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THE ANATYSIS OF ATGORITIIMS :

The advent of high-speed compubting mechines, which are capable of carrying out algorithms so faiﬁhfully,
has led to intensive studies of the properties of algorithms, opening up a fertile field for mathematical
investigations. Ivery reascnable algeorithm suggests interesting questions of a "pure mathematical" nature;
and the answers to these questions sometimes lead to useful applications, thereby adding a little vigor to
the subject without spoiling its beauty. The theory of queues, which analyzes a very special class of
algorithms, indicabtes the potential richness of the theories which can be obtained when algorithms of all
types are analyzed in depth. |

The purpcose of this paper isg to iliustrate some general principles of algorithmic analysis by consldering
an example which is interesting for both historical and mathematical reasons, the calculation of the greatest
common divisor (gcd) of two integers by means of Fuclid's algorithm. FRuclid's precedure [2], which is one of
the oldest nontrivial algorithme known, may be formulated as follows, given integers U >V >0 :

Fl. If V=0, stop; U ic the answer.

E2. Tet R be the remainder of U divided by V , so that U =AV+R, 0O <R <V . Replace U by V,

then replace V by R , and return to Ll.

1. "Local" analysis. Analyses of algorithms are generally of two kinds, "local" and "global". A local

enalygis consists of taking one particular algorithm {like Euclid®s} and studying the amount of work it does

as a function of the inputs; a glcbal analysis, on the other hand, considers an entire family of algorithms

and investipates the "best possible" procedures in that clasg, from some point of view. In both types of
analysis we can consider either the "worst case" of the algorithms, namely the work involved under least
favorable choice of inputs, or the "average case', the expected amount of work under a given input distribution.
More generally, we may be able to obtain the distribution of work given the distribution of inputs. "Work"

may be measured in terms of the number of times each step of the algorithm is performed, or the amount of
things which need to be remembered, etc.

The first local enalysis of Fuclld's algorithm was published in 184L by G. Lamé [10], who showed that
step E2 will never be performed more than five times the number of digits in the decimal representation of V.
His analysis was based on the fact that the method is least efficient when U and V are consecutive
Fibonacci numbers.

The average behavior of EBuclid!s algorithm is much more difficult to debtermine than the worst case, and
it has been established only in recent years. J. D. Dixon proved [1] that, for all € and C >0 , the
probability that \T(U,V)-(:LQ{E tn 2) mu| > (n U)%+ E is o({sn N)-C) , given that 1< V<U<EH .

His procf is based on careful refinements on Kuz’min's study of continued fractions [9], showing that partial
quotients which are far apaft in the sequence are nearly independent.

At about the game time, H. Heilbronn introduced a new approach [6] to the study of continued fractions

and Fuelid's algoritim. Tet T(U,V) be the number of times step EZ is performed, and let
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(V) = lim Yoo,y = d Y Tu,w
N e U=7+1 U=Vl

<l

be the average number of times when V i1is fixed. Hellbronn showed in effect that
, n 1
of(n) = |3/ {re T (g - 8

where Lx_| is the greatest integer <z, rx_\ is the least integer > x , and the sum is over all

positive integers y,t,t! such that ged(t,y) =1, t<y, t' <y, tt'=n (module y) . Evaluating
this sum, he essentially found that T(n) = {12{2 n2) fnn+ O(c_l(n)e) . Indeed, somewhat more seems to
be true, although procf is still lacking; there is extensive empirical evidence [8, pp. 330-333] that

(El<k<v, ped(k, V) =1 Tk, V)) /o(V) = (121:‘2 fn 2) fn V+ 1.h7 + 0(1) as Voo,

2. "Global" analysis. I Buclid's algorithm the "best" way Lo caleulabe greatest common divisors?

Analyses of other ged algorithme (ef. [8]) show that, under certain eonditions, Euclidls mebhod ig inferior;
and the average behavior of an interesting new algorithm discovered by V. ¢. Harris [4] is still unknown.

In searching for a "best'" method, one way to measure the work is to consider the amount of time taken
to perform the algorithm with pencil and paper, or with a conventicnal computer. Various abstract automata
have been proposed by which the latter notions can be made precise (ef. [5, 7]}. When we apply such models
to Fuelid’s algorithm, it is not difficult to see [8, p. 526] that the amount of work is essentially
proportional to the square of the number of digits in U , for both the average case and the worst case,
analogous to the famillar method of long division. On the other hand, extremely fast methods of multiplication
and division have recently been discovered; A. Schonhage and V. Strassen have proved [13] that an m-digit
number can be multiplied by an n-digit number in only O(n(log m)(log log m)) wunits of time, when
n>m>1. It is therefore nabural to ask whethcr the ged of twe n-diglt mumbers can be caleulated in
less than O(nz) steps. Sectiom % of this paper shows that this is indeed possible, in O(nl+s) steps for
all = > 0 , by suitably arranging the calculstions of Euclid's algorithm. Obviously at least n steps
are necessary in any event (we must look at the inpubs), so this result provides some idea of the asymptotic

complexity of ged computation.

3. High-speed ged calculation with large numbers. If step E2 is performed © +times, let Al, ...,AJG be

the partial guotients cbtained. Tt is well known that U = Qt(Al,..., t)1) s Vo= Qt_l(Ae, ...,At)D » where

D = ged(U,v) and Q. 1is the continuant polynomial defined by Q. =0, 8y = 1, Qt+l(xo,xl,...,xt) =

XOQ’C(XJ.’ ""Xt) +Q’t-l(XE""’Xt) . We shall call [Al,..., t’D] the Euclidean representation of U and V .

After k iterations of step B2 we have U =T = Qt-k(AkJrl’ ""At)D s V=V, = Qt-k-l(AkwL?’ ""A't)D .

e X and

Buler {3} observed that Qt(xl, ceayX .

t) is the set of all terms obbainable by starting with x

striking out pairs * X, 4 Zero or more times. From this rvemark, it follows immediately that

1



Q‘S+t (xl’ .. -JXS+J5) = Q‘s(xl’ .. .’XS)Q“I;(XS"*].’ .. "Xs+t) + Q’s—l(xl’ . "Xs—l)q‘t—l(xs+2’ .- -:X-S_',t) ’ (*)

an identity which formg the basis of Heilbronn's work cited above; it was used on several occasions by
Sylvester [14] and given in more general form by Perron [12, p. 14-15].

For convenience we shall write nonnegative integers N in binary notation, using IN = rlogg(l\Hl) ..‘
binary digits. It is easy Yo prove that 1Q (Al, '“’At) S HA et 28,41 ; and Lamé's theorem implies that

BA+oui TLVS EQ‘t(Al"“’At) ++ = 0(log U) in Fuclid's algorithm; hence (except for a constant factor) it

takes essentially as much space to write down the BEuclidesn representation [Al, ""At’D] as it does to

write U and V themselves in binary form. We shall show that it is possible to convert raplidly between

these twe representations off U and V

Theorem t. Let 8(n) = n{log n){log logn) and n = ZAte..t2A, . There is an algorithm which,

given the binary representations of A ..., 2 computes the binary representation of Q‘b(Al’ ""At) in

6(8(n)(log t)} steps.

Proof. Consider four continuvants assoclated with (Al, ""At) s namely @ = Qt(Al""’At) 3

Q = Qt-l(Al""’At-l) y Q= Qt-l(AE"“’At) , and Q" = Q'b—Q(AE’ ""A‘b—l) . The four continuants

associated with (O,Al, ""At) are the same, in another corder, so we add zeroes if necessary until t dis

a power of 2 . Now let I,L°,°L,’L° and R,R°, R, R" be the continuants associated with Al’ '“’At and

Agiqsveeshy,  Tespectively. By (¥, Q@=IR+L" 'R, Q" =IR"+1L" "R, Q@ ="IR+'L" "R,
‘Q° = "IR'+ 'L° 'R° . Choosing C so that we can evaluate the IL's in CS(2A1+ ...+£At)k steps, the R's

in CS(£A1+ et LA further steps by the Schgnhage—strassen algorithm, we can evaluate the @Q's in at

o)

2t)(k+l) steps. I

most cs(ﬂAl+. cotBA

Let U =270ty , v = 2"V4v" , where 0 <U™, V" <2" . D. H. Lehmer [11] has suggested that the
partial quotients for (U,V) be found by first obtaining some of those for U' and V' , stopping at AS
where s is maximal such that (U™+1,V') and (U',V'+1l) have AjsevnA  in common. Then AjseeusA
are partial guotients for (U,V) also. We shall call (Al,
The example (U',v') = (2% ’Em'l) shows that Lelmer quotients might not amount to anything, tut we can prove

-+ssA  the "Lehmer quotients" for {ur,vr) .

that four additional Euclidean iterations will always give a useful reduction.

Leoma 1. Iet U = 2"0UnU" > v = 2%rtev" |, where 0 <U", Vv < 2% . Let [415+++54,,D] be the

Fuclidean representation of (U,V) , and let (A ..,AS) be the Lehmer guotients for (U',V') , where

1

5 t
t > eth . Then U, <UMUt .

Proof. Let Py = Qk—l(A’a’ ""Ak) ) @y = Q”l:<Al’ ”"Ak) , and let © = V/U . The well-known pattern

of convergence of Pk/Qk to © , schematically

3
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when k 1is even, shows that 1f © and ©' are two real numbers whose continued fractions differ first

= T 3 s '
at AS+1,4AE+1, either Ps+l/Qs+l or Ps+2/Qs+2 lies between © and o' . Hence

2 .
3 Qg > QS+2(QS+5+QS+2) > 1/|e-1>s+2/@,s,‘72| > 1/ |(veely fur-vr/ (Ut+1)| > % U' , using the well-

known relation |6-P/q, | > 1/, (@1 +6,) « And by (%), Qt_s_h(AS+5,...,At) >Ufag,, -

Lemme 2. There is an algorithm which, given U >V >0 with IU = n , finds all the Lehmer quotients

for (U,V) in at most 0(8(n)(log n)°) steps.

Proof. Yor large n the algorithm first applies itself recursively to the leading % n binary digits

. s . . . . (T _
of U and V, finding r partial quotients; then it computes U = (-1} (Qr-E(AE""’Ar-l)U Qr—l(Al""’Ar-l)V)’

v
r

(-l)r(Qr(Al,...,AT)V—QT_l(Ag, .«;A)U) in 0(8(n) log(n)) steps by the method of Theorem 1. We can
find A . in 0(8(n) Log(n)) further steps (see [8, p. 275]), sc by Lemma 1 the algorithm performs a bounded
number of Fuclidean iterations until reaching Ur+k with at most % n digits. Now the same process is
repeated on the % n leading digits of U1+k’ Vr+k 5 after a bounded number of further Fuclidean iterations,
we have reduced 1 1o less than % n digits, and we have found guobients Al, ""‘Ap » Where D > =& {since
the proof of Lemma 1 can be readily modified to show that Qs < Jur ). Finally the value of s is located in
approximately log2 P = 0(log n) iterations, using the well known "binary search" bisection technigue; each
iteration tests some k to see whether or not k <s or k >s . Such a test can rely on the fact that
Pk/Qk and Pk»!—l/katl are both "good" when k <'s , while they are not both "good" when X% > s+2 , where

Pk/Qk is ecalled good when it is <Vk/(Uk+l) ; for k even, or > (V +1}/U for k odd. The running

k 2
time L(n) of this algorithm as a whole now satisfies L(n) < 2L(3 n) + 0(S(n) (log n)g) .

Theorem 2. There is an algorithm which, given o s sy >0, determines the Fuclidean representation

(A5--+54,,D] in ¢(n(log n)S(log log n)) steps 88 n - .

Proof. Begin as in Lemma 2 to reduce n to 151 n in L(} n) +0(8(n) log n) steps, then apply the
same method until Vt = 0 . The running time @{n) of this algorithm satisfies the recurrence
z %
o(n) = 6({ n) +0(5(n) (1og n)?) = G(% n)+0(s(n) Loz n)”) +0(s(£ n)(log n)?) = ... = O(s(r)(log 0" .
|
In particular, we can £ind the ged of n-digit numbers in nl+s steps, as N -« , for all € >0 .
The method we have used is rather complicated, but no simpler one is apparent to the author.yln general,
the idea of reducing n +to 2n Tfor & <1 often leads to asympbobically efficient algorithms.
i/ Note added in proof: A similar, somewhat simpler construction was found by A. Sch¥nhage sl?ortly after
e received a preliminary copy of this paper; his improved construction takes only 0O(n{log n)g(log log n))

steps.
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Mathematical Analysis of Algorithms'

In this paper I shall try to illustrate the flavor of some current
work in algorithmic analysis, by making rather detailed analyses of two
algorithms. Since I wasg asked to be "mathematical', I have chosen some
- exgmples which are interesting primarily from a theorebtical standpoint.
The procedures I shall discuss (namely, in-situ permubtation and selecting
the k-th largest of n elemenbs) are not among the ten most important
algorithms in the world, but they are not completely useless and their
analysis does involve several important concepts. Furthermore they are
sufficiently unimportant that comparatively few people have studied them
closely, hence T am able tco say a few new things about them at this time.

The general field of algorithmic analysis is an interesting and
‘potentially important area of matheﬁatics and computer science that 1s
undergoing rapid develbpmént. The central goal in such studies is to
make guantitative assessments of the "goodness" of various algoritims.

Two general kinds of problems are usually treated:

Type A. Analysie of a particular algorithm. We investigate

important characteristics of some algorithm, usually a frequency analysis

(how many times each part of the algorithm is likely to be executed), or

a storage analysis (how much memory it is likely to neéd). For example,

it is possible to predict the execution time of various algoritims for
sorting numbers into order.

Type B. Analysis of a class of algorithms. We investigate the

entire family of algorithms for solwving a particular problem, and attempt



to identify one that is "best possible’. Or we place bounds on the

computational complexity of fthe algorithms in the class. For example,

it is possible to estimate the minimum number $S(n) of comparisons

necesgary to sort n numbers by repeated comparison.

Type A analyses have been used since the earliest days of computer
programming; each program in Goldstine and von Neumann's classic
memolr [ 71 on "Planning and Coding Problems for an Electronic Computing
Instrument” is accompanied by a careful estimate of the "durations™ of
each step and of the total program duration. Such analyses make it
possible to compare different algorithms for the same problem.

Type B analyses were not undertaken until somewhat later, although
certain of the problems had been studied for many yvears as parts of
"recreational mathematics". Hugo Steinhaus analyzed the sdrting function
8(n) , in connection with a weighing problem [14]; and the question of
computing X' with fewest multiplications was first raised by Arnold
Scholz in 1937 [13]. Perhaps the first true study of computational
complexity was the 1956 thesis of H. B. Demuth [ 3], who defined threé
simple classes of automata and studied how raplidly such automata are
able to sort n numbers,using any conceivable algorithm.
| Tt may seem that Type B analyses are far superior to Type A, since
they handle infinitely many algorithms at once; instead of analyzing each
algorithm that is invented, it 1s obviously better to prove once and for
all that a particular algorithm is the "best possible". But this is only
true to a limited extent, since Type B analyses are extremely technology-
depeﬁdent; very slight changes in the definition of "best possible” can

31
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be calculated in fewer than 9 multiplications, but it can be done with
only 6 arithmetic operations if division is allowed.

In fact the first result in Demuth's piloneering work on computational
complexity was that "bubble sorting'" was the optimum sorting'method for a
certain class of automata. Unfortunately, Type A analyses show that
bubble sorting is almost the worst possible way to sort, of all known
methods, in spite of the fact that it is optimum from one particular
standpoint.

There are two main reasons that Type B analyses do not supersede
Type A analyses. First, it is generally necessary to formulate a rather
simple model of the complexity, abstracting what seam to be the most
relevant aspects of the class of algorithms considered, in order to make
ary progress at all on a Type B analysis. These simplified models are
dften sufficiently unrealistic that they lead to impractical algorithms.
Secondly, even with simple mcdels of compléxity, the Type B analyses usually
are considerably difficult, and comﬁaratively few problems have been solved.
Even the problem of computing ¥ with fewest multiplications is far from
solved (see [10, vol. 2, Section 4.6.31), and the exact value of 8(n) is
known only for n <12 and n =20, 21 (see [10, vol. 3, Section 5.3.1]).
The sorting method of Ford and Johnson’[fi] uses fewer comparisong than
any otﬁer known sorting technique, yet it is hardly ever useful in practice
since it requires & ratﬁer unwieldy progfam. Comparison counting is not
a good enocugh ﬁay to rate a sorting algorithnm.

Thus I believe that computer scientists might well loock on research
in combutational complexity as mathematicians traditionally view number
theory: it is an interesting way to sharpen dur tools, for the more

routine problems we face from day to day. Although Type B analyses are



extremely interesting, they do not degerve all the glory; Type A
analyses are probably even more important in practice, since they can be
designed to measure all of the relevant factors about the performance of
an algorithm, and thev are not gquite as sensitive to changes in
technology.

Fortunately, Type A analyses are stimulating intellectual challenges
in their own right ; nearly every algorithm that isn't extremely
complicated leads to inberesting mathematical questions. But of course
we don't need to analyze every algorithm that is invented, and we cant't

hope to have a precise theoreticsl analysis of any really big programs.

In situ permutation.  As our first example, led us consider the problem

of replacing (Xl’XE""’Xn) by (xp(l),xp(g),...,xp(n)) where p is
a permutation of {1,2,...,n} . The algorithm is supposed to permute the
x's in place, using only a finite amount of auxiliary memory. The
function p is one of the inputs to the algorithm, we can compute
p(k) for any k bub we cannot assign a new value to p(k) as the
algorithm proceeds. For example, p might be the functlion corresponding
1o transposition of a rectangular matrix, or to the unscrambling of &
finite Fourier transform.

T (p(1),p(2),...,p(n)) were stored in a read/write memory, or
if we were allowed to manipulate n extra "tag" bits specifying how much
of the permutation has been carried out at any time, there would be
simple ways to design such an algorithm whose running time is egsentially
proportional tc =n . DBut we are not allowed to change p dynamically,

nor are we allowed n bits of exbra memory. Thus there seem to be

N



comparativeiy few solutions to the problem.

The desired rearrangement of (xl,xg,...,xn) is most naturally
done by following the cycle structure of p (ef. [10, vol. 1, p. 161]).
Let us say that J is a "cycle leader" if j <p(J) , J < p(p(j)) s
j < p(p(p(J))) , etec.; each cycle of the permutation has a unique leader,
and so the following procedure (cf. Boothroyd [ 2 ], MacLeod [12]) carries

out the desired permutation by doing each cycle when its leader is

detected:

1l for j:=1 step 1 until n do 1
2 begin comment the permutation has been carried out n
3 over all cycles whose leader is less than J; n
b k:=p(Jj); n
while k> j do | nte

6 k::p(k); | a
7 if k = J then . n
g - begin comment J is a cycle leader; ' b
9 yi=xlils  e=p(x); Ty
10 while £ 4 j do bte
i begin x[k]:=x[21; k:=f; f:=p(k) end; c
12 x[k]:=y; : | b
15 end permutation on cycle; : b
1h . end loop on j. , n

The first and most basic part of the analysis of any algorithm is
of coufse to prove that the algorithm works. The comments in this program
essentially provide the key induciive assertions which will lead to such

a proof. On the other hand, the program seems to be beyond the present

10



range of "automatic program verification" techniques, and to go a step
further to "automatic freguency analysis" is almost unthinkable.

TLet us now do a frequency analysis of the above program, counting
how often each statement is executed and each condition is tested. There
are 9 statements, and 2 conditions, but we don't have to solve 12
separate problems because there are obviocus relations between the
frequencies. "Kirchhoff's law", which says that the number of times we
get to a place in the program is the number of times we leave it, makes
it possible to reduce the 12 individual frequencies to only 4, namely
n, a, b, and ¢ , ag shown in the column to the right of the progran.
Kirchheoff's law is especially easy to apply in this case, since there are
no go to statements; for example, we must test the condition " k > j " in
line 5 exactly nta times, if we execute Iine 4 n +times and line 6
a times.

The next step in a Trequency analysis is to interpret the remaining
unknowns in terms of characteristics of the data. Obviously n , the
number of times we do line 4, is the number of elements in the vector x .
And b is the number of cycles in the permutation p . TFurthermore we
can see that each element of x 1is assigned a new value exactly once,
either on line 11 or line 12, hence c+b = n (a relation which cannot
be deduced solely from Kirchhoff's law). This leaves only one variable,
a , to be interpreted; it is somewhat more complicated,'the sum of "distances"
from J to the first element of p(Jj),p(p(J)) ,‘etc. that is < j .

To coumplete the analysis we should explore the behavior of these
guantities a and b . Tt is customary to start by making a "worst

case" analysis, which leads to an upper bound on the program's running time.



I (D(1),p(2) 5 -+ -5D(n)) = (2,..0,m,1) 5 we have a = (n-1)+(n-2)+...+0

= % (nE-n) s which is surely the worst case for a . -

The same cholce of p makes b =1, which is the best caselfor b . ITf
(p(1),p(2) s ee0p(n)) = (1,2,4..,0) , we zet the worst case for b (and
the best for a ). |

A more interesting problem arises when we try to consider the
average case. First we must decide what is meant by the average case;
this is often the chief stumbling block in making a Type A analysis,
since it is not always easy to specify "typical” input distributions. For
the problem at hand we may say that each of the n! permutations p is
equally likely..

A special technigue is often useful when the cycle properties of
permuations ére being considered (ef. Foata [ 5], Knuth [10, vol. 1,
Sec. 1.5.3; vol. 3, Sec. 5.1.21), since it’changes cycle properties into
ordering properties. Consider for example the permutation
(p(1),..52(9) = (8,2,7,1,6,9,3,4,5) ; in cycle form this is’
(18k) (569 (2)(7%) . The cycle form can be written in exactly one wa&
guch that

a) the leader comes first in each cycle;

b) the leaders of different cycles are in decreasing order from
left to right.
In our example this canonical representation is (569)(37)(2)(18L4) . 1In
canonical form the parentheses are redundant, since " )( " ocecurs just
beforeleach number which is smaller than all of its predecessors. Thus
we obtain a one-to-one mapping of permutations onto permutations, such

that cycle properties are mapped into ofdering properties. In our

example, (812)7:1:63915:14':5) maps into (5:6:9:5:752,11)8);‘*) .
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Let (p(1),p(2),...,p(n)) map into the permutation (a(l),a(2);...,qa(n}) .
It is easy to reinterpret tﬁe guantity b in terms of -this transformatioﬁ;
it is the number of cycles in p , so it is the number of "left-to-right
minima" in ¢ , namely the number of indices Jj such that
a(J) = minfq(1) |2 <1 < 3} . This quantity has been analyzed in detail
in [10, vol. 1, section 1.2.10], where it is shown that the number of
permutations with k left-to-right miﬁima is [i] » & Stirling number

of the first kind. The average value of b is shown there to be Hn 3

(2)

and the variance Hn»Hn » Where
Ho=1l+24 ...+x
1n 2 n

L]
-+

Hﬁg) =1+ % + L%
n
are harmonic numbers of degrees 1 and 2.

We can also analyze the guantity a , although the problem is
somewhat deeper. When the loop variable J in the algorithm takes on
the value q(i) , note that k will take on the successive values
q(i+1),q(i+2), ... because of the way we obtained g frém p ; we
continue until reaching a value qi+r) < g{i) . There is an éxcaption
to this rule, namely if k i1s set egqual to the leader of the cycle:
then either dt+r >n or q(itr) is the leader of the next cycle; in
the latter case, again q(i+r) < q(i)

Consequently We caﬁ represent & in the following way. ILet yij

be functions of ¢ defined for all 1 <1< j<n, where

1, if q(i) <q(k) for i <k<ij;

+ 0 , otherwise.

1z



Then

R M

1<i<j<n *

indeed, for fixed i , Zi<j§n Yij .1s the number of times line 6
of the program is performed when the loop variavle j = g(i) .

For example, if (p(l),...,0(9)) = (8,2,7,1,6,9,%,4,5) , we have

il

(Q(l):'--:Q(9>) (5:6:9:5:7:2:1:8:h) 5 hence yl? = Yl§ = 325 = th =

y78 = y79 =1, and all other y's are zero. Line 6 is performed

(2,1,0,1,0,6,2,0,0) +times when J = (5,6,9,3,7,2,1,8,4) respectively.
Let gij be the average value of Yis s 88 {q(1),..05q(n))

ranges over all permutations. This is‘simply the number of permutations

with y, =1, divided by =n! , so it is the probability that

q{i) = minf{a(k)}i <k < j} , namely 1/(Jj-i+l) . It follows that a ,

the average value of a , is given by

(o]
it

L Vg = L j—;l - L E%i ’

l<i<j<n Y 1<i<j<n 2<r<n

where we have replaced j-i+l by a new variable r which occurs

ntl-r times in the original sum. Hence

R

1= (0+1) (5, -1)~(n-1) = (m+1)H_-2n .
<n e<r<n

&= (n+l) )
2<r
The variance of a can be calculated too; the derivation is

instructive but quite complicated, so thé details will only be summarized

here. We need the average value of
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o
2
. Vig) = n Vig * PN Vi3V
1<i<j<n 1<i<j<n 1<i<ji<n

1<k<t<n

(1,3) £ (k,0)

= L v, te L (Vs ¥y P T e Yoy TV, ¥ )
1<i<i<n Y i<ic<i<k<g<n R TIEIESTIETIR

+ 2 'i: (Ve Ve T T ¥ Vs Var)
l_<_i<,j<k§n iJ Jk- ik Jk 1J ik

=a+ 2(A+B+C+D+E+TF)

where A, ..., represent the sums‘E:yijykz,...,I:yijyik . When

i<j<k<1i are fixed, it is not difficult to prove that the average

value of y, is 1/(j-i+1) (£-%+1) , of Vi is  1/(2-i+1)(2-j+1) ,

ks it

of VigVse 8 1/(2-i+1) (k-j+1) , of Vg5 = Vig¥ye 18 1/ (k=-i+1) (k-j+1) ,

and of yijy is 1/(k-i+l) . This leaves us with several triple

ik - Vi
and gquadruple summations to perform; it is not difficult to carry out a

few of the sums, reducing them to

B = @)-ez, ¢ =Y—Z-2@)+ﬁc,

n

D =E==z-x,-F=(2

)-EXJ

where

X= & ==, Y- & H,.,z= L >
i <n

=i j-i+lHj—i'
1<i<j<n 1<i<j<n

We havevalready summed ¥ by replacing j-i+l by r , and the same

device works for Y and Z 3 after applying well-known formulas for
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dealing with harmonic numbers (c¢f. [10, vol. 1, section 1.2.71),

we therefore obtain

X = (o+tl)H -2n , ¥ = %( 2+n)Hn-§- n® -i—'n » 2 = %(n+l) (Hi-Hr(f))-anm .

This determines B , C , D , E and F . The quantity A 1is harder to

calculate; we have

1 ‘ -T-gt+?2
A= . E _ Tis (® res )
L<i<j<k<f<n (§-i+1)(L-k+1) r>2
5>2
rtg<n
1,1 1. n-t32 1l ,n-t+2
- L 1 Grgp (g0 =2 = D)
2<r<t-2 2<r<t-2 7
L<t<n h<t<n

it

(n+2) (n+ 1)U - (Ck2) V+ W

by letting r = j-i-1, 8 = f-ktl, +t = r+ts . Then

O PR N
V= (n-1)H , - 20tk
1 2 L ‘
W=3 ((n"™+n-2) (Hn-e_l) —-é(n-l) (n-2)+1-3(n-3)) .
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Putting the whole mess together, and subtracting 52 from the average

of a2 s gives the exact value of the variance,
P - o - () - (1) o+ b

(This is a calculation that should have been done on a computer.)

Taking asymptotic wvalues, we can suwmmarlze the statistics as

follows:
/ SE
a = {(min 0, ave n In n+ Q(n), max %(ng-n), dev V2 -x7/6 n + Q(log n)) ;
b = (min 1, ave In n + 0(1), max n, devVin n + 0(1})) .

The total running time of the algorithm is therefore of order n log n
on the average, although the worst case is order n2 s the comparatively
small standard deviation indicates that worst-case behavior is very rare.

This completes our frequency analysis of the above algorithm. What
information have we learned? We have found that the algorithm almost
always takes about n log n steps, and that lines 5 and 6 are the "inner
locp"” which consumes most of the computation time.

The analysis of one algorithm often applies to another algorithm as
ﬁell. The guantity a in the above analysis appears also in the
analysis of an algorithm to compute the inverse of a permutabion [10,
vol. 1, Algorithm 1.5.35].

The above analysis'can also be extended to measure the advisability
of incorporating various refinements into the algorithm. For example,
suppose that we introduce a new counter variable called tally, which is
initially set to n . In lines 11, and also in line 12, we will insert

the statement "tally := tally-1 ", and at the end of line 12 we insert a
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new test "iﬁ tally = O then go to exit " where exit ends the program.
This modification (ef., MacLeod [12]) will terminate the algofithm
earlier, since it stops the j loop when the largest leader has been
found. At the cost of 1 more variable, 1 execution of the statement
" tally :=n ", n execubtions of " tally := tally-1 " and b= logn
tests " if tally = 0 ", we save some of the work in lines 2-7 and make it
unnecessary to test "if J>n " to see whether the ; loop is
exhausted. How much isg saved? Tt is not difficult to see that the
number of iterations of lines 4 and 7 is reduced by y124-y154-...+-y1n ’
1 1

. . 1
- 80 the average saving is 5 + 5 + ..t - = nulﬁw Inn . The number

of iterations of line 6, the main loop, is reduced by

V. .¥.. » an average gaving of
c<i<jan M
P 1. oy . iff v . ¢ 2
L= F(3~i+) .. . ri 2 r 2
2<i<j<n 2<r<j<n 2<r<n a<r<n r

_ L2 x1(23) ~ L 2
= Q(Hn"Hn ) —anl--2(£n n})- .

So the net improvement caused by this change appears to be rather small.
This conciusioﬁ would'ﬁot be evident a priori, if we had not made the
analysis, since the average length of a cyéle which starts at a random
place in a random permutation is well known to be % (n+1) .
The aepplication to rectangular matrix transposition suggests that
we might also design a similar algorithm in which the function p_l is
input as well as p . Then we could lecok for a cycle leader by first testing
p(3) » then (3 , () » p(7T(3)) , ete., wntil finding a

value < j . Tt turns out that the average number of operations performed
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ig the same as in the above algorithm, but the worst case is reduced to
O(n log n) . {This solves a problen stated by MacLeod [12].)

It is amusing to derive the latter n log n bound by obtaining the
exact maximum number f£(n) of steps needed to rule out each of the
non-leaders, while processing an n-cycle, if we assune that both pk(j)
and. p-k(j) are fetched simultaneously in one step: Consider first
placing the element 1 , then 2 , 3, étc. into an initially emply cycle

go as to obtain the worst case; we obtain the recurrence

(1) =0, f(n) = mex (min(k,n-k)+ £(k)+ f{n-k))
1l<k<n
The solution to this recurrence is rather interesting, it turns out to be

f(n) = E: v(k) , where wv(k) ig the number of 1l's in the binary
O0<k<n

representation of k . IT aq > 2, > aee >—ar B

a a a a &, a
R T %(a,lE Te(apn)e T4+ (agr-De T

The fact that this function satisfies the recurrence can be proved by
letting g(m,n) = f{wtn)-m-f(m)+£(n) , and showing that g(2m,2n) = 2g(m,n) ,
glemtl,2n) = g(m,n)+g(mtl,n) , g(em,2ntl) = g(m,n)+g(m,ntl) ,
g(2m+1,on+1) = I+g(m+l,n) + g(m,n+l) ; hence by induction g(m,n) >0
when m < n , with equality when m =n or n-l1 . (Asymptotic
properties of f(n) have been studied by Bellman and Shapiro [ 1].)

So much for Type A analysis of in gitu permutation; what can be
said about the computational complexity of this problem? I dontt really
know; it seems reasonable to conjecture that every algorihm for in situ
permutation will require abt least n log n steps on the average, but

T don't know how to prove it.
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In thé first place there is a difficulty in defining the idea of
a "step"; the above frequency analysis assumes that p(k) can be
calculated in one step, and that =x[k] can be fetched or stgred in one step,
for arbitrary k Dhetween 1 and n . A complexity analysis must,
however, consider the 1imit as n — « ; an algorithm which works

optimally for &1l n < n. could be set up with something 1like n

!
Q

branches, and this would be uninteresting. But as n -« , it takes

0

at least loz n steps just to look at the number k when we are
dealing with pl{k) or x[k] , so the above program really takes
n(log n)2 steps instead of n logn, a8 n =« . On the other hand,
‘1o programmér really believes that the above algorithm really takes
log n steps each time x[k] is fetched or stored, since the time is
bounded for ény reasonable n to which he wants to applylthe algoritim.
In other words, we want a complexity measure that models the situation
for practical rangés of n , even though the model is unrealistic as
n -« , and in spite of the fact that we require the algorithm to be
valid for arbitrarily large n .

A second difficulty is how to phrase the "no auxiliary memory" idea.
If we assume that the x's are integers, and if we allow arithmetic
operations to be carried out, we could replace each x[k] by 2x[k] and
uge the units digits as n extra tag bits. If operations on the x's are
- forbidden,- yet auxiliary integer variables like J,k,Z 1in the above
algorithm are allowed, we could still get the effect of n extra bits
of memory by doing arithmetic on an integer variable whése value ranges
from 0 ‘to 2°-1 5 on the other hand, it isn't obvious that any an)

algorithm could he designed even when such a trick is used.
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These congiderations suggest a possible model of the problem.
Consider a device with n® stateg, for some constant ¢ . BEach state
deterministicaliy specifies the a "step" of the computation by
(a) specifying numbers 1 and j, 1<i<j<mn, such that x[il
is to be interchanged with =x[j] ; and (b) specifying a number k

and =n states Qs veerdy such that the next step is qp( Can such

k) °
a device do the rearrangement in O(n) steps, or are n log n steps

needed?

Selecting the L-th largest. Now let us turn to another problem, this

time somewhat less academic. (. A. R. Hoare [ 8] has given a method
for finding the t-th largest of n elements, by making repeated
comparisons, and F. E. J. Kruseman Aretz has shown (see [15] that
Hoare's method makes approximately (2+2 1n 2)n comparisons when
finding the median of the elements, i.e., when t = (ntl)/2 . Our goal
is to do a partial frequency anaiysis of the algorithm, determining
the exact average number of comparisons which are made,as a function of
t and n .

I shall state the algorithm informally, since I am not attempting
to make a frequency analysis of each step. Tet x[1],...,x[n] Dbe the
given elements, and assume that they are distinct. We start by selecting
an arbitrary element v , and compare it to each of the n-1 others,
rearranging the other elements (as in "quicksort") so that all elements
>y gppear in positions x[1],...,x{k-1] , while all elements < y appear
in positions x[k+l],...,x[n] . Thus, ¥ is the k-ﬁh largest. If k=1t ,

we are done; if k >1 we use the same method to find the t-th largest
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of x[1],...,x[k-1] ; and if k <+t we find the (t-k)-th largest of
x[kt1l],...,x[n] . A very interesting formalization and proof of this
procedure has recently been given by Hoare toi.

Let C be the average number of comparisons made by the above

n,t

process; we have

1
& = : = i + =
Cy,1 0 3 Cn,t n-1l+= (An,t4‘Bn,t) , for 1<t <m, n>2,
where

= + s
At Tttt Capue T O,

= + Toaee b
Bog = Cy it Cpigye Ch-1,%

‘This is not the kind of recurrence that we would ordinerily expect to
solve, but let us make the attempt anyway. The first step in problems

of this kind is to get rid of the sums, by noting that

= + = + .
Aol ~ Pt T Che 0 Pan,t T8t T Oy

then we can eliminate the A's and B's to get a "pure'" recurrence in the CTts:

(n+1)C nC nCn,t%-(n—l)Cn_

n+1,t+1 " n,ttl 1,%

(n+l)n-n(n—l)-n(n-l)+(n—1)(n—2)+Ah+l’t+l-Ah’t+l-Ah,t+Ah_l’t

- - -+
1,4+ 7P, t+17Pn, t a1,

= - + -
=240 £ Ch 1,6, 1 "Gt

or in other words

Cn+1,t+1_fcn,t+1_-Cn,t-+cn_l’ﬁ = 2f(m1) . (%)

What an extraordinary coincidence that wtl was a common factor on each
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of the C's ' This phenomenon suggests that we may actually be able to

solve the recurrence afber all.
Checking the derivation shows that formula (*) is valid for
1<t <n ; we need to look at the boundary conditions next, when

t =1 or t =n:

1

Cpyp =0 2Fg Gy 1 ¥Cy g+ eeetCy g 1) 3
(n+l)cn+l,l"ncn,l = (n+l)n-n(n—l)+0n_l :
Cn+1,1'cn,1 = 2n/(n+l) = 2 -2/(a+l) .

This is a recurrence that is easily solved, Cn,l = 2n—2Hn « By

symmetry, Cn n = En-EHn also. Now the recurrence
2

(Cn+l,t+l -Cn,t) ) (Cn,t+l -Cn-l,t) = 2/ (n+1)

implies that

Cor1,401 " Oyt = n_fi R % T a1 "G,
=20, -H ) +2-2/(t+1)
and this relatiqp l;kewise can be iterated:
Cpyt = 2 §: (Hn—t+kak%1'“l/k) * Cn+l-t,l '

? 2<k<t
Thus, finally, we have the sclution

C o4 = 2((n+l)Hnﬂ-(n*5-t)H

- (t+2)H, +n+3) , for 1<t <n.
n, t - =

n+ti-t

For example, when calculating the median of n = 2t-1 elements,

the average number of comparisons comes to
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Wo(Hy, J-H)+U6-8H +1 = (b+h fn 2)t -8 fn t+1-8y+0Q(t™)

2t-1t

A Type B analysis of this problem is essentially the question "What
is the smallest number of comparisons needed to select the t-th largest
of n elements?” There are really two guestions, depending on whether
we want to minimize comparisons in the worst case or in the average case.

When +t =1 , the questions are easlily answered; we always need at
Jeast n-1 comparisons to determine the largest elements. For if we
consider each comparison as a match in a knockout tournament, every
player except the champion must lose at least one game. This argument
can be extended also to the case t = 2, to show that an algorithm to
determine the second best plaver must use at least n- 2+-rwlog2 n_w
comparlsons, a result first stated by J. Schreier in 1932 and first
proved rigorously by 8. S. Kislitsin in 196k. (See [ , vol. 3,
section 5.3.%3] for further details and references.)

When * t = 3 +the minimum number of compariscns in the worst case
is still not known; and the minimum average number of comparisons is
not even known when t =2 .

The random-finding problem is especially fascinating. No algorithm
for computing medians is known which requires less than n log n
comparigons in its worst case. And no proof that n log n comparisons
are necessary has been found. However, R. W. Floyd has recently

discovered efficient ways to compute medians with an average of only

>

S ot O(n 2/5 log n) comparisons; and he has proved that at least

% n -+ Q(n) comparisons are necessary on the average, no matter what

algorithm is used [ 4 ].
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Summary . T have tried to indicate the nature of algorithmic analysis
by describing two nontrivial problems in detail. 7Perhaps the complexities
of these examples have obscured the main points T wanted to make, so I
will attempt to summarize what T think is most important.

1. Analysis of algorithms is an interesting activity which contributes
to our fundamental understanding of computer sclence. In this case,
mathematics is being applied to computer problems, instead of applying

computers to mathematical problems.

2. Analysis of algorithms relies heavily on techniques of discrete
mathematics, such as the manipulation of harmonic numbers, the solution
of difference eguations, and combinatorial enumeration theory. Most of
these topics are not presently being taught in colleges and universities,

but they should form a part of many computer scientists' education.

3. Analysis of algorithms is beginning to take shape as a coherent
diécipline. Instead of using a different trick for each problem, there
are some reasonably systematic techniques which are applied repeatedliy.
(Numerous examples of these unifying principles may be found by consulting
the entries under "Analysis of algorithms" in the index to [10].)
Furthermore, the analysis of one algorithm often applies to other

algorithms.

L.  Many fascinating problems in this area are still waiting to

be solved.
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