative rings 1s a
commutative subring of the parent rings.
T3: A factor group G/H is simple if H is a maximal
normal subgroup of G.
T A quotient ring A/C is simple if C is a maximal
ideal in A.
T5: The intersection of two normal groups 1s a normal
group.
T6: The intersection of two 1deals is an ideal.
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p

(PP 1P ! choices
( D PT Ps)

for the map generated by EXTENDER (momentarily excluding type
restrictions). 1In practice, Eb >> P& > P: , 80 that the number
of possible maps generated by INITIAL-MAP is much smgller than the
number of maps that could be generated by FEXTENDER.

Thus the worst behavior of ZORBA~I is most likely to be induced
by the worst behavior of EXTENDER.

In my algebra dats base:
ED = 40 - constant for all theorems
P~ 10-12

Theorem
P o~ 2 Dependent

C. Background on EXTENDER

EXTENDER accepbs a one-~one assoclation of predicates output by
INITIAT~MAP. Thus it knows the analogs of PS predicates and must
find those of (ET - PS) more. Clearly, it does the most work if
P, = 1. (PS must > 1.)

Superficially EXTENDER works as follows:

(1) Take the current predicate map a? and uses 1t to associate
some selected axiom axk from proof[T] with some (hopefully)

analogous clause c& from the data base.

(2) Use the current predicate map G? to associate the predi-
cates of ax, with those in Cpe axy has been chosen so that
some (but not all) of its predicates appear in QP, In this
association of axy ,Cy is used to learn the assocgations of
new predicates and create a new map @§+1 which includes

the unilon of those on ag.
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(3) Go to 1 (iterate until all predicates are on some QP ).
dJd

Observation: In the best case, one axiom would include all
RIA% predicates and EXTENDER would iterate only once, as illustrated
below:

Provided by
INITTAL-MAP

- Some axk has all

PT-IE predicates

In addition, we assume that we select the correct cp to associate

with it immediately., and that the clause~description-matching rou-

tine outputs only one predicate association.

Observation: If only one predicate is added at each iteration
of EXTENDER, we require PT - PS iterations to complete a®. Thus,
the maximum depth of the analogy search space is RT - Ps’ minimally

1 (as above), and (of course) is usually in between 1 and (PT - PS).

D. Worst-Cage Analysis of EXTENDER

In this section I want to describe how EXTENDER may be ineffi-
cient when compared with a resolution system. What we want to study

here are axiom systems that:

(1) Force EXTENDER to generate a "maximum' number of partial

analogies in its search for QC between T and TA'

(2) Allow a resolution program (with an unsophisticated
strategy) to generate a "minimum" number of resolvents in

its search for a proof of jA.

30, we are comparing the number of partial analogies generated
by EXTENDER with the number of clauses in a resolution search. If

we really want to be exact we should compare:
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with

where

For now, we will gimply compare =n

ditions.

cost{partial analogyl + n, . cost[resolvent]

cost[resolvent]

number of partial analogies generated by EXTENDER

number of nodes in resolution search with the EXTENDER-
derived data base

number of nodes in resolution search without the smaller
data base provided by EXTENDER.

1 with n3 under various con=-

In a later section I will comment on the relative costs

of generating a partial analogy in EXTENDER's search and generating

a resolvent in a resolution search.

I will explicate the following results:

(1)

(2)

(3)

If a data base is explicit designed to befoul EXTENDER
and aid resolution, we can find conditions where 1y >> n5
(n2 = nj). Anglogy seeking in this case decreases the
efficiency of the overall ZORBA~I-QA3 system.

A few simple conditions on the axioms in a data base can
create searches where n3 > e and n, > nB. Now, the
addition of analogy seeking may do no worse, and may sub=~
stantially aid the performance of the resolution system.
These axiom systems are highly contrived (particularly for

n, =n, = n3) and are of limited usefulness.

Finally, we deduce from 2, above and the nature of prag-

matically interesting axlom systems, that n, << nj,

1

n, << nB, and nq + 1, 2GS nB,

In uncontrived cases, the addition of analogies can be a sub=-

stantial aid to the system performance.
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I'11l begin by motivating the design of an axiom system to create

Condition 2 above and thea rescrict it further to create Condition 1.

Let's consider how we may generate a worst-~case for ZORBA.
First, we would like an analogy search tree as deep as possible.
From the preceding discussion, we want only to add one predicate

assoclation to the analogy at each iteration.

4 little thought will show you (as it showed me) that this cri-
terion forces the axioms used in proof{T] into a particular form.
Each clause must contain at most two predicates, each gppearing in a
literal of opposite sign. In this case, a mapped clause can add
information about (at most) one predicate to the current ag . Thus,
two predicate clauses force EXTENDER to generate a new Qg for each
predicate~pair added. Note that a clause may contain only one

predicate, or more than two literals. In the following example,

"¢, and c, are admissible, while c, (three predicates) is not:

1 2 3

cy: ﬂpl[x;y] % pl[y;x]

¢y r =P [xsy) voap [x52] pylxsysel]

ezt —Pplxsy]l v apalssyszl palzsxsyl

Let's consider a particular "worst" axiom system, and see how to

generate an assoclated "worst" axiom set, called WORSTRASE (Table 16).
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Table 16

WORSTBASE AXIOM SET

pl[asb]

0 =P [x3y] v plysxselxsyl]

1 AP, [x5y52] v pB[Z;y;x]

: —1p5[w;xsy] v py [wsflx;y]]

: -ﬂpu[g[u;VJ;ZJ Y% pu[z;g;[u;VJ]

: ﬁpu[f[x;y];ZJ vV P [z T[x;5y]]

: ﬂpu[f[x;y];ZJ % p5[f[xsy]]
tapelxsy] v pslysx]l v opglxsxsysyl
0y slsysy] apy s lysysx] pyglasxsysyl

t Py 5olxsysh(y)] o[y ) sysx] poglxsxsysyl

t Pyl xsrlx]] v opyplxsysysx]
—bq, [ P Vol ]
—Py), 0l 1 vipgl ]

i oAby, | 1Vl ]
—Pyp,0l 1 vpygl ]
pglasasb;b]
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b

Suppose TA is pl6[c;c;d;d}.

INTTTAL~-MAP will associate
D ~
and associated with Gﬁ’ SOME = {c

1)

We want to have g data base in which ¢ will potentially map into

11
k-different clauses.

Consider two clauses, 1o and Cl5:

Cipt  mPyslxsysyl VoA lysysxl vopyglxixsysyl

ey5i —Pygolx¥38(I)] v mpyso[n(y)sysxd v opyglxsasysyl .

The description of 11 restricted to @ﬁ — e.8., pos[pl6] o= wWill

cull out both 012 and ¢

13

Also, the following equivalence shows that Cip and )5 are

description equivalent relative to G?:
descr[cﬁ] = neg[PlS]ﬁ pOS[Pl6]
descr[clB] = neg[plSO], pOS[Pl6]o

Thus, EXTENDER will generate two descendant analogies:

Pg ~ P1g

Pg ~ Pys5g

If we had a clause Cqy in the data base, then we would have still

a third descendent analogy, which adds p5 ~ pl5oo
eyt Ppsplasrlasrlxl] Vb glasysysx]

'
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For the moment, let's create a data base that gives us just two alter-
natives at each stage:

P ap i = .
02 and s both create a SOME {C9’Clo}

and we want clauses that will give us two alternatives for each

analogy.
Congider:
¢y5i —byl 1V gl ]
167 “Piyol Vet )
Cpr? —pq), [ v p15o[ I

(Predicate arguments are irrelevent because we select candidates based
on predicate sign features, since only these appear in the clause

descriptions.)

aP i
5 can associate clO

associgte 1t with either ¢

with elther c . or cig, and a¥ can

1L 3
15 Or Cqg» as illustrated in Figure 11.

FIGURE 11. FRAGMENT OF ANALOGY SPACE FOR WORSTBASE.
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In general, if we want to generate a maximally ambiguous data base

that will force k~ary branching in the analogy tree, we need ki

description~equivalent axioms in it for each axiom used in proof[T].

(%—%-1)
k -1
1+ nodes
k - 1

In this case, there may actually be k-anslogies. Suppose that actu-
ally only one clause of the form c v pQO[ 1 appears, so that at
the last level of search, one analogy emerges that includes all

KT - KS predicates.

Let's compare this situation with the behavior of the resolution
program. Suppose we Jjust attempt to prove TA with the set of

axioms described above.

T, will (in general) resolve with each of Cq3 and ¢,
creating two resolvents, Rl and R2 (corresponding to 02 and GB

in Figure 11).

Rl will resolve with 16 to produce an R5 (corresponding

to a6), and with ¢ to produce an R4 (corresponding to GY)'

I7
Likewige, R2 will resolve with 015 and 8 to produce two
resolvents (at least).
Fach new analogy corresponds to the addition of a new predicate

assoclation to its ancestor analogy.

In '"resolution-space,'" we need to resolve two clauses to intro-
duce a new predicate into the search space. S0, each partial
anaglogy corresponds to some resolution. However, if the axioms hgve
more than two literals per clause, we will need to have additional
resolutions (which don't introduce new predicates) to clash with
these "extra' literals. Thus, in general, our axiom sets are not

restricted to clauses of length two.

From the preceding discussion we can deduce:
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(1) If our data base is limited to two clauses, each of which
contains two predicates (as specified above, and no func-
tion symbols for reasons to be specified below),= then a
resolution search for the proof of TA may generste a
number of resolutions equal to the number of analogies
generated by EXTENDER in its search for the analogy

between T and TA°

(2) If the data base conbains an axiom set in which each
clause contains at most two predicates., and the nmumber of
literals in some clauses exceeds two, then EXTENDER will
generate fewer partial analogies in its search than a

regolution program proving TA will in its search.

The preceding statements non-formally state that the number of
partial analogies generated by EXTENDER will be less than or
(at worst) equal to the number of resolvents generated by a resolu-

tion search program (nl < nB).

Now let's look at a restriction of this axiom system that

creates a situation in which ny >> n5 (analogy seeking is detri-

mental), and I, > nB)o Consider g variant of ¢

12 and TA°

15 Cllﬁ’ which

appears below with c
cipt mPyslxsysyl Vo=pyglysysx]l v pglxsxsysyl
¢i5:  =PysolxsshlyIl Vo —pysolB(y)sysx] v pyglxsysysy]

T, pl6[c;c;d;d] (from our previous discussion).

-qTA will resolve with 1 but not with 035 , since —1pl6[c;c;d;d]

will unify with pl6[x;x;y;y] but not with pl6[x;y;y;y}g Here we

have a case in which two clauses (c12 and c35) are identical in

terms of their descriptions and are indistignuishable in analogy-
space, yet will not resolve with the same clause (here -ﬁTA) and

hence do not generate equivalent resolvents in resolution space.



I'11 paraphrase his situation. To get ny >> nB, we want to gener-
ate many more partial analogies than resolvents. Now, the axiom
system we developed in our previous discussion was designed so that
ny could equal n_5 (2-clauses). Bach partial-analogy represents
one potential resolution. Now, suppose our axiom system 1s such
that clauses that are equivalent at the description level and are

expected to resolve in analogous ways do not in fact resolve.

For example, see Figure 12.

No resolvent
Ré between T

Lo B
and c¢
15.
‘ 3
R, =T x ¢ N
17 8 X Ce \
AN
\
PR W
ey | ~
e, ~ ¢ e~ e t Ro does not V
11 13 10 1° \ exist

/

\'.‘———-"-/

FIGURE 12, COMPARISON OF THE ANALOGY SPACE AND
ITS ASSOCIATED RESOLUTION SPACE

*
Now, in resolution space, R’ may be attempted, but never created.

2
In contrast, 02 is attempted and is added as a new analogy. Thus,
in analogy space, (1,2 is indistinguishable from GB’ and will lead

to descendent analogies (Figure 11) that will never have any equivalent
resolvents in the resolution search. In fact, if there are k
description~equivalent variants of each clause in proof[T] on the

data base, and each axiom in proof[T] is a 2-clause, then

* 4
Notice that we name - R before we say that it doesn't exist. This
is much like needing to describe a purple cow in order to point out
that none of those exist either.
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k -1
n, =m-=l gnd n, =""""+ 1,
1 3 k-1
If k¥ 2 and n=10, n = 9 and n5 =0256; if k =2,
n=12, n =11, and n, = 102k.
1 3
Let us review these two cases and see what is at issue. In the

case of the first "bad" axiom system we simply let the axioms be
description-equivalent in such a way that EXTENDER could create a
distinct partial anslogy for each resolvent that could be created by
the resolution search procedure. In the second case, the "poor
axiom" system, we created axioms that did not resolve becausge appro-
priate literals would not unify, while (superficially) at the level of
clause descriptions, k-clauses at each level appear equivalent. In
passing, I want to note that the proofs for which resolution-without-
EXTENDER searches are more efficient than resolution-with-EXTENDER
searches are in linear-format with no axiom applied more than once.

These are a subset of "input proofs"BO

and it is known that only cer-
tain theorems may have a proof in this form. It is a very regtricted

proof format.

We have just considered two extreme cases. In the best case, we
develop Jjust one partial analogy a2 since some clause in AXSET
contains all the predicates we need. In the worst case, we may gen-
erate many more analogies than resolvents since EXTENDER's descrip-
tions are insensitive to some features of resolution — e.g., when
two clauses unify. Nevertheless, we had to construe a special datsa
base to confuse EXTENDER. In the next few paragraphs I shall

describe how a 'real" data base differs from our construed one.

In our creation of WORSTBASE (Table 16), we made three assump-
tions, none of which is true, in general. (Of course, all are true
for our contrived WORSTBASE but none is true in our more typical

AIGBASE.)  The assumptions are as follows :
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(1)

(2)

Fach clause containg either one or two predicaete letters.
This ig @ highly artificial assumplion that interacts with
other assumptions. In contrast, ALGBASYE contains 239
clauses, of which 98 have % predicate letters., 33 have b
predicate letters, and % have 5 predicate letters (in
addition to 98 that contain 2 predicate letters, and 7 *hat
contain one predicate letter.) Over 50% of the clauses in

ALGBASE contain more than two predicate letbers.

FEach resolvent will resolve with some small number of
clauses - gpproximately k. Now, 1if each cleuse contains
but 2 predicate letters and the data base contains relatively
many (say 10 to 50) predicates, then we expect each clause
could conceivably resolve with only a few other clauses.
Again, this assumption ig highly artificial. We developed
our artificlal data base in such a way that the possible
resolvents would be as few as possible. However, most
axiom systems are quite "rich" and allow many resolvents
(inferences). For example, in WORSTBASE, the negation of
the theorem resolves with only kr clauses. In contrast,
in ALGBRASE, —1Tl (Appendix B) will create 29 resolvents at
one level of inference, and mT5 can create 55 resolvents ath
one level of inference. These resolvents canr easily create

hundreds of regolvents at the next and deeper levels.

At each level of the EXTEINDER search, there are k
description~equivalent candidate images. We created a situ-
aticn in which k nearly isomorphic axicm systems are
embedded in the same data bases. In ALGBASE there are

3 (k = 3); group~ring; group-group, ring-ring. The first is
the only "genuine' analogy, while the latter two are iden-
tities. Now @? is rich enough to map some ring-related
predicates into some group-related predicates at the outb-

set -~ e.g., group~ring or normal~ideal -~ and consequently
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rule out the spurious maps (identities) that provide 3-way
(k-way) branching. In a geometry data base, which
included properties of triangles, tetrahedrons, and regular
polygons, there could be two legitimate analogies:
triangle~tetrahedron and triangle~regular polygon. Again,
we expect the INITIAL-MAP of the problem statements to pro-
vide a aﬁ that will select out the proper analogy.

All of these assumptions interact to create g data base WORSTBASE
that gives EXTENDER s comparatively hard time compared to unaided
resolution, while suggesting that more pragmatic axiom systems will

give EXTENDER g much easier search than unaided resolution.

E. Necessary Conditions for an Analogy

ZORBA~I has three necessary conditions for creating an analogy.
The first, created by the form of ATOMMATCH, pertains to the form of
the statements of T and T,. In the statements of T and T, ,

A A

atoms must map one-one from T to TA' Notice that we do noft insist

that predicates map one~one. Congider an INITTAL-MAP between:

Tll: The intersection of two abelian groups is an abelian
group,
and
T At The intersection of an abelian group and a commubtative
ring is an abelian group.
T, abelian[a;*l] Vv abelian[b;¥._]
Vv intersection[c;a;b] —aabelian[cl;*l]
7.0 abelian[x;*e] v commring[y;*é+2]

Vv intersection[z;x;y] —abelian[z;*.].

ATOMMATCH can associate
abelian[c;*l] ~ abelian[x;*é
and
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abelian[b;*q] ~ commring[y;*2;+é]

at different times and handle many-one predicate maps — e.g.,
abelian ~{abelisn, commring} . However, the FXTENDER would need to

know (and it does not yet) how to handle this ambiguous irformation.

The second restriction is created by the extension of the anal-
ogy by finding image clauses that satisfy the incrementally improved
analogy. To state this condition on the image clauses in a formal
way, I need to introduce some simple terminology. Let us say that a
clause c¢ bridges a set of predicates P to another set of predi-

1
cates Eé iff:

Pl U predsfc] = P2

Pl N predsicl # P
and (redundantly)

Ib N preds[c] % [y
Pl:# E, .

Now, consider two clauses, ¢, and c,. We will say that cq and Co

1 2
bridge from P; to B, if & P’ and c, bridge from P, to P’, and c,
bridges from P’ to Eé. Hence, Plgg P’ Eﬁfé' In general, we will

say that an unordered set of C of k clauses C bridges from Pl to Pé iff

o Pi, P'2 «e. P

1? and

bridge from P, to P’., P’ .

1 171

(1) = c; € C; and ¢y

(2) Vj, i =2, veo, k=1 and ¢ € C, and

¢. bridges from P! to P/, ..
J & J J+l

(3) 4 c_ €C and ¢, bridge from P/ . to P
k -

k k-1 2r
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Let us define:
Pr[T] = Predicates used in proof of T.
preds{T] = Predicates used in statement of T.
¢ = Analogy from T 4o TAo

descr[ec] = Description of clause c.

gldescr[c]] = Analog description of the description of

¢ under Q.

ax[T] = Axioms used in proof of T,

(2) A necessary condition for the EXTENDER to work is that:
4 ¢ = ax[T] and ¢ bridges Pr[T] to preds{T]

s.t. for CG(c) = {c”, ¢’ satisfies[descr[c’l]} ¥ ¢’ € ¢

a(c) bridges from PT[TA] to preds[T].

More verbally, some subset of the axioms in the proof of T that
bridge from the domain of INITIAL-MAP to preds[TA] have a set of
image clauses under (¢ that bridge the images of INITIAL-MA? to
preds[TA]. Thus, the proofs need not be isomorphic, but some
restricted subset have a nearly iscmorphic image similarly restricted

to the bridging condition.
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VIIT  VARIATIONS OF ZORBA-I

A. Introduction

We have surveyed ZORBA~I by analyzing its structure (Chapter VII)
and examining its behavior on pairs of theorems drawn from abstract
algebra (Chapter VI). By design, it is limited to generabting anal-
ogies for a subclass of the "relationally similar" analogies described
in Chapter IT. In particular, ZORBA~I is restricted by the follow-

ing assumptions:
(1) @® is a one-one map.
(2) ap associates predicates of the same type.
(3) The axioms in AXSET are free of constants.

(4) The statements of T and TA are free of function symbols.

(5) The atoms in the statements of T and TA can be associated
one-one.

These gpecifications are stated abstractly, and they limit the domains
to which ZORBA-I can be applied. Theorem pairs in abstract algebrs
that exploit the group-ring analogy seem to satisfy Assumption 1,
while many interesting analogies in plane-geometry do not. Eliming-
ting constants from our axioms (Assumption 3) limits us to mathe-
matics and some puzzles. Almost every analogy I have seen preserves

semantic types (Assumption 2) for some suitable set of types.

If the strategies that are aceptable by the theorem-proving sys-
tem insist that an axiom is either in the data base or not considered
at all, then QC must be complete for ZORBA-I to give 1t useful
information. On the other hand, if the theorem prover can prefer
some axioms to others, then it could use an incomplete GC as a gulde
for which axioms to prefer. In this chapter, we will consider vari-

ations of ZORBA-I that relax some of these restrictions,
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B. Variations of EXTENDER for One-Many Predicate Maps

In EXTENDER, ap is limited to one-one predicate associations by
MAPDESCR (Chapter V), the algorithm that associates clause descrip-
tions. The version presented (and implemented) will halt if it can
not find a one-one mapping. Suppose we generalized MAPDESCR to create
one-many predicate mappings. A new algorithm of this sort would be
the product of some fresh research, but we will gssume, for the moment,
that we have one. Then we need to redefine the analog of a clause
description a?[descr[c]], to include our one-many associations. For

example, if:

descr[c] = neg[p,] pos[p,]
and
as: py ~ a5 g)
Py ~ G

then aj[descr[c]] may be the set {neg[ql], pos[g}]; neg[qg], pOS[QB];
neglq,], neglg,l, poslasl].

We could consider a candidate image of ¢ +to be a clause that

satisfies any of these three descriptions.

Some of this discussion can be clarified by studying a simple
example. Consider the following pair of theorems:
TlM: A point on the bisector of an angle is equidistant

from its sides.

TlB: A point on the perpendicular bigector of a line seg-
ment is equidistant from its end points.
Table 17 contains stabements of these theorems and illustrative
figures. Table 18 includes some of the axioms necessary to
prove them, and Table 19 contains definitions of the predicate sym-

bols used in the axioms. The two theorems can be proved by following

a similar plan (proving two right triangles congruent as a subgoal)
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Table 17

STATEMENTS, FIGURES, AND AXSET FOR BISECTION THEOREMS

X
C
D
W
: Y
B
Figure for Theorem Tlh Figure for Theorem T15

Tlhlz perpendicular|line[D;B}; line[A;]
v perpendicular{line[D;C]line[C;A]
V abisect[line[D;A]; angle[A;ep[B;C]]
— eqlen[line[B;D]; line[D;c]].

Tl5,: perpendicular[line[ X;v]; line[w;z]]

Vv lbisect[line[X;Y]; linel[w;z}]
— eqlen[line[x;w]; line[x;z].
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Table 18

AXTOMS NRshiD PO PROVIE 1 Y AND 1, f
15 A

AX1 .

AXS :

AXh

AXS e

AXG

AXY ¢

AX8:

eqlen[line[x;y]l; line[x;y]]
—triangle[x3ysz] V —ritang[ysep[x;z]]

V ritriangle[y;x;z]

—ritriangle[x3y;z] V —ritrianglel[u;v;w]
V —eqglen[linely;z]; line[v;w]]
V. —eqang[yseplx;z]; vi epluswl]

V teongruent[x;y;ziu;viw]
—teongruent{x;y;z;usviw] vV eqlen[line[ }; line[

—abisect[line[y;ul; angle[x;ep[y;z]]]
V egangly;eply;zl; v; eplx;ull

—abisect{line[x;y]; line[u;v]]
V —intersect{r;line[x;yl; line[u;v]]

v eglen[linefusr]; line[r;v]]

—ritriangle[x;y;z] V —ritriangle[u;v;w]

—eqlen[line[x;y]; line[x; z]]

—perpendicular[line[x;y]; line[u;v]]

11

V —intersection|line[x;y]; line[u;v] v ritang[zjep[u;y]l]
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L) oo Table 19

DEFINITIONS OF PREDICATE AND FUNCTION SYMBOLS FOR GEOMEIRY

- abisect[line[x;y]; angle[uj;ep[u;w] Line xy bisects uvw.

L eqanglysep[x;z] ;viep[usw] ] Lxyz = ¥ uvw.

L eglen[line[x;y]; line[u;v]] Xy = uv
intersect[z;line[x;y]; line[u;v] Lines xy and uv intersect

at point z.

lbisect[line[x;:y]); line[u;v]] Line Xy bisects line uv.
perpendicular|line[x;yiline[u;v]] xy 1 uv .
o ritang[y;ep[x;z]] ¥ xyz is a right-angle

- vertex y and end points
[ep] x and z.

ritriangle[x;y;z] Points x, y and z form
a right triangle with
right-angle < xyz.

tecongruent[x;y;zu;viwl A XyzZ 2 A uvw.

triangle[x;y;z] Points x, y and z form a
right triangle.
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or by using analogous sets of axioms to prove each. Now, suppose
that we have proved Tlé using axioms {AX1, Axh, AX6, AX7, AX8},

and want to find an analogous set of axioms to use in the proof of
Taﬁ-' First, ZORBA-I would use INITIAL-MAP to associate the atoms

in the statements of T'15 and Tllh to produce Qﬁ. The version of
INTTIAL~MAP described in Chapter III will not work here since it

takes account neither of function symbols (ATOMMATCH) nor one-many
atom associations (SEIMATCH). Suppose that INITTIAI~MAP was appropri-
ately generalized and able to produce a partial analogy aﬁ .

GE :  perpendicular ~ perpendicular

lbisect ~ abisect

eglen ~ eqlen .

Now, ZORBA-I calls EXTENDER with al as 1ts starting analogy. It par-
titions AXSET and computes

some[al] = {AXh, X6, AX7, AX8}

al[descr[AX6] = neglabisect], pos[eqlen].

AX6 is the only clause in some[al] whose restricted description (with
respect to Gl) has more than one feature. AX7, for example, has
negleglen] as a description and we expect many clauses in a geometry
data base to satisfy this single feature. We want AX6, the defin-
ition of line bisection, to be associated with AX5, the definition

of angle bisection. Now AXS5 satisfies al[descr[AX6]], but has predi-
cate (intersect) which is not associated with any predicate in AX6.

We are assuming that our new MAPSECR (Chapter V) has been generalized
to handle associations of this sort. Suppose we associate AX6 with

AX5 and generate 02:
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a;: eqlen ~ {eqgang, eqlen}
perpendicular ~ perpendicular

lbisect ~ abisect .

We extend 032 and compute:

some[q,] = {AX7, AX8} .

AX7 is the axiom used to prove the congruence of the two right

triangles for T’

15 Now, we want to get the analogous axiom (AX3) to

use in the proof of Tllh' First, compute

descr[AX7] = neg[ritriangle], neg[eqlen], pos [tcongruent].

We now have to create an ahfdescr[AXY]] that can be satisfied by
<

AX3.  Either negleqlen] or negleqlen], negl[eqang] will suffice,

tThough Dq

(Chapter V) would probably prefer the latter. Again,

MAPDESCR applied to AX7 and AX3 would need to handle the one-many map.

eqlen ~ {eglen, egang}

This example has been chosen for its (relative) simplicity. It

exemplifies some of the vagaries of analogies with one-many predicate

associsgtions.

(1)

(2)

Most predicates are associated one-one. Only a few predi-

cates associate one-two or one-three.

If a predicate p 1is assoclated with predicates ¢ and

r: p~ {g,r}; then p may be associated with g in
order to find the analog of one axiom, with r +o find the
analog of a second axiom, and with both q and r to find
the analog of a third axiom. In this example, the associ-

ations
AXL . AX2

AX6 ~ AXS
AXT ~ AX3
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satisfy this pattern.

In the last paragraph I have outlined the kind of changes that
EXTENDER would require if anaiogies with one-many predicate maps
were to be gllowed. Notice that we are still dealing with a class
of analogies that fit the ZORBA paradigm: a set of axioms analogous
to those of the proved theorem can prove our new theorem. In this
case, the correspondence between the predicates in which the axioms
are expressed 1s more complex than in the one-one case we have
examined in detail, while the axiom associations are still of the

same sort.

C. Variations of INITIAL-MAP

We have discussed the limitations imposed upon ZORBA-I by
EXTENDER. In addition, INITIAL-MAP imposes Restrictions 5 and 6‘
mentioned at the beginning of this chapter. The axioms used to
prove a theorem may include function symbols since EXTENDER, which
congiders the axioms, ignores function symbols in its clause descrip-
tions. In fact, all of the algebra proofs described in Chapter V

and VI use function symbols in the set of necessary axioms.

In the geometric example (T amiT'lA) we have just considered,

theorem statements and axiomg tha%Brely heavily upon function symbols
provide a natural and elegant representation. It is possible to
rewrite these axioms without function symbols. For example,
lbisect[line[x;y]; linelu;v]] becomes line[z;x;y] V line[w;u;v]

Vv lbisect[z;w]. However, a function-free axiomation requires longer
clauses and more (symmetry) axioms. ATOMMATCH (Chapter IV), the
operation that assoclates variables in clauses, would need to be
generalized to include function symbols and an ability to generate
more than one mapping when the functions allow syntactic symmetries.
In addition, the section of SETMATCH that associates atoms into sets
based on distinct analogous variables (Chapter IV) might use function

symbols to ald discriminatilons.
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The version of INITIAL-MAP that is described in Chapter IITI is a
rather complex matching program that exploits the syntactic structure
of the wffs to decide which atoms are to be associated. INITIAL-MAP
performs a simple, crucial role in ZORBA-I — it creates Qﬁ- EXTENDER
needs ag for a starting point and cares neither hOW‘Gﬁ is generated
nor whether it contains all the predicates used in the theorem state-
ments. aﬁ need contain only one predicate to activate EXTENDER. ir
aﬁ contains more predicates, then it provides a more fertile beginning
for EXTENDER. In particular, some [al] will increase with the size of
agf We saw (Chapter VII) that increasing the size of dﬁ can dramati-
cally decrease the size of the total search space for @P. The point
of these observations is quite simple: we can often generate an Qﬁ
with a much simpler version of INITIAL~MAP than was described in Chap-
ter IIT. Even when we generalize from one-one to one-mgny predicate
maps, we have kept our mapping type~invariant (Chapters III and VII).

Predicates that are associated must be of the same semantic type.

Again, we will presume that if a predicate appears in the state~
ment of a theorem T, then its anglog will appear in the statement of
TA' Now, consider the following version of INITIAL-MAP, called
INITIAL-MAPL:

Initigl-mapl[newwff ;0ldwff]: =

(1) Partition the predicates that appear in newwff by their -

semantic type.

Do the same for the predicates that appear in oldwff.

(2) For each predicate partition of newwff that contains only
one element, pair it with the predicate partition of oldwff
that has the same type, if it has but one member.

(3) If this set of paired-predicates is non-empty, set it equal
to QP.

If it is empty, set aﬁ to initial-map[oldwffjnewwff] using
the algorithm of Chapter IV.

(4) otop and Whistle.
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For example, let T15

oldwff and newwff respectively. Furthermore, let RELATION be the

" and Tlhl mentioned earlier in this chapter be

semantic type of {perpendicular, lbisect, abisect}, and EQREL be the
semantic type of the predicate cqlen (Table 19).  INITIAL-MAP1 will
create @) = feqlen ~ cqlen}.  We still might want to run INITIAL-
MAP on the two wffs to expand Oﬁ to include the remaining predicates
they contain, But we are not compelled to do this. This simpli-~ <
fied version of INITIAL-MAP can be used either as a preprocessor or
as a substitute for it. It also provides some means for handling
wff pairs with non~isomorphic syntax when the semantic types are fine
enough to unambiguously associate predicates based on predicate types

only.

D. Treating Constants

In addition to restricting its predicate association to one-one
mgps, ZORBA~I does not allow axiom systems that include constants.
‘In contrast to the one-many maps treated in the preceding paragraphs,
creating analogies in axiom systems that include constants will
probably reguire analysis algorithms different in spirit from

INITTAL-MAP and EXTENDER.

Consider a robot that is instructed to go from SRI to (a) an
office on its floor; (b) Stanford University; (c) San Francisco;
(d) New York City; (e) Chicago. 'These five problems could be stated
to QA3 as

at[robot; office5; sf]
at[robot; Stanford; sf]

Tip: Esp at[robot; San Francisco; sgl
at[robot; NYC; sf]

Ty ¢ Tsg at[robot; Chicago; sf]
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By trivial syntactic matching we could assoclate office 5 with
Chicago, Stanford with San Francisco, etc. The robot's actions to
get from SRI to Stanford, San Francisco, New York City, or Chicago
are pairwise gimilar. But the INITIAL-MAP or EXTENDER would have
to know the "semantics" of these (geographic) constants (with
respect to SRI) and the robot's actions to assess which problems are
adequately analogical and which action rules should be extrapolated

to the unsolved problem.

E. Relationship Between ZORBA-I and QA3

In the preceding section I have discussed the organization and
use of ZORRA-I independently of QA3. In this section, I merely want
to note how a change in QA3 can affect the way in which the analogi-

cal information output by ZORBA-I can be used.

The present version of ZORBA~I outputs a set of clauses that it
proposes as a restricted data base for proving TA. If every clause
in proof[T] has at least one image clause, then simply modifying the
QA5 data base 1s magnificently helpful. However, if the analogy is
weak and we have only a partial set of images, what can we do? If
every predicate used in the proof[T] has an image, we could restrict
our data base to just those clauses containing the image predicates.
Could we do better? And what do we do with a partial analogy in
which some clauses and some predicates have images, but not all of
either set have images? At this point we meet limitations imposed
by the design of QA3. All contemporary theorem provers, including
QA% , use a fairly homogeneous data base. QA3 does give preference
to short clauseg, since it is built around the unit-preference strat-
egy. But it has nc way of focusing primary attention on a select
subset of axioms A¥*, and attending to the remaining axioms in D-A%*
only when the search is not progressing well. One can rig various
devices, such as making the clauses in A¥ "pseudo~units"” that would

be attended to early. Or, with torch and sword, one could restruc-
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ture QA3 around a "graded memory" which orders clauses according to a
user specified ordering function. Basically, we have to face the
fact that our contemporary strategies for theorem proving are designed
to be as optimal as possible in the absence of a priori problem~
dependent information. Thege optimal strategies are difficult to
reform to wisely exploit a priori hints and guides that are problem-
dependent. Various kinds of a priori information can be added. It
is a separate and sizeable research task to decide how to do it. I
presume, but do not know, that these comments extrapolate to other
problem~solving procedures. A gystem that is organized around

a priori hints, heretofore user-supplied, may look very different than
one that is designed to do its best on its own. QA3 was chosen
because it was available and saved years of work in developing a new
theorem prover that would be more suitable. However, further research
in AR may well benefit from focusing attention on a more flexible

1"

theorem~proving system that can accept a wide range of "advice" from

the analogy generator.
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IX  ZORBA IN RETROSPECT

I should like to encapsulate some of the key concepts that are

implicit in ZORBA and embodied in ZORBA-I:

(1)

(@)

(3)

()

Some fairly interesting analogical reasoning can be handled
by modifying the environment in which a problem-golver
operates, rather than forcing the use of a sequential

planning language.

Each problem-solver/theorem~prover will utilize different

a priori information and consequently will require different
analogy-generation programs tailored to its representations.
In Chapter III, I suggested how an anslogy system oriented
toward GPS would differ from one oriented toward resolution

logic.

A good analogy generator will output some information help-
ful to speeding up a problem search ag a byproduct of a

successfully generated analogy.

Part of the problem of reasoning by analogy is to specify
precisely how the derived analogical information is to be
used by the problem solver. For the class of analogies
handled by ZORBA we tacitly assume that restricting our
data base is the means to exploit the analogy. For other
kinds of analogies (Chapter III) a wider variety of uses
may be suggested for the information to be derived from the
analogy. We would like a system to automatically decide
that one analogy can be used only to provide a particular
subgoal for the problem solver while another analogy can be
used to provide & complete plan and still another analogy
can be used only to suggest a particular set of axioms

without specifiying the seguences they should be used in.
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(5) An effective, nontrivial analogy generator can be adequately
built that uses a simple type theory and primitive semantic

selection rules.

(6) Although analogies are nonformal and are semantically
oriented, nontrivial analogies can be handled by a semi~-

formal system wrapped around a highly formal theorem-prover.

The first and last remarks suggest a fertile research strategy.
Many good analogies are suggestive; the relational structures between
the solved and unsolved problems are similar, but not homomorphic.
In fact, their relationships are less well behaved than any of the
mappings in our mathematicized language. For example, the geometric
analogy described in Chapter VIII needs to allow a few predicates to
map one-many while most are mapped one-one. The restrictions on the
analogy O (Chapter III) were largely defined after most of ZORBA-I
was implemented. Much of the formalism employed in explaining the
algorithms is also post-hoc. Creating a formal description of
ZORBA~I has helped clarify and articulate such concepts as the
restrictions on QP and the analog description of g clause when af
is one-many. ZORBA-T was pragmatically designed within the frame-
work of clause descriptions and sequences of partial analogies; any
procedure that worked for abstract algebra was acceptable. The
freedom from formalism in the early stages of this research focused
attention on a rich class of theorems regardless of their formal
properties. In contrast, a research strategy that attempted to
formally define an analogy at the outset and proceed with much rigor
most likely would have yielded a complete procedure for a less inter-
esting class of problems. The choice of a problem domain is tricky.
We want a wide variety of analogies. At the same time they must
entail sufficiently simple problems to be solved by our simple-minded
problem~-solving systems. In mathematics both abstract algebra and
Fuclidean geometry are "dense™ in analogies between pairs of theorems

that are not very complex. In contrast, the analogies that can be
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exploited in number theory are between theorems that require theorem
provers much more powerful than we now have . We all
use analogies to ald solving problems and proving theorems, regard-
less of the area we are considering. However, most domains are j
sparse in good nontrivial analogies between simple problems. We |
would be aided by a small catalog of the kinds of analogies we can
find at various levels of problem difficulty in different areas.
Such a study could refine the approach of Chapter II to include the
role of semantic types and restrictions on the submaps of O —~— e.g.,
a®.
Even within the ZORBA paradigm we need at least two styles of
generating an analogy. ZORBA-I is an instance of one, and the com~
ments about treating constants in the context of robot manipulation

problems (Chapter VIII) calls for another, still undeveloped approach.

ZORBA~I passes only a modified data base to its associated
theorem prover. Much more informgtion is latent — e.g., how to use
a particular axiom. In resolution, for example, a ground-unit clause
may be needed only once in a proof, but generate a vast number of
irrelevent resolvents in the search for that proof. It may unify
with literals in many different clauses and be given a great deal of
attention in a unit-preference strategy. We need to learn how to
specify when such a unit should be used. More generally, we need to
learn how to specify and represent such information for a problem-

solving system.

PLANNER is a problem-solving system that has recently been
developed at M.I.T. It allows a user to specify whether a particular
theorem is to be used for forward inference or backward chaining. It
incorporates a flexible pattern matching language and sppropriate
features to allow a user to select the theorems which may be used in
inference chains., From the point of view of problem-solving research
it makes little difference whether such advice is given by knowledg-

able persons or an agnalogy~generating program. From our point of
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view, since PLANNER 0 is designed to accept advice, it may be a superb
vehicle for handling a wider variety of analogical information if its
problem solving power is adequate. It 1s not yet clear whether
PLANNER can prove any of the thecorems used in the experiments reported
here. If PLANNER were to be used as a target problemvsolving vehicle
for a new analogy system (call it ZORBA-IT), then ZORBA-II would place
somewhat different constraints on its mappings than does ZORBA-I.
Table 20 depicts the English, wff, resolutions and PLANNER representa-
tions of two axioms that were found to be analogous by ZORBA-I (Chap~-
ter VI). Resolution represents these wffs by one clause each while
PLANNER distinguishes two possible theorems which differ in their use.
A THANTE +theorem is used to make a forward inference. For example,
(THANTE (X) (P X)(THASSERT (ny))) could assert (Q A) when the data
base includes (P A). In contrast, a THCONSE theorem is used for
backward chaining. (THCONSE (X) (qQ X) (THGOAL (P X))) will be trig-
gered to set up the goal (THGOAL (P A)) if it is ever atbempting to

prove (Q A). The two uses correspond to the same wff:

¥(x) plx] - qlx]

ZORBA-T has but one axiom map, ac, which assoclates clauses one~nmany.
We would expect that ZORBA-IT would have an axiom submap that associ~
ates THANTEs with THANTEs and a separate submap to associate THCONSEs
with THCONSEs. More verbally, if an axiom ax, ~was used to prove a
theorem T by backward chaining (THCONSE), we would expect the ana-
would prove the analogy theorem T

log of ax by backward chaining

k A
also. By using PLANNER theorem types, we can map local proof struc-
ture (under our analogy) by preserving theorem types under the analog

a.

I have purposely omitted two important issues:
(1) Given a theorem T how can we recognize a good analogous

theorem T from among the set of theorems we have proved?

(2) How do the representations we use affect our ability to per-

ceive and exploit analogies?
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Table 20

English:
Every abelian group is a group
predicate calculus wff: V(x ¥) abelian[x;*] — group[x;¥]
resolution clause: — abelian[x;*] v group[x;¥]

PLANNER consequent theorem:
(THCONSE (X *) (ABELIAN X %) (THGOAL (GROUP X *)))

PLANNER antecedant theorem:
(THANTE (X *) (GROUP X %) (THASSERT (ABELIAN X *)))

English:
Every commutative ring is a ring
predicate calculus wff: ¥(r ¥ +) commring[r;¥;+]— ring[r;¥*;+]
resolution clause: —commringlr;¥:;+] v ring[r;*;+]

PLANNER consequent theorem:
(THCONSE (R * +) (COMMRING R * +) (THGOAL (RING R ¥ +)))

PLANNER antecedent theorem:
(THANTE (R * +) (Ring R ¥ +) (THASSERT (COMMRING R * +)))

Resolution and PLANNER Representations
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The answers to these two interact. Within the set of algebra
theorems {TL’ oo Tlo} that were used as examples in Chapters IV -

VIT, the following procecedure will satisf{y problem (L1):

(1) convert TA from a wff to a clause and create its descrip~

tion. (Chapter III)
(2) Replace each predicate in the resultant description with
its semantic-type. Thus, neglgroup] will become

negl structure] .

(3) Search through memory to find the theorems that satisfy the
type-description of TA'
Now, the forms of the theorem statements we have used are so nearly
isomorphic that this simple search will give us a small set of good
candidate analogs. A variant of ZORBA-I could be used to test which
of these few candidates create a complete (0, and we have solved our

problem.

Now, suppose that our theorem statements are not so similar.

Consider the following theorens:

T, ¥(x y %)
abelian[x;¥] A abelian[y;¥] A intersection[z;x;y]

— absubgroup| z ;x;¥*]

T, : Y(r;si;wsx;+)
commring[r;¥*;+] A commring[s;*;+] A intersection[w;x;+]

— commsubring[w;r;¥;+]
T, 0 ¥(rsssws*se)

commring[r;¥;+] A commring[s;¥;+] A intersection[w;¥;+]

- commutative[*;w] A ring[w;¥*;+] A subring[wir;¥;+]

Now, the procedures described in Chapters IV and VIII will easily

create the proper analogy between T, and T2. T2' is logically
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equivalent to_Tg. The predicate "commsubring' has been replaced with

its definition.

None of the procedures we have described will find the analogy

’
Tl - T2 .

(1) QE is no longer one-one. The predicate ABSUBGROUP now
has no analog that appears in the proof or statement of
T 1
.

(2) The predicates in the statements of T, and TEI do not cor-
respond  (INITIAL-MAP is foiled).

Unfortunately, a slight shift of form sabotages all of our algorithms.
This unhappy observation should be a starting point for future

research.
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APPENDIX A

DEFINITIONS OF PREDICATES AND THEIR SEMANTIC TEMPLATES

Abelian[x;¥*] structure[ set ;operator)

x is an abelian group under the operation '"*'",

Absubgp (x;y3;%] relstructure[set;set;operator]

x is an abelian subgroup of y under the operation "*",

Assoc[*;8] relation|operator;set]

The set s is associative under the operation "*",

Closed[*;8] relation[operator;set]

The set s is closed under the operation "*U,

Commutative[ *,5] relation[operator;set]

The set s is commutative under the operation "¥*',

Commring[R;%;+] structure[ set joperator ;operator]
The set r is a commutative ring under the operations "*" and

H+”
Commutativering[r ;% ;+] same as commring[r;¥;+]
Commsubring[x;y ;% ;+] relstructure|set ;set joperator ;operator]

The set x is a commutative subring of the set y under the

operations " " and "+",

Clring[x:¥%;+] structure[ set joperator ;operator]
The set x 1s a commutative ring with a multiplicative unit

under the operations "*" and "+".
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Dist[*;+;5] relation| operator ;operator;set]
The operation * is distributive over the operation "+" on the

set "S".

Equalset{x;y] relation|set;set]
Set x equals set y.

Factorstructure[x;y;z] same as facts[x;y;z]

Facts[x;y;z] relation[set;set;set]

x =y/z.

Group[ x;¥] structurel set joperator]
The set x is a group under the operation "¥*" gnd the additive

operation "+". t

Ident[*;a3x] relation[operator;object;set]

A is the identy element of the set x under the operation "¥",

In[x;S8] relation[object;set]

X % 5

Intersection[x;y;z] relation[set;set;set]

X=y Nz.

Inv[*;a;S] relation[operator;object;set]

. . -1
The inverse of a under opergtion "*" —— e.g., a .

Lassoc[¥;8] relation[operator;set]

The set S is left-associative under the operation "*".
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Ldist[*;+;5] relative[operator ;operator;set]

The operation "¥'" ig left-distributive over the operation "+

Map[f;x;y] map[FN;set,set}
f mep the set x into the set y. f:x — y.

Map[f;a;b] map[ FN,object ,object]
f[a]l = b,

Maximall[x;y;*]  relstructure[set,set,operator,operator]

x is a maximal subgroup of y under the operation "¥*"
Maximalgroup[x;y;¥*]  same as maximallx;y;¥]
Maximalring[x;y;%;+] same as maxring[x;y;¥;+]

Maxring[x;y;¥;+] relstructure[ set,set ,operator ,operator]

X 1s a maximal subring of y under the operation ¥ gnd +.

Nonempty[S] propl set]

S p.

Normal[x;y;*] relstructure[set,set,operator]

x is a normal subgroup of y under the operation ™¥",

Pideallx;y;¥:;+] relstructure[set,set,coperator,operator]

x 1s a proper ideal of ring y under the operations "¥" and "+".

Pnormal[x;y;*] relstructure[ set,operator]
x 1s a proper-normal subgroup of y under the operation "*",
proper[ same as pideallx;y;¥;+]

propernormal]x;y;x] same as pnormallx;y;¥]
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Pnsubgroup[x;y ;¥] relstructure[set,set,operator]
set x is a proper normal subgroup of y under the set "*¥],

Psubset[s;y] relstructure[set,set]
XC Yy . .
Rassoc[*;8] relstructure[ operator ,operator,set]

The set S is right-associative under the operation "¥".

Rdist[*;+5] relstructuref operator,operator,set]
The operation "¥" is right-distributive over operation "+"

in the set S.
Ring[R;%;+] structurel set,operator,operator)
The set R is a ring under the multiplicative operation ™¥]

and the additive operation "+".

Simplegroup[x;¥] structure[ set ;operator]

The set x is a simplegroup under the operation "¥",

Simplering[x;¥;+ structure[ set,operator,operator]

The set x is a simplering under the operation ¥ and +

Subgroup[x;y;*] relstructure| set;set;operator]

The set x is a subgroup of y under "¥".

Subring[x;y;¥;+] relstructure[ set,set,operator,operator]

The set x is a subring of the set y under "*" and "+".

Subset[x;y] relation[set,set]
X y.
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Times[¥*;x3y32] relation[operation,object,object,object]

Z =X ¥y.

Unitring[S,*,+] structurel set,operator,operator]

The set S is a ring with a unit under "*" and "+".

Welldef[*;8] relation[operator,set]

The operation "¥" is well defined on the set S.
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APPENDIX B

LISTING OF ALGBASE

The following listing of the 239 clauses in ALGBASE uses the
predicate symbols defined in Appendix A. They are indexed by a
"clause name' to facilitate reference when considering the experi-
ments reported in Chapter VI. These names are indexed by two
parameters, n and k, in the format AXn-k. For example, AX3-2 and
AX%5-3 are the names of two clauses in ALGRASE. The k~parameter
following the dash numbers a clause with respect to its parent wff,
AXn. The n-parameters are generated sequentially (by QA3) when-
ever a new wiff enters its data base. Thus, the first wff entered

is named AX1 and its clauses are named AX1-1, AX1-2, etc. If AX25

is
v(x) plxl~ glx] A r[x],
then
AXP5-1: —p[x] v r[x]
and
AX25-2:  —plx] v alx]
are its two derivative clauses. In principle, all clauses are

independent, while in practice the same skolem function may appear
in several clauses that are descendent from the same parent wff,

For example, see the clauses associated with AX52 that define the
predicate "commutative." Skolems functions that were automatically
generated by a prenex algorithm (in QA3) are denoted by SKj — €eS. s
SKS.

The listings in this appendix were printed on a PDP-10 line
printer and conform to its type set. The or sign (v ) is omitted
between literals, and the negation sign (— ) appears as a dash (-).
Finally, the description of each clause (Chapter III) is printed
directly below it.
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{1 AX1.1 SUBGROUPLH,GsSTAR] ~NORMALLH,G,STAR]

NEGENORMALD pOSCSUBGROUP]

2, AX1.2 INLU,H] ~INCHHsH] _IN[GG,G] =INCY,G) «INCM,G]
w7 IMEGLGTAR, GG HH, Y] «TIMESCSTAR,Y ,M,u) =INVERSELSTAR,M,GG]
«NORMALLH,G,STAR}

NEGCNORMAL 7 NEGLINVERSE] NEGLTIMES] IMPCONDLIN]

3, Axeel NOwMALLH,G,STAR) =SUBGROUPCH,G,STAR]
«INLSKS[ISTAR,G,HI,H]

NEG[INJ NEG[SUBGROUP) POS[NURMAL]

4, AX 242 NORHALCH,G,STAR? ~SUBGROUPLH,G,STAR]
INVERSELSTAR SKALSTARs 1,y H1» SK2LSTAR, Go H1J

POSC INVERSE] NEGLSuURGRpUPI POS{NORMALI]

AX2=3 NORMaLTH,G,STAR] »SUBGROUPLH, G STAR]

5
TIMES[STAR,SK3LSTAR,G,H]),SK4LSTAR, G, H]I,SKELSTAR, G,H]]

POSLTIMESY NEGISUBGROUPY POSINORMAL]

64 AX2~=4 NORMALLH, Gy STARD =SUBGROUPLH, G, STAR]
TIMESESTAR SK2[STAR,G,H41,SKL[STAR,G,H],SKI[STAR,G,H1]

POSCTIMES] NEGCSUBGROUP] POSINORMAL]

7 AX2«5 NORMAL[H,G,57AR] ~SUBGROUPLH,G,sTAR]
INCSK4LSTAR,G,H],G1

POSCIN] NEGLSUBGROUP] POSINORMAL?D

8, Ax2w6 NORMALLH,G,STAR] «SUBGROUPLH,G,STAR]
INCSK3[STAR,GsHJ G

POSLINT NEGLSUBGROUR] PAOSINORMAL
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9, AXE 7 NORMALLCH,G,STAR]
INCSK2LSTAR, GsHI,G]

POSLINI NEGISUBGROUPI poSINORMAL)

10, AX2-8 HuRMALLH,G,8TAR]
INCSK1LSTAR, GsHTsH]

POSTIN] NEGCSUBGROUP) POSCNORMALY

«SUBGROURCH,G»STAR)

=SUBGRQUPLH,G,STAR)

11+ AX3~1 GROUP[H,57AR]) ~SUBGROUP[H,G,STAR]

NEGLSUBGROUP J POS[SROUR)

12 AX3+2 GROUPLG,STAR) =SUBGROUPLH,G,STAR)

NEGL SUBGROUP ] POSCGROUP]

13, AX3.3 SUBSETLH,G] -3UBGROUPLH,G,STAR]

NEGLSUBGRQUPJ POS[SUBSET]

14, AX4-1 SUBGROUP[H,G,S5TAR) ~GROUPCHKH,STAR] «GROUP[G,STAR]

~SUBSETLH, G

NEGLSUBSETY] NEGLGROQOUP]) pOS[SUBGROUP]

15, AXS5=~1 NORMALL X, Y,S8TAR]
»SUBGROUPL X, Y, STAR)

NEGLSUBGROUPI NEGLABEL 1ANMI POSINORMAL)

16, AX6-1 SUBGHOUPIX,Y ,STAR)
»SUBRINGLX,Y»STAR,PLUS]

NEGLSUBRING] NEGLRING] POSI5USGROUP)
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17, AX7-1 ABELTANDXs§TAR] ~ABELIANCY,STAR]
»SUBGROUPL X, Y, STAR]

NEGLSUBGROUPI IMPCONDLABELIAN]

18, AX8=1q SUBGROUPrHBaAABSTﬂR] mHOM[FsA&BJ *GROUp[AgSTARJ
wSUBGROUP[AApAaSTAQ] WMApltryAAaBBj

NEGLMAP4] NEG[GROUP) NgG[HOM] IMPCOND[SUBGROUP ]

34, AX21=1 GROUP[G,STaR] ~WELLOEFLSTAR,GJ ~ASSOCLSTAR,G]
«IDENTITY[(STAR,E,G] ~InpSK12[STAR,G],G)

NEGLINI NEGCIDENTITY] wEGLASSOC) NEGLWELLDEF]) POSCGROUP]

35, AX21~2 GROUP(G,STAR] =WELLDEF{STAR,G) ~ASSOC[STAR,G]
«IDENTITY[STAR,E,G] INVERSELSTAR,SK12[STAR,G3,SK11[STAR,G]]

POSLINVERSE] NEGLIDENTITY] NEGLASSOC] NEGIWELLDEF 3
POSLGROUPI?] '

36 QXZI”3 GROUPLG, ST R]  =WELLDEFLSTAR,G] =4aSSOCLSTAR,G]
SJOENTITYOSTARSESG] INCSKL1ISTAR,GI,G]

POS{IND NEGLIDENTITY] NEG[ASSOC3 NEGIWELLDEF] POS{GROUP)

37, AX23=1 NORMALLN,G,STAR] ~GROUPLG,STAR] .FACTSLX,G,N]
NEGLFACTS] NEGLGRQUP] pOSINORMAL]

38, AX24.1 FACTS[SK13[STAR,B,Al,A,B] ~GROUFLA,STAR]
~NORMALLB, Ay STAR]

NEGENORMAL 3 NEGEGROUPJ POSLFACTS;,

39, Ax26=1 HOM[ISK14LSTAR,Z2,Y,X3: Y5 X] =FACTS[X,Y,2)
~GROUPLY,STAR]

NEGLGROUP] NEGLFACTSI PQS[HOM]

40, AX27~1 ITOENTITY[STAR,BsX1 «GROUPLA,STAR] «FACTSL[X,A,8]
NEGLFACTS] NEGLGROUP] POSCUIDENTITY]

It
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) 42, AX29=1 NORMALLX,G,STARD ~ «GROUPLG,STAR)

“NORMAL[A,G,STAR] ~NORMAL(B,G,STAR] =INTERSECTIONCX,4,8]

NEGLINTERSECTION] NEGCGROUP) IMPCONDINORMALD

43, AX3B=1 NORMALLBB,AA,STAR] «GROURPLA,STAR]
«NORMALLB,A,STAR) -HOM[F,A,AA] «MAPL[F,B,BB]J

NEGEMAP1] NEGLHOMI NEGCGROUP] IMPCONDINORMAL]

44, AX31-1 INVERSELSTAR2,EE, H) =GROUPLG,STARL]
»GROUP[H,STARZ] ~HOMIPHI , G M) »INVERSECSTARL,E,G)
»MAPA1[PHI,E,EE]

NEG[MAP11 NEG[HOM] NEGCGROUPI [MPCOND[INVERSE]

45, AX32-1 TIMESCSTARZ2,81,B2.,83] «MAPLLF,A1,B81)
~MAP{1[F,A2,B21 ~MAPL[F,A3,B3) =TIMESUSTARL,AL,A2,A3)
GROUPLG,»STARL]

POSTGROUP] NEGLMAPL73 IMPCONDCTIMES)

46, AX32=2 TIMgs(STAR2,B1,B82,83]) ~MAPL[F.AL1,B1)
~MAP{LF,p2,82] ~MAPI[F,A3,B3] ~TIMESLSTARL,AL,A2,A3)
GROUP[H,STARZ) ;

POS{ GROUP] NEGIMAP17 IMPCONDLTIMES]

47, AX 32 =3 TIMES[STAR2,B1,B2,83) «MAPLIF,AL,B1)
~MAP{LF,A2,B2] ~MAPL[F,A3,B3)] »TIMESLSTARL, AL ,A2,4A3)
MAPLF,GsH]J

POS[MAP] NEGLMAP1y IMPCONDLTIMES]

48, AX32=4 TIMESCSTARZ ,81,B2,B3) «MAPL[F,AL,B1)
=MAPL[F,A2,B2 ~MAPI[F,A3,B3] ~TIMESLSTARL,AL)A2,A3)
«HOMIF,G,HJ

NEGLHOM] NEGLMAPL13 IMPCOND[TIMES)
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49, AX33~1 RINGLR,STAR,pLUS] =-COMMRINGLR,STAR,PLUS)

NEG[LCOMMRINGJ POSLRING]

50« AX33-2 INLCA,R] COMMRINGIR,STAR,PLUS)

NEG[LCOMMRINGJ POS[IN]

51 4 AX33=3 TIMESISTAR,B,A,C) »TIMESCSTAR,A+B,C)
»COMMRINGLR,STAR, PLUS]

NEGECOMMRINGI IMPCONDLTIMES]

52 AX34=1 COMMRINGLR,STAR,PLUSY =RINGLR,STAR,PLUS)
,INESKEb;PLUSaSTAR,R PR ~INrSKL6[PLUS,STAR,RJ,Ry
=T IMESUSTAR, SK1glPL U OSTARIRJGSK15CPLU s STAR,RI,SK17LPLUS,ST
AR,R?21] ]]

NEGETlmES] NEGEINJ NEGCRINGJ PoS[coMmRING]

53,  AX34=2 COMMRINGIR STARs pLUS] =RINGLR,STAR, pLUS]

»IN[SK15LPLUS,STAR,R] R ~INCSK16[PLUS,STAR,R],R]

TIMESCSTAR,SK15[PLUS,STAR, R}, SK16[PLUS,STAR,R],SK17LPLUS,STA
R,R17] 1

POSCTIMESY NEGLIN] NEGCRING] POSLCOMMRING]

54, AX35«1 RINGLR,)STAR,pLUS] ~UNITRINGCR,3TAR,PLUS]

NEGCUNITRINGI POSLRING ]

55, AXE5=2 JIDENTITY[STAR,SK18[PLUS,STAR,R],R] v
»UNJTRINGCR,STAR,PLUS?) ]

NEGLUNITRING] POSCIOENTITY]

564 AX36 =1 UNITRINGIRISTAR, plUS] =RINGLRSTARs pLUS]
=]DENTITY[STAR,E1,R)

NEGEIDENTITY ] NEGLRING) POSCUNITRING]
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57, AX38e1 COMMR INGLR, STAR,PLUS] ~RINGLR ,STAR, PLUS)
eCOMMUTATIVELSTAR,R]

NEGCCOMMUTATIVEY NgGLRING] POSCCOMMRING)

58, AX39+1 COMMUTATIVE{PLUS,R] =RINGCR,STAR,PLUS)
NEGLRINGI POSLCOMMUTATIVE]

59¢ AX4@-1 RDISTLSTAR,PLUS,R] ~RINGLR,STAR,PLUS]

NEGLRING] POSLRDIST]

60, AX41-1 LDISTUSTAR,PLUS,R] ~RING(R,STAR,PLUS]

NEGCRING] POSLLDIST)

61. Ax42~1 NONEMPTY[R] -RING[&,5TAR,PLUS]

NEGLRING] POSINONEMPTY)

62, AX43+1 HOMLgK19[PLUS)STAR,Z,Y,XJ,Y,X] «FACTSLX)Y»2]
»RINGLY,STAR,PLUS]

NEGLRING) NEGLFACTSI POSLHOM]

634 AX44-1 IDEALCBAVSTAR) pLUS] ~RINGLA,STAR, pLUS]
=FACTSIX,A B

NEGLFACTSy NEGCRINGy POSCIUVEAL]

64, AX45w1 FACTgCsK2@(PLUS ,sTAR,B,AJ,A,B]
~RINGLA,STAR,PLUS] ~1DEALLCB,A,STAR,PLUS]

NEGLIDEALJ NEGLRING] POosSCFACTS]
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65, AX46+1 RINGLB,STAR,PLUS] <HOM[F,A,B] =RINGCA,STAR,PLUS]

NEG[HOM] IMPCONDLRING]

66 AX47=1 RINGLX,STAR,PLUS] ~RINGLAsSTAR,PLUS)
#RINGLBsSTAR,PLUS] =~ INTERSECTION[X,A,B]

NEGL INTERSECTION] IMPCONDLRING]

67, AX49-1 TIMESISTAR,E,X,X] «INCX,5] ~IDENTITYLSTAR,E,S]
NEGLIDENTITY] NEGLIND POSCTIMES]

68, AX49«2 TIMESLSTAR,X,EsX] =IN[X,S5] =IDENTITY[STARJE,SI
NEGLIDENTITYJ NEGLINI POS[TIMES]

69, AX50~1 IDENTITY[STAR,E,S] IN[SK21[S+E)STARJ,S]
POSCINI POSCIDENTITY]

7¢ Ax52-2 IDENTITYCSTARpEvS]
”TIMESCSTAR'SKZl[S:E:STAR]oE;SKQl S,E?71] ¢+ STAR])
"TIMES[STARpEaSK21CS,E,STARJ,SK21€SoEoSTARJJ

NEGLTIMES) POSLIDENTITy]

74, AX51.1  TIMgS[STAR,B,A,SK73CB,A,STAR,S1] =IN[A,5]
=IN[B,S] ~TIMES[STAR,A,B,SK73(B,A,STAR,57]
»COMMUTATIVECSTAR,S]

NEGCCOMMUTATIVE] NgGLInN] IMPCONDCTIMES]

72, AX52-1 COMMUTATIVE[STAR,S] IN[SK75[STAR,S),S)
POSCIND POSLCOMMUTATIVE]
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73, AX52+2 COMMUTATIVE[STAR,S] INCSK76[STAR,SJ,S]
POSCINI POSLCOMMUTATIVE]

74, AX52~3 COMMUTATIVELSTAR,S)
TIMESCSTAR,SK75[STAR,S 1, SK76[STAR,S7,5K72] 7LSTAR,S])

POSCTIMES] POSCCOMMUTATIVE]

75, AXS P-4 COMMUTATIVELSTAR,S]
»TIMESCSTAR,SK76(STaAR,53,5K75L8TAR,S3,C]

NEGCTIMES] POSICOMMUTATIVE]

76, AX53-1 INCGK25[XJ,x] ~NONEMPTY[X]

NEGINONEMPTYI POSC N

77, AX54-1 TIMESUSTAR,A,W,V] =INCA,S] «IN[BsS] =IN[C,S)
~]N[SK26LC,B»AsSTAR,S),5] -IN[SK270C,B4A)STAR,S7,8)
=IN[SK28[C,B,A,STAR,S],5]
«TIMESISTAR,A,B,SK240C,8,A+STAR,S)]
»TIMESLSTAR,SK26[C,B,A,5TAR,8]),C,SK27C0C,B,A,STAR,S])
~TIMESLSTA?] RyB»C,SK238(C,B,A,STAR,S3] ~ASSQCLSTAR,S]

NEGLASSOCI NEGLINI IMPCONDLTIMES

78, AX54-2 TIMES(STAR,U«CoV] =IN[A)S] =IN[B,S] =]N[C,S]
-IN[SK?Q[C:B:AaSTAQ,SJpSJ -IN{SK3g[C,B,A,STAR,S3,S]
~IN[LSK31[(C,B»A,STAR,S5],5%)]
aTIMES[STARo89CoSKSi[C.ﬁOA.STAR,SJ]
~TIMESCSTAR,A,SK347Cs»B,A»STAR,S],SK3BLC,B,A,STAR,S71

=T IMES{STA?) RlA!B,SK29LC'BDAOSTAR'S]J ~ASSOC[STAR,S )

NEGLASSOCI NEGLINI MPCONDLTIMES)

79, AX55-1 ASSOC{STAR,37 «RAS50C[STAR,S] «|,ASSOC[STAR,S]

NEGLLASSOC] NEGLRASSOC] POS[ASSOC)
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8¢ AX56a.1 TIMES[{STAR,3,A,E] «INCA,S] «IN[B,S)
~IDENTITYLGTAR,E,S] ~14VERSE[STAR, A,B]

NEGLINVERSED NEGLInENTITY] NEGLIN] POSCTIMES]

81, AX56=2 TIMEGLSTAR,A,B,E) «IN[A,S] «INLB,S)
~]DENTITY[STAR,E,S] ~INVERSE[STAR,A,B]

NEGCINVERSE] NEGLIDENTITY] NEGLIN] POSCTIMES)

82, AX57-1 INVERSE[STAR,AsB] IN[CA,SK38[STAR,B,Al]

POSCIN] POSLINVERSE]

83, AX57=2 INVERSE[STAR,A,B] IN[B,SK3I8L{STAR,B,Al]

POSCIN] POSTINVERSE;

AXS7=3 INVERSELSTAR,A,B]J
!DENTITY[STARnSK39cSTAR B:+AJ,SK3IBLSTAR,B,A?] 1]

POSCIDENTITY] POSCINVERSE]

85, AX57m4 INVERSE[STAR,A,B]

«TIMESISTAR, A+ BeSK3I9[STAR, B A
nTIMEs[STAR;B,A¢SK3955TARoB A

Ld 3

NEGLTIMESy POSLINVERSE]

86, AX58~1 IN[C,31 -INLA,S] ~IN[B,S] =~TIMES[{STAR.A,B,C]
~CLOSEDLSTAR,S 4

NEGLCLOSED] NEGLTIMES) IMPCONDLIN]

87, AX59«1 CLOGEDRC5TAR,S] INCSK4@[s,STAR].g]

POSCIN] POSLCLOSED]
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88, AX59.2 CLOSEDL3TAR,S] IN[SK41(s,5TAR],S]

POSLIN] POSLCLOSED]

89, AX59=3 CLOSEDLSTAR,S)
TIMES[L STAR,SK4Q[ S, STAR],SK41(S,STAR),S?] K42[S,STAR]]

POSCTIMES] POS[cLOSED]

904+ AX59«4 CLOSED[STAR,s5] =IN[SK42[$S,STAR],S]

NEGLIN] POSCCLOSED]

91+ Ax62«1 INIX,C] ~IN[x,A] «IN[X,B] ~INTERSECTIONLC,A,B]
NEGEINTERSECTION] [MPCONDLIN]

92, AXx6@~2 INLX,B) ~IN[x,C] =INTERSECTION[C,A,B)]
NEGLINTERSECTIOND 14PCONDLIND

93¢ AX60~3 INLX,A] ~INCx,C] =INTERSECTION[C,A,B]

NEGLINTERSECTION] [MPCONDLIN]

94, Ax61~1 INTERGECTIONIC,A,B) =IN[SK43(C,B,A],C]
»[N[SK44[C»Br»AJ,A] .IN[SK44[C,B,A],B]
NEGLINI POSLINTERSECTION)

95, AX6lag INTERSECTIONCC,A,B] <INCSK43CC,B,A1,C
IN[SK44(C,B,A1,C] ' 1ByAl,Cl

IMPCONDLIN] POSCINTERSECTION)
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96, AX61e3 INTERSECTIONLC,A,B) INLSK43(C)ByAJ,B]

w N[ SK44{C/)Br+AJ,A] ~IN[SK44[C,B,A],B])

IMPCOND[ INJ POS[ INTERSECTION

97, AX61,4 INTERSECTIONIC,A,B] IN[SK43[C,B,A],B]

INCSK44LC,B,A1,C]
POSLINy POSCLINTERSECTION)

98, AX615 INTERSECTIONCC, Ay B) INLSK43[C,)ByAD,A]

=] NLSK44LC,B,AJ, A] - IN[SK44(C,B,A],B]
IMPCONDC INJ POSLINTERSECTION]

99, AX61eb INTERSECTIONLC,A,B]) INCSKA3[C,B,A),A)

INCSK44LC,B,A3,C]
POSCIN] POSCINTERSzCTION]

100, AX62~1 INCAL,4] «vpgPLFsA,B] =MAP1IF,AL,B1]
NEGEMAP1] NEGLMAP) POS[ N

101, AX62=-2 INCBLl,R] =4AP[F»As»B) =MAPL[F,AL,B1]

NEGLMAPL1] NEGLMAP] POS[N]

182, AX63-1 CLOSEDLSTAR,S] =WELLDEFCLSTAR,S]

NEGLWELLDEFJ POSCCLOSED]

»INCB,S] ~WELLDEF[STAR,S,

NEGCWELLDEF] NEGCINY POSCTIMES,
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124, AX64~1 WwELLDEFC gTAR,S] «CLOSEDLSTAR,S]
«TIMESCSTAR,SK46(lS,STAR],SK47[S,5TAR],C]

NEGLTIMESy NEGLCLOSED; POSCWELLDEF]

105, AXE4w2 WELLDEFCSTAR,S) «CLOSEDLSTAR,S]
IN[SK47LS,STAR],S]

POSCINY NEGCCLOSEDy POSCWELLDEF]

1026, AX64-3 WELLDEFLSTAR,S) «CLOSEDCSTAR,S]
INCSK46[S,STARD, S]

POSLIN] NEGCLCLOSED] POS[WELLDEF]

107, AX65-1 IN[SKAB[X,B,A,F1,B) ~MAPCFsA+B] «IN[X,AJ

NEGCMAP] IMPCONDL In]

108, AX65-2 MAPLLF,X»SK48LX,B,A,F]] =MAP[F,A,B) =INLX,A]

NEGL IN] NEGLMAP] PpSiMaPL)

199, AX66~1 INLY B) «HOMIPHI»ASB] =INIX,A] «MAPLIPHI »X,Y]

NEGLMAPL] NEGLHOM] IMPCONDLIN]

119, AX67 =1 HaPLrPSI,Y, X2 -HOMCPH], A,B] «INCX,A)
»MAP1LPHI, X, Y] ~INVERSE[COMP,PSI,PHI]

NEGLINVERSEJ NEGLIN] NEsrHOM] IMPCONDIMAPL]

111, AX68~1 NORMALCM,G,STAR) «PNSUBGROUPLM,G,STAR]

NEG[LPNSUBGROUP] POS[INORAL]
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112, AX38=2 =~IDENTITYL{STAR,M,;G] =pNSUBGROUPLM,G,STAR]

NEGLPNSUBGROUP T NEGLIDENTITY]

113, AX68»3 ~EQUALSET[M,G] =PNSUBGROUPLM,G,STAR]

NEGLPNSUBGROUPY NEGLEQUALSET]

114: AX69=1 INVERSE[STAR,G.F] =~INVERSELSTAR,F,G)

IMPCONDL INVERSE]

115, AX70.1 INVERSECLCOMP oF sG] «~HOMIF +A»R] =HOMIG B A

NEGL HOM] POSLINVERSE]

116, AX71.1 HOMISK49[B,A,PHIJ,B,A) .HOMLPHI],A,B]

JMPCONDLHOM)

117, AX73~1 HOM[SK560C,B,A,6,F)sAsCJ «HOMLF A, B
wHOMLG,B,C]

IMPCONDLHOM)

118y AX74-~1 INTERSgcTIONCX,2,Y] «INTERSECTIONLX,Y;2]

IMPCONDUINTERSECTION]

119, AX75~1 COMMRING[R,STAR,PLUS] LCIRINGLR,STAR,PLUS]

NEGLCIRING] POS[COMMRING]

12p, AX75=2 UNITRINGIR,STAR,PLUS] .CL1RING[R,STAR,PLUS]
NEGLCARING] POSLUN[TRING]
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121,  AX76=1  CLRINGLR,STAR,PLUS] ~COMMRINGLR,STAR,PLUS]
«UNITRING[R,STAR,PLUS]

NEGLUNITRING] NEGLCOMMRING] POSLCLRING)

122, Ay77-1  DIST[STARL,STAR2,58] ~LDIST[{STARL,STAR2,S)
~RDISTLSTARL,STARZ,S]

NEGLRDIST] NEGLLUISTY POSIDIST]

123, AX78=1 CLOSED[5TAR,S] =RASgOCIgTAR,S]

NEGCRASSOCJ] POSLCLOSED]

124, AX78-2 TIMES[STA.»AsVsW]l =INCA,s] =IN[B,S]) =IN[C,s]
ngMES[STAR:A:B.UJ UTIMES[STARpUnCaVJ -TIMESESTAﬁaBoCaNB
~RASSOC[ STAR,S )

NEGLRASSOCJ NEGLIN] IMPCONDL TIMES)

125, AX79=1 RASSOC[STAR, S] »CLOSEDLSTAR,S]
~TIMES[STAR,SK66(S,5TAR],SK72LS,STAR],SK71[S,STAR]]

NEGLTIMES] NEGLCLOSED] POS[RASSOC]

126, AX79=2 RASSOCLSTAR,S) ~CLOSEDLSTAR,S]
TIMES[STAR,SK670S,STAR],SK68(S,STAR])SK74(S,STAR]]

POSCTIMES) NEGLCLOSED] POSCRASSOC)

127 AX79=3 RASSOC[STAR,S)] ~CLOSED[STAR,S])
TIMESCSTAR,SK69LS,STARq,SK687S,STAR],SK7@LS,5TAR]]

POSCTIMESY NEGLCLOSED] POSLRASSOC])
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328, AT G =4 RASSOCLSTAR,S) «CLOSEDLSTAR,S Y
TIMES[STAR,5K66[S,STAR],SK67[S,5TaAR],SK69[S,STARD]

POSCTIMES) NEGLCLOSED] POS[RASSOC)

129, AX79a5 RASSOCISTAR, S] «CLOSED[STAR.S]
IN{SK68LS,STAR],S)

POSCINI NEGCCLOSED] POS[RASSOC]

130, AX79<6 RASSOCCSTAR,S] «CLOSED{STAR,SJ
INCSK67(S,STAR],S]

POS[CINJ NEGLCLOSED] POS[RASSOC)

131, AX79=~7 RASSOCLSTAR,S) ~CLOSEDLSTAR,S]
INESK66[S,STARD,S]

POS[INI NEG[CLOSEDI POS{RASSOC]

132, AX80.1 CLOSED[CSTAR,S] .LASSOCCSTAR,S]
NEG[LASSOCI POS[CLOSED)

133, aAx88.2 TIMESCSTAR,U,CoV] o INCA+S] W INIB:S] INLC,S]
“TXMES[STAROBlC'NJ -~TIMESLSTAR A WsV] =»TIMESCSTAR;A,B,UJ
= ASSOC[ STAR,S]

NEGrLASSOC] NEG[IN] IMPCONDLTIMES)

134, AXBle1 LASSOCL[STAR,S] ~cLOSEDISTAR,S]
»TIMESLSTAR, SK63[S,STAR] SK620S,STAR],SK64[S,STARI]

NEGCTIMES] NEGLCLOSED] POS[LASSOC)

135, AX81le2 LASSOCLSTAR,S] -CLOSEDLSTAR,S
TIMES[STAR,SK62[S,STAR],SK61LS,STAR],SK63[S,STAR]]

POS[CTIMES) NEGICLOSED] POSLLASSOC)
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TINE A Koot LASSOCESTAR, S ~CLOSEDISTAR,S]
TIMES[STAR,SK6B[S,STAR7,SK65(S,STAR],SK64LS,STARY]

POSCTIMES) NEGCCLOSED) POSCLASSOC)

137, AX81~4 LLASSOCLSTAR,S] -CLOSEDC(STAR,S)
TIMES[STAR,SKéltsoSTARJ,SKbZES:STARJaSK65CSJSTAR]3

POSCTIMES] NEGLCLOSED] POSLLASSOC)

138 AXB1~5 LASSOCCSTAR,S, ~CLOSEDLSTAR,S
INC .

1]
SK62[SsSTARD,S)
POSEIN] NEG[CLOSED] POSpLASSOC]

139, AXB1a6 LASSOCLSTAR,S] «CLOSEDLSTAR,S]
INCSK61Ls,5TARD, 5]

POSCINg NEGLCLOSED; POSCLASSOC)

144, AXB1 .7 LASSUCLSTAR,S] LCLOSEDCSTAR,S]
IN[SK6Q[S:S]ARJnSJ

POSCINJ NEGCCLOSEDI POS{LASSOC]

141, AX83.1 COMMUTATIVE[LSTAR,G] -ABELiANEGoSTARJ

NEGL ABEL [AN] POSCCOMMUTATIVE]

142, AXB3~2 GROUP[LG,STARI =ABELIANCGSTAR]

NE GL ABEL IANJ POS[GROUP]

143. AXB86a~1 TIMES[STAR2'Bl;BZ.B$J pMAPi[F,AlJBlJ
=MAP4[F, A2,B2] ~MAP 1(F,A3,B3] «TIMESLSTARL,AL1,A2,A3)
»GROUPLG,STARL1] =GROUP([H,STAR2] »HOMLF,G,HJ

NEGLHOM]) NEGLGROUP] NEGCMAP1] IMPCOND[TIMES]
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144, AXE7-1 INLQKB7[X],xd =NONEMPTY[X]

NEGINONEMPTY] POSTIN]

149, A%9@-1 MAPLCOMpLF, INVERSELFJJ,B,B1 =HOMIF,£,8]
NEGLHOMI POSCMAPI

146, AX92=1 MAPYLF ,INVERSEFLY, AsBsFJ,Y) - INLY .83
=MAP[F,A,B]

NEGEMAPT NEGLIND POSIMAPL]

147, AX92~2 INLINYERSEF[Y,A,B,F1,A) =INCY,B] -MAP[F,A,B]

NEGCLMAP] IMPCONDCIN]

148, AX93=1 MAPLLF, «,MApFIX,A,B,F]] «INCX,A] =MAP(F,A,B]

NEGLCMAP] NEGLINI POSIMaAPL]

149, AX93-2 INCMAPF[X,A,BsF1,B) =IN[X,A) =MAP[F,A,B]

NEGCMAPI IMPCONDLIN]

150, AX94=1 INLAL, A7 ~MAP[F,A,B] »MAPL[F ;A1,B1])
NEGIMAP13 NEGIMAP] POS[IN]

151, AX94~2 IN[B1,B] =»MAPLF,A,B] -MAP{LF,A1,B81]
NEGEMAP{ ] NEGLMAP] POSLIN]

152, AX95«1 INLXsAJ «Map[pPHI,A,B] =~MAPLCPH],X,Y]

NEGLMAP1 ) NEGIMAP] POSLIN] L
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153, AX95=2 INCY,B] «Map(PHI,A,B] <MAPLLPHI, X, Y]
NEGIMaAP1] NEGIMAP) POS[N]

154, AXGbm1 MAPLLCOMPLF, INVERSECFII1.Y,Y) «MAPLF ,A,B]

NEGCINI NEGLMAP] IMPCONGIMAPY]

155, AX97=1 INLY,BJ =MAP[PHI,A,B] ~INCXsAJ «MAPLLPHI,X,)Y]

NEGLCMAPL]) NEGLMAP) IMPCONDCIN)

156, AX98=1 INLX)A] =MAPLFHI A B8] =IN[Y)B] =MAP{LFHL A, T

NEGLMAP1] NEGCMAPY TMPCONDLIN]

157, AX99=1 GROyUPLG,STAp) ~MAXIMALLIM,G,5TAR)
NEGLMAXIMAL] POSLGROUP]

158, AX99«2 PNORMAL[M)G,STAR] ~MAXIMALIM,G,sTAR]

NEGCMAXIMALI POSLPNORMAL]

159, AX99 =3 ~PSUBSETIM,O0THERSETLSTAR,G,M]]
- »PNORMAL(QTHERSET(STA?; R,64M],6,STAR] ~MAXIMALLIM,G,STAR])

NEGIMAXIMALI NEGLPNORM L] NEGLPSUBSETJ

160, AX100=1 4AXIMALIM,G,STAR] «GROUPLG,STAR]
»PNORMAL [M,G,STAR] PNORMAL[OTHERSE Tr STAR,G,M3,G, STAR)

IMPCONDLPNORMAL] NEGLGROUP ]I POSLMAXIMAL]

161, AX120=2 MAXIMALCM,G,STAR) «GROUP[GySTAR)
»PNORMAL[M,G,STAR] PSU3SET(M,0THERSETCSTAR,G,M]]

POSCPSUBSET) NEGCPNDORMAL] NEGLGROUP] POSCMAXIMALJ
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170, AXi@5=1 HOM[HOMMAPISTAR,MN,G,XJ,G6sX] e GROUPLG ST
«NORMALIN,G¢STAR]) «FACTSLX,G,N]

MEGLFACTSI NEGINORMAL] NEGLGROUP] POSCHOMJ

1713, AX126=1 SUBGROUP[H,G,STAR] ~GROUPL M, STAR]
~GROUPLG,STAR] ~3SUBSET[H,G]

NEGLSUBSET ] NEGLGROUP] pPOS[SUBGROUP]

172, AXL D7 =1 ~IDENTITY[STARZ, Y, B3 wHONLF o4 B3
»GROUP[A,STARL] ~GROUP[B,STARZ] eMAF[F, X, Y1
INENTITYLSTARYL, XA

NEGCMAP] NEGLGROUPI NEGLHOMJ IMPCONDLIDENTITY;

173, AX108=1 IDENTITYLSTARZ2:,Y,B1] mHOMOPHE A B]
»GROUPLA,STARL] -GROUPLB,STAR2] ~MAP[CPH] , X, Y3

»IDENTITYLSTARL ) X0 43

NEG[MAP ] NEGLGROyUPY NEG[HOMI IMPCONDCIDENT]Ty]

174, 4X109=1 PSUZSETLY ,BJ »HOMIPHI,prB) LGROQUPLA ,STARL]
»GROUPLEB,STAR2Y ~MAPCPHI,xsyl =PSUBSETLy,A)

NEGLMAPJ] NEGLGROUP ] NEG[HOMI IMPCONDCPSUBSET]

175, AX112=1 NORMALLY,B,5TAR2 ] ~GROURLA,STARYD
~GROUP[B,STARZ] ~HOMIPHI 4 A,B) =MAP{PHI, X, Y]
«NORMALL X, A, STARL]

NEGIMAPI NEGLHOM] WEGLGROUPJ IMPCONDINORMALJ

176¢ AX111=1 NORMAL (X, G, STAR] ~pNORMALCX,G,STAR]

NEGEPNORMaL) POSINORMALJ
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177, AX111-2 PSUBSETIX,5] =PNORMALIX,G,STAR)

NEGUPNORMAL) POSCPSUBSET]

178 AX111=3 -IDENTITY[gTAR,XsG) =PNORMALLX,G,STARJ

NEGIPNORMALI NEGLIDENTITY]

179. AX112w1 Pa;RMALLX,G,8TAR] =NORMALL X, G STAR ]
»PSUBSET[X,G] IDENTITY(STAR, X,G]

POSCIDENTITY] NEGUPSUBSET] NeGINQRMALY POSTEPNORMALID

180, AX113~1 SUBSETIX»Y) =~pPSUBSETIX, Y]
NEGLPSUBSETJ POS[SURSET)

181, AX113.2 -EQUALSETCX,Y] «PSUBSET(X,Y]
NEGLPSUBSET) NEGLELJUALSET]

182, AX114~1 SUBSETCX,Y] ~PSUBSET[X,Y]

NEGLPSUBSET ) POSLSUKSET

183+ AX115«1 pSUBSLTIX,Y) ~sUBSETIX,Y) EQUALSETLX,Y]

POSCEGUALSET) NEGUSUBSET] POSIPSURSET]

184, AX116-1 PSUBSETIX,z) =pSUBSETIXeY] ~pSYBSETCY, 2]
IMPCOND[PSUBSET)

185, AX117~-1 SUBGROUPLX,G,STAR] «NORMALLCX,G,STAR]
NEGLNORMAL J POS[LSUBGROUP]
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162, AX1@i~=i GROUP([H,STAR] =SUBGROUPIH,G,STAR)
NEGLSUBGROUP 3 POSLGROUR)

163, AX1P1.2 GROUP([G,STaAR] «~SUBGROUPCH,G,STAR]
NEGLSUBGROUP ] POS{GROUP]

164, AX1@01.,3 SUBSET[H,G] «SUBGROUPLH,G,STAR]

NEGLSUBGROUP] PUOSCSURSET]

165, AX192=1 GRQUP(G,STARI ~SIMpLEGROUPLG,STAR]

NEGLSIMPLEGROUP] POSIGROUP]

166, Ax1@2=2 ~NORMALLX,G,3TAR)] IDENTITYLSTAR,X,G]
~PSUBSET[X,G] =SIMPLEGRQUP[G,STAR

NEGLSIMPLEGROUP] NEGLPSUBSETI POSCIDENTITY] NEGONORMALI

167, AX103=1 SIMPLEGROUPLG,STAR] «GROUPLG,STAR]
NORMALLSK9L[STAR,G1,G,STAR]

POSCNORMALJ NEGLGRQUP] POSLSIMPLEGROUR]

168, AXL1D3 =2 SIMPLEGROUP[G,STAR] ~GROUP[G,STAR]
»JDENTITY[STAR,SK9{[sTAR,G],G]

b

NEGLIDENTITY; NEGUGROUP] POSCSIMPLEGROUPY

169, AX123-3 SIMPLEGROUPLG,STAR] =GROUP(G,STAR]
PSUBSETL SK9LLSTAR, G1,6] '

POSLPSUBSET) NEGLGROUP] POSCSIMPLEGROYP) L
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186, AX118-1 MAP[P W] s X MAPFCX,B,A,PH]]]  =HOM[PHl,A,B)
~SUBSETLx, Al

NEGLSUBSET ] NEGLHOM) POS{MAP)

187, AX1168-2  SUBSETIMAPFLXsB, AsPHI1,B]  HOMIPHI,A,B]
wSUBSETLX, Al

NEGLHOM] IMPCONDCSUBSET)

188, AX119=1 IDENTITYCFACTSETORLX,STAR,G,N],N,X]
»NORMALLN,G,STAR] ~FACTSIX,G,N]

NEGLFACTS] NEGINORMaL] POSUIDENTITY]

189, AX120-1 EQUALSET[X:G) =NORMALLN,G,STAR] =FACTS[X,G,N]
“IDENTITY[STAR,N,G]

NEGCIDENTITY) NEGLFACTSY NEGCMORMAL] POSCEQUALSET)

1932, Axlzl~1 IOENTITYLSTAR,X sG] «NORMALLN,G,STAR]
~FACTS[X,G,N] ~EQUALSET[X,G]

NEGLEQUALSET] NEGLFACTS] NEGCNORMAL] POSCIDENTITY]
191, AX122-»1 \'ORMAL{‘:GIGrSTARJ

POSTNORMAL ]

192, AX123+1 EQUALSETLx,X]

POSCEQUALSET]

193, AX124-1 ABELIANLX,sTAR] ~ABSUBGROUpLX,Y,STAR]
NEGLABSUBGROUPI POSLABELIAND
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194. AX124+2 SUBGROUPLX,YsSTAR) =ABSUBGROUPLX,YsSTAR)
NE Gg ABSUBGROUP 1 PO'S[ SU3GROUP ]

195, AX125-1 ABSUBGRUOUPLX,Y,STAR) < ABELIANCX,ETAR]
«SUBGROUPLX,Y)»STAR]

NEGLSUBGROUP] NEGLABELIAN] POSLABSUBGROUP]

196, Ax126~1 COMMRINGLX s STAR) pLUYS
«COMMSUBRINGLX,Y,STAR,PLUS]

NEGLCOMMSUBRING] POSLCOMMRING)

197, AX126=7 SUBRINGLX,Y ,STAR,PLUS]
«COMMSUBRING[X,Y,STaR,PLUS]

NEGLCOMMSUBRING] PQSESyU3RING]

198, AX127=1 COMMSUBRINGLX,Y,STAR,pLUS]
«COMMRINGL X, STAR,PLUS] ~-SUBRING[X,Y,STAR,FLUS)

NEGLSUBRING] NEGLCOMMRING] POSECOMMSUBRINGJ

199, AX128-1 SUBRINGIM,%,STAR,PLUS] «IDEALLM,R/,STAR,PLUS])
NEGCIDEAL] POSCSUBRING]

200, AX128=2 INCB2,M]  =IN[A,M] »INLB,MJ = IN[X,H]
»TIMESISTAR, X, A, X1] eTIMESLSTAR,A,X,X2] «INVERSE[PLUS,B1,81
-TIMES[PLUS,B,BL,B2) ~IDEALLM,R,STAR,PLUS]

NEGLIDEALDI NEGLINVERSE] NEGLTIMES) IMPCONDLIN]

201, AX128=3 IN[X2,M] wIN[ASM] =INCB M) = IN[X,R]
«eTIMESISTAR, X, ApX1] »TIYMESLSTAR, A, X,X2] «INVERSELPLUS,B1,B]
uTIMES[PLUSp8081082] = JOEALLM,R,STAR,PLUS]

NEGCIDEAL] NEGLINVERSE] NEGLTIMES] IMPCONDCIN]
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202, AX128-4 IN0X1,M] =INCA,M] -IN[{B,M] =INIX,R]
wT IMESLSTAR, X, Ay X1 ] »TIMES{STAR, A, X, X2]1 «INVERSE[PLUS,B1,8]
~TIMES[PLUS,8,B1,B2) =~1DEALLM,R,STAR,PLUS]

NEGLIDEAL) NEGCINVERSE] NEGLTIMES) IMPCONDLIN]

203, AX129-1 IDEALLM,R»STAR,pLUS] =SUBRINGLM,R,STAR,pLUS]
wIN[SK()B[PLUSr STAR,R,M],M] ’INCSK‘;Q[PLUS 'STAR, R, MJIMJ
«INLSKO6PLUS,STAR,R,M7,M]

NEGLIND NEGLSUBRING) PosTIDEAL)

204, AX129-2 IDEALIM,R,S5TAR,pPLUS) =SUBRINGLM,R,STAR,PLUS]
TIMESCPLUS,SKI4LPLUS,STAR, Ry M], SK95CPLUS STAR, R, M],SK96[PLUS
»STA?] R,R.MI1)

POSCTIMES) NEGISUHRINGI POSCIDEAL)D

265, AX129-3 IDEALTM,2,5TAR,PLUS] «SUBRING[M,R,STAR,PLUS]
INVERSELPLUS ,SK95LPLUS,STAR, R, M],SKo4[PLUS,STAR, R, M]]

POSLINVERSE] NEGLSURRING] POSCIDEAL]

206, AX129-4 IDEAL[M,X,STAR,pLUS] =SUBRINGCM,rs»STAR,PLUS)
TIMES[STAR,SK93LPLUS,STAR,R,M],SK97CPLUS,STAR,R,M],SK99LPLUS
,STA?] R,R,M1)

POSCTIMES] NEGLSUBRING] POSCIDEAL]

207, AX129-5 IDEALCMsR,STAR,PLYUS] =SUBRINGLM,R,STAR,PLUS]
TIMES{STAR,SK97LPLUS,STAR,R,M1,SK93CPLUS,STAR,R,M],SK98[PLUS
,STA?] R,R,M1]

POSCTIMES] NgGISUBRING] POS[[DEAL]

208, Ax129=6 IDEAL[M) s, sTAR,PLUS] «SUBRINGLM,R)STARs pLUSJ
INCSKS7 [PLUS,STAR, R, M), R]

POSLIN] NEGLSUBRING] POS[IUEAL]
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209, AX1297 IDEALLM,5sSTAR, PLUS] =SUBRINGLM:R.STAR, FLUSY
INCSKOAUPLUS ;STAR, R, MI MY

#FOSLIND NEGUSUBRING] POS[IDEAL]

210, AX129.8 [DEALCMiR,STAR,PLUST .SUBRING[M,R,STAR,PLUS]
INCSK9SLPLUS,STAR, R, MJ, M1

POSCIND NEGLSUBRINGI POSTIVEALD

211+ AX132=-1 RINGCR,STARIPLUS) «MAXRINGLA, R, STAR,PLUS]

NEGEMAXRING) POSLRING]

212, AX130-2 PIDEALLAIR,STARIPLUS] ~MAXRINGLA,R)STAR,PLUS]

NEGCMAXRINGI POSLPIDEAL]

213, AXL 303 ~PSUBSETCA,0THERSETLSTAR,PLUS, A, R1]
«P IDEALLOTHERSE?) T{STAR,PLUS,A,R3,R,STAR,PLUS]
=MAXRINGEAsRsSTAR, PLUS]

NEGCMAXRING] NEGLPIQEALY NEG[PSUBSET]

214, AX131-1 MAXRINGLA,R»STAR,PLUS] «RINGLR,STAR,PLUS]
oPIDEALLA,R,STAR,PLUS]
 P!DEAL[OTHERSET[STAR.PLUS,A.R].R.STAR,PL?] Us3

JMPCONDCPIDEAL] NEGLRING) POSIMAXRINGI

245, AX131=2  MAXRINGCA,R,STAR,PLUS] «RINGLR,STAR,PLUS]
»PIDEALCA,R,STAR,PLUS] PSUBSET[A,OTHERSET(STAR,PLUS,A,R]]

POSLPSUBSET] NEGLPIDEAL) NEGCRING] POSCMAXRING]

216, AX132 =1 PSUBSETL X, B] ~HOMLPHI ,A,8)
=PSUBSETLX,AJ (B,STAR2,PLUS2]  ~MAP[PHI,X,Y)

NEGCMAP] NEGLIRING] NEGLWOMI IMPCOND[PSUBSET)
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217, AX133-1 IOENTITYCSTAR2,Y,B81  «RINGLA»STARL,PLUSL]
~RINGLB,STAR2,PLUS2] =HOMCPHI,A,B) ~MAP[PHI,X,Y]
~]DENTITYLSTARL, X, 8]

NEGLMAP] NEGLHOMI 4gGLRING] IMPCONDCIDENTITY)

218, AX134~1 IOENTITYLFACTSETOPLL X, STAR,pPLUS, Ry AT, A, X]
~-1DEAL[A,R,S2] TAR,PLUS) =FACTSIX,R,A]

NEGEFACTS] NEGLIDE ;L] POSLIDENTITY]

219, AX135=1 IDEALCAWR,STAR,pPLUS] ~PIDEALLA,R,STAR,PLUS]

NEGLPIDEALJ POSCIVEAL]

220, AX135~2 PSUBSETLA,RsSTAR,PLUS] ~PIDEALLA,R,STAR,PLUS]

NEGCPIOEAL] POSCPSUBSET] _ |

221, AX135+3 -1DENTITY(3TAR,A,R] -pIDEALLA,R,STAR,PLUS]

NEGLPIDEALJ NEGLIDENTITY]

222, AX136~1 PID ALLA,RsSTAR,PLUS] =IDEALLA,R,STAR,PLUS]
~PSUBSETLA,R,STAR, PLUS) JDENTITY[STAR,A,R]

POSCIDENTITY] NEGLPSURSETI NEGLIDEALY POSCPIDEAL]D

223, AX137-1 RINGLR,STAR,PLUS] «SIMpLERINGER,STAR,PLUS]

NEGLSIMPLERING] POS[RING]

224, AX137-2  =I10EAL[Y,R,STAR,PLUS]  IDENTITYCSTAR,Y.R
=PSUBSETLY,R] -SIMPLERING[R,STAR,PLUS] - S

_NEGLSIMPLERING) NEGPSU3SET) POSCIDENTITY) NEGLIDEAL)
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225 4¥138=1 SIMPLERINGIR,ST,R PLUS] «RINGLR,8T47 PLUS
IDEALL SK1820pLUS ,STARs RI+R,STAR: pLUS)

POSCIDEALI NEGCRING] PCS[{SIMPLERING]

226, Axljanz SIMPLERINGIR,STAR, PLUS] =RINGLR ,STAR,PLUS]
=] DENTITYCSTAR,SKLZ20PLUS,STAR:R],R]

NEGPIDENTITY] NEGLRING] POS{SIMPLERING]

227, AX138=3  SIMPLERINGIR,STAR,PLUS] GRINGLR,STpR, PLUS]
PSUBSETLSK1820PLUS,STAR,R]»R]

POSCPSUBSET] NEGLRING] POS[SIMPLERING]

228, AX142«1 COMMUTATIVELSTAR,R] «COMMRINGCR,STAR,PLUS)

NEG{COMMRING] POSLCOMMUTATIVE]

229, AX142.2 RINGLR,STAR,PLUS] «COMMRINGCR,STAR,PLUS]
NEGC COMMRING ] POS[RING]

23p,s AX143=1 COMMRINGLR,STAR,PLUS]  <COMMUTATIVE[LSTAR,R]
«RINGLR, STAR,PLUS]

NEG[RING] NEG[COMMUTATIVE) POSCCOMMRING]

231, AX148=1 RINGLA,STAR,PLUS] -SUBRINGLA,B,STAR,PLUS]
NEG[LSUBRING] POSLR[nG]

232, AX1482 RINGIR,STAR,PLUS] ~SUBRINGCA,B,STAR,PLUS)
NEGLSUBRING] POSLRING)
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233, AX148=3 SUBSET[A,B8] -SUBRINGLA,B,STAR,P US]
NEGLSUBRING] POSLSURSET)

234, AX158=1 ~IDENTITY[PLUS2,Y4B) «HOM{F,A,B)
=RING[A,STARL,PLUSY; ~RING[B,STAR2,PLUS2) =MAPCF,X,Y)
IDENT]TY[PLUSL1XsA]

NEGLMAP] NEGLRING] NEGCHOM] IMPCONDCIDENTITY)

235, AX159=1 ~IDENTITY[STARZ,Y,B] <HOMCF,A,8]
~RING[A,STAR1,PLUS1] ~RING[B,STAR2,PLUSZ] ~MAPCF,X,Y]
IDENTITY[STARL, X, Aq

NEGCMAPI NEGIRING] WEGCHOM] IMPCONDCIDENTITY]

236, AX162-1 IDEALLBB, AA,STAR, pLUS] RINGCA,STAR,pLUS]
=]IDEALLB,A,STAR,PLUS] ~HOM[F,A,AA] «MAP[F,B,BB) '

NEGCMAP] NEGLHOM] NEGCRING] IMPCONDCIDEAL]D

237, AX161-1 MAPLF 1AL, IMAGEL AL B A ,F ] -HOM;F:A:BJ
«SUBSETLAL,A]

NEGLSUBSET 3 NEGLHOMI POSMAP]

238, AX162~1 GROUP[3,STAR2] =HOM[PHI,A,B] «GROUP[A,STAR1)
NEGLHOM] IMPCONDLGROUP}

239, AX165~1 HOM[F,ASyUB,BSUB] ~HOM[F,A,B) ~SUBSETLASUB,A)
~MAPLF ,ASUB,BSUB]

NEGUMAP] NEGLSUBSET]) IMPCONDCHOM)]

185






APPENDIX C

ZORBA-I AS A USER SYSTEM

ZORBA-T has been implemented in LISP on a Digital Equipment
Corporation PDP-10 Computer used in an interactive (time-sharing)
mode. The (interpreted ) system uses 100K of LISP words which are

divided as follows:

25K Basic LISP System;
10K ©Special LISP Trace Package;
15K (QA3) Functions used to maintain the data base, prenex

wifs into clauses;

25K ALGBASE loaded into QA3's data base;
15K ZORBA~-I including I/0 for analogies;
10K Freespace for running programs.

100K Total

I designed ZORBA-I empirically. Algorithms were coded for the |
information flows I understood. When I was in doubt or didn't know
how to handle a particular decision, I would program a break point
that enables me to communicate with the LISP EVAL at that point in
the program. I could interrogate the state of ZORBA-I, edit func-
tions, execute various I/O operations, and continue running the

program in order to design the needed sections of the ZORBA-T

algorithms.

Without such flexible interactive facility, it is doubtful that
ZORBA-I could have been developed at all.

In principle, ZORBA-I and QA3 are intimately linked while in
practice they are barely connected.

In principle, the operating procedure for ZORBA-I would be:

(1) Load the ZORBA-I system on the PDP-10.

(2) Select a theorem TA te prove and an analogous theorem T that
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(5)
(6)

(1)

has been proved.

Load the data-~base, e.g. ALGRASE from disk or tape.

Load the resolution tree (saved from the run of QA3 when

T was proved) from disk or tape.
Execute ZORBA—I[TA;T] to create an analogy Q.

Delete all clauses frcm the data base which do not appear

in the image of ac.

Call QA3 to prove TA using the restricted data base.

Two practical reasons inhibit these last two steps in the imple-

mented system:

(1)

(2)

The version of QA3 that runs on the PDP-10 is incompatible
with the QA3 memory structures which ZORBA-I inherited
from its initial implementation on the SDS~940. Substan~
tial work would need to be done to render the two com-

patible again.

The full blown QA% system would demand an additional 15K
of code and possibly additional freespace. The resulfant
system would be ~ 115K in size and would exceed the memory
capacity of the PDP-10 LISP system at Stanford Research
Institute. In practice, QA3 could be loaded after
ZORBA~I was run by deleting the ZORBA~I code after use.
QA3's code would be deleted and ZORBA-I's code would be
reloaded to run the next analogy problem. Consequently,
ZORBA-TI has been run as an independent system from QA3.
Two theorems (T2 and TM) were run on the PDP-10 version of
QA% using the data bases output by ZORBA-I after it gen-
erated an analogy with T, and T, respectively. The QA3

1 3
search was, in fact, quite small (~ 100 clauses) and it
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found the two proofs easily. Other theorems in the experi-
mental set required specilal QA3 strategles that were not
converted to the PDP-10. Consequently, the impact of
ZORBA-T on restricting their QA% search was not explictly

- tested.
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