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THE ANALYSIS OF ALGORITHMS

The advent of high-speed computing machines, which are capable of carrying out algorithms so faithfully,

has led to intensive studies of the properties of algorithms, opening up a fertile field for mathematical

investigations. Every reasonable algorithm suggests interesting questions of a "pure mathematical" nature;

and the answers to these questions sometimes lead to useful applications, thereby adding a little vigor to

the subject without spoiling its beauty. The theory of queues, which analyzes a very special class of

algorithms, indicates the potential richness of the theories which can be obtained when algorithms of all

types are analyzed in depth.

The purpose of this paper is to illustrate same general principles of algorithmic analysis by considering

an example which is interesting for both historical and mathematical reasons, the calculation of the greatest

common divisor (gcd) of two integers by means of Euclid's algorithm. Euclid's procedure [2], which is one of

the oldest nontrivial algorithms known, may be formulated as follows, given integers U > V > 0

El. If V = 0 , stop; U is the answer.

E2. Let R be the remainder of U divided by V, so that U = AV+ R, 0 < R < V

then replace V by R, and return to El.

Replace U by V,

1. "Local" analysis. Analyses of algorithms are generally of two kinds, "local" and "global". A local

analysis consists of taking one particular algorithm (like Euclid's) and studying the amount of work it does

as a function of the inputs; a global analysis, on the other hand, considers an entire family of algorithms

and investigates the "best possible" procedures in that class, from some point of view. In both types of

analysis we can consider either the "worst case" of the algorithms, namely the work involved under least

favorable choice of inputs, or the "average case", the expected amount of work under a given input distribution.

More generally, we may be able to obtain the distribution of work given the distribution of inputs. "Work"

may be measured in terms of the number of times each step of the algorithm is performed, or the amount of

things which need to be rema~bered, etc.

The first local analysis of Euclid's algorithm was published in 1844 by G. Lame [10], who showed that

step E2 will never be performed more than five times the number of digits in the decimal representation of V.

His analysis was based on the fact that the method is least efficient when U and V are consecutive

Fibonacci numbers.

The average behavior of Euclid's algorithm is much more difficult to determine than the worst case, and

it has been established only in recent years. J. D. Dixon proved [1] that, for all E and C > 0 , the

probabilitythat \T(U,V)-(12:rt-2 £n2) £nU\ ?(£nu)~+E is O((£nN)-C), given that l<V<U<N.

His proof is based on caref~l refinements on Kuz'min's study of continued fractions [9], showing that partial

quotients which are far apart in the sequence are nearly independent.

At about the same time, H. Heilbronn introduced a new approach [6] to the study of continued fractions

and Euclid's algorithm. Let T(U,V) be the number of times step E2 is performed, and let
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T(V) lim
N ~ 00

1 V+N
iii' L: T(U, V)

U=V+l

2V
1 1: T(U, V)
V U=V+l

be the average number of' times when V is f'ixed. Heilbronn show"ed in ef'f'ect that

nT(n) L3n/2J + 2L. r(y~t - t') ~l

where Lx J is the great est integer :S x , rx l is the least integer > x , and the sum is over all

positive integers y,t,t' such that gcd(t,y) = 1 t :S y t':S y, tt' =n (modulo y) 0 Evaluating

this sum, he essentially f'ound that T(n) = (12n-2 in 2) in n + 0(a_l (n)2) . Indeed, somewhat more seems to

be true, although proof' is still lacking; there is extensive empirical evidence [8, pp. 330-333] that

(Ll:Sk:SV, gcd(k,V) =1 T(V+k,V))/CP(V) = (12n-
2

in 2) in V + 1.47 + 0(1) as V-+OOe

2. "Global" analysis. Is Euclid's algorithm the "best" way to calculate greatest common divisors?

Analyses of' other gcd algorithms (cf. [8]) show that, under certain conditions, Euclid's method is inferior;

and the average behavior of an interesting new algorithm discovered by V. C. Harris [4] is still unknown.

In searching for a "best" method, one way to measure the work is to consider the amount of' time taken

to perform the algorithm with pencil and paper, or with a conventional computer. Various abstract automata

have been proposed by which the latter notions can be made precise (cf. [5, 7]). When we apply such models

to Euclid's algorithm, it is not difficult to see [8, p. 526] that the amount of work is essentially

proportional to the square of the number of digits in U, for both the average case and the worst case,

analogous to the familiar method of long division. On the other hand, extremely fast methods of multiplication

and division have recently been discovered; A. Schonhage and V. Strassen have proved [13] that an m-digit

number can be multiplied by an n-digit number in only O(n(log m) (log log m)) units of time, when

n > m > 1 It is therefore natural to ask Whether the gcd of two n-digit numbers can be calculated in

less than 0(n2) steps. Section 3 of this paper shows that this is indeed possible, in o(nl +E
) steps for

all E > 0 , by suitably arranging the calculations of Euclid's algorithm. Obviously at least n steps

are necessary in any event (we must look at the inputs), so this result provides some idea of the asymptotic

complexity of gcd computation.

3. High-speed gcd calculation with large numbers. If step E2 is performed t times, let Al ,·· .,At be

the partial quotients obtained. It is well known that U = Qt(Al, ••• ,At)D, V = Qt_l(A2, ••. ,At )D , where

D = gcd(U,V) and Qt is the continuant polynomial defined by Q-l = 0, QO 1, ~+l(xO,xl,••• ,Xt) =

XOQt (xl'·· .,xt ) + Qt-l (x2,·· .,xt ) • We shall call [Al ,·· .,At,D] the Euclidean representation of U and V.

After k iterations of step E2 we have U = Uk = ~-k(~+l'·· .,At)D, V = Vk = Qt-k-l(~+2'· •• ,At)D

Euler [3] observed that Qt(xl , ••• ,xt ) is the set of all terms obtainable by starting with xl •••xt and

striking out pairs zero or more times. From this remark, it follows immediately that
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an identity which forms the basis of Heilbronn's work cited above; it was used on several occasions by

Sylvester (14] and given in more general form by Perron (12, p. 14-15].

For convenience we shall write nonnegative integers N in binary notation, using iN '" r10g2(N+l) l
binary digits. It is easy to prove that Nt (Al , ••• ,At ) :s: lAl + .•• + iAt+1 , and Lame" s theorem implies that

lAl + ••• + lAt :s: Nt (Al , ••• ,At ) + t = O(log U) in Euclid's algorithm; hence (except for a constant factor) it

takes essentially as much space to write down the Euclidean representation (Al , ••• ,At,D] as it does to

write U and V themselves in binary form. We shall show that it is possible to convert rapidly between

these two representations of U and V.

Theorem 1. Let Sen) = n(log n) (log log n) and n = lA
l
+ •••HAt • There is an algorithm which,

given the binary representations of A
l

, ••• ,At ' computes the binary representation of Qt(Al ,.· .,At ) in

O(S(n) (log t)) steps.

Proof. Consider four continuants associated with (A
l

, ••• ,A
t

) , namely Q = Qt(Al , ••• ,At ) ,

associated with (O,Al, ••• ,A
t

) are the same, in another order, so we add zeroes if necessary until t is

a power of 2 Now let L,L·, ·L,·L· and R,R·, ·R, ·R· be the continuants associated with A
l
,· •• ,At and

At +l , ••• ,A2t respectively. By (*),

I

.Q' = ·LR· + ·L· ·R· • Choosing C so that we can evaluate the L's in CS(£Al + ••. + iAt)k steps, the R's

in CS(£Al + ••• + lA
2t

) further steps by the Sch~nhage-Strassenalgorithm, we can evaluate the Q's in at

most CS(£A
l

+ •• •+lA
2t

) (k+l) steps.

Let U = 2~'+U", V = 2~'+V" , where O:S: U", V" < 2
m

• D. H. Lehmer (11] has suggested that the

partial quotients for (U, V) be found by first obtaining some of those for U' and V' , stopping at As

where s is maximal such that (U'+l,V') and (U',V'+l) have Al, •• ·,As in common. Then Al , ••• ,As

are partial quotients for (U,V) also. We shall call (Al, .•• ,As the "Lehmer quotients" for (U',V')

The example (U',V') = (2m,2m- l ) shows that Lebmer quotients might not amount to anything, but we can prove

that four additional Euclidean iterations will always give a useful reduction.

Lemma 1. Let U = 2~'+U" ? V = 2~'+V" , where O:s: U", V" < 2
m

• Let (Al , ••• ,At,D] be the

Euclidean representation of (U, V) , and let (Al , ••• ,As) be the Lehmer quotients for (U', V') , where

t > s+4 Then Us+4 < u/lu' .

Proof. Let

of convergence of

Pk = Qk_l(A2, •••,~), Qk = Qk(Al , ••• ,Ak) , and let

PJQk to g, schematically

V/u . The well-known pattern
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•

when k is even, shows that if 9 and 9 1 are two real numbers whose continued fractions differ first

at AS+l f A~+l ' either Ps+JQs+l or Ps+2/Q s+2 lies between g and g •• Hence

~ Q;+4 ? QS+2(Qs+3 + Qs+2) > 1/1 9 - Ps+iQS+21 ? 1 I I(V'+l) I U· - V' I (U'+l) \ >~ U· , using the well­

known relation I9 - PJQk \ > l/Qk(Qk+l + Qk) • And by (*), Qt-s-4 (As+
5

' ••• ,At ) > U/Qs+4 •

Lemma 2. There is an algorithm which, given U > V > 0 with W n, finds all the Lehmer quotients

for (U, V) in at most steps.

Proof. For large n the algorithm first applies itself recursively to the leading ~ n binary digits

of U and V, finding r partial quotients; then it computes U = (_l)r(Q 2(A
2

, ... ,A l)U -Q l(A
l

, ... ,A l)V),r r- r- r- r-

V (_l)r(Q (Al, ... ,A )V-Q 1(A2 , .•. ,A )U) in O(S(n) log(n)) steps by the method of Theorem 1. We canr r r r- r

find Ar +l in O(S(n) log(n)) further steps (see [8, p. 275]), so by Lemma 1 the algorithm performs a bounded

number of Euclidean iterations until reaching U
r

+
k

with at most ~ n digits. Now the same process is

repeated on the ~ n
2 leading digits of Ur+k'Vr +k ; after a bounded number of further Euclidean iterations,

we have reduced U to less than ~ n digits, and we have found quotients AI' ••. ,A
p

, where p? s (since

the proof of Lemma 1 can be readily modified to show that Q < fur ). Finally the value of s is located in
s

approximately log2 p = O(log n) iterations, using the well known "binary search" bisection technique; each

iteration tests some k to see whether or not k < s or k > s. Such a test can rely on the fact that

Pk/Qk and Pk+l/Qk+l are both "good" when k:S s , while they are not both "good" when k > s+2 , where

PJQk is called good when it is < VJ(Uk+l) , for k even, or > (Vk+l)/u
k

' for k odd. The running

time L(n) of this algorithm as a whole now satisfies L(n):s 2L(~ n) + O(S(n) (log n)2)

I

Theorem 2. There is an algorithm which, given 2n > U > V ? 0 , determines the Euclidean representation

Proof. Begin as in Lemma 2 to reduce n 3
to "4 n in L(~ n) + O(S(n) log n) steps, then apply the

same method until V
t

= 0 The running time G(n) of this algorithm satisfies the recurrence

G(n) = G(~ n) +O(S(n) (log n)3) = G(tE; n) +O(S(n)(log n)3) +O(S(~ n)(log n)3) = ... = O(S(n) (log n)4)

I
In particular, we can find the gcd of n-digit numbers in nl +

E
steps, as n ~ 00 , for all E > 0

The method we have used is rather complicated, but no simpler one is apparent to the author.::I In general,

the idea of reducing n to an for a < 1 often leads to asymptotically efficient algorithms.

::I Note added in proof: A similar; somewhat simpler construction was found by A. Schgnhage shortly after

~e received a preliminary copy of this paper; his improved construction takes only

steps.

4
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Mathematical Analysis of Algorithms

In this paper I shall try to illustrate the flavor of some current

work in algorithmic analysis, by making rather detailed analyses of two

algorithms. Since I was asked to be "mathematical", I have chosen some

examples which are interesting primarily from a theoretical standpoint.

The procedures I shall discuss (namely, in-situ permutation and selecting

the k-th largest of n elements) are not among the ten most important

algorithms in the world, but they are not completely useless and their

analysis does involve several important concepts. Furthermore they are

sufficiently unimportant that comparatively few people have studied them

closely, hence I am able to say a few new things about them at this time.

The general field of a~lgorithmic anaJ..:Ysis is an interesting and

potentially important area of mathematics and computer science that is

undergoing rapid development. The central goal in such studies is to

make quantitative assessments of the "goodness" of various algoritluns.

Two general kinds of problems are usually treat ed:

Type A. Analysis of a particular algorithm. We investigate

important characteristics of some algoritlun, usually a frequency analysis

(how many times eaGh part of the algorithm is likely to be executed), or

a storage analysis (how much memory it is likely to need). For example,

it is possible to predict the execution time of various algorithms for

sorting numbers into order.

Type B. Analysis of a class of algoritluns. We investigate the

entire family of algoritluns for solving a particular problem, and attempt

6



to identify one that is "best possible". Or we place bounds on the

computational complexity of the algorithms in the class. For example,

it is possible to estimate the minimum number S(n) of comparisons

necessary to sort n numbers by repeated comparison.

Type A analyses have been used since the earliest days of comput er

programming; each program in Goldstine and von Neumann's classic

memoir [ 7] on "Planning and :'::oding Problems for an Electronic Computing

Instrumentl! is accompanied by a careful estimate of the "durations" of

each step and of the total program duration. Such analyses make it

possible to compare different algorithms for the same problem.

Type B analyses were not undertaken unt il somewhat later, although

certain of the problems had been studied for many years as parts of

I!recreational mathematics". Hugo Steinhaus analyzed the sorting function

S(n) , in connection with a weighing problem [14]; and the question of

computing
n

x with fewest multiplications was first raised by Arnold

Scholz in 1937 [13]. Perhaps the first true study of computational

complexity was the 1956 thesis of H. B. Demuth [ 3], who defined three

simple classes of automata and studied how rapidly such automata are

able to sort n' numbers, using any conceivable algorithm.

It may seem that Type B ana.lyses are far superior to Type A, since

they handle infinitely many algorithms at once; instead of analyzing each

algorithm that is invented, it is obviously better to prove once and for

all that a particular a.lgorithm is the I!best possible". But this is only

true to a limited extent, since Type B analyses are extremely technology-

dependent; very slight changes in the definition of I!best possiblel! can

31significantly affect which algorithm is best. For example, x cannot

7



be calculated in fewer than 9 multiplications, but. it can be done with

only 6 arithmetic operations if division is allowed.

In fact the first result in Demuth I s pioneering work on computational

complexity was that "bubble sorting" was the optimum sorting method for a

certain class of automata. Unfortunately, Type A analyses show that

bubble sorting is almost the worst possible way to sort, of all known

methods, in spite of the fact that it is optimum from one particular

standpoint.

There are two main reasons that Type B analyses do not supersede

Type A analyses. First, it is generally necessary to formulate a rather

simple model of the complexity, abstracting what seem to be the most

relevant aspects of the class of algorithms considered, in order to make

any progress 'at all on a Type B analysis. These simplified models are

often sufficiently unrealistic that they lead to impractical algorithms.

Secondly, even with simple models of compleXity, the Type B analyses usually

are consi~erably difficult, and comparatively few problems have been solved.

Even the problem of computing xn with fewest multiplications is far from

solved (see [10, vol. 2, Section 4.6.3]), and the exact value of S(n) is

known only for n < 12 and n 20, 21 (see [10, vol. 3, Section 5.3.1]).

The sorting method of Ford and Johnson [ 6 ] uses fewer comparisons than

any other knam1 sorting technique, yet it is hardly ever useful in practice

since it requires a rather unwieldy program. Comparison counting is not

a good enough way to rate a sorting algorithm.

Thus I believe that computer scientists might well look on research

in computational co~plexity as mathematicians traditionally view number

theory: it is an interesting way to sharpen our tools, for the more

routine problems we face from day to day. Although Type B analyses are

8



extremely interesting, they do not deserve all the glory; Type A

analyses are probably even more important in practice, since they can be

designed to measure all of the relevant factors about the performance of

an algorithm, and they are not quite as sensitive to changes in

technology.

Fortunately, Type A analyses are stimulating intellectual challenges

in their own right; nearly every algorithm that isn It extremely

complicated leads to interesting mathematical questions. But of COurse

we don It need to analyze every algoritbm that is invented, a.nd we can It

hope to have a precise theoretical analysis of any really big programs.

In situ ;permutation. As our first example, let us consider the problem

of replacing (xl ,x2' ..• ,xn) by (xp (1),xp (2)' .•• ,xp(n)) w~ere p is

a permutation of [1,2, ..• ,n} • The algorithm is supposed to permute the

Xl S in place, using only a finite amount of auxiliary memory. The

function p is one of the inputs to the algorithm, we can compute

p(k) for any k but we cannot assign a new vallle to p(k) as the

algorithm proceeds. For example, p might be the function corresponding

to transposition of a rectangular matriX, or to the unscrambling of a

finite Fourier transform.

If (p(1),p(2), ... ,p(n)) were stored in a read/write memory, or

if we were allowed to manipulate n extra "tag" bits specifying how much

of the permutation has been carried out at any time, there would be

simple ways to design such an algorithm w~ose running time is essentially

proportional to n But we are not allowed to change p dynamically,

nor are we allowed n bits of extra memory. Thus there seem to be



comparatively few solutions to the problem.

The desired rearrangement of (xl ,x2' ••• ,xn) is most naturally

done by following the cycle structure of p (cf. [10, vol. 1, p. 161J).

Let us say that j is a "cycle leader" if j:; p(j) , j:; p(p(j)) ,

j :; p(p(p(j))) , etc.; each cycle of the permutation has a unique leader,

and so the following procedure (cf. Boothroyd [ 2 J, MacLeod [12]) carries

out the desired pel~utation by doing each cycle when its leader is

detected:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

for l:=l step 1 until ~. do

begin comment the permutation has been carried out

over all cycles whose leader is less than j;

k: =p(j) ;

while k > j do

k:=p(k);

if k = j then

begin comment j is a cycle leader;

y:=x[JJ; p. :=p(~);

while P. f j do-- -
begin x[k] :=x[p' J; k:=P.; P. :=p(k) end;

x[kJ:=y;

end permutation on cycle;

end loop on j.

1

n

n

n

n+a

a

n

b

b

b+c

c

b

b

n

The first and most basic part of the analysis of any algorithm is

of course to prove that the algorithm works. The comments in this program

essentially provide the key inductive assertions which will lead to such

a proof. On the other hand, the program seems to be beyond the present
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range of tlautomatic program verificationtl techniques, and to go a step

f'urther to tlautomatic frequency analysis!! is almost unthinkable.

Let us now do a frequency analysis of the above program, counting

how often each statement is executed and each condition is tested. There

are 9 statements, and 3 conditions, but we don't have to solve 12

separate problems because there are obvious relations between the

frequencies. tlKirchhoff's lawtl , which says that the number of times ·we

get to a place in the program is the number of times we leave it, makes

it possible to reduce the 12 individual frequencies to only 4, namely

n, a , b , and c, as sho~ in the column to the right of the program.

Kirchhoff's law is especially easy to apply in this case, since there are

no go to statements; for example, we must test the condition tI k > j tI in

line 5 exactly n+a times, if we execute line 4 n times and line 6

a times.

The next step in a frequency analysis is to interpret the remaining

unkno~s in terms of characteristics of the data. Obviously n, the

number of times we do line 4, is the number of elements in the vector x.

And b is the number of cycles in the permutation p. Furthermore we

can see that each element of x is assigned a new value exactly once,

either on line 11 or line 12, hence c+b = n (a relation which cannot

be deduced solely from Kirchhoff's law). This leaves only one variable,

a , to be interpreted; it is somewhat more complicated, the sum of tldistances"

from j to the first elemaDt of p(j),p(p(j)) , etc. that is ~ j .

To complete the analysis ·we should explore the behavior of these

quantities a and b It is customary to start by making a tlworst

case" analysis, which leads to an upper bound on the program's running time.
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(n-l)+ (n-2)+ •.•+0If (p(1),p(2), ••• ,p(n» = (2, ••• ,n,l.) , we have a

= ~ (n
2

_n) , which is surely the worst case for a.

The same choice of p makes b = 1 , which is the best case for

(p(1),p(2), ••• ,p(n» = (1,2, •.• ,n) , we get the worst case for b

the best for a).

b. If

(and

A more interesting problem arises when we try to consider the

average case. First we m'J.st decide wl1at is meant by the average case;

this is often the chief stumbling block in making a Type A analysis,

since it is not always easy to specify "typical" input distributions. For

the problem at hand we may say that eac:h of the nt permutations p is

equally likely.

A special technique is often useful when the cycle properties of

permuations are being considered (cf. Foata [ 5 J, Knuth [10, vol. 1,

Sec. 1.3.3; vol. 3, Sec. 5.1.2J), since it changes cycle properties into

ordering properties. Consider for example the permutation

(p(l), ...·,P(9» = (8,2,7,1,6,9,3,4,5) ; in cycle form this is

(184)(56~(2)(73) The cycle form can be written in exactly one way

s-tlch that

a) the leader comes first in each cycle;

b) the leaiers of different cycles are in decreasing order from

left to right.

In our ex~~ple this canonical representation is (569)(37)(2)(184) • In

canonical form the parentheses are redundant, since" )( " occurs just

before each number which is &naller than all of its predecessors. Thus

we obtain a one-to~one mapping of permutations onto permutations, such

that cycle properties are mapped into ordering properties. In our

example, (8,2,7,1,6,9,3,4,5) maps into (5,6,9,.3,7,2,1,8,4) •

12



Let (p(1),p(2), .•. ,p(n)) map into the permutation (q(1),q(2), •.. ,q(n)) •

It is easy to reinterpret the Cd.uantity b in terms of this transformation;

it is the number of cycles in :p, so it is the number of "lef't-to-right

minima" in q, namely the number of indices j such that

q(j) = min[q(i) 11 SiS j} This quantity has been analyzed in detail

in [10, vol. 1, section l.2 .10], where it is shown that the number of

permutations with k lef't-to-right minima is [~] , a Stirling number

of the first kind.

and the

The average value of b

variance H _H(2) , where
n n

l+ .:!:+ 12 ••• + n

H~2
) = 1 + ~ + ..• + ~

n

is shown there to be H ,n

are harmonic numbers of degrees 1 and 2.

We can also analyze the quantity a, although the problem is

somewhat deeper. When the loop variable j in the algorithm takes on

the value q(i) , note that k will take on the s~ccessive values

q( i+l), q( i+2), . .• because of the way we obtained q from p ; we

continue until reaching a value q(i+r) < q(i) . There is an exception

to this rule, namely if k is set equal to the leader of the cycle:

then either i+r > n or q (i+r) is the leader of the next cycle; in

the latter case, again q(i+r) < q(i)

Consequently we can represent a in the following way. Let y ..
lJ

be functions of q defined for all 1 < i < j < n , where

y ..
lJ

if q( i) < q(k)

otherwise.

13
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Then

a 'L y ..
l.:Si <j.:Sn lJ

indeed, for fixed i, is the number of times line 6

of the program is performed "when the loop variable j = q(i) •

For exmuple, if (p(1), •.• ,p(9)) = (8,2,7,1,6,9,3,4,5) , we have

(q(l), ..• ,q(9)) he::1ce

Y78 = Y79 = 1 , and all other y's are zero. Line 6 is performed

(2,1,0,1,0,0,2,0,0) times when j = (5,6,9,3,7,2,1,8,4) respectively.

Let y..
lJ

be the average value of y .. , as
lJ

(q(l), ••• ,q(n))

ranges over all permutations. This is simply the number of permutations

with y .. = 1 , divided by n! , so it is the probability that
lJ

q(i) = mintq(k) Ii .:S k .:S j} , namely l/(j-i+l) It follows that

the average value of a, is give::1 by

-a ,

-a 2:. y ..
l.:Si <j.:Sn lJ

n+l-r--
r '

where we have replaced j-i+l by a new variable r which occurs

n+l-r times in the original sum. He::1ce

-a (n+l) L ;
2<r<n

l: 1
2<r<n

(n+l) (H -1) -(n-i)n
(n+l)H "-2n

n

The variance of a can be calculated 'too; the derivation is

instructive but quite complicated, so the de'tailswill only be summarized

here. We need the average value of

14



L
l::;i<j::;n

l<k<£<n

(i, j) 1-= (k, £)

a + 2(A+B+C+D+E+F)

i < j < k < £ are fixed, it is not difficult to prove that the average

value of YijYk£ is l/(j-i+l)(£-k+l) , ofYikYj£ is l/(£-i+l)(£-j+l) ,

of Yi£Yjk is l/(£-i+l)(k-j+l) , of YijYjk = YijYjk is l/(k-i+l)(k-j+l) ,

and of l/(k-i+l) . This leaves us with several triple

,

and quadruple summations to perform; it is not difficult to carry out a

few of the sums, reducing them to

B = (~) - 2Z, C = Y - Z - 2(~) + 3X ,

D = E = Z - X," F = (~) - 2X

where

X

We have already summed X by replacing j-i+l by r, and the same

device works for Y and Z; after applying well-known formulas for

15



dealing with harmonic numbers (cf. [10, vol. 1, section 1.2.7]),

we therefore obtain

x == (n+l)H -2n ,
n

This determines B, C , D ,E and F. The quantity A is harder to

calculate; we have

A == L 1
l:5i <j <k <£:5n (j-i+l) (.e-k+l)

==L
r >2

s >2

r+s <n

1 (n-r-s+2)
rs 2

== 1 (~+ -!-)(n-t+2)
t r t-r ,2

2 <r, <t-2

4<t<n

==2 r
2 <r <t-2

4<t <n

. 1::
2 <r <t-2

4<t <n

1 ((n+2) (n+CL) - t (2n+3) + t 2)
rt

== (n+2)(n+l)U - (2n+3) V+ W

by letting r == j-i-l, s == £-k+l, t == r+s. Then

U == ~ (H _1)2 _ ~ H(2)
2 n 2 n

V == (n-l)H - 2n+ 4n-2

1+ ­
n

1 2 1
W == - ((n +n-2) (H -1) - -(n-l)(n-2)- + 1 - 3 (n-3))2 n-2 2

16



Putting the whole mess together, and subtracting -2a from the average

of
2

a , gives the exact value of the variance,

2cr 2n2 _ (n+l)~(2) - (n+l)H + 4n
n n

(This is a calculation that should have been done on a computer.)

Taking asymptotic values, we can summarize the statistics as

follows:

a

b

1 2 I? I

(min 0, ave n In n+ g(n), max 2(n -n), dev "2 -1('-/6 n + Q.(log n))

(min 1, ave In n + g.(l), max n, dev lIn n + 02(1))

The total running time of the algorithm is therefore of order n log n

on the average, although the worst case is order 2n ; the comparatively

small standard deviation indicates that worst-case behavior is very rare.

This completes our frequency analysis of the above algorithm. What

information have we learned? We have found that the algorithm almost

always takes about n log n steps, and that lines 5 and 6 are the "inner

loop" which consumes most of the computation time.

The analysis of one algorithm often applies to another algorithm as

well. The quantity a in the above analysis appears also in the

analysis of an algorithm to compute the inverse of a permutation [10,

vol. 1, Algorithm 1.3.35].

The above analysis can also be extended to measure the advisability

of incorporating various refinements into the algorithm. For example,

suppose that we introdllce a new counter variable calledt§.J-l..Y, which is

initially set to n. In lines 11, and also in line 12, we will insert

the statement 1f~±y : = ~a,J-l"y-l ", and at the end of line 12 we insert a

17



.new test "if ta:ny := 0 then go to ~it " where exit ends the program.

This modification (cf. MacLeod [12J) will terminate the algoritbm

earlier, since it stops the j loop when the largest leader has been

found·. At the cost of 1 more variable, 1 execution of the statement

11 tally ::= 11 11, n executions of 11 tally ::= tally - 1 11 and 1> ~ log n

tests " if tally := 0 ", we save some of the work in lines 2-7 and make it

unnecessary to test 11 if j > n II to see whether the j loop is

exhausted. HoW much is saved? It is not difficult to see that the

so the average saving is

number of iterations of lines

l+
2

4 and 7

l+
3

is reduced by Y12 + Y13 + •.• + Yln '

+ l := H -1 ~ In n The number
n n

of iterations of line 6, the main loop, is reduced by

~ Yl'y" , an average saving of
L.2 .:s i < j.:sn . J lJ

1 2 (2) 1 2
:= -(H -H ) -H +l~ -(in n}

2 n n n 2

So the net improvement caused by this change appears to be rather small.

This conclusion would not be evident a priori, if we had not made the

analysis, since the average length of a cycle which starts at a random

place in a random permutation is well known to be ~ (n+l) •

The application to rectangular matrix transposition suggests that

-1
we might also design a similar algorithm in which the function p is

input as 'well as p. Then we could look for a cycle leader by first testing

p(j) ,then p-l(j)-, p(p(j)) ,p-l(p-l(j)) ,·etc., until finding a

value .:s j It turns out that the average number of operations performed

18



is the same as in the above algorithm, but the worst case is reduced to

O(n log n) . (This solves a problem stated by MacLeod [12J.)

It is amusing to derive the latter n log n bound by obtaining the

exact max:imum number fen) of steps needed to rule out each of the

non-leaders, while processing an n-cycl~ if we assume that both pk(j)

-k )and p (j are fetched simultaneously in one st~p: Consider first

placing the element 1, then 2 , 3 , etc. into an initially empty cycle

so as to obtain the worst case; we obtain the recurrence

f(l) = 0, fen) = max (min(k,n-k) + f(k) + f(n-k))
l<k<n

The solution to this recurrence is rather interesting, it turns out to be

fen) = l: v(k) , where v(k) is the number of l's in the binary
o <k<n

representation of k. If a
1

> a 2 > > a ,
r

(

The fact that this function satisfies the recurrence can be proved by

letting g(m,n) = f(m+n)-m-f(m)+f(n) , and showing that g(2m,2n) = 2g(m,n) ,

g(~rl,2n) = g(m,n)+g(~rl,n) , g(2m,2n+l) = g(m,n)+g(m,n+l) ,

g(2m+l,2n+l) = l+g(m+l,n) + g(m,n+l) hence by induction g(m,n) > 0

when TIl S n , with equality when m n or n-l. (Asymptotic

properties of fen) haye been studied by Bellman and Shapiro [ 1 J.)

So much for Type 1'1. analysis of in situ permutation; what can be

said about the computational compleXity of this problem? I don't really

know; it seems reasonable to conjecture that every algorifbm for in situ

permutation will reqllire at least n log n steps on the average, but

I don't know how to prove it.
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In the first place there is a difficulty in defining the idea of

a "step"; the above frequency analysis assumes that p(k) can be

calculated in one step) and that x[k] can be fetched or stored in one step?

for arbitrary k between 1 and n. A crunplexity analysis must,

however, consider the limit as n -> co ; an algorithm which works

optimally for all n:S nO could be set up ·with something like nO t

branches, and this would be uninteresting. But as n -> 00 , it takes

at least log n steps just to look at the number k when we are

dealing with p(k) or x[k], so the above program really takes

2n(log n) steps instead of n log n , as n -> 00. On the other hand,

. no programmer really believes that the above algorithm really takes

log n steps ea~h time x[k] is fetched or stored, since the time is

bounded for any reasonable n to which he wants to apply the algoritbm.

In other words, we want a complexity measure that models the situation

for practical ranges of n, even though the model is unrealistic as

n -> co , and in spite of the fact that we require the algorithm to be

valid for arbitrarily large n .

A second difficulty is how to phrase the "no auxiliary memory" idea.

If we assume that the xts are integers, and if we allow arithmetic

operations to be carried out, we could replace each x[k] by 2x[k]· and

use the units digits as n extra tag bits. If operations on the xts are

forbidden,· yet roxxiliary integer variables like j,k,£ in the above

algorithm are allowed, we could still get the effect of n extra bits

of memory by doing arithmetic on an integer variable whose value ranges

from 0 to 2n -1 r on the other hand, it isn tt obvious that any Q(n)

algorithm could be designed even when such a trick is used.
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These considerations suggest a possible model of the problem.

Consider a device with c
n states, for some constant c • Each state

deterministically specifies the a "step" of the computation by

(a) specifying numbers i and j, 1 ~ i ~ j ~ n, such that x[i]

is to be interchanged with x[j] and (b) specifying a number k

and n states· ql"'" ~ such that the next step is ~(k) Can such

a device do the rearrangement in O(n) steps, or are n log n steps

needed?

Selecting the t-th largest. Now let us turn to another problem, this

time somewhat less academic. C. A. R. Hoare [ 8] has given a method

for finding the t-th largest of n elements, by making repeated

comparisons, and F. E. J. Kruseman Aretz has shown (see [15] that

Hoare's method makes approximately (2 + 2 In 2)n comparisons when

finding the median of the elements, Le., when t = (n+l)/2. Our goal

is to do a partial frequency analysis of the algorithm, determining

the exact average number of comparisons which are made,as a fUnction of

t a:'1d n .

I shall state the algorithm informally, since I am not attempting

to make a frequency analysis of each step. Let x[l], ..• ,x[n] be the

given elements, and assume that they are distinct. We start by selecting

an arbitrary element y, and compare it to each of the n-l others,

rearranging the other elements (as in "quicksort") so that all elements

> Y appear in positions x[l], •.. ,x[k-l] , while all elements < y appear

in positions x[k+l], •.• ,x[n] . Thus, y is the k-th largest. If k = t ,

we are done; if k > t we use the same method to find the t-th largest
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of x[l], .•. ,x[k-l] ; and if k < t we find the (t-k)-th largest of

x[k+l], ... ,x[n] . A very interesting formalization and proof of this

proced-.rre has recently been given by Hoare [9 ].

Let C t be the average number of· comparisons made by the aboven,

process; we have

Cl,l = 0 ;

where

C
n,t

1
n - 1 + - (A t + B t) ,n n, n, for 1 < t < n , n > 2 ,

A =C +C +n,t n-l,t-l n-2,t-2
••• + Cn-t+l, 1

,

+ ••• + Cn-l,t

This is not the kind of recurrence that we would ordinarily expect to

solve, but let us make the attempt anyway. The first step in problems

of this kind is to get rid of the sums, by noting that

A =A +C ,B =B +C
~~Ul ~t ~t ~~t ~t ~t

then we can eliminate the Ar sand Br s to get a flpureflrecurrence in the C r s:

(n+l)Cn+l,t+l - nCn,t+l - nCn,t + (n-l)Cn_l,t

(n+l)n - n(n-l)-n(n-l)+(n-l) (n-2)+An+l ,t+l-An,t+l-An,t+An-l,t

+B -B -B +Bn+l,t+l n,t+l n,t n-l,t

2+C -C +C -C
n,t n-l,t n,t+l n-l,t

or in other words

c -c -C +C = 2/(n+l)n+l,t+l _ n,t+l n,t n-l,t

What an extraordinary coincidence that n+l was a common factor on each
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of the C' s! This phenomenon suggests that we may actually be able to

solve the recurrence after all.

Checking the derivation shows that formula (*) is valid for

1 < t < n ; we need to look at the boundary conditions next, when

t = 1 or t = n

(n+l)Cn+l,l - nC n, 1 = (n+l)n-n(n-l)+C n _l

C - C 2n/ (n+ l)n+l,l n,l 2-2/(n+l)

This is a recurrence that is easily solved, C = 2n-2H
n,l n

By

symmetry, C = 2n-2H also. Now the recurrencen,n n

implies that

C -C =~+g+
n+l,t+l n,t n+l n

+ ~ + C -C
t+2 t+l,t+lt,t

= 2(Hn+l -Ht +l ) + 2 - 2/(t+l) ,

and this relati~n likewise can be iterated:

C =2 l:. (H -H+l-l/k)+C
n,t 2 <k<t n-t+k k n+l-t, 1

Thus, finally, we have the solution

Cn,t = 2( (n+l)Hn - (n+3-t)Hn+l_t - (t+2)Ht + n + 3) , for 1 < t < n .

For example, when calculating the median of n = 2t-l elements,

the average number of comparisons comes to
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A Type B analysis of this problem is essentially the question "What

is the smallest number of comparisons needed to select the t-th largest

of n elements,?" There are really two questions, depending on whether

we want to minimize comparisons in the worst case or in the average case.

Whent = 1 , the questions are easily answered; we always need at

least n-l comparisons to determine the largest elements. For if we

consider each comparison as a match in a knockout tournament, every

player except the champion must lose at least one game. This argument

can be extended also to the case t = 2 , to show that an algorithm to

determine the second best player must use at least n - 2 + r log2 n l
comparisons, a result first stated by J. Schreier in 1932 and first

proved rigorously by S. S. Kislitsin in 1964. (See

section 5.3.3] for further details and references.)

, vol. 3;

When' t 3 the minimum number of comparisons in the worst case

is still not known; and the minimum average number of comparisons is

not even known when t = 2 .

The random-finding problem is especially fascinating. No algorithm

for computing medians is known which requires less than n log n

comparisons in its worst case. And no proof that n log n comparisons

are necessary has been found. However, R. W..Floyd has recently

discovered efficient ways to compute medians with an average of only

~ n + Q(n2/ 3 log n) comparisons; and he has proved that at least

t n + 9(n) comparisons are necessary on the average, no matter what

algorithm is used [ 4 ] .
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Summary. I have tried to indicate the nature of algorithmic analysis

by describing two nontrivial problems in detail. Perhaps the complexities

of these ex~~ples have obscured the main points I wanted to make, so I

will attempt to summarize what I think is most important.

1. Analysis of algorithms is an interesting activity which contributes

to our fUndamental understanding of computer science. In this case,

mathematics is being applied to computer problems, instead of applying

computers to mathematical problems.

2. Analysis of algorithms relies heavily on techniques of discrete

mathematics, such as the manipulation of harmonic numbers, the solution

of difference equations, and combinatorial enumeration theory. Most of

these topics are not presently being taught in colleges and universities,

but they should form a part of many computer scientists' education.
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