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Preface

The problem of finding numerical approximations to the zeros and

extrema of functions, using hand computation, has a long history. In

the last few years, considerable progress has been made in the development

of algoritbms suitable for use on a digital computer. The aim of this

work is to suggest improvements to some of these algoritbms, extend the

math~~atical theory behind them, and describe some new algoritbms for

approximating local and global minima. The unifying thread is that all

the algorithms considered depend entirely on sequential fUnction

evaluations: no evaluations of derivatives are required. Such algorithms

are very usefUl if derivatives are difficult to evaluate, and this is

often true in practical probl~~s.
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1.1

1. Introduction

<,

1.1

advance if the zero is simple, if the initial apprOXimation is sufficiently

Consider the problem of finding an approximate zero or minimum of

a function of one real variable, using limited-precision arithmetic on a

sequential digital computer. The function f may not be differentiable,

or the derivative fl may be difficult to compute, so a method which

uses only computed values of f is desirable. Since an evaluation of

f may be very expensive in terms of computer time, a good method should

guarantee to find a correct solution, to within some prescribed tolerance,

using only,a small number of function evaluations. Hence, we study

algorithms which depend on evaluating f at a small number of points,

. and for which certain desirable properties are guaranteed, even in the

presence of rounding errors.

Slow, safe algorithms are seldom preferred in practice to fast

algorithms which may occasionally fail. Thus, we want algorithms which

are guaranteed to succeed in a reasonable time even for the most "difficult"

functions, yet are as fast as commonly used algorithms for "easy"

functions. For example, bisection is a safe method for finding a zero

of a function which changes sign in a given interval, but from our point

of view it is not an acceptable method, because it is just as slow for

any function, no matter how well behaved, as it is in the worst possible

case (ignoring the possibility that an exact zero may occasionally be

found by chance). As a contrasting example, consider the method of

successive linear interpolation, which converges superlinearly to a

simple zero of a Cl function, provided that the initial approximation

is good and rounding errors are unimportant. This method is not

acceptable either, for, in practice, we may have no way of knowing in

2

good to ensure convergence, or what the effect of rounding errors will be.

In Chapter 4 we describe an algorithm which, by c9mbining Some of

the desirable features of bisection and successive linear interpolation,

does come close to satisfying our requirements: it is guaranteed to

converge (i.e., halt) after a reasonably small number of function

evaluations, and the rate of convergence for well-behaved functions

is so fast that a less reliable algorithm is unlikely to be preferred

on grounds of speed.

An analogous algorithm, which finds a local minimum of a function

of one variable by a combination of golden section search and successive

parabolic interpolation, is described in Chapter 5. This algorithm

fails to completely satisfy one of our requirements: in certain

applications where repeated one-dimensional minimizations are required,

and where accurac'y is not very important, a faster (though less reliable)

method is preferable. One such application, finding local minima of

functions of several variables without calculating derivatives, is

discussed in Chapter 7. Note that, wherever we consider minima, we

could equally well consider maxima.

Most algorithms for minimizing a nonlinear function of one or more

variables find, at best, a local minimum. For a function with several

local minima, there is no guarantee that the local minimunl found is the

global (i.e., true or lowest) minimum. Since it is the global minimum

which is of interest in most applications, this is a serious practical

disadvantage of most minimization algorithms, and our algorithm given

in Chapter 5 is no exception. The usual remedy is to try several

3



1.1

different starting points and, perhaps, vary some of the parameters of

the minimization procedure, in the hope that the lowest local minimum

found is the global minimum. This approach is inefficient, as the same

local minimum may be found several times, and it is also unreliable, for,

no matter how many starting points are tried, it is impossible to be

quite sure that the global minimum has been found.

In Chapter 6 we discuss the problem of finding the global minimum

to within a prescribed tolerance. It is possible to give an algorithm

for solving this problem, provided that a little a priori information

about the fUnction to be minimized is known. We describe an efficient

algorithm, applicable if an upper bound on f" is known, and we show

how this algorithm can be used recursively to find the global minimum

of a fUnction of several variables. Unfortunately, because the amount

of computation involved increases exponentially with the number of

variables, this is practically useful only for fUnctions of less than

four variables. For functions of more variables, we still have to

resort to the unreliable "trial and error" method, unless special

information about the fUnction to be minimized is available.

Thus, we are led to consider practical methods for finding local

(unconstrained) minima of fUnctions of several variables. As before, we

consider methods which depend on evaluating the function at a small

number of points. Unfortunately, without imposing very_strict conditions

on the fUnctions to be minimized, it is not possible to guarantee that

an n-dimensional minimization algorithm produces results which are correct

to within some prescribed tolerance, or that the effect of rounding errors

has completely been taken into account. We have to be satisfied with

4
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algorithms which nearly always give correct results for the functions

likely to arise in practical applications.

As suggested by the length of our bibliography, there has recently

been considerable interest in the unconstrained minimization problall.

Thus, we can hardly expect to find a good method which is completely

unrelated to the known ones. In Chapter 7 we take one of the better

methods which does not use derivatives, that of Powell (1964), and modifY

it to try to overcome some of the difficulties observed in

the literature. Numerical tests suggest that our proposed method is

faster than Powell's original method, and just as reliable. It also

compares quite well with a different method proposed by Stewart (1967),

at least for functions of less than ten variables. (We have no numerical

results for non-quadratic functions of more than ten variables.)

ALGOL implementations of all the above algorithms are given. Most

testing was done with ALGOL W (Wirth and Hoare (1966)) on IBM 360/67 and

360/91 computers. As ALGOL W is not widely used, we give AlGOL 60

procedures (Naur (1963)), except for the n-dimensional minimization

algorithm. FORTRAN subroutines for the one-dimensional zero-finding

and local minimization algorithms are also available.

To recapitulate, we describe algorithms, and give ALGOL procedures,

for solving the following problems efficiently, using only function (not

derivative) evaluations:

1. Finding a zero of a fUnction of one variable ,if an interval in which

the fUnction changes sign is given;

2. Finding a local minimum of a function of one variable, defined on a

given interval;

5
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1.2

3.

4.

Finding, to within a prescribed tolerance, the global minimum of

a function of one or more variables, given upper bounds on the

second derivatives;

Finding a local minimum of a function of several variables.

1.2

derivatives, we only assume that f(n) is Lipschitz continuous, and

the term f(n+l)(~) in the classical results is replaced by a number

·bounded in absolute value by a Lipschitz constant. For example,

Lemmas 2.3.1, 2.3.2, 2.4.1, and 2.5.1 are of this nature. Since a

For the first three algorithms, rigorous bounds on the error and the

number of function evaluations required are established, taking the

effect of rounding errors into account. Some results concerning the

order of convergence of the first two algorithms, and preliminary

results on interpolation and divided differences, are also of interest.

Lipschitz continuous function is differentiable almost everywhere,

these results are not surprising, although they have not been found in

the literature, except where references are given. (Sometimes Lipschitz

conditions are imposed on the derivatives of functions of several

variables: see, for example, Armijo (1966) and McCormick (1969).) The

proofs are mostly similar to those for the classical results.

Theorem 2.6.1 is a slight generalization of some reSUlts of

2. Summary

In this section we summarize the main results of the follOWing

Ralston (1963, 1965) on differentiating the error in Lagrangian

interpolation. It is included both for its independent interest, and

chapters. A more detailed discussion is given at the appropriate because it may be used to prove a slightly weaker form of Lemma 3.6.1

places in each chapter. This summary is intended to serve as a guide

to the reader who is interested in some of our results, but not in

for the important case q = 2

Kowalik and Osborne (1968).)

(A similar proof is sketched in

others. To assist such a reader, an attempt has been made to keep each

chapter as self-contained as possible.

Chapter 2

In Chapter 2 we collect some results on Taylor series, Lagrangian

interpolation, and divided differences. Most of these results are needed

in Chapter 3, and the casual reader might prefer to skip Chapter 2 and

refer back to it when necessary. Some of the results are similar to

classical ones, but instead of assuming that f has n+l continuous

6

An interesting result of Chapter 2 is Theorem 2.6.2, which gives

an expression for the derivative of the error in Lagrangian interpolation

at the points of interpolation. A well-known weaker result is that the

conclusion of Theorem 2.6.2 holds if f has n+l continuous derivatives,

but Theorem 2.6.2 shows that it is sufficient for f to have n

continuous derivatives.

Theorem 2.5.1, which gives an expansion of divided differences, may

be regarded as a generalization of Taylor's theorem. It is used several

times in Chapter 3: for example, see Theorem 3.4.1 and Lemma 3.6.1.

Theorem 2.5.1 is useful for the analysis of interpolation processes

7



l.2

whenever the coefficients of the interpolation polynomials can conveniently

be expre'ssed in terms of divided differences.

Chapter 3

In Chapter 3 we prove some theorems which provide a theoretical

foundation for the algorithms described in Chapters 4 and 5. In

particular, we show when the algorithms will converge superlinearly,

and what the order (i.e., rate) of convergence will be. Of course, for

l.2

weaker than those of previous authors, e.g., Ostrowski (1966) and

Jarratt (1967, 1968).

From a mathematical point of view, the most interesting result

of Chapter 3 is Theorem 3.7.1. The result for q = 1 is given in

Ostrowski (1966), except for our slightly weaker assumption about the

smoothness of f. For q = 2 , our result that convergence to ~ with

order at least 1.378 ... is possible, even if f(3)(s) f 0 , appears to

be new. Jarratt (1967) and Kowalik and Osborne (1968) assume that

these results the effect of rounding errors is ignored. The reader

whose main interest is the practical applications of our results might lim
n~co

IXn+l-~\
IXn- t I o (2.1)

omit Chapter 3, except for the numerical examples (Section 3.9) and the

summary (Section 3.10).

So that results concerning successive linear interpolation for

and then, from Lemma 3.6.1, the order of convergence is 1.324....

However, even for such a simple function as

finding zeros (used in Chapter 4), and successive parabolic interpolation f(x) = 2x
3 +

2
x (2.2)

for finding turning points (used in Chapter 5), can be given together,

any fixed q > 1. Successive linear interpolation and successive
hold, and then the order may be at least 1.378..•. We should point

we consider a more general process for finding a zero of f( q -1) , for
there are starting points Xo ' Xl and x

2
such that (2.1) fails to

parabolic interpolation are just the special cases q = 1 and q = 2 .

Another case which is of some practical interest is q = 3 , for finding

inflexion points. As the proofs for general q are essentially no more

difficult than for q = 2 , most of our results are for general q

For the applications in Chapters 4 and 5, the most important

results are Theorem 3.4.1, which gives conditions under which convergence

is superlinear, and Theorem 3.5.1, which shows when the order is at least

1.618 ... (for q = 1) or 1.324 ... (for q = 2) . These numbers are

well-known, but our assumptions about the differentiability of fare

8

out that this exceptional case is unlikely to occur: an int,eresting

conjecture is that the set of starting points for which it occurs has

measure zero.

The practical conclusion to be drawn from Theorem 3.7.1 is that,

if convergence is to be accelerated, then the result of Lemma 3.6.1

should be used. In Section 3.8 we give one of the many ways in which

this may be done. Finally, some numerical examples i~ustrating both the

accelerated and unaccelerated processes are given in Section 3.9.

9
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1.2

Chapter 4

In Chapter 4 we describe an algorithm for finding a zero of a

function which changes sign in a given interval. The algorithm is

based on a combination of successive linear interpolation and bisection,

in much the same way as "Dekker I s algorithm" (van Wijngaarden, Zonneveld

and Dijkstra (1963), Wilkinson (1967), Peters and Wilkinson (1969),

Dekker (1969)). Our algorithm never converges much slower than bisection,

whereas Dekker's algorithm may converge extremely slowly in certain cases.

(Examples are given in Section 4.2.)

It is well-known that bisection is the optimal algorithm, in a

minimax sense, for finding zeros of functions which change sign in an

interval. (We only consider sequential algorithms: see Robbins (1952),

Wilde (1964) and· Section 4.5.) The motivation for both our algorithm and

Dekker's is that bisection is not optimal if the class of allowable

functions is suitably restricted. For example, it is not optimal for

convex functions (Bellman and Dreyfus (1962), Gross and Johnson (1959)),

or for Cl functions with simple zeros.

Both our algorithm and Dekker's exhibit superlinear convergence to

a simple zero of a Cl function, for eventually only linear interpolations

are performed, and the theorems of Chapter 3 are applicable. Thus,

convergence is usually much faster than for bisection. Our algorithm

incorporates inverse quadratic interpolation as well as linear interpolation,

so it is often slightly faster than Dekker's algorithm on well-behaved

functions (see Section 4.4).

10
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Chapter 5

An algorithm for finding a local minimum of a function of one

variable is described in Chapter 5. The algorithm combines golden

section search (Bellman (1957), Kiefer (1953), Wilde (1964), Witzgall

(1969)) and successive parabolic interpolation (the case q = 2 of the

process analysed in Chapter 3), in the same way as bisection and successive

linear interpolation are combined in the zero-finding aJ_gorithm of

Chapter 4. Convergence in a reasonable number of function evaluations

is guaranteed (see Section 5.5), and, for a C2 function with positive

curvature at the minimum, the results of Chapter 3 show that convergence

is superlinear, if we ignore rounding errors and suppose that the minimum

is at an interior point of the interval. Other algoritlnns given in the

literature either fail to have these two desirable properties, or, when

convergence is strictly superlinear, the order of convergence is less

than for our algorithm (see Sections 5.4 and 5.5).

In Sections 5.2 and 5.3 we consider the effect of rounding errors.

Section 5.2 contains an analysis of the limitations, imposed by rounding

errors, on the attainable accuracy of any algorithm which is based

entirely on function evaluations, and this section should be studied

by the reader who intends to use the ALGOL procedure given in Section 5.8.

If f is unimodal, then our algorithm will find the unique minimum,

prOVided there are no rowlding errors. To study the effect of rounding

errors, we define" 5-unimodal" functions. A unimodal function is 5-unimodal

for all 5;:: 0 , but a computed approximation to a unimodal ftmction can

not be unimodal: it will be 5-unimodal for some positive 5, depending

on the function and on the precision of computation. (5 - 0 as the

11



1.2

precision increases indefinitely.) We prove some theorems about a-unimodal

functions, and give a bound for the error in tlle approximate minimum found

by our algorithm when applied to a 5-unimodal function. In this way we

can justify the use of our algorithm in the presence of rounding errors,

and account for their effect. Our motivation is rather similar to that

of Richman (1968) in developing the E-calculus, but we are not concerned

with properties that hold as E ~ O. The reader who is not very

interested in the effect of rounding errors might prefer to skip

Section 5.3.

Chapter 6

In Chapter 6 we consider the problem of finding an approximation

to the global minimum of a function f, defined on a finite interval,

if Some a priori information about f is known. This interesting problem

does not seem to have received much attention, although there have been

some empirical investigations, e.g., see Magee (1960). In Section 6.1,

we show why some a priori information is necessary, and discuss some of

the possibilities. In the remainder of the chapter we restrict our

attention to the case where an upper bound on f" is known.

An algorithm for global minimization of a function of one variable,

applicable when such an upper bound on the second derivative is known, is

described in Section 6.3. The basic idea of this algorithm is used by

Rivlin (1970) to find bounds on a polynomial in a given interval. We

pay particular attention to the problem of giving guaranteed bounds in

the presence of rounding errors, and the casual reader may find the

details in the last half of Section 6.3 rather indigestible.

12
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In Section 6.4, we try to obtain some insight into the behaviour

of our algorithm by considering some tractable special cases. Then, in

Sections 6.5 and 6.6, we show that no algorithm which uses only function

evaluations and an upper bound on f" could be much faster than our

algorithm. Finally, a generalization to functions of several variables

is given in Section 6.8. The conditions on f are much weaker than

unimodality (Newman (1965)). The generalization is not practically useful

for functions of more than three variables, and it is an open question

Whether a significantly better algorithm is possible.

Chapter 7

In Chapter 7 we describe a modification of Powell's (1964) algorithm

for finding a local minimum of a function of several variables, without

calculating derivatives. The modification is designed to ensure

quadratic convergence, and to avoid the difficulties with Powell's

criterion for accepting new search directions.

First, a brief introduction to the problem and a survey of the

recent literature are given in Section 7.1. The effect of rounding errors

on the limiting accuracy attainable is discussed in Section 7.2. Powell's

algorithm is described in Section 7.3, and our main modification is given

in Section 7.4. The idea of the modification (finding the principal axes

of an approximating quadratic form) is not new: for example, it is used

by Greenstadt (1967) in his quaSi-Newton method. Unlike Greenstadt,

though, we do not use an explicit approximation to the Hessian matrix.

An interesting feature of our modification is that it is posible to avoid

squaring the condition number of the eigenvalue problem by using a singular

value decomposition: see Section 7.4 for the details.

13
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In Sections 7.5 and 7.6 we describe some additional features of our

algorithm. Then, in Section 7.7, we give the results of some numerical

experiments, and compare our method with those of Powell (1964), Davies,

Swann and Campey (Swann (1964)), and Stewart (1967). For the comparison

we have used numerical results obtained by Fletcher (1965) and Stewart

(1967). The numerical results suggest that our algorithm is competitive

with the currently used algorithms which do not require the user to

compute derivatives, although it is difficult to reach a definite

conclusion 'without more practical experience.

Finally, we give a bibliography of the recent literature on

nonlinear minimization, with the emphasis being on methods for solving

unconstrained problems.

14

Chapter 2.

Some Useful Results on Taylor Series, Divided Differences,

and Lagrangian Interpolation



2.1

1. Introduction

In this chapter we collect some results which are needed in Chapters

3 and G. The reader who is mainly interested in the practical applications

described in Chapters 4 to 7 might prefer to skip this chapter, except for

2.2

This is well-known if f has n+l continuous derivatives, but Theorem 6.2

shows that it is sufficient for f to have n continuous derivatives.

Section 2, and refer back to it when necessary. 2. Notation and definitions

is an

Classical expressions for the error in truncated Taylor series and

Lagrangian interpolation often involve a term f(n+l)(s) , where
ThroughuQt this chapter [a,b] is a nonempty, finite, closed

interval, and f is a real-valued function defined on [a,b]. n is
unknown point in some interval. For such expressions to be valid, f must

have n+l derivatives. Several of the results of this chapter give

expressions which are valid if fen) satisfies a (possibly one-sided)

Lipschitz condition. In these results, the term f(n+l)(s) is replaced

by a number which is bounded by a Lipschitz constant. It seems unlikely

a nonnegative integer, M a nonnegative real number, and a a number

in (0,1] .

Definitions

The modulus of continuity w(f;o) of f (in [a,b]) is defined by

that these results are new, but they have not been found in the literature

except where references are given.

The results of Chapter 3 depend heavily on Theorem 5.1, which gives

w(f;5) sup If(x) - fey) I
x, y E [a, b]
\x-y! :s 5

(2.1)

If f has a continuous n-th derivative on [a,b], then we write

for all 5 > 0 .an expansion of the divided difference f[xo' ... ,xn ] (see Section 2) near

the origin. This theorem, and the less cumbersome Corollary 5.1, are

useful for the analysis of interpolation processes, for the coefficients

of the interpolating polynomials can be expressed in terms of divided

f E Cn[a, b] If, in addition,

W(f(n);6) < Me?

fen) ELip a, i.e.,
M

(2.2)

differences (see Chapter 3).

Finally, in Section 6, we extend some results of Ralston (1963) on

the derivative of the error term in Lagrangian interpolation. These

results are relevant to Chapter 3, although they are given mainly for

their independent interest. Perhaps the most interesting result is

for all e > 0 , then we write f ELCn[a, b ;M,a]. (This notation is not

standard, but it is convenient if we want to mention the constants M

and a explicitly.) If f ELCn[a, b ;M, 1] then we write simply

fELCn[a,b;M] .

Theorem 6.2, which shows that, if we are only concerned with the points If xo,··.· ,xn are distinct points in [a,b] , then IP(f;x , .•. ,x )o n

of interpolation, then we can differentiate the classical expression for is the Lagrangian interpolation polynomial, i. e., the unique polynomial

the error (equation (6.4)), regarding the term

16

f(n)(s(x)) as constant. of degree n or less which coincides with f at

17
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2.2

divided difference f[xo' ... ,xn ] is defined by

2·3

and

( f(x.) )
n ~ J

f[xO'" .,xn ] = L n

j=O U (x
j

- xi)

ifj

(2.3)

p(x) f[X
O

] + (x-xO)f[xO'xl ] + ...

+ (x-x ) ... (x-x l)f[x , ... ,x ] •o n- 0 n
(2.6)

(There are many other notations: see for example, Milne (1949),
3. Truncated Taylor series

Milne-Thomson (1933), and Traub (1964).) Note that, although we suppose

for simplicity that xo' ... ,xn are distinct, nearly all the results given

here and in Chapter 3 hold if some of xo'. ",xn coincide. (We then have

Hermite interpolation and confluent divided differences: see Traub (1964).)

For the statement of these results, the word "distinct" is enclosed in

parentheses.

Newton's identities

In this section we give some forms of Taylor's theorem. Lemma 3.1

is needed in~Chapter 6, and applies if f(n) satisfies a one-sided

Lipschitz condition.

Lemma 3.1

Suppose that f E: Cn[O, b] for some b > 0 , and that there is a

constant M such that, for all Y E: [0, b] ,

For fUture reference, we note the following usefUl identities (see

Cauchy (1840), Isaacson and Keller (1966), or Traub (1964)). The first

f(n) (y) _ f(n) (0) < My

Then, for all x E: [O,b] ,

().l)

is often used as the definition of the divided difference f[X
O

' •.. ,xn ] ,

while the second gives an explicit representation of the interpolating

polynomial and remainder.
where

f(x)
n

L
r=O

xr

rT
n+l

f(r)(O) + __x m(x)
(n+l)!

(3.2)

1. f[x
O

] = f(X
O

) m(x) < M (3.3)

and, for n > 1 ,

f[xO'" .,Xn ]
f[xO'" .,xn_l ] - f[xl , ... ,xn ]

x - xo n
(2.4)

Remarks

The proof is by induction on n, and is omitted. The corresponding

If P = IP(f;XO' ... ,xn ) , then
two-sided result is immediate, and is generalized in Lemma 3.2 Qelow. In

Lemma 3.2, fractional factorials are defined in the usual way, so
2.

f(x) p(X) + (n(x - Xi))
1=0

18

. f[xo'" .,xn,x] (2·5)
(n+a)!/o:! (1+ 0:) (2+ 0:) ••. (n+ a)

19
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Lemma ).2

2.4

4. Lagrangian interpolation

If fELCn(a,b;M,a] and X,yE (a,b] , then

where

f(x) ~ (x-y{ fer) (y) + \x_y\n+a m(x,y)a~j(n+a)~
L r!

r=O
(3.5)

The following lemma, used in Chapter 6, gives a one-sided bound on

the error in Lagrangian interpolation, if fen) satisfies a one-sided

Lipschitz condition. Thus, it corresponds to Lemma 3.1. The corresponding

two-sided result follows from Theorem 3 of Baker (1970), but the proof

Im(x,y) I < M (3.6) given here is simpler, and similar to the usual proof of the classical

. n+l ) (n+l)result that, lf fEC [a,b] , then m(x = f (£ex)) , for some

Remarks ~(x)E(a,b] (See, for example, Isaacson and Keller (1966), pg. 190.)

Taylor's theorem with the integral form for the remainder, using the

The result is trivial if n = 6 , and for n > 1 it follows from

Suppose that f E Cn ( a, b] ;
integral

x aS t tX-t(-l
o n-l! dt x

n
+

a a~j(n+a) ~ (3.7)

Lemma 4.1

(a,b] ;

xo' ... ,x
n

are (distinct) points in

P = IP(f;x
O

' ••• ,xn ) ; and, for all X,YE (a,b] with x> y ,

fen) (x) - fen) (y) <:: M(x - y) . (4.1)

for x > 0 . Then, for all x E (a, b] ,

Note that the bound (3.6) is sharp, as can be seen from the example

f(x) nra= x (3.8)
f(x) = p(x) + en (x - x ))~

r=O r 1n+I)T
(4.2)

with y = 0 and M = (n+a)!ja!

n! < (n+a)!ja!

Since, for n > 1

(3.9)

where

m(x) < M (4.3)

otherwise the result is trivial. Let

the bound obtained from the classical result

n-l r n
f(x) = L ~ fer) (y) +~ fen) (s)

=0
r. n.

r-
(3.10)

Proof

Suppose that n > 0 and x! x
r

for any r 0, ... ,n , for

~

for some between x and y, is not sharp.

20

i

n
w(x) = IT (x - x )

r=O r

and write

21
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2·5 2·5

Regarding x as fixed, define

f(x) = p(x) + w(x)S(x)

F( z) fez) - F(Z) - w(z)S(x)

(4.5)

(4.6)

Lemma 5.1

Suppose that fcLCn[a,b;M] and that XOJ'''Jxn+l are (distinct)

points in [a,b] . Then

for Z E [aJb] .

Thus F ECn[a,b] , and F(Z) vanishes at the n+2 distinct points

x, xO' ... , x
n

' Applying Rolle I s theorem n times shows that there are

f[xo'''''xn+l ] =m/(n+l)!

where

Im\ < M

(5. 1 )

(5. 2 )

two distinct points ~O'~l E (a,b) , such fhat
Furthermore, if

n+l
f EC [a,b], then

F(n)(~o) = F(n)(~l) = 0

Differentiating (4.6) n times gives

(4.7) m = f(n+1) (~)

for some ~ E [a,b] .

(5·3)

where c(x) is independent of Z . Thus, from (4.7),

F(n) (z) f(n)(z) - (n+l):S(x)z+c(x) (4.8)
Theorem 5.1

n+k
Suppose that k,n? 0; f EC [a,b] a<O b > 0 : and

so the result follows from condition (4.1).

(

\"' )f(n+k) (0)
+ L Kr···Xr 1_.1-\. +R,

0.:Srl.:Sr2.:S ... .:Srk.:Sn 1 ·k

X
o

' ""x
n

are (distinct) points in [aJb] . Then

Sex)
1

(n+1) ! [

fen) (~o) - fen) (~l)J
~o - ~l

(4·9)

f[xO'" .,xn ]
f(n) (0)

n: +( LX)
o .:Srl.:Sn r 1

f(n+1) (0)

(n+l) !
+ ...

5· Divided differences (5. 4)

Lemma 5.1 and Theorem 5.1 are needed in Chapter 3. The first part

of Lemma 5.1 follows ilnmediate1y from Lemma 4.1 and the identity (2.5)

(we state the two-sided result for variety), while the second part is

well-known, and follows similarly. Theorem 5.1 is more interesting, and

where

R = (n}k):( L [x
r

...x [f(n+k)(~ )_f(n+k) (0)]
o .:Srl.:Sr2.:S ... .:Srk.:Sn 1 r k r 1,·· .,rk

(5·5)
most of the results of Chapter 3 depend on it. It may be regarded as a

generalization of Taylor's theorem (the special case

22

n = 0) .
for some ~rl>" .,r

k
in the interval spanned by

23

x , .. I,X
r

l
r

k
and o .
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Corollary 5.1

If, in Theorem 5.1,

2.6

Corollary 5.1 is immediate, once we note that there are exactly

(n+k)! . t (5)n!k! terms In he sum ·5·

o max Ix \
r=O, ... ,n r

(5·6)

then

k

IRj < _0_ W(f(n+k) .,,)
_ n!k! ,U (5.7)

6. Differentiating the error

The two theorems in this section are concerned with differentiating

Proof of Theorem 5.1

The result for k = 0 is immediate from the second part of Lemma 5.1,

the error term for Lagrangian interpolation. These theorems are not

needed later, but are included for their independent interest, and also

because they may be used to give alternative proofs of some of the results

so suppose that k > 0

distinct from xo '" "xn

Take points Yo' ···'Yn which are distinct, and

Then

of Chapter 3 (see Kowalik and Osborne (1968), pp. 18-20).

Theorem 6.1 is given by Ralston (1963, 1965) if fECn+l[a,b] We

f[xO'" .,xn ] - f[yo'" "Yn]
state the result under the slightly weaker assumption that f E LCn[a, b ;M]

for some M the only difference in the conclusion is that Ralston's

n

'\ [f[x, •.. ,x ,y 1'" .,y ] - f[xO'" .,x l'Y'" ·,Y ]}L. 0 r r+ n r- r n
r=O

(5.8)

term f(n+l)(~(x)) is replaced by m(x) , where Im(x) I < M. The proof

is similar to that given by Ralston (1963), and is also similar to the proof

of Lemma 6.2 below, so it is omitted.

n

'\" (x -Y )f[X
O
'" .,x ,y , .. . ,y ] ,L. r r r r n

r=O

by the identity (2.4).

(5 ·9)
Theorem 6.2 gives an expression for the derivative of the error at

. the points of interpolation. If f E LC n [ a, b ;M] then the result follows

immediately from Theorem 6.1, but Theorem 6.2 shows that f ECn[a,b] is

We may suppose, by induction on k, that the theorem holds if k sufficient. This result may be of some independent interest.

is replaced by k-l and n by n+l Use this result to expand each
Theorem 6.1

the result follows. (Strictly, to show the existence of the points

f[yo'" .,Y
n

] tends to f(n) (O)/n! , so

term in (5.9), and consider the limit as

the second part of Lemma 5.1,

YO'" ·'Yn tend to o . By
Suppose that n > 1

points in [a,b] ; w(x)

and f(x) = p(x) + R(X)

fELCn[a,b;M] ; xO, ... ,x
n

_
l

are (distinct)

(x-xo)· .. (x-xn _l ) ; P = IP(f;x
O

" .. ,x
n

_l )

Then there are functions ~: [a,b] ~ [a,b]

~ , we must add to the inductive hypothesis the result that
r

l
, " .,r

k

f(n+k)(~ ) is a continuous function of x , ... ,x .)
r l ,·· .,rk r l r k

24

and m: [a, b] ~ [-M,M] , such that

25
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2.6

l. f(n)(~(x)) is a continuous function of xE[a,b] (although ~(x)

is not necessarily continuous);

2.6

6 = max \f(n) (x) \
xE[a, b]

(6.6)

2. m(x) is continuous on [a,b] , except possibly at x
o

' ... ,x
n

_
l

and

3. for all x E [a, b] ,

R(X) = w(x)f(n)(~(x))/n! (6.1)

o max
°Si<jsn

\xi - xj \ (6.7)

and

4.

and

R r (x) = w' (x) fen) (~(x))In! + w(x)m(x) I(n+l) !

if x f x
r

for r = 0, ... ,n-l , then

(6.2)

Then, for all x E [a, b] ,

f(x) = p(x) +(ft (x -xr )) Sex)

where

(6.8)

~ f(n)(~(x)) =~
n+l

Theorem 6.2

(6.3)

Proof

IS(x) \ < 26
-5.ll~

(6.9)

Suppose that n > 1; f ECn[a,b] ; x
o

' ... ,x
n

_
l

are (distinct) If x = x
r

for some r = 0, ... ,n , then we can take Sex) = 0 .

points in [a, b] ; w(x) (x-x
o

) ... (x-X
n

_
l

) ; p = IP(f;x
O

" .. ,x
n

_
l

) otherwise, by the identity (2.5),

and f(x) = p(x) + R(x) Then there is a function ~: [a, b] ~ [a, b] ,

such that fen) (~(x)) is a continuous function of x E [a, b] ; for all
Sex) = F[XO'" "Xn'X] (6.10)

XE [a,b] ,

R(x) = w(X)f(n)(~(x))/n! ( 6.4)

Write xn+ l for x, and reorder xo ' ""xn+l (if necessary) so that,

if the reordered points are xC)'" "x~+l ' then

From (6.10) and the identity (2.4),

and, for r = O, •.. ,n-l,

R'(X) = wl(x )f(n)(~(x ))/n~
r r r ( 6.5)

x' - Xl
o n+l max

°Si<jSn+l
\X~ - x', I

1 J
> 0 (6.ll)

Before proving Theorem 6.2, we need some lemmas. Note the similarity

between Lemma 6.2 and Theorem 6.l. sex)
f[xO'" .,x~] - f[xi'" "x~+l]

Xl - Xl
o n+l

(6.12)

Lemma 6.1

Suppose that n 2: 1; f E Cn[a, b]

in [a,b]; P = IP(f;xO" .. ,xn ) _;

26

Xo '" "xn are distinct points

so, by Lemma 5.1,

f(n)(~) - f~n)f~')
Sex) = n~(xo - x

n
+

l

27

(6.13)
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for some and s' in [aJb] . In view of (6.6) and (6.11), the for r=O, ... ,n Then, from (6.14) and the identity

result follows.

Lemma 6.2

k-l
Pk(x) = L

r=O

f(Xr)wk(X)

(x-x )wk' (x )
r r

(6.19)

Suppose that n > 2 fECn[a,b] ; xO, ... ,x
n

_l are distinct we have

points in raj b] ; 6 = max \f(n) (x) I
xE[a, b]

5 max
0Si<j <n

Ix. - x·1
l J f(n)(s(x))

nl

n-l
.il& - L
~ r=C

f(x)

[x-x )w' (x )r n r
(6.20)

Pn = IP( f;xO' . , . JXn_l ) ; wn (x) = (x-xO)'" (x-xn_l ) ; and

f(x) = Pn(x) +R(X) . Then there is a f\mction s: [a,b] ~ [a,b] such

that, for all x E [aJb] J f(n)(s(x)) is a continuous f\mction of x J

Since the right side of (6.20) is continuously differentiable at x, so

is the left sideJ and

By the classical result corresponding to Lemma 4.1J there is a f\mction

Let xn be a point in [aJb], distinct from x and xO, ... ,x
n

_
l

.

For k = n or n+l, define

for r = 0, .. "n-l , then

Pk = IP(f;xoJ " "~-l)

...!-~f(n)(s(x)) d ( !!fdy) n-l
f(x)

(6.21)=
dx wn(x + r~ 2n! dx

(x-x) w~(x)

Define S(xJxn) by

f(x) = P l(x) + W l(x)S(xJx) (6.22)n+ n+ n

Since r(x)
if r ::::. n ,

w' (x) = n n (6.23)
n+l r (x -x )w'(x ) if r = OJ'" In-l ,r n n r

equation (6.19) gives

Pn+l (x) n-1 f(Xr ) f(xn )

wn+l(x)
= L (x-x )(x -x )w'(x ) + (x-x )w (x )

, (6.24)
r=C r r n n r n n n

so

!!fdy f(xn)
w x -~ n-l f(x)

S(x,xn) n n n L: (6.25)= +
(x-x ) (x -x )w' (x )x - xn r=C r n r n r

(6.15)

(6.14)

(6.16)

(6.18)

(6.17)

nl5

21W (x) 16
n

<

26
< 5""I~ f(n)(s(x))!

IR'(x) - W~(X)f(n)(S(x))/nl I

R(X) = w (X)f(n)(s(x))/nl
n

Wk(x) = (x-xO) ... (x-~_l)

x f xrandJ if

and

Proof

such that (6.14) holds. Suppose, until further noticeJ that x f x
r

28 29
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As x ~ X ) the right side of (6.25) tends to the right side of (6.21).
n

Thus) there exists

2.6

R(x) = f(x) - f(x
O

) and w(x) = x - xo ' it is easy to see that

equations (6.4) and (6.5) are satisfied. Thus, the theorem holds for

lim S(x,x) = 1:.. d (n)
x -.x n n! dx

f (s(x))
n

(6.26) all n>l

and, from the definition (6.22) and Lemma 6.1, this proves (6.16). Now,

by differentiating the right side of (6.14) by parts, we see that (6.15)

holds, in fact

R I (x)
W' (X)f(n)(s(x)) + w (x) dx

d f(n)(s(x))
n n

n!
(6.27)

provided that x I xr ) for r = 0) ... )n-l Consider (6.27) near one

of the points xr ' r = 0) ... )n-l R' (x) is continuous at X
r

)

a suitable redefinition of

W (x ) = 0, wl(x) 10) and) by (6.16), dx
d

, f(n)(s(x)) is bounded
n r n r

for x I x . Thus f(n)(s(x)) has, at worst, a removable discontinuity
r

at x ,and, by the continuity of fen) (£) as a function of s,
r

s(x) will ensure that f(n) (s(x)) is a
r

continuous f'unction of x) and that

RI(x) =w'(x )f(n)(5(X ))/nl
r n r r

This completes the proof of the lemma.

Proof of Theorem 6.2

(6.28)

If n > 2 then the result follows immediately from Lemma 6.2. If

n = 1 ,choose sex)

f' (s(x))

so that s (x
O

) = Xo and, for x I Xo )

f(x) - f(xo)

x - xo
(6.29)

Then f'(s(x)) is a continuous function of xE[a,b]) and) as

30 31
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1. Introduction

Suppose that q?: 1 and f E Cq-l[ a, b] . Given (distinct) points

X o'" .,xq
in [a,b] , a sequence (X

n
) may be defined in the following

Chapter 3. way: if Xo'" .,xn+q
are already defined, let P

n
IP(f;xn , ... ,Xn+q )

be the q-th degree polynomial which coincides with f at X
n

, ... ,x
n
+

q
,

The Use of Successive Interpolation for Finding Simple and choose xn+q+l so that

Zeros of a Function and its Derivatives (q-l) ( ) = 0
Pn x n+q+l

(1.1)

Under certain conditions the sequence (Xn) is well-defined by (1.1),

lies in [a, b] , and converges to a zero ~ of f( q -1) In this chapter

we give sufficient conditions for convergence, and estimate the asymptotic

rate of convergence, making various assumptions about the differentiability

of f .

Since P is a polynomial of degree q, (1.1) is a linear equation
n

xn+q+lin If

f(x , ... ,x ] -I 0n n+q (1.2)

then Lemma 3.1 shows that the unique solution is

1 (q f[Xn+l , .. , ,Xn+q])
xn+q+l = q ,[1 xn+i - f(x, ... ,X + ]

1= n n q

and this might be used as an alternative definition.

(1.3)

From Section 4 on,

our assumptions ensure that x, ... ,x are sufficiently close to a
n wq

simple zero ~ of f(q-l) , so (1.2) holds. In Section 3, the assumption

that f(q)(~) -lOis unnecessary: all that is reqUired is that x 1
~ n+q+

is a (not necessarily unique) solution of (1.1).

The cases of most practical interest are q = 1, 2 and 3. For q = 1 ,

our successive interpolation process reduces to the familiar method of
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3·1

successive linear interpolation for finding a zero of f, and some of our
I

results are well-known (see Gollatz (1964), Householder (1971), Ortega and

Rheinboldt (1970), Ostrowski (1966), Schroder (1870), Traub (1964, 1967)

etc.). For q = 2 , we have a process of successive parabolic interpolation

3·1

A preview of the results

The definition of "order of convergence" is discussed in Section 2,

and in Section 3 we show that, if a sequence (xn) satisfies (1.1) and

converges to ~' then f(q-l)(t) = 0 (Theorem 3.1).

for finding a turning point, and, for q = 3 , a process for finding an In Sections 4 to 7, we consider the rate of convergence to a simple

inflexion point. These two cases are discussed separately by Jarratt (1967, zero t: of f(q-l) , making increasingly stronger assumptions about the

Theorem 2.5.1, we show that much milder assumptions on the smoothness of f

suffice (see Theorems 4.1, 5.1 and 7.1). Also, most of our results hold

1968), who assumes that f is analytic near S By using (1.3) and smoothness of f. For practical applications, the most important result

is prObably Theorem 4.1, which shows that convergence is superlinear if

fcG
q

and the starting values are sufficiently good. As in similar results

for any q ~ 1 , and the proofs are no lllore difficult than those for the

special caseS q = 2 and q = 3 .

Some simplifying assumptions

Practical algorithms for finding zeros and extrema, using the results

of this chapter, are discussed in Chapters 4 and 5. Until then we ignore

the problem of rounding errors, and usually suppose that the initial

for Newton's method (Collatz (1964), Kantorovich and Akilov (1959),

Ortega (1968), Ortega and Rheinboldt (19'70) etc.L it is possible to say

precisely what "sufficiently good" means. Theorem 5.1 is an easy

consequence of Theorem 4.1 and the theory of linear difference equations

(Nor1und (1954)), and gives a lower bound on the order of convergence if

f(q) is Lipschitz continuous.

The question of when the order of convergence is equal to the lower

"

approximations xo' ... ,x
q

are sufficiently good.

For the sake of simplicity, we assume that any q+l consecutive
1_;

bound given by Theorem 5.1 is the subject of Sections 6 and 7. Although

the results are interesting, they are not of much practical L'llportance,

points X n'·· .,xn+q
are distinct. (This is always true in the applications for in practical problems it is merely a pleasant surprise if the iterative

interest is practical applications might prefer to skip Sections 6 and 7

(and also Theorem 3.1), except for Lemma 6.1.

described in Chapters 4 and 5.) Thus, Pn is just the Lagrange

interpolation polynomial, and the results of Chapter 2 are applicable.

As in Chapter 2, the assumption of distinct points is not necessary, and

process converges faster than expected~ Thus, the reader whose main

the same results hold without this assumption if

Hermite interpolation polynomial.

34

p
n

is the appropriate In Section 8, we consider the interesting problem of accelerating the

rate of convergence, and Theorem 8.1 shows how this may be done. We make

l~se of Lemma 6.1, which gives a recurrence relation for the error in

successive apprOXimations to ~,and is a generalization of results of

Ostrowski (1966) and Jarratt (1967, 1968).
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3·2

Finally, in Section 9 the theoretical results are illustrated by

some numerical examples, and a brief summary of the main theorems is

given in Section 10. The reader may find it worthwhile to glance at

this summary occasionally in order to see the pattern of the results.

'3·2

and Ortega and Rheinboldt (1970) give some more possibilities (for

example, we may take the supremum of p such that the limit K in (2.1)

exists and is zero, 01' the infimum of p such that K is infinite). See

also Schroder (1870). For our purposes it is convenient to use (2.1) and

(2.4), so we make the following definitions.

2. The definition of order Definition 2.1

Suppose that lim x
n t . There are many reasonable definitions

We say x
n

- ~ With strong order p and asymptotic constant K

of the "order of convergence" of the sequence (x
n

) . For example, we

could say that the order of convergence is p if anyone of (2.1) to (2.4)

holds:

lim
n-oo

n-oo

IXn+l - ~I

JX
n

- ~IP
K>O (2.1)

if xn - ~ as n _ 00 and (2.1) holds.

Ive say xn - ~ with weak order p if xn .... ~ as n .... 00 and

(2.4) holds. (If xn = ~ for all sufficiently large n then we say

that xn - ~ with weak order 00 .)

Definition 2.2

Let

loglx Ilim n+l - t
n _ 00 log \Xn - ~ \

p (2.2)
c lim sup Ix _ ~ Ilin

n-<D n
(2.5)

We say xn - ~ sublinearly (or less than linearly) if xn - ~ and

lim ( -log Ix _ ~ I/In
n -00 n

P (2.3)
c = 1. We say

superlinearly if

x
n

c

~

o

linearly if 0 < c < 1. We say xn - t

We say xn - ~ strictly superlinearly if

lim inf( -log Ix - t I) lin
n-co n

P (2.4)

Xn - ~ with weak order p > 1 •

Examples

These conditions are in decreasing order of strength, i.e.,

(2.1) ~ (2.2) ~ (2.3) ~ (2.4), and none of them are equivalent. (2.1) is

used by Ostrowski (1966), Jarratt (1967) and Traub (1964, 1967), while

(2.2) is used by Wall (1956), Tornheim (1964) and Jarratt (1968). Voigt (1969)

36

Some remarks and examples may help to clarify the definitions. If

p > 1 and x = exp(_pn)(l+ 0(1)) as n - 00 , then x -0 with strong
n n

order p and asymptotic constant 1 . If a>l and x = exp( _an) (2 + (_l)n
n

then x -0 with weak order a , but not with any strong order, for then
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3·3

infinite if p > IT. Thus, convergence with strong order p implies

limit in (2.l) does not exist if p = IT , is zero if p < IT , and is

convergence with weak order p, out not conversely.

If the limit in (2.l) or (2.4) exists, and x
n

~ , then p > l

3·3

p(q-l) (x)
n

(q-l)! £I[x , ... ,x l]n n+q-

q-l
- (\' (x . -x))f[x , ... ,x 11.

C n+1 n n+q
i=O

(3.3)

If the limit (2.l) exists with p = l , and x
n
~ ~ ,then K < l

(K < l for linear convergence, and K = l for sublinear convergence).

Thus, the result follows from (l.l).

Examples of sublinear, linear, superlinear, and strictly superlinear

l -n -n _2n
convergence are xn = n ' 2 , n ,and 2 respectively.

Theorem 3.l

Suppose that q-lf E C la, b] ; that a sequence (X
n

) satisfying

3. Convergence to a zero

In this section we show that, if the sequence (x
n

) defined by (l.l)

converges, then it must converge to a zero of f(q-l) , assuming only

(l.l) is defined (see Section l) in [a,b] ; and that there exists

lim x = S. Then f(q-l)(S) ~ 0 .
n

n~ro

Proof

Suppose, by way of contradiction, that

that q-l
fEC [a,b] First, we need a lemma which gives a relation f(q-l) m f 0 (3.4)

between the points xn '" "xn+q+l .
For 0 < r < q , the identity (2.2.4) shows that

f[x , ... ,x l'x l'" .,x 1· (3·5)n n+r- n+r+ n+q

Lemma 3.l

If xn,xn+l ' ... ,xn+q

satisfies (l.l), then

are (distinct) points in [a,o], and x +l
~q

(Xn+r -xn+q)f[xn,· .. ,xn+q ] ] -f[x
n

, .. "x
n
+

q
_
l

Proof

q-.l
(.L (xn+i - xn+q+l)) f[xn, ... , Xn+q ]
1=0

f[x , ... ,xn+q _l ]
n

(3.l)
Thus, from Lemma 3 .l,

x - xn+r n+q

where

~l

l'n,r .L (xn+i -Xn+q+l )
1=0

(3.6)

By the identity (2.2.6),

Pn(X) = f[xn ] + (X-Xn)f[Xn,xn+ll+
l'n,r

flx , ... ,x l'x l'" .,x ]l _ n n+r- n+r+ n+q
f[x , ... ,x IIn n+q-

(3·7)

+ (x-x) ... (x-x l) f[x , ... , x 1n n+q- n n+q (3.2) Both divided differences in (3.7) tend to f(q-l) (S)/(q-l) ! as n ---+ (D ,

so

38

so there is no loss of generality in assuming that the denominator
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3·3

f[x , ... ,x 1] is nonzero for all n (on the assumption (3.4)),n n+q-

and we have

3·4

are distinct, then we may argue as follows: on the assumption (3.4),

the right side of (3.1) is nonzero for all sufficiently large n, and

thus at least two consecutive points from xn' ""xn+q+llim ~n,r
n~on

Summing (3.6) over r

o

0, ... ,q-l and rearranging terms gives

(3.8)

Taking these two points in place of x 1
q-

in the same way as from (3.13).)

and

are distinct.

X ,we get a contradiction
q

where

CJ,:,1
L (xn+r - xn+q+l )

r=O
~~(xn+q -xn+q+l ) (3 ·9)

4. Superlinear convergence

If f has one more continuous derivative than required in

Theorem 3.1, then Theorem 4.1 shows that convergence to a simple zero
~'

n
1 -

q

II
r=O

"'n,r

(3.10)

of f(q-l) is superlinear, in the sense of Definition 2.2, provided the

and, by (3.8), there is no loss of generality· in assuming that the starting values are sufficiently good. The theorem makes precise what

denominator in (3.10) is nonzero for all n > 0 From (3.6), with we mean by "sufficiently good". (In equation (4.1), w is the modulus

r = q-l , and (3.9), we have

where

x -xn+q-l n+q ~n(Xn+q -xn+q+l ) (3.11)

of continuity: see Section 2.2.) Convergence to a multiple zero of

f(q-l) is not usually superlinear, even if q = 1 (see Section 4.2),

and Theorem 3.1 above is the only theorem in this chapter for which we

do not need to assume that the zero is simple. Thus, there is no reason

to expect that the algorithms described in Chapters 4 and 5 will converge
~n ~ ~'n,q-l n

(3.12)
any faster than linearly to multiple zeros of f(q-l)

The repeated application of (3.11) gives
Theorem 4.1

Xq _l -xq = ~O~l"'~n(xn+q -xn+q+l )

and, by (3.8), (3.10) and (3.12), ~n ~ 0 as n - 00 J so the right

(3.13) Suppose that

points in [a, b] ;

f E C
q

[ a, b]; ~ E [a, b ]

5 = max Ix.-r;1
o i=O, ... ,q 1

xXO'''., q

f(q-l) CO
are (dist inct)

= 0 ;

that x 1 f x , so (3.4) must be false, and the proof is complete. (If
q- q

we do not wish to assume that any q+l consecutive points x, ... ,x
n ~q

3w( 1'( q) ;5
0

) < 11'( q) (r;) \

side of (3.13) tends to zero as n ~ on This contradicts the assumption [r; -50 ,r;+5
0

] '= [a,b] and

(4.1)
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3·4

Then a sequence (xn) is uniquely defined by (1.1), and x
n
~ ~

3.4

where

superlinearly as n ~ ro Furthermore, if, for n > 0 \R21 ~ w(f(q) ;DO)/\f(q)(O) \ = "0/3 < 1/3 (4·9)

(Note that the assumption (4.1) ensures that f[xO' ... ,xq ] /0 0 .)

From (4.5), (4.8), and Lemma 3.1 (with Xo and Xq interchanged),

D = max \x 0 - (; \n 0 n+1
1=0, ... ,q

and

In = 3w(f(q);D
n
)/!f(q)m\

then the sequence (Dn) is monotonic decreasing, and

(4.2)

(4.3)

so

\R3 1 11 :~2 \ ~ "0/2 < 1/2 (4.10)

Dn+q+l ~ "nDn+l

Proof

(4.4) q
(0) (x. -x )) f(q)(O)
1~ 1 q+l q!

q (q) ( )
( '\' )fO+R

L. xi a! 4'
i=l

(4.ll)

Without loss of generality, assume that (; = O. Let D
n

and "-n

be as in the statement of the theorem (equations (4.2) and (4.3)).

Since f(q-l)(O) = 0, Corollary 2.5.1 to Theorem 2.5.1 (with

where

q f(q) (0)
R4 = R

3
(L x 0 ) , + Rl (1 + R

3
)

i=l 1 q.
(4.12)

k = 1', n = q-l) gives From (4.6), (4.7) and (4.10), equation (4.12) gives

f[x
l

, ... ,X
q

] (it Xi)f(q)(O)/q! +Rl (4.5)
\R41

"- D'!f(q)(O)\
< 0
- -'--=:-2---'.(~q---'-l~)-!- +

3D'W(f(q) ;D')
2. (q-l) l

(4.13)

where so, from (4.3) and (4.7),

IR1 \ ~ D'w(f(q) ;D')/(q-l)!

if

(4.6)

\R41 <
"-OD' If(q) (0) I

(q-l)l
(4.14)

D' =. max \Xi I ~ DO
1=1, ., .,q

Similarly,

(4.,)
Now, from (4.11), we have

\xq+ll ~ "-OD' (4.15)

f[XO'" .,Xq ]
f(q) (0)f(q~ (1+ R

2
) = q!(l + R

3
) (4.8) By the assumption (4.1), "-0 < 1, so xq+ l

lies in [a, b] , Dl and "-1

42

are well-defined, Dl = D' ~ DO '

43

"-1 ~ "-0 ' and



3·4

\xq+ll :s "1-. 0° 1 (4.16)

3·5

q ~ 1 , the sequence (Ix - 1; I)
n

is monotonic decreasing, except perhaps

for the first term. In fact, the proof shows that, for q ~ 1 and
In the same way, we see that ° 0 2: 01 2: ° 2 >

1 > "-0 2: "1-.1 2: "1-. 2 > ... , and, for n > 0 ,

Ix \ < "I-. °n+q+l - n n+l (4.17)

n > 1

I - 1; '-> 0x
n+l < ~-lIXn - ~ I - as n -+ '" (4.22)

Thus, the inequality (4.4) holds, and it only remains to show that
(provided xn -J 1;) • This is a common definition of "superlinear

convergence", stronger than our Definition 2.2.

monotonic decreasing: monotonicity would follow from strong superlinear

X n -> 0 superlinearly . From (4.4) and the ab ove,

k
°kq+l :s "l-.O"-q·· . "I-. (k_l)qOl :s "-0 51 (4.18)

If q > 2 , the sequence (Ix - Wn
need not be eventually

and "1-.0 < 1 by assumption (4.1), so on -> 0 as n -> 00. Thus, by

the continuity of f(q) and the definition (4.3), "- -> 0 as n -> 00
n

convergence with order greater than 1, but more conditions are necessary

to ensure this sort of convergence (see Sections 6 and 7).

Take any £ > 0 For all sufficiently large n,

~
< £q (4.19)

5· Strict superlinear convergence

so, from (If.4), Assuming slightly more than in Theorem 4.1, Theorem 5.1 shows that

according to Definition 2.2. Before stating the theorem, we define SOme

lim sup olin
nn ->00

< £ (4.20)
convergence to a simple zero of f(q-l) is strictly superlinear,

As £ is arbitrarily small, this shows that constants ~ and 1 which are needed here and in Sections 6 and 7.q,a q,a

lim Ix \l/n
n -co n

lim olin
nn ->00

o (4.21) Definition 5.1

For q 2: 1 and a > 0 , let the roots of

Thus, xn -> ~ o superlinearly, and the proof is complete. X
q+ l ~ x+a (5.1)

Remarks

The proof of Theorem 4.1 shows that, for n > 0, Ix 1- ~ I is- n+q+

no greater than the second-largest of Ixn - ~ I, ... , IXn+q - ~ I . Thus, if

44

be u (i) , for i ~ 0, ... ,q , with lu(O) I > lu(l)1 >
q,a q,a - q,a

Then the constants ~q,a and lq,a are defined by

I (0) I and 1 ~ lu(l) I~q,a ~ uq,a q,a q,a

45

> lu(q) Iq,a .



3·5

Since the case a = 1 often occurs, we write simply S for
q

3·5

Sq,l , and 1
q for lq,l Table 5.1: The constants S andq

1 for
q

q 1(1)10 to 12D

Remarks

a = 1 and q? 2 then there are exactly two complex conjugate roots

S is just the positive real root of (5.1), and it is easy toq,a

see that, for 0 < a < 1 ,

2 1
"q+l -

(l+a)C < S < (l+a)q (5.2)q,a

l
lq I

-- - ----------- --------~
0.618033988750 I

I
0.868836961833 i

1.063336938821

1.099000315146

1.099174913506

1.09195330 57 66

1.083743696285

1.076133134033

1.069448852721

1.063666938404

I
I_J _

Sq --T
~. ------- ---·--1-

I

1.618033988750

1.324717957245

1. 220744084606

1.167303978261

1.134724138402

1.11277 5684279

1.096981557799

1. 085070245491

1.07 5766066087

1.068297188921

5

6

9

4

2

3

7

8

q

1

f

~~

I
!

If

then lq < 1 , but, for

lq,a when a = 1

2If q = 1 or1 .q

We are only interested in the constants

1 < 1q < Sq

q ? 3 ,

of (5.1) with modulus

This may be proved by applying the Lehmer-Schur test to show that, for

suitable £ > 0 , exactly q-2 roots of See Definition 5.1 and the remarks above for a description of

xq+1 = x+ 1 (5·3 )
the constants Sq and 1 q

lie in the circle Ixl < 1+ £ • The details are omitted, for all cases

of practical interest are covered by Table 5.1, which gives S and 1
q q

to 12 decimal places for q = 1, ... ,10 . The table was computed by

finding all roots of (5.3) with the program of Jenkins (1969), and the

entries are the correctly rounded values of sand 1 if Jenkin's- q q

a posteriori error bounds are correct.
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Theorem 5.1

3·5

° I 0 for all n > 0 (and thus, from (5.6),
n -

M > 0 ). ' Let

Suppose that f E LCq[a, b;M,a] (see Section 2.2); r; E (a, b) ;

sufficiently close to r;, then a sequence (x
n

) is uniquely defined

f(q-l)(r;) ~ 0 ; and f(q) m f 0 . If x
O

' ••• ,xq are (distinct and) ~ -log(On
\

3M Ilia
f(q)m )

(5.7)

by (1.1), and xn ~ r; with weak order at least

real root of xq+l ~ x + a .

i3 ,the positiveq,a (not the smne A as in Theorem 4.1). From condition (5.4) and the fact
n

that (On) is monotonic decreasing, 0 < AO ~ Al ~ A
2
~ ..• , and, from

equation (5.6),

Remark

If °0 ~ max lx, - I; I ' then, from Theorem 4.1,
i~, ... ,q l

are "sufficiently close" to

3M6~ < If(q)ml

xo'" .,xq

if °0 ~ r; - a, °0 ~ b - r; , and

(5.4)

Since

An+q+1 > An+1 + a An

i3 > 1 , we haveq,a

n-q
An ? 1,.0 i3q ,a

(5.8)

(5·9)

inequality (5.9) holds for all n > 0 , by induction on n Hence, for

If these conditions are satisfied, then an upper bound on

follows from equat'ion (5.10) below.

IXn - 1;1 for n ~ 0, ... ,q Thus, from (5.8) and the definition of i3q,a ' the
\..-."..

Proof of Theorem 5.1

For n > 0 , let

all n>O,

n-q 1 \ 3M \-log IXn - r; I ? -log on ~ 1,.0 i3q,a + ex log f(q) (I;) (5.10)

° ~ max Ix . - r; I
n i~O, ... ,q n+l

(5.5)
Since 1,.0 > 0 and i3 a > 1 , equat ion (5.10) shows thatq,

mentioned in the remark above are satisfied.

Suppose that xO,···,xq
are so close to r; that the conditions

Then Theorem 4.1 shows
lim inf (-log Ix _ r;1)l/n

n
n ~ '"

> i3q ,a (5.11)

that (On) is monotonic decreasing to zero, and which completes the proof.

°n+q+l <
3M a

If( g) m I on °n+l
(5.6) Note that, in the important case a ~ 1 , there is a simple proof of

Theorem 5.1 which does not depend on Theorems 2.5.1 and 4.1. Also, this

If eventually on ~ 0 , then the result follows immediately: by proof shows that, instead of (5.4), the condition

our definition, x
n

~ r; with weak order

48

Hence, suppose that
3M6

0
< 2\f(q)m!

49
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is sufficient. The idea is this: by applying Rolle's Theorem q-l

times, we see that p(q-l) (x)
n

coincides with f at points s andn - s'n

Before proving Theorem 6.1, we need two lemmas. Lemma 6.2 is

concerned with the solution of a certain difference equation, and is

say, with Is - ~I < 5n - n

Ix -~I, .. ·,lx -~\n n+q

and Is' - ~I < 5' ~ the second largest of
n - n

Thus, from Lemma 2.4.1,

closely related to Theorem 12.1 of Ostrowski (1966). (The lemma could

easily be generalized, but we only need the result stated.) Lemma 6.1

\P~q-l) CO \ < .:': M5 5'
2 n n

(5. 13)
gives a recurrence relation for the error x

n
- ~. Special cases of this

lemma have been given by Ostrowski (1966) and Jarratt (1967, 1968).

On the other hand, equations (1.1) and (3.3) show that Ostrowski essentially gives the case q ~ 1 , and Jarratt gives weaker

sharper than Jarratt's, and we do not assume that f is analytic.)
xn+q+l

p(q-l) CO
n ]

~ - qlf[xn,·· .,x
n
+

q
(5.14)

results for q ~ 2 and q = 3. (our bound on the remainder R
n

is

In

same way as above.

so we can bound Ix 1 - ~ \ ' and then the result follows in much then+q+

Section 8, we show how the result of Lemma 6.1 may be used to accelerate

convergence of the sequence (x
n

)

Lemma 6.1
q+l

Suppose that fEe - [a, b] ~E[a,b]; f(q-l)m ~O;

6. The exact order of convergence f(q)mfo; x , ... ,x are (distinct) points inn n+q
[a, b] and

Theorem 5.1 gives conditions under which xn ~ S with weak order at

the second largest.

(1.1) .

least !3 .q
It is natural to ask if the order is exactly ~q . In general,

x 1 satisfies equationn+q+

Ix -~ \, ... , Ix + -~ I ; and 5'n n q n

Let On be the largest of

Then

this is true, but some conditions are necessary to ensure that the rate

of convergence is not too fast: for example, the successive linear

interpolation process (q ~ 1) converges to a simple zero ~ with weak

order at least 2 (> 13
1

~ 1. 618 ... ) if it happens that f" (0 ~ 0 , for where

xn+q+l - t
f(q+l) CO

q(q+l)f(q) CO
\ (x. - t) (x . - t) + RL n+:l n+J n

0:5 i <j:5q

(6.1)

then linear interpolation is more accurate than would normally be expected.

Theorem 6.1 gives sufficient conditions for the order to be exactly ~ .q

R
n

0(5 5' [0 + W(f(q+l)·o )])
n n n ' n

(6.2)

Apart from the condition f(q+l)(s) f 0 , it is necessary to impose some

conditions on the initial points xo' ... ,x . (Tnese extra conditions are- q

superfluous if q ~ 1: see Section 7 .)

as 0 ~ 0
n

Proof

')0

Without loss of generality, assume that n

')1

o and t = 0 Rearrange

(
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xO' ... ,Xq , if necessary, so that Ixol S Ixll S

Lemma 3.l,

S Ixql - From where

Ir4 \ S qoo!r21+ Ir3 / O(OOOOW( f( q+ l) ;°
0

)) (6.9)

'1:,l
q.x If[xO''' .,x ] = () x. )f[xO'" _,x] - f[xO'" .,x l]

q+ q i~O l q q-
(6.3)

as °
0
~ 0 , so the result follows.

Thus, as f(q-l)(o) = 0 f f(q)(O) , Theoren 2.5.l gives
Re;narks

f(q) (0)
q.x (l+r)

q+l 0\ l

<t=.l f(q) (0) q f(q+l) (0)
(L x.) ( , + (L x.) (+l) , + r 2)
i~O l q. i=O l a .

From the bounds on r l , ... ,r4 ' it is easy to derive an explicit

bound on IR I for sufficiently small ° For our purposes, though,
n n

the relation (6.2) is adequate. A simple corollary of (6.2) is that,

if f(q+l) E: LiPM ex , then

R = O(ol+ex D') (6.l0)
n n n

as ° ~ 0n

where

Irll

W(f(q) ;°
0

)

S If(q)(O) I 0(0
0

) (6.5)
Lemma 6.2

Suppose that A -Io+rn
n

as II ~ ro , and, for n 2 0 ,

A = c.t3
ll

+ O(sn) (6.l3)
n q

where

k = o( sn)
II

A - A - A = k
ll+q+l n+l II II

~~~<o

(6.l4)

(6.l2)

(6.n)

s a constant. If / < s < t3 then
q q

A =c.t3ll+0(Sll)
n q

as II ~ ro , and if k = o(sn) as II ~ ro then
n

as n -t CP_ ,

(6.7)

(6.6)

(6.8)

Ir 2 1 S 00W(f(q+l) ;oo)/q\ = O(oow( f( q+ l) ;0
0

)) ,

and

0,2W(f(q+l) '8')
= 0(002W(f(q+l) ;°

0
))Ir3 \

o ' 0
S 2(q-l)!

as DO ~ 0 .

The right side of (6.4) is just

'L f(q+l) to)
+ r4( x.x.) +, ,

0Si<jSq lJ (ql.
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as n~oo. If 0 < s < -yq then
3·6

for i 1,2, ... ,q , and

~ = c.Sn + O(nv.yn)
n q q

as n - w , where

(6.15)

where

\xq-tl ~ 6\K(XO -S)(X1 -\')\ > 0 (6.18)

v 0 {:

if q = 1

if q>l
( 6.16) K

f(g+l)(1;)

q(g+l)f(q) m (6.19)

then a sequence (xn ) is uniquely defined by (1.1), and xn - t With

weak order exactly S In fact, if q = 1 or 2 then x - S with
q 13 -1 n

strong order 13
q

and asymptotic constant \K\ g ,and if q ~ 3 then

as n - 00 , for some positive constant c .

and c is a nonnegative constant.

Proof

The restriction lu21 < 1 in Theorem 12.1 of Ostrowski (1966) is

unnecessary, for we can choose any ~ with lu2 \ < A < lUll and

consider A jAn, instead of ~ , in Ostrowski's proof. Thus, in view
n n

of the remarks after Definition 5.1, (6.13) and (6.15) follow from

-log\xn - \,\ c .13n + O(n.-yn)
q q (6.20)

ostrowski's Theorem 12.1. (6.14) does not follow directly in the same Remarks

way, but the proof of Ostrowski's Theorem 12.1 goes through, assuming

k . = o(sn) instead of k = O(sn) , and giving a result from which (6.14)
n n

follows. The only difficulty is in proving the modified form of

Condition (6.17) ensures that xo' ... ,xq approach \, sufficiently

fast, while (6.18) makes sure that they do not approach S too fast.

These conditions could be weakened, but Theorem 7.1 shows that some such

Ostrowski's Lemma 12.1, but this follows from the Toeplitz lemma: if conditions are necessary if q ~ 2 If q = 1 then the conditions

k· .~ 0, Is I < 1 , and z = k + k lS + ... + kosn , thenn . n n n-

n ~ 00 (see Ortega and Rheinboldt (1970), pg. 399).

z ~ 0 as
n are superfluous: see Corollary 7.1.

Equat ion (6.20) implies that (2.2) holds wit h p 13 , but (2.1)
q

Theorem 6.1

Suppose f ECq+l[a,b]; \, E (a,b) ; f(g-l)(\,) = 0 ;

and f(q+l)(s) f O. If \Xo-s\ is sufficiently small,

f(g)m f 0

does not necessarily hold, for

Proof of Theorem 6.1

Let y = IK(x - 01 .
n n

)'q > 1 if q ~ 3

(6.21)

!Xi _l - \,\ ~ 41 x
i - t\

54

(6.1'7) From the assumptions (6.17) and (6.18) we have, at least for n = 0 ,
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Yn+i - l ~ 4Yn+i (6.22)

3·6

Let

for i = l,2, ... ,q , and

Yn+q ~ 6YnYn+l > 0 (6.23)

A = -log Y
n n

and

k A - A - An n+q+1 n+1 n

(6.29)

(6.30)

We shall show that (6.22) and (6.23) hold for all n > 0 Suppose, as

inductive hypothesis, that they hold for all n < m. Then, by taking

\xo - ~ I sufficiently small (independent of m) , we may suppose that the

From (6.25) and (6.27),

Iknl Slog 2 (6.31)

remainder R
n

of Lemma 6.1 satisfies so we may apply Lemma 6.2 with s 1 . If q?:3 then r > 1 , so
q

IKRnl
1.

< l3 YnYn+l (6.24) A
n

c.l3
n

+ o(n.rn
)

q q
(6.32 )

for all n < m Thus, from Lemma 6.1., as n ~ ~. From Theorem 5.1, c > 0 , so the result for q > 3 follows.

1 2 2 3 1
Ym+q+l S YmYm+l(1.+4: + 42 + 43 + 44 + .. , + l3)

~ .
S 2 YmYm+l (6.25)

If q"= 1 or 2 then r q < 1 , so

~ = c.l3
n

+ O(l)
n q,

(6.33)

From (6.23) with n = m , this gives

as n ~ ~. From (6.29), (6.30), (6.33) and Lemma 6.l, we now see that

"> 4Ym+q - Ym+q+l

Similarly,

1 2 2 3 1
Ym+q+l ?: ymym+l(l - 4: - 42 - 43 - 44 - ... - 13)

1
~ "2 YmYm+1

(6.26)

(6.27)

k
n

= o(l)

as n ~ ro , so, by equation (6.14) with s = 1 ,

A = c.l3
n

+ o(l)
n q

as n ~ ~. Thus, there exists

(6.34)

(6.35)

?: 6Ym+lYm+2 (6.28)

Y
lim n+l

n~'" 13Y q
n

1 , ( 6.36)

Also, from (6.27), Y 1 > 0 , so the right side of (6.28) is positive.
m+0

From (6.26) and (6.28), we see that (6.22) and (6.23) hold for n = m+1 ,

so they hold for all n > 0 , by induction. Thus (6.25) and (6.27) hold

for all m > 0

56

so the result follows from equation (6.2l). (Note that, if f(q+l) E LiPM a

for any M and a > 0 , then (6.34) may be replaced by k = o(sn) for
n

any s > 0 , so (6.l5) holds, and
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Remarks

conditions of Corollary 7.1 are satisfied, then

Ostrowski (1966) gives Corollary 7.1 with the stronger assumption

IXn+l - ~ \

IX
n

- ~tq

as n -+ w .)

13 -1 -1 n
\K\ q + o(n

q
. )'q) (6.37)

that 3f EC [a,b] . He also shows that, if f EC 3[a,b] and the

7· stronger results for q = 1 and 2

IXn+l - I; I

Ix - I; \131
n

\
~\131-1
2fI\r} + O(Y~) .~ (7.2)

In this section we restrict our attention to the two cases of the as n ~ ~. As we remarked at the end of the proof of Theorem 6.1, the

greatest practical interest, q = 1 (successive linear interpolation)
relation (7:2) holds provided that

2fELC [a,b;l>l,CX] for some l>l and ex

and q = 2 (successive parabolic interpolation for finding an extreme

point). Corollary 7.1 shows that the conditions (6.17) and (6.18) of

Theorem 6.1 are unnecessary if q = 1

(see equation (6.37)). For an even weaker condition, see (7.7) and (7. 8)

below.

The following theorem removes the rather artificial restrictions

(6.17) and (6.18) of Theorem 6.1, if f(q+l) is Lipschitz continuous

If' xO ) xl and ~ are distinct and

depends on the assumption that Yq < 1 , which is only true for q = 1

and q = 2 (see Table 5.1).

Corollary 7 .1

Suppose that q = 1 ;

f'(S)!O;and f"(~)!O

fEC 2[a,b] ; ~ E (a,b) f(S) = 0 ;

and q = 1 or 2 The proof does not extend to q 2 3 , because it

sufficiently close together) then a sequence (x
n

) is uniquely defined

by (1.1), and xn ~ ~ with strong order 131 = ~ (1+/5) and asymptotic

I

Theorem 7.1

constant \
~\131-1
2f'(S) as n - 00 •

Suppose that q = 1 or 2

f(q-l)(I;) = 0; and f(q)(I;)! 0

fELCq+l[a,b;l>l]; ~E(a,b);

If x
O

' ••• ,xq are (distinct and)

Proof

From Lemma 6.1,

sufficiently close to 1;, then a sequence (xn) is uniquely defined

by (1.1), and either

X
2

- ~ ~~2fi\U (xo - I;) (xl - I;) (1 + a (1) ) (7.1) 1: X
n
~ ~ with strong order 13 and asymptotic constant

q

sequence (x~), where x~ = xn+l ' provided Xo and xl are sufficiently

close to I; .

as max( \xo-I;l, \xl-~I) ~ 0 . Thus, Theorem 6.1 is applicable to the

\

f(q+l)(p \l3q- l

q(q+l) f(q (I;)
in fact
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o with weak order 12 .
3·7

IXn+l - ~I

\X
n

- S\l3q \

f(q+l) (p lt3q- l

q(q+l)f(q m + O(n
q

-
l

)'~) (7.3)

3·7

so x
n
~ r,

)' = ~(3+15) 2.618 ... ,

Similarly, if

(7·5)

as n - DO (recall that t3l ~ 1.618, 132 ~ 1.325, Yl ~ 0.618 ,

and Y2 ~ 0.869) ;

(7. 6)

x
3n

~ exp( _)'n)

x
3n

+l ~ exp(_()'_l))'n)

x
3n

+
2

~ _exp( _(y_l)yn+l)

and

then there are starting values such that

if q = 2 •1.378

S with weak order at least 2 if q = 1 , or

1e+ 15)3
2

x
n

or

2:

so x ~ 0 with weak order ),1/3 = 1.378
n

The proof is omitted,

Remarks but the reader may easily verify that (7.4) and (7.6) are compatible

If q = 1 then, by Corollary 7.1, case 2 of Theorem 7.1 is with Lemma 7.3 below (this depends on the relation 2)'-1 = )'()'-l))

possible only if f" (0 = 0 (or if one of Xo and xl coincides with S,

when the weak order is DO) .

If q = 2 then case 2 is possible, although unlikely, even if

f(3)(s) f 0 and x f S for all n. All that is necessary is that
n

For the sake of simplicity, we have not stated Theorem 7.1 in

the sharpest possible form. If f(q+l)(s) = 0 , then xn ~ S with

weak order at least 13 l+a > t3 ,provided that f(q+l) E Lip a for
q, q M

some M and a> 0 If f(q+l)(s) f 0 , then the theorem holds

the terms in relation (7.28) repeatedly nearly cancel out. Jarratt (1967) provided that f EC q+l[ a, b] Equation (7.3) may no longer hold) but if

and Kowalik and Osborne (1968) assume that such cancellation will eventually there is an E > 0 such that

are sufficient for. this to be true, but without some such conditions there

die out, so the order will be t32 . The conditions (6.17) and (6.18)
W(f(q+l) ;0) = O( \log b\_E/q) (7·7)

is a remote possibility that cancellation will continue indefinitely.

For example, with f(x) = 2x3+x2
, there are starting values xo ' Xl

~~~~

as 0 - 0 , then

\xn+l - SI
O(nq-l n) if E > 1

\ f(q+l)(P \t3q -
l

Yq

- io( ""'~)13
=

\xn - S\ q
q(q+l)f(q m if E=1,\(7.8)

O()'~E) if E < 1 ,and

x
2n

~ exp( _2n)

x
2n

+
l

~ _exp( _2n) } (7. 4)

as n -. ro (A condition like (7.7) occurs in some variants of Jackson's

theorem: see Meinardus (1967).)

60 61

"j
"



3·7

Before proving Theorem 7·l, we need three rather technical lemmas.

Lemma 7.l

Suppose that, for n? 0 ,

x =xx +x X +xx +m0
2
0'

n+3 n n+l n+l n+2 n n+2 n n n (7 ·9)

3·7

Proof

If x f 0 for infinitely many n then, by Lemma 7.l, x f 0 for
n n

all n > O. If this is so, define ~ = -log\x \ and
n n

kn = ~n+3 -~n+l -~n . From equation (7.ll), k is bounded, so
n

Lemma 6.2 with s = l gives ~ = C(3n + O(l) as n ..... rn By
n 2

Lemma 7.l, An -+ + CJ,;I , so c > 0 . ThUS, from (7.9),

the second largest. If there is a positive constant L such that

where 0
n

is the largest of \xn\ , \xn+l \ and \Xn+ 2 \ , and 0'
n

is
~l

kn = o(exp[-c(~2-l)~2 )) (7.l2)

l~L? Ixol ? 31 x
l l ? 9\X2 \ ? 27\~\, and

Imnl < L (7.l0)

as n ..... rn (this is not necessarily true in the proof of Theorem 6.l).

Now, Lemma 6.2 with s <)'2 gives

for all n > 0 , then Ixnl? 3lxn+ll

Proof

for all n > 0

as

n n)
~n = c(32 + O(n)'2

n ..... rn , and the result follows from the definition of }...
n

(7·l3)

As in the proof of Theorem 6.l, it follows by induction on n that Lemma 7.3

22 \
\xn+3 \ ? 45 \XnXn+ l

22> - Ix x \5 n+l n+2 > 3\xn+4 1 , (7.ll)
Suppose that (7.9) and (7.l0) hold. Then there are constants K

and N (depending on L) such that if, for some n > N ,

for all n > 0

Lemma 7.2

If the conditions of Lemma 7.l 'are satisfied, then either

for all sufficiently large n, or

x
n

o

and

then

l
n

l
n

>

>

\xn\

IXn+l\

> n\xn+2 1

> n\xn+2 1

(7.l4)

(7.l5)

IXn+l\
(3

\X
n

\ 2

as n - J) a

n
l + O(n)'2)

62

x
n+3

x
n+4

x
n+5

Xnxn+l (l + Vl,n)

2
x x l(l + v 2 ) + x lX +2(l + v

3
)n n+ ,n n+ n ,n

2 3
x x +l( l + v4 ) + x x +lx +2 (l + v 5 ) ,n n ,n n n n ,n

63
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for all n > 0 , where A is some positive constant. If some x
n

and

X n+6 X2X3 (1 + v ) + x x2 x (1 + v )n n+l 6,n n n+l n+2 7,n' (7.19) then x = xn+l n+2 o and we are finished (weak order 00) •

o

where

for i

Iv I < ~i,n - n

1, ... ,7 .

(7. 20)

otherwise, there is no loss of generality in assuming that

A\xnl S exp(_2
n

)

for n = 0 and n = 1. From (7.24), equation (7.25) holds for all

n > 0 , by induction on n. Thus, the weak order of convergence is at

(7. 2 5)

Proof

The lemma follows by repeated use of the recurrence relation (7.9)

least 2, and the proof for q

From now on, suppose that q

1 is complete.

2. By Lemma 6.1,

and the inequalities (7.10), (7.14) and (7.15).
xn+3 ~

(3) 0 2
x x + x x + x x + 0 5 5'f" 0 (n n+1 n+1 n+2 n n+2) ( n n) (7.26)

Proof of Theorem 7.1 as n ---. m • If f(3)(0) = 0 then the weak order of convergence is at

Without loss of generality assume that ~ = O. First suppose that least f32,2 ' the positive real root of x3
= x+ 2 , by a proof like

o then, by Lemma 6.1,

q= 1

f" (0)

If f"(O) f 0 then the theorem holds, by Corollary 7.1. If that above for q = 1 , mld the theorem holds as ~2,2

If f(3) (0) f 0 , then we may as well supp~se that

1.52 ...

xn+2
0(020') .

n n
(7.21) 1'(3).101

tifiiTO) 1 (7. 27)

are sufficiently small, equation (7.21) implies that

as On ~ 0 , where 5
n

and 0'
n

are as in Lemma 6.1. If X o and Xl
by a change of scale, as in the proof of Theorem 6.1.

study the interesting recurrence relation

Thus, we must

x = x x + x x + x x + 0(525')n+3 n n+l n+l n+2 n n+2 n n

least ~2'

First suppose that there is an infinite sequence N = (~O,nl"")

with the property that, for every i > 0 and n = ni ' either

5 - Jxnln

and

0' = IXn+l1n

for all n > J. Thus x ~O as n ---t CD , and
n

Ixn+2 1
21 2S A xnxn+ll

64

(7.22)

(7.23)

(7·24)

and, by Theorem 5.1, we can assume that

65

x ~ 0 with weak order at
n

(7. 28)
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1: n.
l+l

n+2 (7.29)
of N satisfy (7.31), and tlJen the next s > 1 satisfy (7.29). Then

and

4nlxnlC~+l1 :s \xn+2 1 :s 2\xnX n+l1 (7.30)

repeated use of the ine~ualities (7.33) to (7.36) gives

max(y y ) < max(y y ,cp(r,s)
n+:5r+2s' n+3r+2s+1 - . n' n+l) (7.38)

or where

2:

and

n.Hl
n+3 (7.31)

cp(r,s) = 2s -1[(JS + 2)(3 +0Js)r + (J5 - 2)(3 ~ l5)r J./5 ~ /3 2
(7.39)

\xn+2 1 2 I< ~nlxnxn+l (7.32 )
Let

1

o/(r,s) = cp(r,s)3r+2S (7.40 )

If either (7.30) or (7.32) holds, then Lemma 7.3 is applicable for all

n = l1
i

is sUfficiently large, and (7.29) and (7.30) hold, then

with subscripts, write m

To avoid confusionin the se~uence N.

(7.41)

is a decreasing function of r, with limit

inf 0/( r, s)
r, s?l

o/(r,s)

1

(3 ; ./5)3c

For fixed s > 1

Ifor n+3).(so m = n+2n j + l
for

n .c n.
l

sufficiently large

I~I :s 2\xnxn+l1 (7·33) as r - OJ • Thus, x
n

~ 0 with weak order at least c, so case 2 of

the theorem holds.
and, by I,emma 7.3,

Now suppose that there is no infinite se~uence N as above. By the

Ixm+ll ~ 2lxnxn+ll (7.34 )
superlinear convergence of (x

n
), Lemma 7.3 is applicable for infinitely

If (7.31) and Cr .32) hold tllen, similarly, many n. Choose such an n (sufficiently large). 'rhere are only

three possibilities:

\lCml < 2lxnxn+ll (7.35)
1. E~uation (7.30) holds;

and

Ix I < 41x x
2 Imtl - n n+l

(7.3(,)

2.

3.

Equation (7.32) holds; or

Neither (7.30) nor (7.32) holds, so

Let \xn+2 1 > 2l x
n

x
n+l1 (7. 42)

Yn 2\x
ll
l (7·37)

In the first case, Lelluna 7.:5 shows that we can replace n by n+2, and

i\fter a fixed n n
i

i.n N, suppose that the next r > 1 elements continue with one of the three cases (it is crucial to note that Lemma 7.3 is
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interpolation process. From Lemma 3.1,

still applicable). In the second case) Lemma 7.3 shows that we can

replace n by n+3 and continue. Since no infinite sequence N with

the above properties eXists, the third case must eventually arise. Then,

i. e., yn is just the next approximation generated by our usual

Yn is given explicitly by

from (7.42) and Lemma 7.3, we see that Lerona 7.2 is applicable to the

sequence (x'), where x' = xm+ ~ •
m m n+) By Lemma 7.2, (x~) converges

Yn
1 <;1
-(1...,
q i=l

x .
n+l

x ]f[x , ... , n+q )
n+l ]

f[x , ., .,xn+q
n

(8.2)

with strong order 13
2

and asymptotic constant 1) and hence, so does (x
n

) .

In view of the assumption (7.27) this completes the proof.

Instead of taking y as the next approximation x + l' we use
n n q+

Lemma 6.1 to compute a correction to Yn ' and take the corrected value

as the next approximation. Formally, we define xn+q+l by

8. Accelerating convergence

If a very accurate solution is required, and higll-precision evaluations
xn+q+l

f[xn _l ,·· .,xn+q ]

Yn - q.f[x
n

, ... ,x
n

+
q

] s
n

(8.3)

of f are expensive, then it may be worthwhile to try to increase the where

order of convergence of the successive approximations by some acceleration

technique. For example, we can use Lerruna 6.1 to improve the current
sn L (x - ) (

O'::::i<j,::::q n+i Ynxn+j-Yn)
(8.4)

approximation at each step of the iterative process. Jarratt (1967) suggests For a justification of equations (8.3) and (8.4), see the proof of Theorem

one way of doing this if q = 2 , but the method which we are about to 8.1 below. This theorem shows that, under suitable conditions, the

describe seems easier to justify (see Theorem 8.1) and applies for sequence (xn) is well-defined) and x
n ~ with weak order appreciably

any q? 1 greater than 13 , which is the usual order of convergence of the
q

Suppose that xo' ... ,x
q
+l are approximations to a simple zero ~ unaccelerated process (see Sections 5 to 7). Note that there is very

gellerated by the successive interpolation process discussed above. We

f[X
n

_
l

) ., .,x
n
+

q
_
l

]

known.

little extra work involved in computing x 1 from equations (8.3)
n+~

~~d (8.4) if y is computed via (8.2), for f[x, ... ,x ] andn n n+q

(except at the first iteration) will already be

approximationsq+2

if n > 1 and

For example, they could be the lastf(q-l)of

may define xq+2'x
q
+

3
, '" in the following way:

xo'" .,x + are already defined, let P = IP(f;x , ... ,x ), andn q n n n+q

Before stating Theorem 8.1, we define some constants

accelerated process is used.

choose Yn such that

(q-l)(y)
Pn n o (8.1)

take the place of the constants t3q

13' which
q

(see Definition 5.1) if the
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-log\x
n

- ~\ > (~_ E)n

Thus, the number of function evaluations required to reduce

order (see Section 2), for any E > 0 we eventually have

3·8

Table 8.1: The constants 13' for '1 ~ 1(1)10 to 12D
'1

-j

log ~ /log ~r Jq W 13'1CJ. q CJ. j
- ----

1 1. 839286755214 , 1.6180 0.7897

2 1. 465571231877 1.3247 0·7357,
3 1.321,717957245 1.2207 0·7093

4 1. 249851588864 1.1673 0.6936

5 1.203216033518 1.1347 0.6832

6 1.171321856385 1.1128 0.6757

7 1.148ll3497353 1.0970 0.6702

8 1.130459571864 1.0851 0.6658

9 I 1.1l6575158368 1.0758 0.6623

10
I

1.105367322949 1.0683 0.6595 I
c_ I j

(8.7)

(8.6)

(8.5)

\xn - ~I

13 > 1 then, by the definition of

~ I > ~ , and, corresponding to the bound
'1 '1

~' is the positive real root of
q

2
x + x + 1

If xn ~ ~ with weak order

It is easy to see that

x'1+2

For q?, 1

Remarks

(5.2), we have

1 1- -
3'1+ 1 < ~' < 3'1

'1

Definition 8.1

below a very small positive tolerance is inversely proportional to log ~

The constants ~ are given to 12D in Table 5.1.
'1

~' and the significance of the ratio
'1

See Definition 8.1, and the remarks above, for a description
log ~
-------=-..:.Jl
log ~~

of the constants

(assumin~ that approximate equality holds in (8.7)), and the ratio

log ~

~ suggests how much we gain by using the accelerated process,
og ~'1

rather than the unaccelerated process, if very high accuracy is required.

From the bounds (5.2) and (8.6),

log A

lim --=--.'::9.
'1 ~'" log ~''1

10g3 2 0.6309 ... (8.8)

so there is a 37 percent saving for large '1' Of course, the only

practical interest is in small values of '1 , and in Table 8.1 the
log ~

values of ~~ ' ~CJ. and ---=--.:...9. are given for '1 ~ 1,2, ... ,10 The
log 13;

entries for ~~ are correctly rounded to 12 decimal places, and the
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other entries are given to 4 places (they are given for comparison (xn+i - Yn) (xn+ j - Yn) (x +' - 1;)(x + . - I;) + 0 (5
25 •)nl nJ nn (8.13)

only:

that

see Table 5.1 for the ~ to 12 places). The table suggests
q

~3 = ~2 ' and this is true, for x5 - x
2

- x -1 = (x3 - x - 1) (x
2

+ 1)
as 5 ~ 0 .

n

If 5
n

is sufficiently small then, since f(q) (1;) f 0 , we have

Theorem 8.1
f[x , ... ,x ] f 0 , and, by Theorem 2.5.1,

n n+q

uniquely defined by equations (8.2) to (8.4), and xn ~ I; with weak

order at least ~' (see Definition 8.1) as n ~ w
q

f(q)(1;) f 0; and xo""'Xq+l are (distinct) points in [a,b] .

xo' ""xq+l are sufficiently close to 1;, then a sequence (xn)

If sn is as in (8.4), then (8.13) and (8.14) give

(8.14)](+0(6 )
n

K L (x. - (;l(x +' -I;) +0(55 5') (8.15
0Si<jSq n+l nJ nnn

s
n

f[x , ... ,X
n

+
q

]n-l
_.~ x--]

q.f[xn, .. ·, n+q

f[x
n

_l ,·· .,X
n
+

q
]

q.f[xn,·· .,Xn+q ]

as § ~ 0 •
n

If

is

f(q-l) (0 =0;, q+l
Suppose that f €I.e [a, b ;M]; l; E: (a, b) ;

Proof

For n > 1 let 5 be the largest of Ix -t!,···,lx -1;1n n n+q as § ~ 0 . Thus, from (8.3) and (8.10),
n

as 6
n
~ O. This shows that, provided 6

1
is sufficiently small, the

sequence (x) is uniquely defined, lies in [a,b] , and x ~ C as
n n

let 5~ be the second-largest; and let

[, =max(5,!x l-tl).n n n-

If Yn is defined by equation (8.2), then Lemma 6.1 shows that

(8.9)
xn+q+ l -I; 0(5 5 5')

n n n
(8.16)

Yn -I; K L
°Si<jSq

(x +' -I;) (x +' -I;) + 0(5
2
5')nl nJ nn

(8.10) n-+(]J~

From equation (8.16), there is a positive constant A such that,

as 5
n
~ 0 , where for all n > 1

(8.17)< A
2

[, 5 5'
n n n1Xn+q+l - t I(8.11)

f(q+l) CO
K = _.

q(q+l);W CO

In particular, (8.10) implies that
and, if 51 is sufficiently small, then

y - l; = 0(5 5')n n n
(8.12)

-log(A\x -I; I) > Wn
n - q (8.18)

as 5 ~ 0 .
n

Thus, for O<i<jsq,
for n = 0, ... ,q+l. From equation (8.17) and the definition of

see that (8.18) holds for all n > 0 , by induction on n. Thus

A' weI-'q ,
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3·9

by the accelerated interpolation process described in Section 8, with

3·9

lim inf(-log!x
n

n~oo

1

W
n

~ t3~ (8.19)

starting values Xl = x
i i

for i = 0, ... ,q+l . As predicted by Theorem 8.1

i.e., the weak order of convergence is at least ~' , so the proof is
q

and Table 3.1, the accelerated sequences converge appreciably faster than

complete. the unaccelerated ones.

To verify relations (8.12) and (8.16), the table also gives

9· Some numerical examples
r

n

x
n

x x
n-q n-q-l

(9.1)

To iLlustrate the theoretical results obtained in Sections 4 to 8,
and

1- q = 1 , ~( ) 2 3 X o = 2 , xl = 1.lX=X+X+X,

2 3 42. q = 2 , f(x) = 8 + 6x + 4x + 3x , xo = 2 , xl = 1 , x2 = 0·5

- 4 r

3. q = 3 , f(x) = 1+40x+lOX)+5x +3x J
, X o = 2 , xl = 1 ,

we give the following examples:

when they are defined. With a few exceptions near the beginning of some

r
n

and r~ should be bounded. From Lenuna 6.1, we expect that

(9. 2 )

(9.3)

and (lx'l) are monotonic decreasing, so
n

f(q+l) (0

q(q+l)f(q)W

Xl Xl x t

n-q n-q-l n-q-2

x'
n

lim r
n

r'
n

n -<00

of the sequences, both (Ix I)
n

1 ,Xl2 ,Xo

x2 = 0·5, x
3

= 0.25 ; and

2 4 5 6f(x) = 1 + 2x + 40x + 5x + 2x + x

x2 = 0.5, X
3

= 0.25, x4 = 0.125

4 ,q4.

In all these examples S = 0 , and the iterative process defined and this is just
2

q(q+l)
for our examples. Similarly, from the

by (1.1) converges, even thOUVl the initial values are not very close proof of Theorem 8.1, we expect that

-to S. Apart frOIh constant factors, the polynomials are obtained by

differentiating the last one (for q = 4) 4-q times, so we are solving
lim r'

n
n-<ro

f(q+2) m

- q(q+l)(q+2)f(q)m
(9. 4)

the same problem in four different ways.

Table 9.1 gives the sequences (X
n

) produced by the successive and this is just
-6

q[ci+J:Y\q+2)
The results support these predictions.

interpolation process, for the functions and starting values given above. Table 9.1 was computed on an IBM 360/91 computer, with 14 digit

To illustrate the superlinear convergence, the entries are given until

Ixnl < 10-20 , although such high precision would seldom be required in

truncated floating-point arithmetic to base 16. To minimize the effect

of rounding errors, we took advantage of the fact that n-th divided

practical problems. The table also gives the sequences (x~) produced differences of
2 n-l

l,x,x , ... ,x vanish identically when computing the
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Numerical results for q
divided differences in equations (8.2) and (8.3). Without this device,

it is not possible to reduce Ix I or Ix'i to 10-
20

without using
n n

Table 9.1:

r"-- . 1--
!

q n x
n

x'
n

1, 2, 3 and 4

r r'
n n

results differ slightly, presumably because of rounding errors. The

higher precision arithmetic, because of the effect of rounding errors

example given by Jarratt (1968) for q = 3 has also been verified.

(except for q = 1)

0.1444

0.2874

-0.2755

-0·7178

-1.0455

-1.0066

-1.0039

2.000

1.000

7·273'-1 0.3636

2.100'-1 0.5473

4.389'-2 0.6851

-1.846'-3 0.8523

1.221'-5 0.9568

1.035'-9 0.9949

2.350'-yr 0·9998
-2.982'-31 1.0000

1.0000

1.0000

2.000

1.000

7.273'-1

3·980'-1

1.983'-1

6.72'7' -2

1.276' -2

8.51.3' -4

LOgo' -5

9·314' -9

1.015'-13

9,457'-22

5

3
4

o

1

2

6

7

8

9

10

II

1

For n = 10 and II our

For q = 2 J our example is the same as that used by Jarratt (1967),

and our results agree with his for n S 9

2

I

L

o
1

2

3

4

5
6

7
8

9
10

II

12

13

14

-15'-''''-

16

2.000

1.000

5·000'-1

5·162'-1

2.681' -1

1.366'-1

6·978'-2

2.053'-2

4·547'-3

6.154'-4

3.631' -5

9·956'-7

7.666'-9

1.215'-ll

2·548' -15

3.104' -20

1.032'-26

2.000

1.000

5·000'-1

5.162'-1

1.219' -1

3·271'-2

5. 618'-3

-3.363'-4

-3.484'-6

1.325'-8

-1.728'-12

-3.844'-18

-2.008' -26

0.2581

0·5362

i 0.5291

0·5042

0·5607
0.4772

0.4296

0.38go

0.3558

0.3430

0.3360

0.3339

0.3334

0.3333

0. 1219

0.1267

0.1786

-0.1634

-0.1556

-0.2144

-0.2625

-0.2477

-0.2518

!
I

I

____J
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3·9
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Table 9.1 (continued)
10. Summary

q n x x' l' 1"n n n n The main results of this chapter for q = 1 (successive linear inter-

3 0 2.000 2.000 polation for finding a zero) and q = 2 (successive parabolic interpolation1 1.000 1.000
2 5·000'-1 5·000'-1 for finding a turning point) are summarize~ below.
3 2·500'-1 2.500' -1
4 3·775'-1 3·775'-1 0.1887
5 1.814'-1 6.882'-2 0.3628 0.0688 Theorem 3.1
6 8·574'-2 1.567'-2 0.6860 0.1253
7 4.214'-2 3·572'-3 0.4465 0.0757 q = 1: If fEC and xn --> ~ , then :reS) = 0
8 2.268'-2 7.222'-4 0.3313 0.1112

fECI9 5·580'-3 -3.949'-5 0.3588 -0.0970 q = 2: If and xn --> ~ , then f'm = 0
10 1.227'-3 -3·547'-7 0.3395 -0.0921
11 2.347'_lf -2.893'-9 0.2455 -0.0716
12 2. 809'-5 8.630'-12 0. 2219 -0.0847 Theorem 4.1
13 1.441'-6 -1.067' -15 0.2105 -0.1055 114 5·518'-8 4.009'-21 0.1917 -0.0989 q = 1: If fEC , f'(~) 10, and a good start, then superlinear convergence.
15 1.164'-9 0.1766 216 7·021'-12 0.1735 q = 2: If fEC , f"(~) I 0 , and a good start, then superlinear convergence.
17 1.354'-14 0.1703
18 1.077'-17 0.1677
19 1.365'-21 0.1670 Theorem 5.1

-----\-- -"-, - .-----. .._--'- -
q = 1: If :rEu:;l , f'(~) I 0 , and a good start, then weak order at

4 0 2.000 2.000
1 1.000 1.000 least ~1 = 1.618 '"
2 5·000'-1 5.000'-1

fEu:;2 ,3 2·500'-1 2·500'-1 q = 2: If. f"(~) 1= 0 , and a good start, then weak order at
4 1.250'-1 1.250'-1
5 2.840'-1 2 .840 r_l 0.1420 least ~2 = 1.324 ...
6 1.258'-1 3.887'-2 0.2517 0.0389
7 5·453'-2 7·030'-3 0.4362 0.0562
8 2.492'-2 1.461'-3 0·7975 0.0935 Theorem 7.1
9 1.274' -2 4.448'-4 0.3588 0.0501

fEu:;2 ,10 7·507'-3 1.168' -4 0.2101 0.0846 r q = 1: If f'(S) f 0 , and a good start, then either strong,
11 1.564'-3 -4.334'-6 0.2279 -0.0558
12 3.227'-4 -2.390'-8 0.2374 -0.0598 order ~1 1.618 ... or weak order at least 2
13 6.871'-5 -2.370'-10 0.2164 -0.0519

fEu:;3 ,14 1.360' -5 -2.500'-12 0.1423 -0.0329 q = 2: If f" (0 f 0 , and a good start, then either strong
i 15 1. 545'-6 i 9.027'-15 0.1316 -0.0401

l.:!:...L2 1/316 6.639'-8 -6.291'-19 0.1316 -0.0520 order ~2 = 1.324... or weak order at least17 2.814'-9 1.243'-24 0.1270 -0.0506 ( 2) = 1.378 ...

18 1.067'-10 0.1142
19 2.207'-12 0.1050 Theorem 8.1
20 1.073'-14 0.1046
21 1.944'-17 0.1040 q = 1: If fEu:;2 , f'(S) 1= 0 , and a good start, then the accelerated22 3.069' -20 0.1022
23 2.367'-23 i 0.1005 sequence converges with weak order at least ~i = 1.839 .. ·

q = 2: If 3 f" (0 I 0 , and a good start, then the acceleratedfEU:; ,

sequence cQnverges with weak order at least 132 = 1.465· ..
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4.1

1. Introduction

Let f be a real-valued function, defined on the interval (a,b],

with f(a)f(b) SO f need not be continuous on [a, b]: for

Chapter 4. example, f might be a limited-precision approximation to some continuous

An Algorithm with Guaranteed. Convergence for Finding a

Zero of a Function

function (see Forsythe (1969)). We want to find an approximation ~ to

a zero ~ of f, to wHhin a given positive tolerance 25, by evaluat:ing

f at a small number of points. Of course, there may be no zero in [a, b]

if f is discontinuous, so we shall be satisfied if f takes both

nonnegative and nonpositive values in [t -25, ~+25] n [a,b] .

Clearly, such a ~ may always be found by bisection :in about

10g2((b-a)/5] steps, and this is the best that we can do for arbitrary f.

In this chapter we describe an algorithm which is never much slower than

bisection (see Section 3), but which has the advantage of superlinear

convergence to a simple zero of a continuously differentiable function, if

the effect of rounding errors is negligible. This means that, In practice,

convergence is often much faster than for bisection (see Section 4) .

There is no contradiction here: bisection is the optimal algorithm (:in a

minimax sense) for the class of all functions Which change sign on (a,b],

but it is not optimal for other classes of functions: e.g., Cl f\.mctions

with simple zeros, or convex functions (see Gross and Johnson (1959),

Bellman and Dreyfus (1962), and Chernousko (1970)).

Dekker's algorithm

The algorithm described here is similar to one, which we call Dekker's

algorithm for short, variants of which have been given by van Wijngaarden,

Zonneveld and Dijkstra (1963), Wilkinson (1967), Peters and Wilkinson (1969),

81
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4.2

, for a computer program which attempts to

Dekker (1969) does not recognize this case, and can take a large number of

is

~ = b

("interpolation") ,b+ 1 m
2

and the division is not

Instead, we return withis

b is the best approximation so far

.!(b+c)
2

i lies between 0 and

otherwise ("bisection"),

than

p = ~(a-b)s , and q = +(l-s)

s

{

i if

b+m
b"

s = f(b)/f(a) ,

If feb) = 0 then we are finished. The ALGOL procedure given by

f linearly between a and b, giving a new point i. (see later for

Define

performed if 2\p\? 3\m.q\ ' for then i is not needed anyway. The

reason why the simpler criterion Ipl? \m.q\ is not used is explained

later. Since 0 < If(b) I S If(a) \ (see later), we can safely compute

inverse quadratic interpolation.) To avoid the possibility of overflow

or division by zero, we find i as b + p/q

If feb) to, let m = (c-b)/2. We prefer not to return with

~ = ~ (b+c) as soon as Im\ S 25 , for if superlinear convergence has set

in then b, the most recent approximation, is probably a much better

approximation to

if Im\ S 5 (so the error is no more than a if, as is often true, f

nearly linear between b and c) , and otherwise interpolate or extrapolate

small steps if f vanishes on an interval, which may happen because of

underflow. TIlis occurred with f(x) = x9 on an IBM 360 computer .

and c. ( Init ially a = c .)

confusion if we omit subscripts.

to S, a is the previous value of b, and S must lie between b

evaluate a function 10]2 times is almost certain to run out of time.

of them guarantees convergence in less than about (b-a)/5 function

On well-behaved functions, e.g., polynomials of moderate degree with

evaluations. An example for which this bound is attained is given in

The algorithm is defined precisely" by the ALGOL 60 procedure zero

and Dekker (1969). We wish to emphasize that, although these variants of

faster (see Section 4), so the only price to pay for the improvement in the

bisection." Our algorithm is at least as fast as Dekker's, and often slightly

Dekker's algorithm have proved satisfactory in most practical cases, none

guaranteed rate of convergence is a slight increase in the compleXity of

respectively. Our point of view is that 1600 is a reasonable number, but

10
12

might as well be

Section 2. On the other hand, our algorithm must converge within about

given in Section 6. Here we describe the algorithm, but the ALGOL procedure

well-separated zeros, both our algorithm and Dekker's are much faster than

should be referred to for points of detail. For the motivation behind both

2. "The algorithm

the algorithm.

(10g2[(b-a)/o))2 function evaluations (see Section 3). Typical values

are b-a = 1 and a = 10-
12

, giving 1012 and 1600 function evaluations

Dekker's algorithm takes b' as the next point at which f is

our algorithm and Dekker's algorithm, see Dekker (1969) or Wilkinson (1967).

At a typical step we have three points a, band c such that

f(b)f(c) SO, If(b) I S \f(c) I ' and a may coincide with c . The

and b'
{

b O

' if \b-b" \ > 5 ,

b + 5. sign(m) otherwise (a" step of 0").

points a, band c change during the algorithm, but there should be no
evaluated, forms a new set fa,b,c) from the old set [b,c,b'), and

continues. Unfortunately, it is easy to construct a function f for which

82 83



4.2 4.2

steps of 0 are taken every time, so about (b-a) /0 function evaluations iteration

are required for convergence. For example, let z
m+l g(zm) (2.4)

2x/ o
for a+0:S x :s b , where

f(x) (b-a-o) 2b/5 for x = a- 0 •

arbitrary for a < x < a+o .

(2.1)
g(z)

1 _ zn-l

1 _ zn
(2·5)

The first linear interpolation gives the point b-o, the next (an
has fixed point z

-1
~n-l ' and

extrapolation) gives 0-25, the next 0-30, and so on. \g'(z) \ < 1 (2.6)

(2·7)

f and

x f 0[

0 if x = 0

-2x.exp(-x) if
f(x)

An example for which convergence is sublinear (see Definition 3.2.2)

on an interval containing the origin. This is an extreme case, for

for zE(O,l), the result follows from Ostrowski (1966), Theorem 22.1.

is

all its derivatives vanish at the origin.(As a function of a complex

o ,

If

f(n-l) (~)••• =

n > 1 ).

f(~) =f'(O =~ E (a, b) ,

is a root of multiplicity

n > 1fECn[a,bj

E > 0

sufficiently high multiplicity. (Note that none of the theorems of

Even if steps of 5 are avoided, the asymptotic rate of convergence

of successive linear interpolation may be very slow if f has a zero of

that

and f(n)(~) f 0 (i.e.,
x - ~
(~) E (E,l-E) , and Xo is sufficiently close to ~,

o
then successive linear interpolation gives a sequence (x

n
) which converges

Chapter 3, apart from Theorem 3.3.1, apply for a multiple zero.) Suppose

linearly to ~. In fact, equation (3.2.1) holds with p = 1 and

K = ~-ll ' where the constants ~ ~ 22/(2q+l) are defined in Definition
n- q -

3.5.1. The proof is simple: if

variable, f has an essential singularity at the origin.) If

o < Xl < Xo < j2 (2.8) .

then (x) is a positive, monotonic decreasing sequence, and, by Theorem
nx

y = m+l - (;
m xm-t

(2.2)
3.3.1, its limit must be 0 Thus, successive linear interpolation does

is the ratio of successive errors, then a Taylor series expansion of f converge, but very slowly.

about ~ gives Some of the examples above are rather artificial, and unless an

Ym+l

n-l
l-Ym )(1+0(1))

( n
1 - Ym

(2.3)
extended exponent range is used (see later) we may be saved by underflow,

Le., the algorithm may terminate with a "zero" as soon as underflow occurs.

as xm - ~ , provided Ym remains bounded away from 1. Since the
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4.2

Even so, it is clear that convergence may occasionally be very slow if

4.2

problem: fit y as a f'unction of the form p( x) I q (x) , where p and q

Dekker's algorithm is used.

Our main modification of Dekker's algorithm ensures that a bisection

is done at least once in every 2.log2 (!b-C! 15) consecutive steps.

The modification is this: let e be the value of p/q at the step before

are polynomials and p has degree one. A third possibility is to use the

acceleration technique described in Section 3.8. (See also Ostrowski (1966),

Chapter n.)

Care must be taken to avoid overflow or division by zero when computing

the last one. If leI <5 or Ip/q\ 1>­
- 2 lei then we do a bisection, the new point i Since b is the most recent approximation to the root s

otherwise we do either a bisection or an interpolation just as in Dekker's and a is the previoUS value of 0 , we do a bisection if If(b) 12!f(a) I

to compute r
l

~ f(a)/f(c) , r 2 ~ f(b)/f(c) , r
3

~ f(b)/f(a) ,

p ~ ~ r
3
«c-b)r

l
(r

l
-r

2
)-(b-a) (r2-l)) , and q ~ ; (rl -l)(r2-l)(r3-l)

Then i ~ b+P/q , but as before we do not perform the division unless it

is safe to do so. (If a bisection is to be done then i is not needed

algorithm. Thus, lei decreases by at least a factor of two on every

second step, and when leI < 5 a bisection must be done. (After a

bisection we take e m for the next step.) This is why our algorithm,

unlike Dekker's, is never much slower than bisection.

A simpler idea is to take e as the value of p/q at the last step,

otherwise we have If(b) \ < \f(a) \ .:'S \f(c) I so a safe way to find i is

but practical tests show that this slows down convergence for well-behaved

functions by causing unnecessary bisections. With the better choice of e,

anyway.) When inverse quadratic interpolation is used it is natural to

accept the point i if it lieS between band c and up to three-quarters

our experience has been that convergence is always at least as fast as of the way .from b to c· consider the limiting case where the

for Dekker's algorithm (see Section 4).

Inverse quadratic interpolation

If the three current points a, band c are distinct, we can find

the point i by inverse quadratic interpolation, i.e., fitting x as a

quadratic in y, instead of by linear interpolation using just a and b

Experiments show that, for well-behaved functions, this device saves about

0.5 function eval~ations per zero on the average (see Section 4). Inverse

interpolating parabola has a vertical tangent at c and feb) ~ -fCc)

Thus, i will be rejected if 2\p\? 3\(C;b) .q\ , which explains the

criterion discussed above.

The tolerance

As in Peters and wilkinson (1969), the tolerance (25) is a

combination of a relative tolerance (4E) and an absolute tolerance (2t) .

At each step we take

for T-digit truncated floating-point

interpolation is used because with direct quadratic interpolation we have

to solve a quadratic equation for i, and there is the problem of wqich

root should be accepted. Cox (1970) gives another way of avoiding this
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5 ~ 2E Ib \ + t

where b is the current best apprOXimation to S,

the relative machine precision (~l-T
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4.2

arithmetic with base 13, and half this for rounded arithmetic), and t

4.2

to m and tal, where t; lies between b ~ and c, and the algorithm

1;;;1 2' ~ (Ic-bl- E( !b\+lcl»(l-E)

is a positive absolute tolerance. Since 5 depends on b, which could

lie anywhere in the given interval, we should replace 5 by its positive

minimum over the interval in the upper bound for the nlunber of fUnction

evaluations required. In the ALGOL procedures the variable tol is used

for 5 .

terminates only when

Iml < tal

(unless feb) = 0 , when ~

give

t;

(2.l4)

b ). Our assumptions (2.lO) and (2.ll)

(2.l5)

The effect of rounding errors

The ALGOL procedures given in Section 6 have been written so that

and, similarly,

tal < (2 EIb 1+ t)(l+E) 3 (2.l6)

rounding errors in the computation of i, mete. can not prevent

convergence with the above choice of 5. The number 2E in (2.9)

may be increased if a higher relative error is acceptable, but it should

not be decreased, for then rounding errors might prevent convergence.

The bound for I~ - t; I has to be increased slightly if we take

rounding errors into account. Suppose that, for floating-point numbers

x and y, the computed arithmetic operations satisfy

neglecting terms of order Et and E21t;\ . Usually the error is less

than half this bound (see above).

Ic-bl S (l:E)(2E!bl+t)(l+E)3+ E(lbl+ Ie\)

flex X y) = x.y(l+ El )

and

(2.l0)

so (2.l4) implies that

Since 1~-t;1 S IC-bl and b

I~ - t; I S 6E It; I + 2t

~ , this gives

(2.l7)

(2.l8)

i = l,2,3 (see Wilkinson (l963». Also suppose

fl(x:!:. y)

where IEil S E for

that fl( Ixl) = Ix\

x(l+ E2) :!:.y(l+ E
3

)

exactly, for any floating-point number x. The

(2.ll)
Of course, it is the user's responsibility to consider the effect of

rounding errors in the computation of f. The ALGOL procedures only

guarantee to find a zero t; of the computed function f to an accuracy

given by (2.l8), and t; may be nowhere near a root of the mathematically

algorithm computes approximations

ill = fl(O.5 X (c-b»

and

(2.l2)

defined function that the user is really interested in!

tol fl(2 X E X Ibl+t)
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Extended exponent range

In some applications the range of f may be larger than is allowed

for standard floating-point numbers. For example, f(x) might be

det (A - xl) , where A is a matrix whose eigenvalues are to be found.

In Section_6 we give an ALGOL procedure (zero2) which accepts f(x)

represented as a pair (y(x),z(x)), where f(x) = y(x) .2z (x) (y real,

z integer). Thus, zer02 will accept functions in the same representation

as is assumed by Peters and Wilkinson (1969), although zero2 does not

require that 1/16 ~ Iy(x) \ < 1 or y(x) = 0 , and could be simplified

slightly if this assumption were made.

4·3

minimizing If\ is probably within ° of the zero, and certainly
m

within 20m ), It is easy to see that this process terminates after

exactly k+l function evaluations unless, by good fortune, f happens

to vanish ,at, one of the points of evaluation.

Now consider procedure zero or zero2. If k = 1 then the procedure

terminates after 2 function,evaluations, one at.each end-point of the

initial interval, just like bisection. If k = 2 then there are 2

initial evaluations, and after no more than 4 more evaluations a bisection

must be done, for the reason described in Section 2. After this bisection,

which requires one more function evaluation, the procedure ~ust terminate.

ThUS, at most 2+5 = 7 evaluations are required. Similarly, for k > 1 ,

the maximum number of function evaluations required is

3. Convergence properties

If the initial interval is [a,b], assume that

b-a > 0
m

and let

k = 1"10g2((b-a)/5m) l

where om is the minimum over [a,b] of the tolerance

o(x) = 2.macheps.\x\+t

(3.1)

(3.2)

(3.3)

2+ (5+7+9+ ... + (2k+l)) = (k+l)2_ 2 • (3.4)

Since Dekker's algorithm may take up to 2k function evaluations (see

Section 2), this justifies the remarks made in Section 1. Also, although

the upper. bound (3.4) is attainable, it is clear that it is unlikely to

be attained except for very contrived examples, and in practical tests our

algorithm has never taken more than 3(k+l) function evaluations (see

Section 4). This justifies the claim that our algorithm is never much

slower than bisection.

(see Section 2), and I" x l means the least integer y? x. By

assumption (3.1), k > O. (If k = 0, procedure zero ~akes only two

function evaluations.)

First consid~r the bisection process, terminating when the

interval known to contain a zero has length < 20m (so the endpoint

90

Superlinear convergence

Ignoring the effect of rounding errors and the tolerance 0, we see,

as in Dekker (1969), that the algorithm will eventually stop doing bisections

when it is approaching a simple zero S of a Cl 11urrction. Thus,

temporarily ignoring the improvement described in Section 2, the theorems

of Chapter 3 are applicable (With q = 1). In particular, convergence is
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superlinear, in the sense that lim sup Ix - S Il / n
= 0 ,provided f

n
n --> '"

4.4

f changes sign in 15 = [S -25, S+ 25] n [a,b] , where 5 2E!s\ +t

and the number n of times that f is evaluated does not exceed

(k+l)2_2, where k is given by equation (3.2). Also, if fEC1[a,b]

has a unique simple zero S E (a, b) ,then Is - ~ Il / n
--> 0 as macheps

and (2.11) with E S 10-3 , then the algorithm still converges, and

returns ~ such that f changes sign in 15 , ,where 5' = 1.01(3EI~I+t)
2 ~

(The factor 1.01 takes care of terms of order Et and E lsi .)

is C1 near the simple zero S (Theorem 3.4.1). If fl is Lipschitz

continuous near S, then the weak order of convergence is at least

~(1+J5) = 1.618 ... (Theorem 3.5.1). For a summary of the other

results of Chapter 3, see Section 3.10.

If fl is Lipschitz continuous near the simple zero S, then, even

with the inverse parabolic interpolation modification described in Section 2,

the weak order of convergence is still at least ~(l+.I5) . The idea of

the proof is that, by Lemma 2.5.1, the curvature at S of the approximating

parabolas is bounded, so the inequality (3.5.13) still holds for some M

and t --> 0 Finally, if arithmetic is approximate, but satisfies (2.10)

(no longer the Lipschitz constant) and sufficientiy small 5
n

4. Practical tests

The number

Thus, our procedure always converges in a reasonable number of

steps and, under the conditions mentioned above, convergence is superlinear

with order at least 1.618 .... It is well-known that, since

(1.618 .•. ) 2 = 2.618 ... > 2 , this compares favorably with Newton I s method

if an evaluation of fl is as expensive as an evaluation of f. In

practice, convergence for well-behaved functions is fast, and the stopping

criterion is usually satisfied in a few steps once superlinear convergence

sets in.

Summary

The results of Sections 2 and 3 above may be summarized in the following

"theorem" ;

The ALGOL procedures zero (for standard floating-point numbers) and

zero2 (for floating-point with an extended exponent range) have been

tested using ALGOL W (Wirth and Hoare (1966), Bauer, Becker and Graham (1968))

on an IBM 36JJ/67 and a 360/91 with machine precision 16-13

of function evaluations for convergence has never been greater than three

times the number required for bisection, even for the functions mentioned

in Section 2, and for the fUnctions given by (2.1) and (2.7) Dekker's

algorithm takes more than 106 fUnction evaluations. Zero2 has been

tested extensively with eigenvalue routines, and in this application it

usually takes the same or one less fUnction evaluation per eigenvalue than

Dekker's algorithm, and considerably less than bisection.

In Table 4.1, we give the number of function evaluations required

If a < b E = macheps > 0 , t > 0 , f is defined on [a,b] for convergence with procedure zero2 and functions 9 19 f (x) ,x ,x , 1

f(a)f(b) SO, and arithmetic is exact, then the algorithm defined by

procedure zero (see Section 6) converges, and returns ~E[a,b] such that
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and f 2 (x) , where
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flex)
{

o if \x\ < 3.8 x 10-4

-2
fl(x.exp(-x)) otherwise,

(4.1)

4.4

Table 4.1: The number of function evaluations for convergence with

procedUl'e zero2

and

procedure zero (procedure zero2 gives identical results as no underflow

In Table 4.2, we compare the procedure given by Dekker (1969) with

The parameters a, band t of procedure zero2 are given in the

table. In all cases macheps ~ 16-13 .

or overflow occurs) for a typical application:

r
--..... , .. 1-

~ ..~ -~----lfun~t~on ~va~s-.l
f(x) a b t

x9 i

I
-1.0 +1.1 1'-9 4·99'-10 81

x9 I
-1.0 +4.0 1'-20 4·92'-21 I 189I

I
x19 I

,

I -1.0 +4.0 1'-20 4.81'-21 195

*flex)
\

-1.0 ! +4.0 l' -20 0 33

f 2 (x) I -1001200 0 l' -20 I' -9 i
i 79 _J

(4.2)

finding the eigenvalues

otherwise.

if x > _106

- (x+ 106)2){

fl( exp(x)) 6

fl(exp(-lO)
f

2
(X)

of a symmetric band matrix by repeated determinant evaluation. Let A

be the n by n 5-diagonal matrix defined by
* ~ 2.17' -4 and f 1 (~) o

p-r if i~.i~l or n

p if i ~ j f 1 or n

a ij ~ ~ 2q if \i-j\ ~ 1

r if \i-j! ~ 2

0 if li-jl > 2
\,..

For n > 2 , A has eigenvalues

~k ~ P - 4q.cos (1m
l

) + 2r.cos (2k~)n+ n+

(4.3)

(4.4)

For a definition of f 1 , f 2 etc., and a discussion, see above.

for k ~ 1,2, ... ,n (see Ehrlich (1971)). Table 4.2 gives the eigenvalues

~k ' the number ~ of function evaluations per eigenvalue for Dekker's

procedure, and the number nZ of function evaluations for procedure zero.
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Table 4.2: Crunparison of Dekker's procedure with procedure zero For each eigenvalue, the tolerances for Dekker's procedure and for procedure

illustration of the superlinear convergence, see the examples given in

Some more experimental results are given in Chapter 5. (For an

Section 3.9.)

function evaluations per eigenvalue would be re~uired, so both our procedure

7/ 4~7

and r 1/2. To obtain the same accuracy with bisection, at least 40

and Dekker's are at least four times as fast as bisection for this application.

to ensure that the computed eigenvalues had a relative error of less

-14
than 5.10 .) Tests were run for several values of n, p , ~ and r :

the table gives a typical set of results for n ~ 15, p

zero were the same. (The tolerance was adjusted by the eigenvalue program

1

9

9

9

nz

10

10

10

10

10

10

10

10

-i
i

I
~

9

10

10

10

10

11

10

11

10

10

10

A
k

1.05838256968867

1.239950°5360754

1.56239614624727

2.05025253169417

2.72832493649769

3.61410919225782

4·71048821337581

6.00000000000000

7·44175272160161

8.97167724536908

10.5063081987721

4

5

6

2

3

9

1

7

8

10

11

I-

i k

i 12 ll·9497474683058
Ii 13 13 .2029707184829

'14 14.1742635087655

I 15 14.7893764953339
L....-_L .. ...

10

10

10

9

9

9

9

8 ,
_J

5. Conclusion

Our algorithm appears to be at least as fast as Dekker's on well-

behaved functions, and, unlike Dekker's, it is guaranteed to converge in a

reasonable number of steps for any function. The ALGOL procedures zero

and zer02 given in Section 6 have been written to avoid problems with

For a definition of Ak , ~ and HZ' see above. The Ak have a

relative error of less than 5'-14.

rounding errors or overflow, and floating-point underflow is not harmfUl

as long as the result is set to zero.

Before giving the ALGOL procedures zero and zer02, we briefly discuss

some possible extensions.
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Cox I s algorithm

A recent paper by Cox (1970) gives an algorithm which combines

and superlinear convergence with order greater than 2 is likely for

well-behaved functions.

bisection with interpolation, using both l' and 1" This algorithm

may fail to converge in a reasonable number of steps in the same way

as Dekker's. A simple modification, exactly like the one that we have given

in Section 2 for Dekker's algorithm, will remedy this defect without

slowing the rate of convergence for well-behaved functions.

Searching an ordered file

A problem which is commo'11y solved by a binary search (Le., bisection)

method is that of locating an element in a large ordered file. The problem

may be formalized in the following way. Let S be a (finite or infinite)

totally ordered set, and cp: S - R an order-preserving mapping from S

The ALGOL procedures zero (for standard floating-point numbers) and

zero2 (for floating-point with an extended exponent range) are given below.

For a description of the idea of the algorithm, see Section 2. Some

test cases and numerical results are described in Section if.

that cp(t i ) = c is equivalent to finding a zero of f in [O,n] , and

our zero-finding algorithm could be used instead of the usual bisection

algorithm. It might be worthwhile to modify our algorithm slightly, so

as to take the discrete nature of the problem into account. A related

application of our algorithm is in finding the median (or other percentiles)

of a list of numbers, but there are faster ways of doing this.

f(x) = cp(t i ) - c

into the real numbers. Suppose that T

subset of S, with to < t l < ... < t n

may define a monotonic function l' on

[to' t l , .•. , t n } is a finite

Given c E [cp(t
O

) ,cp(tn )] , we

[O,n] by

(5.1)

Thus, finding an index i such

ALGOL 60 procedures6.

where x E [0, n] and i = r x - ~ l

In this chapter we have considered only serial algorithms. It is

well-known (see, for example, Traub (1964)) that all serial methods which

use only function evaluations and Lagrangian interpolation polynomials

have weak order less than 2, unless certain relations hold between the

derivatives of l' at ~. (Winograd has recently shown that no serial

method, using only fUnction evaluations, can have order greater than 2

for all a!lalytic functions with simple zeros.) Thus, nothing much can be

gained by going beyond linear or quadratic interpolation. However,

Miranker (1969) has sho,rn that, if a parallel computer is available, a

class of algorittillls using Lagrangian interpolation polynomials gives

superlinear convergence with weak order greater than 2 under certain

conditions. AlSO, it is clearly possible to generalize the bisection

process to n(r+l)-sectionn with advantage if a parallel computer with r

independent processors is available. See, for example, Wilde (1964).

There does not appear to be any fundamental difficulty in combining

generalized bisection with one of Miranker's parallel algorithms so that

convergence in a reasonable number of steps is guaranteed for any function,

Parallel algorithms
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Procedure zero

real procedure zero (a, b, macheps, t, f);

value a, b, macheps, t; real a, b, macheps, t;

real procedure f;

begin comment:

Zero returns a zero x of the function f in the given interval [a,b],

to within a tolerance 6.macheps. \x\+2.t, where macheps is the relative

machine precision and t is a positive tolerance. The procedure assumes

that f(a) and f(b) have different signs;

real c, d, e, fa, fb, fc, tol, m, p, q, r, s;

fa := f(a); fb:= f(b);

int: C:= a; fc:= fa; d:= e := b-a;

ext : if' abs(fc) < abs(fb) then

begin a := b; b := c; c := a;

fa := fh; fb := fc; fc := fa

end;

tol := 2 X macheps X abs(b) + t; m:= 0.5 X (c-b);

if' abs(m) > tol 1\ fb f 0 then

begin comment: See if a bisection is forced;

if' abs(e) < tol V abs(fa) S abs(fb) then d := e := m else

begin s := fb/fa; if a = c then

begin cOffilnent: Linear interpolation;

p := 2 X m X s; q:= l-s

end

4.6

q := fa/fc; r:= fb/fc;

p :00 sx(2xmxqx(q-r) -(b-a)x(r-l»;

q := (q-l) X (r-l) X (s-l)

end;

if P > 0 then q : = -q else p : = -p;

s := e; e :.= d;

if' 2xp < 3xmxq-abs(tolXq) 1\ p < abs(0.5xsxq) then

d := p/q else d := e := m

end;

a : = b; fa: = fb;

b : = b + (if' abs (d) > tol then d else if' m > 0 then

tol else -tol);

fb := f(b);

go to if fb > 0 = fc > 0 then int else ext

end;

zero := b

end zero;

Procedure zer02

real procedure zer02 (a, b, macheps, t, f);

value a, b, macheps, t; real a, b, macheps, t; procedure f;

begin comment:

Zer02 finds a zero of the function f in the same way as procedure

zero, except that the procedure f(x,y,z) returns y (real) and z (integer)

else - z
so that f(x) = y.2 . Thus underflow and overflow can be avoided with

begin comment: Inverse quadratic interpolation;

100

a very large function range;
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real procedure pwr2 (x,n); value x, n; real x; integer n;

corr~ent: The procedure is machine-dependent. It computes x.2n for

n ~ 0, avoiding underflow in the intermediate results;

pwr2 : = if n > -200 then x X2 t n else

4.6

r := pwr2(fb, eb-ec)!fc;

p:= sx(2xmxqx(q-r) -(b-a) x(r-l));

q := (q-l) X (r-l) X (s-l)

if n > -~OO then (x X 2 t (-200)) X2 t (n+200) else

if n > -600 then ((x X2 t (-200)) x 2 t (-200)) X 2 t (n+400) else 0;

integer ea, eb, ec;

real c, d, e, fa, fb, fc, tol, m, p, q, r, s;

end'--'

if P > 0 then q := -q else p := -p; s:= e; e:= d;

if 2xp < 3xmxq-abs(talxq) A p < abs(0·5xsxq) then

d := p!q else d := e := III

int: c:= a; fc:= fa; ec:= ea; d:= e := b-a;

f(a,fa,ea); f(b,fb,eb);

ext: if (ec ~ eb A pwr2(abs(fc), ec-eb) < abs(fb))

V (ec > eb A pwr2(abs(fb), eb-ec) ? abs(fc)) then

b : = c; fb: = fc; eb : = ec;

end;

tol else -tol);

go to if fb > 0 =' fc > 0 then int else ext

feb, fb, eb);

b := b+ (if abs(d) > tal then d else if III > 0 then

a := b; fa:= fb; ea:= eb;

ea := eb;fb;fa -a := b;begin

c := a; fc:= fa; ec:= ea
end;

end;
zero2 := b

tol :=2xmachepsxabs(b)+t; m :=0.5x(c-b);
end zera2;

if abs(m) > tol A fb I 0 then

begin if abs(e) < tal V

(ea ~ eb A pwr2(abs(fa), ea-eb) ~ abs(fb)) V

(ea > eb A pwr2(abs(fb), eb-ea) ? abs(fa)) then

d := e := III else

begin s := p"r2(fb, eb-ea)/fa; if a = c then

begin p := 2Xlllxs; q:= l-s end

else

begin q := pwr2(fa, ea-ec)!fc;
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Chapter 5

An Algorithm with Guaranteed Convergence for Finding a

Minimum of a Function of One Variable

5·1

1. Introduction

A common computational problem is finding an approximation to the

minimum or maximum of a real-valued function f in some interval [a, b]

This problem may arise directly or indirectly. For example, many methods

for minimizing functions g(x) of several variables need to minimize

functions of one variable of the form

where :::0

rU,)

and s

g(x
O

+ A.s)
- -
are fixed (a "one-diJllensional search" from :0

(1.1)

in

the direction s). In this chapter, we give an algorithm which finds

an apprOXimate local minimum of f by evaluating f at a small number

of points. There is a clear analogy between this algorithm and the

algorithm described in Chapter 4 for root-finding (see Diagram 4.1).

Unless f is unimodal (Section 3), the local minimum may not be the global

minimum of f -in [a, b] , and the problem of finding global minima is

left until Chapter 6.

The algorithm described in this chapter could be used to solve the

problem (1.1), but, for this application, it may be more economical to

use special algorithms which make use of any extra information which is

available (e.g., estimates of the second derivative of r), and which do

not attempt to find the minimum very accurately. This is discussed in

Chapter 7. Thus, a more likely practical use for our algorithm is to find

accurate minima of naturally arising functions of one variable.

In Section 2 we consider the effect of rounding errors on any

minimization algorithm based entirely on function evaluations. Unimodality

is defined in Section 3, and we also define "5-unimodality" in an attempt
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seems more natural, and could be preferred for the following reasons:

1. It may be difficult to approximate fl accurately because of

to explain why methods like golden section search work even for functions

which are not quite unimodal (because of rounding errors in their

computation, for example). In Sections 4 and 5 we describe a minimization

algorithm analogous to the zero-finding algorithm of Chapter 4, and some

numerical results are given in Section 6. Finally, some possible extensions

are described in Section 7, and an ALGOL 60 procedure is given in

2.

rounding errors;

A method which does not need fl may be more efficient (see below);

and

Section 8.

Reduction to a zero-finding problem

If f is differentiable in [a,b] , a necessary condition for f

to have a. local minimum at an interior point ~ ~ (a, b) is

3. Whether f' can be computed directly or not, a method which avoids

difficulty with maxima and inflexion points is clearly desirable.

Jarratt I S method

Jarratt (1967) suggests a method, using successive parabolic

interpolatiOn, which is a special case of the iteration analyzed in

fl (~) = 0 (1.2)
Chapter 3. With arbitrary starting points Jarratt·s method may diverge,

or converge to a maximum or inflexion point, but this need not be fatal if

the method is used in combination with a safe method such as golden section

successive linear interpolation and bisection for finding a zero. Theorem

There is also the possibility that the minimum is at a or b : for

example, this is true if f' does not change sign on [a, b] If we

are prepared to check for this possibility, one approach is to look for

zeros of fl If fl has different signs at a and b , then the

search, in the same way as, in Chapter 4, we used a combination of

algorithm of Chapter 4 might be used to approximate a point fJ. satisfying

(1.2) .

Since fl vanishes at any stationary point of f, it is possible

that the point found is a maximum, or even an inflexion point, rather than

a minimum. Thus, it is necessary to check whether the point found is a

true minimum, and continue the search in some way if it is not.

3·5·1 shows that, if f has a Lipschitz continuous second derivative which

is positive at an interior minimum fJ., then Jarratt's method gives

superlinear convergence to fJ. with weak order at least ~2 = 1.3247 ...

(see Definitions 3.2.1 and 3.5.1), provided the initial approximation is

good and rounding errors are negligible.

Let us compare Jarratt·s method With one of the alternatives:

estimating fl by finite differences, and then using successive linearIf it is difficult or impossible to compute f' directly, we could

approximate fl numerically (e.g., by finite differences), and search interpolation to find a zero of f' (This process may also diverge,

for a zero of f' as above. However, a method which does not need fl

106

or converge to a maximum.) Suppose that f"(~) > 0 and f(3)(fJ.) 10, to
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avoid exceptional cases (see Sections 3.6, 3.7 and 4.2). Since at least truncated to single-precision.

two f'unction evaluations are needed to estimate f' at any point, and Let 0 be the largest number such that, according to equations

J1.618 ... = 1.272 ... < 1.324 ... , Jarratt's method has a sligl1tly (2.2) and (2.3), it is possible that

higher order of convergence. (The comparison is similar to that between
fl(f(Wt-o)) Sf

O
(2.4)

Newton's method and successive linear interpolation if an evaluation of

f' is as expensive as an evaluation of f: see Golab (1966) or
It is unreasonable to expect any minimization procedure, pased on

Ostrowski (1966).) -single-precision evaluations of f, to return an approximation ~ to

~ with a guaranteed upper bound for 1~ - ~ I less than o. This is

so, regardless of whether the computed values of f are used directly,

2. Fundamental limitations because of rounding errors
as in Jarratt's method, or indirectly, as in the other method suggested

f'(~) = a , Lemma 2.3.1 gives, for xE[a,b] ,

Suppose that f-clC 2 [a,b;M] has a minimum at ~ E (a,b)

f(x)
12 m 3

fa + '2 fO(x-~) + i- (x-~)

Since

(2.1)

in Section 1. The reason is simply that the minimum of the computed

function fl(f(x)) may lie up to 0 from the minimum ~ of f(x)

see Diagram 2.1.

numbers are used is that the computed value fl( f(x)) of f(x) satisfies

where Imx ISM, fa = f(~) , and fa = f" (~) . Because of rounding

errors, the best that can be expected if single-precision floating-point

1 t
~ ~

~~

o

\ I~ fl(f)

f~\

(2.2)

(2.3)1£ I < £
X

fl(f(x)) = f(x)(l+ EX)

where

the (nearly attainable) bound

and £ is the relative machine precision (see Section 4.2). The error
Diagram 2.1; The effect of rounding errors

bound is unlikely to be as good as this unless f is a very simple

function, or,is evaluated using double-precision, and then rounded or
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If fa > 0 , equations (2.1) to (2.4) give we define "o-unimodality" to circumvent this difficulty.

From now on, we consider the problem of approximating the minimum

and fUll single-precision accuracy in I-' is unlikely unless

for the relative error

2\~~\E (1 _ E_~)

could hardly be less than

The user should bear in mind that the minimum

interested in by as much as 5 (see equation (2.5) above). In particular,

there is no point in wasting function evaluations by finding the minimwn

of the computed function to excessive accuracy, and our procedure locabnin

of the computed fUnction, or, equivalently, we ignore rounding errors

in the computation of f

of the computed fUnction may differ from the minimum that he is really

(2·5)

is negli.gible, an upper bound

•2\fo IE

~I-' 0
I~I

Meand the term bfi'
o

I-' f 0

5 >

Thus, if

is of order E or less, although fl(f(~)) may agree with f(l-')
\fO \

-2f "
I-' a

to fUll single-precision accuracy. (See also Pike, Hill, and James (1967)~

(Section 8) should not be called with the parameter "eps" much less than
~

2\fo IE

~I-' 0

If f' has a simple analytic representation, then it may be easy to

compute f' accurately. For example, perhaps
3. Unimodality and 5-unimodality

fl(f'(x)) f'(x(l+ E~))(l+ E~) (2.6) There are several different definitions of a unimodal function in the

where IE~ \ :5 E and I£~l < £ , so we can expect to find a zero of f'

literature. One source of confusion is that the definition may depend on

whether the fUnction is supposed to have a unique minimum or a unique

(1967b)). If (2.6) holds it might be worthwhile to use the algorithm

with a relative error bounded by (see Lancaster (1966) and Ostrowski
maXimum (we always consider minima). Kowalik and Osborne (1968) say that

f is unimodal on (a,b] if f has Only one (no more than one?) stationary

described in Chapter 4 to search for a zero of. fl , or at least use it to
value on (a,b] . This definition has two disadvantages: first, it is

refine the approximation I-' given by a procedure USing only evaluations
meaningless unless f is differentiable on (a,b] , but we would like to

of f. However, this is not so if fl has to be approximated by

differences, for then (2.6) can not be expected to hold.

say that Ix \ is unimodal on (-1, I]. Second, functions which have

inflexion points With a horizontal tangent are prohibited, but we would

Even if f(x) is a unimodal fUnction, the computed approximation
like to say that f(x) ~ x 6 _3x4 +3x2 is unimodal on [-2,2] (here

fl(f(x)) will not be unimodal, because of rounding errors. Note that
f'(:!:.l) ~ f"(:!:.l) ~ 0).

fl(f(x)) must be constant over small intervals of real numbers x which

have the same floating-point approximation flex) . In the next section

Wilde (1964) gives another definition:

for all x l ,x2 E (a, b] ,

f is unimOdal on [a,b) if,
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* *xl < x2 ~ (x2 < x ~ f(Xl ) > f(x2)) A (Xl> x ~ f(xl ) < f(x2)) , (3.1)

*where x is a ~oint at which f attains its least value in [a,b] .

(We have reversed sa.ne of Wilde's inequalities as he considers maxima

rather than minima.) Wilde's definition does not assume differentiability,

or even continuity, but to verify that a fUnction f satisfies (3;1) we

*need to know the ~oint -x (and such a point must eXist). Hence, we

5·3

Definition 3.1

f is unimodal on [a, b] if, for all xo' xl and x2 E [a, b] ,

Xo < Xl A Xl < x
2
~ (f(x

O
) :::; f(xl ) ~ f(Xl ) < f(x

2
)) A

(f(X
l

) 2: f(x
2

) ::::J f(Xo) > f(xl ))

Lemma 3.1

(3.2)

prefer the following definition, which is nearly equivalent to Wilde's

(see Lemma 3.1), but avoids any reference to the ~oint *x The
*If a ~oint x at Which f attains its minimum in [a,b] exists,

then Wilde's definition ofunimodality and Definition 3.1 are equivalent.

Suppose that f is unimodal according to Definition 3.1. If Xl < x2

Proof

definition is not as com~licated as it looks: it merely says that f can

not have a "hump" between any two ~oints Xo and x
2

in [a, b] . Two

*possible configurations of the points xo' Xl' x2 and X in (3.1) and

(3.2) are illustrated in Diagram 3.1. *and x2 < x , take xb = Xl '

*its least value at x

*xi = x 2 ' and x2 = x Since f attains

*f(xi) 2: f(x ) f(X2) (3.3)

/

Xo

x*

r x 2

/
Xl

~
x \

1

x
2

;
I

j

I

so equation (3.2) w:i,th primed variables gives

f(xb) > f(xi)

and thus

f(x
l

) > f(x2 )

*Similarly, if Xl < x2 and Xl >x , equation (3.2) gives

f(xl ) < f(x2)

(3.4) ,

(3.5)

(3.6)

Diagram 3.1: Unimodal functions
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5·3

Thus, from (3.5) and (3.6), eQuation (3.1) holds.

5·3

is unimodal on [-1,1] by our definition, but not by Wilde's, for x*

Conversely, suppose that (3.1) holds and Xo < Xl < x
2

• If

f(X
O

) S f(Xl ) then there are three possibilities, depending on the

*position of x

1. *xl> x Thus, by (3.1) ,

does not eXist.

The following theorem gives a simple characterization of unimodality.

There is no assumption that f is continuous. Since a strictly monotonic

:function (e. g., x3 ) may have stationary points, the theorem shows' that

both our definition ~nd Wilde's are essentially different from Kowalik

f(X
l

) < f(x
2

) (3.7) and Osborne's, even if f is continuously differentiable. (Although

2. *X:
l

= x Take
1x:i = "2 (xl + x2 ) , and x2 = x2

this point is obvious, it is sometimes overlooked! See 'also Corollary 3.3.)

*Since x < xi < x2 ' eQuation (3.1) With primed variables gives

f(xl') < f(x')
2

so

*f(Xl ) = f(x ) S f(xi) < f(x2) = f(x2)

(3.8)

(3·9)

Theorem 3.1

f is unimodal on [a,b] (according to Definition 3.1) iff, for some

(uniQue) ~E[a,b], either f is strictly monotonic decreasing in [a,~)

and strictly monotonic increasing in [~,b J , or f is strictly monotonic

decreasing in [a,~] and strictly monotonic increasing in (~,b] .

The theorem is a special case of Theorem 3.2 below, so the proof is

* *3. Xl < x Take Xi = Xo and x2 = xl' Since xi < x2 < x

eQuation (3.1) gives f(xi) > f(X2) , contradicting the assumption that

f(X
O

) ~ f(Xl
) . Hence case 3 is llnpossible, and,by (3.7) and (3.9), we

always have f(xl ) < f(X2) . Similarly, if f(xl )? f(x2) then

f(xo) > f(xl ) , so eQuation (3.2) holds, and the proof is complete.

A simple corollary of Lemma 3.1 is that, if f is continuous, then

Wilde's definition of unimodality and ours are eQuivalent. For arbitrary

f the definitions are not eQuivalent. For example,

·omitted. The following corollaries are immediate.

Corollary 3.1

If f is unimodal on [a,b] , then f attains its least value at

most once on [a, b). (If f attains its least value, then it must

attain it at the point ~ given by Theorem 3.1.)

Corollary 3.2

{

l-X
f(x) = x

if x < 0

if X> 0

114

(3.10)

If f is unimodal and continuous on [a,b] , then f attains its

least value exactly once on [a, b] .
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Corollary 3.3

If f E Cl[a, b] then f is unimodal iff, for some i.! E [a, b] ,

fl < 0 almost everywhere on [a,i.!] and f' > 0 almost everywhere

on [i.!,b]. (Note that fl may vanish at a finite number of points.)

5·3

Proof

If x2 < i.! then, by Theorem 3.1, f(xl ) > f(X2) Thus, if

f(Xl ) ~ f(x2) then i.! ~ x2 . The other half follows similarly.

If the reader is prepared to ignore the problem of computing

"unimodal" functions using limited-precision arithmetic, he may skip the

rest of this section.

5 -unimodality

As was pointed out at the end of Section 2, f\mctions computed using

limited-precision arithmetic will not be unimodal because of rounding

errors. Thus, the theoretical basis for Fibonacci search, golden section

search, and similar methods, is irrelevant, and it is not clear that these

methods will give even approximately correct results in the presence of

rounding errors. To analyze this problem, we generalize the idea of

unimodality to 5-unimodality. Intuitively, 5 is a nonnegative number

such that Fibonacci or golden section search will give correct results,

even though f is not necessarily unimodal (unless 5 ~ 0) , prOVided

that the distance between points at which f is evaluated is always

Fibonacci and golden section search

If f is unimodal on [a,b], then the minimum of f (or, if

the minimum is not attained, the point i.! given by Theorem 3.1) can be

located to any desired accuracy by the well-known methods of Fibonacci

search or golden section search. The reader is referred to Wilde (1964)

for an excellent description of these methods. (See also Boothroyd

(1965a, b), Johnson (1955), Krolak (1968), Newman (1965), Pike and Pixner

(1967), and Witzgall (1969).) Care Should be taken to ensure that the

coordinates of the points at which f. is evaluated are computed in a

numerically stable way (see Overholt (1965)). Fibonacci and golden section

search, as well as similar but less efficient methods, are based on the

following result, which shows how the interval known to contain i.! may

be reduced in size. greater than 5 The results of Section 2 indicate how large ,5 is

If f(xl ) ~ f(X2) then i.! ~ x2 '

likely to be in practice. (Our aim differs from that of Richman (1968) in

defining the E-calculus, for he is interested in properties that hold as

E - 0.) For another approach to the problem of rounding errors, see

Overholt (1967).

Corollary 3.4

Suppose that f is unimodal on

Theorem 3.1, and a ~ Xl < x2 ~ b

and if f(Xl ) 2:' f(X2) then i.! 2:' Xl

[a, b] , i.! is the point given by

In the remainder of this section, 5 is a fixed nonnegative number.

116

As well as 5-unimodality, we need to define 5-monotonicity. If 5 ~ 0

then 5-unimodality and 5-monotonicity reduce to unimodality (Definition 3.1)
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and monotonicity. [a,b] , then there is a unique interval [ll-l ,1l-2 ] ~ [a,b] such that

the points Il- with the above properties are precisely the elements of

Definition 3.2 [Il- l , 1l- 2 ] , and 1l-2 S Il- l + a .

Let I be an interval and f a real-valued function on I . We

say that f is strictly 5-monotonic increasing on I if, for all Proof

X
l
,X

2
E I Suppose Il- exists so that f is 6-~ on [a,ll-) and o-t on [Il-,b]

strictly 5-monotonic decreasing fwrrctions (abbreviated 5-~) are defined

in the obvious way.

The other cases are

Conversely, suppose that f is 5-unimodal on [a,b]. Let

Take any xo' xl' x2 in [a, b] with Xo+0 < xl and xl +5 < x2

is

If

As fIl- S xlf(XO) S f(Xl ) then, since f is o-~ on [a,ll-)

o-t on [Il-,b) , it follows that f(Xl ) < f(X2) .

similar, so f is o-unimodal.

(3.11)

on I"5-tis

xl +5 < x
2

=.> f(xl ) < f(x
2

)

As an abbreviation, we shall write simply" f

Definition 3.3

Let I be an interval and f a real-valued function on I. We

say that f is 5-unimodal on I if, for all x
O
,x

l
,x

2
E I ,

Il-l = inftxE[a, b] I f is o-t on [x, b J}

(so Il-l S max(a,b-o)) , and

1l-2 = sup[xda,b] I f is o-~ on [a,x]}

(3.13)

(3.14)

The following theorem gives a characterization of a-unimodal functions.

xO+5 < xl 1\ X I +5 < x2 =.> (f(xo) S f(xl ) =.> f(x I ) < f(X2))

1\ (f(xl ) ? f(x2) =.> f(xO) > f(xl )) (3.12)
(so 1l-

2
? min(a+o,b)) .

It is immediate from the definitions (3.13) and (3.14) that f is

o-t on (Il-l,b] and f is o-~ on [a,1l-2) . We shall show Ghat

It reduces to Theorem 3.1 if 5 = 0 . Il- l S [12 (3.15)

Suppose, by way of contradiction, that
Theorem 3.2

f is 5-unimodal on [a, b] iff there exists Il-E[ a, b] such that

either f is o-~ on [a,ll-) and o-t on, [Il-,b] ,or f is 5-~
This implies that 'Il-l > a and 1l-2 < b , so, from the definitions of Il-l

and 1l-
2

, there are points x' and x" with
on [a,ll-] and 5-t, on (Il-,b] Furthermore, if f is a-unimodal on

Il- I > 1l-2 (3.16)
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1-12 < x" (
1-11 + 1-12)

< '2 < X' < 1-11 (3.17)
f(Y2) ::: f(lJ.) (3.24)

Thus, the points Y2' 1-1 , and Yl contradict the 6-unimodality of f,

such that f is not 6-t on [x',b] and f is not 6-1 on [a,x"] . so f is either 6-1 on [a,l-1] or 5-t on [1-1,b] This completes

Thus, there are points y' , y" , Z I ,z" in [a, b] such that the proof of the first part of the theorem.

z"+6 < y" ::: x" < x· ::: y' < z'-6

f(z") ::: f(y")

and

(3.18)

(3.19)

Finally, by the definitions (3.13) and (3.14), the set of points 1-1

satisfying the conditions of the theorem is precisely [1-1
1

,1-12 ] . Since

f is both 5-t and 5-1 on (1-11 ,1-12), we.have 1-12 ::: 1-11+5 , and the

proof is complete.

f(y') ? f(z·) (3.20)

From relations (3.18) to (3.21), the points xo' xl and x
2

contradict

6-unimodality (equation(3.12)). Thus (3.16) is impossible, (3.15) must

Let X o = z", x
2

= z· , and
Remarks

The interval [1J.1 ,1J.2 ] depends on 6. Suppose that f attains its

f is 5-t on (1-11,b]

so ~ E [1-12-5,1-11+5] , an interval of length at

1-1. By Theorem 3.2,

As an example, consider

minimum in [a, b] at

and 6-1 on [a,1-12),

most 26

(3.21)
if f(y')? f(y")

otherwise{

y,

y"
xl

f is 6-1 on [a, 1-1) and 6-t on (l-1,b] . Suppose, by way of contradiction,

From the definitions of 1-11 and 1-12 '

121

the discussion in Section 2.

(3.25)

is 5-unimodal iff

E might be (a small multiple of) the

and X
2
_E, we see that2

X +E

2f(x) = x + E .g(x)

on [-1,1], where g is any function (not necessarily continuous) with

\g(x) I ::: 1 , and E? 0 Since f(x) is bounded above and below by the

relative machine precision, and the fact that the least 5 for which f

is 6-unimodal is of order E
l / 2 , rather than E, is to be expected from

unimodal functions

5 ?.[2; In a practical case

(3.22)

(3.23)

Then there[1-1, b] .on

hold, and [1-11 ,1J.2 ] is nonempty.

Choose any 1-1 in [1-11,1-12 ]

that f is neither 6-1 on [a, 1-1] nor 6-t

are points Yl and Y2 in [a~b] such that

Y2+6 <1-1 < Yl-6

f(Yl) ::: f(l-1)

and
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were at points separated by moretwo function evaluations givingThe following theorem is a generalization of Corollary 3.4 (which

is just the special case ° = 0) , and shows Why methods like Fibonacci

search and golden section search work on o-unimodal functions While the

I.
J

than °
0

, The smallest such interval

(2 + /5)°0 ' so

I.
J

has length no greater than

distance between points at which l' is evaluated is greater than 5 .

I~ -~I ::: (3+15)50
5. 236°0

(3.26)

Theorem 2..:.2

Suppose that l' is o-unimodal on [a, b) , III and 112 are the

points given by Theorem 3.2, Xl and x2 are in [a, b) , and x
l
+5 < x2

If f(xl ) s f(x2) then 112 S x2 ' and if f(Xl ) ?: f(x2) then III ?: Xl .

Proof

Thus, golden section search gives an approximation II which is nearly

as good as could be expected if we knew °
0

, This may be regarded as

a justification for using golden section (or Fibonacci) search to approximate

minima of functions which, because of rounding errors, are only "approximately"

unimodal.

If x2 < 112 then f(xl ) > f(X2) for, by Theorem 3.2 with II = 112 '

l' is o-~ on [a'1l2) . Hence, if l' (xl) S f(x2) then 112::: x2 ' The

second half is similar.
4. An algorithm analogous to Dekker's algorithm

For finding a zero of a function 1', the bisection process has the

In practice

Remarks

Theorems 3.2 and 3.3 show that, Provided 5 is known, methods like

Fibonacci search and golden section search can locate the interval

[1l1,1l2] in an interval of length as close to 5 as desired. Since the

minimum ~ E [1l2-0, lll+o] (see the remarks above), this means that II

can be located in an interval of length as close to 3o as desired.

l' may be 5-unimodal for all o?: °
0

' but a sharp

upper bound for °
0

may be difficult to obtain. If the usual golden

advantage that linear convergence is guaranteed, as the interval known to

contain a zero is halved at each evaluation of l' after the first.

However, if l' is sufficiently smooth and we have a good initial

approximatio~ to a simple zero, then a process with superlinear convergence

will be much faster than bisection. This is the motivation for the

algorithm, described in Chapter 4, Which combines bisection and successive

linear interpolation in a way Which retains the advantages of both.

There is a clear analogy between methods for finding a minimum and

for finding a zero. The Fibonacci and golden section search methods have

with limit ll, then Theorem 3.3 shows that [l-l l ,1l2] '= I
j

as long as the

under certain conditions converge superlinearly, correspond to successive

like successive parabolic interpolation, which do not always converge, but

section search method is used, giving a nested sequence of intervals T.
J

guaranteed linear convergence, and correspond to bisection. Processes
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linear interpolation. In this section we describe an algorithm which

combines golden section search and successive parabolic interpolation

in a way which retains the advantages of both. The analogy with the

algorithm of Chapter 4 is illustrated in Diagram 4.1.

5·4

(see Section 5). Note that we do not claim that our algorithm is

suitable for use in an n-dimensional minimization procedure: an "ad hoc"

algorithm may be more efficient (see Sections 1 and 7.1).

A description of the algorithm

Successive linear~ Successive parabolic
interpolation interpolation

Linear convergence

Superlinear convergence

Zeros

Bisection

r

Extrema

Golden section search

I

Here we give an outline which should make the main ideas of the

algorithm clear. For questions of detail the reader should refer to

Section 8, where the algorithm is described ·formally by the ALGOL 60

procedure localmin.

The algorithm finds an approximation to the minimum of a function f

Diagram 4.1: The analogy between algorithms for
finding zeros and extrema defined on the interval [a,b] • Unless a is very close to b, f is

Many more or less "ad hoc" algorit:uns have been proposed for one-

dimensional minimization, particularly as componen~s of n-dimensional

minimization algorithms. See Box, Davies and Swann (1969), Flanagan,

Vitale and Mendelsohn (1969), Fletcher and Reeves (1964), Jacoby,

Kowalik and Pizzo (1971), Kowalik and Osborne (1968), Pierre (1969),

never evaluated at the endpoints a and b, so f need only be defined

on (a, b) , and if the minimum is actually at a or b then an interior

point distant no more than 2.tol from a or b will be returned,

where tol is a tolerance (see equation (4.2) below). The minimum found

may be local, but non-global, illlless f is a-unimodal for some a < tol •

At a typical step there are six significant points a, b , u , v , w

Powell (1964), etc. The algorithm presented here might be regarded as and x, not all distinct. The positions of these points change during

an unwarranted addition to this list, but it seems to us to be more

natural than these algorithms, Which involve arbitrary prescriptions like

the algorithm, but there should be no confusion if we omit subscripts.

. Initially, (a,b) is the interval on which f is defined, and

"if ... fails then halve the step-size and try again". Of course, our

algorithm is not quite free of arbitrary prescriptions either, so a more
v w x a + e;15) (b-a) (4.1)

(The magic number
objective criticism of the "ad hoc" algorithms is that for many of theIII

convergence to a local minimum in a reasonable number of function evaluations

can not be guaranteed, and, for the exceptions, the asymptotic rate of

convergence if f is sufficiently smooth is less than for our algorithm

124

3 ~15 = 0.381966... is rather arbitrarily chosen so

that the first step is the same as for a golden section search.)

At the start of a cycle (label "loop" of procedure localmin) the

points a, b , u , v , w, and x always serve as follows: a local
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minilnum lies in [a,b] ; of all the points at which f has been evaluated,
t should he positive in case the minimum is at O. It is possible that

x js the one with the least value of f, or the point of the most recent
the error may exceed 2. tol + 5 because of the effect of rounding errors

evaluation if there is a tie; w is the point with the next lowest value
in determining if the stopping criterion is satisfied, but the additional

configuration is shown in Diagram 4.2.

which f has been evaluated (undefined the first time). One possible

error is of order Elx\, which is negligible if tol is of order

1/2
E Ix\ or greater.

of f v is the previous value of w; and u is the last point at

Let m

the minimum.

~ (a+b) be the midpoint of the interval known to contain

If Ix-m\:s 2.tOl-~ (b-a) , Le., if max(x-a, b-x) < 2.tol

then the procedure terminates with x as the approximate position of the

(4 . .3)

.,If two or more of these points coincide, or if

• 2 2
P = :':.l(x-v) (f(x)-f(w) - (x-w) (f(x)-f(v)]

p and q are given by

the parabola degenerates to a straight line, then q = 0 .

minimum. Otherwise, numbers p and q (q 2 0) are computed so that

x+p/q is the turning point of the parabola passing through (v,f(v»

(w,f(w» , and (x,f(x»

bm

/
/

/
/

u

'I
I
I
I
I
I

I I l~ . ~ :_
a

w x v

= + (x-v) (x-w) (w-v) [(x-w)f[v,w,x] + f[w,x]) (4.4)

Diagram 4.2: A possible configuration
and

As in procedure zero (Chapter 4), the tolerance is a combination of
q = -i=2[(x-v)(f(x)-f(w» - (x-w) (f(x)-f(v» ] (4.5)

a relative and an absolute tolerance. If = +2(X-v) (x-w) (w-v)f[v,w,x] (4.6)

tol = eps. Ix I+ t (4.2) From (4.4) and (4.6), the correction p/q should be small if x is close

then the point x returned approximates a minimum to an accuracy of
to a minimum where the second derivative is positive, so the effect of

2. tol + 5 <: .3. tol , if f is 5 -unimodal near x and 5 < tol. The

user must provide the positive parameters cps and t. In view of the

rounding errors in computing p and q is minimized. (Golub and Smith

(1967) compute a correction to ~(v+w) for the same reason.)

discussion in Section 2, it is generally unreasonable to take eps much

less than Ell?, where E is the machine-precision (see Section 4.2).

As in procedure zero, let e be the value of p/q at the second-last

cycle. If \e\:s tol, q = 0, x+p/ql- (a, b) ,or Ip/ql 2 ~Iel , then
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5.4

a "golden section" step is performed, i.e., the next value of u is

{(5 -')x' (3 - J5}a if x > m J2 2

u = (4 :7)

(15 - l)x + (3 - /5)b if x < m2 2

5·5

-.

//

/
/

/
/

/
/

//

(An optimal choice in the limit: see Witzgall (1969).) otherwise u is

taken as x + p/q (a "parabolic interpolation" step), except that

the distances \u-x I, u-a and b-u must be at least tol Then f

v a x b
u~~w

tol tol

is evaluated at the new point u , the points a , b , v , w and x

are updated as necessary, and the cycle is repeated (the procedure

returns to the label "loop"). We see that f is never evaluated at

two points closer together than tol , so 5-unimodality for some 5 < tol

Diagram 4.3: A typical situation after termination

would be performed.

2. tol + 5 (see Theorem 3.3 and the following remarks) .

is enough to ensure that the global minimum is found to an accuracy of

two consecutive steps of tol are done just before termination. If a

As in Section 4.3, we see that convergence can not

but two golden section steps must decrease b-a by a factor of at least

section step does not necessarily decrease b-a significantly, e.g.,

steps are being performed \p/ql decreases by a factor of at least two

on every second cycle of the algorithm, and when lei < tol a golden

distinguishing between a real number and its integer part.) A golden

if x = b - tol and f(u) < f(x) ,then b-a is only decreased by tol

5. Convergence properties

section step is performed. (In this section, "about" means we are not

There can not be more than about 2.l0g2«b-a)/tol) consecutive

parabolic interpolation steps (with the current a and b , and the

1 + /5 = 1.618 ...
2

minimum of tol over the interval), for while parabolic interpolation

x = b - tolTypically the algorithm terminates in the following way:

value of Ip/ql was tol or less, then termination with two consecutive

golden section search were done whenever the last, rather than second-last,

interpolation point lies very close to x and b, so u is forced to

steps of tol would be prevented, and unnecessary golden section steps

performed with the condition lu-xl > tol enforced. The next parabolic

and the termination criterion is satisfied (see Diagram 4.3). Note that

be x - tol. If f(u) > f(x) then a moves to u, b-a becomes 2.tol,

(or, symmetrically, a+ tol) after a parabolic interpolation step has been

reqUire more than about
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b-a))22K(log2(tOl

function evaluations, where

(5.1)

5·6

converges with strong order ~2 = 1.3247··. (sufficient conditions for

this are given in Sections 3.6 and 3.7) .

For most of the "ad hoc" methods given in the literature, convergence

K 1/10g2(1 +215) 1.44•.. (5.2)

with a guaranteed error bound of order tol in the number of steps given

by (5.1) is not certain, and, even if convergence does occur, the order

By comparison, a golden section or Fibonacci search would require about
is no greater than for our algorithm. For example, the algorithm of

Davies, Swann and Carnpey (see Box, Davies and Swann (1969)) evaluates f

at two or more points for each parabolic fit, so the order of convergenceb-a)K.log2(tol

fUnction evaluations, and a brute-force search about b-a
2.tol

(5.3)

is at most /f32 = 1.150 ... (excluding exceptional cases).

The analogy with procedure zero of Chapter 4 should be clear, and

essentially the same remarks apply here as were made in Chapter 4. In 6. Practical tests

practical tests convergence has never been more than 5 percent slower

than for a Fibonacci search (see Section 6).

In deriving (5.1) we have ignored the effect of rounding errors inside

the procedure, but it is easy to see (as in Section 4.2) that they can not

prevent convergence if floating-point operations satisfy (4.2.10) and (4.2.11),

provided the parameter eps of procedure localmin is at least 2E .

Superlinear convergence

If f is C2 near an interior minimum fl with f"(fl) > 0 , then

Theorem 3.4.1 shows that, while rounding errors are negligible, convergence

will be superlinear. Usually the algorithm stops doing golden section steps,

The ALGOL procedure localmin given in Section 8 has been tested using

ALGOL W (Wirth and Hoare (1966), Bauer, Becker and Graham (1968)) on an

IBM 360/67 .and a 360/91 with a machine precision of 16-13 . Although it

might be possible to contrive an example where the bound (5.1) on the

number of fUnction evaluations is nearly attained, for our test cases

convergence never requires as many as 5 percent more fUnction evaluations

than would be needed to guarantee the same accuracy using Fibonacci search.

In most practical cases superlinear convergence sets in after a few golden

section steps, and the procedure is much faster than Fibonacci search.

As an example, in Table 6.1 we give the number of fUnction evaluations

required to find the minima of the function

This function has poles at x

and eventually does only parabolic interpolation steps, with f(x) decreasing

at each step, until the tolerance comes into play just before termination.

This is certainly true if the successive parabolic interpolation process
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f(x) 20 (2" 5)2[ ~
i=l x - i

12,22, ... ,202

131

(6.1)

Restricted to the open



5.6 5·6

interval (i2,(i+l)2) for i = 1,2, ... ,19 it is unimodal (ignoring Table 6.1: Comparison of procedures localmin and zero

rounding errors) with an interior minimum. The fourth column of Table 6.1

gives the number ~ of fUnction evaluations required to find this
i ~i f(l-l i ) n

L nzl
I

(so the error bound is less than 3.tol , where tol = 16-7 . Ix \+ 10 -10 ).

minimum ~. , using procedure 10calmin with eps 16-7
1.

and t = 10-10
1

2

3.0229153

6.6837536

3.6766990169

1.1118500100

12

11

14

8

seldom be lucky enough to have such a simple analytic expression for fl

so procedure zero could not easily be used to find minima of f in this

manner. Also, procedure zero could find a maximum rather than a minimum.

For some numerical results illustrating the superlinear convergence
9

j

9 j

10

10

10

10

10

11

10

11

10

10

12

10

14

11

12

9

9

9

9

9

9

9

9

10

10

10

10

10

10

11

13

113.0322905193

3·7583856477

4·3554103836

4.8482959563

5·2587585400

5.6036524295

5·8956037976

6.1438861542

6.3550764593

6.5333662003

6.6803639849

6.7938538365

6.8634981053

6.8539024631

6.6008470481

1.2182217637

2.1621103109

210.0711010

240.0800483

272 .0902669

306.1051233

342.1369454

11.2387017

19.6760001

29·8282273

41.9061162

55 ·9535958

71.9856656

90·0088685

110.0265327

132.0405517

156.0521144

182.0620604

9

5

6

3

4

7

8

10

11

13

14

15

16

17

18

12

L 9 . .L 380.26870971

(6.2)
20

-2 . .L (2i - 5) 2
1.=1 (X_i2)3

f' (x)

Table 6.1 shows that the number of function evaluations required by

fUnction evaluations to find the minimum for i = 10 to the same accuracy.

The last column of the table gives the number n
Z

of fUnction

evaluations required to find the zero of

nearly the same as for localmin. Of course, in practical cases we would

procedure localmin compares favorably with the number reqUired by procedure

of the successive parabolic interpolation process, see Section 3.9.

zero. Both are much faster than Fibonacci search, which would require 45

in the interval [i2 +10-9} (i+1)2 -10- 9 ] , using procedure zero (Section

4 6-7 -10.6) with macheps = 1 and t = 10 , so the guaranteed accuracy is

For a discussion and definition of the terms, see above.

1]2 133
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7. Conclusion

The algorithm given in this chapter has the same advantages as the

algorithm described in Chapter 4 for f~nding zeros: convergence in a

reasonable number of steps is guaranteed for any function (see equation

(5.1))) and on well-behaved functions convergence is superlinear, ,with

order at least 1.3247 ... , and thus much faster than Fibonacci search.

There is no contradiction here: Fibonacci search is the fastest method

for the worst possible function, but our algorithm is faster on a large

class of functions (including) for example) C2 fUnctions with positive

second derivatives at interior minima) .

A similar algorithm using derivatives

We pointed out in Section 4.5 that bisection could be combined with

5·8

Parallel algorithms

So far we have considered only serial (i.e., sequentia~ algorithms

for finding minima. If a parallel computer is available, more efficient

algorithmS which take advantage of the parallelism are possible, just as

in the analogous zero-finding problem (see Section 4.5). Karp and

Miranker (1968) give a parallel search method which is a generalization of

Fibonacci search (and optimal in the same sense, if a sufficiently parallel

processor is available). See also Wilde (1964) and Avriel and Wilde (1966).

Miranker (1969) gives parallel methods for approxunating the root of a

function, and these could be used to find a root of f' (or parallel

methods for finding a root of f' ) using only evaluations of f, could

be used). These parallel methods could be combined, in much the same way

as we have combined golden section search and successive parabolic

golden section search with an interpolation method using both f and f'

in a similar way. Davidon (1959) suggests fitting a cubic polynomial to

agree with f and f' at two points, and taking a turning point of the

cubic as the next approximation. {See also Johnson and Myers (1967).) This

interpolation formulas which use both f and t· We could combine interpolation, to give a parallel method with guaranteed convergence)

and often superlinear convergence with a higher order than for our serial

method.

8.method, which gives the possibility of superlinear convergence, could well

replace successive parabolic interpolation (using f at three pOints) in

our algorithm if fl is easy to compute. If the cubic has no real turning

point, or if the turning point which is a local minimum lies outside the

interval known to contain a minimum of f) then we can resort to golden

section search.

134

An ALGOL 60 procedure

The ALGOL procedure localmin for finding a local minimum of a function

of one variable is given below. The algorithm and some numerical results

are described in Sections 4 to 6.

Procedure localmin

real procedure localmin (a) b, eps) t) f, x);

value a) b, eps) t; real a, b, eps) t, x; real procedure f;

13'5
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begin comment:

If the fUnction f is defined in the interval (a,b), then localmin

finds an approximation x to the point at which f attains its minim1Lll

(or the appropriate limit point), and returns the value of f at x.

t and eps define a tolerance tol = eps.\x\+t, and f is never evaluated

at two points closer together than tal. If f is 5-unimodal (see

Definition 3.3), for some 5 < tal, then x approximates the global

minimum of f with an error of less than 3.tol (see Section 4). If

f is not 5-unimodal on (a, b), then x may approximate a local, but

non-global, minimum. eps should be no smaller than 2.macheps, and

preferably not much less than sqrt(macheps), where macheps is the

relative machine precision (Section 4.2). t should be positive. For

fUrther details, see Section 2.

The method used is a combination of golden section search ~,d

succession parabolic interpolation. Convergence is never much slower

than for a Fibonacci search (see Sections 5 and 6). If f has a continuous

second derivative which is positive at the minimum (not at a or b) then,

ignoring rounding errors, convergence is superlinear, and usually the

order is at least 1.3247 ... ;

real c, d, e, m, p, q, r, tol, t2, u, v, w, fU, fv, fW, fx;

- c := 0.381966011250105151795413165634; comment: c = (3 - sqrt(5))!2;

v ;=w :=x :=a+cx(b-a); e ;=0;

fv ;= fW := fx := f(x);

comment: Main loop;

loop: m:= 0·5 X (a+b);

tal := eps X abs(x)+t; t2 ;= 2 X tal;

136
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comment; Check stopping criterion;

if abs (x-m) > t2 - 0.5 X (b-a) then

begin p := q := r ;= 0;

if abs(e) > tol then

begin comment: Fit parabola;

r : = (x-w) X (fx-fv) ; q: = (x-v) X (fx-fW) ;

P := (x-v) Xq-(x-w) xr; q:= 2X (q-r);

if q > 0 then p := -p els e q : = -q;

r := e; e:= d

~nd;

if abs(p) < abs(0.5x qx r) 1\ p > qx (a-x) 1\ p < qx (b-x) then

begin comment: A "parabolic interpolation" step;

d := p!q; u:= x+d;

comment: f must not be evaluated too close to a or b;

if u-a < t2 V b-u < t2 then d : = if x < m then tol else -tal

end

else

begin comment; A "golden section" step;

e := (if x <m then b else a)-x; d;= cxe

end;

comment: f must not be evaluated too close to x;

u : = x + (if abs (d) ? tol then d else if d > 0 then tol else -tol);

fU := f(u);

comment: Update a,b, v, wand x;

if fu < fx then- --
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begin if u < x then b := x else a := x;

v:=w; fV:=fw; W:=X; fw:=fx; x:=u; fx:=fu

end

else
Chapter 6.

begin if u < x then a := U else b := u;

if fu s: fw V W = x then

begin v := w; fv := fltT; W := \1; fw

else if fu < fv V v = x V v = W then---
begin v := u; fv:= fu

end

end;

go to loop

end;

localmin : = fx

end localmin;

138

fu end

Global Minimization Given an Upper Bound on the

Second Derivative



6.1

1. Introduction

6.1

Some fundamental limitations

If fEC[a,b], let

Minimization procedures like the one described in Chapter 5 can

only guarantee to find a local, not necessarily global, minimum of a

function fEC[a,b] . If f happens to be unimodal then a local

minimum must be the global minimum in [a,b], but in practical problems

it often happens that f is not unimodal, or that unimodality is difficult

and

qJf

IJ. f

inf [f(X) I xE[a,b]]

inf [xda, b] I f(x) = qJf}

(1.2)

(1.3)

to prove. In this chapter we investigate the problem of finding a good
Even if f satisfies very stringent smoothness conditions, the problem

unimodality. As ~sual, we consider methods which depend on the sequential
continuous function of f (With the uniform topology on C[a,b] ).

approximation to the global minimum, given weaker conditions on f than
of ,finding IJ. f is improperly posed, in the sense that IJ.f

is not a

evaluation of f at a finite number of points, and our aim is to reduce,

as far as possible, the number of fUnction evaluations required to give

For example, consider

f
5

(X) = COS(1TX) -5x (1.4)

an answer which is guaranteed to be accurate to within some prescribed

tolerance.

In Sections 2 to 6 we describe an efficient algorithm for

on [-2,2] . I{ 5 > 0 then IJ. f ~ 1 , but if 5 S 0 then IJ.f ~ -1 ,

so a very small change in f can cause a large change in IJ.f

Instead of trying to approximate IJ.f , we should seek to approximate
approximating the global minimum of a function of one variable, given an

upper bound on the second derivative. There are many obvious applications
ipf f(flf) • Since

for this algorithm. For example, When finding a posteriori error bounds lip f - qJg I S l1 f - gil", (1.5)

for the approximate solution of elliptic partial differential equations,

we may need to find the maximum of \f(x) \ (Fox, Henrici and Moler' (1967)).

Instead of working with If(x) I ' which may have discontinuous derivatives,

it is probablY better to use the relation

for all f and g in C[a,b], qJf is a continuous function on C[a,b] , so

the problem of finding qJf is properly posed. However, given t > 0 ,

it is still impossible to find ~ such that

max If(x) I
x

-min(min(f(x)), min(-f(x)))
x x

(1.1)
I~ - ipfl < t (1.6)

In Sections 7 and 8 we shaw how to extend the method to functions of

several variables, and ALGOL 60 procedures are given in Section 10.
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With a finite number Nt of function evaluations, unless we have some

a priori information about f.
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1

priori conditions on f

If fEC[a,b]) the modulus of continUity w(f;o) is defined (as

_n Section 2.2) by

6.1

Thus, a quite weak condition on f, enabling us to approximate CPf

with a finite nwnber of evaluatio!ls of f, is that we bave a bound

~(o) , satisfying (1.8), on the modulus of continuity w(f;o) of f

w(f;o) = sUJ? If(x) - fey) I
\x-y! .so
x,yE[a,b]

(1. 7)
For example, if fcCl[a, b]

\\f'\l, .s M

and

(1.14)

~or 0 > 0 Suppose that a fUnction W(o) is given such that
then we can take

Unfortunately, the procedure suggested above will be very slow if

lim W(O)
o~O+

o (1.8)
W(o) = Mo (1.15)

and

w(f;o) .s W(o) (1.9)

t is small: in fact, abo'J-t (b-a)M/ (2t) function evaluations will be

required. In the worst case, though, it is impossible to do much better

for all 0 >0 Given t > 0 , choose 0 > 0 such that
than this without knowing more about f. To see this, consider

minimizing a fUnction which is known to be in the class

(always possible by (1.8)), and evaluate f at points xo' ... ,x
n

in

[a,b] such that

[fc(x) = min (1.0lt, Mlx-c\) Icda,bJ}

is computed from (1.12) for some set of points

W(o) < t

max
xda, b]

min Ix - x_ \
o <i <n l

< 0

(1.10)

(loll)

If

andcp

o 1.0lt / M

(1.16)

(1.17)

XI)'" .,xn ' then

(For example, we might choose Xo = a+o, xl = a+30, x
2

= at50 , etc.)

If

there is a choice of cE[a,b] for which ~ fails to satisfY (1.13)

unless (1.11) holds, so at least r (b-a)M/ (2.02t) l function evaluations

cp min f(x_)
o <i <n l

(1.12)
are required. In some cases less function evaluations will be required:

for example) if

then, from (1.7), (1.9), (1.10) and (loll), f(x) = Mx (1.18)

o.sCP-CPf.s t

142

(1.13)
then it is enough to evaluate f at a and b. (See also Sectio!1 5.)_
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6.1 6.2

Instead of having an a priori bound Oll Ilf' \I", ' we could have a polynomial Pi(x) is linear. If r > 2 then we can bound Ip~(x) I
l

bound

\If(r) \I", < M (1.19)

in [ai,a
i
+l ], and apply the procedure for r = 2 to minimize Pi(x)

(ThiS idea for finding bounds on polynomials in an interval was suggested

on \If(r) II", ' for some r?: 1. We show below that, with such a bound,

the maximum number of function evaluations required to find ~

satisfying (1.13) is of order (M/t)l/r.

by Rivlin (1970).) Because successive intervals [ai,ai +l ] are adjacent,

the number of function evaluations required to find ~ satisfying (1.13)

does not exceed

The case r = 1 is discussed above, so suppose r > 2 , and let N = (r-l)n+ 2 , (1.23 )

where n is given by (1.20).

Since N is of order (M/t)l/r, the method described above isn f; II(b - a) 4M r

4 cos(ir) (r!t)
(1.20)

not likely to be practical for small t unless r > 2 On the other

Define b-a a. = a+ io for i = 0, ... , n (so an = b) , and
0= n' l

a.. 0 a. + " {I _co.((j -~)rrfc)} (1.21)
l, J l 2 (1 / )cos "2 TT r

hand, in practical problems it is usually difficult to obtain good bounds

on the third or higher derivatives of f (if they exist). Thus, in the

rest of this chapter we suppose that r = 2. It turns out that a one-

sided bound

for i = 0, ... ,n-l and j = 1, ... ,r (so a. 1 = a., a. = a·+ l ) .l, l l,r l f"(X)SM (1.24)

Let P. = IP(f;a. 1'" .,a. )
1 1, lJr

be the polynomial of degree r-l which
is SUfficient, instead of the two-sided bound (1.19). If f" (x) has a

coincides with f at a. l, ... ,a. . Then, Lemma 2.4.1 and the bound
1) l,r

(1.19) show that, for all xE[ai,ai +l ] ,

physical interpretation (e.g., as an acceleration), then a bound of the

form (1.24) ca~ sometimes be o~tained from physical considerations.

If(X) -p.(x)l S I(x-a. l)··.(x-a. )\ Mjr!
1 1, 1, r

(1.22)

we need only find the minimum of each polynomial P.(x) in [a.,a·+l ]
l l l

and, by (1.20) and the choice of 0, this is no greater than t/2

This is easy if r = 2 , for then each

section depends on the simple Theorems 2.1, 2.2 and 2.3. Theorem 2.1 is

. 1 .
We assume that fEe [a,b] , and

The global minimization algorithm which is described in the next

The basic theorems

also to some results in Davis (1965).

related to the maximum principle for elliptic difference operators, and

2.

Thus,

M

r!2r - l

to within a tolerance t/2 .

The right side of (1.22) is no greater than ( 0 )r
2 cos(;r)
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6.2

fT (x) - fT (y) < M(x - y) (2.1)

6.2

Theorem 2.2

for all x,y in· (a, b] with x > y. (Weaker conditions slJ.ffice:

see Section 7.) If fEC 2(a,b] the~ the o~e-sided Lipschitz condition

(2.1) is equivalent to

Suppose (2.1) holds, M > 0, a < c < b

fT(C) ~ O. The~

c _ a > I f(a) - f(c)

f(a) 2 f(c) , and

(2.6)

f"(x) :s H

for alL xE(a,b] .

(2.2)

Proof

Applying Lemma 2.1 with a suitable translation of the origin gives

Theorem 2.1

Suppose (2.1) holds. The~, for all xE(a,b] ,

so

o ff a \ - ff C \ 1 ( )fl (c) < ~--=-"':::";;:.L - - M a-c
a-c 2

(2.7)

Proof

f(x) 2 (b x)f(a) + (x-a)f(b) _ ~ M(x-a) (b-x)
b-a 2 (2.3) 1 2

f(a) - f(c) :S"2 M(c - a)

and the result follo'N"s.

(2.8)

The proof is i~~ediate from Lemma 2.4.1. Lemma 2.2

Lemma 2.1

Suppose (2.1) holds and a < 0 < b

f'CO) <. !(a) - f(O) 1
- a -"2 Ma

Proof

Theel

(2.4)

Suppose (2.1) holds, M > 0 , and a < 0 :s b :s -f'(O)/M. Then

fT(b) <0

Proof

By condition (2.1),

f'(b) :s f'(O)+Hb (2·9)

Applying Lemma 2.3.1 to f(-x) , we have

f(a) < f(O) + af'(O) + ~ Ma
2

so the result follows.
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(2.5)

and, as

b :s _fT (O)/M

the res~lt follows.
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6.2

Theorem 2.3

6·3

3. An algorithm for global: minimization

Suppose (2.1) holds, M > 0 , a < c < b , and
Suppose that fEC 2 [a,b] and, for all xE[a,b] ,

a+c fi<Jl-f{cl)
c < x < min (b, 2 - M('a~ (2.ll) f"(x) S M (3.1)

Then We want to find ~E[a,b] and ~ f(~) satisfying

fl(X) < 0 (2.12) liP -~fl S t (3.2)

Proof
where t is a given positive tolerance, and

There is no loss of generality in assumipg that c o and b ~ x . ~f min f(x)
xE[a,b]

(3.3)

By condition (2.11),

b ~ x < 1: a _ f(a) - f(O)
- 2 Mil.

_ !(f(a) - f{Ql _! Mil.)
. M a 2

(2.13)

If M < 0 the problem is quite trivial, for Theorem 2.1 says that f(x)

can not lie below the straight line interpolating f at a and b, so

so, by Lemma 2.1, we have
~f ~ min (f(a),f(b)) (3. 4)

b S -f' (O)/M (2.14) If M > 0 the problem is not trivial, although we saw in Section 1 that

there does exist an algorithm to solve it.

Now the result follows from Lemma 2.2.

The basic algorithm

Remarks'
The algorithm described in this section is an elaboration and

Theorems 2.1, 2.2 and 2.3 are sharp, as can easily be seen by

that everything needed to justify our minimization algorithm follows

from the fundamental inequality (2.3). The proofs given in this section

are, however, simpler and more intuitive than those in Section 7·

refinement of the following basic algorithm. (The notation is consistent

with that of the ALGOL procedure glomin (Section 10), except that we

write M for m , I.! for x , ~ for y (~ glomin), and E for

macheps .)

1- Set iP .... min (f(a) ,f(b)) ,

I.! .... if ~ ~ f(a) then a else b

and a
2

.... a

The

theorems are generalized in Section 7, and the proofs given there show

taking f(x) as a suitable parabola with leading term ~ Mx
2
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in (a2,b] (e.g., b: see below for a better choice).

If f(a
3
)< ~ then set ~ ~ a

3
and ~ ~ f(a)

satisfies p(x)? ~ - t for all x in [a2, a
3

]

If the parabola y = p(x) , with p"(x) = M

and p(a
3

) = f(a
3

)

then go on to 5.

(3.8)

(3·7)

f(a2 ) -~+ t }

~M
2

f(a
2

) -qJ+t

~M
2

>~f - a 2

", 0 mint-'2 "

Thus, at step 2 it is safe to take a
3

= a3 ' where

3 .and go back to

a
3
~ some point

p(a2) = f(a
2

)

Ia ~ - (a + a )
3 223

otherwise set

otherwise set

a2 ? b then halt.orIf M < 02.

3.

4.

We shall see shortly that (with a sensible choice of a
3

5· Set a2 ~ a
3

and go back to 2 .

at

and with this choice there is no risk that a
3

will have to be reduced

at step 4. Since the right side of (3.7) is at least (2t/M) 1/2 , the

Refi,nements of the basic algorithm

possible, but not so large that it has to be reduced at step 4.

The crux of the problem is how to make a good choice of a
3

at

Theorems 2.2 and 2.3 provide usefUl lower bounds. If the global minimum

~f lies outside (a2, b) , or if qJf? ~ - t, then the algorithm may

halt, for ~ already satisfies (3.2). Otherwise

(3 ·9)

ata3 = a'5

~f(a2 - dO) + 2.0Ie)})

2 M.dO

f(a2)
+

f(a
2

) - f(~) + t

~M
2

" 0 m{ m= {.,"

'2 - ~to

step 2, where

the result with (3.8), we see that it is safe to choose

basic algorithm must converge in a finite number of steps if, in step 2,

we choose any a
3

in the range [a3,b] .

If f is decreasing rapidly at a
2

, then Theorem 2.3 may give a

better bound than (3.7) •. Apply Theorem 2.3 with c replaced by .a2

and a replaced by a point a2 - dO (with dO > 0) where f has

already been evaluated. (This is not possible if a
2

= a.) Combining

(3.5)

as large asa
3

fl (~f) = 0

and

step 2 of the basic algorithm. We want to choose

step 2) the basic algorithm must terminate in a finite number of steps.

In view of Theorem 2.1 and step 4, it is clear that, when the algorithm

terminates, it does so with ~ satisfying (3.2).

f(~f) < qJ - t (3.6) Here e is a positive tolerance, and the term 2.01e is introduced

to combat the effect of rounding errors (see equations (3.41) and (3.52)).

so, from Theorem 2.2 with a replaced by a2 and c by ~f'
The ~hoice a

3
= a3 is safe, but it is possible to speed up the

algorithm by sometimes choosing a
3

> a'5. Because we want to avoid

150 151



6·3
6·3

/

having to decrease a
3

at step 4, the best choice would be to take
the last three points at which f has been evaluated. To avoid

a
3

= min (b,a~) , where

y = f(x)

overstepping a~ too ofte~, because of the inadequacy of the parabolic

of a2 where the curve

a*3
is the abscissa of the point to the right

intersects the parabola P, with
approximation to f , the procedure uses a heuristic "safety factor"

second derivative M, which passes through (a2,f(a
2

)) and attains

its minimwn value ;pI - t to the right of a
2

. Here

cpr = min (~, f(a
3
)) (3.10)

hdo,l) . If

a
3

min (b, a
2

+h(a3 - a
2
)) (3.ll)

is the value of <j) after step 3 has been executed, and we can extend

the domain of f by defining f(x) = feb) for x > b if this is

then at step 2 we choose

a3 = max (a3,a3
) (3.l2)

necessary. A typical situation is illustrated in Diagram 3.1. and if it necessary to reduce a
3

at step 4 then we set

a
3
~ max (a:s, ~ (a2 + a

3
)) . Proc edure glomin also makes a rather

primitiVe attempt to adjust h, the adjustment depending on the outcome

a I.l a
2 a*3

b

of step 4.

Some details of procedure glomin

The ALGOL 60 procedure glomin given in Section 10 uses the basic

algorithm with the refinements suggested above. From equation (3.8)

and the criterion in step 4 of the basic algorithm, it is clear that,

to speed up convergence, we want to find a-rough approximation to the

Diagram 3.1: The po;ints a2
and a*3 global minimum as soon as possible. In other words, <j) should be

It is not practical to choose a
3

= a~ , for, although a~ exists,

several fUnction evaluations are needed to approximate it accurately.

Procedure glomin (Section 10) finds a rough approximation a3 to a~,

without any extra £'unction evaluations, by assuming that f can be

approximated sufficiently well by the parabola which interpolates f at

152

nearly at its final value as soon as possible. For this reason, procedure

glomin incorporates several strategies Which are designed to reduce <j)

qUickly. We emphasize that the global minimum would be found without

using these strategies; the strategies merely r.educe the number of

£'unction evaluations required (see Sections 5 and 6).

The first strategy for reducing cp quickly is a pseudo-random

153



6·3

search. About 10 percent of the function evaluations are used. to

evaluate f at "random" points unifonnly distributed in (a2, b) •

(f is not evaluated at the random point a
3

if Theorem 2.1, with a

replaced by a2 and x by a
3

, indicates that f(a)? ~ - t , for

such an evaluation would be a waste of time.) At worst, this strategy

wastes 10 percent of the function evaluations, but in practice the

6·3

Finally, the user may be able to make a good guess at the global

minimum. For example, he may know a local minimum which is likely

to be the global minimum, or he may know the global minimum of a

slightly different function (see the application discussed in Section 8).

Thus, procedure glomin has an input parameter c which may be set by

the user at the suspeded position of the global minimum, and on entry

saving in function evaluations caused by quickly finding a good value the procedure evaluates f at c in an attempt to reduce cp If the

of cP is often much more than 10 percent. (The choice of 10 percent

is, of course, rather arbitrary.)

By comparison with the random search strategy, the second strategy

user knows nothing about the likely position of the global minimum, he

can set c = a or b .

We can now summarize procedure glomin (for points of detail, see

of the parabola which interpolates f at the last three points at which algorithm terminates immediately unless M > 0 and a < b. Before

is a highly "non-random" search. f is evaluated at the minimum a
3

Section 10) . step 1 of the basic algorithm is performed, and the

and Theorem 2.1 does not show that the evaluation is futile for the purpose

choosing a
3

E(a2,b] at step 2, the strategies described above are usedf has been evaluated, provided that this point ~ lies in (a2,b)

to try to reduce cp Then a
3

is chosen, and perhaps reduced at

of reducing cp. The details are similar to those of procedure localmin

(see Chapter 5). This strategy helps to locate the local minima of f

which are in the interior of [a,b] , and, unless the global minimum is

at a or b, one of these local minima is the global minimum. A bonus

is that, if f is sufficiently well-behaved near the global minimu~

(see Chapter 5 for more precise conditions), then the min~num will be

found more accurately than would be expected with the basic algorithm.

The numerical examples given in Sections 6 and 8 illustrate this. To

avoid wasting function evaluations by repeatedly finding the same local

step 4, as described above.

The reader who is not very interested in the murky details of

procedure glomin, or in the effect of rounding errors, would be well

advised to skip the rest of this section.

Some of the formulas used by procedure glomin need an explanation.

When either the random or no~-random search strategy is performed, W2

have numbers 1 and r, and wish to determine if the relation

q t 0 /\ (a2 < a2 + 1'/q < b) 1\

minimum, this strategy is only used about once in every tenth cycle,

although it is always used if ~ = f(a2) , for then there is a good

chance that f(a
3

) <~ .

154

(b-(a2 + r/q))f(a2) + (r/q)f(b)

b - a
2
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1 '
- "2M(r/q)(b-(a2+r/q)) <cp-t (3.13)



which is the condition tested after label "retry" of procedure glOffiin.

(If q = 0 then (3.l4) is false, and it is also false if a 2 +r/q

lies outside (a
2
,b), since ffi

2
> 0 and .~ -t < min (Y

2
,Y

b
) .)

To approximate a3 , we need the point a3* where the parabola

Y = p(x) , passing through (ai,yi ) for i = O,l,2 , intersects the

parabola

q[r(Yb - Y2) + Z2q (Y2 -~+ t)] < Z2ffi2r(Z2q·- r)

Finally, there is the inspection of the lower bound on f in

(3.20)

(3.22)

(3.2l)

(3.l9)

(a
2
,a

3
) given by the parabola

6·3

where

p' =p+2rs

l
q' = r+"2 qs

r = d
O

d
l

d2ffi
2

and

JY2-~+t
s = ffi

2

(3.l4)

Yb = feb) , andis true. If ffi2 = ~ M > 0, z2 = b - a2 > 0

Y2 = f(a2) , then (3.l3) is equivalent to

6·3

(In procedure glomin we use c in place of a
l

to save a storage

( ~)
2

. Y
2

-cp+t ~

Y = ~ x-a2 - ffi
2

. +q>-t . (3.l5)

dO = a3 - a2 > 0

l
m2 = 2" M > 0 and

(3.24)

(3.23)(a3 -x)Y2 + (x-a2)Y3 _ m?(x _ a
2

) (a
3

- x)
d:) ~

Y

where

d l = a2 - aO 'dO = a 2 - a l 'Zl = Y2 - Yo 'Zo = Y2 - Yl 'Letlocation.)

and d
2

= a
l

- a
O

In the non-random search we have already computed If

numbers p and qs (r and q above) with

2 2
P = dlzO - .dOzl

(3.l6)

p
Y2 - Y3

m
2

d
O

(3. 2 5)

and
then the parabola (3.23) is monotonic increasing or decreasing in

qs = 2(dOZl - dlzO)

in order to find the turning point a 2 + p/qs of p(x)

(3.l7)

By forming

(a
2
,a

3
) provided

\p\ 2" dO (3.26)

Otherwise, the parabola (3.23) attains its minimum inthe quadratic equation for. a3* , and dividing out the unwanted root a
2

,

we find that the minimum value is ~ (Y2 + Y
3

) - i m2(d~ + p2)

(a
2

, a) , and

l
at x = '2 (a2 + a

3
+ p)

a3* = a2 + p' /q' (3.l8)
Thus, at step 4 of the basic algorithm, a

3
must be reduced if

l56 l57
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I I 1 1 2 2
P < dO f\ 2" (y2 + Y3) - 4" m2 (dO + P ) < cp - t

i.e., if

\
1 2 2 h "

\p < dO f\ 4" M(dO+p ) > (Y2 -cp) + (Y3 -cp) + 2t

6·3

(3.27) :fl(x+y) = x(l+o) + y(l+O) , }- 1 - 2

where (3.31)

\oi\ :s £ for i = 1,2

(3.28)
With these machines it see~s difficult to be sure that rounding errors

committed inside procedure glomin are harmless. At any rate, our

The effect of rounding errors analysis depends heavily on relation (3.29). (See equation (3.52) and

So far we have ignored the effect of rounding errors, which the following analysis.)

actually occur both in the computation of f(x) and in the internal We also suppose that square roots are computed with a small relative

and Thieleker (1967).)

(Any good square root routine should satisfy (3.32) very easily. The

library routines for the IBM 360 certainly do: see Clark, Cody, Hillstrom

error, say

(3.32)}\5\ < £

fl(sqrt(x» = h(l+ 35)

where

{

l-T ( -)
= ~ truncated arithmetic ,

~ ~l-T (rounded arithmetic),

Let £ be the relative machine precision (parameter macheps of

computations of procedure glomin. Now we show how these rounding errors

for T -digit floating-point arithmetic to base t3 . We suppose,

procedure glomin), i.e.,

can be accounted for.

following Wilkinson (1963), that
Let us first consider the effect of rounding errors in the computation

of f , supposing for the moment that the internal computations of

fl(xify) = (x4fy)(l+5) (3.29)
procedure glomin are done exactly. The user has to prOVide procedure

where # stands for any of the arithmetic operations +, -', X , / , glomin with a positive tolerance e which gives a bound on the absolute

and error in computing f. More precisely, we assume that, for all 0 and

16 1 < £ (3.30) x with 15\:S £ and x, X(l+O) in [a,b], we have

On machines without guard digits, the relations (3.29) and (3.30) may Ifl(f(x(l+ 6)) - f(x) \ < e (3.33)

fail to hold for addition and subtraction: we may only have the weaker

relation
where f(x) is the exact mathematical function (satisfying condition

(2.1», and fl(f(x» is its computed floating-point approximation. The

158
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reason for condition (3.33) will be apparent later: at present we only

need the special case with 0 = 0 , i.e.,

Ifl(f(x)) - f(x) \ :s e (3.34)

and

r
l( (zO + 2.01e))

- - d + --".----
2 0 d m:) 2

(3.39)

where d) = a2 - a l , Zo = Y2 - Ylfor all xE[a,b] .

We have seen that, without rounding errors, procedure glomin would
and Yi = fl(f(ai )) for i 1,2

1
m2 =2"M, cP

Thus

fl(f(~))

return q, (or y = glomin) and IJ.' (or x) satisfYing

cP f :s ~ = f(~) :s cP f + t (3.35)

s <
f(a

2
) - f(~) + (t + 2e)

m
2

(3.40)

With rounding errors, (3.35) no longer holds, but we shall show that
so, as far as the computation of s is concerned, everything said

above holds if t is replaced by t + 8e. (Remember that we are

and

CPf:Sf(~) :SCVf + t + 2e (3.36) regarding all computations inside the procedure as exact.) We are only

interested in r when dO > 0 and m2 > 0 , and as

CPf - e :s cP fl(f(~)) :s CPf + t + e (3.37) Zo + 2.01e > Zo + 2e ~ f(a2) - f(al )

If the error e in computing f is much less than the tolerance t,

then (3.36) and (3.37) are much the same as (3.35), so rounding errors

have little effect on the accuracy of ~

we have

r < _ ~ (d + _f(_a.=.2).----_f_(-=al~) )
- 2 0 d

O
m

2
(3.41)

The left hand inequality in (3.36) is obvious from the definition

of CPf' To prove the right hand inequality, we must look closely at

the "critical" sections of procedure glomin, i.e., the sections where

rounding errors' could make an essential difference. (Examples of non-

critical sections are the random and non-random searches.)

(The reason for the extra O.Ole will be apparent later.) Thus, the

computed a3 will not exceed the correct value given by (3.9), if t

is replaced by t +2e .

.The other point where rounding errors in the computation

of f are critical is when we determine whether the parabola y = p(x) ,

In computing the safe choice

(3·9), we compute
.------

s = rY2 - <$ + t

~ m2

a"
3

for a
3

according to equation

(3.38)

with p"(x) = M, p(a2) = Y2 ' and p(a
3

) ~ Y3 ' lies above the line

y = ~ -t in the interval (a
2
,a

3
) Let y = Q(x) be the parabola

with Q" (x) = M, Q( a 2) = f( a
2

) , and Q,( a
3

) = f(a
3

) . Since
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Yi = fl(f(ai)):s f(ai)+e

it is clear that

p(X) :S Q(x) + e

for i 2,3 ,

(3.42)

6·3

these terms may be accounted for if

assumption (3.29), we ~ertainly have

1
m2 ? 2 (1+ 13£)M

1
£ :S 4Oc5 From (3.45) and the

(3.46)

in (a
2
,a

3
) Thus, if In the computation of

actually computes

an
3

according to (3.9), procedure glomin

p(X) ? qJ - t

in (a
2
,a

3
), then

(3.43)

s

1

(

(y" -~) +t) 2:
fl "- ~

m
2

(3.47)

Q(X) ?~ - t - e ~ f(~) - t - 8e (3.44)
and as errors in the computation of f have already been accounted for,

we can assume that Y2 and 1J are exact floating-point numbers. From

(3.46b and the assumptions (3.29) and (3.32),

in (a
2
,a

3
), so again everything is accounted for by changing t to

t + 2e. This completes the proof of (3.36). The left inequality in

(3.37) is obvious, and the right inequality follows fro~ the above

argument if we note that it is sufficient to replace t by t+e+ (f(~) - ~)

Now, let us consider the effect of rounding errors committed inside

s <

1

(

((Y2 -~)(l+ °1 ) +t)(l+ ° 2 )(1+ 0 3))2
(1+3°4) - 1 ~

2" M(l+ 13£)
(3. 1,8)

procedure glomin. We shall show that (3.36) and (3.37) still hold,

provided some minor modifications are made in the algorithm. These

where 10. \ < £ for i
1-

nonnegat i ve,

1, ... ,4 Since y 2 - qJ and t are both

modifications are included in procedure glomin, but, to avoid confusion,
(Y2-~)(1+£)+t :S (Y2-CP+t)(l+£) (3.49)

they were not mentioned in the description above. The most important

modification is that, instead of having m2 = %M , procedure glomin has

1
m

2
= fl(2:(l+ 16£)M) , (3. 45)

so

s < S

1

l2i:' 'J (.3 ·50)

where the factor 1+ 16£ is introduced purely to nullify the effect
Thus, the slight modification of m2 has ensured that the computed s

rest of this section. Because of the slack in some of our inequalities,

of rounding errors.

For the s~ke of simplicity, terms of order £2 are ignored in the

is no greater than the exact s. Note that, in the derivation of

(3.50), it was essential that Y2 -qJ was computed with a small relative

error, so the assumption (3.29) was necessary: (3.31) would not be enough.
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Similarly, to find a'S, we actually compute

~ [1 ( (Y2 - Yl) + 2.01e)]
r = fl - 2: (a2 - a1 ) + (a

2
- a

1
)m

2
(3.51)

6·3

As before, the computed r is no greater than the correct r. The

same is not true for a'S, the computed value of a~, but a3 is

either b, fl(a2 +;.) ,or fl(a2 + s) . Suppose, for example, that

where e > 0, m
2

> 0 , and a2 > al . We are only interested in r

if r > 0 , so Then

a"
3

fl(a2 +s) (3.57)

o > fl((Y2- Yl)+2.01e)

~ ( (y2 - y1) (1 + E) + 2. Ole (1 - E)) (1 + E)

2
~ (Y2- Yl+2e)(1+E) (3.52 )

fl(f(a.'S)) = fl(f((a2 +s)(1+0)))

where 101 S E , so, from (3.33),

Ifl(f(a'S)) - f(a2 +s)\ < e

(3.58)

(3.59)

- 1r = fl(- 2: (rl + r 2))

now clear.) Thus

assuming that 1.
E:5 1iOO (The reason for the extra a.Ole in (3.39) is

(3.53)

(This is WQY we required (3.33) instead of the weaker (3.34).) Thus,

the error in computing a2 + S or a2 + r can be ignored, for it has

been absorbed into the assumption (3.33) on e.

Finally, we have to consider the effect of rounding errors when

Where

o < (a
2
-a

l
)(1-E) S r l S (a2-al )(l+E)

and

(3.54)

testing the condition (3.28). First

- (y -Y )p=fl 2 3
~M (a

3
- a2)

(3.60)

Since r > 0, (3.53) shows that Irll < Ir21 , so, from (3.53) to

(3.55),

is computed. It is important to note that we use ~M , not the

slightly different ID2 (given by (3.45)) here. Thus

Y2-
Y

3 . (1+501)
p - )

- ~M (a
3

- a
2

0> r > (Y2- Yl+2e)(1-9E
)

2 - 12: M(a2 - al )

;. s r S - ~ [ca
2

- all + (..,.::~2=------=Y1=-+_2e_)J
2: MCa2- al)

164

(3.55)

C3.56) and

dO = fl(a
3

- a2) (a3 - a2 ) (1+ 02)
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where IOi l S E for i = 1,2 .

The test actually made by procedure glomin is whether

6.4

We should mention a remote possibtlity that rounding errors can

prevent convergence. This is only possible if fl( a
2

+ s) = a2 ' and,

Thus, convergence can only be prevented by rounding errors if t is

s > (1-14E) (2t/M )1/2 , there is no cha'1ce of it happening provided
IIi I < fl((1+9 E)dO) /\ fl(~m2(d~+p2)) > fl[(Y2-~)+(Y3-~)+25]

and we shall s1:low that (3.63) is true whenever the condition (3.28) is

true. First, Ipl < dO implies that \pl < dO(1+5E) , and thus

(3.63)

as

222
t ? ME max(a ,b ) (3.68)

Iii I < fl( (1+9 E)do)

Similarly; if Ip I < dO and

1 ;:> 'J A A

"4M(do+p~) > (Y2-CP) + (Y3-CP)+2t

then

(3.64)

(3.65)

unreasonably small.

In conclusion, procedure glomin is guaranteed to return cp and ~

satisfying the bounds (3.36) and (3.37), provided the input para'TIeters

macheps, t and e are set correctly.

d~ + Ii2 ~ (d~ + p2)(1 _ 6E)

so

(3.66) 4. The rate of convergence in some special cases

It is difficult to say much in general about the number of fUnction

1 -2 -2 1 2 2
fl("2 m2 (dO + p )) ~"4 M(d

J
+ p ) (1 + 4E)

> ((Y2 - $) + (Y
3

- ~) + 2t)(1 + 3E)

? fl((Y2 - q,) + (Y3 - ~) + 2t) (3.67)

evaluations required by the algorithm described in Section 3. In the

next section we co~pare the algorithm with the best possible one for

given M and t. In this section, we try to gain some insight into the

dependence of the number of fUnction evaluations on the bound M and

the tolerance t, by looking at some simple special cases.

(Note the importance of grouping the terms: since Y
2

- cp , Y3 - cP and

- 2t are all nonnegative, their sum can be computed with a K'TI9.11 relative

error. )

From (3.64) and (3.67), the inexact test (3.63) results in a
3

being

The worst case

As pointed out above (equation (3.4)), two function evaluations

are enough to determine ~ and '+' if M < Q , so sQppose that M > 0 ,

occasio~ally be reduced unnecessarily because of rounding errors, but

this does not invalidate the bounds (3.36) and (3.37), it merely causes

reduced whenever the exact test (3.28) says that it must be. a
3

may and let

5 I¥. ( 4.1)

some unnecessary function evaluations.
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6.4 6.4

A straight line

If the global minimum of f occurs at an endpoint j.l = a or b,

and f' (j.l) f 0 , we Can gain an insight into the behaviour of the

algorithm near j.l by considering the linear approximation f(j.l) + (x-j.l)f' (j.l)

We showed above that, if the last fUnction evaluation was at a
2
E[a,b),

we could safely choose

a
3

= min(b,a2 + 0) (4.2)

for the next evaluation (step 2 of the basic algorithm). With this

simple choice of a
3

, about (b-a)/o fUnction evaluations would be

required. Procedure glomin tries to do better than this, and is nearly

to f(x) Suppose, for example, that

f(x) = k(x - a) + t (4.5)

always successfUl (see Section 6), but the worst that can happen is for some k > 0 , so j.l = a Ignoring the random searches, the

that a
3

will be chosen to be b, and then a
3

will be reduced several algorithm will evaluate f at the points a , b , c, and then at

times at step 4 of the basic algorithm. As a
3

-a
2

is halved at each

, such reduction of a
3

, there can be at most

"0', C~", )1 ~ Ilng
, (b ~ 0)1

We have ignored the random and£'unction evaluations will be required.

(4.6)

(See

Pn(X)

so

a = X +J Mg (k(X -a) +t) = x 1- Jg (k(x 1- a) +t) . (4.7)n n' n n+ M n+

y = Pn(x) which touches the line y = 0 and has p~(x) = M

Diagram 4.1.) If P (x) touches y = 0 at x = a , then
n n

1 2"2 M (x-an)

points Xl < x
2

< x
3

< ... < ~-l say, where Xo = a < xl' ~ 2: b ,

and the points (x
n

' f(Xn» and (xn+l' f(Xn+1» lie on the parabola

(4.4)

(4.3)

Thus, at worst, aboutat step 4.a
3

(~)l (~)o og2 0

consecutive reductions of

"nonrandom searches, but these can only add about b - a)
2(-0 extra £'unction

If
evaluations.

If 0 is given by (4.1), the term b - a)10g2( -0 in (4.4) varies

z = Jx - a + t/k
n n '

(4.8)

then (4.7) gives

z =z +J2k
n+l n M

only slowly with M and t, so the upper bound is roughly proportional

to (b-a) (M/t) 1/2 . In particular, the upper bound is roughly proportional

to 1M, and it seems to be a good general rule that the number of fUnction

evaluations is roughly proportional to 1M, even when the upper bound

(4.4) is not attained (see below and Section 6).

so

z
n

r;: r;;
~ k + n ~~

(4·9)

(4.10)

Thus
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6.4 6.4

~ 2 (2k)x n = a j- n~ M + n • M (4.ll) effect of rounding errors, but these should not be important if t

satisfies the weak condition (3.68).)
is the least positive n such thatand as N

N rJF (J k(b-a) +t - [;: )1
X n > b , this gives

(4.l2)

If k is very small, so that

1
N :::'"2 (b-a)/5

k(b-a) «t , then (4.12) gives

(4.14)

(4.12) shows that N is essentially proportional to 1M . and the algorithm proceeds in steps of size about 26, where 6 is

given by (4.1) .

y

~[

If the global min~um of f occurs at an interior point ~) then

(J•• 16)

(4.15)

/

The nonrandom search will quickly locate iJ.' so we

1 2
f(x) ="2 m(x-~) + t

M > m > 0

and

where iJ.E(a,b)

algorithm near .iJ. by considering the parabolic approximation

1 2
f(iJ.) +"2 f" (iJ.) (x-iJ.) to f(x) . Thus, suppose t.hat\

A parabola

fl (~) = 0 , so if f"(iJ.) f 0 we may analyse the behaviour of the

x
x6

....r
I

I I

I I

I
I

I

x
5

X4
x

3
x

2XlaXo

Diagram 4.1: A straight line, f(x) k(x-a) + t (for N = 6)
may suppose that iJ. = iJ. J and, without loss of generality, iJ. O. The

algorit!~ will call for the evaluation of f at points to the left J and

Two limiting cases of (4.12) are interesting. If t is small and

k not too small, so that k(b - a) »t , then
except that now f is given by (4.16) instead of by (4 ..5). In place

of (4.7), we find that

define Xo = iJ. = 0 , and study the points x
l
'x

2
, ... defined above,

(4.17)x - J~ (x2
+ 2t)n+1 M n+l m

As these two cases are similar, let us

(x2 + 2t)
n mex =X +J~

n n M

then to the right, of fl

(4.13)

(In this section we are neglecting the
\

t .

JM(t - a)
N:::, 2k

which is independent of
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6.4

It does not seem to be possible to give a simple expression like

(4.ll) for xn ' defined by the recurrence relation (4.17), but we may

6.5

5· A lower bound on the number of function evaluations required

Suppose that a positive tolerance t and bound M are given,

in terms of xn ' obtaining

(Similar results to those below hold if equality isfor all xE[a,b]

solve for

If

xn+l

xn+l ( ~:) xn + (M~) ~ (x2 + 2t)
M n m

(4.18)

that f attains its global minimum ~f

f"(x) < M

in [a, b] at ~f ' and that

(5.1)

p (M/m) 1/2 ( 4.19)

allowed, but the definitions and proofs have to be modified slightly.)

First, we need a lemma.

Lemma 5.1

If x'E[a,b) , then there is at most one point

this may be written as

x = (~) x + (~) (~ )n+1 p-l n p2 -1 ~ xn + m - xn
(4.20)

the parabola y = p(x) ,with pOI (x) = M p(x' )

x"E(x',b] , such that

f(x') , and touching

Suppose that p is close to 1, i.e., M is not much larger the line y = 'lif - t , satisfies p(x") = f(x") •

than m = f" (~)

Xl

Then

(+) r;:
P -1 ~ ~

(4.21)

Proof

Suppose, by way of contradiction, that two such distinct points x"

and x" , exist. Then

For n > 1 , the first term in (4.20) dominates the second, and M = 2f[x',x",x'''] = f"(s) (5.2)

Thus, if P is close to 1, then

x
n+l ( .121!) X (1+ o( (p_l)2))

p-l n
as p - 1 . (4.22) for same sdx' ,b] (see Chapter 2), contradicting

f"W <M (5.3)

For x'E[a,b) , define

x ~ (gI:l)n f2t
n - p-l ~ m

for n ~ 1 , and, as the factor

evaluations will be required.

gI:l
p-l

172

(4.23)

is large, only a few fUnction

Definition 5.1

[X"
sex') = lb if the point

otherwise.

173

x" of Lemma 5.1 exists,



6·5
6·5

Lemma 5.2 shows tllat N is finite, in fact

Lemma 5.2

If xE[a,b) and sex) f b , then
N-:;l+ \(b_a)(M/(8t))1/2l (5·5)

sex) _ x > ~ 8t- M
(5. 4)

The following lemma shows that, in order to prove that f( x) ?: cP f - t

for all xE[a,b] , given orlly condition (5.1), it is sufficient to

Proof

This follows by considering the parabola, with second derivative M,

evaluate

Lemma 5·3

f at X l ,x2 '" .,~ .

which passes through (x,f(X)) and (s(x),f(S(X))) , and touches the

line y = cP f - t , s inc e f (x) :.:: cP f and f ( s (x)) ?: cP f

Definition 5·2

An integer N and points a = xl < x2 < x3 < ,., < ~ = bare

defined thus:

If gEC 2 [a,b], g"(x) < M for all xEa,b, and

g(x ) = f(x )
n n

for n = 1,2, .. "N and the points x n defined above, then

CPg?:'"P f - t

(5. 6)

(5.7)

X
2

x
3

x4 x 5 xCI X, Xs x
9

~f

Diagram 5.1: The points
xl""'~ (for N = 10)

xl = a

and, for n? 2 and xn _l < b ,

X
n

= s(x
n

_
l

) (See Diagram 5.1.)

174

Proof

The lemma follows immediately from the definitions and Theorem 2.1.
(

(Clearly, weaker conditions on g, e.g. condition (2.1), are sufficient.)

Our interest in the points xl'" .,~ stems from the following

theorem, which comple:nents Le;nma 5·3.

, Theorem 5.1

Let xi < x2 < ... < x~ be any v points in [a,b], with V < N •

Then there is a function gEC"'[a,b], satisfying

g"(x) < 14 (5. 8)

for all xE[a,b] , and
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6·5 6·5

g(x~) = f(X~) (5 ·9) then it would be sure to fail for either f or for g, for f and g

are indistinguishable on the basis of the v function evaluations,

for n 1,2, ... ,v , such that

cP g < cPf- t ' (5.10)

yet cPg + t < cPf' Of course, we are only considering algorithms which

sequentially evaluate f at a finite number of points.

Conversely, Lemma 5.3 implies that N+l function evaluations are

Proof'

, Suppose, by way of contradiction, that

sufficient (just evaluate f at ~f and Xl' ""~) , and possibly N

are sufficient. (See Diagram 5.1.) Unfortunately, Lemma 5.3 does not

for all such g. Then xi = a , for otherwise -g(a) can be

CPg~CPf-t

arbitrarily large, and, similarly, X'
V

b .

(5·11)

Since v < N , there is

give us an effective algorithm for approximating CPf' for we do not

know N or the points x2 '" "~-l in advance, and a large number of

fUnction evaluations is usually needed to approximate them.

the parabola y = p(x) , with p"(x) = M, p(x~) = f(X~) , and

P(x~+l) = f(X~+l) , is such th~t

min p(x) < CPf - t
xE[ x~' x~+l ]

Efficiency

Suppose that an algorithm requires N' fUnction evaluations to

(5. 13)E = N/N '

findcp = f(~) such that CP:5 CPf+ t is guaranteed. We could define

the efficiency E of the algorithm by(5.12)

Thus,and x~+l > xn+lX' < x
n - n

1 < n < v , such thatan n,

Since there is a fUnction g as above which is arbitrarily close to (Note that E depends on f, M , t , a and b, as well as on the

p(x) in [x~,x~+l]' this contradicts (5.11), so the theorem holds. algorithm ~) We have shown that

E < 1 (5. 14)
Consequences of the theorem

Theorem 5.1 says that, if all that is known a priori about f is

that feC 2[a,b] and satisfies condition (5.1), then any algorithm,

which is guaranteed to find ~ so that f(~):5 CPf+ t , must require

at least N evaluations of f This is so because, if an algorithm

for any correct (i.e., guaranteed) algorithm, so, if an algorithm has

an efficiency close to 1, then we are justified in saying that the

algorithm is nearly optimal (for that f, M, t etc.). In the next

section we give numerical results which show that, for practical examples,

required only v < N evaluations at points xi < x2 < .. '. < x~ , say,
the algorithm described in Section 3 is often nearly optimal.
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6.6'

6. Practical tests
6.6

Table 6.1: Numerical results for procedure glomin

and the total number of function evaluations required by procedure glomin:

Section 5) were computed in the obvious way from Definition 5.2, using

(Recall that no algorithm which is guaranteed to succeed can take less

ALGOL W (Wirth and Hoare (1966), Bauer, Becker and Graham (1968)) on an
f M N" N' N E =N/N'

a 2 2 2 1.00

f
l

100 15 15 11 0·73

10000 106 106 101 0·95

2 4 4 2 0·50

2.1 8 11 8 0.73

2.2 9 13 9 0.69
f 2 8 25 34 29 0.85

32 48 68 60 0.88

128 95 141 120 0.85

14 38 51 37 0·73

f
3

28 48 68 54 0·79

56 67 98 76 0.78

f 4 72 222 246 126 0·51

f
5

72 456 542 437 0.81

fl1 ,

The10-12

10-12

10-14 and 16-13

Some representative

(parameter m of glomin) on

N and the points Kl , ...,~ (see

The table gives the upper bound' M

The ALGOL procedure glomin given in Sectio~ 10 was tested using

procedure' zero of Chapter 4 to solve the nonlinear equation

than N f'unction evaluations.)

lower bound N defined in Section 5 is also given for t

respectively .

results the parameters e and macheps were set at

numerical results are summarized in Table 6.1. For all of these

N" with tolerance t = 10-8 , and N' with tolerance t

IBM 360/91 computer with m~chine precision 16-13 .

p(x)' = f(x) (6.1) The symbols are explained above. The f'unctio~ are:

where p(x) is the parabola of Lermna 5.1. Finally, the efficiency
fl(x) = 2 - x on [7,9J (in all cases ~ 9, ~ = 7 ),

For some more numerical res',l1ts, see Section 8. 2 3
= x + x

[-l,2J (in all cases

\~\ < 6.10-
20

) ,

~ = ~ = 0) ,

(for t = 10-12 , \~\ < 3.10-10[- ~ , 2]on

on
2

= xf 2 (x)

f
3

(x)

(equation (5.13)) is given.E = NIN'

f 4(x) = (x+sin(x))exp(-x2) on [-10,10] (~ = -0.6795786599525

~ = -0.824239398476077) , and

f
5

(X) = (x - sin(x))exp(-x2) on [-10,10]

(~ = -1.195136641665 , qi = -0.0634905289364399)
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6·7

Comments on Table 6.1

6·7

for as y < x S b Condition (7.2) was necessary to prove the basic

The results for the simple fUnctions f l (x)=2-x and f
2

(x) 2
= x Theorem 2.1. For the application discussed in Section 8 (global

verify the predictions made in Section 4. For example, the values N = 11 minimization of a function of several variables), we need to find the

and N = 101 for f l are exactly as predicted: one more than the global minimum of a function which is continuous, but not necessarily

right side of equation (4.12). N ,N' and N" are roughly proportional differentiable. We can justify using procedure glomin, even though f

to 1M if M» f" ([J.) (see also the results for f
3
), but this rule

breaks down if M:::: f" ([J.) , as expected from equation (4.23). (See the

results for f 2 with M = 2, 2.1, 2.2.)

'It appears that the number of fUnction evaluations does not depend

strongly on t: comparing N" with N' , we see that the average

may not be differentiable, because of the following Theorems 7.1 to 7.3,

which generalize Theorems 2.1 to 2.3. (If the reader is prepared to

accept the fact that Theorems 2.1 to 2.3 Can be generalized in the

appropriate way, he may skip this section.)

number of fUnction evaluations required is only about 20 percent more T.heorem 7 .1

for -12t = 10 than for t 10-8 Let fEC[a,b] , and suppose that there is a constant M such

This means that no correct

Finally, the efficiency E of the algorithm is fairly high, even

for the difficult fUnctions f 4 and f
5

.

algorithm based entirely on fUnction evaluations could do very much better

than ours, at least on these examples. This is not too surprising, in

that, for all sufficiently small h > 0 ,

f(u+h) - 2f(u) + feu-h) < Mh
2

for all uE[a+h,b-h]. Then, for all xE[a,b],

(7.3)

view of the results of Section 5.
f(x) ? (b-x)f(a) + (x-a)f(b)

b-a
1- '2 M (x-a) (b-x) (7.4)

7. Some extensions and generalizations

So far we have assumed that fEC 2[a,b] and

Proof

There is no loss of generality in assuming that

f"(X)SM

for all xE[a,b], or at least that f EC1[a,b] and

(7.1)
and

f(a) = feb)

M = 0

o (7.5)

(7. 6)

f' (x) - f' (y) S M(X - y) (7. 2 ) for we can consider f(x) - p(x) ,where p(x) is the right side of

180

(7.4), instead of f(x) . Thus, we have to show that
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6·7

'tl f .:: 0 (7.7)

6·7

hypothesis that f(cl) f(c 2) gives, after some simplification,

where 'tlf is the least value of f

contradiction, that

on [a,b] . Suppose, by way of

(c
l

-a)(c
2

-a) >
f(a) - f(cI)

10 M
2

(7.13)

'tl f < 0

and let

(7.8)
and the result follows as c

2
- a > cl - a > 0

U = Sllp[xt:[a, b] I f(x) = CPf}

f, feu) = CPf < 0 , so u f a or b .

Theora'JI 7.3

Suppose that (7.3) holds, M > 0, a < c < b , and the interval
By the continuity of

for sc~fficiently small h > 0 , uE[a+h"b-h] , and, from the

(7 ·9)

Thus,
I = [c,b] n [c, ~+c _ !{a.L- 1'(d

2 ~] has positive length. Then f(x)

definition of u,

f( u-h) .:: f( u)

and

f(u+h) > feu)

(7. 10)

(7.11)

is strictly monotonic decreasing o~ I .

Proof.

Suppose xl ,x
2

E I with Xl < x
2

We have to show that

Apply Theorem 7.1, first with X replaced by c and b by xl'

Bec~use of the assumption (7.6), this contradicts (7.3), so (7.8) is

impossible, and the result fOllows. (Note the close connection with

the maximum principle for elliptic difference operators.)

f(Xl ) > f(x
2

)

then With a replaced by c , X by Xl and b by x
2

•

(7·14)

The two

resulting ineq~alities give, after some simplification,

Theorem 7.2

Suppose that (7.3) holds, M > 0, ascI < c
2

S b , and

X +X

_1 2 2 < x2 ' the right side of (7.15) is positive, so (7.14)

f(a) .:: f(cl) = f(c 2) .

c
2

- a >

Proof

Then

f(a) - f(cl)

10 M
2

(7.12)

Since

holds.

Remarks

f(xl ) - f(x2 ) > a+c _ f(a

t
-ife) _ Xl + X2

M(X?-:x;:r- - 2 M a-c 2
(7.15)

Apply Theorem 7.1 with x replaced by c
l

and b by c
2

. The

182

Theorems 7.1 to 7.3 generalize Theorems 2.1 to 2.3 respectively.
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6.8 6.8

Since the algorithm described in Section 3 is based entirely on Thus, we have reduced the minimization of f(x,y) , a function of two

Theore~s 2.1 to 2.3, it is clear that condition (7.3) is sufficient for variables, to the minimization of functions of one variable. Procedure

the algorithm to find a correct approximation to the global minimum glomin (see Sections 3 and 10) can be used to evaluate q>(y) for a

of f This is not sQrprising, for condition (7.3) is equivalent to given y, using condition (8.1). If we could show that

(7.2) if fEC1[a,b] , and is equivalent to (7.1) if 2
fEC [a, b] . In the q:>"(y) < M- Y

(8.5)

then procedure glomin could be used again (recursively) to minimize

q:>(y) , and thUS, from (8.4), f(x,y) . Unfortunately, examples show

so

when

need not be differentiable everywhere inq:>(y)that [a , b ]
y y

(8.5) may be meaningless (we shall see below that (8.5) holds

q:>"(y) eXists). For example, consider

on f are much weaker than those required by Newman (1965), Sugie (1964),

or Krolak and Cooper (1963). (See also Kaupe (1964) and Kiefer (1957).)

global minimum of a f'tInction f of several variables. The conditions

next section, we use this result to develop an algorithm for finding the

8. An algorithm for global,minimization of a function of several variables f(x,y) = xy (8.6)

Suppose that D = [a , b ] X [a , b ]x x y y
?

is a rectangle in R-, on D [-1,1] X [-1,1] Then

f: D - R has continuous second derivatives on D, and constants Mx q:>(y) = min (y,-y) = -Iy\ (8.7)

and M are known such that
y

which is not differentiable at y = 0 , and we can not expect to prove

fxx(x,y) S Mx (8.1)
(8.5). The same problem may arise if the minimum in (8.3) occurs at an

and interior point of D: one example is

f (x,y) < M
yy - Y

(8.2)
f(x,y) ~ (x3 - 3x)sin(y) (8.8)

for all (x,Y)ED Let us define q:>: [a , b ] - R by
y Y on D = [.../5, /3] X [-10,10] . (f

x
(x, y) v8.-l1ishes for x = + 1 ,

O,!.nq:>(y) min f(x,y)
xE[ax,bx ]

(8.3) so q>(y) = -2\sin(y) \ ' which is not differentiable at

FortQllately, the following theorem shows that q:>(y)

etc.)

does satisfy

Clearly q:>(y) is continuous, and a condition like (7.3), so the resQlts of Section 7 show that procedure

min f(x,y)
(x,y)ED

min q>(y)
yda , b ]

y Y

(8.4) glomin can be used to find the global minimum of q:>(y) , just as if (8.5)

held.
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6.8
6.8

Theorem 8.1

Let f(x,y) and ~(y) be as above. Then, for all h > 0 and

y E [a +h, b -h] ,
Y Y

and

2
f(x+he.) -2f(x)+f(x-he.) <M.h_ _l _ _ -l - 1 (8.14)

:::>
cp(y+h) - 2cp(Y) +cp(y-h) < M h~

- Y (8·9) for all sufficiently small h > 0 , all x ERn+l such that X,X+ he. ED,__ - _1

Proof

and i ~ 1,2, ... ,n+l Let D I ~ I l X ••• X In ' and define cp: D' .... R by

from [a ,b) into [a ,b) (not nec~ssarily continuous), Such that
y y x x

From the definitio~ (8.3) of cp(y) , there is a function ~(y)

is continuous on
((l(y) ~ f(~(y), Y) (8.10)

Then cp

cp(y) min f(Yl'" "Yn'x)
XEIn+ l

D' ,

(8.15)

Thus
mi.n f(x)
XED

min qJ(y)
YED'

(8.16)

so

cp(y::. h) ~ f(~(y),y::.h) (8.11) and

cp(y+he'.) -2cp(y)+cp(y-he'.) < M.h
2

- -J - -J - J
(8.17)

cp(y+h) - 81J(y) +cp(y-h) ~ f(~(y),y+h) -2f(~(y),y)+ f(ll(y),y-h) , (8.12)

and the result follows from condition (8.2).

for all sufficiently small h > a , YER
n such that

and j = 1,2, ... ,n . (Here e. is a unit vector in
':'1

is a unit vector in Rn .)

y,y+he'. ED' ,
- -- -J

n+l
R ,and e'.

-J

Corollary 8.1

For all yda ,b] ;'t Which cp"(y) exists,
y y Proof

qJ"(y) < M- y (8.13) The proof is a straight-forward generalization of the proof of

Theorem 8.1, so the details are omitted.

Funct ions of n va!'iables

Theorem 8.2 generalizes Theorem 8.1 to functions of any finite

number of variables.

Theorem 8.2 shows that it is possible to use procedure glomin to

find the ~lobal minimum of a function f(X
l

, ... ,xn) of any finite

num~er n 2 1 of variables, provided upper bounds are known for the

Suppose that

n+l
D = I l X I 2 x ... x I nt1 '= R

(i = 1, ... ,n) r: It is interesting that

are nece,ssary.(i I j)f (x)x.x. _
1 J

partial derivatives f (x)x.x. _
1- 1

no bo~ds on the cross derivatives

f: D .... R is continuous,

Ii is a nonempty compact set in R forn > 1 ,

i = 1, ... , n+l ,

Theorem 8.2
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6.8 6.8

If a one-dimensional minimization using procedure glomin requires

about K function evaluations, then we would expect that about r
ITocedure glomin2d was tested on an IBM 3&J/91 computer (using

ALGOL W), and some numerical results are summarized in Table 8.1. In

all cases shown in the table the para~eters

respectively.

is guaranteed, w~ere is the true minimum of f ,

and t were

-14 ~
qJf- lO SCP(Thus

macheps , e

qJf

10-10andset at 16-13 , 10-14

-10S CPf+ 1.0002 X 10

function evaluations would be required for an n-dimensional minimization.

Since K is likely to be in the range 10 < K < 100 in practice (see

Section 6), the computation involved is likely to be excessive for

n > 3. Thus, for functions of more than three variables, w" probably and cp is the value returned by the procedure.) In the table we give

number of function evaluations N, and the .approximate global minimum qJ

must be satisfied with methods w~ich find local, but not necessarily

global, minima (see Chapter 7). It ShOllld be noted, however, that the

the upper bounds !VIx and M
Y

(see equations (8.1) and (8.2)), the total

theorems of Section 5 do not extend to functions of more than one (always very close to the true global minimum CPf) .

variable, so we do not know how far our procernlre is from the best

Thus,i = l, ... ,n ).forpossible (given only upper bounds on f
X.X.

l. l.

there is a chance that a.much better method for finding the global

minimum of a function of several variables exists. It is also possible

that slightly stronger a priori conditions on f (e.g., both upper

and lower bounds on certain derivatives) might enable us to find the

global minimum much more efficiently.

Minimization of a function of two variables: procedure glomin2d

In Section 10 we give an ALGOL 60 procedure (glomin2d) for finding

the global minimum of a function f(x,y) of two variables, using the

method suggested above. Note that glomin2d uses procedure glomin in a

recursive manner, for glomin is required both to evaluate and to

minimize cp. The error bounds given in the initial comment of procedure

glomin2d are easily derived from the error bounds (3.36) and (3.37) for

procedure glomin.
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Table 8.1: Numerical results for procedure glomin2d Comments on Table 8.1

rule as to Which should be done first. Of course, even the lower figure

and then over y, or vice versa, but it is difficult to give a reliable

of 1815 function evaluations is very high by comparison with 100 or less

funct ions of one 'rariable (see Sect ions 5 a-'1d 6), the number of f\mct ion

Thus, it can

is just the Rosenbrock function

and ?-1.
y

Mx

f 4(X,y) ~ f
3

(y,x)2
Y ~ X

for methods which seek ,local minima (see Chapter 7), but perhaps this is

evaluations (N) increases with

The res"~lts for the simple functions f l a-'1d f 2 are not very

s"~rprising. As expected from the behaviour of proced'.lre glomin on

f
3

(x,y) ~ 100 (y-x2) 2 + (1- x)2 is the well-knoW'Q Rosenbrock

function (Rosenbrock (1960)), and it has a steep curved valley along

in disguise, and it is interesting that only 1815 function evaluations

make a large difference whether we minimize first over x (with y fixed)

were re~uired to minimize f 4 , compared to 13320 for f
3

the parabola

f M M N cpx Y

f
l

0 0 4 -1

4 4 9 -1

2 4 51 0

f
2

2 10 n6 0

10 4 ' 446 3'-35

10 10 956 4'-39
-

f
3

2210 200 13320 2'-18

f 4 200 2210 1815 0

f
5

4 4 1954 ~0.396652961085471

f 4 4 100336 -0.396652961085468
6

8 8 130496 -0.396652961085434

The symbols are explained above. The functions are:

f
3

(y,X) on the same domain;

sin(x) cos (y) exp( _(x2
+ l))

on [-1,1] X [-1,1]

on [-1,3] X [-2,4] ;
isf 6

Mx

and M only increased N
y

For this function the size

f 6 are the same, but the domain ofandf
5

increasing the size of the domain by a factor of four increased

The functions

and M
Y

four times as large as the domain of f
5

of the domain has much more influence on N than do the bounds

not been extended to functions of several variables.)

by about 30 percent. With a different function, though, we could easily

N by a factor of about 50, but doubling M
x

the price which must be paid to guaran~ee that we do have the global

minimum. (This is only a conjecture, for the results of Section 5 have

[-1,2] X [-1,2]on

on [-1.2,1.2] X [-1.2,1.2]

on [-2,4] X [-2,4] .f
5

(X,y)

2 2 2
100(y-x) + (l-x)f

3
(X,y)

f 4(x,y)

f
5

(X,y)

f 6(x,y)

fl(x,y) ~ 133 + 99X - 35Y

2 ' 2
f2(x,y)~ X + x:y + 2y

reach the opposite conclusion. (f
2 is one example.)
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To summarize: if it is possible to give upper bounds Mx and M
Y

6.10

one variable are used to give an algorithm for finding the global

on the partial second derivatives f and f , then procedure
xx yy

glomin2d will find a guaranteed good approximation to the global minimum,

but the num':Jer of function evaluations required may be considerable,

minimum of a function of several variables (practically useful for two

or three variables), and ALC~L procedures are given in Section 10. The

ALGOL procedures are guaranteed to give correct results, provided the

especially if the domain of f is large or if the bounds Mx 8-'1d M
Y

basic arithmetic operations are performed with a small relative error

are weak. As for one-dimensional minimization, the size of the tolera~ce

t has a fairly small influence on the total number of function evaluations

required.

Finally, we should note that we have restricted ourselves to

rectangular domains merely for the sake of simplicity: there is no

real difficulty in dealing with nonrectangular domains.

(see the remark folloWing equation (3.30)).

For practical problems, the main difficulty in using the results of

this chapter lies in finding the necessary bounds on second derivatives.

One intriguing idea is that, if f(x) were expressed in terms of

elementary flL'lctions, then the second derivatives could ':Je computed

symbolically, and upper bounds could then be obtained from the symbolic

second derivatives by using simple inequalities. Thus, the entire

process of finding the global minimum could be automated. In some cases

9· Summary and conclusions

In Section 1 we saw that the problem of finding the global minimum

functions defined on infinite domains could also be dealt with

a'.ltomatically by using suitable elementary t r8-'1S format ions .

~f = f(~f) of a function f defined on a compact set is well-posed,

whereas the problem of finding ~f is not well-posed. To be sure to

find the global minimum, some a priori conditions on f are necessary,

and several possible conditions were discussed in Section 1. We

concentrated our attention mainly on one such condition, a given upper

bound on flO, and small variations of this condition.

An efficient algorithm for one-dimensional global minimization,

based on theorems in Sections 2 and 7, is described in Section 3. The

effect of rounding errors, and the number of function evaluations

required, are discussed in Sections 3 to 5, and numerical results are

given in Section 6. Finally, in Section 8 the results for ~'1ctions of

192

10. ALGOL 60 procedures

The ALGOL procedures glomin (for global minimization of a function.

of one variable) and glomin2d (for global minimization of a function of

two variables) are given below. The algorithms and some numerical results

are described in Sections 3'to 6 and 8.
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6.10

Procedure glomin

rea1 procettlre glomin (a, b, c, m, macheps, e, t, f, x);

value a, b, c, m, macheps, e, t;

real a, b, c, m, ma,:heps, e, t, x; real procedure f;

begin comment:

Glomin returns the global minimum y at x of the fUnction

6.10

begi~ Gorrrrnent: Nontrivial case (m > 0, a < b);

m2 := 0.5 X (1 + 16 X ma"heps) X m;

if c < a V c > b then c := 0.5 X (a~b);

yl := f(c); k:= 3; dO:= a2 - c; h:= 9/ll;

if yl < Y th~

begin x := c; y:= yl end;

f(x) defined on [a, b] The procedure assumes that feC(2)[a,b] comment: Main loop

and f"(x) S m for all xE[a, b] (weaker conditions are sufficient: next: dl:= a2 - aO; d2:= c - a8;

see the text) . e and t are positive tolerances: we assume that z2 := b - a2; zO:= y2 - yl; zl:= y2 - yO;

f(x) is computed with an absolute error bounded bye, i.e., that

\fl(i(x(l~macheps)))-f(x)\ < e, where macheps is the relative

machine precision. Then x and y = glomin are returned so that

min(f) S f(x) S min(f) + t + 2e and

min(f) -e Sy = fl(f(x)) smin(f)+t+e

c is an initial guess at x (a or b will do). The numoer of

function evaluations required is ~sually close to the least possible,

and considerably less than (b_a) (mj8t)lj2 , provided t. is not

unreasonably small (see Sections 3 to 5);

integer k; real aO, a2, a3, dO, dl, d2, h, m2, p, q, qs, r, s, y,

yO, yl, y2, y3, yb, zO, zl, z2;

comment: Initialization;

x := aO := b; a2:= a;

yb := yO := feb); y:= y2 := f(a);

if yO < Y then y : = yO else x : = a;

if m > 0 f\ a < b then

194

p := r := dl X dl X zO - dO X dO X zl;

q := qs := 2 X (dO X zl - dl X zO);

comment: Try to find a lower value of f using quadratic interpolati on;

if k > 100000 /\ Y < y2 then go to skip;

retry: if q X (r X (yb-y2) + z2 X q' X ((y2-y)+t))

< z2 X m2 X r X (z2 X q - r) then

begin a3 := a2 + r/q; y3:= f(a3);

if y3 < Y ~en

beg~ x := a3; y:= y3

end

end;

comment: With probability about 0.1 do a !'a:Jdam search for a lower

value of f. Any reasonable r~~dom number generator can be used in

pla~e of the one here (it need not be very good);

skip: k:= 1611 X k; k:= k - 1048576 X (k 7 1048576);

q := 1; r:= (b-a) X (k/100000);

if r < z2 !hen go to retry;
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r := m2 X dO X dl X d2; s:= sqrt(((y2-y)+t)/m2);

h := 0.5 X (l+h);

comment: Prepare to step as far as possible;
~egin comment: Prepare for the next step;

aO := c; c;= a2; a2:= a3;

yO := yl; yl:= y2; y2:= y3;

p : = h X (p + 2 X r X s); q: = r + 0.5 X qs;

r := -0.5 X (dO + (zo + 2.01 X e)/(dO X m2));

go to next

end

r : = a2 + (if r < s V dO < 0 then s els e r);

comment: It is safe'to step to r, but we may try to step further;

a3 ; = if P X q > 0 then a2 + p/q else r;

inner: if a3 < r then a3 := r;

end,
--I

glomin := y

end glomin;

if a3 ? b then

begin a3 := b; y3:= yb end

~lsey3 := f(a3);

if y3 < Y then

begin x := a3; y:= y3 end;

Proced~re glomin2d

real procedure glomin2d (ax, ay, bx, by, fiX, my, macheps, e, t, f, x, y);

valu,:- ax, ay, bx, by, mx, my, ma;:aeps, e, t;

real ax, ay, bx, by, ~~, my, macheps, e, t, x, y;

dO := a3 - a2;

if a3 > r then

begin comment: Inspect the parabolic lower bound on f in (a2, a3) ;

real procedure f;

begin comment:

Glomin2d returns the global minimum z = f(x,y) of the function

accuracy of ~e, and on return

e and t are 'positive tolerances: f must be evaluated to an

in the rectangle.

aTe upper bounds on the second partial derivatives of we

fiX and my

f :

B.-'1d f (x, y) < my
yy -fxx(X'y) S fiX

f(x,y) defined on the rectangle [ax, bx] X [ay, by] .

assume that

p := 2 X (y2 - y3)/(m X dO);

begin comment: Halve the step and try again;

a3 := 0·5 X (a2 + a3); h:= 0.9 X h; go to inner

if abs(p) < (1 + 9 X macheps) X dO

/I 0.5 X m2 X (dO X dO + P X p) > (y2 -y) + (y3 -y) + 2 X t then

end

end;

if a3 < b then

min(f) S f(x,y) S min(f) + t + 3e and

min(f) - e S z = fl(f(x,y)) S min(f) + t + 2e .

macheps is the relative machine precision, and procedure glamin (for

one-dimensional minimization) is assumed to be global;
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real procedure phi (y); value y; real y;

begin comment: Returns min f(x,y) over x (y fixed), a-"ld may

alter the global variables first, xs and zm;

real procedure fx (x); value x; real x;

begin fx:= f(x,y) end :rx;

real ym;

ym := glomin (ax, bx, xs, mx, macheps, e, tl, :rx, xs);

if first V ym < zm then

begin first := false; zrn:= ym; x:= xs end;

phi := ym

end phi;

real tl, xs, zrn; Boolean first;

first := true; zrn:= 0;

tl := 0.5 X t; xs:= ax;

glomin2d := glomin (ay, by, ay, my, macheps, tl + e, tl, phi, y)

end glomin2d;
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1. Introduction and survey of the literature with such constraints can be reduced to unconstrained problems by a

In this chapter we consider the general unconstrained minimization transformation of variables (see Box (1966)).

problem, and the recent literature on the subject is quite extensive.

Here we give only a brief introduction, and no attempt is made to duplicate

the survey articles by Box (1966), Fletcher (1965, 1969C), and Powell

(1970a, e), or the books by Beale (1968), Box, Davies and Swann (1969),

Jacoby, Kowalik and Pizzo (1971), Kowalik and Osborne (1968), Wilde (1964),

and .Wilde and Beightler (1967).

given a function

(1.3)

1(1.2)

)

1, ... ,m .i

(an inequality constraint) ,

(an equality constraint)

Ta.x + c.
,_l_ l

g. (x) = 0
l _

gi (~)

gi (~) ? 0

More general constraints may be of the form

or

g.: D. c Rn
~ R is some given function, for

l l-

g.(x) may be linear, say
l -

where

f; R
n

~ R , find an approximate lo6al minimum

There is no need to emphasize the practical importance of this

problem:

of f.

.) In practical problems the glo9al minimum, not a mere local minimum,

is usually of interest. Methods for finding global minima are discussed

in Chapter 6, but for functions of a moderate or large number of variables

for some a, ERn and c,ER, or g,(x) may be nonlinear, and perhaps
_l l l _

quite difficult to compute. From the point of view of efficiency, it is

the methods of Chapter 6 are impractical. Usually the best that we can probably best to deal with linear constraints directly, but this is

do, in the absence of any special knowledge about ·f , is to use a good

local minimizer and try se~ral different combinations of starting

positions, ·steplengths etc., in the hope that the best local minimum

found is the global minimum.

difficult for nonlinear constraints. Direct methods for linear constraints

are given in Fletcher (1968b), Goldfarb (1969a), and Rosen (1960). (See

also Bartels (1968), Bartels and Golub (1969), Bartels, Golub and

Saunders (1970), Gill and Murray (1970), Goldfarb and Lapidus (1968),

Hanson (1970), and Shanno (1965, 1970b).)

Constrained problems Problems with nonlinear constraints can be reduced to a sequence of

only defined on D.) Simple upper and/or lower bounds, of the form

It often happens that we want to minimize f(x) subject to the

constraint that x is in some subset D of Rn . (Sometimes f is

a. < x. < b.
l - l - l (1.1)

unconstrained problems by the use of penalty or. barrier functions. (See

Carroll (1961), Fiacco (1961, 1967, 1969), Fiacco and Jones (1969),

Fiacco and McCormick (1968), Fletcher (1969b), Fletcher and McCann (1969),

Jones and McCormick (1969), Kowalik, Osborne and Ryan (1969), Lootsma

(1968, 1970), Murray (1969a, b), Osborne and Ryan (1970, 1971),

on the components X.
l

of x, are particularly common, and problems Pietrzykowski (1969), and zangwill (1967b).) Attempts have also been made
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to deal with nonlinear constraints directly. (See Allran and Johnsen

(1970), Box (1965), Haarhoff and Buys (1970), Kalfon, Ribiere and

Sogno (1968), Luenberger (1970), Mitchell and Kaplan (1968), Murtagh

and Sargent (1969), Powell (1969d), Rosen (1961), and Zoutendijk (1960,

1970).)

Methods using derivatives

Many methods for the constrained or unconstrained minimization of

7·1

and Levy (1969), Davidon (1968, 1969), Davies (1968), Fletcher (1966,

1970), Goldfarb (1966, 1969b, 1970), Goldfeld, Quandt and Trotter (1968),

Greenstadt (1967, 1970), Hestenes (1969), Kelley and Myers (1967),

Luenberger (1969b), McCormick and Pearson (1969), Miele and Cantrell

(1969, 1970), Myers (1968), Pearson (1969), Powell (1969b, c, 1970b, c, d),

Ramsay (1970), Shanno (1969a, b), Shanno and Kettler (1969), Sorensen

(1969), Takahashi (1965), Tokumaru, Adachi and Goto (1970), Vercoustre

(1970), Goldstein and Price (1967), and Wells (1965).)

f: D _ R explicitly use th~ partial derivatives Of/2Jxi ' for In many practical problems, it is difficult or impossible to find

i = 1, •.. ,n , and some methods also Uge the second partial derivatives

of f. (Methods for constrained minimization may also use the partial

derivatives of the constraint functions gi') For example, the

classical method of steepest descent (Akaike (1959), Cauchy (1847),

Curry (1944), Forsythe (1968), Goldstein (1962, 1965), and Ostrowski

(1966, 1967a» repeatedly minimizes f in the direction -g, where

the partial derivatives of f(x) directly. One possibility is to

compute derivatives numerically, e.g., by finite differences, and then

use one of the methods reqUiring derivatives. Stewart (1967) has

successfully modified the variable metric method so that difference

approximations to derivatives can be used. The difficulty is in

balancing the influence of rounding errors and truncation errors when

_ _ (Of~OX1)
g - .- .

df/ox
n

is the gradient of f. Perhaps the most successful methods using

(1. 5)

using finite differences to estimate derivatives. For a computer program,

see Lill (1970) .

Methods not using derivatives .

Although Stewart's modification of the variable metric method

derivatives are the Davidon-Fletcher-powell "variable metric" method

(Davidon (1959), Fletcher and Powell (1963), Huang (1970), and

McCormick (1969), and the conjugate gradient method of Fletcher and

Reeves (1964), which is slower but requires less storage than the

variable metric method. (For other methods using derivatives, and related

topics, see Bard (1968, 1970), Broyden (1970a, b), Cantrell (1969), Cragg

202

appears to work well in most practical cases (see Stewart (1967),

Powell (1970a), and Section 7), it is more natural to use a method which

does not need derivatives, if derivatives can only be found numerically.

Possibly such methods could be more efficient than methods which approximate

derivatives numerically, although this is less clear in n dimensions than

in one dimension ~or which see Chapter 5).
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Several methods which do not use derivatives have been compared in

the survey. papers of Box (1966)) Fletcher (1965, 1969C), Powell (1970a, e),

and Spang (1962) • (See also Bell and Pike (1966), Berman (1969), Box

(1957), Chazan and Miranker (1970), Hooke and Jeeves (1961), Kowalik

and Osborne (1968), Nelder and Mead (1965), Smith (1962), Spendley (1969),

Spendley, Hext and Himsworth (1962), Swann (1964), and Winfield (1967).)

Excluding Stewart's method, the most successful method, especially for

functions of more than three or four variables, appears to be that of

Powell (1964) (see Section 3). The main object of this chapter is to

present some modifications which improve the speed and reliability of

Powell's method. The modifications are discussed in Sections 4 to 6,

and some numerical results are given in Section 7.

Quadratic convergence

Suppose that f(x) has continuous second derivatives

7·1

is a good approximation to f(x) . Thus, any minimization method, having

ultimate fast convergence for a general function f(x) with continuous

second derivatives, must have fast convergence for a positive definite

quadratic form, and we might expect the converse to hold too. This

o~servation has led to the investigation of methods which have quadratic

cO!lvergen~, i.e., which find the minimum of a positive definite quadratic

form in a finite number of function and/or derivative evaluations, apart

from the effect of rounding errors. Examples of methods with quadratic

convergence are those of Davidon-Fletcher-Powell, Fletcher and Reeves,

and Powell (1964) (this is not quite true: see Section 3). The method

of steepest descent exhibits only linear convergence on a quadratic form,

so it is not quadratically convergent.

A few methods are not quadratically convergent, for exact convergence

requires an infinite number of steps, but they do exhibit superlinear

Convergence on quadratic forms. Examples are the methods of Rosenbrock,

d2
f

f ij =~
~ J

(1.6)
as modified by Davies, Swann and Campey (se~ Swann (1964)), of Goldstein

and Price (1967), and of Greenstadt (1970). There is no apparent reason

for i,j = 1, .• o,n , in a neighbo~hood N of a local minimum ~ .

Since ~ is a minimum, the gradient of f vanishes at ~,and the

Hessian matrix

Why such methods should fail to perform as well as quadratically convergent

methods on general (nonquadratic) functions. Thus, quadratic convergence

is a desirable property, but it is neither necessary nor sufficient for

a good minimization method.

A = cr ..)
~J

(1. 7)

is positive definite or semi-definite. Near ~, the quadratic form
Stability: the descent property

In many methods for unconstrained minimization, f(x) has been

evaluated atQ(x)
1 T

f(~) + "2 (x -~) A(X -~)

204

(1.8)
~o

minimum of f(x)

the current best estimate of the position of the

*A new estimate, ~l' is made on the basis of the
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values of f at
~o

and a small numoer of other points (previous oest

7·1

be monotonic increasing or decreasing, or have a maximum but no minimum.

estimates, or points close to ~o)' Additional information ouilt up

from previous iterations, e.g., an approximation to the Hessian matrix

*of f at ~O' may also be used. The prediction ~l may oe unreliaole,

and it may happen that

Box (1966) gives examples where an attempt to minimize qJ(r..) too accurately

prevents a minimization procedure from finding the desired minimum. It

is sometimes stated that the quadratic convergence property of certain

methods depends on qJ(r..) being minimized exactly, but all that is really

*f(~l) > f(:O) (1.9) required for these methods is that the one-dimensional minimization

For example, this often occurs if :0 is not close to a local minimum,

and an inadequate quadratic approximation to f(x) is ~sed.

To avoid the possibility of instability, most procedures do not

procedure minimizes a quadratic function of "I-. exactly. Thus, for

quadratic convergence, it is sufficient to fit a parabola P(r..) to qJ(i\.) ,
* * p(r..)and take "l-.O~ "1-.
0

' where r..
0

minimizes Beca~se of the danger

*accept ~l as the next approximation to the minimum. Instead, they

perform a "linear search" in the direction *~l - ~O ' Le., they take

of instability, this simple procedure is not acceptable, out it is reasonaole
-)Ii

to take r..
0

~"l-.O provided that

the point *cp("O) < cp(O) (1.14)

*~l ~ ~O +r..O(~l - ~o) (1.10)
which ensures that (1.12) holds. (Powell (1970e) gives some reasons

as the next approximation, where ;"'0 is chosen to minimize the fimction
for requiring rather more than (1.14).) See also Sections 6 and 7.

qJ(r..) *f(:O + ;"'(~l - ~o») (1.11) Sums of squal"es

A very common Uliconstrained minimization problem is to minimize a

of one variable. This ensures that
function f(x) of the form

f(xl ) :5 f(xO)- -
so the successive po:i"nts generated must lie in the "level set"

(1.12)

f(x)
m

L
i~l

2(f. (x)}1 _ (1.15)

S tX ERn f(x) :5 f(~O)} (1.13)
for some (generally nonlinear) functions

problem arises when parameters xl'" "xn

f.(x) . For example, this
1 _

are fitted, by the method of

In practice, it is not worthwhile to try to minimize the fimction

cp(;...) very accurately. In fact, the minimum may not even exist: qJ(r..) may

206

least squares, using m observations. An important special case arises

when the minimum value of f(x) is zero: then we have a solution of the
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of work as is required for n+l evaluations of f(x) , or one evaluation

components of its 'gradient at one point.

system of equations

f.(x) = 01 _
(l.16)

need to e~,aluate

n

f i (~) at n+l points, or evaluate f. (x) and the1 _

Thus, after the same amount

for i = 1, ..• ,m .

Applying a general function minimizer to f(x) may not be the most

efficient way to mtnimize (1.15). Methods w~ich make use of the individual

residuals f.(x) are likely to be considerably more efficient than
1 _

methods which merely try to minimize f(x) without considering the

individual residuals, at least if the minimum value of f(x) is close to

(1965), Box (1966) Brown and Dennis (1968) 1970, 1971a, b), Broyden (1967,

1969), Dennis (1968, 1969a, b) c), Fletcher (1968a) Gauss (1809),

Hartley (1961), Jones (1970), Levenberg (1944) Marquardt (1963),

Matthews and Davies (1969), Morrison (1968), ortega (1970), Ortega and

Rheinboldt (1970), Peckham (1970), Powell (1965, 1968b, 1969a),

Rabinowitz (1969), Rall (1966, 1969), Schubert (1970), Shanno (1970a)

SpRth (1967), Voigt (1969), Wolfe (1959a), and Zeleznik (1968). Good

I~ (n+2)lf and its gradient must be evaluated at

or more points.) This suggests that methods which disregard the special

form of f(x) are likely to be much slower than methods which use the

supports this conclusion (see particularly Table 3 of Box (1966) for

n = 20 ), although some of the present methods which make use of the

individual residuals, at least if n is large. Empirical evidence

residuals appear to be rather unreliable.

Despite our conclusion) most of the numerical examples given in

of f(x) and its gradient, the solution of a linear least squares problem

gives an approximation to the minimum. This approximation is usually good

if the minimum value of f(x) is small (see Powell (1965)), unless the

linear problem is very ill-conditioned. On the other hand, if the special

form (1.15) of f(x) is disregarded, then it is necessary to evaluate

f(x) at ~ (n+l) (n+2) points to find an approximating quadratic form.

(Alternatively,
Methods which make use of the residuals are described in Barneszero.

numerical methods for solving linear least squares problems are also

relevant: see Bjorck (1967a, b, 1968) Businger and Golub (1965),

Golub (1965, 1968), Golub and Reinsch (1970), Golub and Saunders (1969),

Golub and Wilkinson (1966), Jordan (1968), Khabaza (1963), Maddison (1966),

Section 7 are of the form (l.15). This is because a particularly simple

way to construct test functions with bounded level sets is to use functions

of the form (1.15), and most of the test functions given in the literature

have this form.

and Powell and Reid (1968).

Let us see why it may be worthwhile to use the residuals. Suppose

that we have a good initial approximation to the minimum of ' f(x) , so the

Some additional references

The following general references on function minimization'and related

functions f. (x) can be closely represented by linear approximations in1 _

the region of interest. To find a linear approximation to f.(x),we1 _

topics have not been mentioned above: Abadie (1970), Balakrishnan (1970),

Bennett (1965), Bennett and Green (1966), Colvill; (1968), Davies (1969),
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Davies and Swann (1969), Dold and Eckmann (1970a, b), Evans and Gould

7·2

fIX) 1 T
f(~) + 2 (x -~) A(x - ~) + R(x) (2.2)

(1970), Fletcher (1969a), Hadley (1961~), King (1966), Kunzi, Tzschach

and Zehnder (1968), Lavi and Vogl (1966), Leon (1966), Luenberger (1969a),

M~~gasarian (1969), Murtagh (1969), Murtagh and Sargent (1970), Powell

(1956, 196ge), Ralston and Wilf (1960), Rice (1970), Rosen and Suzulci

(1965), Shah, Buehler and Kffnpthorne (1964), Wolfe (1963, 1959), Zadeh

(1969), Zangwill (1969a, b), and Zoutendijk (1966).

where

A = (fij(~))

is the Hessian matrix of f(x) at ~, and

\R(~) \ SMil:: _ ~\\3

for some constant M depending o~ n, the norm used, and the

(2.3)

(2.4)

Lipschitz constants M..
lJ

2. The effect of rounding errors

Rounding errors in the computation of f(x) limit the accuracy

As in Section 5.2, the best that can be expected is that the computed

value fl(f(x)) of f(x) satisfies the nearly attainable bound

attainable With any minimization method using only the computed values

of f(x) . In this section, we generalize the results of Section 5.2,

where the same problem is considered for functions of one variable. As

in Section 5.2, the results of this section do not necessarily apply to

where

fl(f(x) )

1\1 <

f(x).(l + E)
X

(2.5)

(2.6)

methods which use the gradient of f, computed analytically. (They do

apply if the gradient is computed by finite differences.)
and is the relative machine precision (see Section 4.2). If f is

Suppose that, in a neighbourhood N of a local minimum ~, the
computed using single-precision arithmetic, the error bound will probably

partial derivatives

x,y EN

f .. (x)lJ _ are Lipschitz continuous, i.e., for all
be considerably worse than this.

Let a be the largest number such that, according to equations

(2.2) to (2.6), it is possible that

If. .(x) - f .. (y) \ S M.. \\x - y\1
lJ - ' lJ - lJ - -

(2.1)
fl(f(~ + au)) S f(~) (2.7)

minimizatio~ procedure, based on single-precision evaluations of 'f , to

where M.. is a Lipschitz constant (i,j = 1, ... ,n) , and any of the
lJ

usual vector norms may be used. Since the gradient of f(x) vanishes

for some ~it vector u Then it is unreasonable to expect any

at ~, a simple extension of Lemma 2.3.1 shows that, for xEN,

210

return an apprOXimation ~ to ~ with a guaranteed upper bound for

\\~ - ~\\ less th~~ 5 .
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Let the eigenvalues of A be "1 ~ "2 ~ ... ~ "n ' with a set of

7·3

Scaling

corresponding normalized eigenvectors

local minimum of f(x) , certainly

" > 0n -

~1'~2'" "~n • Since ~ is a

(2.8)

A change of scale along the coordinate axes has the effect of

replacing the Hessian matrix A by SAS, where S is a positive

diagonal matrix. The problem of choosing S to minimize the condition

number of SAS is difficult, even if A is known explicitly. (See

and we suppose that " > 0 . (The positio~ of the minimum is worse
n

determined if "n = 0 .) If
M5 is small compared to unity, andJ::"n

we take u = u , then (2.7) is possible for_n

~..~\
.~. ",: 5

2\f(~) IE

"n
(2·9)

Forsythe and Moler (1967) for the problem of minimiZing the condition

number of SlAS 2 , where A is not necessarily symmetric.) A good

general rule is that SAS should be roughly row (and hence column)

equilibrated (see Wilkinson (1963, 1965a)). In practical minimization

problems, one difficulty is that little is known abo'.lt the Hessian

Thus, an upper bound on \\f - ~I\ can hardly be less than the right side

of (2.9).

The condition number

With the assumptions above, and 5 given by (2·9),

matrix A until a reasonable approximation to the minimum

has been found. This suggests that a general fUnction minimizer which

is scale-depende~t could incorporate an automatic scaling procedure,

using current information about A to determine the scaling. One way

of doing this is described in Section 4.

is the usual condition number of A. We shall say that ~ is the

f(~ + 5~1) ~ f(~) + ~ E\f(~)1

where

~ = "J"n

(2.10)

(2.11)

3. Powell's algorithm

In this section we briefly describe Powell's algorithm for minimization

without calculating derivatives. The algorithm is described more fully

in Powell (1964), and a small error in this paper is pointed out by

condition number of the minimization problem (for the local minimum ~).

The condition number determines the rate of convergence of some minimizatio~

methods (e.g., steepest descent), and it is also important because rounding

errors make it difficult to solve problems with condition numbers of the

Zangwill (1967a). Numerical results are given in Fletcher (1965),

Box (1966), and Kowalik and Osborne (1968). A modified algorithm, which

is suitable for use on a parallel computer, and which converges for

strictly convex C2 fUnctions with bounded level sets, is described by

order of
-1

E or greater (see below).
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Chazan and ~iranker (1970).
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Powell's method is a modification of a quadratically convergent

method proposed by Smith (1962). Both methods ensure convergence in a

7·3

Remark

If [u
l

' .•. ,u} is any set of nonzero conjugate directions in R
n

,- ~

finite number of steps, for a positive definite quadratic form, by then ::1' .. "::m are linearly independent. Thus m < n , and m = n iff

making use of some properties of conjugate directions. ::1' .. "::m span R
n

Conjugate directions

If A is positive definite and symmetric, then minimizing the

quadratic function

Theorem 3.1

If A is positive definite symmetric, Ax

is a set of nonzero conjugate directions, then

b , and [::1' ""::m}

is equivalent to solving the syste~ of linear equations

xTAx _ 2bTx (x _A-~)TA(X-A-~) _bTA-~ (3.1)
Xl x-

m

L.
i=l (

u~b )_l_

u~A; ::i
-;I- _l

(3.4)

Ax b (3.2) is conjugate to each of ::1' ""::m .

If the matrix A is known explicitly, then, instead of minimizing

(3.1), we can solve (3.2) by any suitable method: for example, by forming

Proof

If 1 ~ j < m , then, from (3. 4),

A is the Hessian matrix of a certain function, and is not known explicitly,

the Cholesky decomposition of A. In the applications of interest here,
u~Ax'
-J -

T
u.(Ax - b)
-J - -

o (3.5)

but the equivalence of the problems (3.1) and (3.2) is still useful.

Definition 3.1

Corollary 3.1

If m = n in Theorem 3.1, then x· o , so

Two vectors u and v are said to ~e conjugate with respect to

the positive definite sYmmetric matrix

uTAv = 0

A if

(3.3)

x n (U~b )L ~
i=l u~Au.

_" _l

U.
_l

(3.6)

When there is no risk of confusion, we shall simply say that u

and v are conjugate. By a set of conjugate directions, we mean a set

of vectors which are pairwise conjugate.

214

Returning to the minimization problem, Theorem 3.1 and the equivalence

of pro~lems (3.1) and (3.2) give the following result.
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Theorem 3.2

If A is positive definite s~runetric,

'-.~:;

7·3
Proof

This follows immediately from equation (3.9).

T T
f(x) = x Ax - 2b x + c (3.7) From Theorems 3.2 and 3.3, we see that the minimum of the quadratic

form f(x) can be found by n one-dimensional minimizations along nonzero

for some bERn and cER, and u
l

' ... ,u is a set of nonzero conjugate_ _m

directions, then the minimum of f(x)

occurs at the point

U~b
-~

~i = TAU.::i _1

m
l: ~.u. , wc,ere
i=l 1_1

in the space spanned by ~l) "')5m

(3.8)

conjugate directions ~l' "')~n ' and the order of the one-dimensional

minimization.s is irrelevant. To use this result) we have to be able to

generate sets of conjugate directions. Both Powell's method and Smith's

method do this by using the following theorem) given in Powell (1964).

Theorem 3.4

II 'the minimum of f(x) (given by (3.7)) in the direction u Irom
Proof .

This follows from Theorem 3.1, or, alternatively, from the relation
the point

to ~

l(­

x,
_1

is at x. , for
_1

i 0,1, then x - x
_I _0 is conjugate

f(t a.u.)i=l 1_1

m 2 TL (a. -~.) u.Au. + c­
i=l 1 1 _1_1

m

L
i=l

(::~~12
-T-­
u.Au.
_1 _1

(3.9) Proof.

For i ° and 1 )

(cross terms vanish because of the conjugacy of u l ' •.. )u ).- ~

The usefUlness of Theorem 3.2 stems from the following resQlt,

o ..
;'R f(:::i + f..~) o at f.. o (3.ll)

Which shows how we can calculate the ~i of (3.8) using fUnction

evaluations, even. if A, band c are not known explicitly.

Theorem 3.3

so) from "(3,:7),.

',T ,.•... ':'"
U (Ax, - b) '" '0 ", ; 1 '
_ ,..1

Subtracting equations (3.l2)' for i ° and 1 gives

(3.12)

With the notation of Theorem 3.2, a fixed j satisfying 1 < j < m

':Xl' ..• ,a. l,a. 1"'" a ,the minimum of
J- J+ m

and fixed

occurs at

Cl'j(ctj ) =

a j = ~j

f( f ct.u.)
i=l 1_1

216

(3.10)

uTA(X - x ) = °_ _1 _0

which completes the proof.
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Powell's basic procedure results in the directions ~l' ""~n becoming linearly dependent, and

the columns of the identity matrix. One iteration of the basic proce&lre

We can now describe the basic idea of Powell's algorithm.

The sa~e is, of course, true for non-quadratic

functions, and even though it is unlikely that t31 will vanish exactly,

Powell discovered -that the directions ~l'" "~n often become nearly

over af(x)from then on the procedure can only find the minimum of

proper subspace of R
n

.
~O

be

Let

~l' .. "~n

consists of the following steps:

be the initial approximation to the minimum, and let

For i = 1, •.. ,n , compute l3
i

to minimize

and define ~i = ~i-l+ t3i~i

1, .•. ,n-l , replace
(3.14)

x -x_n _0

U.
_1

ThUS, he suggests that the new direction

v. = (U~AU.)
-1 _1 _1

should be used, and one of the old ~l' ""~n discarded, only if this

does not decrease the value of \det(~l'" ~n) \ ' where

1
2

linearly dependent.
f(x. 1+ t3. u.) ,

_1- 1_1

~i+l •byU.
_1

by ~n-~O .u_n

For i

Replace

2.

3.

1.

4. Compute t3 to minimize f(~O + l3~n) , and replace ~O by ::0 + t3::n . for i = 1, ... ,n. With this modification the algorithm is quite successful

to Powell's.

of the search directions. The numerical results given in Section 7

we describe a different way of avoiding the problem of linear dependence

set of conjugate directions may never be built up. In the next section,

The main modification

The simplest way to avoid linear dependence of the search directions

4.

suggest that our method of ensuring linear independence may be preferable

but the desirable property of quadratic convergence is lost, for a complete

(see Fletcher (1965) and Box (1966) for a comparison with other methods),
For a general (non-quadratic) function> we just repeat the iteration

can not become linearly dependent.

until some stopping criterion is satisfied. Suppose that 1 ~ k ~ n ,

and consider the situation after the k-th iteration. If f is quadratic

conjugate directions ~l""'::n' so> by Theorems 3.2 and 3.3, the

minimum will have been reached if the u. are all nonzero. This is
_1

true if, at each iteration, 131 J 0 , for then the directions ul ' ... ,u- ~

then we can show, by induction on k, that ~n-k+l""'~n are conjugate.

This follows from the choice of u at step 3, and Theorem 3.4: see_n

Powell (1964). After n iterations, we have minimized along n

The problem of linear dependence

Unfortunately, as pointed out by Zangwill (1967a), even for a

quadratic function f one of the iterations may have 13
1

= 0 , w~ich

with Powell's basic procedure, and retain quadratic convergence if 131 J 0 ,

is to reset the search directions ::1' ""::n to the columns of the

identity matrix after, say, every n iterations. A similar "restarting"
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device is suggested by Fletcher and Reeves (1964) for their conjugate

7.4

about 6n3 Inultiplications, and a similar number of additions, if done

gradie~t method. Unfortunately, restarting te~ds to slow do~~ co~verge~ce

for approximately quadratic functions, because any information built up

about the function is periodically thrown away. (Perhaps this is why

the Fletcher-Reeves algorithm is ge~erally slower than the Davidon-

Fletcher-Powell algorithm.)

Instead of resetting U = [~l' ""~n] to the identity matrix, w~

could equally well reset U to any orthogonal matr:ix q. To avoid

discarding useful information about f, we could choose It so that,

as suggested below. Since the principal axes are found only once for

every n
2

linear minimizations, and a linear minbnization requires about

2.25 function evaluations on the average (see Section 7), the extra

computation is less than 3n multiplications per function evaluation.

We can expect the evaluation of a nontrivial function of n variables to

require considerably more than 3n multiplications, and possibly order

so the overhead caused by our modification is not excessive. Also, it

"may be worth paying a little for the principal axis reduction, for the

2
n

if f is quadratic, ~l' ""~n remain conjugate. This suggests that

principal vectors ~l' ...,~ should be computed on the assumption that

f is quadratic, and "U should be reset to Q = [~l" .. ,~] The

motivation for this procedure may be s2ffiffiarized thus:

extra information about f is often of interest. For example, it

shows the sensitivity of f(:) to slight changes in x near the minimum.

The principal axes and eigenvalues may be of interest in statistical

problems when f is minus the log-likelihood, for then the inverse of

1. If the quajratic approximation to f is good, then the new search the Hessian at the minimum is the sample variance-covariance matrix of

directio~s should be conjugate with respect to a matrix which is close

to the Hessian matrix of f at the minimum, and thus subsequent

iterations should give fast convergence.

2. Regardless of the validity of the q~adratic approximation, the new

the maximum likelihood estimates: see NeIder and Mead (1965).

Scaling

Powell'S modification of his basic procedure has one feature which

search directions are orthogonal, so the search for a minimum can never
ours lacks: his determinantal criterion is independent of a linear

become restricted to a subspace.

The extra computation involved

We show below that finding principal axes does not require any

extra function evaluations, but it does involve finding an orthogonal

transformation of the independent variable space (an important special

case is a change of scale for the independent variables). This feature

is certainly desirable, for when a function of, say, temperature and

pressure is to be minimized, there is no natural way to scale the variables.

We should note, though, that Powell's algorithm is not completely"

set of eige~vectors for asymmetric matrix H of order n

220

This requires
independent of linear transformations of the variable space, or even of
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scale changes, for these influence both the initial choice of the

7·4

CjJi[aO,al ,Cl:2 ] u~AU.
_l _l

d.
l

(4·5)

vectors ~l' ""~n ' and the stopping criterion.
so the diagonal elements d.

l
of D are known without any extra

computation. (If the quadratic approximation to CjJi (a) is bad we may

Finding the principal vectors

Suppose that

have CjJi[aO,al ,a2 ] SO, and then we arbitrarily set

positive nwnber.)

d. to a small
l

is a positive definite quadratic form, although A, band c may not

rex) xTAx _ 2bTx + c (4.1) Let
1

V=UD- 2 (4.6)

be known explicitly. If n iterations of Powell's basic procedure are be the matrix with columns ~l' .. "~n given by (3.14), and let

performed as deScribed above, and at each iteration ~l f 0 , then we

obtain n nonzero conjugate directions ~l' ""~n' Let U = [~l ... ~n] .

By the conjugacy of ~l' ""~n I

The matrix V is easily computed from U in n2 multiplications and
UTAU = D (4.2)

H = A-I

Since U is nonsingular, equation (4.2) gives

H = UD-~T = VVT

(~. 7)

(4.8)

where D is a diagonal matrix with positive diagonal elements d.
l n square roots, but the computation of ~ is more expensive, and can

During the last (i.e., n-th) iteration, we have performed one-
be avoided: see below.

dimensional minimizations in the directions ~l' ""~n Consider a
Our aim is to find the principal axes of the quadratic form f,

minimization from the point ~i-l' in the direction u. , for
_l i.e., to find an orthogonal matrix Q such that

1 < i < n. We minimize the function
QTAQ = l\ (~ ; 9)

To minimize CjJi(a) we fit a parabola, which necessitates computing the

second difference CjJi[a
O
,al ,a2 ] for three distinct points aO ' a l '

and a
2

. From equat ion (4.4),

the eigenvectors of A, with corresponding eigenvalues ~l' ""~n ' and

we can assume that ~l ~ ... ~ ~n The obvious way to find Q and l\

is to compute H = 1["; explicitly, and then find Q and l\ such that

where l\ = diag(~i)

CjJ. (a) = f(X. 1 + au.)
l _l-_l

2T + T T + T T +
= a ~iA~i 2a(~i~i-l - ;:i~) (::i-l~i-l - 2~i_~ c).

(~.3)

(4.4)

Q?HQ
-1

A

is diagonal. Thus, the columns q. of Q are just
_l

(4.10)
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by finding the eigensystem of H .
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Use of the singular value decomposition to find ~ and ~ singular value decomposition of the bidiagonal matrix by a variant of

If the condition number l1. = AllAn is of order
-1

E ,where E is the Q,R algorithm.

canputing ~ and A via

Let us compare the amount of canputational work involved inthe relative machine precision (see Section 4.2), then rounding errors

may lead to disastro~s errors in the co~puted small eigenvalues

A.~l,A;l, ... of H, and in the corresponding eigenvectors ~l'~2' ... ,

even if they are well-determined by V. Thus, it may be necessary to

1. The singular value decomposition (SVD) of V as described

aoove, and

compute H, and find its eigensystem, using double precision arithmetic.

This difficulty can be avoided if, instead of forming H = vvX , we work

2. Finding the matrix H and its eigensystem, using Householder's

rern~ction to tridiagonal form and 'then the QR algorithm. (See

directly with V. Suppose that we find the singular value decomposition Bowdler, Martin, Reinsch and Wilkinson (1968), Francis (1962),

of V, i.e., find orthogonal matrices Q and Q' such that Householder (1964), Kublanovskaya (1961), Martin, Reinsch and

Q,TVQI = L: (4.11)
Wilkinson (1968), and Wilkinson (1965a, '0, 1968).)

where L: = diag(oi) is a diagonal matrix. (See Golub and Kahan (1965),

and Kogbetliantz (1955).) Then

For purposes of comparison, we count only multiplications, and

ignore terms of order n2 , so our conclusions may not be valid for very

small n. Suppose that, in each case, the Q,R process requires pn

~-l = Q,THQ (Q,TVQ ') (Q,TVQ') T L:2 , ( 4.12)
iterations, for some modest number p.

For method 1, the Householder reduction requires 4n3/3 multiplica-

Since it is desirable that the computed matrix Q should be close

to an orthogonal matrix, we suggest that Q, and L: should be found by

so Q is the desired matrix of eigenvectors of A, and the eigenvalues

the method of Golub and Reinsch (1970). This involves redUcing V to

tions, accumulation of the (left-hand) transformations requires another

4n3/3 multiplications, and the Q,R process with accumulation of the

transformations reqUires 2pn3 multiplications, if no splitting occurs.

Thus, method 1 requires (8+ 6p)n3/3 multiplications in all.

For method 2, the Householder reduction requires 2n3/3 multiplications

(only half as much as for method 1 because of symmetry), accumulation of

the transformations requires 2n3/3 multiplications, and the QR process

requires 2pn3 , giVing (4+ 6p)n3j3 altogether. This could be reduced

to 4n3/3, still ignoring terms of order n
2

, if inverse iteration were

(4.13)-2
°i

A..
1

Note that the matrix Q,' is not required, and it is not necessary to

compute vvX.

A.
i

are given by

bidiagonal form by Householder transformations, and then computing the
used to compute the eigenvectors of the tridiagonal matriX, but then it
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would be difficult to guarantee orthogonality of eigenvectors corresponding

7·5

scbd should be fairly small (say about 10) unless the axes are very

to close or multiple eigenvalues. Another 1 3
2"n multiplications are badly scaled initially. The automatic scaling is worthWhile, but its

needed to compute
'T'

H = VV by the usual method (but taking advantage of effect is not dramatic, and it is rather unreliable, which is the reason

symmetry), ma~ing (ll+ 12p)n3/6 multiplications in all.

The ratio of the work involved for methods 1 and 2 is thus

for introducing scbd. ThUS, it is still worthwhile for the user to

try to scale his problem as well as possible.

r
16 + 12p

11 + l2p
16

< II (4.14)
Another modification

and for a typical value of p = 1.6 we have r 1.17. Thus, method 1

can be expected to be only about 20 percent slower than the numerically

inferior method 2. Both methods· can be done in place, and require

temporary storage for only a few n-vectors, apart from the n by n

matrix V w~ich is overwritten by Q .

For Powell's basic procedure to rhinimize a positive definite

quadratic form in n iterations, steps 1 to 3 of the first iteration

are unnecessary. Thus, our algorithm omits steps 1 to 3 on the first

iteration, and, subsequently, after each singQlar value decomposition

(i.e., at the (n+l)-st, (2n+l)-st, ... , iterations). For this reason,

there are exactly

Scaling 1+ (n-l) (n+l)
2

n (4.16)

We mentioned in Section 1 that a general minimization procedure

might incorporate automatic scaling of the independent variables, in an

attempt to reduce the condition number of t)1.e problem. Scaling has the

effect of replacing the matrix V above by S-~, where S is a

positive diagonal matrix (as in Section 1). The ALGOL procedure "praxis"

given in Section 9 chooses S automatically to try to reduce the condition

linear minimizations, instead of n(n+l) , between each singular value

decomposition. This modification is not important for large n, but

numerical results suggest that it is worthwhile for small n

number of S-~. S is chosen so that S-~ is row-equilibrated, with
5· The "resolution ridge" problem

the constraint that

1 < s .. < scbd
11

(4.15 )

Suppose temporarily that we are trying to maximize a f't.uJction f(xl ,x
2

)

of two variables by an ascent method. Wilde (1954) points out that

rounding errors in the computation of f may lead to premature termination

where scbd is a bound which may be set to 1 if no scaling is desired.

Numerical experiments on the examples described in Section 7 suggest that

226

because of the "resolution ridge" problem illustrated in Diagram 5.l.
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~L2 .

~l

f'unctions of more than two variables, or when we are looking for a

within the tolerance 5 of local maxima in both of the search directions,

x'
_0

will giveX -Xl
_0 _0

f(::O) > f(::O) , unless the ridge is sharply curved.

As shown in the diagram, it may happen that f(~O) is

x" with
_0

It is clear from the diagram that, if we know another point

x = x - Be_8 _0 _2

greater than each of f(~) , f(::8) ,f(::E) and 1(3-;) , so ::0 is

valley" problem).

even tho'.lgh ::0 may be a long way from the true maximum, which could be

reached by Climbing up the ridge. The same problem can arise with

on the rid~e, then a linear search in the direction

a point

minimum rather than a maximum (then we might speak of a "resolution

Section 2). Let ~ = ~O + 6':1' 3-; = ::0 - 6':1' ~ = ::0 + 6':2 ' and

and improved by Davies, Swann and Campey. (See Swann (1964), and also

This is the motivation for the method suggested by Rosenbrock (1960),

Andrews (1959), Baer (1962), Fletcher (1965, 1969c, d), Osborne (1969),

Palmer (1969), Powell (1968a), Rice (1966), and Section 7.)

J
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f

f

f
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4- -"Il~

Wf I \E

s
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Diagram 5.1: A resolution ridge

Regarding the surface defined by f(xl ,x2) as a hill, we may reach Finding another point on the ridge

a point ~O' situated on a narrow ridge, and then try to proceed to a

higher point by performing ··linear searches in certain directions.

If linear searches from the point ::0 fail to give a higher point,

and a resolution ridge is suspected, then the following strategy may be

Suppose, for example, that we attempt linear searches in the @N and NS
successfUl: take a step of length, say 106 , in a random direction

directions.
Then perform one or more linear

searches, starting at ~, and reaching the point

The point ::0 may not be at the true minimum of f in both

these directions but, because of the effect of rounding errors in

from ~O' reaching the point x
_R

x'

°
As the diagram

evaluating f, our one-dimensional search procedure will only attempt to
shows, the point x'

_0
is likely to be on the ridge, so a linear search in

locate the position of maxima to within some positive tolerance 6 (see
the direction ::0 _ x'

_0
may be successfUl.
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Although he does not refer to the resolution ridge problem, good approximation to the minimum is found for very ill-conditioned

Powell (1964) incorporates such a strategy in his stopping criterion. problems. For example, consider minimizing

We propose to use this strategy duripg the regular iterations as well. f(x) xTAx (5. 2 )

Incorporating a random step into Powell's basic procedure

Suppose that we are commencing iteration k of Powell's basic

where A is a 10 by 10 Hilbert matrix (i.e., a .. = l/(i+j-l)
J.J

for lSi, j S 10 ), with a condition number of 1.6 X 1013 . Using

long real on an IBM 360 computer (machine precision 16-13) , and

procedllre, counting either from the start or from the last singular starting from (l,l, .•. ,l)T, our algorithm successfUlly found the

W8 must search alo~g the directions ~n-k+2' ""~n in step 1 of

value decomposition, and 2 < k < n To ensure quadratic convergence, position of the minimum of f(x) to within the specified tolerance

of 10-5 , but it failed Without the random step strategy. (For fUrther

iteration k , but the searches along directions ::1' ... , ::n-k+1 are not details, see Section 7.)

necessary for quadratic convergence. (They are desirable for other

reasons: see Fletcher (1965) for a comparison of Powell's method and Extrapolation along the ridge

Smith's method.) The quadratic convergence property still holds if, If the fUnction minimizer has been climbing a ridge for several

at step 1, we move to any point complete cycles, so the quadratic approximation to f is obviously

:n-k+l

n
Xo + L t3.'u.
- i=l "_J.

(5.1)
inadequate (or the maximum would already have been found), then it may

be worthwhile to try an extrapolation along the ridge. Suppose that

previous linear searches have failed to find a better apprOXimation to

be ill-conditioned, or if the procedure is about to terminate (i.e., if

with t3i f 0 , before performing linear searches in the directions

::1'" "::n at step 1 of iteration k, we may try the random step strategy

as described above. Procedure praxis does this if th e problem appears to

(5.3)XIII

,,-(Md
O

)

x" + d (d +d
l

)
1 0

(Md
O

) (,,--d
l

)

dodl
x(A.)

immediately before three successive singular value decompositions, the best

approximations to the maximum are x' , x" , and x'" , with

given parametrically by

A. (A.-d
l

)

do(dO+dl ) x'

dO = Ilx' - x"lb >0 and dl = \\x" - x'" \b > 0 • Numerical tests indicate
~ ~ ~ ~

that curved ridges are often approximated fairly well by the space-curve

Thus, before performing linear searches in directionsu_n-kl-2' ... , u_n

which is chosen because

singular value decompositions,

the minimum) .

This modification is not necessary for well-conditioned problems,

but numerical results show that it is essential in order to ens~e that a

x( -d ) = x'_ 0

Hence, before the 3rd, 4th, 5th

x(o) = x" , and xed ) = X'II_ 1 _
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procedure praxis (see Sectio~ 9) moves to the point ~(AO) ,where AO
lack of a better criterion, we choose to discard the direction, from

is chose~ to approximately minimize f(X(A)) . A
O

is computed by the ~l'" "~n-k+l ' to maximize the resulting determinant (6.1).

same procedure that performs linear searches. Suppose that the new direction x - x ~ u_n _0 _n+l satisfies

6. Some fUrther details

u_n+l

(uT Au )1/2
_n+l _n+l

n

L a i
i~l

U.
_1

T -
(~:\A~i) 112

(6.2)

In this section W8 give some more details of the ALGOL procemlTe Then, the effect of discarding U.
_1 and replacing it by ~n+l (and then

given in Section 9. The criterion for discarding search directions, the

linear search procedure, and the stopping criterion are described briefly.

(For the sake of clarity, some unimportant details are omitted.)

renumbering the directions) is to multiply the determinant (6.1) by la. I '
1

so our criterion is to choose i, with 1 < i S n-k+l, so that lail

is at its maximum. If ~l' ""~n are as in the description of Powell's

basic procedure (see Section 3), and the linear minimization with step

The discarding criterion
~.u. decreases f(x) by an amount 6. , then, from (3.7),1_1 _ 1

Suppose for the moment that f(x) is the quadratic form given by

equation (3.7). In steps 2 and 3 of Powell's basic procedure (see Section 3), 6.
1

~~U~AU.
1_1 _1

(6.3)

we effectively discard the search direction ~l' and replace it by

~n - ~O· The algorithm suggested by Powell does not necessarily discard
then we use the result of a previous iteration.)

Suppose that the random step procedure described in Section 5 moves

f6i / I~i \ o~i(If(u:AU )1/2
_1 _i

may be used as an estimate of

to
~O

so

from
~n - ~O ' so as to maximize

instead, as mentioned in Section 3, it discards one of ~l' ""~n '~l

u_n+l

Idet(~l ... ~n) \ , (6.1)
x'_0

n
X o + [ -y.u.
- i~l 1_1

(6.4)

where v. is given by equation (3.14), after renumbering the remaining
_1

n directions. We wish to retain convergence for a quadratic form in before the linear searches in the directions
/

~l'" "~n
are performed.

n iterations, so we are not free to discard anyone of ~lJ" "~n+l

At the k-th iteration, for 2 < k S n , we can discard anyone of

~l' ""~n-k+l without losing quadratic convergence (see Section 5). For

Then

u_n+l x - x_n _0

n
[
i~l

(~. + -y. )u.
1 1_1

(6.5)

and the ~i of equation (5.1) are given by
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available, and the computed value of cp(A.) at another point, or at two

* * *A. ~ A. , and cp(A.) < cp(O) , then A. is accepted as a value of A. to

7·6

13' - rl3 i +1'.
i - 1 1

I'i

if 1 < i < n-k+1

if n-k+2 < i < n
, ] (6.6) points if there is no estimate of cp" (A.) • If p(A.) has a minimum at

From (6.2), (6.3) and (6.5), approximately minimize (6·9)· * *otherwise A. is replaced by A. /2

T 1/2
(~n+1A~n+l) a i (13. + 1'.) .r:;; / \13.\

1 1 1 1
(6.7)

*cp(A.) is re-evaluated, and the test is repeated. (After a number of

unsuccessfUl tries, the procedure returns with A. = 0 .)

so we must discard direct ton u. ,
_1

1 ::; i ::; n-ktl , to maximize the

modulus of the right side of (6.7). Since this does not explicitly

depend on the matrix A, the same criterion is used even if f is not

necessarily a quadratic form. Note that our criterion reduces to Powell's,

apart from our restriction that i < n-k+l , if there are no random steps,

The stopping criterion

The user of procedure praxis provides two parameters: t (a positive

absolute tolerance), and ( (i.e., macheps, the machine precision);

and the procedure attempts to return x satisfying

Quadratic convergence is guaranteedi.e., if I'i = 0 for i = 1, ..• ,n

(apart from the effect of rounding errors) unless, for some k 2, ..• ,n \\~ - ~\b < (1/21\ ~ 1\2 + t (6.10)

13i = 132

at iteration k.

13~-k+l o (6.8) where ~ is the position of the true local minimum near x. The

exact form of the right side of (6.10) is not important, and could

easily be changed if desired. It was chosen because of the analogy with

criterion is, however, rather cautious, and (6.10) is satisfied for all

near ~

The linear search

Our linear search procedure is similar to that suggested by Powell

(1964). We wish to find a value of A. which approximately minimizes

the one-dimensional case (see Chapter 5).

It is impossible to guarantee that (6.10)

funct ions f, or even for f which are C
2

will hold for all

Our stopping

cp(A.) = f(~O + A.~) (6·9) numerical examples discussed in Section 7, With the sale exception of

is over-cautious, and some unnecessary function evaluations are performed.

where A is a 12 by l2 Hilbert matrix, with a condition number

It ~ L 7 x 1016 > (-1 ~ 4 x 1015 In most cases the stopping criterion

the extremely ill-conditioned problem
where the initial point X

o
and direction ufO are given, and

- - -
cp(o) ~ f(~O) is already known. If a linear search in the direction u

has already been performed, or if u resulted from a singular value

decomposition, then an estimate of cp"(O) is available. A parabola

p(A.) is fitted to <p(A.) , using cp(O) , the estimate of cp"(O) if

f(x) xTAx (6.11)
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Let us remark, as does Powell (1964), that the stopping criterion is

7·7

(machine precision 2-26) . The parameter-fitting problem is described

not an essential part of our algorithm, so an improved criterion could in Sobel (1970).

easily be incorporated.

In all cases the tolerance

Table 7.1 summarizes the performance of procedure praxis on the

t = 10-5test functions described below.be the current best approximation to the minimum before anLet x'

iteration of the basic procedure, and let x" be the best approximation and macheps = 16-13 . The table gives the number of variables, n ;

after the iteration, i.e., n linear searches later. We test if the initial step-size (a rough estimate of the distance to the minimum),

2I\x'-x"\\S e
l

/
2

\\x"\\ +t_ _ 2 _ 2 (6.12)
h ; and the starting point, ~O' So that the results can be compared

with those of methods with a different stopping criterion, we give the

The stopping criterion is simply to stop, and return the approximation number n
f

of function evaluations, and the number n
l

of linear

x" , if (6.12) is satisfied for a prescribed number of consecutive

iterations. The number of consecutive iterations depends on how cautious

searches (including any parabolic extrapolations), required to reduce

f(x) - f(f-l) below 10-10 , where f(f-l) is the true minimum of f .

we wish to be: 2 is reasonable, and was used for the examples As f(x) was only printed out after each iteration of the basic procedure,

described in Section 7. Because of the random step strategy described

in Section 5, and always adopted if (6.12) was satisfied on the previous

i.e., after every n linear minimizations, the number of function

evaluations required t.o reduce f(x) - f(f-l) to 10-10 is often slightly

iteration, there is no need for a more complicated criterion, such as less than nf , so we also give the actual value of f(x) - f(f-l) after

the one used by Powell (1964). n
f

function evaluations. Finally, the table gives K , the estimated

condition number of the problem. Except for the few cases where it is

easily found analytically, K is estimated from the computed singular

7· Numerical results and comparison with other methods values, and may be rather inaccurate.

The ALGOL W procedure "praxis", given in Section 9, has been tested

on IBM 360/67 and 360/91 computers with machine precision 16-13 . In

For those examples marked with an asterisk, the random step strategy

was used from the start. (In the initialization phase of procedure

this section we summarize the results of the numerical tests, and compare praxis, the variable "illc" was set to true.) For the other examples

them with results for other methods reported in the literature. Our the procedure was used as given in Section 9 (with "illc" set to false

procedure has also been translated into SAIL (an extension of ALGOL: initially). Although the automatic scaling feature (see Section 4)

see Swinehart and Sproull (1970» and used to solve least-squares

parameter-fitting problems with up to 16 variables on a PDP 10 computer

reduces nf by about 25 percent for some of the badly scaled problems,

this feature was switched off for the examples given in the table. (The

bound "scbd" of equation (4.15) was set to 1.)

236 237



7·7

Definitions of the test functions, and comments on the results

summarized in Table 7.1, are given after the table.

A cautionary note

When comparing different minimization methods, such as ours,

Powell's and Stewart's, the reader should not forget that the numerical

results reported for the methods may have been obtained on different

computers (with different word-lengths), and with different linear search

procedures. The effect of different word-lengths should only be

significant in the final stages of the search, When rounding errors

determine the limiting accuracy attainable, except for ill-conditioned

problems (say K > 10
4

) . This is another reason why we prefer to

consider the number of function evaluations required to reduce f(x) - f(~)
- ~

( -10to a reasonable threshold say 10 ), rather than the number required

for convergence.

Because apparently minor differences in the linear search procedures

can be quite important, Fletcher (1965) prefers to consider the number

of linear searches, nl , instead of the number of function evaluations,

nf This approach discriminates against methods, such as Powell's,

which use most of the search directions several ~imes, and can thus use

second derivative estimates to reduce the number of function evaluations

required for the second and later searches in each direction. Note that,

for the examples given in Table 7·1, nrlnl lies between 2.1 and 2.7,

but it would be at least 3.0 for metliods which do not use second

derivative information, if the linear search involves fitting a parabola

and evaluating f at the minimum of the parabola. Also, there are

promising methods which do not use linear searches at all (see Broyden (1967),

238
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Davidon (1968, 1969), Goldstein and Price (1967), and Powell (1970e)),

and these methods could presumably be adapted to accept difference

approximations to derivatives. Thus, we prefer to compare methods on

the basis of the number of function evaluations required, and regard

the linear search procedure, if any, as an integral part of each method.

Table 7 .1: Resul,ts for various test functions

Function h T
f(x)-f(~)n

::0
n f nl K-

Rosenbrock 2 1 (-1.2,1) 120 47 6.61'-18 2508

Rosenbrock 2 3 (3,3) no 42 8·53'-17 2508

Rosenbrock 2 12 (8,8) 181 67 9·71'-18 2508

Cube 2 1 (-1.2, -1) 177 68 7.18' -18 10018

Beale 2 1 (0.1,0.1) 54 22 2.00' -15 162

Helix 3 1 (-1,0,0) 155 67 1.75'-n 500

Powell 3 1 (0,1,2) 55 23 1·99'-11 28

Box* 3 20 (0,10,20) 100 37 2.37' -13 8300

Singular-* 4 1 (3,-1,0,1) 234 106 9·76'-11 rn

Wood* 4 10 -(3,1,3,1) 452 191 6.06' -14 1400

Chebyquad 2 0.1 xi=i/(n+l) 31 12 7·89'-20 1.3

Chebyquad 4 0.1 x. = il (n+l) 74 32 7.89' -ll 7
l

Chebyquad 6 0.1 xi=i/(n+l) 223 101 7·00' -13 50

Chebyquad 8 0.1 x. =i/(n+l) 326 147 6·32'-11 200?

Watson* 6 1
l T

316 145 2.83'-12 860000

watson* 9 1 aT n84 541 3.18'-il 1.7'9-

* For these results we set il1c:= true in the initialization

phase of procedure praxis, and the random number generator was

initialized by calling raninit(2) in procedure test.
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Table 7.1 continued Definitions of the test functions and comments on Table 7.1

tend to fall into the valley, and then follow it around to the minimum

Rosenbrock (Rosenbrock (1960)):

This is a well-known function with a parabolic valley. Descent methods

similar curved valleys often arise when penalty function methods are used

2 . 1x2 = Xl ' by a SlffiP e-(1 - Xl) 2 , with the constraint that

2 2 2
f(:) = 100(x2 - Xl) + (1 - Xl) . (7.1)

point (-1.2, 1) , are given in Table 7.2. In Diagram 7.1 we compare

at (1,1) . Details of the progress of the algorithm, for the starting

these results with those reported for stewart's method (stewart (1967)),

by Fletcher (1965)). The graph shows that our method compares favourably

with the other methods. Although the function (7.1) is rather artificial,

Powell's method, and the method of Davies, Swann and Campey (as reported

minded penalty function method.

to reduce constrained problems to unconstrained problems: consider

minimizing

Function h T f(x)-f(i-')n :0 nf nl
l{

Tridiag 4 8 OT 27 11 0 29·3-
Tridiag 6 12 OT 51 22 0 64·9-
Tridiag 8 16 OT 126 55 0 113-
Tridiag 10 20 OT 201 89 1.56'-15 175-
Tridiag 12 24 OT 259 118 2.23'-15 250-
Tridiag 16 32 OT 488 222 1.26' -13 438

-
Tridiag 20 40 OT 805 379 0 677-
Hilbert 2 10 (1, '00,1) 11 4 3·98'-15 19

Hilbert 4 10 (1, ..• ,1) 50 22 6.11'-15 1.5'4

Hilbert 6 10 (1,. 0.,1) 133 58 1.50'-11 1.5'7

Hilbert 8 10 (1, .. 0,1) 262 119 8.14'-11 1.5'10

Hilbert + 10 10 (l,o.o}l) 592 267 7.84' -11 1.6'13

Hilbert + 12 10 (1.,0,0,1) 731 328 1.98'-11 1.7'16

Cube (Leon (1966)):
+ For thege results the stopping criterion was more conservative:

we set ktm:= 4 in the initialization phase of procedure praxis.
f(x) 322

100(x2 - Xl) + (1- Xl) (7.2)

This function is similar to Rosenbrock's, and much the same remarks

apply. Here the valley follows the curve 3
x2 = Xl

Beale (Beale (1958)):

f(x)
3 i 21: (c. - Xl (1 - x

2
))

i=l l
(7.3)
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where c
l

~ 1·5, c
2

~ 2.25 c
3

~ 2.625. This fUnction has a valley

7·7

powell (Powell (1964)):

Kowalik and Osborne (1968) report that the Davidon-Fletcher-Powell

algorithm reduced f to 2.18 X 10-11 in 20 function and gradient

approaching the line x2 ~ 1 , and has a minimum of 0 at (3 ,:!:)T
'2 .

f(x) 3 - ( 1 2) - sin(~ x2x3) - exp{[- (X
l
+X

2
) - 2]2"\ .(7.7)

1+ (x
l

-x
2

) x2 J
evaluations (equivalent to 60 function evaluations if the usual (n+l)

weighting factor is used), and Powell's method required 86 function

evaluations to reduce f to 2.94xlO-8 . Thus, our method compares

favourably on this example.

For a description of this function, see Powell (1964). Perhaps by good

luck, our procedure had no difficulty with this function: it found the

true minimum quickly and did not stop prematurely.

Box (Box (1966)):

(7.4)
f(x)

21: [(exp(-ix/10).- exp(-iXi lO))]

i~l -x
3

(exp( -i/10) - exp( -i) )
(7.8)

line U}l.,}I.,o)1. (Our procedure found the first minimum.) Kowalik
(7.5)

This function has minima of 0 at T(1, 10, 1) , and also along the

(7. 6)

This function of three variables has a helical valley, and a minimum

at (l,O,O)T. The results are given in more detail in Table 7.3 and

Diagram 7.2. For this example our method is faster than Powell's

method, but slightly slower than Stewart's.

and Osborne (1968) report that Powell's method took 205 function

evaluations to reduce f to 3.09 X 10-9 , so our method is about twice

as fast. Our method took 79 function evaluations to reduce f to

2.29 X 10-7 , so it is faster, in this example, than any of the methods

compared by BoX (1966), with the exception of Powell's method for sums

of squares (Powell (1965)). See the comment in Section 1 about special

methods for minimizing sums of squares:

Singular (Powell (1962)):
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2· 2 4 4
f(x) ~ (Xl + 10X2 ) + 5(X

3
- x 4) + (x2 - 2x) + 10 (xl - x4)
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This function is difficult to minimize, and provides a severe test of

the stopping criterion, because the Hessian matrix at the minimum

(x ~ 0) is doubly singular. The.function varies very slowly near 0

Chebyquad (Fletcher (1965)):

f(x) is defined by the ALGOL procedure given by Fletcher (1965)·

As the minimization problem is still valid, we have not corrected a

in the two-dimel).sional subspace \(~OA.l: -"1' "2' "2t} Table 7.4 small error in this procedure. (The procedure does not compute exactly

and Diagram 7.3 suggest that the ~lgO~ithm converges only linearly,
.. ~.

as does Powell's algorithm. It is interesting to note that the output

from our procedure would strongly suggest the singularity, if we did not

know it in advance: after 219 function evaluations, with

f(x) ~ 7.67 X 10-9 , the-computed eigenvalues were 101.0, 9.999 ,

what Fletcher intended.) In contrast to most of our other test functions,

which are designed to be difficult to minimize, this function is fairly

easy to minimize. For n ~ 1(1)7 and 9 the minimum is 0, for other

n it is nonzero. (For n ~ 8 it is approximately 0.00351687372568.)

The results given in Table 7.5, and illustrated in Diagrams 7.4 to 7·7,

0.003790 , and 0.001014 (The exact eigenvalues at 0 are 101, 10 , show that our method is faster than those of Powell or of Davies, Swann

o , and 0 .)

-171.02 X 10 ,

-8
5·98xlO.

After 384 function evaluations, with f(x) reduced to

the two smallest eigenvalues were 1.56 X 10-7 and

Thus, our procedure shOUld enable singularity of the

and Ca~pey, but a little slower than Stewart r S.

Watson (see Kowalik and Osborne (1968)):

Hessian matrix to be detected, in the unlikely event that it occurred

in a practical problem. (For one example, see Freudenstein and Roth

(1963).)

f(x)
2 2 2

Xl + (x2 - Xl - 1) +

30 [n. i-l j-2 (n i-l j_l)2 J2.L ~ (J-l)x.(2§') - ~ x,(2§') - 1 •
~~2 J~2 J . J~l J

(7. n )

Wood (see Colville (1968)):

f(x)
22 2 22 2'

100(x -x) + (l-x) + 9O(X4 -x) + (1-x
3

) +
2 1 1 3

, 2 2
10.l[ (x2 -1) + (x4 -1) ] + 19.8(x2 - 1) (x4 -1) (7.10)

Here a polynomial

( )
n-l

p t ~ Xl + x2t + '" + xnt

is fitted, by least squares,to approximate a solution of the

(7.12)

This function is rather like Rosenbrock's, but with four variables
differential equation

with z(O) ~ 0 , for t E [0,1]. (The exact solution is z ~ tenet) .)

instead of two. Procedures with an inadequate stopping criterion may

terminate prematurely on this function (see McCormick and Pearson (1969)),

but our procedure did find the minimum at f.l ~ (1,1,1,11 .

dz/dt
2

1 + z (7.13)
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minimization problem is ill-conditioned, and rather difficult to solve. The results given in Table 7.1 show that, as expe"cted, the minimum is

For n = 6 , the minimum is f(l-l) -:::2.28767005355X10-3 , at found in
2

n or less linear minimizations. The eigenvalues of A are

where A is an n by n Hilbert matrix, i. e.,

T
~ -::: (-0.015725, 1.012435, -0.232992, 1.260430, -1.513729, 0.992996)

For n = 9, f(l-l) -::: 1.399760138 X10-
6

, and I-l -::: (-0.000015, 0.999790,
- -

0.014764, 0.146342, 1.000821, -2.617731, 4.104403, -3-.143612, 1.052627)T

(We do not claim that all the figures given are significant.)

Kowalik and Osborne (1968) report that, after 700 fUnction

evaluations, Powell's method had only reduced f to 2.434xlO-3

just

Hilbert

2 .
A. = 4 cos (~)

J 2n+l

Tf(x) = x Ax

for j 1, ... ,n .

(7·17)

(for n = 6) , so our method is at least tWice as fast here. The

Watson problem for n = 9 is very ;ill-condit ioned, and seems to be a
a ..
lJ

1/ (i+j -1) (7.18)

good test for a minimization procedure. for 1 < i j < n . f(x) can be computed directly without storing

the matrix A Like (7.14), (7.17) is a positive definite quadratic

form, but the condition number increases rapidly with n. Because of

tolerance, for n < 10. For n 12, some components of the computed

-illrequired to reduce f to 10 , except for n = 2. The procedure

minimum were greater than 0.1, even though f was reduced to

2.76 X10-15. This illustrates how ill-conditioned the problem is!

linear minimizations were2
n

to within the prescribedsuccessfully found the minimum I-l = 0

the effect of rounding errors, more than

(7. 15)

(7. 14)

Tridiag (see Gregory and Karney (1969), pp. 41 and 74):

Tf(x) = x Ax - 2xl

where

r
1 -1 0-1 2 -1

-1 2 -1
A = I

-1 2 -1

0
-1 2

This function is useful for testing the quadratic convergence property.

The minimum f(l-l) = -n occurs when I-l is the first column of A- l , i.e.,

Some more detailed results

Tables 7.2 to 7.5 give more details of the progress of our procedure

I-l (n, n-l, n-2, .•. , 2, 1) T (7.16)
(B) on the Rosenbrock, Helix, Singular, and Chebyquad fUnctions. In

Diagrams 7.1 to 7.7, we plot
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r::. = log10 (f(::;) - f(~)) (7.19) Table 7.3: Helix

against nf , the number of function evaluations. Using the results

given by Fletcher (1965) and stewart (1967), the corresponding graphs

for the methods of Davies, Swann and Campey (D), Powell (p), and

stewart (S), are also given, for PUrposes of comparison.

I"f "1 f(~) xl X;- -TuX;--l
! 1 0 2.50'3 -1.000000 0.000000' 0.000000 '
!
I 14 5 1.62'2 1.000000 2.000000 2.000000
I

! 23 9 1.18'2 0·563832 1·952025! 1.759493

----1".........-.......-...... --,.----...-............................ -.---
llf III f(::;) ! Xl x2

1 0 I 2.42'1 -1.200000 1.000000I

11 4 4.14'0 -1.034611 1.071270

21

I
8 3.42'0 ~ -0.811598 0.621199 I

j I
i 1

31 12

I
2·59'0 I -0.549031 0.258076

I 45

I
17 1.67'0 I -0.268211 0.046503

I! 58 22 1.07'0
I -0.028125 -0.010783

I I I I

Table 7.2: Rosenbrock

I

.~~..J.._.4.:~~: -~~.J. ,. 1.000000

0.072132

0.002966

0.002942

2.47'-7

2.096124

1.987145

1.922708

1.074593

0.969820

0·548844

0.364506

0.153178

-2.53'-13

-2.47' -13

-9·92'-11

1.000020

0.967190

0·907981

0·734103

0.566910

0.342023

0.239418

0.091699

0.045726

-1.60'-13

-1.69'-13

0.002303

0.001853

8.49'-9

-6.45' -11

1.000000

1.000000

1.000000

1.002319

1.002726

1.000000

0·999996

0·993843

0.311857

0.305534

0.347506

0.847973

0.816717

0.965734

1.004624

5·22'0

1.75'-11

1.12'-20

3.78'0

3.01'0

4.04'0

8.01'-4

8.66'-6

9. 46 '-1

3.66'-1

2.46'-1

2.84'-2

6.35'-3

27

33

37

43

47

53

57

63

23

14

18

36

44

91

57

65

82

105

134

147

113

126

155 I 67
i

169 i 73

178 : 77 I 1·99'-24

! 200 ! 83 I 1.94'-24
L__. _ _.-l. ..-l __._.

0.200894

0.897130

0·990382

0.999974

1.000000

::::~J
1.000000

1.000000

0.482692

0·947231

0·996384

0·999991

6.61'-18

5.89'-4

6.69'-9

2·79'-3

1.13' -23

3·71'-1

52

47

27

37

42

32

72

84

98

120

109

132
I

i 155
L_ ",,_._
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Table 7.4: Singular* Table 7.5: Chebyquad

* See the comment under Table 7.1.

approximately in the SUbspace [( 1011.1, -~1' 11.2' A2)} , as expected.

1.59'-3

1.00'-4

11

16

27

38

n = 4

r'--r---- -- -- ----I' ---------
~

f' .ill 1_ f(x)- I I -

-'I, i
! 1 '\' 0; 7.12'-2
I iI I __

-- 17 'r 6: 1.43'-2

~T = (0.1026728, 0.4062037,

0.5937963, 0.8973272)

54 i 22 4.22' -7
i I
[ 64 I 27 1.86'-8
I ii 74 [32 7.89'-11
\ -- iI 87 : 38

1
' 7·75'-14

L~~ 1.88'716

n = 6 (continu~(!)

-r---:-;r n
l

f(:)

r;~--~l 58 2.14'-5

i 145 65' 1.14'-5

i 159 i 72 2·71'-6
I I
, 181 i 80, __ 1. ],3' -7
ii,

I
195 i 87; 6.59'-10

I I
, 209 1/ 94 1.38' -10
IT:

I 223 I 101 i 7·00'-13

1._~~~~~L_~7!'-15

22

~-I-~~--f(~)-I
I , i
f-- --- -+------1-------
I 1 i 0 I[ 1.98'-1
I ,

12', 4 I 4 . 53 ' - 3

8 I 1.89'-8

I 31 , 12 I 7·89'-20

I 45 ' 17 I 4.89' -241

L~~:89'-241

n = 2

~T = (0.2113249, 0.7886751)

n = 6
~- --r--- -. ------f-- .-- -- -- -- -- . -------1
,n

f
n

l
f(x) i

~r:r':----=--~:I 1 0 1 4.64'-2
I :
i I
\ 23 8 \ 2.35'-2

; ;
1 ,

37 I 15: 1.80 r -2

I :
51 I 22 I '1. 21 ' -2

66 I 29: 5.69'-3
i 1

81 i 36 I 2.07'-3
, I I

: 103 l 441 9·89'-5

; 117 51; 3.47'-5L_____ _ 1.. .__

f(x)---'l
I

6.02'-23

9·95'-18
!
!
!

5.89' -23 '\

5.89'-23 I
5.89' -23j

1.02'-17

111 ~ 2.03'-12

106! 9.76'-11

123 ;;.61'-14

128 6.43'-15

133 8.88'-16

140 7.35' -16

145 3.87'-16

116; 4.11'-13

157 9·92' -17

162 1.65' -17

150; 9.92'-17

167

174

179

184

421

234

244

254

269

279

289

308

319

330

358

373

384

404

436 I

1
464 i 191

L_~8~ -_l, 196

f(~)

-8 -7 -79.73xl0 ,5.31xl0 ,5.31xl0 ), lying

2.94'0

9.86' -1

2.15'2

2.13'-6

6'92 '-3

7·96'0

5·25'-5

8.25'-6

7 ·75'0

3·90'-8

3.90 '-8

1.18'1

2·70'-7

7 ·91'-8

3·95'-8

1.18'-3

1.34'-1

6

o

55

22

27

32

65

II

38

43

48

77

16

72

89

82

1

42

nr

19

31

58

68

78

94

129

114

104

184

139 : 60

199

149

164

174

209 ; 94 ! 3.89'-8
i ' I

! 219 I 99 I 7.67'-9,__--.-1'---- , L_ __ _

~T

>J. ::: (-9.73 X 10-7

~T = (0.066877, 0.288741, 0.366682, 0.633318, 0.711259, 0.933123)

250 251



7·7 7·7

Table 7.5 continued Diagram 7.1: Rosenbrock

n = 8
Key: B: Our method,

0.806910, 0·956847)

iT = (0.043153, 0.193091, 0.266329, 0.500000, 0.500000, 0.733671,

D

5

D: The method of Davies, Swann and Campey,

as given by Fletcher (1965),

P: Powell's (1964) method, as given by Fletcher (1965),

S: Stewart's method, as given by Stewart· (1967) .

log10(f(~) -f(~))(:,

T
C> ;

... ~

-1
f(x)

0.0035269968747

0.0035191392494

0.0035180637576

0.0035176364629

0.0035171964541

0.00351687437 45

101

110

119

128

138

n
f

308

244

226

208

262

280

\
!

J

\

: 326 : 147 I 0.0035168737890

345 ! 156 i 0.0035168737290I . :
L~64J__16?__ L__0__0~3~::"~~7_288

!f(x)

0.038617 6982859

0.0171124413073

0.0109131815974

0.0102860269896

0.0093337335931
i

0.0071908595069 i
I

0.0049952481593 I
0.0044432513463 II

0.0037940416125 I

0.0035390722159 I

o

n
1

19

28

10

37·

1

n
f

29

47

65

83

102: 46

125 i 55
,

144 I 64

172 I 74

190l83

10075 2535025o
• • ., • . 31

-24: • t. 125 150 nr-252
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Diagram 7.2: Helix

Key: B: Our method,
D: The method of Davies, Swann and Campey, as given

by Fletcher (1965),
P: Powell's (1964) method, as given by Fletcher (1965),
S: Stewart's method, as given by stewart (1967).

t. = log10 (f(!) - f(~))

t
I
I
I

7·7

Diagram 7.3: Singular (powell's function of four variables)

Key: B: Our method,
D: The method of Davies, Swann and Campey, as

given by Fletcher (1965),
P: Powell's (1964) method, as given by Fletcher (1965),
s: stewart's method, as given by Stewart (1967).

t. = loglO(f(::) -f(~))

\

~+--·-2W-·'-~--~

nf
254

.~~

~~

\B

L
-24'0 I 160 I 2~1 3bo -.----too I ~oO I )

n f
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7·7

Diagra~ 7.4: Chebyquad, n ~ 2

Key: B: Our method,

D: The method of Davies, Swann and Campey, as given
by Fletcher (l96S),

P: Powell's (l964) method, as given by Fletcher (l96S),

S: Stewart's method, as given by Stewart (l967).

l'

Diagram 7.5: Chebyquad, n ~ 4

Key: B: Our method,
D: The method of Davies, Swann and Campey, as given

by Fletcher (l96S),
P: Powell's (l964) method, as given by Fletcher (l96S),
S: Stewart's method, as given by Stewart (l967).

!'. ~ loglO(f(:::) - f(~))

!'. ~ loglO(f(:::) - f(~))

~P

-"-,

D

\
\

\

'\

n:r50403020
: 1,

I I)I II II II I I.
"~"'O I 10

256
r) ~ I 'I I ~ I)-1 '0 2 50 5 100 1 5 n
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Diagram 7.6: Chebyquad, n = 6

Key: B: Our method,
D: The method of Davies, Swann and Campey, as given

by Fletcher (l965),
P: Powell's (l964) method, as given by Fletcher (l965),
S: Stewart's metho~, as given py Stewart (l967).

£:, = loglO(f(:) - f(~»

Diagram 7.7: Chebyquad, n = 8

(Results for Stewart's method not available.)

Key: B: Our method,

D: The method of Davies, Swann and Campey, as given
by Fletcher (l965),

P: Powell's (l964) method, as given by Fletcher (l965).

p

B

/', = loglO(fC,,;) - f(~»

~

~~ '-~-'-
" ---~~--p--

D.

D

-16' I I I I I t-----+--t____ , I I )
o 100 200 300 400 500 nf258

-140 lIdo I 260 I "bo I 4'00' ~----+-- nf '
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necessary.

do not have a proof of this conjecture though: perhaps additional

conditions on f, or a slight modification of the algorithm, are

7·9

(unique) minimum for all fUnctions f which are C2 , strictly convex,

and satisfy

for all nonzero vectors e Of course, this result is of little

practical interest, for in practice rounding errors may be very

important: see Section 5.

It is plausible that, if the Hessian matrix of f is strictly

positive definite at the minimum, then our algorithm will converge

superlinearly. McCormick (1969) shows that this is true for the reset

Davidon-Fletcher-Powell algorithm, provided a Lipschitz condition is

satisfied. Figures 7.1, 7·2, and 7.4 to 7.7 certainly suggest that

convergence is superlinear until rounding errors beCome important. We

(8.1)lim f(Ae) = + a:>
A-a:>

7·8

8. Conclusion

Powell (1964) observes that, with his determinantal criterion for

accepting new search directions (see Section 3), there is a tendency for

the new directions to be accepted less often as the number of variables

increases, and the quadratic convergence property of his basic procedure

is lost. Our aim was to avoid this difficulty, keep the quadratic

convergence property, and ensure that the search directions continue to

span the whole space, while using basically the same method as Powell

(and Smith (1962)) to generate conjugate directions.

The numerical results given in Section 7 suggest that our algorithm

is faster than Powell's, and comparable to Stewart's, if the criterion

is.the number of function evaluations required to reduce f(x) to a

certain threshold. Also, our algorithm seems to be reliable even for

very ill-conditioned problems like Watson (n = 9) and tlilbert (n = 10) ,

while Stewart's method breaks down because of numerical difficulties on

some fUnctions, e.g., the Rosenbrock and Singular fUnctions (see

Stewart (1967)). However, we should not try to conclude too much from

the numerical results: see the warning in Section 7.

Theoretical convergence results

Suppose that all arithmetic is exact (i.e., there are no rounding

errors), and consider our algorithm with the stopping criterion removed.

Since the algorithm keeps on performing linear searches along n

orthogonal directions, the same conditions that ensure convergence of

the method of coordinate search to a local minimum will ensure convergence

of our algorithm. In particular, the algorithm will converge to the

9· An ALGOL W procedure and test program

The procedure praxis, plus a driver program and test functions,

is given below. The language is ALGOL W (Wirth and Hoare (1966),

Bauer, Becker and Graham (1968)), but none of the special features

of ALGOL W have been used, so translation into another dialect of

ALGOL should be straightforward.
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TO BIDIAGONAL FORM;

G := IF F<O THEN LONGSQRT{S)
ELSE -LONGSQRT{S);

H := F*G-S; AB{I,I+U := F-G;
FOR J:= L UNTIL N DO E(J) := AB{I,J)/H;
FOR J := L UNTIL N DO

BEGIN S := 0;
FOR K := L UNTIL N DO S := S + AB{J,K)*AB{I,K);
FOR K := L UNTIL N DO AB{J,K) := AB{J,K) + S*E{K)
END J

END S;
Y:= ABS{Q{I» + ABS{E{I»; IF Y )X THEN X := Y
END I;

IF F<O THEN LONGSQRT{S)
ELSE -LONGSQRT{S);

H := F*G-S; ABCI,I) := F-G;
FOR J := L UNTIL N DO

BEGIN F := 0;
FOR K := I UNTIL II DO F := F + AB{K, I )*AB{K,J);
F := F/H;
FOR K := I UNTI L N DO AB{K,J) := AB{K,J) + F*AB{K, I)
END J

END S;
Q{I):=G; S:=O;
IF I<=N THEN FOR J := L UNTIL N DO

S := S + AB{I,J)**2;
IF S<TOL THEN G := 0 ELSE

BEGIN
F := AB{I,I+ll;

COMMENT: ACCUMULATION OF RIGHT-HAND TRANSFORMATIONS;
FOR I : = N STEP -1 UNTI LIDO

BEGIN
IF G~=O THEN

BEGIN
H := AB{I,I+l)*G;
FOR J := L UNTIL N DO AB{J,I) := AB{\,J)/H;
FOR J := L UNTIL N DO

BEGIII S := 0;
FOR K := L UNTIL N DO S := S + AB{I,K)*AB{K,J);
FOR K := L UNTIL N DO AB{K,J) := AB{K,J) + S*AB{K, I)
END J

END G;

LONG REAL C,F,G,H,S,X,Y,Z;
LONG REAL ARRAY E{l::N);
COMMENT: HOUSEHOLDER'S REDUCTION
G := X := 0;
FOR I : = 1 UNT I L N DO

BEGIN
E{I) := G; S:= 0; L:= 1+1;
FOR J := I UNTIL N DO S := S+AB{J,I)**2;
IF S(TOL THEN G := 0 ELSE

BEGIN
F := AB{I,I); G"=

INTEGER L, KT;

*********************************;

THIS PROCEDURE t~INIMIZES THE FUNCTION F{X, ,N) OF N
VARIABLES X{U, ..• X{N), USING THE PRINCIPAL AXIS METHOD.
ON ENTRY X HOLDS A GUESS, ON RETURN IT HOLDS THE ESTIMATED
POINT OF 1~INlt4Url, WITH (HOPEFULLY) IERROR\ <
SQRT{MACHEPS)*IXI + T, ImERE ~IACHEPS IS THE MACHINE
PRECISION, THE SMALLEST NUMBER SUCH THAT 1 + MACHEPS ) 1,
T IS A TOLERANCE, AND I. I IS THE 2-NORM. H IS THE MAXIMUM
STEP SIZE: SET TO ABOUT THE MAXIMUM EXPECTED DISTANCE FROM
THE GUESS TO THE MINIMUM (IF H IS SET TOO SMALL OR TOO
LARGE THEN THE INITIAL RATE OF CONVERGENCE ~/ILL BE SLOW).

THE USER SHOULD OBSERVE THE COMMENT ON HEURISTIC NUMBERS
AFTER PROCEDURE QUAD.

PRIN CONTROLS THE PRINTING OF INTERMEDIATE RESULTS.
IF PRIN = 0, NO RESULTS ARE PRINTED.
IF PRIN = 1, F IS PRINTED AFTER EVERY N+l OR N+2 LINEAR

MINIMIZATIONS, AND FINAL X IS PRINTED, BUT INTERMEDIATE
X ONLY IF N (= 4.

IF PRIN = 2, EIGENVALUES OF A AND SCALE FACTORS ARE ALSO
PRINTED.

IF PRIN = 3, F AND X ARE PRINTED AFTER EVERY FEW LINEAR
14 INIt~ I ZAT IONS.

IF PRIN = 4, EIGENVECTORS ARE ALSO PRINTED.
FMIN IS A GLOBAL VARIABLE: SEE PROCEQURE PRINT.
RANDOM IS A PARAMETERLESS LONG REAL PROCEDURE WHICH RETURNS

A RANDOM NUMBER UNIFORMLY DISTRIBUTED IN CO, 1). ANY
INITIALIZATION MUST BE DONE BEFORE THE CALL TO PRAXIS.

THE PROCEDURE IS MACHINE-INDEPENDENT, APART FROM THE OUTPUT
STATEMENTS AND THE SPECIFICATION OF MACHEPS. WE ASSUME THAT
MACHEPS**{-4) DOES NOT OVERFLOW (IF IT DOES THEN MACHEPS MUST
BE INCREASED), AND THAT ON FLOATING-POINT UNDE~FLO~J THE
RESULT IS SET TO ZERO;

PROCEDURE MINFIT (INTEGER VALUE N; LONG REAL VALUE EPS, TOL;
LONG REAL ARRAY AB{*,*); LONG REAL ARRAY Q{*»;
BEGIN COMMENT: AN IMPROVED VERSION OF MINFIT, SEE GOLUB &

REINSCH (1969), RESTRICTED TO M = N, P = O.
THE SINGULAR VALUES OF THE ARRAY AB ARE
RETURNED IN Q, AND AB IS OVERWRITTEN WITH
THE ORTHOGONAL MATRIX V SUCH THAT
U.DIAG{Q) = AB.V,
WHERE U IS ANOTHER ORTHOGONAL MATRIX;

LONG REAL PROCEDURE PRAXIS (LONG REAL VALUE T, MACHEPS, H;
INTEGER VALUE N, PRIN;
LONG REAL ARRAY X{*); LONG REAL PROCEDURE F, RANDOM);
BEGIN COMMENT:

BEGIN COMMENT:
TEST P~OGRAM FOR PROCEDURE PRAXIS.
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FOR J : = L UNTI L N DO AB ( I, J) : = AB (J, I) : = 0;
AB(I,I) := 1; G:= E(I); L:= I
END I;

COMMENT: DIAGONALIZATIO~ OF THE BIDIAGONAL FORM;
EPS : = EPS*X;
FOR K := N STEP -1 UNTIL 1 DO

BEGIN KT := 0;
TESTFSPLI TTl NG:
KT : = KT + 1; I F KT ) 30TH EN

BEGIN E(K) := OL;
\~RITE ("QR FAILED")
END;

FOR L2 := K STEP -1 UNTIL 1 DO
BEGIN
L := L2;
IF ABS(E(L»(=EPS THEN GOTO TESTFCONVERGENCE;
IF ABS(Q(L-l»(=EPS THEN GO TO CANCELLATION
END L2;

COMMENT: CANCELLATION OF E(L) IF L>1;
CANCELLATION:
C := 0; S:= 1;
FOR I := L UNTIL K DO

BEGIN
F := S*E(I); E(I):= C*E(I);
IF ABS(F)(=EPS THEN GOTO TESTFCONVERGENCE;
G := Q(I); Q(I):= H := IF ABS(F) (ABS(G) THEN
ABS(G)*LONGSQRT(1 + (F/G)**2) ELSE IF F -= 0 THEN
ABS(F)*LONGSQRT(1 + (G/F)**2) ELSE 0;
IF H = 0 THEN G := H := 1;
COMMENT: THE ABOVE REPLACES Q(I):=H:=LONGSQRT(G*G+F*F)

WHICH MAY GIVE INCORRECT RESULTS IF THE
SQUARES UNDERFLOW OR IF F = G = 0;

C := G/H; S:= -F/H
END I;

TESTFCONVERGENCE:
Z := Q(K); IF L=K THEN GOTO CONVERGENCE;

COMMENT: SHIFT FROM BOTTOM 2*2 MINOR;
X :=-Q(L); Y:= Q(K-l); G:= E(K-l); H := ECK);
F := «Y-Z)*(Y+Z) + (G-H)*(G+H»/(2*H*Y);
G := LONGSQRT(F*F+l);
F := «X-Z)*(X+Z)+H*(Y/(IF F(O THEN F-G ELSE F+G)-H»/X;

COMMENT: NEXT QR TRANSFORMATION;
C := S := 1;
FOR 1:= L+l UNTIL K DO

BEGIN
G := ECI); Y:= Q(I); H:= S*G; G:= G*C;
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E(I-1) := Z := IF ABS(F) < ABS(H) THEN
ABS(H)*LONGSQRT(1 + (F/H)**2) ELSE IF F -= 0 THEN

. ABS(F)*LONGSQRT(1 + (H/F)**2) ELSE 0;
IF Z = 0 THEN Z := F := 1;
C := F/Z; S:= HIZ;
F := X*C + G*S; G:= -X*S +G*C; H:= Y*S;
Y :" Y*C;
FOR J := 1 UNTIL N DO

BEGIN
X := AB(J,I-l); Z := AB(J,I);
AB(J,I-l) := X*C + Z*S; AB(J,I) := -X*S + Z*C
END J;

Q(I-l) := Z := IF ABS(F) (ABS(H) THEN ABS(H)*
LONGSQRT(1 + (F/H)**2) ELSE IF F -" 0 THEN
ABS(F)*LONGSQRT(1 + (H/F)**2) ELSE 0;
IF Z = 0 THEN Z := F := 1;
C := F/Z; S:= H/Z;
F := C*G + S*Y; X:= -S*G + C*Y
END I;

E(L) := 0; E(K):= F; Q(K) := X;
GO TO TESTFSPLITTING;

CONVERGENCE:
IF Z(O THEN

BEGIN COt4t1ENT: Q(K) IS MADE rWN-NEG;
Q(K) := -Z;
FOR J := 1 UNTIL N DO AB(J,K) := -AB(J,K)
END Z

END K
END MINFIT;

PROCEDURE SORT;
BEGIN COMMENT: SORTS THE ELEMENTS OF 0 AND CORRESPONDING

COLUMNS OF V INTO DESCENDING ORDER;
INTEGER K;
LONG REAL S;
FOR 1 := 1 UNTIL N - 1 DO

BEGIN K := I; S:= 0(1); FOR J := 1+ 1 UNTIL N DO
IF D(J) ) S THEN

BEGIN K := J; S:= D(J) END;
IF K ) I THEN

BEGIN D(K) := 0(1); 0(1):= S; FOR J:= 1 UNTIL N DO
BEGIN S := V(J,I); V(J,I) := V(J,K); V(J,K) := S
END

END
END

END SORT;

PROCEDURE PRINT;
COMMENT: THE VARIABLE FMIN IS GLOBAL, AND ESTIMATES THE

VALUE OF F AT THE MINIMUM: USED ONLY FOR
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Fr'11 rl IS

UNDEFINED II) ELSE
- FM IN»);
HI ENE XT J- Itl E;

EVALUATE FLIN AT ANOTHER POINT AND
ESTIMATE THE SECOND DERIVATIVE;

IF FO ( Fl THEN -Xl ELSE 2*Xl; F2:= FLIN(X2);
(= FM THEN BEGIN XM := X2; FM:= F2 END;
(X2*(Fl - FO) - Xl*(F2 - FO»/(Xl*X2*(Xl - X2»

IF J ( 1 USES VARIABLES Q....
USES H, N, T, ~12, M4, LOT, D~IIN, MACHEPS;

LONG REAL PROCEDURE FLIN (LONG REAL VALUE L);
COM~ENT: THE FUNCTION OF ONE VARIABLE L WHICH IS

MINIMIZED BY PROCEDURE MIN;
BEGIN LONG REAL ARRAY T(l::N);
IF J > 0 THEN

BEGIN COMMENT: LINEAR SEARCH;
FOR 1:= 1 UNTIL N DO HI) := X(I) + L*V(I,J)
END .

ELSE
BEGIN COMMENT: SEARCH ALONG A PARABOLIC SPACE-CURVE;
QA := L*(L - QD1)/(QDO*(o.DO + QDl»;
QB := (L + QDO)*(QDl - L)/(QDO*QDl);
QC := L*(L + QDO)/(QDl*(QDO + QDl»;
FOR I := 1 UNTIL N DO HI) := QA*QO(I)+QB*X(I)+QC*Ql(I)
END;

COMMENT: INCREMENT FUNCTI ON EVALUAT ION COUNTER;
NF: = NF + 1;
FCT, N)
END FLlN;

INTEGER K; BOOLEAN DZ;
LONG REAL X2, XII, FO, F2, FM, 01, T2, S, SFl, SXl;
SFl := Fl; SXl:= Xl;
K := 0; XM:= 0; FO:= Fr~ := FX; DZ:= (02 ( MACHEPS);
COMMENT: FIND STEP SIZE;
S := 0; FOR I := 1 UNTIL N DO S := S + X(I )**2;
S := LONGSQRT(S);
T2:= M4*LONGSQRT(ABS(FX)/(IF DZ THEN DMIN ELSE 02)

+ S*LDT) + M2*LDT;
S := M4*S + T;
IF DZ AND (T2 > S) THEN T2 := S;
IF T2 ( SMALL THEN T2 := SMALL;
IF T2 > (O.Ol*H) THEN T2 := O.Ol*H;
IF FK AND (Fl (= FM) THEN BEGIN XM := Xl; FM:= Fl END;
IF ~FK OR (ABS(Xl) ( T2) THEN

BEGIN Xl := IF Xl >= OL THEN T2 ELSE -T2;
Fl := FLIN(Xl)
END;

IF Fl (= FM THEN BEGIN XM := Xl; FM:= Fl END;
LO: IF DZ THEN

BEGIN COM~IENT:

X2 : =
IF F2
02 : =
END;

COMMENT: ESTIMATE FIRST DERIVATIVE AT 0;
01 := (Fl - FO)/Xl - X1*D2; DZ:= TRUE;

PRINTING LOG(FX - FMIN);
IF PR I II > 0 THEN
BEGIN INTEGER SVINT; SVINT:= INTFIELDSIZE;
INTFIELDSIZE := 10;
~IRITE (NL, NF, FX);
COMMENT: IF THE NEXT n~o LI NES ARE orll TTED THEN

NOT REQUIRED;
IF FX (= FMIN THEN ~JRITEON (II
WRITEON (ROUNDTOREAL (LONGLOG (FX
COMMENT: II IOCOfHROL( 2) II MOVES TO
IF N > 4 THEN IOCONTROL(2);
IF (N (= 4) OR (PRIN > 2) THEN
FOR I := 1 UNTIL N DO WRITEON(ROUNDTOREAL(X( I»);
IOCONTROL(2); INTFIELDSIZE:= SVINT
END PRINT;

PROCEDURE MATPRINT (STRING(80) VALUE S; LONG REAL ARRAY
V(*,*); INTEGER VALUE M, N);
BEGIN COMMENT: PRINTS M X N MATRIX V COLUMN BY COLUMN;
\~R I TE (S);
FOR K := 1 UNTIL (N-+ 7) DIV 8 DO

BEGIN FOR 1:= 1 UNTIL fl DO
BEGIN IOCONTROL(2);
FOR J := 8*K - 7 UNTIL (IF N ( (8*K) THEN N ELSE 8*K)
DO WRITEON (ROUNDTOREAL (V (I,J»)
END;

\~RITE (" "); IOCONTROl(2)
END

END MATPRINT;

PROCEDURE VECPRINT (STRING(32) VALUE S; LONG REAL ARRAY V(*);
INTEGER VALUE N);
BEGIN COMMENT: PRINTS THE HEADING SAND N-VECTOR V;
\~R I TE (S) ;
FOR I : = 1 UNTI L N DO \~R ITEON (ROUNDTOREAL( V(( »)
END VECPRINT;

PROCEDURE MIN (INTEGER VALUE J, NITS; LONG REAL VALUE
RESULT 02, Xl; LONG REAL VALUE Fl; BOOLEAN VALUE FK);
BEGIN COMMENT:

MINIMIZES F FROM X IN THE DIRECTION V(*,J)
UNLESS J(l, WHEN A QUADRATIC SEARCH IS DONE
IN THE PLANE DEFINED BY QO, Ql AND X.
02 AN APPROXI~IATION TO HALF F" (OR ZERO),
Xl AN ESTIMATE OF DISTANCE TO MINlllUI1,
RETURNED AS THE DISTANCE FOUND.
IF FK = TRUE THEN Fl IS FLIN(Xl), OTHERWISE
Xl AND Fl ARE IGNORED ON ENTRY UNLESS FINAL
FX > Fl. NITS COIIT10LS THE NUr~BER OF TI11ES
AN ATTEMPT IS MADE TO HALVE THE INTERVAL.

SIDE EFFECTS: USES AND ALTERS X, FX, NF, NL.
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COMMENT: PREDICT MINIMUM;
X2 := IF D2 (= SrlALL THEN (IF Dl ( 0 THEN H ELSE -H) ELSE

-0.5L*Dl/D2;
IF ABS(X2) ) H THEN X2 := IF X2 ) 0 THEN H ELSE -H;
COMMENT: EVALUATE F AT THE PREDICTED MINIMUM;
Ll: F2:= FLIN(X2);
IF (K ( NITS) AND (F2 ) FO) THEN

BEGIN COM~ENT: NO SUCCESS SO TRY AGAIN; K:= K • 1;
If (FO ( Fl) AND «Xl*X2) ) 0) THEN GO TO LO;
X2 := 0.5L*X2; GO TO Ll
END;

COMMENT: INCREMENT ONE-D IMENS 10NAL SEARCH COUNTER;
NL := NL • 1;
IF F2 ) FM THEN X2 := XM ELSE FM := F2;

. COMMENT: GET NEW ESTIMATE OF SECOND DERIVATIVE;
D2 := IF ABS(X2*(X2 - Xl» ) SMALL THEN

(X2*(FI - FO) - Xl*(FM - FO»/(Xl*X2*(Xl - X2»
ELSE IF K ) 0 THEN 0 ELSE D2;

IF D2 (= SMALL THEN D2 := SMALL;
Xl: = X2; FX : = Ft~;

IF SFI ( FX THEN BEGIN FX := SFl; Xl:= SXl END;
COMMENT: UPDATE X FOR LINEAR SEARCH BUT NOT FOR PARABOLIC

PARABOLIC SEARCH;
IF J ) 0 THEN FOR I := 1 UNTIL N DO X(I) := X(I) • Xl*V(I,J)
END MIN;

PROCEDURE QUAD;
BEGIN COMMENT: LOOKS FOR THE MINIMUM ALONG A CURVE

DEFINED BY QO, Ql AND X;
LONG REAL L, S;I
S := FX; FX:= QFl; QFl:= S; QDl:= 0;
FOR I := 1 UNTIL N DO

BEGIN S,:= X(I); X(I) := L := Ql(I); Ql(I):= S;
QDl := QDl • (S - L)**2
END;

L := QDl := LONGSQRT(QOl); S:= 0;
IF (QOO ) 0) AND (QDl ) 0) AND (NL )= (3*N*N» THEN

BEGIN MIN (0, 2, S, L, QFl, TRUE);
QA := L*(L - QDl)/(QDO*(QDO • QDl»;
QB := (L • QDO)*(QDl - L)/(QDO*QOl);
QC := L*(L. QDO)/(QDl*(QDO • QDl»
END .

ELSE BEGIN FX := QFl; QA:= QB := 0; QC:= 1 END;
QDO := QDl; FOR 1:= 1 UNTIL N DO

BEGIN S := QO(I); QO(I):= X(I);
X(I) := QA*S. QB*X(I). QC*Q1(I)
END

END QUAD;

BOOLEAN ILLC;
INTEGER NL, NF, KL, KT, KTM;
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LONG REAL S, SL, DN, 0r.1I N, FX, Fl, LDS, LOT, SF, DF,
QFl, QDO, QOl, QA, QB, QC,
M2, r~4, SMALL, VSMALL, LARGE, VLARGE, SCBD, LDFAC, T2;
LONG REAL ARRAY D, Y, Z, QO, Ql (l::N);
LONG REAL ARRAY V (l::N, l::N);

COMMENT: INITIALIZATION;
COMMENT: MACHINE DEPENDENT NUMBERS;
SMALL := MACHEPS**2; VSMALL:= SMALL**2;
LARGE := lL/SMALL; VLARGE:= H/VSMALL;
M2 := LONGSQRT(MACHEPS); M4:= LONGSQRT(M2);

COMMENT: HEURISTIC NUMBERS
*****************

IF AXES MAY BE BADLY SCALED (WHICH IS TO BE AVOIDED IF
POSSIBLE) THEN SET SCBD := 10, OTHERWISE 1.

IF THE PROBLEM IS KNOWN TO BE ILLCONDITIONED SET
ILLC := TRUE, OTHERWISE FALSE.

KTM.l IS THE NUMBER OF ITERATIONS WITHOUT IMPROVEMENT BEFORE
THE ALGORITHM TERMINATES (SEE SECTION 6). KTM = 4 IS VERY
CAUTIOUS: USUALLY KTM = 1 IS SATISFACTORY;

SCBO := 1; I LLC := FALSE; KTM:= 1;

LOFAC := IF ILLC THEN 0.1 ELSE 0.01;
KT := NL := 0; NF:= 1; QFl:= FX := F(X,N);
T := T2 := SMALL. ABS(T); OMIN:= SMALL;
IF H ( (100*T) THEN H := 100*T; LDT:= H;
FOR I : = 1 UNT I L N DO FOR J : = 1 UNT I L N DO
V(I,J) := IF I = J THEN lL ELSE OL;
D(l) := QDO:= 0; FOR 1:= 1 UNTIL,N DO Q1(I) := X(I);
PRINT;

COMMENT: MAIN LOOP;
LO: SF:= 0(1); D(l) := S := 0;
COMMENT: MINIMIZE ALONG FIRST DIRECTION;
1'-'1 N (1 , 2, D( 1), S, FX, FALSE);
IF S (= 0 THEN FOR 1:= 1 UNTIL N DO V(I,1) := -V(I,1);
IF (SF <= (0.9*D(1») OR «0.9*SF) >= D(l» THEN
FOR I :=2UNTILNDOD(I) :=0;
FOR K := 2 UNTIL N DO

BEGIN FOR I := 1 UNTIL N DO Y(IJ := X(I); SF:= FX;
ILLC := ILLC OR (KT > 0);
Ll: KL:= K; OF:= 0; IF ILLC THEN

BEG IN COMMENT: RANDar, STEP TO GET OFF RESOLUTI ON VALLEY;
FOR I := 1 UNTIL N DO

BEGIN S := Z(I) := (O.l*LDT. T2*10**KT)*(RANDOr1-0.5U;
COMMENT: PRAXIS ASSUMES THAT RANDOM RETURNS A RANDOM

NUMBER UNIFORMLY DISTRIBUTED IN (0, 1) AND
THAT ANY INITIALIZATION OF THE RANDOM NUMBER
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KL : = K2

< ABS(100*MACHEPS*FX» THEN
NO SUCCESS ILLC = FALSE SO TRY ONCE
WITH ILLC = TRUE;

GO TO Ll

SORT NEW EIGENVALUES AND EIGENVECTORS;

COMMENT: TRY QU~ORATIC EXTRAPOLATION IN CASE WE ARE STUCK
IN A CURVED VALLEY;

V, N, N);

QUAD;
ON := 0; FOR I := 1 UNTIL N DO

BEGIN 0(1) := I/LONGSQRT(O(I);
IF ON < 0(1) THEN ON := 0(1)
END;

IF PR IN> 3 THEN :·lATPR IfIT ("NEI~ 0 I RECT IONS",
FOR J := 1 UNTIL N DO

BEGIN S := D(J)/ON;
FOR I := 1 UNTIL N DO V(I,J) := S*V(I,J)
END;

IF SCBO > 1 THEN
BEGIN COMMENT: SCALE AXES TO TRY TO REDUCE CONDITION

NUHBER;
S := VLARGE; FOR I := 1 UNTIL N DO

BEGIN SL := 0; FOR J := 1 UNTIL N DO SL := SL+V(I,J)**2;
HI) : = LONGSQRT(SU;
IF Z(I) < 144 THEN Z(I) := M4; IF S > Z(I) THEN S:= Z(I)
END;

FOR I : = 1 UNTI L N DO
BEGIN SL := S/Z(I); Z{I):= I/SL; IF Z(I) > SCBD THEN

BEGIN SL := I/SCBD; Z(I) := SCBO
END;

FOR J := 1 UNTIL N DO V(I,J) := SL*V(I,J)
END

END;
COMMENT: TRANSPOSE V FOR MINFIT;
FOR I : = 2 UNTI L N DO FOR J : = 1 UNTI L I - 1 DO

BEGIN S := V(I,J); V(I,J) := V(J,I); V(J,I) := SEND;
COMMENT: FIND THE SINGULAR VALUE DECOMPOSITION OF V.- THIS

GIVES THE EIGENVALUES AND PRINCIPAL AXES OF THE
APPROXIMATING QUADRATIC FORM WITHOUT SQUARING THE
CONDITION NUMBER;

MINFIT (N, MACHEPS, VSMALL, V, D);
IF SCBD > 1 THEN

BEGIN COMMENT: UNSCALING; FOR'I := 1 UNTIL N DO
BEGIN S := HI);
FOR J := 1 UIITIL N DO V(I,J) := S*V(I,J)
END;

FOR I := 1 UNTIL N DO
BEGIN S :,;, 0; FOR J := 1 UNTIL N DO S := S + V(J,I)**2;
S := LONGSQRT(S); 0(1):= S*D(I); S:= liS;
FOR J := 1 UNTIL N DO V(J, I) := S*V(J,I)
END

END;
FOR I : = 1 UNTI L N DO

BEGIN D{I) := IF (DN*D(I» > LARGE THEN VSr-lALL ELSE
IF (DN*D(\» < SMALL THEN VLARGE ELSE (DN*D(I»**(-2)
END;

COIvlMENT:

GENERATOR HAS ALREADY BEEN DONE;
FOR J := 1 UNTIL N DO X(J) := X(J) + S*V(J,I)
END;

FX := F(X, N); NF:= NF + 1
END;

FOR K2 := K UNTIL N DO
BEGIN SL := FX; S:= 0;
COMMENT: r~INIMIZE ALONG "NON-CONJUGATE" DIRECTlOrlS;
MIN (K2, 2, D(K2), S, FX, FALSE);
S := IF ILLC THEN D(K2)*(S + Z(K2»**2 ELSE SL - FX;
IF OF < S THEN

BEG I N 0 F : = S;
END

END;
IF ~ILLC AND (OF

BEGIN COMMENT:

ILLC := TRUE;
END;

IF (K = 2) AND (PRIfJ > 1) THEN VECPRINT ("NEl-J 0", 0, N);
FOR K2 := 1 UNTIL K - 1 DO

BEGIN COf\lMENT: MINIf\lIZE ALONG "CONJUGATE" DIRECTIONS;
S := 0; MIN (K2, 2, D(K2), S, FX, FALSE)
END;

Fl := FX; FX:= SF; LDS:= 0;
FOR I := 1 UNTIL N DO

BEGIN SL := X(I); X(I):= Y(I); SL:= Y(I) := SL - Y(I);
LOS := LOS + SL*SL
END;

LOS := LONGSQRT(LDS); IF LOS> SMALL THEN
BEGIN COMMENT: THROW AWAY DIRECTION KL AND MINIMIZE

ALONG THE NEI'J "CONJUGATE" 0 I RECTI ON;
FOR 1:= KL - 1 STEP -1 UNTIL K DO

BEGIN FOR J := 1 UNTIL N DO V(J,I + 1) := V(J,I);
0(1 + 1) := 0(1)
END;

O(K) := 0; FOR I := 1 UNTIL N DO V(I,K) := Y(I)/LDS;
MIN (K, 4, D(K), LOS, Fl, rrmu; -
IF LOS <= 0 THEN

BEGIN LOS := -LOS;
FOR I := 1 UNTIL N DO V(I,K) := -V(I,K)
END

END;
LOT := LDFAC*LOT; IF LOT < LOS THEN LOT := LOS;
PRINT;
T2 := 0; FOR I := 1 UNTIL N DO 12 := T2 + X(I)**2;
T2 := M2*LONGSQRT(T2) + T;
COMMENT: SEE I F STEP LENGTil EXCEEDS HALF THE TOLERANCE;
KT := IF LOT> (0.5*T2) THEN 0 ELSE KT + 1;
IF KT > KTM THEN GO TO L2
END;

270 271



RANI + 0.5L
END RANDOM;

SORT;
DMIN := D(N); IF Dr·IIN < SI1ALL THEN DMIN := sr~ALL;

ILLC := (M2*D(1» ) DMIN;
IF (PRIN ) 1) AND (SCBD ) 1) THEN
VECPRINT ("SCALE FACTORS", z, N);
IF PRIN > 1 THEN VECPRINT ("EIGENVALUES OF A", D, N);
IF PRIN ) 3 THEN MATPRlln ("EIGENVECTORS OF AI', V, N, N);
COMMENT: GO BACK TO MAIN LOOP;
GO TO LO;
L2: IF PRIN ) 0 THEN VECPRINT ("X IS", X, N);
FX
END PRAXIS;

PROCEDURE RANDOM RETURNS A LONG REAL RANDOM NUMBER UNIFORMLY
DISTRIBUTED IN (0,1) (INCLUDING 0 BUT NOT 1).

RANINIT(R) WITH R ANY INTEGER MUST BE CALLED FOR
INITIALIZATION BEFORE THE FIRST CALL TO RANDOM, AND THE
DECLARATIONS OF RANI, RAN2 AND RAN3 MUST BE GLOBAL.

THE ALGORITHM RETURNS X(N)/2**56, WHERE
, X(N) = X(N-1) + X(N-127) (MOD 2**56).

SINCE 1 + X + X**127 IS PRIMITIVE (MOD 2), THE PERIOD IS AT
LEAST 2'"*127 - 1 ) ,10**38. SEE KNUTH (969), PP. 26, 34, 464.

X(N) IS STORED IN A LONG REAL I'JORD AS
RAN3 = X(N)/2**56 - 1/2, AND ALL FLOATING POINT ARITHMETIC
IS EXACT;

LONG REAL RANI; INTEGER RAN2; LONG REAL ARRAY RAN3 (0::126);

PROCEDURE RANINIT (INTEGER VALUE R);
BEGIN R := ABS(R) REM 8190 + 1;
RAN2 := 127; WHILE RAN2 ) 0 DO

BEGIN RAN2 :~ RAN2 - 1; RAN1:= -2L**55;
FOR I := 1 UNTIL 7 DO

BEGIN R := (1756*R) REM 8191;
RANI := (RANI + (R DIV 32»*(1/25G);
END;

RAN3 (RAN2) := RANI
END

END RANI NIT;

LONG REAL PROCEDURE RANDOM;
BEGIN RAN2 := IF RAN2 = 0 THEN 126 ELSE RAN2 - 1;
RANI := RANI + RAN3 (RAN2);
RAN3 (RAN2) := RANI := IF RANI < OL THEN RANI + 0.5L

ELSE RANI - 0.5L;

COMMENT: RANDOM NUMBER GENERATOR
********************.**

COMMENT: TEST FUNCTIONS
**************;

LONG REAL PROCEDURE ROS (LONG REAL ARRAY X(*); INTEGER VALUE N);
COMMENT: SEE ROSENBROCK (1960);
100L*«X(2) - X(1)**2)**2) + (lL - X(1»**2;

LONG REAL PROCEDURE SING(LONG REAL ARRAY X(*);INTEGER VALUE N);
COMMENT: SEE POWELL (1962);
(X(l) + 10L*X(2»**2 + 5L*(X(3)-X(4»**2 + (X(2)-2L*X(3»**4
+ 10L*(X(1) - X(4»**4;

LaNG REAL PROCEDURE HELIX(LONG REAL ARRAY X(*);INTEGER VALUE N);
COMMENT: SEE FLETCHER & POWELL (1963);
BEGIN LONG REAL R, T;
R := LONGSQRT (X(1)**2 + X(2)**2);
T := IF X(l) = 0 THEN 0.25L ELSE LONGARCTAN (X(2)/X(1»/(2L*

3.14159265358979L);
IF X(l) < 0 THEN T := T + 0.5L;
100L*«X(3) - 10L*T)**2 + (R - 1L)**2) + X(3)**2
END HELIX;

LONG REAL PROCEDURE CUBE(LONG REAL ARRAY X(*);INTEGER VALUE N);
COMMENT: SEE LEON (1966);
100L*(X(2) - X(1)**3)**2 + (lL - X(1»**2;

LONG REAL PROCEDURE BEALE(LONG REAL ARRAY X(*);INTEGER VALUE N);
COMMENT: SEE BEALE (1958);
(1.5L - X(l)*(lL - X(2»)**2 +
(2.25L - X(l)*(lL - X(2)**2»**2 +
(2.625L - X(l)*(lL - X(2)**3»**2;

LONG REAL PROCEDURE WATSON (LONG REAL ARRAY X(*);
INTEGER VALUE N);
COMMENT: SEE KOWALIK & OSBORNE (19G8);
BEGIN LONG REAL S, T, U, Y;
S := X(1)**2 + (X(2) - X(1)**2 - 1L)**2;
FOR I : = 2 UNTI L 30 DO

BEGIN Y := (I - 1>/29; T:= X(N);
FOR J := N - 1 STEP -1 UNTIL 1 DO T := X(J) + Y*T;
U := (N - l)*X(N);
FOR J := N - 1 STEP -1 UNTIL 2 DO U := (J - l)*X(J) + Y*U;
S : = S + (U '- T*T - 1L) **2 -
END;

S
END I'IATSON;

LONG REAL PROCEDURE CHEBYQUAD (LONG REAL ARRAY X(*);
INTEGER VALUE N);
COMMENT: SEE FLETCHER (1965);
BEGIN
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A

LONG REAL F~ DELTA, TPLUS;
BOOLEAN EVEN;
LONG REAL ARRAY Y, TI, TMINUS (1::N);

DELTA := OL;
FOR J := 1 UNTIL N DO

BEGIN Y(J) := 2L*X(J) - lL;
DELTA := DELTA + Y(J);
TI(J) := Y(J); H1INUS(J):= lL
END;

F :~ DELTA**2; EVEN:= FALSE;
FORI : = 2 UNTI L N DO

BEGIN EVEN := ~EVEN; DELTA:= OL;
FOR J := 1 UNTIL N DO

BEGIN iPLUS := 2L*Y(J)*TI(J) - TMINUS(J);
DELTA = DELTA + TPLUS;
TlvI I NUS J) : = TI (J) ;
TI (J) = TPLUS
END;

DELTA := DELTA/N - (IF EVEN THEN 1/(1 - 1*1) ELSE 0);
F := F + DELTA**2
END;

F
END CHEBYQUAD;

LONG REAL PROCEDURE POWELL (LONG REAL ARRAY X(*);
INTEGER VALUE N);
COMMENT: SEE PO~ELL (1964);
3L - lL/(IL + (X(I) - X(2»**2) ­
LONGSIN(0.5L*3.14159265358979L*X(2)* X(3»-(IF X(2) = 0 THEN
OL ELSE LONGEXP(-«X(I)+X(3»/X(2) - 2L)**2»;

LONG REAL PROCEDURE WOOD(LONG REAL ARRAY X(*);INTEGER VALUE N);
COMMENT: SEE MCCORMICK ~ PEARSON (1969) OR COLVILLE (19G8);
100L*(X(2) - X(I)**2)**2 + (IL - X(I»**2 + 90L*(X(4) ­
X(3)**2)**2 + (IL- X(3»**2 + 10.IL*«X(2) - lL)**2 + (X(4)
- lL)**2) + 19.8L*(X(2) - lL)*(X(4) - lL);

LONG REAL PROCEDURE HILBERT (LONG REAL ARRAY X(*);
INTEGER VALUE N);
COMMENT: COMPUTES XT.A.X, WHERE AIS THE N BY N HILBERT

MATRIX, SEE GREGORY & KARNEY (1969), PP. 33, 66;
BEGIN LONG REAL S, T;
S := OL; FOR I := 1 UNTIL N DO

BEGIN T := OL; FOR J := 1 UNTIL N 00
T := T + X(J)/(I + J - 1);
S := S + T*X(I)
END;

S
END HILBERT;
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LONG REAL PROCEDURE TRIDIAG (LONG REAL ARRAY X(*);
INTEGER VALUE N);
COMI>IENT: COMPUTES XT.A.X - ZEIT.X, ImERE N) 1,

( 1 -1 a 0 ••. 0)
(-1 2 -1 a '" 0)
( 0 -1 2 -1 0)
( )
(0 .•• -1 2-1)
(0 ... a -1 2),

AND EIT = (1, 0, ... , 0).

SEE GREGORY & KARNEY (1969), PP. 41, 74;
BEGIN LONG REAL S; .
S := X(I)*(X(I) - X(Z»;
FOR I : = 2 UNT I L N - 1 DO
S := S + X(I)*«X(I) - X(I - 1» + (X(I) - X(I + 1»);
S + X(N)*(2*X(N) - X(N - 1» - 2*X(I)
END TRIDIAG;

LONG REAL PROCEDURE BOX (LONG REAL ARRAY X(*);INTEGER VALUE N);
COMMENT: SEE BOX (1966) OR BROWN & DENNIS (1970);
BEGIN LONG REAL P, S;
S := 0; FOR I := 1 UNTIL 10 DO

BEGIN P := -1/10;
S := S + «lONGEXP(P*X(l» - (IF (P*X(2» ( (-40) THEN a

ELSE LONGEXP(P*X(2»» -
X(3)*(LONGEXP(P) - LONGEXP(10*P»)**2

END;
S
END BOX;

COMMENT: GENERAL TESTING PROCEDURE
*************************;

PROCEDURE TEST (STRING (80) VALUE S; LONG REAL VALUE H;
LONG REAL PROCEDURE F; INTEGER VALUE N);

BEG I N LONG REAL Ft,11 rJ; INTEGER Tl14;
ImITE(" II); I-JRITE(" "); I'IRITE(S);
WRITE("N =", N, II :-1 =", ROUNDTOREAUH»; \~RITE(" ");
COMMENT: IrHTlALlZE RANDOM NUMBER GENERATOR; RANIIJIT(4);
COMMENT: TIME(2) RETURNS CLOCK TIME IN UNITS OF 26 MICROSEC;
11 M : = T I ME (2) ;
FMIN := PRAXIS (1'-5, 16**(-13), H, N, 1, X, F, RANDO~I);

WRITE ("T1ME (lvlILLISEC) =", ROUND«TlI4E(2) - TIM)/38.4»;
I~R I TE (" ")
END TEST;

COMMENT: TESTING PROGRAM
********'*******;
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LONG REAL Ftll N, LAM;
COM~1ENT: INCREASE DH-1ENSIOi~S FOR tJ ) 20;
LONG REAL ARRAY X(1::20);
COM~1ErJT: INTFIELDSIZE CONTROLS THE OUTPUT FORf1AT OF INTEGE~S;

INTFIELDSIZE := 7;

X( 1) : = -1. 2L ; X( 2 ) : = 1 L; Ff·11 N : = 0;
TEST ("ROSENBROCK'S FUNCTION \HTH A PA~ABOLIC VALLEY",1,ROS,2);

XCI) := X(2) := 3;
TEST ("ROSENBROCK'S FUNCTION ", 3, ROS, 2);

X(l) := X(2) := 8;
TEST ("ROSENBROCK'S FUNCTION", 12, ROS, 2);

XU) := -1; X(2):= X(3) := 0;
TEST ("HEll X", 1, HEll X, 3);

XCI) := -1.2L; X(2) := -1;
TEST ("CUBE", 1, CUBE, 2);

X(l) := X(2) := O.lL;
TEST ("BEALE", 1, BEALE, 2);

X(l) := 0; X(2):= 1; X(3) := 2;
TEST ("POWELL", 1, POI'lELL, 3);

FMIN := 0; X(l):= 0; X(2) := 10; X(3) := 20;
TEST ("BOX", 20, BOX, 3);

X(l) := 3L; X(2) := -lL; X(3):= OL; X(4) := lL;
TEST ("POWELL'S FUNCTION WITH A SINGULAR JACOBIAN",1,SING,4);

FMIN := 0; X(l):= X(3) := -3; X(2) := X(4) := -1;
TEST ("WOOD", 10, WOOD, 4);

FOR N:= 2 STEP 2 UNTIL 8 DO
BEGIN FOR I := 1 UNTIL N DO X(I) := I/(N + 1>;
FMIN := IF N < 8 THEN OL ELSE 0.0035168737256779L;
TEST ("CHEBYQUAD", 0.1, CHEBYQUAD, N)
END;

FOR N := 6 STEP 3 UNTIL 9 DO
BEGIN FOR I := 1 UNTIL N DO X(I) := 0;
FMIN := IF N = 6 THEN b.00228767005355L ELSE

IF N = 9 THEN 1.399760138098'-6L ELSE OL;
TEST ("I'lATSON", 1, WATSON, fl)
END;

FOR N : = 4, 6, 8, 10, 12, 16, 20 DO
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BEGIN FOR I := 1 UNTIL N DO X(I) := OL; Fr~IN:= -N;
TEST ("TRIDIAG", 2*N, TRIDIAG, N)
END;

FMIN := 0; FO~ N := 2 STEP 2 UNTIL 12 DO
BEGIN FOR I := 1 UNTIL N DO X(I) := 1;
TEST ("HILBERT", 10, HILBERT, U)
END

END.
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