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Preface

The problem of finding numerical apprcximations to the zeros and
extrema of functions, using hand computation, hes a long history. In
the last few years, considerable progress has been made in the development
of algorithme suitable for use un a digital computer. The aim of this
work 1s to suggest improvements to some of these algorithms, extend the
mathematical theory behind them, and describe some new algorithms for
approximating local and glcbal minima. The unifying thread is that all
the algorithms vonsidered depend entirely on sequential funclion
evaluations: no evaluations of derivatives are required. ©Such algorithms
are very useful if derivatives are difficult to evaluate, and this is
often Lrue in practical problems.

I am greatly indebted to Trofessors G. E. Forsythe and G. H. Golub
for their advice and encouragement during my stay at Stanford, and fer
their guidance of my research. Thanks are due to them and to the other
members of my reading committee, Professors J. G. Herriot, F. Wl Dorr
and C. B. Moler, for their careful reading of various drafts, and for
many helpful suggestions.

Several people have contributed to this work. I would particularly
like to thank Dr. T. J. Rivlin for suggesting how to find bounds on
polyncmials (Chapter 6), and Dr. J. H. WilkinsSon for introducing me to
Dekker's algorithm (Chapter 4). Also, thanks to Professor F. Dorr and
Dr. I. Sobel for their help in testing some of the algorithms, to

Michael Malcolm, Michael Saunders and Alan George for many interesting
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discussions, and to Phyllis Winkler for her fast and accurate typing.
T am grateful for the influence oi my teachers V. Grenness, H. Smith,
Drs. D. Faulimer and E. Strzelecki, Professors G. PTestop, J. Miller,
7. Janko, R. Tloyd, T. Knuth, and M. Schiffer, and those menbioned above.
Deepest Lhanks to my wife Erin for her careful proof-reading,
and help in cobtaining sohe of the numerical results, testing the
algorithms, plotting graphs, and in many other ways.
I'inally, I wish to thank the Commonwealth Scienlific and Industrial
Research Organization, Australia, for its generous support during my
stay at Stanford.

This work is dedicated to Oscar and Nancy, sine guis non.
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1.1
1.  Introduction
Consider the problem of finding an approximate zero or minimum of
a function ol one real variable, using limited-preclsion arithmetle on a
sequential digital computer. The function f may not be differentiable,
or the derivative ' may be difficuit to compute, so a method which
uses only computed values of f is desirable. Since an evaluation of
I may be very exwxpensive in terms of éomputer time, a good method should
guarantee to find a correct solution, to within some prescribed tolerance,
using only a small number of function evaluations. Hence, we study
algorithms which depend on evaluating f at a small number of points,
‘and for which certain desirable properties are guaranteed, even in the
presence of rounding errors.
Slow, safe algorithms are seldom preferred in practice to fast
algorithms which may occasionally faill. Thus, we want algorithms which
are guaranteed to succeed in a reasonable time even for the most "difficult"”
functions, yet are as fast as commonly used algorithms for "easy"
functions. For example, blsection is a safe method for finding a zero
of a function which changes sign in a given interval, but from our point
of view it is not an acceptable method, because it is Jjust as slow for
any function, no matter how well behaved, as it is in the worst possible
case (ignoring the possibility that an exact zero may occasionally be
found by chance). As a contrasting example, consider the method of
successive linear interpolation, which converges superlinearly to a

1

simple zero of a C function, provided that the initlal approximation

is good and rounding errors are unimportant., This method is not

acceptable cither, for, in practice, we may have no way of knowing in

iy
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advance if the zero is simple, if the initial approximation is sufficiently
good to ensure convergence, or what the effect of rounding errors will be.

In Chapter 4 we describe an algorithm which, by combining some of
the desirable features of bisection and successive linear interpolation,
does come close to satisfying our reguirements: it is guaranteed to
converge {i.e., halt) after a reasonably small number of function
evaluations, and the rate of convergence for well-behaved functions
is so fast that a less reliable algorithm is unlikely to be preferred
on grounds of speed.

An analogous algorithm, which finds a local minimum of a function
of one variable by a combination of golden section search and successive
parabolic interpelation, is described in Chapber 5. This algorithm
fails to completely satisfy one of our requirements: in certain
applications where repeated one-dimensional minimizations arc required,
and where aceuracy is not very important, a faster (though less reliable)
method is preferable. One such epplication, finding local minima of
functions of several variables without calculating derivatives, is
discussed in Cﬁapter T. Note that, wherever we consider minima, we
could equally well consider maxima.

Most algorithms for minimizing & nonlinear function of one or more
variables ind, at best, a local minimum. For a function with several
local minima, there is no guarantee that the local minimum found is the
global (i.e., true or lowest) minimum. Since it is the global minimum
which is of interest in most applications, this is a serious practical
disadvantage of most minimization algorithms, and ocur algorithm given

in Chapter 5 is no exception. The usual remedy is to try several
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different starting points and, perhaps, vary some of the parameters of
the minimizatlon procedure, in the hope that the lowest local minimum
found is the global minimum. This approach is inefficient, as the same
local minimum may be found several times, and it is also unreliable, for,
no matter how many starting points are tried, it is impossible to be
quite sure that the global minimum has been found.

In Chapter 6 we discuss the problem of finding the global minimum
to within a prescribed tolerance. ' It is possible to give an algorithm
for solving this problem, provided that a liltle a priori information
about the function to be minimized is known. We describe an efficient
algorithm, applicable if an upper bound on " is known, and we show
how this algorithm can be used recursively to find the global minimum
of a function of several variables. Unfortunately, because the amount
of computation involved increases exponentially with the number of
variables, this is practically useful only for functions of less than
four variables. TFor functicons of more variables, we still have to
resort to the unreliable "trial and error"” method, unless special
information about the function to be minimized is available.

Thus, we are led to consider practical methods for finding local
(unconstrained) minima of functions of several variables. As before, we
considgr methods which depend on evaluating the function at a small
number of points. Unfortunately, without imposing very strict conditions
on the functions to be minimized, it is not possible to guarantee that
an n-dimensional minimization algorithm produces results which are correct
to within some prescribed tolerance, or that the effect of rounding errors

has completely been taken into account. We have to be satisfied with
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algorithms which nearly always give correct results for the functions
likely to arise in practical applications.

As suggested by the length of our bibliography, there has recently
been considerable interest in the unconstrained minimization problen.
Thus, we can hardly expect to find a good method which is completely
unrelated to the known ones. In Chapter 7 we take one of the better
methods which does not use derivatives, that of Powell (1964), and modify
it to try to overcome some of the difficulties observed 1in
the literature. Numerical tests suggest that our proposed method is
faster than Powell's original method, and just as reliable. Tt also
compares guite well with a different method proposed by Stewart (19675,
at least for functions of less than ten variables. (We have no numerical
results for non-quadratic functions of more than ten variables.)

ALGOL implementations of all the above algorithms are given. Most
testing was done with ALGOL W (Wirth and Hoare (1966)) on TBM 360/67 and
360/91 computers. As ALGOL W is not widely used, we give ALGOL €0
procedures (Naur (lé6§)), except for the n-dimensional minimization
algorithm. FORTRAN subroutines for the one-dimensional zero-finding
and local minimization algorithms are alsc available.

To recapitulate, we describe algorithms, and give ALGOL procedures,
for Solving the following problems efficiently, using only function (not

derivative) evaluations:

1. Tinding a zero of a function of one variablefif an interval in which
the functlion changes sign is given;
2. Finding a local minimum of a function of one variable, defined on =

given interval,
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3. IMinding, to within a prescribed tclerance, the global minimim of
a funetion of one or more variables, given upper bounds on the
second derivatives;

k. Finding a leocal minimum of a funclion of several variables.

For the first three algorithms, rigorous bounds on the error and the
number of function evaluations required are established, taking the
effect of rounding errors into account. ©Oome results concerning the
order of convergence of the Tirst two algorithms, and preliminary

resulls on interpolation and divided differences, are also of interest.

2. Summary

In this section we summarize the main results of the following
chapters. A more detailed discussion is given at the approupriate
places in each chapter. This summary is intended to serve as a puide
to the reader who is interesled in some of our results, but not in
others. To assist such a reader, an attempt has heen made to keep each

chapter as self-contained us possible.

Chapler 2

In Chapter 2 we collect some results on Taylor series, Lagrangian
interpolation, and divided differences. Most of these resulbts are needed
in Chapter 3, and the casual reader might prefer to skip Chapter 2 and
refer back to it when necesaary. Some of the results are similar to

classical ones, but instead of assuming that f has ntl continuous

1.2
(n)

derivalives, we only assume that f is Lipschitz continuous, and

the term f(n+l)(§) in the classical results is replaced by a number

‘bounded, in absolute value by a Lipschitz constant. For example,

Lemmas ?.3.1, 2.3.2, 2.4.1, and 2.5.1 are of this nature. Since a
TLipschitz contimious function is differentiable almost everywhere,
these results are not surprising, although they have not been found in
the literature, except where references are given. (Sometimes Lipschitz
conditions are imposed on the derivatives of functions of several
variables: see, for example, Armijo (1966) and McCormick (1969).) The
procfs are mostly similar to those for the classical results.

Theorem 2.6.1 iz a slight generalization of some resulbs ol
Ralston (1963, 1965) on differentiating the error in Lagrangian
interpoclation. It is included both for its independent interest, and
because it may be used to prove a slightly weaker form of Lemma 3.6.1
for the important case q =2 . (A similar proof is skelehed in
Kowalik and Osborne (1968).)

An interesting resull of Chapter 2 is Theorem 2.6.2, which gives
an expression for the derivative of the error in Tagrangian interpolation
at the points of interpolation. A well-lnown wcaker result i1s that the
conclusion of Theorem ?.06.2 holds if f has ntl continuous derivatives,
but Theorem 2.6.2 shows that it is sufficient for f to have n
conbinuous derivatives.

Theorem 2.5.1, which gives an expansion of divided differences, may
be regarded as a gencralization of Taylor's theorem. Tt is used several
times in Chapter 3: for example, see Theorem 3.L.1 and Lemma 3.6.1.

Theorem 2.5-1 is usecful for the analysis of inlcrpolation processes
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vhenever the coefficients of the interpolation polynomials can conveniently

be expressed in terms of divided differences.

Chapter 5

In Chapter 5 we prove somc theorems which provide a theoretical
foundation for the algorithms described in Chapters 4 and 5. 1n
particular, we show when the algorithms will converge superlinearly,
and what the order (i.e., rate) of convergence will be. Of course, for
these results the effect of rounding errcrs is igneored. The reader
whose main interest is the practical applications of our results might
omit Chapter 3, except for the numerical examples {Section 3.9} and the
summary (Section 3.10).

So that résults concerning successive linear interpolation for
finding zeros (used in Chapter ), and successive parabolic interpolation
for finding turning points (used in Chapter 5), can be given together,

we consider a more general process for finding a zero of f(q_l) y £

or
any fixed g > 1 . Successive linear interpolation and successive
parabolic interpolation are just the special cases q =1 and q =2
Another case which is of some practical interest is g = 3 , for finding
inflexion points. As the procfs for general ¢ are essentially no more
difficult than for q =2 , most of our results are for general gq .

For the applications in Chapters L4 and 9, the most important
results are Theorem 3.4.1, which gives canditions under which convergence
is superlinear, and Theorem 3.5.1, which shows when the order is at least

1.618... (for g =1) or 1.324... (for g = 2) . These numbers are

well-kncwn, but ocur assumptions about the differentiability of f are
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weaker than those of previous authors, e.g., Ostrowski (1966) and
Jarratt (19G7, 1968).

From a mathematicul point of view, the most interesting result
of Chapter 3 is Theorem 5.?.1..‘The result for q 1 is given in
Ostrowski (1966), except for our slightly weaker assumpbion about the
smoothness of f . For q = 2 , our result that convergence to f with
order at least 1.378... is possible, even if f(B)(E) # 0, appears to
be new. Jarratt (1967) and Kowalik and Osborne (1968) assume that

Py 8 - .
i%?m —1;§;:*§T* = 0, (2.1)

and then, from Lemme %.6.1, the order of convergence is 1.32h... .

However, even for such a simple function as

£(x) - 2x° 1 x5, (2.2)

there are starting points xo 3 xl and x2 such that (2.1) fails Lo
hold, and then the order may be at least 1.378... . We should point
out that this exceptional case is unlikely to cccur: an interesting
conjecture is that the set of starting points for which it oecurs has
measure zZero.

The practical conclusion to be drawn from Theorem 3.7.1 is that,
if' converpgence is to be accelerated, Lhen the result of Lemma 3.6.1
should be used. In Section 5.8 we give one of the many ways in which

this may bhe done. Finally, some mumerical examples illustrating hoth the

accelerated and unaccelerated processes are given in Section 3.9.
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Chapter b

In Chapter L we describe an algorithm for finding a zero of a
function which changes sign in a given interval. The algorithm is
based on a combination of successive linear interpolation and bisection,
in much the same way as "Dekker's algoritim” (van Wijngasrden, Zonneveld
and Dijkstra (1963), Wilkinson (1967), Peters and Wilkinson {1969),
Dekker (1969)). Our algorithm never converges much slower than bisection,
whercas Dekker's algorithm may converge cxtremely slowly in certain cases.
(Examples are given in Section 4.2.)

It is well-known that bisection is the optimal alyorithm, in a
minimax sense, for finding zeros of functions which change sign in an
interval. (We only consider sequential algorithms: see Robbins (1952),
Wilde (196k) and Section k.5.) The molLivation for both our algorithm and
Dekker's is that bisection is not optimal if the class of allowable
functions is suitably restricled. For example, it is not optimal for
convex functions (Bellman and Dreyfus (1962), Gross and Johnson {1959)),
ér for Cl Iunctions with simple zeros.

Both our algorithm and Dekker's exhibit superlinear convergence to
a simple zerc of a Cl function, for eventually only linear inverpolations
are performed, and the theorems of Chapter 3 are applicable. Thus,
convergence is wusually much faster than for bisection. Our algorithm
incorporates inverse quadratic interpolation as well as linear interpolation,
so it is often slightly faster than Dekker's algorithm on well-behaved

functions (sce Section %.hY).

10
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Chapter 5

An algorithm [or Finding a local minimum of a lunction of one
variable is described in Chapter 5. 'The algorithm combines golden
section scarch (Bellman (1957}, Kicfer (1953), Wilde (1904), Witzgall
(1969)) and successive parabolic interpolation {the case q - 2 of the
process analysed in Chapter 7), in Lhe same way as biscction and surcessive
linear interpolation are combined in the zero-finding algorithm of
Chapter 4. Convergence in a reasonable number of function evaluations
is guaranteed (see Section 5.5), and, for a 02 function with positive
curvature at the minimum, the results of Chapter > show that convergence
is superlinear, if we ignore rounding errors and suppose that the minimum
is at an interior peint of the interval. Other algorithms given in the
literaturc either fajil to have these two desirable propertics, or, when
convergence is strictly superlinear, the order of convergence is less
than for our algorithm (se¢ Sections 5.4 and 5.5}.

In Sections 5.2 and 5.3 we consider the effect of rounding errors.
Section'5.2 contains an analysis of the limitations, imposed hy rounding
errors, on the'attainable accuracy of any algorithm which is based
entirely on function evaluations, and this section should be studied
by the reader who intends to use the ALGOL procedure given in Section 5.8.

If £ 1is unimodal, then our algorithm will find the unigque minimum,
provided there are no rounding errors. To study the effect of rounding
errors, we define " d-unimodal" functions. A unimodal function is H-unimodal
for all & >0 , but a computed approximation to a unimodal function can
nol be unimodal: 1l will be d-unimedal for some positive & , depending

on the function and on the precision of computation. (& - O as the

11
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precision increases indefinitely.) We prove some theorcems about 8-unimodal
functions, and give a bound for the error in the approximate minimum found
by our algorithm when applied Lo a 5-unimodal function. 1In this way we

can justify the use of our algorithm in the presence of rounding errors,
and account for their effect. QOur motivution is ralher similar to that

of Richman (1968) in developing the £-calculus, but we are not concerned
with properties that hoid as € -0 . The reader who is not very
interested in the effect of rounding errors might prefer to skip

Section 5.3,

Chapter 6

In Chapter & we consider the problem of finding an approximation
to the global minimum of a funetion f , defined on a finite interval,
if some a priori information about f is known. This interesting problem
does not seem to have received much attention, although there have been
some empirical investigalions, e.g., see Magee (1960). In Section 6.1,
we show why some a priori infermation is necessary, and discuss some of
Lhe possibilities. TIn the remainder of the chapter we restrict our
attention to the case where an upper bound on 1" is known .

An algorithm for global minimization of a function ol one variable,
applicable when such an upper bound on the second derivative is known, is
described in Section 6.3. The basic idea of this algorithm is used by
Rivlin (1970) to find bounds on a polynomial in a given interval. We
pay particular attention to the problem of giving guaranteed bounds in
the presence of rounding errors, and the casual reader may find the

details in the last half of Section (.3 rather indigestible.

12

In Section 6.4, we try Lo obtain some insight into the hehaviour
of our algorithm by considering somertractable special cases. Then, in
Seclions 6.5 end 6.6, we show that no algorithm which uses only function
evaluations and an upper bound on f" could be much faster than our
algorithm. TFinally, a generalization toc funclions of several variables
is given in Section 6.8. The conditions on f are much weaker than
unimodality (Newman {1965)). The generalization is not practically useful
for functions of more than three variables, and it is an open guestion

whether a significantly better algorithm is possible.

Chapter 7

Tn Chapter 7 we describe a modification of Powell's (196L) algorithm
lor finding a local minimum of a function of several variables, without
calculating derivatives. The modification is designed to ensure
guadratic convergence, and to avoid the difficulties with Powell's
criterion for accepting new search directions-

First, a brief introduction to the problem and a survey of the
recent literatureare given in Section 7.1. The effecl of rounding errors
on the limiting accuracy attainable is discusSed in Section 7.2. Powell's
algorithm is described in Section 7.3, and our maln modification is given
in Section 7.h. The idea of the modification (finding the principal axes
of an approximating quadratic form) is not new: for example, it is used
by Greenshadt (1967) in his quasi-Newton method. Unlike Greenstadt,
though, we do not use an explicit approximation to the llessian matrix.
An interesting feature of ocur modification is that it is posible to avoid
squaring the condition number of the eigenvalue problem by using a singular

value decomposition: see Section 7.4 for the details.

13
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In Sccbions 7.5 and 7.6 we describe some additicnal features of our
algorithm. Then, in Section 7.7, we give the results of some numerical
experiments, and compare our method with those of Powell (1964), Davies,
Swann and Campey (Swann (196L)), and Stewart (1967). For the comparison
we have used numerical results obtained by Flelcher (1965) and Stewarh
(1967). The numerical results suggest that our algorithm is competitive
with the currently used algorithms which do not reguire the uscr Lo
compute derivatives, although it is difficult to reach a definite
conclusion without more practical expericnce.

Finally, we give a bibliography of the recent literature on
nonlirear minimization, with the emphasis being on methods for solving

unconstrained problems.

iy

Chapter 2.

3ome Useful Results on Taylor Series, Divided Differences,

and Lapgrangian lnterpolation



1. Introduction

In this chapter we collect some results which are needed in Chapters
%5 and 6. The reader who is mainly interested in the practical applications
described in Chapters ) to 7 might prefer to skip this chapter, except for
Section 2, and refer back to it when necessary.

Classical expressions for the error in truncated Taylor series and
Lagrangian interpolation often involve & term f(n+l)(§) , where t iz an
unknown poinkt in some inbterval. For such expressions to be valid, T must
have ntl derivatives. GSeveral of the results of this chapter give
expreqsions which are valid if f(n) satisfies a {possibly one-sided)
Lipschitz condition. In these results, tThe term f(n+l)(§) is replaced
by a number which is bounded by a Lipschitz constant. It seems-unlikely
that these results are new, but they have not been found in the literature
except where references are given-

The results of Chapter 3 depend heavily on Theorem 5.1, which gives
an expansion of the divided difference f[xo,...,xn] {see Section 2} near
the origin. This theorem, and the less cumbersome Corollary 5.1, are
useful for the analysis of interpolation processes, for the coefficients
ol the interpolating polynomials can be expressed in terms of divided
differences (see Chapter %).

Finally, in Section ©, we extend some results of Ralston (1963) on
the derivative of the error term in Lagrangian interpoclation. These
results are relevant to Chapter 3, although they are given mainly for
their independent interest. Perhaps the most interesting result is
‘Theorem 6.2, which shows that, if we are only concerned with the points
of interpolation, then we can differentiate the classical expression for

the error (equation (6.4)}, reparding the term f(n)(g(x)) as constant.
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2.2
This is well-known if f has mntl combinuous derivatives, but Theorem 6.2

shows Lhal il is sufficient for f +to have n continuous derivatives.

2. Notation and definitlions

Throughout this chapter [ea,b] is a nonempty, finite, closed
interval, and [ is a rcal-valued function defined on [a,b] . n 1is
a nonnegative integer, ™M a nonnegative real number, and Q@ & number

in (0,171 .

The modulus of continuity w(f;8) of f (in [a,b]) is defined by

w(r;d) = wsup |0{x) -2(y) |, (2.1)
X,y ela,b]
-yl <o
for all B >0 .

If f has a conbinuous n-th derivative on [a,b] , then we write

rec™a,b] . If, in addition, () € Lip, @, i-e.,

&

W(f(n);ﬁ) < MB (2.2)

for a1l1 & > 0O , then we write f‘eICn[a,b;M,a]_ (This notation is not
standard, but it is convenient if we want to mention the constants M
and @ explicitly.) TIf feIC%[a,b;M,1] then we write simply
£ e 10", b3m]

if Xgre--s¥, are distinct points in [a,b] , then IP(f;xO,...,xn)
is the Loagrangiun interpolation polynomial, i.e., the unigue polynomial
of degree n or less which coincides with f at Agr e a X The

17



2.2

divided difference [I{x.,...,x ] 1is defined by

T{x,
,(XJ) )
n
_ﬂ_ (x.-x.)
=0 J !
i3
(There are many other notations: see for example, Milne {1949),
Milne-Thomson (193%), and Traub (1964).) Note that, although we suppose
for simplicity that x_, <eoyx are distinet, nearly all the results piven

0

here and in Chapter 3 hold if some of x., TS coincide- (We then have

(¢]
Hermite interpolation and confluent divided differcnces: see Traub (196l4).)
For the statement of these results, the word "distinet" is enclosed in

parentheses.

Newton's identities

For future reference, we note the following useful identities {see
Cauchy (18L0), TIsaacson and Keller (1G06), or Traub (1964)). The first
is often used as the definition of the divided difference f[xo, ...,xn]
while the second gives an explicit representation of the interpelating

polynomial and remainder.

1. f[}(O] = f(XO)

and, for n>1,

gy eanx | = i A S (2.4

2. 1If P = '[P(f;xo, ...,xn) , then
ja}
f(x) = P(x) + (E (x-x) ) algseesx %] (2.5)

18

2.3
and
. P(x) = f[xo]+ (x —xo)f[xo,xl] + s
+(x-XO)"'(X—Kn~l)flxoj'“}xn] . (2.6)
5. Truncated Taylor serie:a'

In this section we give some Lorms of Taylor's theorem. TLemma 3.1
is necded in Chapter 6, and applies if f(n) satisfies a onc-sided

Lipschitz condition.

Lemma 5.1
Suppose that feCn[O,b] Lor some b >0 , and that there is a

consbant M such that, for all ye[0,b],
o) <o (3.1)

Then, for all x<{0,b],

- T 5 e AR RS
= = Q) + — mix ) .
* ren T (m+1)t
where
m(x) <M (3.2)
Remarks

The proof is by induction on n , and is omitted. The corresponding
two-sided result is immediate, and is generalized in Lemma 3.2 below. In

Lemma 5.2, fractional factorials are defined in the usual way, S0

(n+c)t/ar = (L+a)(P+a)...(n+a) . (3.1

19



2.3
Lemma 3.2

T fe1c™a,biM,a] and %,yela,b] , then
I I
o) = ) T 0y oy (MY o/ ey, (309)
r=0 )

where

[m(x,7)| <m . (3.6)

Remarks
The result is triviel if n =0 , and for n > 1 it follows from
Taylor's theorem with the integral form for the remainder, using the
integral
x L n-1
T(x-t n+x
1) ST At = o/ () (3.7

for x>0 .

Note that the bound (3.6} is sharp, as can be seen from the example

£lx) = ' (3.8)
with y = 0 and M = (n+a)i/ol . Since, for n >1,
n! < (mwa)ifar (3.9)

the bound obtained from the classical result

n

n=1 bl 7
() = L L) o) gy Lod gl (3.10)

for scme £ Dbetween x and y , is not sharp.

20

k. Lagrangian interpolation

The following, lemma, used in Chapter 6, gives a one-sided bound on

the error in Lagrangian interpclation, if f(n) satisfies a one-sided
Lipschitz condition. Thus, it corresponds to Lemma 3.1. The corresponding
two-sided result follows from Theorem 3 of Baker (1970}, but the proof
glven here is simpler, and similar to the usual proof ol the classical

result thut, if £eC™ la,b] , then m(x) = r(n“)(g(x)) , lor some

E(x) e [a,b] . (See, for example, Isaacson and Keller (1966), pg- 190.)

Lemma L.1

Suppose that fe Cn[a,b] 5 x

or e eeX,  are (distinct) points in

[a,b] P = IP(f;x

o,...,xﬂ) ; and, for all x,yela,b] with x >y,

fe - Wy < M-y (k1)

Then, for all xela,b],

£x) = 26 +( TT (x—er CE (4.2)
where

m(x) < M . (L.3)

Proof
Suppose that n >0 and x % x, forany r =0,...,n , for
otherwise the result is trivial. Let
n

w(x) =TT (x-x) (1.1)

r=0

and write



T(x) = p(x) +w(x}s(x) . (k.5
Regarding x  as Tixed, define
¥(z) = r(z) - P(z) - w(z)8(x) (k.6)

for zela,b]
Thus J:'ch[a,h] , and F(z) vanishes at the n+2 distinet points
R RETTE S Applying Rolle's theorem n +times shows that there are

two distincl points € ,Elt;(a,b) , such that

o
My =Py <o (17)
Differentiating (¥.6) n +times gives
P ) 2 o) - ) st e (4.8)

where c¢(x) is independent of =z . Thus, from (4.7),

(n) _ on)
oy - L (g - () , (h.9)
(r+1): go - gl

so the result follows from condition (4.1).

5. Divided differences

Lemma 5.1 and Theorem 5.1 are neecded in Chapter 3. The firsl part
of Lemma 5.1 follows immediately from Lemma 1.1 and the identity (2.5}
{we state the two-sided result for variety), while the second part is
well-known, and follows similarly. Theorem 5.1 is more interesting, and
most of the results of Chapler 7 depend cn it. It may be regarded as a

generglization of Taylor’s thecrem (the special case n = 0)

22

2.5
Lemma 5.1

Suppose that €107 a,b;M] and that X,...,X

5 are (distinct)

n+1
points in (a,b] . Then

f[)co,...,xn_‘_J_] =n/(m1)! (5.1)

where

ml < M . (5.2)

+1
Furthermore, iff f ELH [a,b] , then

n = l_(n+l)

(&) ' (5.3)

Tor some Eela,b]

Theorem 5.1

n+k

Suppose that k,n >0 ; [« [a,b] 5 a<0 3 b>0; and
Kyrene,X T {distinct) points in [a,b] . Then
{n) n+l)
f[xo""’xn] - E_HTLQL * ntl)!
) 0 < \I‘ <n
Z IO
+ X ..-Xr (nlk)' + R,
O<r, <1 < <r, <n 1 "k "
>T12%e 2 >
(5.1)
where
1 ntk ntk
B - Ty oo, G (Mg
"\ O0<r. <r_ <...<r <n 1 k Tk
A
(5-5)
for some & r in the interval sparned by X ,...,% and O
I'lJ---z k r,_L rk

23



2.5
Corollary 5.1

If, in Theorem 5.1,

§ =  max |xr] s (5.6)
r=0,...,n
then
X
+k
Rl < s w5y (5:7)

Proof of Theorem 5.1

The result for k =0 is lmnediate from the second part of Lemma 5.1,
so suppose that k >0 . Take points Vo7 or ¥y which are distinet, and

distinct from xo,...,xn . Then

f[xo, .. .,xn] - f[yo, .. .,yﬂ]

n
= E [f[xo,...,xl_,y1+l,...,yn]—f[xo,...,xr_l,yr,...,yn]}
=0

{5.4)

n

(XI‘ = yl") f[xo: ..
r=0

-;Xr,b’r:---yﬁ’n] » (5-9)

by the identity (2.h4).

We may suppose, by induction on k , that the theorem holds if k
is replaced by k-1 and n by ntl . Use this result to expand cach
term in {5.9), and consider the limit as Yoo ---s¥, tend to O . Dy
the second part of Lemma 5.7, f[yo,...,yn] tends to f(n)(O)/n'. 5 80

the result follows. (Strictly, to show the existence of the points

E ; we must add to the inductive hypothesis the result that
S ERERTEN
+
f(n k)(g , ) dis a continuous function of x_ ,...,%x_ .)
TyreeesT el T
2h

Corollary 5.1 is immediale, once we note that there are exaclly

ntlk) !

%t terms in the sum (5.5).

6. Differentiating the error

The two theorcms in this section are concerned with dilferentiating
the error term for Lagrangian interpclation. These theorems are nol
needed later, but are included for their independent interest, and also
because they may be used Lo glve alternative proof's of some of the results
of Chapter 3 (see Kowalik and Osborne (1968), pp. 18-20).

Theorem 6.1 is given by Ralston (1963, 1965) if rectt

[a,b] . We
state the result under the slightly weaker assumption that fc ICn[ a,b ;M)
for some M the only difference in the conclusion is that Ralston's
term f(n+1) (N(x)) is replaced by m(x) , where |m(x)| <M . The proof
is similar to that given by Ralston (1963), and is also similar to the proof
of Lemma 6.2 below, so it is omithed.

Theorem 6.2 gives an expression for the derivative of the error at

“the points of inlerpolation. IT feLCn[a,b;M] then the result follows

immediately from Theorem 6.1, but Theorem 6.2 shows that feC' {a,b] is

sufficient. This result may be of some independent interest.

Theorem 6.1

Suppose that n > 1 ; rec™Ma,biMl 5 x

ottt Xq Bre (disbinet)

points in [e,b] ; w(x) = (x-xo)...(x-xn_l) s P = IP(f;xO,...,xn_l) H
and f(x) = P(x)+R(x) . Then there are functions ¢: [a,b] = la,b]

and m: [a,b] - [-M,M] , such that

25
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1. f(n)(g(x)) is a continuous function of xela,b] V(zjxlthoug,h E(x)
is not necessarily conlinucus);
2. m{x) is contimmous on [a,b] , except possibly at R S
3. Yor all xela,bl,
R = w(x) £ (6 () nt (6.1)

and
RU(x) = w ()T (5(0))/nt + w(Im(x) (k1) s (6.2)
and
b, 4T x # x, for r =0,-..,0-1, then
&™) 2l (6-3)
Theorem 6.2

Suppose that n >1 ;5 cc™Ma,v} 3 x are (distinct)

EREFE SN
points in [a,b] ; w(x) = (x—xo)...(x—xn_l) ; P = IP(f;xO,...,Kn_l) 5
and f(x) = P(x) +R(x) . Then there is a function ¢: [a,b] - [a,b] ,
such that f(n)(g(x)) is a contingous funcbion of xela,b] 3 Tor all

xela;b]
R(0) = w(e) e (500 /m (6.4)
and, for v = 0y...,n-1 ,

R'(x) :w‘(xr)f(n)(g(xr))/n! . (6.5)

Before proving Theorem 6.2, we need some lemmas. Nobe the similarity

between Lemma 6.2 and 1heorem 6.1,

Lemma £.1
Suppose that n >1 3 f ecn[a,b] 3 ¥gr ok, are distinct points
in [a,b) 5 P = IP(Lixgs--e% )
26

2.6
s mx 20|, (6.6)
xela,b])
and
B = max Ix, - x, . {(6.7)

0<i<j«<n ¢

Then, for all xela,bl ,

) n
£(x) = P(x) + '|‘|' (x-z) }8(x) , (6.8)
r=0 r
where
2A -
8 < 557 - (6.9)
Proofl
Ir x = x, for some r = Q,...,n , then we can take S(x)} =0 .

Otherwise, by the identity (2.5),

8(x) = F[XO,...,xn,x] . (£.10)
Write Tl ijr‘ x , and reorder LY RTETE Sy (il nccessary) so thatl,
?f the reo;dered points are xé,...,xé+l , then
xt - x! = max Ixr - xt) > & . (6.11)
+ —
6] n+l OSi<an+l i J
From (6.10) and the identity (2.4},
flet, cvu,xt] - flxt, . a,xt |
. 8] n 1 nt 1l .
8(x) = n , (6.12)
0 n+l

50, by Lemma 5.1,

ORI
nt(x} - xr']+l)

27

38(x) =




2.6
for some £ and §¢' in la,b] . Tn view of (6.6) and (6.11), the

resull follows.

Lemma (.72

Suppose that n > 2 ; fecn[a,b] ;X

" ...,xn>l are distinct
points in [a,b] ; & = max [f(n)(x)l s B o= max x, -x.| ;
xela,b] 0<i<j<n o
P, = IP(f-,xo,...,xn_l) ; wn(x) = (x-xO)...(x-xn_l) 3 and

f(x) - 'Pn(x) +R(x) . Then there is a function &: [a,b] — [a,b] such

that, for all xc[a,b] , f(n)(F,(x)) is o continuous function of x ,
R = v (0™ ge0)m (6.14)

2|wn(x) |a

860 - w0 ™ y/m | < S (6.15)

and, if x f’: X, for r =0,...,n-1, then

12 ey < 20 . (6.16)

Prcof

Let X, be a point in [a,b] , distinct from x and XyreeorX

For k =n or mntl , define

P, = IP(f;xO,...,xk_l) . (6.17)
and

wk(x) = (x-xo)...(x-xk_'l) . (6.18)

By the classical result corresponding to Lemma 4.1, there is a function

£ such that (6.1h) holds. Suppose, until further notice, that x # x,

28

{x=x w'ixi
kY r

n-1

2.6
for r=0,...,n .
=1 f(xr)w (x)
P(x) = L 5
=0
we have
£ () _ £(x)
nt

Since the right side of (6.20) is continuously differentiable at

is the left side, and

nt

Lt -

d f(x
d.x(wn(x ) *

3

Then, from (€.1:) and the identity

f(xr)

n-1

r=0

Define S(x,xn) by
£(x) = Pn+l(x) + wn+l(x)S(x,)(n)
Since
w (X
w' o (x) = n( n)
1V

equation (6.19)

Pml(x)

n+

S(x,xn)

(% )l (x)

gives

n-1

£x)

WGl Ry T

f‘(xr)

f(xn)

ré) (K—Xr) (Xr_xn)w;lTxr) " (x_xn)wn(xn) ’

+

fix _ f(xn)
wn b's wnixni
% - X
n

29

n-1

X

f(xr)

r-0

(x-—xr) (xn-xr)wljl(xr)

x

(6-19)

(6.20)

y SO

(6

.22)

(6.21)

(6.25)



2.8 2.6

As x ~x, the right side of (6.25) tends to the right side of (6.21).

Thus, there exists

equations {6.1) and (0.5) are satisfied.

1 4

lim S(x,xn) =S f(n)(g(x)) s (6.26) all n>1.

n!
X K
n

and, {rom the definition (6.22) and Lemma 6.1, this proves (6.16). Now,
by differemtiating the right side of (6.14) by parts, we seec that (6.15)
holds, in fact

w0 e () + (1) 2 ™ (e00))
2 TR—— , (6.27)

R'(x) =

provided that x £ x , for r =0,...,n-1 . Consider (6.27) near one

of the points X,oa T = 0,...;n-1 . R'(x) is conkinucus at X

wn(xr) =0, wix) £ 0, and, by (6.16), % f(n)(g(x)) is bounded
for x f x, . Thus F(n)(g(x)) has, at worsl, a rvemovable discontinuity
at X, and, by the continuity of f(n)(g] as a function of &,

a suitable redefinition of E,(xr) will ensure ELhat f(n)(g(x)) is a

continuous function of x , and that
' - (n} . 2
R(x) = (e ) Y (B mt (6-28)
This completes the proof of the lemma.

Proof of Theorem 5.2

If n > 2 then the result follows immediately from Lemma 6.2, If
n - 1, choose E(x) so that g(xo) =%, and, for x # L
f(x) - f(xo}

f'(E(X}) :V—XT . (6"'19)

Then £'(E(x)} 1is a conbinucus function of xela,b] , a2nd, as

30

R(x) = f(x) -f(:-co) and  w(x)

= X=X

31

, it is casy to see that

Thus, the theorem holds for



1. Introduction

Suppose that q >1 and f.ch_l[a,b] . Given (distinct) points
Xyr - Xy in [a,b} , & sequence (xn) may be defined in the following

Chapter 3. way: if Koreees®y, o are already defined, let P - IP(f;xn,...,xn+q)
be the g-th degree polynomial which coincides with f  at Xn""’xn+q B

The Use of Duccessive Interpolation for Finding Simple and choose xn+q—ll so that
Zeros of a Function and its Derivatives P(q—l)(x ) =0 . {1.1)
n ntg+l

Under certain conditions the sequence (xn) is well-defined by (1.1),

lies in [a,b] , and converges toazero ¢ of f(q_l)

In this chapher
we give sufficient conditions for convergence, and estimate the asymptotic
rate of convergence, making various assumptions about the differentiabillty
of f .

Since P is a polynomial of degree g , (1.1) is a lincar eguation

in xn+q+1 . If

f{.xn:~‘-)xn+q] # 0 2 (1'2)

then Lemma 3.1 shows that thé unique solution is

q flx 45 --,xmg_]

x_ —
+1 ae
n+i f[xn, ,Kn+q]

xn+q+l B

1
e , (1.3)
1\ i

and this might be used as an alternative definition. TFrom Section 4 on,

our assumptions ensure that HoreeorX are sufficiently close to a

g

simple zero ¢ ol g(a-1) , so (1.2) holds. In Section 3, the assumplion

that f(Q)(gj £ 0 is unnecessary: all that is required is that x
n+qt+i

is & (not necessarily unigue) solution of (1.1).

The cases of most practical interest avre q =1, 2 and 3. For q =1,

cur successive interpolation process reduces to the [amiliar mebhod of
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3.1

successive linear inﬁerpolation for finding a zero of < , and some qf our
results are well-known (see Collatz (1964}, Householder (1971), Ortega and
Rheinb;ldt (1970}, Ostrowski (1906), Schrider (1870), Traub (1906k, 1967)
etc.). TFor g = 2 , we have a process of successive parabolic interpolation
{for finding a turning point, and, lfor ¢ = 7 , a process for finding an
inflexion point. These two cases are discussed separately by Jarratt (1967,
1968}, who assumes Lhat I is analytie near t . By using (1.3) and
Theorem 2.5.1, we show that much milder assumptions on the smoothness of f
suffice (see Theorems 4.1, 5.1 and 7.1). Also, most of our results hold
for any q > 1, and the proofs are no more difficult than those for the

special cases g - 2 and q = %

Some simplifying assumpltions

Practical alporithme for finding zeros and extrema, using the results
of this chapter, are discussed in Chapters L and 5. Until then we ignore
the problem of rounding errors, and usually suppose that the initijal

approximations x

O""’xq are sufficiently good.

For the sake of simplicity, we assume thai any g+l cousecublive
points xn""’xn+q
described in Chapters 4 and 5.) Thus, Pn is just the Lagrange

are distinct. (This is always true in the applications

interpolation polynomial, and the resulis of Chapier 2 are applicable.
As in Chapter 2, the assumption of distinct poinks is not necessary, and
the same results hold without this assumption if Pn is the appropriate

Termite interpolaticn pelynomial.
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3.1

A preview of the results

The definition of "order of convergence" is discussed in Section 2,
and in Section 3 we show that, if a sequence (xn) satisfies (1.1) and
converges to F 4 then f(q-l)(g) =0 (Theorem 3.1).

In Sections 4 to T, we consider the rate of convergence to a simple
zero f of f(qgl) 3 makiné increasingly stronger assumptions about the
smocthness of f . TFor practical applications, the most important result
is probably Theorem 4.1, which shows that convergence is superlinear if
reC?  and the starting values are sufficiently good. As in similar results
for Newton's method (Collatz (196L), Kantorovich and Akilev (1959),

Ortega (1968), Ortega and Rheinboldb (1970) ete.), it is possible to say
precisely what "sufficiently good" means. Theorem 5.1 is an easy
consequence of Theorem 4.1 apd the theary of linear difference equations
(Norlund (1954)), and gives & lower bound on the order of convergence il
f(q) is Lipschiltz conlinuous.

The guestion of when the order of convergence is cqual to the lower
bound given by Theorem 5.1 is the subject of Sections 6 and 7. Although
the results are interesting, they are not of mueh practical imporbance,
for in practical problems it is merely a pleasant surprise if the iterative
process converges faster than expected: Thus, the reader whose main
intérest is practical applicabions might prefer to skip Sections 6 and 7
(and also Theorem 3.1), except for Lemma &.1.

Tn Section 8, we consider the interesting problem of accelerating the
rate of convergence, and Theorem 8.1 shows how this may be done. We make
use of Lemma 6.1, which gives a recurrence relation for Lhe error in
successive approximations to ¢ , and is a generalization of vesults of

Ogtrowski (1966) and Jarratt (1967, 1968).
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3.2

'3.2

Finally, in Section 9 the theoretical results are illustrated by 1l ias
and Ortega and Rheinboldt (1970) give some more possibilities (for

some numerical examples, and a brief gummary of the main thecrems is . . .
example, we may take the supremum of p such that the limit X in (2.1)

given in Section 10. The reader may find it worthwhile to glance at . .
exists and is zero, or the infimum of p such that K is infinite). See

this summary occasionally in order Lo see Lhe pattern of the results. .
also Schroder (1870). For our purposes it is conwvenienl to use (2.1) and

(2.4), so we make the folleowing definitions.

2.  The definiticn of order ‘ Definition 2.1
We say x_ - { with strong order p and asympbotic constant K
Suppose that  1im X = { . There are many reascnable definitions n -
noe irox - Y as n -« and (2.1) holds.
of the "order of convergence' of the sequence (x ) . For example, we
n We say x -t with weak order p iT X, - £t s n 2o and

could say that the order of convergence is p if any one of (2.1) to (2.k4) (2.4 hold - B . 11 sufficiently 1 th
. olds. X, = §{ for all sufficiently large n en we say

holds:
that x - ¢ with weak order o .)
%0 - €
n+1 . , : /
im ——— = K>0 , (2.1} Definition 2.2
= _ P ) —_—
n—m I)cn ;l
Let
’ . l/n
- c = lim sup |x_ - § {2.5)
loglx,,, - ¢l , by - &

n—w

We say x - { sublinearly (or less than linearly) if X, = £ and

c=1. Wesay x_ - f linearly if 0 <e <1l . We say x_ -
l/n : n —_— n

lim(-log|x - §|) = p (2.3} . . . . . .

n -ren n - superlinearly if ¢ =0 . We say ) strictly superlinearly irf
X, o ! with weak order p > 1 .

Lim inf(-loglx - g\)l/n - p . (2.%)

n—+w=
Examples

These conditions are in decreasing order of strength, i.e., Some remarks and examples may help to clarify the definitions. If

(2.1) o (2.2) 2 (2.3) o (2.4), and none of them are equivalent. (2.1) is p>1 and x = exjp(—pn)(l+0(l)) 45 m o, then x_ -0 with strong

used by Ostrowski (1966), Jarratt (1967) and Traub (1964, 1967), while order p and asymptotic constant 1 . If ¢ >1 and x - exp(-a™) (2 + (-1)"
. n

(2.2) is used by Wall (1956), Torrheim (1964) end Jarratt (1968). voigl (1969) then X, = Q with weak order g , but not with any slrong order, for the
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3.3
1limit in (?.1) does not exist if p =g, is zero if p < g, and is
infinite if p > g . Thus, convergehce with strong order p implies
convergence Wwith weak order p , but not conversely.
If the limit in (2.1) or (2.4) exists, and o= £, then p >1.
Tf the limit (2.1) exists with p =1, and x - £, then K <1
(K <1 for linear cenvergence, and K = 1 for sublinear convergence) .
Examples of sublinear, linear, superlincar, and strictly superlinear

n
-n -2 .
convergence are x =T, 2 ;N , and 2 respectively.

3. Convergence to a zero

In this section we shaw that, if the sequence (xn) defined by (1.1)

converges, then it must con{rergc to a zero of f(q_l) assuming cnly

that fqu-l[ a,b] . Tirst, we need a lemma which gives a relation

between the points o "x‘r\+q+1 :

Lemma 5.1
LSS SV SETREE ’xn+q are (distinct) points in [a,b] , and xn+q+l
satisfies (1.1), then
q-1
(j_ ) O(Km_i - Xn+q+_l_))f-[xn’ .- "xn+q] = f[xn, .. "Xn+q—.]_] . (3.1)
Proof
By the identity (2.2.0),
Pn(x) = f[xn] + (x-xn) f[xn,xml] + ...
+ (x—xn) .- (x—xnﬂl_l) flxn, .o ’xn+q} R (3-2)

50

33

3-3

Péq—l)(x) = (@=L t{Elx s 0ok ]

n ntq-1
a-1
-0 (% i—x))f[xﬂ,...,]{ 1.

n+ ntq

L
i-0
Thug, the result follows from (1.1).

Theorem 3.1

Suppose that feC9 Ma,b] ; thal a seguence (x) setistying
(1.1) is defined (see Section 1) in [a,b] ; and that there exists
Lim x =¢ . Tben r(q_l)(g) S 0.
n o
Proof

Suppose, by way of contradiclion, that
-1
H£9 gy /o

For O <r <dq , the identity (2.2.4) shows that

(x -xn+q)f[xn,_..,x ] = f[xn,... ] -

x
ntr ntq "nrq-1

.

flx ,...5x X .
[ n’ T T nbr-17 Tnbrd ntq

Thus, from Lemme 5.1,

bl
xn+1-_xn+q - “'n,r i (anri _xn+q+l) !

where

L'[xn,-- 1

X e e .,xm_&
X T
n,r il ? ’xn+q-l]

J

(3-3)

(3.1)

(3.5)

(3.6)

(3.7

Both divided difflcrences in (3.7) tend to f(q_l)(C)/(q-ljl B8 n — @ ,

so there is no loss of generality in assuming that the denominator
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3-3

f[xn,...,xn+q_l] is nonzerc for all n {on the assumption (3.4)),

and we have

Timp, o0 (2.8)

n-—m

Summing (3.6) over r = 0,...,g-1 and rearranging terms gives

-1
- —ut - 5
e Fgen) = g Tagey) (5-9)
r=0
where
ar %:—1 : _‘ (5.10)
1 - H.
-0 n,r
and, by (3.8), there is no loss of generality in assuming that the
denomirator in (3.10) is nonzero for all n >0 . From (3.0), with
r =g-1, and (3.9), we have
Farg-1 " g “n(xn+qk-¥n+q+l) ’ (3-11)
where
My = Hngoatn (3.12)
The repeated application of (3.11) gives
xq—l-xq - uOul"'un(anrq -xn+q+l) ? . (3-13)

and, by (5.8), (3.10) and (3.12), w0 as n =, so the right

side of (3.13) tends to zero a8 n — = . This contradicts the assumption
thet -1 £ Xy s 80 (3.4) must be false, and the proof is complete. (If
we do not wish to assume that any q+1 consecutive points Xn""’xn+q

Lo

3.4
are distinet, then we may argue as follows: on the assumption (3.4},
the right side of (3.1} is nonzero for all sufficiently large n , and

thus at least two consecutive points from LR are distinct.

rEy g+l

Taking these two points in place of x and Kq , we get a contradicticn

q-1

in the same way as from (35.13).)

L. Superlinear convergence

If £ has one more continuous derivative than required in

Theorem 3.1, then Theorem 4.1 shows that convergence to a simple zero

-1 §
of f(q ) is superlinear, in the senge of Definition 2.2, provided the
starting values are sufficiently good. The theorem makes precise what

we mean by "sufficiently gocd". (In equation (4.1}, w is the modulus

of continuity: see Section 2.2.) (Convergence to a multiple zero of

f(q-l) is not usually superlinear, even if q = 1 (see Section 4.2),
and Theorem 3.1 above is the only theorem in this chapter for which we
do not need to assume that the zero is simple. Thus, there is no reason
to expect that the algorilhms described ir Chapters L and 5 will converge

any faster than linearly to multiple zeros of la-1)

Theorem 4.1
Suppose that fecYa,b] ;3 Eela,b] ; Kgreees¥y are (distinct)
points in [a,b] ; By = max |xi-§| H f(q-l)(g) =0 3
i=0,..045q

(§-8,.8+8,] < [a,0] ; and

Bw(f(q);ao) < ey . (%.1)

hi



3.4
Then a seguencc (xn) is uniquely defined by (1.1}, and L £

superlinearly ag n - o . Furthermore, if, for n >0,

T ii)l,ng.u.(.,qlxmi ol 8
and
= ey 1Dy, (4.3)

then the sequence (Bn) is monotonic decreasing, and

Prqrr S MPpaa - (4.1)
Prool
Without loss of generality, assume that { =0 . Iet Bn and hn
be as in the statement of the theorem (equations (4.2) and (4.3)).
Jince f(q_l)(o) =0, Corollary 2.5.1 to Theorem ?.5.1 (with

k=15 u=g-1) gives

£lx x ] = 5 x )r(Q)(o)/ T+R - (4.5)
SERTE N ;;i s : q! 17 .
where
‘Rl\ < B'W(F(q) 56')/((1‘-!-)! 3 (Lé)
if
B = x| <B,. . (&.7)
i:lr,n?‘).t.,q\ b =%
Similarly,
{a) (a) :
£ 0 £ 0
flx ,...,xq] = —AETLAL (l*—RE) = aT(I:;§%T ’ (4.8)
L2

3.4
where
Bl < vz D)/ 1s W) =3 < s, (4.9)
50
R
[Bs) = |1—+2R;\ < a2 o< YR (h.10)

(note that the assumption (L.l) ensures that f[xo,...,xq] £0 )

From (4.5), (4.8), and Lemma 3.1 (with x_. and xq interchanged),

(¥

<i§:1 (xi-xqﬂ))%@l - <§l xi)iz)!ﬂwh , (4.11)
where

R, = Rf(;i& xi) Ei%%igl ¥ Rl(l**RE) (L.12)
From (4.6), (.7} and (%.10), cquation (L.12) gives

R @(—Yf:}lmﬁ et (.13)
so, {ram (4.%) and (4.7),

2ot 154 ()|

IR, | <« ENCE . . (h.1M)
Now, from (4%.11), we have

gl = a8 - _ (+.15)
By the assumpbion {h.l), Ay <1, 80 xq+1 lies in la,b] , Bl and )
are well-defined, &, =8' <8, , A Shiy, and

3



3.4

|xq+ll < >\O§l (416)
In the same way, we see that 50 > Bl > 52 > e,
1 >»x0 > Rl 2—12 > ... ,8and, for n >0,
Xn+q+l| = Kn6n+l (h.17)
Thus, the inequality (4.4) holds; and it only remains to show that
% -0 superlinearly. TFrom (4.4) and the above,
8 < Ak -e-h 5 <)\k5 (L.18)
kgtl S Aorgr Mk-1)g%L Sho ©1 0

and Ay < 1 by assumpbion (L.L1), so Bn -0 as n = o . Thus, by
the continuity of f(q) and the definition (4.3), A, =0 as n aw

Take any € > 0 . For all sufficiently large n ,

N S o (4.19)
s0, from (h.h4),
1im sup Bi'/n < e . (L.20)

n—+m

As £ 1is arbitrarily small, this shows that

1im |x ]1/” - pmsd™ _ o . (4.21)
n n

n—+wo n-—om

Thus, X~ £t =0 superlinearly, and the proof is complete.

Remarks
The proof of Theorem 4.1 shows thet, for n >0, |xn+q+1r-§| is
no greater than the sevond-largest of |xn —;1,...,|xn+q_-§1 + Thus, if

by

3-5
g =1, the seguence (|Xn - Cl) is monotonic decreasing, except perhaps

for the first term. In fact, the proof shows that, for g =1 and

n>1,
| £
+
21_ < hyy -0 8 n-oe (h.22)
n
provided x . This ie a common definition of "superlinear
- P

v

convergence', stronger lhan our Definition 2.2.

If g >2, the sequence (Ixn -t|) need not be eventually
mohotonic decreasing: monotonicity would follow from strong superlinear
couvergence with order greater than 1 , bub more conditions are necessary

to ensure this sort of convergence (see Sections 4 and 7).

5. Strict superlinear convergence

Assuming slightly more then in Theorem 4.1, Theorem 5.1 shows that

convergence to a simple zero of is strictly superlinear,

according to Definition 2.2. Before stating the theorem, we deline scme

constants ﬁq a and yq a which are needed here and in Sections 6 and 7.
2

'
For g9 >1 and @ >0, let the roots of

o (5.1)

> lu(Q)1

(1) .o : {0) (1)
be u , for i = 0,...,q , wWith luq,d‘ > luq,a| > ... a

q,x%

Then the constants Bq,a and 7q,a are defined by
(0) (1)
= and =
BQJQ luc.ba 7(1.-05 |uQ:a‘



3.0
Since the case @ =1 often oceurs, we write simply Bq for

ad by ; -
ﬂQ)l > an 7(1 oF yCl:l

Remarks

B

1,0 is just the positive real root of (5.1), and it is easy to
.

see that, for 0 <a <1,

2 1

(J;ra)gaxi < B < (11—(1)a . (5.2)

a4,

We are only interested in the constants ¥ when @ =1 . TIf

1,
=1 and g > 2 then there are exactly two complex conjugate roots
of (5.1) with modulus 7 If g=1 or 2 then 7q <1, but, for
4>3,
1<y < .
q Bq
This may be proved by applying the Lehmer-Schur fest to show that, for

suitable € > 0 , exactly g-2 vroobts of

FAR ] (5.3)

1ie in the circle \xl < 1+ € The details are omitted, for all cases

of practical inlerest are covered by Table 5.1, which gives g and ¥

q

to 12 decimal places for q = 1,...,10 . The table was compubed by
finding all roots of (5.D0) with the program of Jenkins (1969), and the
entries are the correctly rounded values of Bq and 7!:1 il Jdenkin's

a posteriori error bounds are correct.

L6

3.5

Table 5.1:

[

-

See Delinition 5.1 and the remarks above for a description of

the constants

The constants Bq

Py

1618033988750

1.32k7179572k45
1.2207Hh0BRE06
1.167303978261
1.13h720158402
1.112775684279
1.096981557799
1.085070245491
1.075766066087

1.068297188921

and .
IE‘q 7 q

and 7q for q = 1{1}10 to 12D

hr

0.618033988750
0.868856961833
1.063336938821
1.099000315146
1.0991 /4913506
1.091953305766
1.083743696285
1.076133134033
1.0604L88y2721

1.06366653840k
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Suppose that fFLCq[a,b;M,a] (see Section 2.P); € c{a,b) ;
f(q_l)(g) =0 ; and f(Q)(g) FO . IF Xop e eaky ETE {distinet and)

sufficiently close to § , then a sequence [xn) is uniquely defined

by (1.1), and X, - f with weak order at least {jq , the positive
b

o
real rocl of xq+l = X+ Q.
Remark
if &O = max \xi-Ci s then, from Thecrem L.1, KypeenaX
i=0,...,5q9 9
are "sufficiently close" to { if 5, < £E-a, B, <D -, and
Lo O q
sy < ey (5.4)

If these conditicns are satisfied, then an upper bound on lxn - {l

follows from equation (5.10) below.

Proof of Theorem 5.1

For n >0, let

5, = omex |x . -Ef . (5.5)
i=0,...,q9

ey X are so close to § Lhat the conditions
Q q

mentioned in the remark above are satisfied. Then Theorem 4.1 shows

Supposc that x

that (Ezn) is menotonic decreasing to zero, and

M o4
6n+q+l < FW °n Ppez (5.6)

If eventually Bn = 0 , then the result follows immediately: by

our definition, x -  with weak order « . Hence, suppose that

W8

3.5

5, /0 for all n >0 (and thus, from (5.6), M >0 ). Let

ML o
A, = -loa(d lmﬁ ) (5.1
(not the same )~ as in Theorem 4.1).  From condition (5.4) and the fact

that (5n) is monotonic decreasing, 0 < )\O N and, from

equation (5.6},

Margrl Z A1 T My - ) (5.8)
Jince 5q,0ﬂ > 1, we have \-\.\
n-q
Mo A By (5-9)

for n=20,...,9 . Thus, from (5.8) and the definition of B the

a,x ’

b

inequality (5.9) holds for all n >0 , by irduction on n . Hence, for

all n>»0,
- _ - n-q ; ﬂ__
log lxn t] > -log 5, = Bq,a + = log () (5.10)
£72(8)
Since Ay > 0 and ﬁq a >t equation (5.10) shows that
2
lim ini (-log |x_ - l;|)l/n > P (5.11)
n = g, 7 ’

n - o

wihtich completes the proof.
Note that, in the important case « =1, there is a simple proof of
Theorem 5.1 which does not depend on lheorcms 2.5.1 and k.1. Also, this

proof shows that, instead of (5.l4), the condition

3B, < 21r{® (£) | (5.12)

b9



3.6

is sufficient. The idea is this: by applying Rolle's Theorem gq-1
times, we see that Pr(]q_l)(x) coineides with f at points € and !
say, with \gn- Cl < 6n and |g£ - §| < 6% = the second largest of

lxn _g"""‘xn4q ‘Q\ Tgus, from Lemma 2.4.1,

e < Lwpr (5.15)

On the other hand, equations {1.1} and {3.3) show that

pla ()

Xn+q+l = t- q!f[xn,...,xn+q] ’ (5.14)

so we can bound |x g| ; and then the result follows in much the

n+q+]_-

same way as above.

G. The exact order of convergence

Theorem 5.1 gives conditions under which x - £ with weak order at
least Bq . It is natural to ask if the order is exactly Bq . In general,
this is true, bul some conditions are necessary to ensure that the rate
of convergence is not too fast: Tfor example, the successive linear
interpolulion process (g = 1) converges to a simple wero § wilh weak
order at least 2 (> By - 1.618 ...) if it happens that £"(f) = 0, for
then lineur interpolation is more accurate than would nermally be cexpected.
Theorem 6.1 gives sufficient conditions for the order to be exactly ﬁq .
Apart from the condition f(q+l)(§) £ 0, il is necessary to impose some
conditions on the initial points xo,...,xq, (These extra conditions are

superfluous if ¢ = 1 : see Section 7 .)

3.6

Defore proving Theorem €.1, we need two lemmas. Lemma 6.2 is
concerned with the sclution of a certain difference equation, and is
closely related to Theorem 12.1 of Ostrowski (1666). (The . lemma could
easily be generalizcd, but we only nced the result stated.) Temma 6.1
gives a recurrence relation for the error %, ~§ . ©Special cases of this
lemma have been given by Ostrowski (1966) and Jarratt (1967, 1968).
Ostrowski essentlially gives the case g = 1, and Jarratt gives weaker
results for q =2 and ¢ =3, {Qur bound on the remainder Rn is
sharper thean Jurratt's, and we do not assume that £ is analytie,) In
Section 8, we show how the result of Temma 6.1 may be used to accelerate

convergence of the seguence (xn)

Lerma 6.1°
Suppose that fecq+l[a,b] ; tela,b] ; f(q‘l)(;) =0
f(Q)(g) A0 ; Xn,...,xn+q are (disbtinet) points in [a,b] ; and
Kn+q+1 satisfies equation (1.1). Tet En, be the largest of
|xn-§\,...,|xn+q—§l 3 and 55 the second largest. Then
12 S T
x .- = - X oL X .- +R_,
mrart ale) e V() ogidicg M TS T
{6.1)
where
- , (atd) 4 .
R =0(8 3108 +w(f ,on)]) (6.2)
as B -0 .
“n
Proof
Without loss of generality, assume that n = 0 and { - 0 . Rearrange

-
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3.6

Ko ees Xy if necessary, so thet lxol S’ixll < ves 5’|xq‘ . From
Lemma 3.1,
q-1
q.xq+lf[x 3 .,xq] = (i‘):b Xi)f[xo, .. .,xq] - f[x.o, .. .,Xq_l]

Thus, as f(q—l) (0) =0 £ f(Q)(O) 5 Theorem 2.5.1 gives

fg@)_ (1 +rl)

q'xq+l T
-1 (a) el (a+1)
r9(0) 0
) (32 x ) ar " (525 xy) fiq+1)! * o)
q-1 (0 (o) 3 Lot
S T (OSiSJ<q e ﬁﬂk i
(6.4)
where
| w(f(q);bo)
= ofs) , (6.5)
| < _TET67EBSI o
I N V2 TR TG e FL DR (6.6)
and
2 ou(atl),
& (L 81)
o5l < gy - oy T ) (6:7)
as '-50 -0 .
The right side of (6.4) is just
PN Al 6.8
(051<j5qxf%)—7Eﬁ%l L (-9

52

(6.3}

3.6

where

A

. a+l
Irh| qﬁé\r2|+ |r5] = O(boﬁéw(I(q+ );50))

as 60 -0, so the result follows.

Remarks

From the bounds on Tys-eaTy s it is easy to derive an explicit

hound on |Rnf for sufficiently small E:n . For our purposes, though,

the relation (6.2) is adequate.
ip glarl)

A simple corollary of (6.2) is that,

3 LipM @ , then

R o= o )
n n n

as & -0 .

Lemma 6.2

Suppose that 7\.n-+m as n - o, and, for n >0,

A - A - N =
n+g+l ntl n oo
where
n
k= 0(s™)
as n - w , s a constant.

Ir < s < then
7‘1 Bq

n n
A, = c.Bq+ 0(s")

as n -« , and if knzo(sn) a8 n — o then

n n
A= c.ﬁsq + o(s)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)
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&5 n —+ o . If 0<s < 7q then

My o= c.BE + O(nv.yg) {(6.15)

as n — w , Where

0 if =1 ,
v o= (6-16)
1 if g>1 ,

and ¢ is a nonncgative constant.

Proof
The restriction \ugl < 1 in Theorem 12.1 of Ostrowski (1966) is

unnecessary, for we can choose any » with ‘uel <A< |u and

1
consider ln/hn y instead of kn y in Ostrowski's proof. Thus, in view
of the remarks after Definition 5.1, (&.13) and (6.15) follow from
Ostrowski's Theorem 12.1. (6.1h) does not follow directly in the same
way, but the proof of Ostrowski's Theorem 12.1 goes through, assuming
b= o(sn) instead of kh = O(sn) , and giving a result from which (6.14})
follows. The only difficuliy is in proving the modified form of
Ostrowski's Lemma 12.1, bul this follows From the Tocplitz lemma: il

K ~0, |t] <1, and z -k +k jE+...tkE , then 2 -0 as

n +o {sce Ortega and Rheinboldt (1970), pe. 399).

Theorem (.1
suppose £ec¥Mam] 3 Le(an) 3 o9V 0 oW £o;

ana £y £o . 1r lx,-t] s sufficiently small,

=, ; - ¢l _)_--]l!xi - ¢ (6.17)

54
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for i =1,2,--.,49 , and

g -t 2 GRG0y -0 > 0, | (6.18)

where
(g+1) |
- A, (6-19)
algtl) ™ (L) . o

then a sequence (xﬂ) is uniquely defined by (1.1), and x - £ with
weak order exactly ﬁq . Tn fact, if g =1 or 2 then x, - £ with

g -1
slrong order Bq and asymplotic constant lK] 4 , and it g > 3 then

—log‘xn -t = c.Bz + O(n.yg) (G.EQ)

as n -« , for some positive constant ¢

Remarks

Condition {6.17) ensures that xo,...,xq approach ¢ sufficiently
fast, while (6.18) makes sure that they do not approach § too fast.
These conditigns could be weakened, but Theorem 7.1 shows that some such
conditions are necessary if g¢q > 2 . If g = 1 then the conditions
are superlluous: see Corollary 7.1.

Equation {5.20) implies that {2.2) holds with ¢ = ﬁq , bt (2.1)

docs not necessarily hold; for Tq >1 if g>3 .

Proof of Theorem 6.1

Let Y, = {K(xn - C)l . - (6.21)

From the assumptions (6.17) and (6.18) we have, at least for n = O

2

23
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Voriel 2 hynJri (6.22)
for 1 =1,2,...,94 , and

Vpiq 2 by ¥y ~ © - (6.23)

We shall show that (6.22) and (6.23) hold for all n > ¢ . Suppose, as
inductive hypothesis, that they hold for all n <m . Then, by taking
lXO -t| sufriciently smaell {(independent of m) , we may suppose that the

remainder R of Lemma 6.1 satisfies

< L
KR, 2 35 ¥ (6.2%)
for all n <m . Thus, from Lemma 6.1,
, L, 2,2.,3 <
ym+q+l = ymyrrrkl(l+ﬂ et > TR * 1?5)
in I L
< 2, 6.2
) ymyrrﬁ_!_ ' ( -‘35)
From (6.23) with n =m , this gives
. A
Ym+q 2 l"qu‘l (6"-6)
Similarly,
2 2 3 1
Tmigrr 2 Yomalt T R )
1
232 Tinm+ 1 (6-27)
z 6ym1ym+2 (6.28)

Also, from (6.27), A

From (6.26) and (6.28), we see thal (6.22) and (6.23) hold for n = m+l ,

>0, so the right side of (6.28) is positive.

go they hold for all n >0, by induction. Thus (6.25) and {6.27) hold

for all m >0 .
56
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Let
A = -log y_ (6.29)
and

kn = 7\'n+q+l B 7\'11+l - )\n ) (6.30)

From (6.25) and (6.27),

x| s g2 , (6.31)

s0 we may apply Lemma 6.2 with s -1 . If q >3 then 7q >1, so

n n
b c.p_ 1 O(n. 6.732)
" By * Olne7y) (
as n - » . From Theorem 5.1, ¢ >0 , so the result for q >3 follows.

If g =1 or 2 then 7q<l,so

n
A c'ﬂq_* 0(1) {6.33)

as n -o . From (6.29), (6.30), (6.33} and Lemma 6.1, we now sce that

k= o(1) (6.34)

n

a8 n - o , sSa, by equation (6.14) with s =1,

n B
My = c.ﬁq + ofl) {6.%5)
as n - . Thus, there exists
b2
lim 2L -1, (6.36)
n—e B )
q
yn

) . +
so the result follows from equation (6.21). {Note that, if f(q‘ 1 € LipM o
for any M and & > 0 , then {6.34) may be replaccd by k= o(s™) Lor

any & » 0, so (6.15) holds, and
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3.7

(6.37)

T Stronger results for g =1 and 2

In this section we restrict our attention to the two cases of the
greatest practical interest, q = 1 (successive linear interpolation)
and q = 2 (successive parabolic interpolation for finding an extreme
point). Corollary 7.1 shows that the conditions (6.17) and (6.18) of

Theorem 6.1 are unnecessary if q = 1 .

Coroliary 7.1

Suppose that g = 1 ; i‘ECQ[a,b] ;

£e(a,b) ;

and §

£(€) =0 ;

f1(8) f0;and f(E) fO . If are distinct and

¥ o H
sufficiently close together, then a seguence (xn) is uniquely defined

by (1.1), and x - £ with strong order By :%— {(1+/5) and asymptotic

T ﬂ -1
constant ‘L(—Q—l 1 as n

2£7(C) o
Proof
From Lemme 6.1,
ny ot - B (e S - D@ e() (7.2)

as ma_x(le—H, \xl—§|) —+ O . Thus, Theorem 6.1 is applicable to the

and x

provided KO 1

sequence (xﬁ) » where X! are sufficiently

=x
n n+l ’

close to § .
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Remarks

Ostrowski (1966} gives Corollary 7.1 with the stronger assumption
that T gca[a,b] He also shows that, if feC}[a,b] and the
conditions of Corollaz‘yr 7.1 are catisfied, then

Paa 20 " - (7:2)

as n — » . AS we remarked at the end of the proof of Theorem 6.1, the

relation (7-2) holds provided that feLCa[a,b;M,aI for some M and «

(see equation (6.37)). For an even weaker condition, see (7.7) and (7.8)

below.
The following theorem removes the rather artificial restrictions
(6.17) and {6.18) of Theorem 6.1, if f(qﬂ') is Lipschitz continuous

and g =1 or 2 . The proof does not extend to g > 3 , because it

depends on the assumption that 7q < 1 , which is only true for g =1

and g = 2 (see Table 5.1).

Theorem 7.1

+1
Suppose that g =1 or 2 ; ferc? T[a,b3M] ;3 Lelab) ;

f(Q‘l)(E) =0 ; and f(Q)(g) Lo, If x R {distinct and)

0

sufficiently close to § , then a seguence (xn) is uniquely defined

by {1.1), and either

1: x ={

+ -1
\i%)%)_\ﬁq ; in fact
g+ 1) e (4)

with strong order ﬁq and asymptotic constant

a(



3.7
lx,p - & (1) B -1
17 L -1 _
- —(f;%)\ T oty (7.3)
_rr d a{qr) 77 (8)
Ix, - ¢t}
as n -« (recall that p; ~1.618, B, ~1.325, 7, ~0.638,
and 7, ~ 0.869) ;
or
2: X o t with weak order al least 2 if g =1, or
/e 1
R 2y L 138 it g =2 .
Remarks

If q =1 then, by Corollery 7.1, case 2 of Theorem 7.1 is
possible only if f"(f) =0 (or if one of x, and x, coincides with £,
vhen the weak order is w ).

If g =2 +then case 2 is possible, although unlikely, even if

. f(3)(;) £ 0 and X / ¢ for all n . All that is necessary is that

the terms in relation (7.28) repeatedly nearly cancel out. Jarratbl (L967)
and Kowalik and Osborne {1968) assume that such cancellation will evewtually
die out, so the order will be f, . The conditions (6.17) and (6.18)

are sufficient for this to be true, but without some such conditions there

is a remote possibility thal cancellation will continue indefinitely.

For example, with f(x) = 2x3+x2 , there are starting values X, 2 %y
and X, such That
n
x2n ~ exp(-E )
and (7.1)

n
X2n+1 ~ -EKP(—E ) >
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so x —§ =0 with weak order /2 . BSimilarly, if
1,. .
¥ = E(j—lr\ﬁi) . 2618 ..., . (7.5)

then there are starting values such that
n
g~ ex(=") )

xX ~ & - -l) n y
S L xp(-(7-1)7") f (7.6)

and

ntl
)

b

Kanrp ~ @=L

J
S 0 with weak order 71/3 = 1.5378 ... . The proof is omitted,

but the reader may easily verily that (7.4) and (7.6) are compatible
with Lemma 7.3 below (this depends on the relation 2y-1 = y(y-1))

Tor the sake of simplicity, we have not stated Theorem 7.1 1in
+
the sharpest possible form. irf f(q l)(;) = 0 , then X, = t with

.
> B, provided that (¥ b, Lip, o for

weak order at least Bq,1+d a

+
some M and o >0 . If f(q l)(;) # 0, then the theorem holds
provided that f va+l[a,h] . Equation (7.3) may no longer hold, but if

there is an € > 0 such that
+1) . 1 -F
w(el D 5y = o(f1eg 5]7/Y (7.7
as B - 0, then

O(nq_lyn) if e »>1,

9
fe .,y -t (gr1) B -1
ntl A - £ (é§) a = O(nqyg) if e - 1,4%(7.8)
e - ¢| @ q{a+1) 7 (L)
n o(z"%) if e<l,
a
as n -+ @ . (A condition like (7.7) oeccurs in some variants of Javkson's

theorem: see Meinardus (1967).)
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3.7
Before proving Theorem 7.1, we need three rather technical lemmas.
Lemma 7.1
Suppose that, for n >0,
— 2 1
Xn+3 = el * L1 %nen * *¥neo * rllnﬁnﬁn ? (7.9
where & is the largest of \xny , \xn+l\ and \xm_gl , and B! s
the second largest. If there is a positive constant T, such that
1
5L z lxo‘ 23\x1| 2917‘9‘ 2 27"‘3‘ s and
jm | < T (7.10)
for all n >0, then |x | >%|x .| forall n>0.
= n' = 1 =
p
Proof
As in the proof of Thearem 6.1, it follows by indnetion on n that
22 22
xl’l+5‘ = IS l]'Cnxn-rl‘ - s ‘xn+lxnl2\ Z jh{rﬂh‘ ’ (7.11)

for all n >0 .

Lemma 7.2

If the conditicns of Lemma '(.1"a.re satisfied, then either x = 4]

for all sufficiently large n , or
\xn+l\ n
—=- = 1+ 0(ny,)
B 2
2
B
n
as n - = .
62
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Proof

all n >0 .

k =X

n

Lemma 6.2 with & =1

Lemma 7.1, )Ln

TE # 0 for infinitely meny n then, by Lemma 7.1, x # 0 for
Ti this is so, define A_ = -loglx | ana
n I

-, - TFrom equation (7.11), X, 1s bounded, so

-A
3 n+l

gives A = cﬂg +0(1) as n »=> . By

-+ w, 80 ¢ >0 . Thus, from (7.9),

. -
k= o{exp{-c(B,-1)B] 1) (7.12)
as n -« (this is not necessarily true in the proof of Theorem 6.1).
Now, Lemma 6.2 with s < 7, gives
M, - cﬂg + O(nyg) (7.13)
as n - o , and the result follows from the definition of )\n .
Lemma 7.3
Suppose that (7.9) and (7.10) hold. Then there are constants K
~and W (depending on L) such that if, for some n >N ,
s k) > nle ) (7.11)
n = n = n+2
and
1
n > 1xn+ll 2 nlxn+2l ? (715)
then
+ .16
*m 3 xnxn+l(l Vl,n) ’ (7-16)
X - xxo 1+ v, ) +x x (1+v, ) {7.17)
n+h n o+l 2,n n+ 1l nt2 3,n’ 7
X = K (L+ v, Y +xx x (1+ v, ) (7.18)
n+5 n n+l 4n n n+ln+p 5,n’ 7
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3.7
and

2.0

XX
n nt1l

2
{1+ v6,n) + X XX

n ntl n+2(:L M

) s (7.19)

f>n

where

(7-20)

Proof
The lemma lollows by repeated use of the recurrence relation (7.9)

and the inequalities (7.10), (7.14) and (7.15).

Proof of Theorem 7.1

Without loss of generality assume that £ = 0 . First suppose that

qg=1. If f'{(0) #C then the theorem holds, by Corollary 7.l. IT
"(0) = 0 then, by Lemma 6.1,

2

. B ' ’
Koo = o(anan) (7.21)
as & -0, wvhere b and &' are as in Lemma 6.1. If x and X
n n n ] 1
are sufficiently small, equation (7.21) implies that
& = ]xn| {7.27)
and
Bé lxn+l| (7‘25)
for 11 n > 1 . Thus x, - 0 as n - o, and
2.2
lxn+2| S A Ixnxn+ll (7'2h)

6k

3.7
for all n >0, where A 1s some positive constant. If some x = Y

then x =X = ... =0, and we arc tinished {weak crder o)

n+1 n+2

Otherwise, there is no loss of generality +in assuming that
I
-2
Alx | < ep(-2"

for n=0 and n =1 . From (7.24), eguation (7.25) holds for all

n >0, by induction on n . Thus, the weak order of convergence is at
least 2 , and the preof for gq =1 1is complete.

From now on, suppose that q = 2 . By Lemma 6.1,

f<5)50% 2
- - - r
hn!fi B af" {0 (xnhn+l * AR * xnxn+2) * OCSHBn)

If f(i)(O) = 0 +then the weak order of convergence is at
3

as n —+ @ .
least BE,E s the positive real root of

that above for g = 1 , and the thecrem holds as =1.52 ...

Bo o
(3)
If £°/(0) £ 0, then we may as well suppose that

£
{0 = B
by a change of scale, as in the proof of Theorem 6.1. Thus, we must

study the interesting recurrence relation

(8]
= + B
X X O(Snan) ,

X + X X
n+3 n n+l

X X +
n+1l n+ n nt+2

and, by Theorem 5.1, we can assumne that *, — 0 with weak order et
least B, -
First suppose that there is an infinite sequence N = (ho,nl,..J

with the property that, for every i >0 and n = n either

(7-29)

{(7.26)

X =x+2 , by a proof like

(7.27)

(7.28)



1 nirl ~ 2
and
2 ..
hn|xnxn+l\ Ixn+2\ < J\ann+1 ,
or
2 nﬂlﬁkﬁé
and
>
0l b |

Il either (7.30) or (7.32) holds, then Lemma 7.) is applicable for all

sufficicently larpe n = ni in Lhe sequence N .

with subscripts, write m for n (s0 m =1u+2 or n+d ).

i+l

n =n, is sufficiently lerge, and (7.29) and (7-30) hold, then

R I 1

end, by Lemma 7.3,

< 2]x

Ixm+lI nxn+l\

10 {7.%1) and (7.52) hold then, similarly,

| 1 < 2|x X

m n n+l
and
[0
Y <
]xmeI < ML
et
- Vo= ?1){ ‘
n n

After a fixed n - n:_l in N , supposc that Lhe next r > 1
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To avoid confusion

T

elements

(7-29)

(7.30)

(7.32)

(7.35)

(7.39)

(7.36)

3.7
of W satisfy (7.3l), and LLen the next s > 1 satisly (7.29). Then

repealed use of the inequalities (7.33) to (7.36) gives

- \Plr,s

AKX (Y sreps e sreagen) S ARV Yg) o), ' (7.28)

where
5-1, /% + 2,3 + /5T /5 - 2,3 - /5T
P(r,s) = 27 71( J(—=—) + ( Y= 1. (7-39)
7 AN

Let 1

U(rye) = alre)” "L (7 -ho)

For fixed s >1 , Y¥(r,s) 1is a decreasing function of r , with limit

i
rd
+ /5,7 .
c = (~—§—~2) = dinf  ¥(r,s) (7.k1)
ry;s>1
as r —w . Thas, x - 0 with weak order at least ¢ , s0 case 2 of -

Lhe btheorem holds.

Now suppose that there is no infinite sequence N as above. DBy the
superlinear convergence of (Xn) y Lemma 7.3 is applicable for infinitely
many n

Choose such an n (sufficiently large). There are only

three possibilities:

1. Equation (7.30) holds;
2.  Equation (7.32) holds; or

3.  Neither (7.30) nor (7.32) holds, =o
Penl > 2[xnxn+l| . {7.42)
In the first case, Lemma 7.5 shows that we can replace n by n+2 , and

continue with one of the three cases (il is ecrucial to note that Lemma 7.7 is
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still applicable). In the second case, Lemma 7.3 shows that we can
replace n by nt? and continue. Since no infinite sequence N with
the above properties exists, the third case must eventually arise. Then,
from (7.42) and Lemma 7.3, we see that Lemma 7.2 is applicable to the

sequence (xé) , where x' = x

= - .2 x! P
S By Lemma 7.2, { m) converges

with slrong order B, and asymptotic constant 1, and hence, so does (xn)
2 g

Tn view of the assumption (7.27), this completes the proof.

8. Aceelerating convergence

If a very accurste soiution is required, and high-precision evaluations
of f are expensive, then it may be worthwhile to try to increase the
order of convergence of the successive approximations by some acceleration
technique. For example, We can use Lemma 6.1 to improve the current
approximation at each step of the iterative process. Jarratt (1967) suggests
one way of doing this if q = 2 , but the method which we are ahout to
describe seems easier to justify (see Theorem 8.1), and applies for
any g >1

Suppese that x ,..., are approximations to a simple zero ¢

0 X+l
cla-1)

of For example, they could be the last qt+2 approximations

generated by the successive interpolation process discussed ahove. We

may define Xq+9’xq+5"" in the following way: if n > 1 and
xO,...,xn+q are already defined, let P = TP(f;xn,...,xn+q) , and
choose yn such that
-1
ety o, (8.1)

3.8
i.e., Yy is just the next approximation generated by our usual

ES

interpolation process. From Lemma 3.1, Y iz given caplicitly by

q flx ey X ]
v - 1 (5 %, - w1’ " S )y . (8.2)
n q o mel f[xn,...,xn]q]

Instead of taking ¥, as the ncxt approximation x

nrqrl ! we use

Lemma 6.1 to compute a correction to v, and take the corrected value

as the next approximation. Formally, we define xn+q+l by
. . f[xn-l’ . ')xml . (8 5)
-] - 2 N
ntatl n q.f[xn,...,xn+qj n
where
SRR Al (8.1)

0<i<di<aq

For a justification of equations (8.3) and (8.4), see the proof of Theorem
8.1 below. This theorem shows that, under suitable conditions, the
sequence (xn) is well-defined, and x - ¢ with weak order appreciably
greater than Bq sy which is the usual order of convergence of the
unaccelerated process (see Sections 5 to 7)- Note that there is very

little extra work involved in computing x from equations (8.3)

n+qtl

and (8.4) if ¥, 1is computed via {8.2), for f[xn,...,xn+q] and

f[xn_l,...,xn+q_l] {except al the first iteratjon) will already be
kncwn .

Before stating Theorem 8.1, we define some constants ﬁé which
take the place of the constants Bq (see Definition 5.1) if the

accelerated process 1is used.
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Definition 6.1

Table §.1: The constants £8' for g = 1(1)10 to 12D
For q>1, [3& is the pesitive real root of 2

! T . T T oo 1 "

2 :
o

= x kx4 1. (8.5) g By By o é;l/loéraqf_;
[._;.., " 1859?86755?U+ T B 6.7897. z‘

Remarks ;2 1.h65571231877 1.5247 | 0.7357

Tt is easy to see that ﬁf‘l > Bq , and, corresponding to the bound : 3 : 1.324717957715 ' 1.2007 ; 0.709%
(5.2}, we nave o 1.okigBs158886L L6 0.69%6
3qu1 < Bﬁ‘l < 5% ) (8.6) * 5 1.203216033518 11547 . 0.68%32 -

' 6 1.171321856385 1.1128 0.6757

Tf x_ L with weak order B >1 then, by the definition of - L BT | L0970 0.6700
order (see Section 2), for any & >0 we eventually have L 1.130b5057186k " 1.0851 0.6658
oslx, - 4] 2 (6 - an . (5.1) | 9 \ 1.116575158368 1.0758 0.660%
L0 [ amtege | v ol |

Irus, the number of function evaluations required to reduce lxn - \';|
below a very small posilive tolerance 1s inversely proporlional to log B

(assuming tnat approximate equality tolds in (8.7)), and the ratio See Definition B.1l, and the remarks above, for a description

log B 16g B
Tog i suggests how much we guin by using Lhe accvelerated process, of the constants ﬁ":l and the significance of Lhe ratio Top B!

4 4
rather than the unaccelerated process, if very high accuracy is required. The constants Bq are given to 17D in Table 5.1.

From the bounds (5.2) end (8.6),

log B
lim =——2 = log, 2 = 0.6%09 ... , (8.8)
log B! 3 :
q- = q
so there is a 37 percent saving for large q . Of course, the only

practical interest is in small values of g , and in Table 8.1 the

log B

5 ' ——4 s g f =1,2,... .T
values of &q_ » Bq and Tog, Bél are given for g PREN 510 he

entries for Bc‘l are correctly rounded to 12 decimal places, and the
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. _ . . - 2
other entries are given to 4 places (they are given for comparison (Xn+i -yn)(xmj -yn) - (Xn+i -&) (xn+j -+ O(Bnﬁﬁ) (8.13)

only: see Table 5.1 l'or the f}q to 12 places). The tahle suggests
: 2

that Bé:ﬁg,zmdtMSistmm,fw x5n3-x-1=:@§-x-1xx +1) . n ()

; , T£ 6 is sufficiently small then, since f'° (§) £ 0 , we have

f[xn,...,x ] £ 0, and, by Theorem 2.5.1,

Theorem 8.1 n+q

suppose that T 1T abim) 5 Lo (an); Oy 20y £0t, g0y, ] .
(q) s s . : a.fl% 5. x T ~ K+O(5n) (8.14)
YY) L0 and X ,..-5% are (distinct) points in [a,b] . If LXK g

0 q+1

are sufficiently close to then a sequence X is -
atl v ¢ < () as & -0 .

uniquely defined by equations (8.2} to (8.4), and x, - £ with weak

e

If s, isas in (8.4), then (8.13) and (8.1h) give
order at least Bé (see Definition 8.1) as n == .

n

f{x CesX ]
n-17 PTnkgt B 5
q.flx ,...5% ] fn T K Z (xlﬂ-i_c)(xzﬁ-j_c’)+o(bn5n6;1) (8.1%
Proof ) n n+q 0<i<j<g
> be the largest of - - : a }
For n>1, let Bn b e largest o |xn {_',|: ’|K11+q C] E as an ~ 0 . Thus, from (8.3) and (8.10),
let E)I’l be the second-largest; and let )
- - 8 v
A | _ Xneqrl ¢ o(5n5nan) (8.16)
5, - max(‘én, |xn_l- th . : (8.9) ) )
as Bn -+ 0 . This shows that, provided 51 is sufficiently small, the
i i i . ‘ 6.1 s that
If y, is defined by equation (8.2), then Lemma 6.1 shows tha sequence (xH) is uniquely defined, lies in [a,b] , and x L s
2 © .
Yot =K L (my -8 0, -8) + (8 b)) (8.10) ne
<i<i< : -
Osi<izq From equation (8.16), there is a positive constant A such that,
as &_ - 0 , where for g1l n >1,

(g+1) 22 .
__f (&) % -¢] £ A8, (5.17)
K = . (8.11) g+l = n'nn
a(a+1) ' (t) ‘ !

and, if él is sufficiently small, then
Tn perticular, (8.10) implies that

n
-log(alx -4} > ! (8.18)
-t = ' 8.1 n - a
v, -t =08 8)) (8.12) ,
for n -0,...,qt1l . From equation (8.17) and the definition of B' , we
as E:n—»O. Thus, for 0 <1 <J<d, q
see that (8.18) holds for all n > 0 , by induction on n . Thus
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(5]
ol

1
1im inf(q,og{xn -eht > By

n—+o

5 (8.19)

i.e., the weak arder of convergence is at least ﬁé y So the proof is

complete.

9. Somé numerical examples

To illustrate the theoretical results obtained in Sections % to 8,
we give the following examples:

1. q=1, f(X):K'{’Xa‘FKD,X:Q,X:l;

sl
2. q -2, f(x):8+6xé+hx5+§x , X, =2, X

I
(]
~
=
Il
(o]
A

- b«
5. gq=3, F(x) - 1+hox+100"+5x +9%° , x. =2, x =1,

0 1
x, = 0.5 , x3 = 0.25 ; and
L " u? O ,
. q = , Plx) = 1+2x+hox 4+ 5x v 27+ x0=a, Xl=l,
Ay = 0.5, XB =0.25 , ¥, = 0.125

In all these examples € = O , and the iterative process defined

by (1.1) converpes, even though the initial values are not very close

“to t' . Apart from constant factors, Lhe polynomials are obtained by

differentiating the last one (for g =M") L-g +times, so we are solving
the same problem in four different ways.

Table 9.1 gives the sequences (xn) produced by the successive
interpolation process, for the functlions and starting values given above.
To iXlustrate the superlinear convergence, the entries are given until

-20

]xnl < 10 , although such high precision would seldom be required in

practical problems. The table also gives the scquences (X;]) - produced

7k

3-9
by the accelerated interpolation process described in Section 8, with

starting values x; =x, for i =0,...,q+t1 . As predicted by Theorem 8.1

1

and Table 8.1, the accelerated sequences converge appreciably faster than
the unacceleraled ones.
To verify relations (8.12) and (8.16), the table alsoc gives

X
Il

T o= —————— (9.1)

Jcl'l—qxn-q—l

and
xl
n
Th T X x* ? (92)
n-q n-g-1 n-q-2

when they are defined. With a few exceptions near the beginning of some
of the sequences, both (lxnl) and (|x$|) are monotonic decreasing, so
r, and r! should be bounded. From Lemma 6.1, we expect that

(ar1)
f
lim r =——TL§L , (9.3)
e P (9]

Il 5>

o

is is j for © e les. Similarly, fron the
and this is just ETE;IY or our examples » A

proof of Theorem 8.1, we expect that ‘

(at+2)
Tim r! = - 1 s {9.%)
"n ar1) )f%qj<;>

n-o q( (q+2

and this is just i(&iéyfiiiT . The results support these prediclions.

Table 9.1 was computed on an IBM 360/91 computer, with 14 digit
truncated floating-point arithmetic to base 16. To minimize the effeci
of' rounding errors, we took advantage of the fact that n-th divided

n-1

[al
differences of 1,X,X7,...,% vanish Ildeptically when computing the

5
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3.9

divided differences in eguations (8.2) and (B.3). Without this device, 7 Table 9.1:
it is not possible to reduce |xn| or |xr'l‘ to 10720 without using, I Vq
higher precision arithmetic, because of the effect of rounding errors B 1

(cxcept Lfor g = 1) -

For q =2 , our example is the same as that used by Jarratt (1967),
and our results agree with his for n <9 . For n =10 and 1l our
results differ slightly, presumably because of rounding errors. The

example given by Jarratt (1968) for g = 5 hes also been-verified.

e

T6

Nunerical results for g

10

= o

ro

A o TR = v BN N 6 AN » I = N 8

10
11
]
1k

150

16

x x'

n . _ In

2.000 | 2.000

1.600 % 1.000
T.2730-1 b q.erirel

3.0807-1 ; 2£.100°7-1
1.9831-1 i L3892
6.7271-2 . -1.846"-3 f
1.276'-2 | 1.221'-5 5

2.053'-2 ¢ =3.,363'=k
hosh7r-3 T 3.UBNTG
5,154 - - 1.325'-8
3.631'-5  -1.728'-12

B.5k3t ) i 1.035'-9
1.090%-5 E 2,360 =17
9.3141-9 -2.902v.%1 !
1.015'=13

9.h57r-22 f

2.000 . £.000
1.000 . 1.000
5.0007-1  5.000'-1 ;
5.1627-1 | 5.1621-1 ;
2.681'-1 | 1.219'-1
1.3660-1 é 3201 -2
6.9787-2 , 5.618'-3

9.956" -7 : -5.84kr-_18
T.666T-0 | -2.008'-26 -

L.215'-11 :
2.5481-15
.10k -20
1.032'-26

T

I
n

0.3636 |
0.5473
0.6851
0.852%
0.9568
0.9949
0.9998 |
1.0000

1.0000 -

1.0000

=1, 2, 2 and }

0

Q.

-0
-0

-L.

-1

-1.

rl
n

CIhbL
287k
2755
L7178
o455
.0066
0039

.1219

0.1267
0.1786

L .0
o
20

C =0

-0

1634
1556
21
.2625
L2477
.2518
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Table 9.1 (continued)

e n )
C 3 0 2.000
; 1 1.000
- ? 5.000T-1
. 3 0.500'-1
: Lo 5775 -
: 5 1.81hr-1
) 8 8.57hr-2
] 7 Lb.pihrtop
i 8 2,068 -2
i 9 5.5807-3
; - 10 1.2071-5%
: 11 2.3h71 -0
: I 2.8097 -4
: 13 L.hl1r-6
; 14 - 5.518+-8
' 15 1.164kt-9
16 7.0517-12
' 17/ L.554r-1d
18 1.077t-17
16§ 1.3657-21
Iy 0 i 2.000
1 : 1.000
A 5.000'-1
3 . 2.500'-1
N 1.2507-1
; 5 | 2.840'-1
: Y6 1 1.2581-1
! T 1 5-hs3r-n
' 8 | 2.ger-2
i g . 1.27hr-0
: 1o 5 7.5077-3
: 11 1.5647-%
: . 45.2277-L
© 13 6.871t-5
T 13601y
b1y o 1,5451-6
16 : 6.639'-8
17, 281y
18 ' 1.067-10

{19 | 2.207'-12
20 1 1.073-1)h
2L P L.ohhropy
22 5.069'-20
23 | 2.3677-23

!

2.000
L.000
5.000'-1
2.500'-1
3.775"-1
6.0021-2
1.567'-2
3.072-3
P2l
-5.9491-5
-3.5477-7
-2.893' -G
8.6707-12
-1.0671'-15
h.oogr-21

.000

.000

.000'-1
L5060 -1
250" -1
.Ghpr-1
38871 -2
7.030v-3
1.4611-3
hohugrahy
1.1687-k

30 I SRS I B o o]

Dk 556
i -B2.390'-8
23701210

i
i

C-2,500-12

9.0077-15

i -6.291"-19

1.2L43 2l

0.1887
0.3628
0.6860
0.hh6s
0.2315
0.3588
0.3395
0.2455
0.2219
0.2105
0.1917
0.1766
0.1735
0.1703
0.1677
0.1670

0.14%20

©0.2517

0.4362

0.797>
0.3588

. 0.2101

0.2279
0.237h
0.2164
0.1h03
0.1316

C0.1516

0.1270

. 0.11k2

0.1050
0.10hé

- 0.10k0

0.1022

{ 0.1005

Lo
CQOQOCCOOO0O0OCC

1
leRoNeoRoNe]

L0688
1253
L0757
1112
.0970
0.
. -0.
L0847
-0.
" -0

0921
0716

1055

.098g

L0385
L0562
0935
.0501
.08L6
L0558
.0598
.0519
L0329
L0401
.0520
.0506
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10.  Summary

The main results of this chapter for ¢q - 1 (successive linear inter-

polation for finding a mero) and g = 2 {successive parabolic interpolation

for I'inding a turning point) are summarized below.

Theorem 3.1
q-1: If f€ and x -, then () -0 .

]
g =7: IT [0 and x o §, then f£r(f) =0.

Theorem 4.1
q - 1: If fect ; (LY £0, and a good start, then superlinear

o
g =2: It T, I"(t) £ 0, and a good start, then superlinear

Theor?m 5.1

q =1 If rernt , FYt) £ 0, and a good start, then weak order
least B, = 1.615 ...

q=2: If fere® » &) £ 0, and a good start, then weak order
least ﬂg = 1.32h ...

Theorem 7.1
e

convergence .-

convergence.

at

at

qg=1: If fae™ , £r(t) # 0, and a good start, then either strong

order p, 1.618... or weak order at least 2 .

z
q=2: If fakL” , ") #0, and a good start, then either strong

/3
order f_ = 1.324... or weak order at least (é%?éz) =

Theorem 8.1

1.578...

E .
q=1: If FIC™ , £'(¢) £ 0, and a good start, then the accelerated

sequence converges wilh weak order at least ﬁi = 1.939...

q =2: If feI¢” , £M(f) £ 0, and a good start, then the uccelerated

segquence converges with weak order at least Bé = 1.L65..,.

(&
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1. Tntroduction

Let f be a real-valued function, defined on the interval [a,b] ,
with f{a)f(b}) <0 . [ nced not be combinuous on [a,b) : for
IChapter I, example, f might be a limited-precision approximation to some continuous

funclion (see Forsythe (1949)). We wank to find an approximation ¢ to

An Algorithm with Guaranteed Convergence for Finding a a zere § of f, to within a given positive tolerance 28 , by evaluating

zero of a Function T at a small number of points. Of course, there may be no zero in [a,b]

if T 1is discontinuous, sc we shall be satisfied if f +takes both
nonnegative and nonpositive values in [E - 25, Ei-?&] n [a,6] .

Clearly, such a E may &lways be found by ﬁisection in ebout
log?[(b-a)/ﬁl steps, and this is the best that we can do for arbitrary T .
In ihis chapter we describe an algorithm which is never much slower than
bisection {see Section 3), but which has the advantasge of superlinear
convergence to a simple zero of a continuously diffefentiable function, if
the effecﬁ of rounding errors is negligible. This means that, in practice,
convergence 1s often much faster than for bisection (seé Section 4).

There is no contradiction here: bigsection is the optimal algorithm (in a
minimex sense) for the class of all functions whicﬂ change sign cn [(a,b] ,
but it is not optimal for other classcs of functions: c¢.g., C1 functions

with simple zeros, or convex functions (see Gross and Johnson (1959),

Bellman and Dreyfus (1962), and Chernouske (1970)).

Dekker's algorithm

The algorithm described here is similar to one, which we call Dekker's
algorithm for short, variants of which have been given by van Wijngaarden,

Zonneveld and Dijkstra (1963), Wilkinson {1967), Peters and Wilkinson (1969),

a1
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and Dekker (1969). We wish to emphasize Lhat, although these variants of
Dekker's algorithm have proved satisfactory in most practical cases, none
of them gunarantees convergence in less than about (b-a)/8& funetion
evaluations. An example for which this bound is attained is given in
Section 2. On the other hand, our algorithm must converge within about
(logg[(b—a)/a])2 function evaluations (see Seetion 3). lypical values
are b-a =1 amd & = 107" , giving 10" and 1600 function evaluations
respectively. Our point of view is that 1000 is a reasonable number, but
1012 might as well be o , for a computer program which attempts to

evaluate & function lOlE times is almost ccrialn to run out of time.

On well-behaved furictions, e.g., polynomials of moderate degree with
well-separated zeros, both our algorithm and Dekker's are much faster than
bisection.  Our algorithm is at leasl as lasl as Dekker's, and often slightly
faster (see Section &), so the only price to pay for the improvement in the
guerenteed rate of convergence is a slipght increasc in ihe complexity of

the algorithm.

2. The algorithm
The algorithm is defined precisely by the ALGOL &0 procedure zero
given in Section 6. Here we describe the algorithm, but the ALGOL procedure
should be referred to for points of detail. For the mobivation behind both
our algorithm and Dekker;s algorithm, see Dekker (1969) or Wilkinson (1967).
At a typical step we have three points a , b and ¢ such that
£)f(e) <0, (v < It(e)| 5 and = ﬁay coincide with ¢ . The

points a , b and ¢ change during the algorithm, bul there should be no

82
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confusjon if we omit subscripts. b is the best approximation so far
to { , a is the previous value of b , and £ must lie between b
and c¢ . {Initially a =c¢ .}

If £(b) = 0 +then we are finished. The ALGOL procedure given by
Dekker (1969) does not recognize this case, and can take a large number of
small steps if f vanishes on an interval, which may happen because of
underflow. This occurred with f{(x) = %7 on an LBM 360 computer

If f(b) £0, let m = {(c-b)/2 . We prefer not to return with
t - % (b+e) as soon as  |m| < 26 , for if superlincar convergence has set
in then b , the most recent approximation, is probably a much better
approximation to t than %(b+c) is Tnstead, we return with £ = b
if ‘ml < 3 (so the error is no more than & 1if, as is often true, f 1is
nearly linear between b and c¢) , and otherwise interpclate or extrapolate
' linearly between a and b , giving a new point i, (gee later for
inverse quadratic interpclation.) To avoid the possibility of overflow
or division by zero, we Tind 1 as bi—p/q , and the division is not
performed if Elp\ > 5|m.q| , for then 1 1is not needed anyway. The
reason why the simpler criterion lp\ > lm.ql is not used is explained
later. Since 0 < |f(b)| < |f{a)| (sec laler), we can safely compute
s =r()/f(a) , p=t+(a-b)s, and q = +(1-5)

)

i 1f 1 1lies between © and b+>2

m ("interpolation"),
Define b" =
b+m otherwise ("bisection"),

' if  fu-b"| > 5,
and bt =
b+8.sign(m) otherwise (a "step of & ").

Dekker's algorithm takes b' ag the next poinl al whieh f  is
evaluated, forms a new set fa,b,c] from the 0ld set (b,c,b'} , and

continues. Unforbtunately, it is easy to consilruct a function f for which
83
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steps of & are taken every time, so about (b-a)/8 function evaluations

are required for convergence. For example, let

for x =a , (2.1)

arbitrary for a < x < at+d

The first linear interpolation gives the point b-8 , the next (an
extrapolation) gives h-2 , the next b-35 , and so on.

Even if steps of © are avoided, the asymptotic ratc of convergence
of successive linear interpolation may be very slow if f has a zero of
sufficlently high mulliplicity. (Note that none of the theorems of
Chapter 3, apart from Theorem 3.3.1, apply for a multiple zero.) Suppose
that feC'[a,b], n>1, bLe(ab), () () = ... = f(“'l)(;) =0,
and f(n)(;) £0 (i.e., € 1is a root of multiplicity n >1 ). If
E>0, (;i‘EAE) & (esl-e) , mnd %, 1is sufficiently close to { ;
then successive linear interpolation gives a sequence (xn) which converges
linearly to § . 1In féct, equation (3.2.1) holds with p 1 and
K = B;%l , where the COﬁstants éq 2122/(2q+l) are defined in Definition

5.5.1. The proof is simple: if

Yo T X ST : (7.2)

is the retio of successive errors, then & Tayler series expansion of f

about ¢ gives

n-1
1 - ym
Vo - (— )1+ o(1)) _ (2.3)
1l-v
m
as X - t , provided Vi remeins bounded away from 1 . Since the

an

.2

iteration

Zm+l = g(zm) ) (P.h)
where

n-1
1 -
g(z) = ——Z—H-— » (2'5)
l -z
. . =1

has fixed point =z = Bn-l,’ and

le'(z)] <1 (2.6)

for z£{0,1) , the result follows from Ostrowski (1966), Theorem 22.1.

An exsmple for which convergence is sublinear (see Definition 3.2.2)

0 if x=0 ,
f(x) - ) (2'7)
x.exp(-x ) if x f0O
on an intervel containing the origin. This is an extreme case, for f and

all its derjvatives wvanish at the origin.(As a function of a complex

variable, f has an essential singularity at the origin,) If
0 <x <.x0<\/2 ’ (2.8)'

then (Kn) is a positive, monotonic decreasing>scquence, and, by Theorem
3.%.1, its limit must be O . Thus, successive linear interpoiation does
converge, bul very slowly. |

Some of the examples above are rather artificial, and unless an
extended exponent renge is used (see later) we may be saved by underflow,

i.e., the algorithm may terminate with a "zers" as scon as underflow occcurs.
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Tven so, it is clear that convergence may occasionally be very slow if problem: (it y as a function of the form p(x)/q(x) , where p and g

. ) )
Dekker's algorithm is used. are polynomials and p has degree one. A third possibility is to use the

. e . - o . . : - .
Our main modilication of Dekker's algorithm cnsures that a bisection wceeleration technique described in Seetion 3.8. (See also Ostrowski (1956),

is done al least once in every 2.10g2(|b-c{ /8) consecutive steps. Chapter 11.)

The modification is this: let e be the value of p/q at the step before Care must be taken to mvoid overllow or division by zero when compubing

o1 . .
the last ope. 1f lel <85 or lp/ql = lel then we do a bisection, the new point i . Since b 1is the most recent approximation to the root § ,

3 1 74 e 4 3 P - 3 ust, ol et o : . . -
otherwise we do either & bisection or an interpolation juslh as in Dekker's and & is the previous value of © , we do a bisection if \f(b)l Z]f(a)l .

algorittm. Thus, Iel decreases by at least a Taclor of two cn every Otherwise we have \f(b)‘ « ‘f(a)\ « ‘f(c)l , 50 a safe way to find i is

second step, and when ]el < 8 a bisection must be done. (After a to compute rl _ f(a)/f(c) B f(b)/f(c) , fi i f(b)/f(a) ,

bigection we take e = m for the next step.) This is why our algorithm, D=t r}((c—b)rl(rl—fg)—(b*a)(Tz-l)) , and q = § (rl‘l)(rg'l)(ré’l) .
unlike Dekker's, is never much slower thgn bisection. Then 1 = b4-p/q , but as before we do not perform Lhe division unless it

A simpler ldea is to lake e as the value of p/o ab the last step is safe to do so. (I a biseclion is to be done then 1 1s not needed

but practical tests show that this slows down convergence for well-behaved anyway.) When inverse quadratic interpolation is used it is natural to

functions by causing unnecessary bisections. With the better choice of e ,

accept the point i if it lies between b and ¢ and up to threc-quarters

our experlience has been that convergence is always at least as fast as of the way from b to c: consider the limiting case where the

pees | 3 o s
for Dekkgrrs algorithn (see Section ). interpolating parabola has a verbical tangent at ¢ and f£(b) = -f(c)

Thus, 1 will be rejected if 2|p| > 3\(c;b)-ql , which explains the

Inverse guadratic interpolation

criterion discussed above.

1T the three current points a , b and c¢ are distinct, we can find

the point 1 by inverse quadratic interpolation, i.e., fitting x as a The tolerance
guadratie in y , instead of by linear interpolation using just a and b . As in Peters and Wilkinson (1949), the fTolerance (28) is a
Experiments show that, for well-behaved functions, this deviee saves about combinalion of a relative tolerance (he) and an absolute tolerance (Qt)
0.5 function evaluations per zero on the average (see Section 4). Inverse At each step we take
interpolation is used because with direct quadratic interpoletion we have & - za\bSAFt , (2.9)
to solwe a guadratic equation for i, and there is the problem of which

where b is the current best approximation to ¢{ , e = macheps is
root should be accepted. Cox (1970) gives anotner way of avoiding this 1or

the relative muchine precision (g for T-digit truncated floating-point
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arithmetic with base p , and half this for rounded arithmetic), and t
is a positive absolute tolerance. ©Since & depends our b , which could
lie anywhere in the given interval, we should replace & by its positive
minimum over the interval in the upper bound for the pnumber of funetion
evaluaticons reguired. In the ALGOL procedures the variable tol is used

for &

The effect of rounding errors

The ALGOL procedures given in Seclion 6 have been written so that
rounding errors in the computation of i , m ete. can not prevent
convergence with the above choice of & . The number 2 in (2.9)
may be increased if & higher relative error is acceptable, but it should
nol be decreased, for then rounding errors might prevent convergence.

The bound for |f-§| has to be increased slightly if we teke
rounding errors into account. Suppose that, for floating-point numbers

x and y , the computed arithmetic operations satisty

f1({xxy)

x.y(1+ sl) (2.10)

and

M(x+y) = x(1+ Ep)iy(l+E (2.11)

N
where |Ei| <e for i1 =1,8,5 (see Wilkinson (1963)). Also suppose
that fl(lx') = |x| exactly, for any floating-point number x . 'The
algorithm computes approximations

m = £1(0.5 % (c-b)) (2.12)
and

tol = f1{(2 x £ x |b|+%) (2.13)

88
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to m and tol , where f lies between b = t and ¢ , and lhe algorithm

terminates only when

tol ‘ (2.14)

‘Hll

(unless f(b) =C , when £ =¢ =b ). Our assumptions {2.10) and (2.11)

1A

glve

L (je-b| - e(folrie]))a-e) (2.15)

Im|

v

and, similarly,

tol < (ee|b|+t)(1+e)5 » ' (2.16)
so (2.1h) :'u'nplies that

le-b| < (555 (2ep] 4 £) (1) v e(b]4 fe]) . (2.17)
Since |{-8] < |c-b] and b - §, this gives

18-¢t] <éeltl+2t , (2.18)

neglecting terms of order €t and EE‘QI . Usuanlly the error is less
than half this bound (see above). 7

Of course, if is the user's respongibility to consider the effect of
rounding errors in the computation of . The ATGOL procedures only
gﬁarantee to find a zero § of the computed function f to an accuracy
given by (2.18), and € may be nowhere near a root of the mathematically

defined functicn that the user is really interested in!

g9
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Extended exponent range

Tn some applications thé range of f may be larger than is allowed
for standard floating-point numbcrs. For example, [(x) might be
det (A -xI) , where A is a matrix whose eigenvalues ars tec be found.

In Section { we give an ALGOL procedure (uzero2) which accepts f(x)

represented as a pair (y(x),z(x)) , where £(x) y(x).?z(x) {y real,

z integer). Thus, zero? will accept functions in the same representation

as is assumed by Peters and Wilkinson (1969), although zero2 does nol
require that 1/16 < |y(x)| <1 or y(x) = 0, and could be simplified

slightly ii this assumplion werce made.

5. Convergence properties

If the initial interval is [a,b] , assume that

b-a >80, (3.1}

and let -

k= [ log,((b-a)/3 )] , ' (3.

ra
~

where Bm 1s the minimum over [a,b] ol the tolerance

5(x) = 2.macheps.|x|+t 7 . (3.3)

{see Section 2), and [_x_] means the least integer y >x . By
assumption (3.1), k > 0. (If k = 0, procedure zero takes only two
function evalualiona.)

VFirst consider the bisection progess,'tenninating wheg the

interval known Lo contbain a zero has length < E&m (so the endpoint

90
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minimizing [fl is probably within 6m of the zero, and certainly
within 25m ). It is easy to see that this process terminates after
exactly W&+l function evaluations unless, by good fortune, f happens
to vanish at one of the points of evaluation .

Now consider procedure zero or zerc2. If k = 1 then the procedure
terminates after 2 function evaluations, one at each end-point of the
initigl interval, jJust like bisection. If %X =2 then thcre are 2
initial evaluations, and after no more than 4 more evaluations a bisection
must be done, for the reason desceribed in Seclion 2. After this bisecticon,
which requires one more function evaluation, the brocedure must terminate.
Thus, ap_most 2+5 =7 evaluations are requircd. Similarly, for k > 1,

the maximum number of function evaluations reguired is
CH (54704 ...+ (241)) = ()T -2 . (3.0)

Since Dekker’s algorithm may take up to 2k function evaluations (see
Section 2); this justifies the remarks made in Scetion 1. Also, albhough
the upper bound (3.4) is attainable, it is clear that it is unlikely to
be attained except for very conirived examples, and in practical tests our
algorithm has never taken more than 3(k+1l) function evaluations (see
Section 4). This justifies the claim that our algorithm is never much
slower than bisection.

Superlinear convergence

Ignoring the effect of rounding errors and the tolerance & , we see,
as in Dekker (1969), that the algorithm will eventually stop doing bisections
when it is upproaching a simple zerce { of a Cl function.. Thus,
temporarily ignoring the improvement described in Section 2, the theorems

ol Chapter 7 arc applicable {with ¢ = 1 ). 1In particular, convergence is

9 1
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superlinear, in the sense that 1lim sup ixn - gll/“ =0, provided ¢

n -

is o near the simple zero { (‘lheorem 3.4.1). If f£' is Lipschitz
continuous near §{ , then the weak order of convergence is at least
%(l+./§) =1.618 ... (Theorem 3.9.1). For a summary of the other
results of Chaplter 3, see Section 3.10.

If ' is Lipschitz continuous near the simple zero § , then, even
with the inverse parabolic lnterpolation modification described in Section 2,
the week order of convergence is still gt least ;—L(h/ﬁ) . The idea of
the proof i that, by Lemma 2.%.1, the curvature at { of the approximating
parabolas is bounded, so the inequality (3.5.13) still holds for some M
(no longer the Lipschitz constant) and sufficiently small 6, -

Thus, our procedure always converges in a reasonable number of
steps and, under the conditions menticned above, convergence is superlinear

with order at least 1.618 ...
2
)

It is well-known that, since
(1.618...)% = 2.618... »? , thie compares favorably with Newkon's method
if an evaluation of ' 1is as expensive as an eveluation of f . In 7
practice, convergence for well-behaved functions is fast, and the stopping

critericn is usually satisflied in a few steps once superlinear convergence

sets in.

Summary

The results of Sccbions 2 and 3 above may be summarized in the following
"theorem":

If a<b, £ =macheps >0, t >0, f is defined on [a,b] ,
f(a)f(b) <0, and arithmetic is exact, then the algorithm defined by

procedure zero (see Section 6) converges, and returns te[a,b] such that

g2

by

f changes sign in I, = [E—‘P&, E+2&] N {a,b] , where B = 22|E’,]+t R
and the number n o ol times that T is evaluated does not exceed
(k+l)2-2 , where k 1is given by equation (3.2). Also, if chl[a,b]
has & unigue simple zero & e{a,b) , then |- E|l/n - 0 as macheps

and t - 0 . Finally, if arithmetic is approximate, but satisfies (2.10)
and (2.11) with € < lO_3 » then the algorithm still converges, and

returns f such that f changes sign in Ige s where 5' = 1.01(3e|f|+t)

(The factor 1.01 takes care of terms of order €t and Eglg\ .)

L., Practical tests

The ALGOL procedures zero (for standard floating-point numbers) and

zero? (for floating-point with an extended exponent range) have been

tested using ALGOL W (Wirth and Hoare (1966), Dauer, Becker and Graham (1968))

13

on an IBM 360/67 and a 360/91 with machine precision 16" The number
of function evaluations for convergence has never been greater than three
times Lhe number required for bisection, even for the fqnctions mentioned
in Section 2, and for the functions given by (2.1) and (2.7) Dekker's
algorithm takes more than lO6 function evaluations. Zero2 has been
tested extensively with eigenvalue routines, and in this application it
usually takes the same or one less Vﬁmction evaluation per eigenvalue than
Dekker's algorithm, and considerably less than bisection.

In Table 4.1, we give the number of function evaluations required

19

for convergence with procedure zero? and functions x9 s X7, fl(x) ;

and fz(x) , where
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o if x| <3.8x107F
fl(x) = - (4.1)
fi{x.cxp(-x "))  otherwise,
and
6

fl{exp(x)] if x > -107,

Fx) = (k.2)

6 .
fl(exp(—loj) —(x4-106)2) otherwise.
The parameters a , b and t of procedure zero2 are given in the
table. Tn all cases macheps = 1672

In Table k.2, we compare the procedure given by Dekker (1969) with
procedure zero (proccdure zero? gives identical results as no underflow

or overflow occurs) for a typical application: finding the eigenvalues

of a symmetric band matrix by repeated determinant evaluation. Tet A
be the n by n 5-djagonal matrix defined by
(p—r if 1i=3=1 or n,
is] if i - 3 # 1 or n,
= 2 it i-j} =1 b,
a < q  if  |i-i) P (4.3)
T if ji-jf =2,
o} if Ji-g} > e
For n>2, A has eigenvalues
_ Jar 2kn
A = p-la.cos (nﬂ.) + 2r.cos (n+l) (h.4)

for k = 1,2,...,n (see Fhrlich (1971)). Table L.2 gives the eigenvalues
)\.k , the number n, of function evaluaghbions per elgenvalue for Dekker's

procedure, and the number n, of function evaluations for procedure zero.

Z

ok

For a definition of 1

i ete., and a discussion, see above.

b.h
Table %.1: The number of function evaluations tor convergence with
procedure zero?2
SR g e e e
£{x) 8 LB ! L : £ -¢ function evals.
5 z o | i
x -1.0 ¢ 411} 1'-9 ; h.ggr-10 i 81 i
’. i ; i i
= 1.0 0 #ho o 1te20 0 klgere2l | 189 .
; i : ! !
x? 1.0 7 +ko0 1r-20 ¢ hk.B1repy 195 !
i ! ¥
. H * :
s} | -Lo ‘ ko | 120 | O ' 53 ';
! o b :
B T DA S CO
* fo2arrk oana £(f) -0
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Table 4.2

i 13

1

15

Comparison of Dekker's procedure with procedure zero

hk
1.239950053007 54
1.56230961h6ok7o7

2.050252531609417

n

.T2832L9364g769
3.61410919225782
4710488214 57581
£..00000000000000
7. 1T5a70160161
8.97167724536908
10.5003081887721
11.9Lkg7h 74683058
13.2029707180809

1h . 17k2635087655

1789375495333

S S

For & definition of Kk y nD and n

relative error of less than

1.058382560968867

P T““'r“

5t-1h.
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A

E

L

10

10

0

10

11

11

10

10

10

10

10

10

see above.

10

10
10
10
1!
10

9

oo

10 ¢

fu=RNe NG N

have a

oty
For each eilgenvalue, the tolerances for Dekker's procedure and for procedure

zero were the same. (The tolerance was adjusted by the eigenvalue program

to ensure that the computed eigenvalues had a relative error of less

-1}

than 5.10 .) Tests were run for several values of u , p, q and 1 :

q = 7/’+ »

To obtain the same accuracy With bisection, at least U0

the table gives a typical set of results for n =15, p =17,
and r = 1/2 .
function evaluations per eigenvalue would be reguired, so both our procedure
and Dekker's are at least four times as fast as bisecticn for this application.
Some more experimental results are given in Chapter 5. (For an
illustration of the supcrlinear convergence, sce lhe examples given in

Section 3.9.)

5. Conclusion

Our algorithm appears to be at least as fast as Dekker’s on well-
behaved functions, and, unlike Dekker's, it is guaranteed to converge in a
reasonable number of steps for any function. The ALGOL procedures zero
and zero2 given in Section 6 have been written to avoid problems with
rounding errors or overflow, and fleoating-point underflcew is not harmful
ag long as the result is set to zero.

Before giving lhc ALGOL procedures zero and zero2, we briefly discuss

some possible extensions.
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k.5
Cox's algorithm
A recent paper by Cox (1970) givés an algorithm which combines
bisection with interpolation, using both f and f' . This algorithm
may fall to converge in a reascnable number of steps in the same way
as Dekker's. A sljmple modifi;:ation, exactly like the one that we have given
in Section 2 for Dekker's algorithm,'will remedy this defect without
slowing the raté of convergence for well-behaved functions.

Parallel algcrithms

In this chapter we have considered only serial algorithms. It is
well-known (see, for example, Traub (1964)) that all serial methods which
use only function evaluations and Legrangian interpolation polynomiels
have weak crder less than 2 , unless certain relations hold between the
derivativea of f at gr. (Winograd has recently shown that-no serial
method, using only function evaluations, can have order greater than 2
for all analytic functions with simple zeros.} Thus, nothing much can be
gained by going beyond linear or quedratic interpolation. lowever,
Miranker (1969) has shown that, if a parallel computer is available, a
class'of algorithms using Lagrangian interpolation polynomials gives
supérliheér convergence with weak order greater than 2 under certain
conditions. Also, it is clearly possible to generalize the bisection
process to "(r+l)-section” with advantage if a parallel computer with r
independent processors is available. See, for example, Wilde (1964).
There dees nbt appear to be any fundamental difficulty in combining
generalized bisection with cne of Miranker's parallel algorithms so that

convergence in a reasonable number of steps is guaranteed for any function,
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and superlinear convcrgence with order greater than 2 is likely for

well-behaved functions.

Searching an ordered file

A problem which is commonly solved by a binary search (i.e.; bisection)
me@hod is that of locating an element in a large ordered file. The problem
may be formalized in the following way. Let S be a (finite or infinite)
totally ordered set, and @: 53 - R an order-preserving mapping from 35
into thé real numbers. Suppose that T = [to,tl,...,tn} is a Tinite

subset of §, with t < B <t Given ¢ G[$(to),®(tn)] ; we

n

may define a monotonic function f on [O,n]) by

Px) = oty e (5:1)

where xe{0O,n] and i = r-x - . Thus, finding an index i such

5
that Q(ti) = ¢ 1is equivalent to finding a zero of f in [0O,n] , and
our zero-finding algorithm could be used instead of the usual bisection
algorithm., Tt might be worthwhile to modify our algorithm slightly, so
as to take the discrete nature of the problem into account. A related

application cf our algorithm is in finding the median (or other percentiles)

of a list of numbers, but there are faster ways of doing this.

6. ALGOL 60 procedures

The ALGOL procedures zero (for standard floating-point numbers) and
zero? {for floating—point.with an extended exponent range) ere given below.
Tor a description of the idea of the algorithm, see Section 2. Some

test cases and numerical results are deseribed in Section 4.
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Procedure zero

real procedure zero (ay b, macheps, 4, f);

value

a, b, macheps, t; real a, b, macheps, t;

real procedure fj

begin comment:

to within a tolerance 5-macheps.|x\+2.t, where macheps is the relative

machine precision and t is a positive tolerance. The procedure assumes

Zero returns a zero x of the function T in the given interval [a,bl],

thet £(a) and £(b) heve different signs;

real ¢, 4, e, fa, fb, fec, tol, m, p, q, v, 8}

fa

int:

ext

:= f£(a); b := £(b);

¢ :=a; fc :=fa; d :=e := b-a;
: if ebs(fe) < abs{fb) then
begin a :=b; b :=c¢; ¢ :=8&;

fa := fb; b :=fe; feo := fa

end;

tol := 2 x macheps x abs(b) + t; m o= 0.5 % (e-b);

it

abs{m) > tol A fb £ O then

begin comment: See if a bisection is forced;

if abs(e) < tol v abs(fa) < abs(fb) then d := e :=m else

begin s := fb/fa; if a = c then
begin comment: TLinear interpolation;
p:=2 xmyxs; q :=1-8
end

else

begin comment: Inverse quadratic interpolation;

100

r := fb/fc;

p:=sx(2xmxgx (g-r) - (b-a) x (r-1));

a := (g-1} % (r-1) x (s-2)

= ~q else p 1= -p;

if 2xp < 3xmxg-abs{tolxq) A p < abs{0.5xsxq) then

= e I=m

b := b+ (if abs(d) > tol then d else if m > O then.

ge to if b >0 = fe > 0 then int else ext

h.6
q := fa/fc;
end;
if p > 0 then q
s :=e; e :1=4d;
d := p/q else d
end;
a :=Db; fa := ib;
tol else -tol);
b 1= f(b);
end;
zero 1= b
~end zero;

Procedure zerct
real procedure zero? (a,
value a, b, macheps, t;
begin comment:
Zero?Z finds a zero
zero, except that the
so that E(x) = y.2%,

a very large function

b, macheps, t, f);

real a, b, macheps, t; procedure f;

of the function f in the same way as procedure
procedure f{x,¥,z) returns y (real) and z (integer)
Thus underflow and overflow can be avoided with

range;
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real procedure pwr? (x,n); value x, n; real x; integer n;

comment: The procedure is machine-dependent. Tt computes x.2" for
n < 0, avaiding underflow in the intermediate resulls;

pwr2 := 1f n > -200 then xx21 n else

if n > N0 then (xx 21 (-200)) x 7t (2+200) else

if n > -600 then ({(xx21t (-200)) x21 (-200)) x 21 {n+h0Q) else O;
integer ea, eb, ec;

real ¢, d, e, fa, b, fc, tol, my p, q, ¥, 8;

f{a,fa,ea); I(b,fb,eb);

int: ¢ :=a; fc :=Tfa; ec :=ea; d :=¢ :- b-a;

exl: if (ec < eb a pwr2(abs(fc), ec-cb) < abs{ib))

v (ec > eb A pwr2{abs(fb), eb-ec) > abs(fc)) then

begin a :=b; fa := fb; ea := eb;
b :=c¢; fb:=1fc; eb :=ec;
¢ :—a; fc :="fa; ec :=ea

end;
tol := 2 xmacheps x abs(b) +%; m := 0.5x (c-b);
if abs{m) > tol A fb £ O then

begin if abs(e} < tol v

(ea < eb A pur?(abs(fa), ea-eb) < abs{fb)) v

(ea > eb A pwr2(abs(fb), eb-ea} > abs(fa)) then
d :=e :=m else
begin s pwr2(fb, eb-ea)/fa; if a - c then

begin p :=2xmxs; q := 1-s end

else

begin q := pwr2(fa, ea-ec)/ic;
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r := pwrR(fb, eb-ec)/fc;
P :=sx(2xmxax{q-r) - (b-a) x (r-1));
q := (g-1) x {r-1) x (s-1)
end;
if p >0 thenq := -q elsc p := -p; 8 :=e; & :=d;
if P,xﬁ < Zxmxqg-abs(tolxq) A p < abs(0.5x%sxq) then
d: plgelsed:=e:i=m
end;
a :=b; fa := fb; ea := eb;
b o= b+ (if abs{d) > tol then d else if m > O then
tol else -tol);
(b, fb, eb);
go to if fb >0 = fe > 0 then int else ext
end;
Zero2 := D

end zeroZ;
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Chapter 5

Ar Mlgorithm with Guaranteed Convergence for Finding a

Minimum of a Function of One Variable

Ao}
[

1. Introduction

A common computational problem is finding an approximation to the
minimmn or maximum of a real-valued function f in some interval [a,b]
This problem may arise directly or indirectly. TFor example, many methods
for minimizing functions g{x) of several variables need to minimize

Tunctions of one veriable of the form

(N = elxy + 28) (1-1)

where XO and s are fixed (a "one-dimensional search" from XO in

the direction 8 ). In this chapter, we give an algorithm which finds
an approximate local minimum of € by evaluating f at a small number
of points. There is a clear analogy between this algorithm and the
algorithm described in Chapter 4 for roob-finding (see Dimgram hL.1).
Unless £ is unimodal (Section 3), the local minimum may not be the global
minimum of f 'in [a,b] , and the problem of finding global minima is
left until Chapter 6.

The algorithm described in this chapter could be used to solve the
problem (1.1}, but, for this application, it may be more economical to
use special algorithms which make use of any extra informetion which is
available (e.g., estimates of the second derivative of 7 }, and which do
noet attenpt to find the minimum very accurately. This is discussed in
Chapler 7. Thus, a more likely practical use for our algorithm is to find
accurate minima of naturally arising functions of one varigble.

In Section 2 we consider the effect of rounding errors on any
minimization algorithm based entirely on functicn evaluations. Unimodality

is defined in Section 3, and we also define "d-unimodality™ in an attempt
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5.1

to explain why methods like golden section search work even for functions
which are uot quite unimodal (because of rounding errors in their
computation, for example). Tn Sections b and 5 we describe a minimization

algorithm analogous to the zero-finding algorithm of Chapter L, and same

mumerical results are given in Section 6. Finally, some possible extensions

are described in Section 7, and an ALGOL 60 procedure is given in

Section 8.

Reduction to a zero-finding problem

Il I is differcntiable in [a,b] , a necessary condition for f

to have a local minimum at an interior peint we (a,b) is

() =0 . (1.2)
There is also the possibility that the minimum is al a or b : for
exemple, this is true if f* does not change sign on (a,b] . If we

are prepared to check for this possibility, one approach is to look for
zeros of ' . -If{ f' hag different signs at a and b , then the
algorithm of Chapter 4 might be used to approximate a point p  satisfying
(1.2).

Yince f' vanishes at any stationary point of I , it is possible
that the point found‘is a maXimum, or even an inflexion point, rather than
a minimum.- ‘'hue, it is necessary to check whether the point found is a
true minimum, and continue the search in some way if it is not.

If it is difficult or impossible to compute’rf' directly, we could
approxinate ' numerically (c.g., by finite differences), and search

for a zero of f* as above. However, a method which does nol need {7
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seems more natural, and could be preferred for the following reasons:

1. It may be difficult to approximate {1'* accurately because of

rounding errors;

2. A method which does not need ' may be more efficient (see below);
and
5. Whether ' can be computed directly or not, a method which avoids

difficulty with maxime and inflexion points is clearly desirable.

Jarratt's method

Jarratt (1967) suggests a method, using successive parebolic
interpolation, which is a special case of the iteration analyzed in
Chapter 3. With arbitrary starting points Jarratt's method may diverge,
or converge to a maximm or inflexion point, bul this need nol be fatal if
the melhod is used in combination with a safe method such as golden section
search, in the same way as, in Chapter hk, we used a combination of
successive linear interpolation and bisecction for f'inding a zero. Theorem
3.5.1 shows that, if f has a Lipschitz contimucus second derivative which
is positive at an interior minimum g , then Jarratt's method gives
superlinear convergence to p with weaek order ab least B, = 1.32L7. ..
{sce Definitions 7.2.1 and 3.5.1), provided the initial approximation is
good and rounding errors are negligible.

Let us compare Jarratt's method with one of the alternatives:
estimating f' by firnite differcnces, and then using successive linear
interpolation to find a zero of £' . (This process may also diverge,

or converge to a maXimum.) -Suppose that £"(u) >0 and f(i)(p) £ 0, to
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avoid exceptional cases {sce Sections 3.6, 3.7 and ¥.2). Since at least truncated to single-precision.
two function evaluations are needed to estimate f* at any point, and Lett & be the largest number such that, according to eguations
V1.618... = 1.272... < 1.%2k... , Jarratt's method has a slightly (2.2) and (2.3), it is possible that

higher order of convergence. (The comparison is similar to that bebween £1(e(u+8)) < f,o (2.4)
Newton's method and successive linear interpclation if an evaluation of

£1 ig as expensive as an evaluation of f : see Golab {1966) or It is unreascnable to expect any minimization procedure, based on

Ostrowski (1966).) ‘single-precision evaluations of f , to return an approximation p to

p  with a guaranteed upper bound for lﬁ -u| 2less than % . This is

5o, regardless of whether the canpuled values of {° are uscd directly,

2 Fundamental limilalions because of rounding errors as in Jarratt's method, or indirectly, as in the other method suggested

" - In Section 1. 'the reason is simply that the minimum of the computed
Suppose that - £510[a,b;M] has a minimum at u e (a,b) . Since
function f1{f(x)) may lie up to & from the minimum p of £(x) :
f*(p) = 0, Lemma 2.3.1 gives, for xc[a,b],
see Diagram 2.1.
m

: + g (xem

f(x) =1, +3 f&(x-p

2
o ? )

o, (2.1)

where lmxl <M, fO = f{u) , and 1‘8 = f"(p) . Becausc of rounding
errorg, the best that can be expected if single-precision fléa.‘ting-point
numbers are used is that the computed value f1(f{x)) of f£(x) satisfies

the (nearly attainable) bound

f1(£(x)) = £(x)(1+e) (2.2) ‘
. l\;‘%ﬁ
where ) T !
\\,-\lu
o}
el <e (2.3)
and € is the relative machine precision (see Section 4.2). The error

Diagram 2.1: The effect of rounding errors
bound is unlikely to be as good as this unless f  is a very simple '

function, or is evaluated using double-precision, and then rounded or
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If f6 >0, equa‘tions (2'1) to (EIh) give

2{f e
o > (1 -2 ) (2.5)
0 0

Thus, if pu } 0 and the term is negligible, an upper bound

E]fole
2 2

o
M3

MS
f"
. 0
for the relative ervor |Eﬁﬁi could hardly be less than

and full single-precision accuracy in i is unlikely unless

5 is of order & or less, although f1(f(u)) may agree with £{)

to full single-precision accuracy. (See also Pike, Hill, and James (1967))
If f' has a simple analytic representation, then it may be easy to
compute f!' accurately. TFor example, perhaps

FU(0 () = £ (1)) (10 e » (2.6)

where lei‘ <e and ‘E;t < e , so we can expect to {'ind & zero ol
with & relative error bounded by € (sce Lancaster (1966) and Ostrowski
(19670)). If (2.6) holds it might be worthwhile to use the algorithm
described in Chapter 4 to search for e zero of . f' , or at least use it to
refine the approximation & given by a procedure using only evsluations
of f . However, this is not so if ' bas to be spproximated by
dilferences, for then (2.6) can not be expected to hold.

Lven if £(x) 1is a unimodal function, the computed approximation
fL{f({x)) will not be unimoadal, because of rounding errors. Note that
f1(f(x)) must be constant over small inter&als of real numbers x which

have the same floating-point approximation f£1(x) . In the next section
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we define "Hh-unimodality" to circwmvent this difficulty.

From now on, we consider the problem of approximaling the minimum
of the computed functicn, or, equivalently, we Ignore rounding errors
in the computation of f . The user should bear in mind that the miniwum
ol' the conputed function mey differ from the minimum that he is really
interested in by as much as & (sgee equation (2.5) above). TIn particular,
there is no peoint in wasting function evaluations by finding the minimun

of the computed function to excessive accuracy, and our procedure localmin

(Sectlon 8) should not be called with the parameter "eps” much less than
2lf, e

0

)
f!l
!

3. Unimodelity and &-unimodality

There are several different definitions of a unimodal functicn in the
literature. One source of confusion is that the definition may depend on
whether the funetion is supposed to have a unique minimum or a unique
maximun (we always consider minima). Xowalik and Osborne (1968) say that
£ is unimodal on [a,b] if f has cnly one (no more than one?) statiﬁnary
value on [a,b] . This definition has two disadvantages: first, it is
meaningless unless I is differentiable on [a,b] , but we would like to
say that ‘K\ is unimodal on [-1,1] . Second, functions which have
inflexion poinls with a horizontal fangent arc prohibited, bubt we would
like to say that f(x) = x6-jxh+'5xa is unimeodal on [-2,2] (here
(k1) - £'(21) -0 ).

Wilde (1964) gives another definition: f is unimodal on [a,b} if,

for all x4, cla,r} ,

1!
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2.3

X; <%, D (x2 < X* o f(xl) > f(xg)) A (xl sx o f(xl) < f(xg)) , (3.1)

where X is & point &l which f altains its lcash value in [a,b]

(We have reversed some of Wilde's inequalities as he considers maxima
rather than minima.) Wilde's definition does not assume differentiability,
or even continuity, but to verify tha‘f:r a function f satisfies {3:1) we
need to know the point _x* {and such a point must exist). Hence, we
prefer the following definition, which i& nearly equiﬁ.ralent to Wilde's
(see Lemma 3.1), but avoids any refercnce to the point x* . The

definition is not as complicated as it looks: it merely says that f can

not have & "hump" between any two points X, and X, in [a,b] . Two
X
possible configurations of the points Ky Xqp X and x in (3.1) and
(5.2) are illustrated in Diagrem 3.1.
\\
/ -
! Xy
v’j
N £
7( X5 x5 /
‘[‘f
X2
X
X 1
«*

Diagram 3.1: Unimodal functions
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Definition 3.1

f is wnimodal on [a,b] if, for all x., X, and %, ¢ [&,b] ,

0 1 2

Xy SHy AKX <Ay D (f(xo) < f(xl) =t f(xl) < f(xg)) A

(f‘(xl) > £(x,) o f(xo) > f(xl)) . (5.2)

Lemma 3.1
*
If a point x  at which f atbtains its minimm in [a,b] exists,

then Wilde's definition of unimodality end Definition 2.1 are equivalent.

Proof
Suppose that [ 1is unimodal according to Definition 3.1. If Xy < X,
and }:2 <x* , take x(') = xi 3 xi = X5, and xé = x* . Since f attains
ils least value at x* >
B(xg) > e(x) = 20xp) ' (3.3)

so equabtion (3.2>) with primed variables gives
f(xé) > f(xi) s (3.8
and thus

() > £xy) . (3.9)

<%, and x, >x , equation (3.2) gives
[

Similarly, if x 1

1

£(x)) < £x,) ' (3.6)
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Thus, from {(%.5) and (3.6), equation (3.1) holds.

Conversely, suppose that (3.1) holds and x5 < Xl < x2 ., If
f(xo) S’f(xl) then there are three pasgibilities, depending on Lhe

*
position of x

*
1. ' X >x . Thus, by (3.1) ,

flx) < f{x) - (3.1
2 K o= X Take x! - L (%, +x5) , and %! = x

' 1 : - 12 ' sf 2 2 T2
*

Since x < xi < xé » equation (3.1) with primed variables gives

£0) < £0x1) - (3.8)
50

% =
f(xl) =T(x) < f(xi) < f(x,é) = flx,) . {%.9)
» * ' ] d_ 1 S' T T < ¥

bE x <% . Take Xy = x5 and xh =X ince g < < x,

equation (3.1) gives f(xi) > f(xé) , contradicting the assumption that

fix.) < f(xl} . Hence case 3 is impossible, and, by (3.7) and (3.9), we

o)
always have f(xl) < f(xg) . Similerly, if f(xl) > f[xe) then
f(xo) > £(x)) 5 so>equation (3.2) holds, and the proof is complete.

A gimple corollary of Lemma 5.1 is that, if f 1is continuous, then
Wilde's definition of unimodality and curs are equivalent. For arbitrary
f +the definitions are not equivalent. For example,

1-x if x <0 ,

L(x)y = (5.10)

X if x>0

1Y

3.3
is unimodal on [-1,1] by our definition, but not hy Wilde's, for X
does not exist.

The following thecrem gives a simple characterizetion of unimodality.
There is no assumption that f is continuous. Since a strietly monotonic
function (e.g., Xs) may have stationary points, the theorem shows that
both our definition and Wilde's are essentially diffcerent from Kowalik

and Osborne?s, even if f 1is continucusly differentiable. (Although

this polnt is obvious, it is sometimes overlooked! See-also Corollary 3.3.)

Thearem 5.1

f 1is unimodal on {a,b] (according to Defimition 3.1) iff, for some
(unique) pela,bl , either T is strietly monctonic decreasing in [a,p)
and strictly monotonic increasing in [u,b] , or £ is striclly monotonic
decreasing in (a,u] and strictly monotonic inereasing in (u,b)

The theorem is a special case of Theorem 3.2 below, 8o the proof is

omitled. The following corollaries are immediate.

Corollary 5.1
If f 4is unimodal on [a,b] , then £ attains its least value at
most once on  [a&,b] . (LT f atbtains its least value, then it must

altain il &t the point p  given by Theorem 5.1.)
Corollary 3.2

If { dis unimodal and continuous on la,b] , then f attains its

least value exactly once on [a,b]
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Corollary 3.3

Ir fcclla,bj then f is unimedal iff, for some ucela,b],
' <0 almost everywhere on f{a,p] and f' >0 almost everywhere

on [p,b] . (Note that f' may vanish at a finite number of points.)

Fibcnacci and golden section search

If f is unimodal on [a,b] , then the minimum of f (or, if
the minimum is not attained, lhe point p given by lheorem 3.1) can be
located to any desired accuracy by the well-known methods of Fibonaccl
search or golden section search. The reader is referred to Wilde (194L)
for an excellent description of these methods. (See also Boothroyd
(1965a, b), Johnson (1955), Krolak (1968), Nevman (1965), Pike and Pixner
(1967), and Witzgall (1969).) Care should be taken to ensure that the
coordinates of the points at which f. is evaluated are computed in a‘
" numerically stable way (see Cverholt (1965)). Tibonacci and ggolden section
search, as well as éimilar but less efficient methods, ere based on the
following result, which shows how the interval known to contain u may

be reduced in sizZe.

Corollary 3.h

Suppose that f 1is unimodal on f{a,b] , n 1is the point given by

Theorem 3.1, and & <%, <X, <b . If f(xl) < f(xe) then u <x

1 2 27

~and if f(xl) > f(x,) then u >x, .
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Proof

If x, <p then, by Theorem 3.1, f(xl) > £(x Thus, if

2
£(x)) < T(x,)} then p <x,

2) i
1he other half follows similarly.

If the reader is prepared to ignore the problem of computing
"unimodal” funetions using limited-precision arithmetic, he may skip the

rest of this section.

§-uninmodality

As wes pointed out at the end of Section 2, funclions computed using
limited-precision erithmetic will not be unimodal because of rounding
crrors. Thus, ihe theorctical basis Tor Fibonaccl search, gelden section
search, and similar methods, is irrelevant, and it is not eclear that these
melhode will give even approximately correct résults in the presence of
founding errors; To analyze this problem, we generalize the idea of
unimodality to S-unimodality. Intuitively, & is a nomnegative number
such that Fibonacci or golden section search will give corfect resulis,
even though f 1is not necessarily unimodal (unless & = 0) , provided
that the distance between poinls at which f 1is evaluated is always

greater than & . The results of Section 2 indicate how large & is

" likely to be in practice. (Our eim differs from that of Richtmen (1968) in

defining the e€-calculus, for he is interested in properties that hold as
g —+0 -) For another approach to thie problem of rounding errors, sce
Overholt (1967).

In the romainder of this section, 5 is a fixed nonnegative number.,
As well as B-unimodality, we need to @Qefine b-monotonicity. If 5 =0

then &-unimodality and S-monotonicity reduce to unimodality (Definition 3.1}
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and monotonicity.

Definition 7.2
Let I be an interval and f a real-valued function on I . We

say that f 1is strictly &-monotonic inereasing on I if, for all

xl,x2 el ,

x+h < x, D f()(l) < f(xg) . (3.11)

As an abbreviation, we shall write simply " f is &-1t on I ™,
Strictly &-monotonic decreasing functions (abbreviated 5-}) are defined

in the obvious way.

Definition 5.3
Let I Dbe an interval and f a real-valued function on I . We

eI ,

say thet [ is 6-unimodal on I if, for all K1 XX,

Xgth <xp A X < x, D (£lx) < f(x

A (B(x)) > t(x,) O f(xg) > £(x)}) . (3.12)

The following theorem gives a characterization of &-unimodal functioms.

It reduces to Theorem 3.1 if & =0 .

Theorem 3.7
f is B-unimodal on [a,b] iff there exists uela,b] such that
either £ is ®-} on [a,u) and B-1 on. [p,db] , or T dis &-}

on [a,p] and B-f on {u,b] . Furthermore, if ( is $-unimodal on
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[a;b] , then there is a mmique interval [pl,pel c [a,b] such that

Lhe points p  with the above properties are precisely the elements of

Ly ko]l s and p, <p +5B

Proof
Suppose W cxists so that f is 5-1 on [a,u) and B-1 on [p,b]

Take eany X, x x, in [a,b] with X6 <%y and :»c1+<“)<x2 . If

1’ 1

f(xo) Sf(xl) then, since £ is 8-4 on [a,u) , HE¥, . As f s
-t on [p,b} , it follows that f(xl) < f‘(xp) . The other cases are

similar, so f is O&-unimodal.

Conversely, suppose that f is B-unimodal on [a,b] . Let
By = inf{xela,b] | f is &-1 on [x,bl} , (3.13)
{eo 1, < max(e,b-B)) , and

1

Hy = sup{xcla,b] | £ is &-t on [a,x]} , (3.14)

{so ., >min{at+d,b))

It is immediate from the definitions (3.13) and (3.1k) that £ is

-1 on (ul,b] and £ is B-4 on [a,p.z) . We shall show that

Hl < Ko . ’ (5-15)

Suppose, by way of contradiction, that
by Py - (5.16)

This implies that ‘511 > a and o < b, so, from the definitions of By

and Ko s there are points x' and %" with
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B, + |
" 1 2
Hoy < x < (:—T—E?———:> < x' < Hy

such that £ is not &-t on [x',b] and f is not 6-{ on

" 1]

Thus, there are points y' , y" , 2z' , z" in [a,b] such that
zE < y" < x' < <y <art-p

£(z") < £(y")

f(y') > £(z7)

Let x. =2", x,=2', and

2

yrooif £y} > £y

y" otherwise

From relations (3.18) to (3.21), the points Xy X o

(3.17)

[a,x"]

(5.18)

(3.19)

(3.20)

(3.21)

X and x contradict

B-unimodality (equation(3.12)). Thus (3.16) is impossible, (3.15) must

hold, and [ul,ug] is nonempty.

Choose any u in [ul,ug] . From the definitions of Ky and Mo

f is 8-1 on [a,u) and 8-t on (u,b] . Suppose, by way of contradiction,

that f is neither &-} on [a,p] nor 5-1 on ‘[u,b] . Then there

are points vy and Yo in [a,b] such that
Yot <p <y -8,

£(y) <fw)

and
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(3.22)

(3.23)

- 5.3

£(y,) < 1) (5.24)

‘Thus, the points Yo 3 and ¥y contradiet the &-unimodality of f ,
so f 1is either &-1 on [a,p] or &=t on [g,b] This completes
the proof of the first part of the theorem. .

Finally, by the definitions (3.13) and (3.14), the set of points p
satisfying the conditions of the theorem is precisely [pl,pe] . Since

f is both &-1 and 8-} on (pl,uz) , we have by < pl+6 , and the

proof is complete.

Remarks

The interval [ul,pg] depends on B Suppose that f attains its
minimum in {a&,b] at @ . Dy Theorem 3.2, f is &=t on (pl,b]
and &-} on A[a,pg) , 80 | e[pg—ﬁ,pi+5] , an interval of length at

most 29 .

As an eXxample, consider
2
I(x) = x"+e.g(x) (3.29)

on [-1,1} , where g is any funetion (not necessarily continuocus) with

le(x)} <1, and € >0 . Since f(x) is bounded above and below by the
unimodal functions x2+£ and xE—E ; we see that f 1is B-unimodal if

3 > VQ;; -~ In a practical case € might be {a small multiple of) the

relative machine precision, and the fact that the least 8 for which f

is d-unimodal is of order el/2 , rather than € , is to be expected from

the discussion in Section 2.
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The following theorem is a generalizetion of Corollary 3.4 (which
is just the special case & = 0) , and shows why methods like Fibonacci
search and golden seclion scarch work cn ®-unimodal funelions while the

distance between points at which f 1is evaluated is greater than §

Theorem 3.5

Suppose that f is d-unimodal on [a,b] , and h, are the

By

points given by Theorem 5.2, Xl and %, are in [a,b] , and xl+5 < Xg

if f(xl) < f(xe) then g, <%, , and if f(xl) > f(xg) then

v
-

2

Proof

for, by Theorem 3.2 with

1

If x, <, then f£(x) > £(x,)

f is 5-4 on [a,pg) . Hence, if f(xl) < f(xg) then by %, « The

second hall is similer.

Remarks

Theorems 3.2 and 5.3 show that, provided & is known, methods like
Fibonaccl search and golden sectlon search can locate the interval
[ul,pg] in an interval of length as close to & as desired. Since the
minimum p &ng—a, Hit6] (see the remarks above), this mcuns that u
can be located in an interval of length as close to 3% as desired.

In practice f maey be b-unimodal for all & > 60 ; but a sharp
upper bound for 50 may be dilficult to obtein. If the usual golden

section search method is used, giving a nested sequence of intervals Ij

with limit p , then Theorem 3.5 shows that [pl,uq] c Ij as long as the
ol &
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Lwo function evaluallons giving Ij were at points separated by more

0
(2+\[5)80 » BO

than & . The smallest such interval Ij has length no greater than

li-nf < (5+/§)BO ~ 5-2368, . (Z.26)

Thus, golden seclion search gives an approximation ﬁ which is nearly

as good as could be expected if we knew 60 . Th;s may be regarded as

a juslilication for asing golden section (or Fibonacci) search to approximate
minime of functions which, because of rounding errors, are only "approximately"

unimodal.

L.  An algorithm analogous to Dekker's algorithm

For finding a zero of a function f , the bisection process has the
advantaze that linear convergence is guaranteed, as the interval known to
contain a zero is halved at cach‘evaluation of f alter the Tirst.
However, if f is sufficiently smooth and we have a good initial
approximation to & simple zero, then a process with superlinear convergence
will be much faster than bisection. This is the %otivation for the
algorithm, described in Chapter 4, which combines bisection and sugcessivc
lineagr interpolation in a way which retains the advantages of both.

There is a clear analogy between methods for finding a minimum and
for finding o zero. The Fibonacecl and golden section search methods have
puaranteed linear convergence, and corresﬁond to bisection. Processes
like successive parabolic inberpolation, which do not always converge, bﬁt

under certain conditions converge superlinearly, correspond to successive
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linear inlerpolation. Tn this section we describe an algorilhm which (see Section 5). Note that we do not claim that our algorithm is

. - . R . iteble for use in an n-di sion inimizat i - : " c"
combines golden seclion search and successive parabolic interpolation suitable.for use 1 imensional minimization procedure: an "ad ho

in a way which retains the advantages of both. The analogy with the algorithm may be more efficient (see Sections 1 and 7.1).

algorithm of Chapler L is illustrated in Diegram k.1.
A description of the algorithm

rosg
Leros Extrema Here we give an outline which should make the main ideas of the
Linear convergence Bisection — Golden section search algorithm clear. For questions of detail the reader should refer to
. I ) I Section 8, where the algorithm is described'formally by the ALGOL 60
- Superlinear convergence Successive linear +— Successive parabolic ’
interpolation inlerpolation procedure localmin.

The alpgorithm finds an approximation to the minimum of a funection f

Diagram 4.1: The analogy between algoritims for

Finding zeros and extrema defined on the interval J[a,b] . Unless a is very close to b, f is

never evalualed at the endpoints a and b , so { need only be defined

Manj more or less "ad hoc' algorithims have been proposed for one- on (a,b) , and if the minimum is actually at & or b then an interior

dimensional minimization, particularly as components of n-dimensional point distent no more than 2.tol from a or b will be returned,

minimizetion algorithms. See Box, Davies and Swann (1969}, Flanegan, where tol is a tolerance (see equation (4.2) below). The minimum found

Vitale and Mendelsohn (1959), Fletcher and Reeves (1964), Jaccby, ‘may be local, but non-global, unless f is 5-unimodal for some & < tol .

Kowalik and Pizzo (1471), Kowalik and Osborne (1968), Pierre (1969), At a typicel step there are six significant points a , b, u, v, w,

Powell (1964), clc. The algorithm presented here might be regarded as and x , not all distinet. The positions of these points change during

an unwarranted addition to this list, but it seems to us to be more the algorithm, but there should be no confusion if we omit subscripts.

natural than these algorithms, which involve arbitrary prescriptions like Initially, (a,b) is tt?e interval on which [ is defincd, and

"if ... fails then halve the step-size and try again". Of course, our 3 /3
Veow=x=-at (5_5)(1)-&) . (4.1)
algorithm 1s nol guite free of arbitrary prescriptions either, so a more
bjective critici f the "ad hoc” ithms is that f f th -
obJectt riticism o e "ad hoc” algorithms is that for many o e (The magic number 3—2-—‘/—3 = 0.381966... is rather arbitrerily chosen so

convergence Lo a locel minimum in a reasonable number of function evaluations . .
8 ’ : thal the first step is the seme as for a golden scelion search.)

t be guaranteed, and, for th i the asymptoti te of
can no gnaranteed, and, for the exceptions, © asymptoLle rate o At the stert of a cycle (label "loop" of procedure localmin) the

convergence if f is sufficient smooth is less than for our algorithm -
’ & Ty * 1gori points a2, b, u, v, w, and x always serve as follows: a local
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minimum lies in [a,b] ; of all Lhe poinis at which f has been evaluated, R C . ) .
t should he positive in case the minimum is al © . Tt is possible that

x i3 the one with the least value of f , or the point of the most recent
’ pos s the error may exceed 2.tol+5 Dbecause of the effect of rounding errors

evaluation 1f there is a tie; w 1is the point with the next lowest value
’ P ! in determining if the stopping criterion is satisfied, but the additional

of f 3 v is the previous value of w ; and u 1is the last point at i i ) L ) .
error is of order E\xl ; which ig& negligible if +tol is of order

which f has been evgluated (undefined the firslL time). One pousible 1/2
[3 ‘x\ ur greater.

conliguration is shown in Diagram b4.2. 1 , . ]
Let m = 5 {atb) be the midpoint of the interval known to contain

the minimum. If \x—ml < 2.tol -2 (b-a) , i.e., if max(x-a, b-Xx) < 2.tol ,

= 2
. then Lhe procedure terminates wilh x as the approximate position of Lhe
) T minimum. Otherwise, numbers p and q (g >0} are computed so that
(x[ x+p/q is the turning point of the parabola passing through (v,f(v)) ,
/// I (w,f(w)) , and (x,f(x)) . _If two or more of these points coincide, or it
. }
rd | the parabola degenerates to a straight line, then q =0
-
| p and ¢q are given by
I _ I
. 2 P .
a u n b p = [ (x-v) " (£(x) -1 () ~ (x-w)" (£(x)-0(v))] (4.3)
w v
+(a=v) (2ew) (w-v) [ (=) £ v, x ]+ £lw, %], (4.1)
Diagram h.2: A possible configuration
and
. q = 2L (x-v) (£ () -£(w)) - (x-w) (£(x)-F(v)) ] (4.5}
As in provedure zero {Chapter 4), the tolerance is a combination of
a relative and an absolute tolerance. If = ¥2(x-v) (x-w) {(w-v} £lv,w,x] . (k.6)
bol = eps. x|+t (h.2) From (4.1) and (4.6), the correction p/q should be small if x 1is close

. . . to a minimum where the second derivative is positive, so the effect of
then the point x returned approximates a minimum to an accuracy of

rounding cerrors in compulin and is minimized. (Golub and Smith
2.%01+H < 3.401 , if f 1is H-unimodal near x and b < tol . The & o P & P d }

. . ) (1967) compute & correction to ;(v+w) for the same reason.)
uscr must provide Lhe positive paramcters eps and t . In view of the 2

, As in procedure zero, let e be the value of at the second-last
discussion in Section 2, it is generally unreasonable to take eps much p ’ p/q

’ 1
cycle. If el < tol =0 X+ a,b > = then
less than El/? , vhere £ ig the machine-precision (see Section 4.2). g el < > 4 ’ p/af(ab) , or [v/a| > EIel’

126 127



5.4

2.5
a "golden section" step is performed, i-e., the next value of u isg
7 - T T 1/
/5 -1 3 -5 . ;
( 5 x4 5 Ja  if x >m , - ;//
S
- (5.7) 7~
7'(/-52‘ by ():_“/g)b if x<m . A
e
(An optimal choice in the limit: see Witzgall (1969).) Ctherwise u is ‘\\ //”" J
~— -
taken as x+p/q (a2 "parabolic interpolation" step), except that v v a x b
: uN— \—*uf‘JW
the distances iu-x1', u-a and b-u must be at least tol . Then £ tol tol

is evaluated at the new point uw , the points a , b ; v, w and x

) Diagram 4.3: A typical situation after terminalion
are updated as necessary, and the cycle is repeated (the proccdure
returns to the label "loop"). We see that £ is never evalualed at
tWwo points closer together than 1ol , so -unimodality for some & < tol -
is enough to ensure that the global minimum is found to an accuracy of
5. Convergence properfies

2.tol+d® (see Theorem 3.3 and the following remarks).
There can not be more than about 2.log2((b-a)/tol) consecutive
Typically the algorithm terminates in the following way: X =b-tol
parabolic interpolation steps (with the current & end b , and the
(or, symmetrically, a+tol) after a parabolic interpolation step has been
minimum of tol over the interval), for while parabolic interpolastiocn
performed with the condition |u-x| > Lol enforced. The next parabolic
steps are being performed lp/ql decreases by a factor of at least two
interpolation point lies very cloge to x and b, so u is forced to
. on every second cycle of the algorithm, and when ]el < tol a golden
be x-tol . If f(u) > f(x) then a moves to u , b-a becomes 2.tol ,

section step is perlormed. (In this scction, "about” means we are not

and the termination eriterion is satisfied (see Diagram 4.3). Note that
) distinguishing between a real number and its integer part.) A golden
two consecutive steps of tol are done just before termination. If a
i section step does not necessarily decrease b-a significantly, e.g.,
golden section search were done whenever the last, rather than second-last,
if x =%b-tol eand f(u) < f(x) , then b-a is only decreased by tol ,
value of |p/q| was tol or less, then termination with two consecutive
but two golden section steps must decrease b-a by a factor of at least
steps of tol would be prevented, and unnecessary golden section steps : ;
1l+/5

would be performed. > = 1.618... . As in Section L.3, we see that convergence can not

require more than about
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2K(Log, (1=2)) (5.1)

function evaluations, where
1+ /5
K = l/loge(——~5[§) = 1.hh.,. . (5.2)

By comparison, a polden section or Fibonacci search would require about

b-a
K'lOgE(EGI) {5.3)
function evaluations, and a brute-force search about EE%%I

The analogy with procedure zero of Chapter 4 should be clear, and
essentially the same remarks apply here as were made in Chapter 4. In
practical tests convergence has never heen more than 5 percent slower
than for a Fibonacci search (see Section 6).

In deriving (5.1) we have ignored the effect of rounding errors inside

the procedure, but it is easy to see (as in Section 4.2) that they can not

prevent convergence if floating-point operations satisfy (4.2.10) and (4.2.11),

provided the parameter eps of procedure localmin is at least 2¢

Superlinear convergence

If f is 02 near an interior minimum p  with f"(p) > 0 , then

Theorem 3.4.1 shows that, while rounding errors are negligible, convergence

will he superlinear. Usually the algorithm stops doing golden section steps,

and eventually does only parabolic interpolation steps, with f£(x) decreasing

at each step, until the tolerance comes into play just before termination.

This is certainly true if the successive parabolic interpclation process
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converges with strong order f, = 1.5247... (sulficient conditions for
this are given in Sections 3.6 and 3.7).

For most of the "ad hoe" methods given in the literature, convergence
with a guaranteed error bound of order tol in the number of steps given
by (5.1} is not certain, and, even if convergence does occur, the order
is no greater than for our algorithm. For example, the algorithm of
Davies, Swann and Caunpey (see Box, Davies and Swann (1969)) evaluates f
at Lwo or more points for each parabolic Til, so the order of convergence

is at most JEQ = 1.150... (excluding exceptional cases).

6. Practical tests

The ALGOT procedure localmin given in Section B has been tested using
ATGOL W (Wirth and Hoare (1966), Bauer, Becker and Graham (1968)) on an
TBM 360/67 and & 360/91 with a machine precision of 16'13 . Although it
might be possible to contrive an example where the bound (5.1) on the
number of funetion evaluations is nearly attained, for our test cases
convergence never requires as many as 5 percent more function evaluations
than would be needed to guarantce the same accuracy using Fibonacei search.
In most practical cases superlinear convergence sets in after a few golden
section steps, and the procedure is much faster than Fibonacei search.

As an example, in Table 6.1 we give the number of function evaluations

required to find the minima of the function

X=-1

O PPN
£(x) =y [ . (6.1)
i=1
. . 2 .2 2 .
This function has poles at x = 17,27,...,20° - Restricted to the open
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interval (12,(i+l)2) for 1 =1,2,...,19 it is unimodal (ignoring

rounding errors) with an interior minimum.

gives the number n of function evaluations required to find this

minimumn oo using procedure localmin with eps = 16-7 and t = lO‘lO
(so the error bound is less than 3.tcl , where tol = 16_7.1x]| 107 ).
The last column of the table gives the number 1, of function
cvaluations required to find the zero of
20 . 2
Prix) = 2.y {2iz0) (6.2)
L 25
i=l (x-17)

in the interval [121-10-9,7(i+])2 -10-9] ; using procedure zero {Section
4.6) with mecheps = 167 ana ¢ = 1079 , 50 the guaranieed accuracy is
nearly the same as for localmin. Of course, in practical cases we would
seldom be lucky enough Lo have such a simple analytic expression for I°
sc procedure zero could not easily be used teo find minime of £ 1in this
manner. Also, procedure zero could find & maximum rather than s minimum.

Table 6.1 shows that the number of function evaluations required by

procedure localmin compares favorably with the number required by procedure

7Zero. Both are much faster than Fibonacci search, which would require 45
function eveluations to find the minimum for
For some numerical results illustrating the superlinear convergence

of the successive parabolic interpolation process, see Section 3.9,
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The fourth column of Table 6.1

i =10 to the same accuraCy.'
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|

i i

N

=

-l

10

11

3
1h
15
16
17
18

Table 6.1:

Comparison of procedures localmin and zero

3.0229153.

6.6837556
1t.2387017
19. 6760001
29.8282273
L1.9061162
95.9535958
7i.9856656
90.0088685

110.0265327
132.0405517
156.05211h%
182.062060%

210.0711010

© 20 .0B00k83

For a discugsion and definition

272 .0502669
306.1051233

he 1569450

- 380.2687097

Vrf(u-)

1

3. 6766990169
1.1118500100
12182217637
2.1621103109
5.0322905193
5.7583856577
4 .3554103836
4. 8482959563
5.2587585400
5. 6036524295
5.8956037975
6.1438861542
£.3550764593
6.533366200%
&.6803630849
6. 7938538365
6.8634981053
£.8539024631
6.6008kT70LB1
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‘. Conclusion

The algorithm given in this chapter haé the same advantages as the
algorithm deseribed in Chapter 4 for finding zercos: convergence in a
reasonabhle number of steps is guaranteed for any function (see equation
(5.1)), and on well-Lehaved functions convergence is superlinesar, -with
order at least 1.32L47... , and thus much faster than Fibonacei search.
There i8 no contradictidn here: TFibonaccl search is the fastest method
for the worst possible function, but cur algorithm is faster on a large
class of functions (including, for example, C2 functions with positive

second derivatives at interior minima).

A similar alpgorithm using derivatives

We pointed ont in Section L.5 that bisection could be combined with
interpolation formulas which nse both f and ' . We could combine
golden section search with an interpolation method using both f and 1!
in a simiiar way. Davidon (1959) suggests fittiné a cubic polynomial to
agree with  and .f‘ af two points, and taking a turning point of the
cubic as the next approximation. (See also Johunson and Myers (1967).) This
method, which gives the possibility of superlinear convergence, could well
replace successive parabolic interpelation (using I ab three points) in
our algorithm if f' is easy to compute. TIf the cubic has no real turning
point, or if the turning point which is a local minimum lies outside the
ihtérval known to contain a minimum of f , then we can rescrt to golden

section search.

1 3l|,

5.8

Paraliel algorithms

So far we have considered only serial (i.e., sequential) algorithms
for fiudingl&inima. If a parallel computer is available, more efficient
algorithms which take advantage of the parallelism are possible, Jjusl as
in the analogous mero-finding problem (see Section L.5). ¥arp and
Miranker (1968) give & perallel search method which is a generalization of
Fihonacei search (and optimal in the same sense, if a sufficiently parallel

processor is available). Bee also Wilde (1994) end Avriel and Wilde (1966) .

Miranker (1969) gives parallel methods for approximating the rost of a

function, and these could be used to lind a root of f' (or parallel
methods for finding a root of f' , using only evaluations of I , could
be used). These parallel methods could be combined, in much the same way
as we haveVCOmbined golden section search and successive parabolic
interpolation, to give a parallel melhod with guaranteed convergence,

and often superlinear convergence with a higher order than for our serial

method.

8.  An ALGOL 0 procedure
The ALGOL procedure localmin for linding a local minimum of a function
of one variable ig given below. The algorithm and some numerical results

are described in Sections 4 to 6.

Procedure localmin

real procedure localmin (&, b, cps, b, [, x);

value a, b, eps, t; real &, b, eps, t, x; real procedure f;

135



5.8
).8

begin comment:

: t: K i iterion;
If the function f is defined in the interval (a,b), then localmin comment: Check stopping eriterion;

. . if abs(x- >t2-0. h-
finds an approXimation x Lo the point at which f attains its minimum if ebs(x-m) 0-5x (b-a) then

' begi 1= 1= = 03
(or the appropriate limit point), and returns the value of f at x. 22gin P 4 ¥ 03

if ab > tol tt
t and eps define a tolerance tol = eps.|x\+t, and f is never evaluated if avs(e) zaen

begin comment: it parabola;
at two points closer together than tol. If f is S-unimodal (see Seglh comment: Fit parabols;

L}
I

Definition 3.3), for some d < tol, then x approximates the global el x (fe-tv); gz (x-v) x (fx-1w1) 5

= - ={ %= - = _ .
minimum of f with an error of less than 3.tol (see Section 4). If P (x-v) xq-(x-w) xv5 q X fa-r) s
f is not B-unimodal on (a,b), then x may epproximaste a locnl, but if q >0 then p := -p else q := -q;
non-global, minimum. eps should be no smaller than Z2.macheps, and ri=e; e:=d
end;

preferably not much less than sqrt(macheps), where macheps is the

relative machine precision (Section L.2). t should be positive. For if abs(p) < abs(0.5xaxT) AP >ax{ax) AP <ax(b-x) then

i . 1" ic i ion" .
further details, see Section 2. begin comment: A "parabolic interpolation” step;

The method used is a combination of golden section search and d:= p/q; u = xhds

. s . . comment: f must b 3
succession parabolic interpolatijon. Convergence is mever much slower comnent m not be evaluated teo clase to a or b;

than for a Fibonecei search (see Sections 5 and 6). If f has a continuous if u-a <2 v b-u < t2 then 4 := if x <m then tol else -tol

second derivative which is positivé at the minimum {not at a or b) then, end

ignoring rounding errors, convergence ls superlinear, and usually the else

order is at least 13247 ... begin comment: A "golden seclion” step;

real ¢, d, €, my P, g, r, Loly t2, u, v, w, fu, fv, Iw, fx; e = (if x <m then b else a)-x; & :=cxe
end;

"6 := 0.381966011250105151795413165634; comment: c = (3 -sqrt(s))/e;"'

camment: f must not be evaluated too clcse to x;
v i=w:=x:=a+cx(b-a); e :=0; —_— :

=Xt (3 i - H
fv = fw 1= fx iz £(x); u = x+ (if abs(d) > tol then d else if @ > O then tol else -tol);

; fu = fu);
comment : Main loop;

C t: d 1 ;
Toop: m :- 0.5x (atb); ommen Update a, b, v, w and x;

if fu < x then

tol := eps x abs(x)+t; t2 := 2 y tol;
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begin if u < x then b := x else a := x;

v i=wy v o= fwy woi=x; fwi=Tfx; x :=u; fx: fu

end
else Chapter 6.
begin if n < x then a :=u else b = u;

if fu < fw v w = » then :
s = v *ooamm Global Minimization Given an Upper Bound on ilhe

begin v :=w; fv := fw; w :=u; fw := fu end Second Derivabive

EEqufvvv:xvv:ww
begin v :=u; fv :=fu
gd
end;
g0 Lo loop
end;
localmin ;= fx

end localming
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1. Introduction
Minimization procedures like the one described in Chapler 5 can
only guarantee to find & local, not necessarily global, minimum of a
function feCla,b] . [f T happens to be unimodal then a local
minimam muet be the global minimum in {a&,b] , but in practical problems
it often happens that f 1s not unimodal, or that unimodality is difficult
to prove. In this chapter we investigate the problem of finding a good
approximation to the global minimum, given weakey conditions on f than
unimodality. As usual, we consider methods which depend on the sequential
evaluation of f at a Tinite number of points, and our aim i3 to reduce,
as far as possible, the number of function evaluations required to give
an answer which is guaranteed to be accurate to within some prescribed
tolcrance. V
In Secticns 2 to & we describe an efficieﬁt algorithm for
approximating the global minimum of a functiop of one variable, given an
upper bound on the second derivative. There arec many obvious applications
for this algorithm. ¥Yor example, when findiné a posteriori error bounds
- for the approximate solution of elliptié partial differential equations,
we may need to find the maximum of |£(x}| (Fox, Henriei aﬁd Moler  (1967)).
Tnstead of working with |£(x)| , which may have discontinuous derivatives,
it is probably betbter to use the relation 7
max |£(x)| = -min{min(£(x)), min(-f(x})) . (1.1)
x 4 x
In Sections 7 and 8 we show how to extend the method to functions of

several variables, and AIGOL 60 procedures are given in Section 10.
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Some fundamental limitations

If feCla,b] , let

¢y = inf {£(x) | xe[a,b]} {1.2)

and

ey = inf {xela,b] | £(x) = wf} . ' (1.3)

Tven if f satisfies very stringent smoothness conditions; the problem
of finding B is improperly posed, in the sense that He is not a
continuous function of £ (with the uniform topology on Cla,b] ).

For example, consider

T (%) = cos(mx) - 6x (1.4}

on [-2,2] . If & >0 then bp~1, but if 5 <O then p,~-1,
80 a very small change in § can causc a large change in He -
Instead of trying to approximete Re » We should seck to approximate

q)f = f(pi_) . Bince
los-2. | = li£-ell, (1.5)

for all f and g in Cfa,b], ®_. iz a continuous function on Cla,b] , so

i3
the problem of finding P is properly posed. However, given t >0,

it is still impossible to Tind ¢ such that

ooy <+ E (1.6)

with & finite number Nt of function evaluations, unless we have some

a priorl informetion sbout f .
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priori conditjons on f

If feCla,b] , the modulus of conbimuity -w(f;5) is defined (as

o Section 2.2) by

w(f;d) = su [ £(x) - £(y) | (1.7)
|x-v] <8

x‘JyE[a‘)b]

for 5 >0 . Suppose that a function W(B) is given such that

Lim w(e) =0 , (1.8)
D -0t

and
w(£55) < W(B) | (1.9)

for all & >0 . Given t >0, chogse & >0 such that
W(B) <% ‘ (1.10)

(always possible by (1.8)), and evaluvate f at points g eeesX  in

n
[a,b] such that

max min- |x-x,] < & . (1.11)
. - 1 -
xcla,b] O<i<n

(For example, we might choose Xy = ath %) = at’s , X, = B*58 , etc.)
1T
P min f(xi) s (1.12)
0<i<n - : .

then, Crom (1.7), (1.9), (1.10) and (1.11),

0LP-9, <t . (1.13)

6.1

Thus, a quite weak cendition on I , enabling us to approximate q>f
with a finite number of evaluations of £ , is that we have a bound
W(8) , satisfying (1.8}, on the modulus of coﬁtinuity w(f;d) of f .

For example, if frCl[a,b] and
fell, < M, (1.14)

then we can take

W(s) =Mz . (1.15)

Unfortunately, the procedure suggesied above will be very slow if
+t is small: in fact, about (b-a)M/(2t) function evaluations will be
required. [n the worst case, though, it is imPos.r,ible; to do much petter
than this without lnmowing more about f . To see this, consider

minimizing e function which is known to be in the class
[£,(x) = min (1.01%, Miz-c|) | cefa,bnl] . (1.16)
If

5 = 1.0t /M, (1.17)

and @ is computed Crom (1.12) for some set of poinbs X

there is a choive of cela,b] for which c‘fl fails to satisfy (1.13)

. .,an ; then

unless (1.11) holds, =o at least [ (b-2)M/(2.028) | function evaluations
are required- In some cases less function evaluations will be required:

for example, if
fx) =mx , o (1.18)

then it is enough to evaluate £ at a apd b . (See also Section 5.)__
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6.1
Tnstead of having an a priori bound on Hf'um , we could have a
bound

1 < m (1.19)

on Hf(r)H ; for some r >1 . We show below that, with such a bound,
the maximum number of function evaluations required to find @
. - : r
satisfying {1.13) is of order (M/t) .

The case T = 1 is discussed ubove, So suppose r > 2 , and let

=]
1]

1
_(v-a) )r . (1.20)

b cos(%%) rit

Define & = b-a » o8y = a+is for i = 0,...,0 (80 a, = b) , and

;1
a. = g. *+ % 1 - M (1_21)

cos(% n/T)

for i =0,...,n-1 and j =1,...,v (so 89 =85 s 8 o © ai+1)

Let ®. = IP(f;e.

RERRRTLN r) be Lhe polynomial of degree r-1 which
2 Ed

coincides with f at a, j,...,a, _ - Then, Lemma 2.4.1 and the bound
2 ]

(1.19) show that, for all xe[ai,ai+l] »

- = t - 22
[£{x) -I&(X)l < |(x ai’l)...(x ai,r)\ M/r {1.22)
3 Yooy
The right side of (1.22) is no greater than { — - -
2 cos(E;) rte

and, by (1.20) and the choice of & , this is no greater than t/2 . 'lhus,
we need only find the minimum of each polynomial Pi(x) in [ai’aifl]

4o within & tolerance +t/2 . This is easy if r = 2 , for then each

1k

6.2

polynomial Pi(x) is linear. If r > 2 +1lhen we can bound |P;(K)|
in [ai’&i+lj , and apply the procedure for r = 2 +to minimize Pi(x) .
(This idea for finding bounds on polynomials in an interval was suggested
by Rivlin (1970).) Because successive intervals [ai,ai+l] are adjacent,
the oumber ol function evaluations required to ind @ sabisfying (1.13)

does hot exceead
N = (r-1l)n+2 , (1.23)

where =n  is given by (1.20).

Since N 1is of order (M/t)l/r , the method described above is
not likely to be practical for small + wunless r >2 . On the other
hand, in practical problems it is usually difficult +to obtain good bounds
on the third or higher derlvatives of f (if they exist). Thus, in the
rest of this chapter we suppose that r = 2 . Tt turns out that a one-

sided‘bound
Mx) <M _ (1.74)

is suflicient, instead of the two-sided bound (1.19). If f£"(x) has a
physical interpretation (e.g., as an acceleration), then a bound of the

form (1.24) can sometimes be obtained fran physical considerations.

2. The hasgic theorems

The global minimivation algorithm which is described in the next
section depends on the simple Theorems 2.1, 2.2 and #.3. Theorem 2.1 is
related to the maximum principle for elliptic difference operators, and

also to some results in Davis (1965). We assume that bfeCl[a,b] , and
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fr(x} - 17{y) < Mx-y) (2.1)

for all x,y in- {a,b] with x >y . (Weaker conditions suffice:
[al
see Section 7.) If fc€%la,b] then the one-sided Lipschitz condition

{2.1) i& eguivalent %o
mix)y < M . (2.2)
for all xefa,b] .

Theorem 2.1

Suppose (2.1} holds. Then, for all xela,b],

p(x) > (o)t Lol () Lygayag (2.3)

Proof

Yhe proof is imanediate from Lemma 2.h.1.

Lemma 2.1

Suppose (2.1} holds and a <O <b . Then

£1{0) <. fm—é—;—ﬂﬂ-%r{a e (2.h)

Proof

Applying Lemma 2.3.1 Lo f{-x) , we have
1 2
fa) < f{0) + afr{0) + 5 Ma~ (2.5)

50 the result follows.
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Theorem 2.2
Suppose (2.1) holds, M >0, a<c<b, f(a) >f(c) , and

f1(c) =0 . Then

c-a » fHal-fe) (2.6)

Proof

Applying Lemma 2.1 with a suitable translation of the origin gives
0 - fi{e) < I(a) a———i:cf <) . % M{a-c) (2.7)

S0

)2

fa) - £(c) <z Me-a)° ' (2.8)

and the result follows.

Suppose (2.1) holds, M >0, and a <0 <b < -£'(0)/M . Then

£1(n) <0 .

Proof
By condition (2.1),

frb) < £ (0)+Mb , (2.9)

and, as
b < -fr(o)/M (2.10)

the result follows.
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Theorem 2 .3

Suppose (2.1) holds, M >0, a<c <b, and

. atc f(a)-I{c ,
¢ <x <min (b, - - iTlM e ). (2.11)

Then

fr(x) <0 . {£.12)

Proof
There is no loss of generality in assuming that ¢ =0 and b =x .

By condition (2.11},

b=x< a_iﬁ);f.@l _1 HEZ;E@.)_ —lMa , (2.1%)
> .M a o)

el

Ma

so, by Lemma 2.1, we have

b < -£r(0)/M . (2.14)

Now the resull follows from T.emma 2.2.

Remarks’

Theorems 2.1, 2.2 and 2.3 are sharp, as can easily be seen by
taking f(x) es & suitable parabola with leading term % Mx~ . The
theorems are generalized in Sectien 7, and the proofs given there show
that everything needed to justify our minimization algorithm follows
from the fundamental ineguality (2.3). The proofs given in this section

are, however, simpler and more inmtuitive than those in Section T.

148

" We want to find pela,b] and @ = f{p) satisfying

6.3

3. An dlgorithm for global minimization

Suppose that che[a,b] and, for all xe[a,b] ,
) <m (3.1)

lp-o <t S (5e2)
where + 1is a given positive tolerance, and

P, = min f(x) . (3.3)

xela,b]

Tf M < 0 the problem is quite trivial, for Theorem 2.1 says that f(x)

can not lie brlow the straight line interpolating f at a and b, so

v

9. = min (f(a),f(d)) - (3.4)

If M >0 the problem is not trivial, although we saw in Section 1 that

there does exist an algorithm to solve it-

The basic algorithm

The elgorithm described in this section is an elaboration and
refinement of the following bhasic algorithm. (Thé nétation is consistent
with that of the ALGOL procedure glomin (Section 10), except that we
write M for m, I:I. for x, (B for vy (= glemin), and & for

macheps. )

-

1. Set ® ~min (f(a),f(b}) ,
L~ if @ = f{e) then a else b,

and aet—a.
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2. If M <Q or a

< o 2 b then halt. Otherwise set a_, « some point

>
in (ae,b] (e.g., b: see below for a better choice).

2. If f(a5)<f@ then set |1 - a.3 and @ - f(ai) .

Y. If the parabola y = P(x) , with P"{x) =M, P(ag) E f(aE) ,
and P(éi) = f(ai) , satisfies P(x) > @-t for all x in [32,35] R

then go on to 5 . Otherwise set By ﬁ'% (a24-a5) and go back to 3

5. Set a, e and go back to 2

We shall see shortly that (wilh a sensible choice of a, at,

3
step 2) the basic algorithm must terminate in a finite number of steps.
In view of Theorem 2.1 and step L, it is clear that, when the algorithm

terminates, it does so with ¢ satisfying (3.2).

Refinements of the basic algorithm

The crux of the problem is how to make a good choice of 8z at
step 2 of the basic algorithm. We want to choose aj as large as
possible, but not so large that it has to be reduced at step b.
Theorems 2.2 and 2.3 provide useful Taower bounds. If the global minimum
Ko lies outside (ag,b) , or if % > P -tv, then the algorithm may
halt, for> ¢ already satisfies (3.2). Otherwise

r{ug) -0 (3.9)

and

flug) <-t (3.6)

b

go, from Theorem 2.2 with a replaced by a, and c by Fp oo

6.3

£(a,) -+t

Re-ay > (3.7)

o

M

Thus, at step 2 it is

and with this choice there is no risk that a3 will have to be reduced

1/2
3

at step 4. Since the right side of (3.7) is at least (2t/M) the

basic algorithm must converge in a finite number ol steps if, in step 2,
we choose any a3 in the range [aé,b]
If f is decreasing rapidly at a, , then lheorem 2.2 may give a
2

better bound than (3.7). . Apply Theorem 2.3 with ¢ replaced by 2,

and a replaced by a point B, —dO (with dU > 0) where f has

already been evaluated. (This is not possible if a, = a .} Combining

2
the result with (3.8), we see that it is safe to choose 2, = ag at
step 2, where

Here e 1is a positive tolerance, and the term 2.0le is introduced
to combat the effect of rounding errors (see equations (3.41) and {3.52}).
The choice By = a% is safc, but it is possible Lo speed up the

algorithm by sometimes choosing s > al! Because we want to avoid

5 -
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having to decrease a; at step 4, the best choice would be to take

3
8y = min (b,a%) y where ag is the abscissa of the point to the right
of a, where the curve y = f(x) ‘intersects the parabola P , with

second derivative. M , vhich passes through (a,,f{a,)} and ettains
[=4 [=

ils minimumn value 9f -t to the right of &, - Here
@' = min (&a,f(a3)) (3.10)
is the value of @ after step 3 has been executed, and we can extend

‘“the domain of f by defining Ff(x) = f(b) for x >b if Lhis is

necessary. A typical situation is illustrated in Diagram 3.1.

Diagram 3.1: The points a, and a%

Tt is not practical to choose aB = ag , for, although a% exists,
several function evalumtions are needed Lo opproximate il accurately.
Procedure glomin (Section 10) finds a rough approximation ag* to a% R
without any extra function evaluations, by assuming that f can be

approximated suffiéiently well by the parabola which interpolates f at
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the last three points at which f has been evaluated. To aveid
overstepping a? too often, because of the inadequacy cf the parabolic

approximation to [ , the procedure uses a heuristic “safety factor”

he{0,1) . If

a, =min (b, 324-h(a§* - ae)) ’ (3.11}
then at step 2 we choose

a, = max (ag,aa) , . (3.12)

and if it necessary to reduce a3 at step 4 then we set
ay — max (a%, % (agd-ai)) . Procedure glomin also makes a rather
primitive attempt to adjust h , the adjustment depending on the outcome

of step k.

Some details of procedure glcmin

The ALGCL 60 procedure glomin given in Section 10 uses the basic
algorithm with the refinements suggested above. From equation (3.8)
and the criterion in step 4 of the basic algorithm, it is clear that,
to speed up convergence, we Want te find & rough approximation to the
global minimuw as soon as possible. In other words, @ should be
nearly at its final value as soon as possible. For this reason, procedure
glomin incorporates several strategies which are designed to reduce é
quickly. We emphasize that the global minimum would be found without
using these sirategies: the strategies merely reduce the number of
function evaluations required (see Sections 5 and 6).

The first strategy for reducing P quickly is a pseudo-random
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search. About 10 percent of the function evaluations are used to

evaluate £ et "random" polnts uniformly distributed in (a,,b) .

2"
f is not evaluated at the random point a if Theorem 2.1, with a
4 D 5 3

replaced by a, and x by =&

- 5 » indicates that fmﬁ >¢-t, for

such an evaluation would be a waste of time.) At worst, this strabepy
wastes 10 percent of the function evaluations, but in practice the
saving in funciion evaluabtions caused hy quickly finding a zood value
of @ is often much more than 10 percent. (The choice of 10 percent
is, of course, rather arbitrary.)

By comparison with the random search strategy, the second strategy
is & highl& "non-random” search. f 1is evaluated gt the minimum a5
of the parabola which interpolates f at the last three points at which
T has‘bccp evaluated, provided that this point a3 lies in (ag,b)
and Theorem 2.1 does not show that the evaluation is futile for the purpose
of reducing ¢ . The details are similar to those of procedure localmin
(see Chapter 5). Thiz strategy helps to locale the local minima of
which are in the interior of [a,b], and, unless the global minimum is
al & or b, one of these local minima is Lhe global minimum. A bonus
ig that, if £ is sufficiently well-behaved near the global minimum
(see Chapter 5 for more precise eonditions), then the minimum will be
found more accurately than would be expected with the basic algorithm.
The numerical examples given in Sections 6 and 8 illustrate this. To
avoid wasting function cvaluabtlons by repeatedly finding the same local
minimum, this strategy is only used about onece in every tenth cycle,

although 1t is always used if @ = f(ag) , for then there is a good

chance that f(aa) <P .
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Finally, the user may be able to make a good guess at the global
minimum. For example, he may know a local minimum which is likely
to pe the global minimum, or be may know the global minimum of a
slightly different function {see the application discussed in Section 8).
Thus, procedure glomin has an inpul parameter c¢ which may be scl by
the user at the suspected position of the global minimum, and on entry
the procedure evaluates f at ¢ in an attempt to reduce & . 1If the
user kmows nothing about the likely position of the glebal minimum, he
can set ¢ =a or b .

We can now summari;e procedure glomin {for points of detail, see
Section 10). Step 1 ol Lhe basic algorillm is performed, and the
algorithm terminates immediately unless M >0 and a <b Before
choosing aBECaE’b] at step 2, the st%atcgies described above are used

to try to reduce 9 . Then a3 is chosen, and perhaps reduced at
step 4, as described above. ‘

The reader who iz not very interested in the murky details of‘
procedure glomin, or in the effect of rounding errors, would be well
advised to skip the rest of this section.

Some of the formulas used by procedure glomin need an explanation.

When either the randem or non-random search strategy is performed, wo

have numbers g9 end r , and wish to determine if the relation

aF0A (o, <a,+r/qg <b) A

(o-(ay+ v/a))2(ay) + (r/a) () | A
s, - 5 M{x/q) (b-(ay +x/q)) <@ -t
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. 1
is true. If m, =3 M >0, %, =b-a, >0, y =fb), and where
YV, = f(ae) , then (3.13) is equivalent to P' =prers , (5.19)
. ] q' = r+% qs y (3.20)
alr(y, - ¥,) + 2,a(y, -3+ )] < zaur(zpa-1) (5.1)
ro=djddm, (3.21)
which is Lhe condition tested after label "retry” of procedure glomin.
) and
{(If q =0 then (3.14) is false, and it is also false if a,+ r/q )
lies oulside (ag,b) , since m, >0 and P-t <min (yg,yb) ) § = . (3.22)
To approximate ag , we need the point ag* where the parabola
y = B(x) , passing through (aini) lor i =0,1,2 , intersects Lhe Finally, there is the inspection of the lower bound on f in
parabola (&2, 3'5) given by the parabola
(a--X)y, + (x-8,)y
. 3 2 273
. v = -m_(x-a_)(a, -x) (3.23)
y=m, [ x-a,- tp-t . (3.15) 4y ? 23 ’
where m, %M >0 eand
{In procedure glomin we use c in place of al to save a storage -
. ] ) dy = 85 -8, >0 . (3.2W)
location.) Let By = Yo=Yy s By " Yp=Vo s Gy = ag-ag » A = ay-ay : :
and d, = 8y - ao . In the non-random scarch we have already compuled I
numbers p and g (r and q above) with ’ Yo = ¥ o '
s p=2=2, (3.25)
o o - s mady
P = dlzo -'d.OZl (5-1 ) 7 )
then the parabola (5.25) is monotonic increasing or decreasing in
and
(a_,a,) provided
q, - 2(d,2, ~4,2.) _ (3.17) 2o
I} >4, - , (3.26)
in order to find the turning peoint a2+p/qs of P(x) . By forming
the quadratic equation for. a%* , and dividing ocut the unwanted root ay Otherwise, ihe parabola (3.23) attains its minimum in (321‘15) » and
s . 1 1 2 2y 1
we find thet the minimum value is 3 (y2+y5) -5 me(do +p°) et x = 5 (a2+ a,3+p) .
Thus, at step 4 of the basic algorittm, a, must be reduced if
agr = ay+pi/al (3-18) ’
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1 12 a0 -
Ipl <ay A5 (rp+yy) -pmylaprpe) <o -t (3.27)
e, if

jpl <dg A % N_l(dg %) > (yp - @)+ (Y:,)*C"P) 2t . (5.28)

The effect of rounding errors

So far we have ignored the effect of rounding errors, which
actually occur both in the computation of £(x) and in the internal
computations of procedurc glomin. Now w; show how thege roundiﬁg Errors
can be accounted for.

Let € be the relubive machine precision (paramelcr macheps of

procedure zlomin), i.e.,

(truncated arithmetic),

B (rounded arithmctic),
for 1-digit floating-point arithmetic to base B . We suppose,
following Wilkinson {19%3), that

f(x4y) = (xFy)(148) (5.29)

where 4 stands for any of the arithmetic operations + , -7, x, / ,

and

15l <e . ' (3.70)

On machines withoub guard digits, the relations (3.29) and (3.30) may
fail to hold for addition and subtraction: we may only have the weaker

relation

158

6.3
Ll{x+y) = x(1+ 61) + y(1+&2) ,
where (3.31)

]6i\ <€ for 1= 1,2

With these machines it seems difficult fio be sure thét rounding errors
committed inside procedure glomin are harmless. At any rate, our
analysic depends heavily on relation (5.29). (See equation (3.52) and
the following analysis.)

We also suppose that square roots are computed with a small relative

s

error, say

f1(sqrt(x)) = /=(1+38) ,
where (5.32)

18} <«

(Any pood square root routine should satisfy (3.32) very easily. The
library roulines for Lhe IBM 760 certainly do: see Clark, Cody, Hillslrom
and Thieleker (1967).)

Let us first consider the effect of rounding errors in the compubation
of f , supposing for the moment that the internal computations of
procedure glomin are done exactly. The user has to pfovide procedure
glomin with a positive tolerance e which gives a hound on the absolute
error in computing f . More precisely, we assume that, for all © énd

-~

x with |p] <e and x, x(1+8) in [a,b] , we have
L+ B)) <20 ] <o o : (3.3%)

where f(x) is the exact mathematical function (satisfying condition

(P.1)), and TFL(£{x)) is its compubed Tloating-point approximation. ‘I'he
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reason for conditien (3.33) will be apparent later: at present we only

need the special case with 5 = 0 , i.e.,
[f1(£(x)) - £x) | < e (3.34)

for all xela,b] .
We have seen that, without rounding errors, procedurc glomin would

return § (or y = glomin) end fx {or - x} satisfying
Pp<® = () SO.HE . (3.35)
With rounding errors, (3.55) no longer holds, bul we shall show that

e < £(1) <P+t 2e (3.36)

Pp- e <P - 11(E(R) SO+t re . (3.57)

Tf the error e in compubting f is much less thgn the toleranée %,
then (3.36) and (3.37) are much the same as (3.35), so rounding errors
have little effect on the accuracy of F:fl .

The left hand inequality in (3.36) is obvious from the definition
of %y - To prove the right hand inequality, we must léok closely gt
the "eritical" sections of procedure glomin, i.e., the sections where
rounding errors could make an essential difference. (Examples of non-
critical sections afe the random and non-random searches.)

In computing the safe choice a; for a, according to equation

3
(3.9), we compute

(3.38)
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and
{z. + 2.0le)
1 0
r=-5|d, +——— ; (3.39)
- 210 dgm_

where d_:):e.g-al, Zy T Vo =¥y s Ty =

and y; = fl(f(ai)) for i =1,2 . Thus

) - £k t +0e
‘< £ 2) flu) + {t+2e) , N (3.40)

- m,

2

s0, as far as the computation of & is concerned, everything said
above holds if + is replaced by t+2e . (Remember that we are
regarding all computations inside the procedurc as exact.) We are only

interested in r when do >0 and m, >0 , and as

7z, + 2.0le >z, + 2e > f(ag) -f(al) s

we have

f - f
I.S_—d.pu . '(5_)41)

O t'lom2

helhe

(The reason for the extra 0.0le will be apparent later.) Thus, the
computed a.g will not exceed the correct valuc given by (3.9), if +t
is replaced by t +2e . v

The other point where rounding errors in the computation
of f are critical is when we determine whether the parabola y = P{x) ,
with p'(x) =M, P(B'E) =¥, and P(a5) = Vs lies sbove the line
¥y =p-t in the interval (8.2,8.5) . Let y = Q(x) be the parabola

with Q"(x) = M, Q(aE) = f(aa) , and Q(aB) = f(a5) . Since
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v; = fl(f(ai)) < f(a,i) +e for i-=2,3,

it is clear that

Plx) <q{x)+e {5.42)
in (ag,aa) . Thus, if
P(x) >0 -t (5.43)

in (ae,ai) , then

x) > -t -e > £(R) -t - 2e (5.04)

in (aQ’EB) , So again everything is accounted fo; by changing t to
t+2e . This completes the proof of (3.36). Theileft inequality in
(3.37) is obvious, and the right inequality follows from the above
argument if we note that it is sufficient o replace t by tier(£{n) -¢)

Now, let us consider the effect of rounding errors committed inside
procedurc glomin. We shall show that (3.36) and (3.37) still hold,
provided some minor modifications are made in the algorithm. These
modificalions are included in procedure glomin, bubt, to avoid confusion,
they were not mentioned in the description above. The most important

. } - . 1 .
modification is thal, instead of having m, = 5 M , procedure glomin has
= [~

m,, = fl(%(1+ 16e)M) (3.h45)

where the factor 1+ 16e is introduced purely to nmullify the effect
of rounding errors.
2
Tor the sake of simplicity, tevms of order ¢ are ignored in the

rest of this section. Because of iLhe slack in some of our ineguglities,
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1
these terms may be accounted Tor if & <yzz . TFrom (3.45) and the

assumption (%.29), we certainly have

(1+13e)M . (3.46)

N

m2 >

In the computation of ag sccording to (3.9}, procedure plomin

actually computes
. 1
(yy-@)+t ) 2

s

s = fl , (5.47)
and ns errors in the computation of f have already been accounted for,
we can assumé that Yo and % are exact floating-point numbers. Fram

(3.k6) and the assumptions (5.29) and {%.%52),

1
R 2
((y,-0)(2+5) + ) (1+8,)(1+8,)
3 o< (13| ——F T2 2 , (5.48)
N ;M(l+l§€)
where [&i‘ <e for i=1,...,4b . 8ince y, -9 and t are both
nonnegative,
(v =PI (Lre) 4t < (y,-9+t)(1+e) (5.49)
80 :L
- yg—EP*t ¢
s<s=|—F—" . . (3.50)
2

Thus, the slight modification ol' m, has ensured that the computed s
is no greater than the exact s . Note that, in the derivation of

(3.50), it was essential that ¥y —@ was compul.ed with a small relative

error, 50 the assumption (3.29) was necessary: (3.31) would not be encupgh.
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Similarly, to find aZ , we actually compute
(y, -y,) +2.0%e
- 1 2 Y1 .
r=fl]|-=z1(a,~a) + s (3.51)
2 2 1 a.2 - a.lim2
where ¢ >0, m, >0, and a, > ay - We are only interested in P

if >0, s0

o > fl( (y2 - yl) +2.01e)

Ay

((y, ~y))(1+€) +2.01e{l-¢€)){1+¢)

(vp-vyt2e)(1+8) (5.52)

v

assuming that € < Eg);b' . {The reason for the extra 0.0le in (3.39) 1s
now clear.) Thus

T oo fU- % (ry+ 7)) (3.53)

where

o
N

g (ag—ﬁ.l){l—e) <y < (ag—al)(].-i-g) (3.54)
and

(¥,-y,+2e}(1-9¢)
SRR . (3.55)

0 >r T
7 Mlay -2,)

=l

\Ys

Since T >0, (3.53) shows that lrl‘ < |1"2‘ , 50, from (3.54) to

(3.5%),

. ¥, -y, t 20
rsrs-% (5.2—&1) + c L {3.56)

1
3M (e, -8y

16k
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As before, Lhe computed T is no greater than the correct r . The

same is not true for a” , the computed vahie of a” , but at is

3 43
cither b, I'l(a.2+_r) s or i‘l(a2+ 's) . Suppose, for example, thal
Eg - (s ts) . : (3.57)
Then
F1(£(85)) = £1{£{(a, + ) (1+5))) (3.58)
where |b| < e, so, from (3.33),
[£1(£(8) - flay+3) ] < & . | (3.59)

(This is why we reguired (5.33) instead of the wcaker (3.%4).) Thus,

the error in compubing a2+§ or a, +7T cen be ignored, for it has
been absorbed into the assumption (3.33) on e .
Finally, we have to consider the effeci; of rounding errors when

testing Lhe condition (3.28). First

Yo = ¥
~ 2
- ff o2 (3.60)
M (a.5 - a,a)
is computed. It is important to note that we use %M » not the
slightly different m, (given by (3.45)) here. Thus
VYo - V¥
- P
B gD (14 (3.62)
5M (a5 - 5.2) :
and
dO = fl(aa5 'EE) = (35 -ag)(l+ 52) ) (3.62)
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where l5i1 <& for i =1,2 .

The test actually made by procedure glomin is whether

o] < r1((3+98)d,) A fl(%me('dg FB9)) > fl[(yg—&))+(y3\$)+25] ,  (3.63

and we shall show that (3.63) is true whenever the condition {3.28) is

true. Tirst, |p|<d, inplies that [p| < d,(1+5¢) , and thus
Bl < £1((1+9e)d) . (3.64)

Similarly, if |p| < d, and

FH(EG+D) > (7, -8) + (7 -B) 2t (5.65)
then

dy+ 3 2 (4 + D - ) (5.66)
SOV

£1(5 1y (35 + 3%)) > Ml + P (1 + ke)
>l - P+ (w5 - §) + 26)(1 + 3e)

2y, - @) F(y5 - )+ 26) o (3.67)

-

(Note the importance of grouping the terms: since Vo~ @ s Vs —i) and
2t are all nonnegative, their sum can be computed with a small rélative
error.)

From (3.04) and (5.67), the inexact test (3.63) reéults in a5 being
reduced whenever the exact test (3.28) says that it must be. a5 may
occasionally be reduced unnecessarily because of rounding errors, but

this does not invalidate the bounds (3.36) and (3.37), it merely causes

some unnecessary function evaluabions.
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We should mention a remofe possibility that rounding errors can

prevent convergence. This 1s only possible if fl(aQAFE) = a, and,

2 H
- Nrn 1/2 . . . R
as 5 > {1-1he)(2t/M) , there is no chance of it happening provided

b > Me” max(a’,57) (3-68)

Thus, convergence can only be prevented by rounding errors if t 18
unreasonably small.

In conclusion, procedure glomin is guaranteed to return @ and ﬁ
satisfying the bounds (3.36) and (3.37), provided the input parameters

macheps, %t and e are set correctly.

4. Ihe rate of convergence in same gpecial cases

It is diflicult to say much in general about the number of function
evaluations requiréd by the algorithm described in Section 3. 1In the
next section we compare the algorithm with ﬁhé best possible one for
given M and %t . In this seclion, we try %o pgain some insight into the
dependence of the number of function evaluetions on the bound M and

the tolerance 1t , by looking at some simple special cases.

The worst case
As pointed out above (eguation (3.%)), two funclion evaluations
are enough to determine ﬂ and i if M <0 , so suppose that M >0 ,

and let

8=\ - (k.1)
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We showed above that, if the last function evaluation was at e,,)c[a.,b) 3

we could safely choose
8y = min(b,a2+6) (h.2)

for the next eveluation (step 2 of the basic algorithm). With this
simple choice of &z » about’ (b-a)/§ function evaluations would be
required. Procedure glomin tries to do better than'this, and is nearly
elways successful (see Section &), but the worst that can happen is

that a5 will be chosen to be b , and then «El5 will be reduced several
‘times at step 4 of the.ba.sic algorithm. As 83-a, Vis halved at each

- such reduction of a,j » there can be at most

b-a
- b-a =
o J-
log,, 5 < 1002 5 7 (h g)

consecutive reductions of a.:,) at step 4. Thus, at worst, about

. i ,
Ga log, bsa (+.4)

function evaluetions will be required. We have ignored the random and
mnonrandom searches, but these can oniy add about E(b—g—a') extra function

evaluaticns.

b-a
B

If & is given by (4.1), the term logg( ) . in {4.4) varies

only slowly with M and t , so the upper bound is roughly proportional
to (b-a) (M/t)l/g . In particular, the upper bound is roughly proportionel
to /M , and it seems to be & good general rule that the number of function

evaluations is roughly proportional to »/1\'4 s even when the upper bound

(4.4) is not attained (see below and Section 6).
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A straight line
If the global minimum of f occurs at an endpoint 4 a or b,
and T7(n) ;4 0 , we can gain an insight inte the behaviour of the
alporithm near p by considering the linear approximation Flp) + (x-p) £ (n)

to f(x) . Suppose, for example, that
f(x) = k(x-a)+t ’ (4.5)

for some k >0 , so p = a . Ignoring the random searches, the
algorithm will evaluate I at the points & , b, ¢, and then at
points X < %, <:~c5 < e <xN-l say, where Xy = a <xl s Xy >b,
and the points (xn, l'(xn)) and (xml, f(xnﬂ_)) lie aon the parabola
¥y = Pn(x) which touches the line y = O and hes P:](X) =M .. (See

Diagram %.1.) 1IT Pn(x) touches y = 0 at x = , then

P (x) = 2M(x-a)® ‘ (1-6)
% =" +\l b:jl (k(xn-&) tt) = TS j'% (k(xn+l_a') ) - (e

If

n
2 = |xn—a+t/k ) (k.8)

then (4.7) gives

Z1'1+:I_ = Zn * ‘l % ’ (’4—.9)

+ n -2—k « (ll.lO)

B0

a1
=l
=

Thus
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8t 2 2k
x = a.*n,l{ir+ n -(EI) B (%.11)

and as N is the least pesitive n  such that x >b , this gives

1
N = Jé_M (\l k(b-a) +t - \IT ) . (k.12)

|

(%.12) shows that N is essentially proporlional to /M .

" o . | r"[

Diagram 4.1: A straight line; f{x) = k(x-a)+t (for N = &)

Two limiting cases of (4.12) are interesting. If + is omall and

k 7ot too small, sc that k(b -a) >>» 1t , then

M{b-a .
N |MEoel (¥.13)

which is independent of ¢ (In this section we arc neglecting the

\
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effect of rounding errore, but these should not be important if ¢
satisfies the weak condition (35.68).)

If k is very small, so that k(b—ﬁ) <<t , then (4.12) gives
1
Wk (vl (e

and the algorithm proceeds in steps of size about 25 , where & is

given by (4.1).

A parabola

I the global minjmum of  ocecurs at an interior point p , then
f'{p) =0, so if f"(u) £ 0 we may analyse the behaviour of the
algorithm near {4 by considering the parabolic approximation

£( +-; ) {(x-p 2 to f(x) . Thus, suppose that'
w5 !

M>m>0 (k.15)
and
1 2 ' /
£f{x) = ) m{x-p)“+t (h,16)
where pe(a,b) . The nonrandom search will quickly locate p , so we

may suppose thah o= u , and, without loss of generality, p =0 . The
algorithm will call for the evaluation of T al polints to the left, and
then to the right, of @ . As these two cases are similar, let us
define Hy =M= 0 , and study the pglnts Xl,xg,... defined above,
except that now f is given by (h.16) instead of by (L.5). 1In place

of (h.7), we find that

;) L)
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It does not seem toc be possible to give a simple cxpression like

(k.11) for x 5 defined by the recurrence relation (L.17), but we may

solve l'or xn+l in terms of Xn , obtaining
Mrm 2M m o, 2 j2ar]
a1 " (ﬂ) ot (m) ¥t (4-18)
If
/2
o - (wmY? (4.19)

this may be written as

_ [ e, 2o 2,2 _
1 T (p-l I I N B x . (.20)
< ’ .

Suppose that p 1is eclose to 1, i.e., M 1is not much larger

than m = f"(p) . Then

x, = [ 2B et . ‘ (4.21)

For n >1, the first term in (4.20) dominates the second, and
e 2 . L
or1 = (p-l)xn(:“o((p D7) as p-1 (L.22)

Thus, if p 1s close to 1 , then

n
o[ etL 2t 4.0
Xn—(p-l m ‘ (1.23)
for n>1, and, as the factor E;%‘ is large, only a few function ~
evaluetions will be required.
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5. A lower bound on the rumber of function evaluations required

Suppose that & positive tolerance t and bound M are given,

that [ abtains its global minimum Py in fla,b] at e o and that
'(x) <M ' (5.1)
for all xefa,b] . (Similar results to those below hold if equality is

allowed, but the definitions and proofs have to be modified slightly.)

TFirst, we need a lemma.

Lemma 5.1
Tf x'¢[a,b) , then there is at most one point x"c(x',b] , such that
the parabola y = P(x) , with P"(x) =M, P(x') = f(x') , and touching

the line y =¢.-t , satisfies P(x") = £(x™)

Proof
Suppose, by way of contradiction, that two such distinct points x"

and x""' exist. Then

M= 2rlxr,x"x" ] = £(&) - (5.2)

for some éc[x',b] (see Chapter 2), contradicting

o)) <M . (5-3)

Definition 5.1

For xtc[a,b) , define

x"  if the point x" of Lemma 5.1 exists,

b otherwise.

173



6.5 6.5

Lemma 5.2 ) Lemwna 5.2 shows that N is finite, in fact
If )_ct[a,b) and s(x) A b, then - N<l+ [ (b-a) (M/(gt))l/d" i (5.5)
8t : X - _
a(x) -x > {3 . (5.1 The following lemma shows that, in order to prove that f(x) > Pp-t

for all xcla,b) , given only condition (5.1), it is sufficient to

Proof evaluate I at Xpp¥ps oo oa¥y -

This follows by considering the parabola, with second derivative M , Lemma 5.3

which passes through (x,f{x)} and (s{x),£(s{x))) , and touches the

If geCE[a,b] , g"(x) <M [lor all xea,b , and
line y:cpf-t , since f(x)} Z%; and  r{s(x)) =95 -

g(x) = f(x) (5-6)

Definition 5.2
for n=1,7...,8 and the points * defined above, then

An inleger N and points a =% <X, < x3 < e < Ky = b are
defined thus: ' - . .
ine Py 2t (5-1)
) % 0= a ;
and, for n >2 and x 1 <b, Prool
x = ‘S(xn-l) (See Diagram 5.1.) The lemma follows immediately [rom the definitions and Theorem 2.1.

(Cleariy, weaker conditions on g , e.g. condition (2.1), are sullicient.)
Qur interest in the points X SERTR stems from bhe following

theorem, which complemenls Lcmma 5.3,

by JTheorem 5.1
Let xi <xh <. < x) beany Vv points in [a,b) , with v <¥ .

Then there is a function g rCm[a,b] , satisfying

& (x) <M . - (5.8)

4 .
1 o 3 Xh x5 x6 x,T XS }c9 b =

10 for ell xefla,b] , and

Diagram >.1: The points x,, e Xy (for W = 10)
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1 — . ’
g(xn) = i(xﬁ) (5-9)
for n=1,2,...,V , such that

g < wf,-t . (5.10)

Proof

. Bupposc, by'way of contradiction, that

- [

CPB 2 q):[' t (J ll)
for all such g . Then x] = a , for ctherwise -gla) can be
arbitrarily large, snd, similarly, xb - b . Since vV <N, there is
an n, 1<n <V, such that x;l < i and K;1+1 > X1t Thus,

the parabola y = P{x) , with PUx) M, P(xﬁ) = f(xﬁ) , and

B(xt, ) = K(xt, ), is such that

min P(x) < cpf_t . : (5.12)
xe[xﬁ,x' 1

nt+l

Since there is a funeétion g as gbove which is arbitrarily close to

P(x) 1in ‘[xﬁ,xﬁ+l] » this contradicts (5.11), so the theorem holds.

Cohsequences of the theorem

Theorem 5.1 says that, if all that is known a priori about f 1is
that feCE[a,b] and satisfies condition (5.1), then any slgorithm,
which is guarantced to find p so that F() < 0p*t , mugt require

at least N evaluations of f . This is so because, if an algorithm

required only V < N evaluations at points xi < xé < ...'<’xL y 58Y;
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then it would be sure to fail for either f or for g, for f and g
are indistinguishable on the basis of the v function evaluations,

yet ¢g1't < @f . Of course, we¢ are only considering algorithms which
sequentially evaluate f at a finite number of points.

Conversely, Lemma 5.3 implics that N+1 function evaluatioms are
sufficient (just evaluate f at Be and xl,...,xN) , and possibly N
are suffiCient‘ (See Diagram 5.1.) Unfortunately, Lemma 5.3 does not
give us an effective algorithm for approximating wf » for we do not
know N or the points RN ] in advance, and a large number of

function evaluaticons is usually needed to approximate them.

Efficiency
Suppose that an algorithm requires N' function evaluations to
find § = £{5)  such that ¢ <9.tt is guaranteed. We eould define

the efficienéy E of the algorithm by
E = N/N' . ' (5.13)

(Note that E depends on f , M, t , & and b, as well as on the

algorithm.} - We have shown that

E<l ' - (5.11)

for any correct (i.e., guaranteed) algorithm, so, if an algorithm has
an efficiency close to 1 , then we are justified in saying that the
algorithm is nearly optimal (for that f , M, t etc.). In the next
section we give numericel results which show thﬁt, for practicel examples,

the algorithm deseribed in Section 3 is offten nearly optimal.
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6. Practical teéﬁg
The AIGOL procedure glomin given in Section 10 was tested using
AIGCL W (Wirth and Hoare (1966), Bauer, Becker and Graham (1958)) on an
IBM 350/91 computer with machkine precision 16 | some representative
nunerical results are summarized in Table 6.1. For all of these
-1h -13
results the paramcters e and mocheps were set ab 10 and 16

respectively.

The table gives the upper bound M (parameter m of glomin) on £

and the total number of function evgluations required by procedure glomin:

-12

N" with tolerance t = 10_8 , and W' with tolerance t = 10 The

- ~12
lower bound N defined in Section 5 is also given for + = 10 e .
(Recall that no algorithm which is guarantecd to succeed can take less
than N function evaluations.) N and the points L ERRRRE {see

Section 5) were computed in the obvious way from Definition 5.2, using

procedure zero of Chapler b to solve the nonlincar eguabion
P(x) = £(x) , (6.1)

where P(x) 1is the parabola of lemma 5.1. inally, the efficiency
E = N/N' (equation (5.13)) is given.

For some more numerical results, see Section B.
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Table 6.1: Numerical results for procedurc glomin
f M n" W N E=N/N'
0 2 2 o 1.00
£ 100 195 15 11 0.73
10000 106 106 | 101 0.95
2 b b 2 0.50
2.1 8 11 8 0.73
2.2 9 13 0.69
fz 8 25 3l pels) 0.85
7o 43 £8 0 0.88
128 g5 141} 12¢ 0.85
1h 38 51 {37 0.73
f2 o8 L8 65 54 0.79
56 &7 98 76 0.78
f, T2 222 2h6 | 126 0.51
f5_ 72 456 she | WaT 0.81
The symbols are explained above. The fUnctioqﬁ are:
fl(x) =2 -x on {7,9] {(inallcases 01 =9, ¢ =7 ),
fp(x) =x" on [-1,2] (in all cases p = P = o) ,

) 1 - i} « B}
UIEVEE S x on [- % » 2] {ror t = 1072, |pf < 3.10 10 o} < 6.10 0y,
£,(x) = (x+sin(x))exp(-x") on [-10,10] (1 = -0.6795786599525 ,

P = -0.821239398476077) , and -
fa(x) = (x - sin(x))exp(—xg) on [-10,10]

(n

-1.195136641665 , ¢ =
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Comments on Table 6.1

The results Tor the simple functiocns fl(x) =2-x and fe(x) - x°

verify the predictions made in Section 4. For example, the values N = 11
and N = 101 for fl arev exactly eas predicted: one more than the

right side of equation {(L4.12). N , N' and N" are roughly proportional
te /M if M >> £'(u) (see also the results for f5) , but this rule
breaks down if M ~ f"(u) , as expected from equation (4.23). (See the

" results for f, wifh M =2, 2.1, 2.2.)

-It appears that the number of function evaluations does not depend'
strongly on t : comparing W* with N' , we see 'l';he.t the average
number of function eveluations requifed. iz only about 20 percent more -
for t = 15-12 than for t = 10-8 -

Finally, the efficlency E of the algorithm is feirly high, even
for the difficult functions fh and f’5 . This means Jtfhat no correc;t
algorithm based entirely on function evaluations could do very much better

than ours, at least on these examples. This is not too surprising, in

view of the results of Section 5.

7. Some extensions and generalizations

S0 far we have assumed that feCE[a.,b] and

m(x) <M : (7.2)
for all xe[a,b] , or at least that feCl[a,b] and

£r(x) - £'(y) < Mlx-y) (7-2)
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for a<y<x<b . Condition (7.2) was necessary to prove the basic
Theorem 2.1. For the application discussed in Section 8 (global
minimization of a function of several variables), we need to find the
global minimum of a function which is continucus, but not necessarily
differentiable. We can Justify using procedure glomin, even though f
may not be differentiable, because of the following Theorems 7.1 to 7.3,
which generalize Theorems 2.1 to 2.3. (If the reader is prepared to
accept the fact that Theorems 2.1 to 2.3 can be generalized in the

appropriate way, he may skip this section.)

Theorem 7.1 /
_ Let feCla,b] , and suppose that there is a constant M such

that, for all sufficiently small h >0,

f(uth) - éf(u) + f(u-h) < Mn® (7-3)‘

for all ue [a+h,b-h] . Then, for all xe[a,b],

t) » OG0 Ly . (7

Proof

There is no loss of generality in assuming that

f(a) = f(b) = 0. (7-5)

. and

M=0 , (7.6)

for we can consider f(x)}-P(x) , wvhere P(x) is the right side of

(7.4}, instead of f(x) - Thus, we have to show that
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Pr20 (7.7)

where tpL. is the least value of ¥ on [a,b] . Suppose, by way of

contradiction, that
bp <O (7.8)
and let

u = sub{xcla,b] | T(x)

':Pf} - : (7'9)

By the continuity of £, f(u)

I

Pp <0, s0 wfEa or b . Thus,
for safficiently smell h >0, uelath,.b-h| , and, from the

éefinition of u ,

flu-k) > f(u) (7.10)
and

f(uth) >f(‘u) . 7 (7.11)

Because of the assumption (7.6), this contradicts (7.3), so (7.8) is
impossible, and the result follows. (Note the close commection with

the maximum principle for elliptic difference operators.)

Theorem 7.2

Suppose that (7.3) holds, M >0, a < ¢ < Cy

IA
o'
g
<9

f{a) » f(cl) - f(cz) . Then

(7.12)

Proof

Apply Thecrem 7.1 with x replaced by ¢ and b by c, . The

1

182

-

6.

hypothesis that f(cl) = I'{c,) pives, allcr some simplification,
-

f(a) - f(c
(cy-e)ley-a) > ——p (1-1)
2 '

and the result follows as o, -a >c, -a >0 .

Theorem 7.3
Suppose that (7.5) holds, M >0, a <c¢ <b , and the interval

I=[le,b]ln [C.Ji+_c._ fla) -7 c_l]

2 M(a-c has positive length. Then f(x)

is strictly monotonie decreasing om 1 .

Proof.

. We have to show that

x 2

Suppose x ¢TI with X, <x

1’72 1

f(xl) > f(xg) . (7.1)
Apply Theorem 7.1, first with x replaced by ¢ and b by Xy o

then with & replaced by c¢ , X by e and b by Xy oo The two

resulting inegualities give, after some simplification,

f!\Xl) = f(xz) £ ¢ xl | X2

a :
- > == - — - . (7.15)
M xg—xli - - M{a- .2 . -

X, t+x

Since ——%— <x,, the right side of {7.15) is positive, so (7.14)
holds.
Remarks

Theorems 7.1 to 7.3 generalize Theorems 2.1 to 7.3 respectively.
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Since the algorithm described in Section 3 is based entirely on

Theorems 2.1 to 2.7, it is clear that condition (7.3) is sufficient for
the algorithm to [ind a corrcet approximalion to the global minimum

of f . This is not surprising, for condition (7.3) is equivalent to
(7.2) if erl[a,b] , and is equivaleat Lo (7.1) il J.'eCp[a,b] . In the
next section, we use this result to develop an algorithm for finding the
global minimum of a function f of several variables. The conditions
on f are much weaker than those required by Hewman (1965), Sugie (196h),

or Krolak and Cooper (1963). (See also Kaupe (1964) and Kiefer (1957).)

8. An algoritbhm for global minimization of a function of several variables

Ie
Suppose that D - [ax,bx]x [ay,by] is a rectangle in R,

f: D - R has continuous second derivatives on D , and constants Mx

and My are known such that

fxx(x,y) <M 7 (8.1)
and .
£ (6y) <M, (8.2)

for all (x,y)eD . Let us define o= [BWbe] +R by

o(y) = min  f(x,y) . (8.3)
xela ,b ]
X X

Clearly @(y) is continuous, and

min f(x,y) = min  ¢(y) . (8.4)
(%,7)eD vela,o ]
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Thus, we huve reduced Lhe minimization of f{x,y) , a function of two
variables, to the minimization of functions of one variable. Procedure
glomin (see Sections % and 10) can be used to evaluate @(y) for a

given 7y , using condition {8.1). If we could show bhat

" (¥) SMy J) (8'5)

then procedure glomin could be used again (recursively) to minimize
@(y) » end thus, from (8.4), f(x,y) - Unfortunately, examples show
that @{y) need not be differentiable everywhere in [ay,by] , 80
(8.5) may be meaningless (we shall see below that (8.5) holds when

9" (y) exists). TFor example, consider
T(xy) = xy ' (8.6)
on D =1[-1,11x[-1,1] . Then

oly) =min {y,-y) = -|¥| » (8.7)

which is not differentiable at y = 0 , and we can not expect to prove
(8.5). The samc problem may arise if the minimum in (8.3) occurs ut an

interior point of D : one eéxample is

£(x,y) = (X0 - ) sin(y) (8.8)

on D =[+%,/31x[-10,10] (fx(x,y) vanishes for x =+ 1,

so @(y) = -2|sin{y)| , which is not differeantiable at 0 , + w , etc.)
Fortunately, the following theorem shows that @(y) does satisly

a condition like (7.3), so the results of Section 7 show that procedure

glomin can be used to find the global minimum of @(y) , just as if (8.5)

held.
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Theorem 8.1
Let f{x,y) and 7(y) be as above. Then, for all h >0 and

cla +h, b =h
Y[y:y]:

9y ~29(y) +oly-n) sMpd (8:9)

Proof
From the definition (8.3) of o(y) , there is a function w(y)

from [ay,by] into [a.x,bx] {not necessarily continuous), &ach that

o(y) = fuly},y) - (8.10)
Thus '

e{yrh) < fu{y)yyrn) , (8.11)

Plyth} - 29(y) +@(y-h) < f{ply),y+h) ~20{n(y),y) + £(n(y),y-n) , (8.12)

and the result follows from condition (8.2).

Corollary 8.1

For all yc[ay,by] at waich ®"(y) exists,

o) SN, . (8.13)

Functions of n wvariables

Theorem B.2 generalizes Theorem 8.1 to functions of any finite

number of variables.

Theorem 8.2

Suppose that n >1, Ii- ‘i8 a nonempty compact set in R lor

n+l

i=121...,nl1, D’I—legX""‘InJrlER ,- £: I - R 1is continuous,
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and

£(x rhe,) ~20(x) + flx~he ) < MihE (8.14)

1

T
for all sufficiently small h >0, all x e R™ suich that 1v:,xihe:_L en,

and i1 =1,2,...,nt1 . Let D! :le...xln, and delfine @: D' - R Dby

CP(}’) = nin f(l\’lj .. ':.Ynax) . (B.15)
xsl’ml

Then ¢ is continuous on D' ,

min £(x) = min 9(y) , (8.16)
xeD 7 yeD' T

and
Dly+nes) ~2(y) +oly-net) < MK (8.17)

for all sufficiently small h >0 , yeﬁn such that y,y:he;j eDd' ,
. . : . n+l
and J = 1,2,...,0 . (Here ¢, isa unit vecter in R » and eS

) , . n
is a unit vector in R .)

Proof
The proof is g straight-forward generalization of the proof of

Theorem .1, so the details are omitted.

Theorem 8.2 shows that it is po.ssible to usé procedure glomin to
find the global minimim of a functien f(xl, ...,xn) of any finite
mmver n > 1 of variables, provided upper bounds are known for the
partial derivatives fx.x.(f) (i =1,...,n)". Tt is interesting that

iTi

no bounds on the cross derivabives T (x) (i £ J) are necessary.

13
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1f a one-dimensional minimization using procedure glomin requires . PrOCEdure glomin?d was tested on an IBM 360/91 computer (using

about K function evaluaticons, then we would expect that about K ALGOL W), and some mumerical results are summarized in Table 8.1. 1In
funetion evaluations would be reguircd for an n-dimensional minimizat;on. all cases shown in the table the parvameters macheps , e and t were
Since K is likely to be in the range 10 < K < 100 in practice (see set at 16 Y s lo‘lh ana 10~L° respectively. (Thus qgf__lo'lh <9
Section &), the computation involved is likeiyrto he excessive for < ¢f+—1.0002;x10-lo is guaranbecd, whe¥e 9, is the true minimum of f
n >3 . Thus, for functions of more than three variables, ws probably and $ is the value returned by the procedure.) In the table we give
must be satislied with methods which find local, but not necessarily the upper bounds M and My (sce equations (8.1) and (8.2)), the total
global, minima (see Chapter 7). It should be noted, however, that the number of function evaluations N , and the approximate global minimum ¢
theorems of Section 5 4o not extend to functions of more than one (ulways very clese te the iruc global ﬁinimum ¢f)

variable, so we do not lnow how far our procedure is from the ﬁest
boséible (giventonly upper bounds on fx.x, for i=121,...,n ). Thus,
there is a chance that a much better met;o; for finding the global
minimmm of a function of several variables exists. It is also possible
that slightly stronger a priori conditions on f (e.g., both upper

and lower bounds on certein derivatives) might enable us to find the -

global minimum much more efficiently.

Minimization of & functlon of two variables: procedure glomin2d

In Section 10 we give an ALGOL 60 procedure (glomin2d) for fiﬁding
the glcbal minimum of a function f(x,y) of two variables, using the
method suggested above. Wote that glomin?d uses procedﬁre glomin in a
recursive manner, for glomin is required both to evaluate and to
minimize @ . The error bounds given in the initial comment of procedure
glomin2d are easily derived from the error bo;nds {3-36) and (3.37) for

procedure glomin.
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’l‘gble 5.1: Numerical results for procedure glomin?d
f M My i) ]
£ 0 -1
b 9 -1
2 h 51 o
£ 2 10 116 0
2
10 b “hheg 3'-35
10 10 956 Yrozg
£, 2210 | 200 15520 2'-18
fh 200 2210 1815 0
fs 4 L 1954 =0.395652951085471
. L 100336 -0. 5966529}610851168
6 8 8 | 170496 | -0.39565295108543k
The symbols are explained above. The functions are:

()
(%)
£, (xy)
,{%5¥)
T (%)

£ry)

1]

- f}(YIX)

135 + 99x - 30y

2 - 2
X+ @y + 2y

- 2,2
W00y -x")" + (1-X}9 on [-1.2,1.2] x [-1.2,1.2] ;

sin(x)cos(y)exp(-(XE‘FYE))

on [-1,1] x [-1,17 ;

on [-1,3] i[-2,1¥1 ;

on the same domain;

on

f'S(X,y) on [-2,4) % [-2,k] ,
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Comments on Table 8.1

The results for Lhe simple {unctions fl and f2 are not very
Sdrprising. As expected from the behaviour of procedure glomin on
functions of one variable (see Sections 5 and ), the number of function

cvaluations (N} increases with M and My

A

fB(x,y) : lOO(y-xe)2 #(l-—xjg is the well-known Rosenbrock
function (Rosenbrock (1960)), and it has a steep curved valley along
the parabola y = 2 . fh(x’y) = rj(y,x) is Jjust the Rosenbrock function
in disguise, and it i& interesting that only 1815 function evaluations
were required to minimize fh , compared to 13420 for fj . Thus, it can
make a lurge difference whether we minimize first over = (with y fixed)
and then over y , or vice versa, but it is difficult to give a reliable
rule as Lo which should be done first. Of course; even the lower figure
of 1815 function evaluations is very high by comparison with 100 or less
for methods which seek local minima (see Chapter 7), but perhaps this is
the price which must be paid to guarangee that we do have thé glob#l
minimum. (This is only a conjecture, for the results of Section 5 have
not been extended to functions of several variables.) '

The functions f5

four times as large as the dowain of f5

and f6 are the same, but the domain of f6 is
For this i‘unctic;n the size
of the domain has much more influence on N than do the bounds -Mx

and My increasing the size of the dOID&iE'l by a factor of four increased
N by a factor of about 50, but doubling Mx and My only increased W
by about 30 pércent. Wilth a different funclion, though, we cbuld easily

reach the opposite conclusion. (fg is one example.)
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To summarize: 1if it is possible Lo give upper bounds Mx and My
on the partial second derivatives fxx and fyy y» then procedure
glomin?d will find a zuaranteed good approximation to the global minimum,
but the number of function evaluastions required may be considerable,
especially if the damain of f is large or il Lhe bounds Mx and My
are weak. As for one-dimensional minimization, the size of the tolerance
t has a fairly smell influence on the fofal number of function evaluations
required.

Finally, we should note that we have restricted ourselves to
rectangular domains merely for the sake of s:‘.mpliCify: there is no

real difficulty in dealing with nonrectangular domains.

9. Summary and conclusions

In Section 1 we saw fhat the problem of finding the global minimum
Qf = f(uf) of a function f defined on a compact set is well-posed,
whereas the problem of finding Hp is not well-posed. ‘l'o be sure to
find the global minimum, some a priori conditions on f are necessary,
and several possible conditions were discussed in Section 1. We
concentrated our attention mainly on one such condition, a given upper
bound on f" , and small variations of this condition.

An efficient elgorithm fo% one-diﬁensional global minimization,
based on theorems in Sections 2 and 7, 1s described in Seetion 3. The
effeét of rounding errors, end the number of funetion evaluations
required, are discussed in Seclions 3 to s, and numerical resualts are

given in Section 6. Finally, in Section 8 the results for functions of
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one variable are used to give an algorithm for finding the global
minimwn of a function of several variables (practically useful for two
or three variables), and ALGOL procedures arc given in Scetion 10. Lhe
ATGOL procedures are guaranteed to give correct results, provided the
basic arithmetic operations are performed with a small relative crror
(see the remark following equation (3.30)).

For practical problems, themain difficulty in using the results of
this chapter lies in finding the necessary bounds on second derivatives.
One Intriguing idea is that, if f(f) were expressed in terms of
elementary functions, then the second derivatives could “e computed
symbolicalliy, and upper bounds could then be obtained [rom the s&mbolic
second derivatives by using simple inequalities. Thus, the entire
process of finding the global minimum could be automated. In some cases
functions deflned on infinite domains could also be dealt with

automatically by using suitable elementary ftransformations.

10. AIGOL 60 procedures

The ALGOL procedures glomin (for global minimization of a fﬁngtioﬁ,
of one variable) and glomin?d (for global minimization of a fuﬁction of
two va;iables) are given below. The algorithms and some numerical‘resulfs

are described in Sections 3 to 6 and 8.
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Procedure glomin

real procedure glomln (a, b, ¢, m, macheps, e, t, £, x});

value a, b, ¢, m, macheps, e, t;

real a, b, ¢, m, macheps, e, t, x; real procedure f;
bezin comment:

Glomin returns the global minimum 7y at X of the function

f{x) defincdon [a,b] . The procedure assumes that i‘eC(g)[a,b]
and f"{x) <m for all xe[a,b] (weakef conditions are sufficient:
see the text). e and t are positive tolerances: we assume that
f{x) is eccmputed with an absolute error bounded by & ; i.e., that
|£1(£(x(1+ macheps))) - £(x)| < e , where macheps is the relative
machine precision. Then x and ¥ = glomin are returned so that
min(f) < f{x) <min(f)+1+2e and -
min{f) e <y = f1(f(x)) <min{f) +t+e .

¢ is an initial puess at x {a or b will do). 'he number of

funetion evaluations regquircd is usually close Lo the leasl possible, .

Ea)
and considerably less than (b-a) (m/B‘t)l/a , provided t is not
unreascnably small (see Seclions 3 to 5);

integer k; real a0, a2, a3, 40, dl, 42, h, m?, p, q, 48, T5; S, Y,

vy0, ¥1, ¥2, y3, yb, 20, zl, z2;
comment: TInitislization H

X 1= a0 := b; &l := 83

yo =30 := £(b); ¥ := y? i= £(a);
if y0 <y then y := y0 else x := a;

~ifm >0 A a <{b then
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begin comment: Nontrivial case (m > 0, & < )
m2 := 0.5 x (L4 16 x macheps) x m;

ife<aye >hthene =0.5 % (atb);

yl := £(c); k :=3; d0 :=a2-e; h :=9/11;
if yl <y then |

begin x :=c; y :=yl end;
comment: Main loop
next: dl := a2 - al; d2 :=c¢ - al;
z2 t=b - a2; z0 :=y2 - yl; 21 :=y2 - y0;
P i1 :~dl x d1 x z0 - 40 x 40 x zl;

q :=g8 =2 x {(d0 x z1 - d1 x z0);

comment: Try to find a lower value of f using quadratic interpolation;

Af k > 100000 A y < y2 then go to skip;
retry: if g x (r x {yb-y2) + z2 x q x ({(y2-y)+t))
<rz.2xm2xrx(22xq—r)1i@
begin a3 : a2 + rfq; y3 := f(a3);
ii ¥3 <y then
begin x = a3; y :=¥3
end
end;
comment: With probability about 0.1 ch) a random search for a lower
value of f . Any reasonable random number generator can be used in
place of the one here (it need not be very good);
skip: k := 1611 x k; k := k - 1048576 x (k + 1048576);
q :=1; v := (b-a) x (k/100000);

if r-< 22 then go to retry;
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6.10
comment : Prcpare to step as far as possible;
begin comment: Prepare for the next step;
r:=m2 x d0 x d1 x d2; £ := sgrt ye-y )t} /m2);
’ art{(( yre) /i) ah i=c¢; c :=a2; a2 :=ad;
h := 0.5 x {1l+h); .
yO =yl yl :=y2; y2 :=y3;
pPi=h x (p+2 xr xs8); q :=r+0.5 % qs5;
3 q > -g-—om nex_t
r = =0.5 x {40 + (20 + 2.01 x e)/{d0 x m2));
end
r:=a2+ (if r < s v d0 < O then s else r);
- - end}
comment: Tt is safe to step to r , but we may try to step further;
- glomin =y

a3 := if p x q > 0 then a2 + p/q else r;
- end glomin;

inner: if a% < r then a3 := r;

Ea} Eb then

begin a3 := b; ¥) :=yb end
Procedure glomin2d

else y3 <= f(a3);
real procedure glomin2d (ax, ay, bx, by, mx, my, macheps, e, t, f, X, ¥);
if y3 <y then :

value ax, ay, bx, by, mt, my, machcps, e, t;
begin X := a3%; ¥y := y5 end; .
real ax, ay, bx, by, mx, my, macheps, e, t, X, ¥;
do := a3 - a2;

real procedure f;

if a3 > r then
begin comment:

begin comment: Inspect the parabolic lower bound on £ in (a2,83); . .
- - Glomin2d returns the global minimum z = f(x,y) of the function

=2 ¥ - ¥y3 m x 40) 3
P (ye - ¥3)/( )5 f(x,y) defired on the rectangle [ax,bx] x [ay,by] . mx and my

if abs(p) < (1 + 9 x macheps} x dO : . . .
- are upper bounds on the second partial derivatives of f : we

AO.5 xm2Z x (A0 x A0 + p x ) > (y2-3) + (¥y3-3) + P yx t then : .
( pxp) > ) ( ) - assume that fu(x,y) <mx and fW(X:Y) <my in the rectangle.

begin comment: Halve the step and try again; ) L .
- e and t are positive tolerances: f must be evaluated to an

a? := 0.5 x {a2 + a3); h := 0.9 x h; go to inner .
- T accuracy of +e , and on return

end.
— min(f) < £(x,y) <min(f) +t+3e and

end;
—’ min(f) - e <z = £1(£(x,y)) < min(f) + ¢ + 2e .

if a3 <b then :

- macheps is the relative machine precision, and procedure glamin (for

one-dimensional minimization) is assumed to be global;
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real procedure phi (y}; value y; real y;
“p_gg_i__gconunent: Returns min £{x,y) over x (y fixed), end may
alter the global variables first, =xsz and zm;

real procedure fx (x); value x; reul X;

. ) Chapter 7.
begin fx := f{x,y) end fx;
real ym;
. A New Algorithm for Minimizing a Tunction of Several Variables
ym := glemin {ax, bx, xs, mx, macheps, e, t1, X, xs); :

Without Calculating Derivatives
if first v ym < zm then

begin first := f_.}lﬁ; Zm := ym; X := X8 end;
phi :=ym
end phi;
real tl, xs, zm; Boolean first; ) . .
first := E; zm = 03
t1l := 0.5 x t; xXs := ax;
glomin?d := glomin (ay, by, ay, my, macheps, tl + e, t1, phi, ¥)

end glominz2d;
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1. Introduction and survey of the literature

In this chapter we consider the general unconstrained minimization

prcblem: given a function f: R - R » Tind an approximate 1oéal minimum
of £ . There is no need to emphasize the practical importanceJ;f this
problem, and the recent literature on the subject is gquite extensiVe.
Here we give only a brief introduction, and no attempt is made to duplicate
the survey articles by Box (1966), Fletcher (1965, 1969c), and Powell
(19703, e), or the books by Beale (1968), Box, Davies and Swann (1969),
Jacoby, Kowelik and Pizzo (1971), Kowalik and Osborne {1968), Wilde (1964),
and Wilde and Beightler (1967).

In practical problems the global minimum, not a mere local minimum,

“is usuelly of interest. Methods for finding global minima are discussed

- in Chapter 6, but for functions of a moderate or large number of variables
the methods of Chapter 6 are impractical. Usually the best that we can

. 4o, in the absence of any special knowledge about ‘f , is to use a good
local minimizer and try several different combinations of starting
positions, steplengths ete., in the hope that the best local minimum

found is the global minirmum.

Constrained preblems

It often happens that we want to minimize f(x) subject to the

constraint that x is in some subset D of R . (Sometimes f is

only defined on D .) Simple upper and/or lower bounds, of the form

a. SX.

g £X S by , (1.1)

1

on the components Ki of x , are particularly common, and problems

200

7.1
with such constraints can be reduced to unconstrained problems by a
transformation of variables {see Box (1966)).

More general constraints may be of the form

gi(x) =0 (an equality constraint)

or ‘ } (1.2)
J

gi(f) >0 (an inequality constraint) |

n . . . .
where g.: Di CcR —~R is some given function, for i =1,...,m .
1 =

gi(x) may be linear, say

g, (x) =ax~+ e, (1.3)

for some &, ¢R" and ;ieR , or gi(f) may be nonlinear, and perhaps
quite-difficult to compute. From the point of view of efficiency, it is
probably best to deal with linear cénstraints directly, but this is
difficult for nonlineér constraints. Direct methods for linear constraints
are given in Fletcher (1968b), Goldfarb (19592), and Rosen (1960). (See
also Bartels (1968), Bartels and Golub (1959), Bartels, Golub and

Saunders (1970), Gill and Murray (1970), Goldfarb and Lapidus {1968),

- Hanson (1970}, and Shanno (1965, 1970b).}

Problems with nonlinear constraints can be reduced to a seguence of
unconstraeined problems by the use of penalty or barrier functions. (See

Carroll (1961), Fiacco (1961, 1967, 1969), Fiacco and Jones (1969),

- Tiacco and McCormick (1968), Fletcher (1969b), Fletcher and McCann (1969),

Jones end McCormick (1969), Kowelik, Osborne and Ryan (1969), Lootsma
(1968, 1970), Murray (1969a, b), Osborne and Ryan (1970, 1971},

Pietrzykowski (1969), and Zangwill (1967b).) Attempts have also been made
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to degl wibth nonlinear constraints directly. (See Allran and Johnsen
{1970), Rox (1955), Haarhoff and Buys (1970), Kalfon, Ribiere and
Sogno (1948), Iuemberger (1970), Mitchell and Kaplan (1968), Murtagh
and Sprgent (1969), Powell (19504), Rosen (19%1), and Zoutendijk (1960,

1970).)

Methods using derivatives

Many methods for the constrained or unconstrained minimization of
f: D - R explicitly use the partial derivatives af/axi , for
i=1,...,1 , and some methods also uge the sccond partial derivatives
of f . (Methods for constrained minimization may also use the partial
derivatives of the constraint functions g, .} For exemple, the
classical method of steepest descent (Akaike (1959), Cauchy (1847),
curry (1944), Forsythe {1568), Goldstein (1962, 1965), and Ostrowski

(1966, 1967a)) repeatedly minimizes f in the direction -g , where
Bf/Bxl

g = E (1.5)

Df/axn

is the gradient of f . Perhaps the mest successful methods using
derivatives are the Davidon-Fletcher-Powell "variable metric" method
(Davidon (1959), Fletcher and Powell (1963), Huang (1970), and
MeCormick (1969)), and the conjugate gradient method of Fletcher and

Reeves (1954), which is slower but reguires less storage than the

variable metric method. (For other methods using derivatives, and related

topics, see Bard (1968, 1970), Broyden (1970a, b), Cantreld (1969), Cragg
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and Levy (19%9), Davidon (1968, 1969), Davies (1968), Fletcher (1966,

©1979), Goldfarb {1956, 1969b, 1970), Goldfeld, Guandt and Trotter (1968),

Greenstadt {1967, 1970), Hestenes (1969), Kelley and Myers (1967),
Luenberger (1959b), McCormick and Pearson (1969), Miele and Cantrell
(1969, 1970), Myers (1968), Pearson (1969), Powell (1969b, ¢, 1970h, ¢, d),
Ramsay (1970), Shanno (1969a, b), Shanno and Kettler (1959), Sorensen
(1969}, Takahashi (1965), Tokumaru, Adachi and Goto (1970), Vercoustre
(1970}, Goldstéin and Price (1967), and Wells (1965).)

In meny practical problems, it is difficult or impossible to find
the partial derivatives of f(f) dircctly.’ One possibility is to
compute derivatives numerically, e.g., by finite differences, &nd then
use one of the methods requiring derivatives, Stewart (1967) has
successfully modified the variable metric method so that difference
approximations to derivatives can be used. The difficulty is in
balancing the influence of rounding errors and truncation errors when
using finite differences to estimate derivatives. TFor a computer program,

see Lill (1970).

Methods not using derivatives

Although Stewart's modification of the variable metric method
appears to work well in most practicel cases (see Stewart (1967),
Powell (1970a), and Section 7), it is more natural to use a method which
does not nced derivatives, 1f derivetives can only be found numerically.
Possibly such methods could be more efficie#t than methods which approximate
derivatives numerically, althoﬁgh this is less clear in n dimensions than

in one dimension {for which see Chapter 5).

203



Several methods which do not use derivatives have been compared in
the survey papers of Box (1990), Flelcher (1955, 1969c), Powell {1970a, e),
and Spang (1952). (See also Bell and Pike (1966), Berman (1969), Box
{1957), Chazan and Miranker (1970}, Hooke and Jeeves (19601), Kowslik
and Osborne (1968), Nelder and Mead (1965), Smith (1952), Spendley {1969),
Spendley, lext and Himsworth (1962), Swann (196L4), and Winfield (1967).)
Excluding Stewart's method, the most successful metheod, especialiy for
functions of more than three or four variables, appears to be that of
Powell (196k)} (see Section 3). The main object of this chapter is to
present some modifications which improve the speed and reliability of
Powell's method. The modifications are discussed in Sections I to 6,

and sume numerical results are given in Scction 7.

Quadratic convergence

Suppose that f{x) bhas continuous second derivatives
_ 1.6
fij 5xi5xj { )

for i,j =1,...,n, ina neighbourhood N of a local minimum H

Since p  is a minimum, the gradient of f vanishes at p , and the

Hessian matrix

A=) (1.7)

is positive definite or semi-definite. WNear p , the quadratic form

Q) 2w + 5 (et A -w) (1.8)
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is a good approximation to f{x) . Thus, any minimization method, having
ultimate fast convergence for a general function f£(x) with continuous
sceond derivatives, must have last convergence for a positive definite
quadratic form, and we might expect the converse to hold too. This
observation has led to the investigation of methods which have guadratic
convergence, i.e., which find the minimum of a positive definite quadratié
form in a finite number of function and/or derivative evaluations, apart
from the effect of rounding errors. Examples of methods with quadratic
convergence are those of Davidon-Fletecher-Powell, Fletcher and Reeves,
and Powell (195L) {this is not quite true: see Section 3). The method
of steepest descent exhibits cnly linear convergence on a guadratic form,
s0 it is not quadratically convergent.

‘A few methods are not guadratically convergenf,rfor exact convergence
requires an infinite number of steps, but they do exhibit superlinear
convergence on quadratic forms. Ixamples are the methods of Rosenbrock,
as modified by Davies, Swann and Campey (see Swann (1964)), of Goldstein
and Price (1957), and of Greenstadt (1970). There is no apparent reason
why such methods should Tail to perform as ﬁell as quadratically convergent
methods on general (nonguadretic) functions. Thus, quadratic convergence
is a desirab;e property, but it is neither necessary nor sufficient for

& good minimization method.

Stability: the descent property

In many methods for unconslrained minimization, I(x) has been

evalusted at =x. , the current best estimebte of the position of the

0

*®
minimum of f(x) . A new estimate, x is made on the basis of the

17
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values of f at X, and a small rumber of other points (previous best

estimates, or points clese to x

. Additional information built w
0 LD

from previous iterations,; e.g., an approximation Lo the Hessian matrix
E 13
of £ at Xy 2 may also be used. ''he prediction X, may be unreliable,

and it may happen that
£(x) > flxy) - (1-9)

For example, this often occcurs if x is nob close to a local minimum,

O

and an inadequate quadratic approximation to f(x) is used.
To avoid the possibility of instability, most procedures do not
¥

accept X, 8s the next approximation to the minimum. Instead, they

-x

o i.e., they take

*
perform 8 "linear search" in the direction X,

the point

+ A * !
: xy o= Ry M - X

{1.10)
as the next approximation, where KO is chosen to minimize the function
*

PA) = Tlx, + Mxy - %)) (1.11)
of one variable. This ensures that

f(x)) < flx)) (1.12)
s0 the successive points generated must lie in the "level set"

s = frek | £ < £x)) (3.13)

In practice, it is not worthwhile to try to minimize the function

p(N) very mccurately. In fact, the minimum may not even exist: (X)) may
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be monotonic increasing or decreasing, or have a maximum bubt no minimum.

Box {1966) gives examples where an attempt to minimize @{A) too accurately
prevents a minimization procedure from finding the desired mimimum. T%

1s sometimes stated that the guadratic convergence property of certain
methods depends on 9{A) being minimized exactly, but all that is really
required for these methods is that Lhe one-dimensicnal minimization
procedure minimizes a guadratic function of A exactly. Thus, for
éuadraﬁic convergence, it is sufficicnt to fit a parabola P{A) to @A) ,
and take KO = Kz , Where h: minimizes P(A) . Because of the danger

ol instability, this simple procedure is not acceptable, but it is reascnable

. %
to take KO = KO provided that

w;) < o(0) _ (1.14)

which ensures that (1.12) holds. (Powell (1970e) gives some reasons

for requiring rather more than (1.1L).) See also Sections 6 and 7.

Sums of squares
A very common wconstrained minimization problem is bto minimize a

function f(x) of the form

n

tx) = ¥ ir (01, (1.25)
X)L 1l

for some {(generally nonlinear) functions fi(x) . For example, this
problem arises when parameters Xysee-,X, are fitted, by the method of

least squares, using m observations. An important special case arises

when the minimum value of f(x) is zZero: +hen we have a solution of the

207



T.1

system of equations

£ =0 , (1.16)

for i =1,...,m.

Applyiﬁg a general function minimizer to f(x) may not be the most /
efficient way to minimize (1.15). Methods which make use of the individual
residuals fi(f) are likely to be considerably more efficient than
methods which merely try to minimize f(f) without considering the
individual residuals, at least if the minimum value of f(x) is close to
zero. Methods which make use of the residuals are described in Barnes
(1965), Box (1966), Brown and Dennis (1968, 1970, 1971a, b), Broyden (1967,
19%9), Dennis (1968, 1969a, b, ¢), Fletcher (1G6Ba), Gauss (1809),

Hartley {1961), Jones (1970}-, Levenberg (1044), Marquardt (1963),

Matthews and Davies (1969), Morrison (1968), Ortega (1970), Ortega and
Rheinboldt (1970), Peckham (1970), Powell (1965, 1968b, 1969a),

Rabinowitz (1969), Rall (1966, 1969), Schubert (1970), Shanno {1970a},
Spath (1957), Volgt (1969), Wolfe (1959a), and Zeleznik (1948). Good
numerical methods for solving linear least squares problems are also
relevant: see Bjorck {1957a, b, 1968), Businger and Golub (1965),

Golub (1945, 1968), Golub and Reinsch (1970), Golub and Saunders (1959),
Golub and Wilkinson (1956), Jordan {(1968), Khabaza (1963), Maddison (1956),
and Powell and Reid (1968).

Let us"see why it may be worthwhile to use the residuals. Suppese
that we have & good initiel approximetion to the minimum of * £{x) , so the
functions fi(f) can be closely represented by linear approximations in

the region of interest. To find a linear epproximation to fi(x) , we
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need to evaluate fi(f) at ntl points, or evaluate fi(f) and the
n components of its gradient at one point. Thus, after the same amount
of work as is required for n+l evaluations of f(x) , or one evaluation
of f(x) and its gradient, the solubtion of a linear least squares problem
gives an approximation to the minimum. This approximaticn is usually good
if the minimum value of f(f) is small (see Powell (1955)), unless the
linear problem is very ill-conditioned. On the other hand, if the special
form (1.15) of f(f) is disregarded, then it is necessary to evaluate
f(f) at % {n+1)(n*2) points to find an approximating quadratic form.
(Alternatively, f and its gradient must be evaluated at [f% (n+2) 7|
or more points.) This suggests that methods which disregard the special
form of f(x) are likely to be much slower than methods which use the
individual residuals, at least if n 1is large. Empirical evidence
supports this conelusion (see particularly Table 3 of Box (1966) for
n = 20 ), although some of the present methods which make use of the
residuals appear to be rather unreliable.

ﬁespite our conclusion, most of the numerical examples given in
Section 7 are of the form (1.15). This is becsuse a particularly simple
way to construct test functions with bounded level sets is to use functions
of the form {1.15), and most of the test functions given in the literature

have this form.

Some additional references

The following general references on function minimization and related
topics have not been mentioned above: Abadie (1970}, Belakrishnan (1970),

Bennett (1965), Bennett and Green (1966), Colville {1968}, DAvies (1959),
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Davies and Swann (1959), Dold and Eckmann (1970a, b), Evans and Gould
(1970), Fleteher (1949a), Hadley (1994), King (1968), Kunzi, Tzschach

and Zehnder (1968), Lavi and Végl (1966),‘Lenn (1966), Tuenberger {1959a)},
Mangasarian (1969), Murtagh {1959), Murtagh and Sargent (1970), Powell
(1956, 19%9e), Ralston and Wilf {1960), Rice (]970)', Rosen and Suzuki
(1965), Shah, Buehler and Kempthorne (1964), Wolfe (1963, 19539), Zadeh

(1959), rangwill (1969a, b), and Zoutendijk (1966).

2. The effect of rounding errors

Rounding errors in the computation of f(x) 1limit the accuracy
atteinable with any minimization methed using only the computed values
of f(x) . 1In this gection, we generalize the results of Section 5.2,
where the same problem is considered (or functions ol cne variable. As
in Section 5.2, the results of this section do not necessarily apply to
methods which use the gradlent of f , computed analytically. (They do
apply if the gradient is computed by finite differences.)

Supposc that, in a neighbourhood N of a lovel minimum up , the
partial derivatives Fij(f) are Lipschitz continuous, i.e., for all

Xyell

I, . - T,, < M.. - 7 2.1
1500 = ] < il - vl (2.3)
where MiJ is a Lipsehitz constant (i,j = 1,...,n) , and any of the

usual vector norms may be used. Since the gradient of f{x) vanishes

al p , a simple extension of Lemma 2.5.1 shows that, for xeN ,
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20 = t(w) + 3 G- w7 Alx <) ¢ R (2.2)

where

A= (L. u) (2.3)

Tigto
is Lhe Hessian matrix of f{x) at p , and
3 (r) h')
[ROD | <l - ufl” °
for some constant M depending on n , the norm used, and the
Lipschitz constants Mij

As in Section 5.2, the best that can be expected is that the computed

value T1(f(x)) of £(x) sabisfies the nearly attainable bound

fl(f(ic)) f(i().(l + ax) (2.5)

where

e b < , : (2.8)

and € is the relative machine precision (see Section 4.2). If f 1is
computed using single-precision arithmetic, the error bound will probably
be considerably worse than this. 7 :

Let & be the largest number such that, according to equations

(2.2) to (2.6), it is possible that

(£ ¢+ Bu)) < £(p) -, : (2.7)
for some wnit vector w . Then it is unreasonable to expect any
minimization procedure, based on Single-precision evaluations of £ , to

return an approximation ﬁ to u with a gdaranteed upper bound lor

Hﬁ - “H less than B
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Let the eigenvalues of A be kl > RE > el > kn , with a set of Sealing
corresponding normalized eigenvectors El’EE""’%n . Siunce P is a A change of scale along the coordinate axes has the effect of
local minimum of f{x) , certainly replacing the Hessian matrix A by SAS , where 5 1is a positive
‘ N >0, (2.8) diagonal matrix. The problem of choosing § to minimize the condition
" number of SAS is difficult, even if A is known explicitly. (See
and we suppose that kn >0 . (The position of the minimum is worse Forsythe and Moler (1967) for the problem of minimizing the condition

Mb . s
i i = — d to unit and
determined if hn 0 ') i A is small compare Is number of SlASE s where A is not necessarily symmetric.) A good

n
we take u = L then (2.7) is possible for . general rule is that SAS should be roughly row {and hence column)
2|£(p) |¢ equilibrated (see Wilkinson (1953, 1965a)). In practical minimization
——— 2.
5\ = hn N (2.9) problems, one difficulty is that little is known about the Hessian

matrix A until a reasonable approximation to the minimum
Thus, an upper bound on || - p|| can herdly be less than the right side

has been found. This suggests that a general function minimizer which

of (2.9).
is scale-dependent could incorporate an automatic scaling procedure,
using current information about A to determine the scaling. One way
The condition number of doing this is described in Section L.

With the essumptions above, and & given by (2.9),

Plp + Buy) ~ £} +on e|T)) (2.10)
3. Powell's algorithm

where In this section we briefly describe Powell's algorithm for minimization

K= A A (2.11) Cthout &5 vati thm is described

1’ "n without calculating derivatives. The algorithm is described more fully
is the usual condition number of A . We shall say that u 1is the ‘ in Powell (1964), snd a small error in this paper is pointed out by
condition number of the minimization problem {for the local minimwn p ). Zangwill (1957a). Numerical results are given in Fletcher (1965),
The condition number determines the rate of convergence of some minimization Box (1966), and Kowalik and Osborne (1968}. A modified algorithm, which
methods (e.g., steepest descent), and it is also important because rcunding is suitable for use on a parallel computer; and which converges for
: 2 . : . .

errors meke it difficult to solve problems with condition numbers of the strictly convex C~ functions with bounded level sets, is described by

- Ch d Mi ki 1970} .
“order of £ T or greater (see below). azan and Miranker (1970)
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Powell's method is & modification of a quadratically convergent Remark
' ) . . . ; . n
method proposed by Smith (1952). Both methods ensure convergence in a If [ul""’fm} is any set of nonzero conjugate directions in R,
finite number of steps, for a positive definite guadratic form, by then wu;,...,u — are linearly independent. Thus m <n , and m =n iff
- In
making use of some properties of conjugate directlons. Ugrmmesly span R .
Conjugate directions Theorem 3.1
If A is positive definite and symmetric, then minimizing the " IT A is positive definite symmetric, A—}f = E , and {111.- ---:Em}
quadratic function is a set of nonzero conjugate directiens, then
- T - - -
hax - obtx = (k-2 o) a( - a7 -vta (3.1) m b
- - - - - x-x- L | = |y (3.4
i=1\ u,Au, -
is equivalent to solving the system of linear eguations ~1 ~1
Af =b . ) (3.2) is conjugate to each of Bl""’&m .
If the matrix A is known explicitly, then, instead of minimizing Proof
3.1), we can solve (3.2) by any =suitable method: for example, by forming If L <j<m, then, from (3.h4),
the Cholesky decamposition of A. In the applications of interest here .
? ulgAx‘ = ug(Ax -b) = 0 . (3.5)
A is the Hessian matrix of a certain function, and is not known explicitly, T -
but the equivalence of the problems (3.1) and (3.2) Is still useful.
Corollary 3.1
QSEEE;EEQE—QLE If m=n in Theorem 3.1, then x"™ =0, so
Two vectors u and v are said to be conjugate with respect to
the positive definite sjmmetric matrix A if n u?b
DU S - I (3.6)
- R T ~1i
T i=1\ u_Au.
WAy = 0 . . . (3.3) -t

When there is no risk of confusion, we shall simply say that u

Returning to the minimization problem, Theorem 5.1 and the equivalence

and v are conjugate. By a set of conjugate directions, we mean a set of problems (3.1) and (3.2} give the following result.

ol vectors which are palrwisz conjugate.
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Theorem 3.2
If A Lls positive definite symmetric,

£(x) = O - 2bix + e (3.7)

kel . NN
for scme beR  and ccR , and ul,...,um is a set of nonzerc coujugate

directions, then the minimum ol £(x} 1in the space spanned by LA EARREAN

m
occurs at the point I:Biui s where
’ i=1 "~

u?b

T S .8
B. = - . 3

* u?Au_

i1

Frool ~

This follows from Theorem 5.1, or, alternatively, from the relation

(30

m m m u.b

2.7 i

5 cu. | = V(o -p ) uwau, +ec - Y (3.9)
igl 1t iz::l o e Sl wiau \

.

{cross terms vanish because of the conjugacy of Wy, ...5W, ).
The usefulness of Theorem 3.2 slems from the following result,
which shows how we can calculate the 8, of (5.8) using function

evaluations, even if A , b and ¢ are not known explicitly.

Theorem 5.5
With the notalion of Theorem 5.2, a fixed j "satisfying 1 <ji<m,

and fixed X ,...,Q the minimum of

j-l’aj"‘l, sa ,CMm 3

1
m .
cpj(otj) = i);l o, (3.10)
occurs at o, = B, -

216

7-3

Proof
This follows immediately from equation (3.9).

From Theorems 3.2 and 3.5, We see thal Lhe minimum of the guadretic

form f(x) can be found by n one-dimensional minimizations along nonzero

conjugate directions ul,...,un , and the order of the one-dimensional
minimizations is irrelevant. To use this result, we have to be able to
generate sets of conjugate directions. Doth Powell's methed and Smith's

method do this by using the following theorem, given in Powell [1964).

Theorem 5.h
If the minimum of f£(x) {given by (3.7)) in the direction u from

*
the point x5 is at S for 1 =0,1, then Eo-X, is canjugate

to u .

Proof.

For 1 =0 and 1,
3 S ,
5 Pz ta) =0 ot A=0 , (3-11)

so, from(3:7)s.
Wos B o G2

Subtracting equations {3.12) for i =0 and 1 gives

which completes the proof.
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Powell's basic procedure

We can now describe the basic 1dea of Towell's algorithm. Tet X

be the initial approximation to the minimum, -and let ul,...,un be
the ¢olumns of the identity matrix. One iteration of the basic procedure

consists of the following steps:

1. Fo 1 =1,... c tea . to minimize f(x. _+B.u
r o1 3 sn , compu B:L ima (...,1—]_ Ei..i) 3

and define X, = fi-li_ﬁigi .

2. For 1 =1,...,n-1 , replace Ei by Ei+l

3. TReplace Bn by gn_fOr'

4, Compute B to minimize f(xoi—ﬁun) » and-replece X, Dby X +pu .

For a genersl) (non-quadratic) function, we just repeat the iteration
until some stopping criterion is satisfied. BSuppose that 1<k <n,
and consider the gituation after lhe k-th iteration. If I is guadratic

then we can show, by induction ean k , that u

) are conjugate.
n-k+l’ ’n Jug

[his follows from the choice of w at step 3, and Theorem 3.L: see
Powell (1954). After n iterafions, we have minimized along n

conjugate directions Uqpeeepll ; 80, by Theorems 3.2 and 3.3, the

minimum will have been reached 1if the u,  ere 8ll nonzero. This is
true if, at each iteration, El f 0 , for then the directions ul,...,un

can not become linearly dependent.

The problem of linear dependence

Unfortunabely, as pointed out by Zengwill (1957e), even for a

quadratie function f one of the iterations may have Bl = 0, which
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resulls in the directions Uyreessd becoming linearly dependent, and

from then on the procedure can only find the minimum of f(x) over a
proper subspace of Rn . The same is, of coursc, true for non-quadratic
functions, and even though it is unlikely that ﬂl will vanish exactly,

Powell discovered that the directions ul,...,un often become nearly

linearly dependent. Thus, he suggests that the new direction X "Xy

should be used, and one of the old u

1y discarded, only if this
does not decrease the value of \det(vl e vn)l , Where
-i
v, = (u?Au") 2y, (3.1
~i ~17- ~i
for i = 1ly,...,n . With this modification the algorithm is guite successful

(sec Fletcher {1965) and Box (1956) for a comparison with other methods),
tut the desirable property of guadratic convergence is lost, for a complete
set of conjupate directicons may never be built up. TIn the next section,
we describe a different way of avoiding the problem of linear dependence
of the search directioms. The numerical results given in Section 7
suggest that our method of ensuring linear independence may be preferable

to Powell's.

. The main modification

The simplest way to avoid linear dependence of the search directions
with Powell's basic procedure, and retain guadratic convergence il Bl ﬁ o,
is to reset the search directions ui,...,un to the columns of the

identity matrix after, say, every n iterations. A similar "restarting”
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device is suggested by Flebtcher and Reeves {1964) for their conjugate
gradient method. Unfortunately, restarting tends to slow down convergence
for approximately quadratic functions, because any informatiom built up
about the function is periodically Lhrown away. (Perhaps this is way
the Fletcher-Reeves algorithm is generally slower than the Davidon-
Fletecher-Powell algorithm.)

Tnstead of resetting U = [El,...,gn] ta the identity matrix, we
could equally well reset U +to any orthogonal matrix 4 . To avoid
discarding useful information about f , wa could choose Q so that,
il £ 1is quadratic, El""’gn remain conjugate. This suggests that
principal vectors gl""’gn should be computed on Lhe assumption thet

f is quadratic, and U should be reset to Q = [q1,...,an . The

moti&ation for this procedure may be summarized thus:

1. If the quairatiu'approximation to f 1is gocd, then the new search
directions should be conjugate with respect to a matrix which is close
to the Hessian matrix of £ at the minimum, and thus gubsequent

iterations should give fast convcrgence.

2. Regardless of the validity of the quadratic approximation, the new
search directions are orthogonal, so the search for a minimum can never

become restricted to a subspace.

The exbra compulation involved

We show below that finding principal axes does not require any
extra function evaluations, but it does involve finding sn orthogonal

set of eigenvectors for a symmetric matrix H of order mn . This requires
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about 6n_j multiplications, and & similar number of additions, if done

as sugeested below. Since the principal axes are found only once for

every n2 linear minimizations, and a linear minimization requires about
2.25 function evaluations on the average (see Section 7), fhe extra
computation is less than 3n multiplications per function evaluation.

We can expect the evaluation of a nontrivial function of n variables to
require considerably more than >n multiplications, and possibly order nE

s0 the overhead caused by our modification is not excessive. Also, it

‘may be worth paying a little for the principal axis reduction, for the

extra information about [ is often of interesft. For example, it

shows the sensitivity of f(f) to slight changes in X near the minimum.
The principal axes and eigenvalues may be of interest in statistical
problems when f 1is minus the log-likelihood, for then the inverse of
the Hessian at the minimum is the sample variance-covariance matrix of

the maximum likellhood estimates: see Nelder and Mead (1965).

Sealing

Powell's modification of his basic procedure has one feature which
ours lacks: his determinantal critericn is independent of a linear
transformation of the independent variablc space (dn importanl special
case is a change of scale for the independent variables). This feature
is certainly desirable, for when & function of, say, temperature and
pressure is to be minimized, there is no natural way to scale the variables.
We should note, though, lhat Powell's algorithm is not completely

independent of linear transformations of the variable space, or even of
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scale changes, for these influence both the initial choice of the q)i[ao,oll,ug] = uiAui = di R . (h_g)

vectors u

1""’Eh,’ and the stopping criterion.

50 the diagonal elements «;ti of D are kmown without any extra

computation. (If the gquadratic approximation to mi(oﬂ is bad we may

Finding the principal vectors

have tpi[cxo,cxl,(x,)] < 0, and then we arbitrarily set di to a small

Suppose that positive number.)

{x) = XTAX - EbTx + c (L.1) Let
vV = UD : (4.6)

is a positive definite quadratic form, although A , b and ¢ may not

be the matrix with columns v eV glven by (3.14), and let

be known explicitly- T1f n iterations of Powell's basic procedure are ~1
performed as described above, and at cach iteratjon By ;é 0 , then we H = A_l . (L.7)
obtain n nonzero conjugate directions Uy - Let U = [B . En] - Since U is nonsingular, equation (4.2) gives
By the conjugaey of wu_,...,u_,
~1 - -
i n-whl -t (1.8)
Ay =D, (4.2)

The matrix V is casily camputed from U 1in n2 multiplications and

wiiere D is a diagonal matrix with positive diagonal elememts 4.
5 B ) 5 1 n square roots, but the computation of VVT is more expensive, and can

During the last (i.e. n-th iteration, we have periormed one-
mng . ( ? ) ’ i P he avoided: see below.

dimensi 1 minimizations in the directions w ,...,u . Consgider a R . . i
o vuat miiim Lons 1 L -1 ’.n * Our aim is to find the principal axes of the quadratic form f ,
s . t ; . in the directi T . _ )
minimization from the point fl-l » in the direction 31 > 1OF i.e., to find an orthogonal matrix § such thet
1<i<n . Weminimize the function T .
QAR = A, (429}
- ! ~ L.
95(@) = £(x; v ow)) (}3)
where f = diag(Ki) is diagonal. Thus, the columns a; of Q nare just
- Pulau +'2a(uTAx -4p ) +(tT Ax -2xt b +c) (L. the eigenvectors of A , with corresponding eigenvalues A A and
Joc higen | Yitlia1 T 52 2i-1704-1 T TRl : ’ ¥ =18 RS AL R
we can assume that ll > .. > hn . The obvicus way to find Q and A

inimi e fit a purabola, which necessitates computing the . i
To minimize @1( Y we I o) P 33 & is to compute H = W explicitly, and then find § and A such that

second diffcrence mi[Ob,al,dg] for three distinct points ao ; a1 , 0 1
Q HQ = A s (h-lﬂ)
end @, . TFrom equation (4.4,

by finding the eigensystem of H .
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Use of the singular value decomposition to find 3 and A

If the condition number u = kljkn is of order & T , Where £ is
the relative machine pfecision (see Section 4.2), then rounding errors
may lead to disastrous crrors in the coﬁputed small eigenvalues
Kil,k;l,... of H , and in the corresponding eigenvectors 9qs955 000
even if they are well-determined by V . Thus, it may be necessary to
compute H , and find its eigensystem, using double precision arithmetic.
This difficulty can be avoided if, instead of forming H = VVT ; We work

directly with V¥ . Suppose thal we find the singular value decomposition

of V, i.e., {ind orthogonal matrices Q and Q' such that

Qm -z, (4.11)

where I = diag(gi) is a diagonul mabrix. {See Golub and Kahan (1965),

and Kogbetliantz (1G55).) Then

2t = qTme - @FwnyTwn?® - 22, (h.12)

s0 @ 1is the desired matrix of eigenvectors of A , and the cigenvalues

ki are given by
X, =g, - {k.13)

Note that the matrix Q' is not required, and it is not necessary to
compute VVT .

Sinee it is desirable that the computed matrix @ should be close
to an orthogonal metrix, we suggest that Q and L should be found by
the method of Golub and Rejnsch (1970). This involves reducing V to

bidiagonal form by Householder transformations, and then computing the

onl

Tk
singular value decomposilion of the bidiagonal matrix by a variznt of
the QR algorithm.

Let us compare the amcount of camputational work involved in
conputing 2 and A via

1. The singular value decomposition (SVD) of ¥ as described

above, and

2. Finding the matrix H and its eigensystem, using Householder's

reduction tc tridiagonal lorm and ‘then the QR algorithm. (See
Bowdler, Martin, Reinsch and Wilkdinson (19%8), Francis (1962),
Householder {196k}, Kublanovskaya (1941), Martin, Reinsch and
Wilkinson (1968), and Wilkinson (1965a, b, 1963).)

For purposes of comparison, we count only multiplications, and
ignore terms of order n2 , 8o our conclusions may not be valid for very
small n . Suppose thal, in each case, the QR process requires pn
iterations, for some modest number p 7

For method 1, the Householder reduction requires hni/ﬁ maltiplica-
tions, accumulation of the (left-hand) trensformations requires ancther
hn5/3 multiplications, and the QR process with accumulation of the
transformations requires Epn5 multiplications, if no splitiing occurs.
Thug, method 1 requires (8*'6p)n5/5 multiplications in all.

Tor method 2, the Householder reduction reguires 2n5/5 multiplications
(only half as much as for method 1 because of symmetry), accumulation of
the transformations fequires an/i multiplications, and the QR process
requires 2pn57, giving {L+ 6p)n3/5 altogether. This could be reduced
to hn5/3 , still ignoring terms of order n2 , if inverse iteretion were

used to compute the eigenveclors of the tridiagonal matrix, but then it
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would be difficult to guarantee orthogonality of eigenvectors corresponding

to close or multiple eigenvalues. Another % n’ multiplications are
- .
needed to compute H = VW by the usual method (but taking advantage ol
=
symmetry), making (11+ 12¢)n”/6 multiplications in all.

The ratic of the work invelved for methods 1 and 2 is thus

6+ 12 16

ToT Y1 S IT ¢

(.14}

and for a typicel value of p = 1.6 we have r = 1.17 . Thus, method 1
can be expected to be only about 20 percent slower than the numerically
inferior method 2. DBoth methods can be dene in place, and require
temporary storage for only a few n-vectors, apart [rom the n by n

matrix V which is overwritien by §

Scaling

We menlioned in Section 1 that a gencral minimivzation proccdure
might inqorporate automatic scaling of the independent variables, in an
attempt tc reduce the condition number of Lhe problem. Sceling has the
effect of replacing the matrix V above by S-lV , Where S 1is a

positive diagonal matrix (as in Scetion 1). The ALGOL procedure "praxis"

given in Section ¢ chooses S automatically to try to reduce the condition

nunber of s‘lv . § is chosen so that S_lV is row-equilibrated, with

the constraint that

L < 8.4 < sckd |, (h.15)

where scbd is a bound which may be set to 1 if no scaling is desired.

Nunerical experiments on the examples described in Section T suggest that
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scbd  should be fairly small (say about 10) unless the axes are very
badly scaled initially. The aubtomatic scaling is worthwhile, but its
effecl is not dramatic, and it is rather unreliable, which is the reason
for introducing scbd . Thus, it is still worthwhile for Lhe user to

try to scalc his problem as well as possible.

Another modification

For Powell's basic procedure to minimize a positive definite
guadratic form in n iterations, steps 1 to 3 of the first iteration
are unnecessary. Thus, our algorithm omits steps 1 to 3 on the first
iteration, and, subsequently, after each singular value decomposition
(i.e., at the (n1l)-st, (2n+l1)-gt, ... , iterations). Tor this reason,
there are exactly

1+ (p-1)(nl) - n° (%.16)

1inear minimizations, instead of n{n+1l) , between each singular value
decomposition. This modilication is not important for large n , but

numerical results suggest that it is worthwhile for small n .

5. The "resolution ridge" problan

Suppose temporarily that we are trying to maximize a function f(xl,xp)

of two variables by an ascent method. Wilde (19%4) points out that

roundiny, errors in the computation of f may lead to premature termination

because of the "resolution ridge" problem illustrated in Diagram 5.1.
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Diagram 5.1: A resolution ridge

Regarding the surface defined by f{x as & hill, we may reach

l’ Xe)

a point X situated on a narrow ridge, and then try to proceed to a

O 2
higher point by performing linear secarches in certain directions.
Suppose, for exemple, that we attempt linear searches in the EW and NS

directions. The point =x, may not be at the true minimum of f in both

0
these directions but, hecause of the effect of rounding errors in

evaluating f , our one-dimensional search procedure will only attempt to

locate the position of maxima to within some positive tolerance & (see

P2
5}
o]

1.5
Section 2). TLet Xp Ky they s X=X -Be , X ,:x0+5e2 , and

x, = X, -be

3 0 A As shown in the diagram, it may happen that f(xo) is
~ —~ cvide —

greater than cach of f(fN) , f(fs) , f(fE) and f<fw) » S0 %, is

within the tolerance & of loecal maxima in both of the search directions,

even though x. may be a long way from the true maximum,which could be
ot

reached by elimbing up the ridge. The same problem can arise with

functions of more than two variables, or when we are looking for a

minimuwn rather than a maximum (then we might speak of a "resolution

valley" problem).

1t is elear {rom Lhe diagram that, if we know another point fé
on the ridge, then a linear search in the direction fo -fé will give
a poinl fé with f(fé) > f(fo) s unless the ridge is sharply curved.
This is the motivation for the method suggested by Rosenbrock (1940},
and improved by Davies, Swann and Campey. ({See Swann (196h4), and also
Andrews (1959), Baer (19067), rletcher (1965, 1949e¢, d), Osborne (1969),

Palmer (19%9), Powell (1958a), Rice (19%6), and Section T7.)

Finding another point on the ridge

T7f linear searches from the point x fail to give a higher point,

0
and a resolution ridge is suspected, then the following strategy may be
successful: take a step of length, say 105 , in a random direction

from fO , Teaching the point ER Then perform one or more linear
searches, starting at Xp o and reaching the point xé As the diagram
shows, %he point 36 is likely to be on the ridge, so a linear search in

the direction x. - xé may be successful.

¢]
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Although he does not refer to the resclution ridge problem,
Powell (1964) incorporates such a strategy in his stopping criterion.

We propose to use this stretegy during the regular iterations as well.

Incorporating a random step into Powell's basic procedure

Suppose that we arc commencing iteration k of Powell's basic
procedure, counrting eilher from the start or from the last sinpular
value decomposition, and 2 <k < n . To ensure quadratic convergence,

we must search along the directions . in step 1 of

Yot

iteration k , bLut the searches along directions are not

Y1t ineeel
necessary for quadratic convergence. (They are desirable for other
reasons: see Fletcher {1965) for & comparison of Powell's method and
Smith's method.) The quadratic convergence property still holds if,
at step 1, we move to any point

ol

w1l - Yo .El Bluy (5.1)

with Bi ﬁ 0 , before performing linear searches in. the directions

un—k+2""’un . Thus, before performing linear searches in directions
Wppennyl at step 1 of iteration k , we may try the random step strategy

as described sbove. Procedure praxis does this if the preblem appears to
be ill-conditioned, or if the procedure is about to terminaie (i.e., if
previous linear searches have failed to find a better approximation to
the minimum}.

This modiTicatign is not necessary for well-conditioned problems,

btut numerical resulls show that it 1s essential in order to ensure that a
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good approximatlon to the minimum is found for very ill-conditioned
problems. TFor example, consider minimizing

(x) = J_cTAf s (5.2)

where A4 is & 10 by 10 Hilbert matrix (i.e., aij = 1/{i+j-1)

for 1<1i, j<10), with a condition number of 1.6X 1015 . Using

_15)

long real on an IBM 360 computer {machine precision 16 » and
starting from (l,l,...,l)T , our algorithm successfully found the
position of the minimum of f£(x) Lo within the specified tolerence

bl

of 1077 , bub it failed without the random step strategy. (For further

details, sce Section 7.)

Extrapolation along the ridge

IT the function minimizer has been climbing a ridge for several
camplete cycles, so the quadratic approximstion to ¥ is gbviously
inadequate (or the maximum would already have been found), then it may
be worthwhile to try an extrapoulation along the ridge. Suppose that
immediately before Lhree successive singular value decompositions, the best
approximagtions to the maximum are x' , x" , apd x™ , with
d, - Hf' -’j"l\g >0 and &, = Hic" - \\2 >0 . Numerical tests indicate
that curved ridges are often approximated fairly well hy the space-curve

given paremetrically by

A(n-d, ) (k+dD)(X—d ) A(nra )
X()\) x' - 1 LIS a m , _5
2T g agray (5.3)

- do(d0+dl ~ dody o

which is chosen because f(-do) = f' , x(0) = fﬂ , and f(dl)

singular value decompositions,

= xm

Hence, before the 3rd, blh, 5th ...
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procedure praxis (see Section 9) moves to the point X(KO) » where g
is chosen to approximately minimize f(x{N\)) . Ay 18 computed by the

same procedure that performs linear searches.

6. Some further details

In this section we give some more details of the ALGOL procedure
given in Section 9. The eriterion for discarding search directions, the
linear search procedure, and the stopping criterion are described briefly.

(For the sake of clarity, some unimportant details are omitted.)

The discarding criterion

Suppose for the moment that f(x) is the quadraetic form given by
equation (3.7). In steps 2 and 3 of Powell's basic procedure (see Section 3),

we effectively discard the search direction Uy and replace it by

xﬁ - - The algorithm suggested by Powell does not necessarily discard
u, instead, as mentioned in Secticn 7, it discards one of Upyeeesid
W T E, -30 ; 80 as to maximize

IdEt(El .. Eh)\ , (6.1)

where v, 1s given by equation (3.14), after renumbering the remaining
n directions. We wish to retain convergence for a quadratic form in
n iterations, so we are not free to discard any one of WpsreagW o -

At the k-th iteration, for 2 <k < n , we can discard any one of

u

Upyomeply 1y without losing quadratic convergence (see Section 5). TFor
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lack of a better criterion, we choose to discard the direction, from

Upyeenl g s to maximize the resulting determinant (6.1).
o . . _ _ s
Suppose that the new direction X =X, Zu o satisfies
u n 1L
+1 i
S = o ~L . (6.2)

T 1/2 Z: i T 1/2
(A% ) = (u;au,)

Then, the effect of discarding u, and replacing it by u (and then

ntl

renumbering the directions) is to mulbiply the determinant (6.1) by 1ail s
so our criterion is to choose i, with 1 < i < n-ktl , so that |ai|

is at its maximum. If Bl""’Bn are as in the description of Powell's
basic procedure (see Section 3), and the linear minimization with step

Bu, decreases f(x) by an amount &, , then, from (5.7),

A =B . u Au, , (6-5)

s0 IZ;/ ‘Bii may be used ms an estimate of (uZAui)l/2 (1r ﬁi =0

then we use the result of a previous iteration.)
Suppose that the random step procedure described in Section 5 moves

from fO to

Tl

LORE R NE AT (6.4
i=1

-
before the linear searches in the directions ul,...,un are performed.

Then

Il
LI NSl M CTRE AU | (6-3)

. and the B! of equation (5.1) are given by
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B.try i 1l <i<n-kl
T | } (6.6)
' if n-k+2 <1 <n .
From (6.2), (6.3) and (6.5),
T /e .
()70 = (B v 7)) rg;/ el s (6.1

50 wermﬁst discard direction Ei » 1L £1i<n-ktl, to maximize the
modulus of the right side of {(6.7). BSince this does not explicitly

depend on the matrix A , the same criterion is used even if f is not
necessarily a quedratic form. Note Lhal our criterion reduces to Powell's,
apart from our restriction thet 1 < n-k+l , if there are no random steps,
1l.e., il 71 =0 for 1 =1,...,n . Quadratic convergence is guaranteed

(apart from the effect of rounding errors) unless, for some X - 2,...,n ,

Phoer = 0 (6.8)

at iteration k .

The linear Eearch

Our linear search procedure is similar %o that suggested by Powell

(196h) . wWe wish to find a value of * which approximately minimizes
O - £(x, ¢ ) (6.9)

wihere the initial point X and direction uw £ 0 are given, and

¢(0) = f(xo) is already known. If a linear search in the direction

i E

has already been performed, or if u resulted from a singular value

decomposition, then an estimate of @"(0) is availabie. A parabola

P(AN) is fitted to @(\) , using ®(0) , the estimate of @"(0) if

23h
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available, and the computed value of ¢(A)} at another peint, or at two
points if there is no estimalc of ©"(A). If P(*») has a minimun at
=%, and @(h*) < @(0) , then 2*  is zccepted as a value of A 1o
approximately minimize (6.9). Otherwise N is replaced by k*/E s
¢(AK) is re-evaluated, and the test is repeated. (After a number of

unsuccessful tries, the procedure returns with h = 0 9

The stopping criterion

The user of procedure praxis provides two parameters: t (a positive
absolute tolerance), and € (i.e., macheps , the machine precision);

and the procedure allempts to return x satisfying

he-uly < MR, e, (6.10)

where y 1is the posilion of the Lrue local minimum near x . The
exact form of the right side of (6.10) is not important, and could
easily be changed if desired. Tt was chosen because of the analogy with
the one-dimensional case (see Chapter 5). .

It is impossible to guarantee that (6.10) will hold for all
functions f , or cven for f which are CQ near p . Our stopping
criterion is, however, rather cautious, and (6.10) is satisfied for all
numerical examples discussed in Section 7, with the sole exception of

the extremely ill-conditioned problem

f(x) = xTAf R (6.11)

where A is & 12 by 12 Hilbert matrix, with a condition number
o~ 1.7 x1016 > et ~ hx lO15 . In most cases the stopping criterion

is over-caulious, and some unnecessary function evaluations are performed.
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Let us remark, as docs Powell (1964), that the stopping criterion is
not an essential part of our algorithm, so an improved criterion could
easily be incorporated.

Let %' be the current best approximation to the minimum before an
iteration of the basic procedure, and let x" be the best approximation

after the iteration, i.e., n linedr searches later. We test if
2t -t < MOt (6.12)

The stopping criterion is simply to stop, and return the approximation

x" , if (6.12) is satisfied for a prescribed number of consecutive
iterations., The number of consecutive iterations depends on how cautious
we wish to be: 2 1is reasonable, and was used for the examples

described in Scclion 7. Berause of the random step strategy described
in Section 5, and always adopted if (6.12) was satisfied on the previous

iteration, there is no need for a more complicated criterion, such as

the one used by Powell (1964).

T- Numerical results and comparison with other methods

The ALGOL W procedure "praxis", given in Section 9, has been tested

on IBM 360/67 and 3(0/9l computers with machine precision 16_13 .

In
this section we summarize the results of the numerical tests, and compare
them with results for other methods reported in the literature. Our
procedure has also been translated into SATL (an extension of AIGOL:

see Swinchart and Sproull (1970)) and used to solve least-squares

parameter-fitting problems with up to 16 variables cn a PDP 10 computer
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. - -26 . . .
(machine precision 2 ) . The parameter-fitting problem is described
in Sobel (1970).

Table 7.1 summarizes the performance of procedure praxis on the
test functions desceribed below. In all cases the tolerance t = l()_5
and macheps = 16_15 . The table gives the number of variables, n ;
the initial step-size (a rough estimate of the distance to the minimum}),

h ; and the starting point, x S0 that the results can be compared

2007
with those of mcthods with a different stopping criterion, we give the
number ne of function evalnations, and the number n, of linear

searches (including amy parabolic extrapolations), required to reduce
f(f) -f(E) below 1070 ; where f(u) is the true minimum of f

As f(f) was only printed out after each iteration of the basic procedure,
i.e., after every n linear minimizations, the number of function

1Q

evaluations required to reduce f(x) -f(u) to 10~ is often slightly

less than n

# s S0 we also give the actual value of f(x) - £(p) after

n. funetion evaluations. Tinally, the table gives u , the estimated
condition number of the problem. Except for the few cases where it is
easily found analytically, w» is estimated from the computed singular
values, and may be rather inaccurate.

For those examples marked with an asterisk, the random step st?ategy
was used [rom the stert. (In the initialization phase ¢f procedure
praxis, the variable "ille" was set to true.) For the other examples
the provedure was used as given in Section 9 (with "ille" set to false
initially). Although the automatic scaling feature (see Section 4)
reduces n. by about 25 percent for some of the badly scaled problems,

this feature was swilched off for the examples given in the table. (The

bound "scbd" of equation (L4.15) was set to 1 .)
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Definitions of the test functions, and comments on the results

sumarized in Table 7.1, are given aflter the tablae.

A cautionary nate

When comparing different minimization methods, such as ours,
Powcll's and Stewart's, the reader should not forget that the mumerical
results reported for the methods may have been obtained on different
computers (with different word-lengths), and with different limear search
prrocedures. The effect of different word-lengths should only be
significant in the final stages of the search, when founding errors
determine thc limiling accuracy attainable, excepl for ill-conditioned
problems (=ay u > 1oh} - This is another reason why we prefer to
coﬁsidef the number of function evaluations required to reduce f(x) _f(b)
10)

t0 a reasonable threshold (say 10~ s rather than the number required

for convergence.

Because spparently minor differences in the linear search procedures
can be guite important, Fletcher (1965) prefers to consider the number
of’ linear searches, n instead ¢f the number of function evaluations,
Ne - This approach discriminates against methods, such as Towell's,
which use most of the search directions several times, and can thus use
second derivative estimates to reduce the number of function evaluations
réquired for the second and leter searches in eﬁch directioﬁ. Note that,
for the examples given in Table 7.1, nf/nl lies between 2.1 and 2.7,
but it would be at least 3.0 for methods which do not use secaond
derivative information, il the lineay search involves fitting a pérabola

and evaluating f at the minimum of the parabola. Also, there are

promising methods which do not use linear searches at all (see Broyden (1957),
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Davidon {1908, 1969), Coldstein and Price (1967), and Powell (1970e)),
and these methods could presumably be adapted to accept difference
approximations to derivatives. Thus, we prefer to compare methods on
the basis of the number of function evaluations required, and regard

the linear search proccdure, if any, as an integral part of cach method.

Table 7.1: Results for various test functions

Function n n fg ng ny f(f)'f(ﬂ) n
Roseubrock | 2 (-1.2,1) 120 Y71 6.61'-18 2508
Rosenbrock | ? 31 (3,3 110 hel 8.531-17 2508
Rosenbrock | 2 12 | (8,8) 181 671 9.717-18 _2508
Cube 2 1] (-1.2,-1) 177 e8| 7.18'-18 10018
Beale 2 1| (e.1,0.1) 5k 22| 2.00'-15 162
Helix 3 1| (-1,0,0) 155- 61|l 1.75'-11 500
Powell 3 1 (0,1,2) 55 231 1.99'-11 28
Box¥* 3 20 (0,10,20) 100 |l 2.37v-13 8300
Singuler* b 1| (3,-1,0,1} 25k 06| g.767-11 @
Wood* 4 0| -(3,1,3,1) 4sp 191| 6.06'-1k 1400
Chebyquad 2 fo.1 f x, =i/ (n+1) 31 12 7-89'-20 1.3
Chebyquad oo X = i/ (n+1) Th »2| f.8g'-11 7
Chebyquad 6 (0.1 Xy = i/(o+1)] 223 101} 7.00'-13 50
Chebyquad 8 |o.1 X, - i/ {ntl)| 326 1h7| 6.32r-11 2009
Watson¥* 6 1 oT 316 1hs5) 2.83v-12 86000
Watson* 9 1 of 1184 | shki| 3.18'-11 | 1.7'9
* For these results we set 1ille := true in the initialization

phage of procedure praxis, und the random number generator was

initialized by calling raninit(2) in proccdure test.
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Table 7.1 continued

Function n| n - ng | ony | B =) "
Tridiag [ NT 27 11 0 9.3
Tridiag 61 1o QT 51 | o2 0 649
Tridiag 851 16 gT 126 55 0 115
Tridiag 10| 20 ob 201 89 | 1.56t-15 75
Tridiag 12| 2y o' 259 118 | 2.23'-15 250
Tridiag 6| 3 o* %388 222 | 1.267-13 438

- Tridiag 20 | 4o QT 805 379 0 677
Hilbert 21 10 (1, ...,1) 1l L | 3.08"-15 19
Hilbert 41 10 (Tsenuyl) 50 22 | 6.111-15 1.5'%
Hilvert &1 10 (L,...,1) 153 58 | 1.50v-11 1.5'7
Hilbert 81 10 (1y...,1) 262 119 | 8.14'-11 1.5'10
Hilvert* 0] 10 {(L,...,1) 592 267 | 7.8kr-11 1.6'13
Hilbert* 12| 10 {1y..051) 731 Z28 | 1.98'-11 1.7116

+ PFor these results

we sct ktm ;= 4

the stopping criterion was more conservative:

in the initialiyation phase of procedure praxis.
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Definitions of the test functions and comments on Table 7.1

Rosenbrock (Rosenbrock (1960)):

2

£(x) = 100(x, -xi)2 +(1-x)® . (7.1)

This is a well-known function with a parsbolic valley. Descent methods
tend to fall into the valley, and then follow it around to the minimum

at (1,1) . Details of the progress of the algorithm, for the starting
point (-1.2, 1) , are given in Table 7.2. 1In Diagram 7.1 we compare
these results with those reported for Stewart's method (Stewart (1967)),
Powell's method, and the method of Davies, Swann and Campey (as reported
by Fletcher (1965)). The graph shows that our method compares favourably
with the other methods. Although the funetion (7.1) is rather artifiecial,
similar curved valleys aften arise when penalty functiocn methods are used
to reduce constrained problems to unconstrained problems: consider
minimizing (1 -x1)2 sy with the constraint that x, = xi , by a simple-

minded penalty function method.

Cube (Leon (1966)):

£(x) - 100(x, ~xi)2+ (1-%)° (7.2)

This function is similar to Rosenbrock's, and much the same remarks

apply. Here the valley follows the curve x_ = x3 .

2 1
Beale (Beale (1958)):
3 1.2
f(x) = »):1 (e) -x (-0 (7-3)
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where Cl = 1.5, c2 =2.25% , ¢

approaching the line x

3 = 2.625 . This function has a valley
5, =1, and has a minimum of 0 at (5, %YT.
Kowalik and Osborne (1968) report that the Davidon-Fletcher-Powell
algorithm reduced f to 2.18x10°"" in 20 function and gradient
evaluations (equivalent to 60 function evaluations if the usual (m+1)
weighting factor is used), and Powell's method required 86 Punction
evaluations to reduce f +to 2.9h7x10—8 . Thus, our méthod compares

favourably on this example.

Helix (Fletcher and Powell (1963)):

£(x) = 100((x, -100)%+ (r - 1)) +x§ , (7.1
where
r f'(xg + xe)l/2
- 1 ol (7-5)
and
arctan(x,/x_) if x>0 ,
2n0 = @l 1 (7.6)
,n“+arctan(x2/xl} if x, <C

This function of three variables has a helical valley, and a minimum
at (l,O,O)T. The results are given in more detail in Table (.3 and
Diagram 7.2. For Lhis example our method is faster than Powell's

method, but slightly slower than Stewart's.

2h2

77

Powell (Powell (1964)):

X, +x 2
f(x) =3 - (b—lﬁ) - sj_n(% )[2)(5) - exp - ( ];[ 2) - 2] <(7 -T)
- 1+ (xl_XQ)l_ D

For = description of this function, seec Powell (1964). Perhaps by good

Juck, our procedure had no difficulty with this function: it found the

true minimum quickly and did not stop prematurely.

Box (Rox (1966)):

10 {exp(-ix,/10) - e):p(-ixg/lo))
£(x) - Y . : C (1.8
Y di= -*3(exp(-1/10) - exp(-1))
This function has minima of 0 at (1, 10, ;)T, and also along the

line {(h,h,ofﬁ . (Our procedure found the first minimum.) Kowalik

" and Osborne (1968) report that Powell's method took 205 function

9

evaluntions to reduce f to 3.09x10 7 , so our method is about twice

es fast. Our method took 79 function evaluations to reduce f to

7

2.20 x 10 , 80 1t is faster, in this example, than any of the methods

compared by Box (1966), with the exception of Powell's method for sums
of sguares (Powell (1965)). See Lhc comment in SBeclion 1 about special

methods for minimizing sums of squares:?

Singular (Powsll (1962)):

£x) (5 205)% 5y =)0 (- 2x) "+ 200k, )" L (7.9)
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This functicn is difficult to minimize, and provides a severe test of
the stopping criterion, because the Hessian matrix at Lhe minimum

{(x = 0) is doubly singular. The function varies very slowly near O

in the two-dimensional subspace {(ibkl? A Ke, kE?} . Table 7.4

and Diagram 7.3 suggest that the éiéé?ithm converges only linearly,

as doés Powell's algorithm. It is iAgeresting to note that the output
fram our procedure would strongly suggest the singularity, if we did not
know it in advance: after 219 function evaluations, with

f()ur.) = 7.6’?)(10-9 ; the-computed eigenvalues were 101.0 , 9.999 ,
0.003790 , and 0.00101%k . (The exact eigenvalues at 0 are 101, 10 ,
0, and O .) After 38% function evéluations, with £(x) reduced to

1 , the two smallest eigenvalues were 1.50x 10_7 and

1.02x10°
5.98 x lO_8 . Thus, our procedure should enable singularity of the
Hessian matrix to be detected, in the unlikely event that it occurred

in & practical problem. (For one example, see Freudenstein and Roth

(196%) .)

Wood (see Colville (1968)):

f(f) = 1DO(x2--x§)2 + (1‘-xl)2 + 9O(xh -xg)2 + (1--x5)2 +
1.1 (xy - D2+ (g, -]+ 1080, - 1y -1) . (7.10)

This function is rather like Rosenbrock's, but wilh four variables
instead of two. Procedures with an inadequate stopping criterion may
terminate prematurely on this function (see McCormick and Pearson (1969)),

but our procedure did find the minimum at p = (l,l,l,lf .

2hl R

-7
Chebyquad (Fletcher (1965)):

f(x) is defined by the ALGOL procedure given by Fletcher (1965).
As the minimization problem is still valid, we have not corrected a

small error in this procedure. (The procedure does not compute exactly

“what Fletcher intended.) In contrast to most of our other test functions,

which are designed to be dAifficult to minimize, this function is fairly
easy to minimize. For n = 1(1)})7 and 9 the minimum is © , for other
n it is nonzero. (For n =8 it is approximately 0.003516873/2568 .)
The results given in Table 7.5, and illustrated in Diegrams 7.4 to 7.7,
show Lhat our method is faster than those of Powell or of Davies, Swann

and Caﬁpcy, but & little sloﬁér than Stewart's.

Watson (see Kowalik and Osborne (1968)):

2 2 2
f(f) =x]+ (xz-xl-»l) +

2 2
20 I . 52D n . 5.1 c
. ~1,4d i-1.4d
L [E (J'l)xj(%;g," -( v xj(e—g ) -1 . (7.11)
i=2 | j=2 - j=1
Here a polynomial
p(t) =% + x b+ ..+ x g2t (7.12)
1 2 n :
is fitted, by least squares, to approximate a solution of the
differential equalion
2
dz/at = 1+ z2° , (7.13)
with z(0) =0, for te[0,1] . (The exact solution is =z = tan(t) .}

‘ ; -1
Because of B bad choice of basis funchions {l,t,...,tn 1 , the
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minimization problem is 1ll-conditioned, and rather difficult to solve.
For n = 6, the minimum is f(p) :2.98767005555x10'3 at

3

B~ (-0.015725, 1.012435, -0.252992, 1.260430, -1.515729, 0.992996)T .

6

For n =9, f(tl) ~ 1.399760138 x 10™ , and Moo (-0.000015, ©.99979%0,
0.01h76k, 0.1h6742, 1.000821, -2.617751, L.10Who3, -3.1h43612, 1.052627)T .
(We do not claim that a1l the figures given are significant.)
Kowalik and Osborne (1968) report that, after 700 function
evaluations, Powell's method had only reduced f to 2.434x 1()_5
(for n = 6) , so our method is at least twice as fast here. The

Watson problem for n =9 is very ill-conditioned, and seems Lo be a

goed test for & minimization procedure.

Tridiag (see Gregory and Karney (1969), pp. 41 and 74):

£(x) = x'Ax - Bx, (7.14)
vwhere
N 0 |
-1 2 .1
-1 o2 -1
A= a1 2 1 (7.15)
0
-~

This function is useful for testing the quadratic convergence property.

The minimum f(p) = -n occurs when p 1s the first column of A-l ; i.e.,
T
p=(n, n-i, n-2, ..., 2, 1) (7-16)
246
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The results given in Table 7.1 show thal, as expected, the minimum is

found in n~ or less linear minimizations. The eigenvalues of A are

. B 2, Jo .
just }»j =4 cos (2n+l) for j = 1,..-,n .

Hilbert

r(x) = )fTAf ) (7.11)

where A is an n by n Hilbert matrix, i.e.,

ayy = /(13- (7.18)

for 1<i, j<n. f{x) can be computed directly wilhout storing
the matrix A . Like (7.1}, (7.17) is a positive definite quadratic
form, but the cendition number increases rapidly with n . Because of
the effect of rounding errors, more than n2 linear minimizations were
required to reduce f +to 10-]'O , except for n = 2 . The procedure
successfully found the minimum p = O , to within the preseribed
tolerance, for n <10 . TFor n - 12 , some components of the computed

minimum were greater than 0.1 , even though f was reduced to

2. 76 % 10_15 . This i1llustrates how ill-conditioned the problem is!

Some more detailed results

Tables 7.2 to 7.5 give more details of Lhe progress of our pfocedﬁrc
{B) on the Rosenbrock, Helix, Singular, and Chebyquad funetions. In

Diagrams 7.1 to 7.7, we plot
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b = 2og,o(£(x) - £(1)) (7-19) peln e el
against n the number of function evaluations. Using the results [ﬁii;ﬂ ?7 n ! Vf(xj [ ﬂ #Vﬁ 1 x‘*‘—“wﬁr—-"«th**T
gl £ ‘} - 5 1 : 2 ! 3
given by Fletcher (1965) and Stewart (1967), the corresponding graphs ' 1 t o % 2.50'% : 1000000 % 0.000000 " 0.000000 1
for the methods of Davies, Swann and Campey (D), Powell (P), and i W 5 i Lese | 1.000000 ‘ 5000000 5 000000
Stewart (S), are also given, for purposes of comparison. ! 03 f 9 % 1.181 % 0.5638%2 ? 1.952025 i 1.75949%
36 AL i 5.2210 f 0.311857 i 1.000020 ! 2.096124
Table 7.2: Rose"bro':k_ e ’ bl l 18 | h.obo { 0.30553h (1 0.967190 E 1.9871k5
n. | o £(x) I x, x, fost e S 5.78'0 ‘ 0.347506 | 0.907981 i 1.922708
1 0 2.hera -1.200000 § 1.000000 ‘ 65 ' 27 ;f 3.0L'0 } 0.847973 ; 0.734103 ’ 1.0745935
11 ) L.14'0 i _1.0%4611 !‘ 1.071270 [ Bz 33 ; 9.467-1 ] 0.816717 - 0.566910 1 0.969820
o L8 | a0 | 0.61158 | 0.621199 ! 57| 366 | 0-96573k {1 0.5h2025 RN
S 2.59%0 f .5h9031 E 0.258076 . 105 u% t 20467 -1 i 10062k 1 0.239418 0.364506
b5 4 17 | 1.6770 i -0.268211 ; 0.0L6503 E 113 b7 ! 2.8l -2 ; 0-99581»5- : 0.091699 ! 0.153178
j 58 22 1.07'0 % -0.028125 ‘ -0.010783 ; 126 E 2 l 6.351-3 1-002519 J 0-0k5726 0-072152
72 | 21 | sa1-1 | o.i82602 ! 0.20089 | Bh ST , 8.01'-k 1.002726 4  0.002303 § 0.002966
al 30 27913 E 0.947231 1‘ 0.897130 ] 1h7 63 ? 8.667-6 0.999996 : 0.001853 i 0.002942
o8 37 5.891-1 [ 0.99638L E 0.990382 155 1{ 67 i 1.75'-11 1.000000 ’ 8.hgr-9 ; 2.4y
109 4o 6.69-9 | 0.999991 . 0.99997h L 169 | 73 1 1.2r-20 1.000000 | -6.457-11 ] -9.g2r-11 |
120 | 47 | 6.61'-18 | 1000000 1.000000 ! 178 L ! 1.99' -2k 1.000000 i -1.69"-13 I 247015 ,
2152 50 l 1.131-9% , 1.000000 1.000000 i_aoo _JL 8% ! 1.91“—21#‘ 1.000000 [ -1.601-13 ; -2.537-1% é
% 155 L 57 | k.bpr-zh f 1.000000 1.000000 T
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Table 7.4: Singular* Table 7.5: Chebyquad
BRI Y n -2 no b
i 1 z , T 1 ) R e e e e
1 ! 0. zape | ok | 106 J 9.761-11 oy 0 () ] . ll' n T £(x)
9o 6T a8 B D1 2.3l bt — -
1 7 " ‘ 17 0 | 1.98-1 1{ o ; T7.27-2
200 1 ©o7.960 boesh o116 k11013 | 1 i 7 } i
| I ' i ' i AN L.531 -3 oy 6 | 1.h3re2
Lo : 16 7.75'0 Po269 L 123, 2.61'-1h ; L i
5 i - % f ; 22 i 8 1.8g1-8 27 1 11 1 1.501-3
58 L2z o 2.9Lk70 ) S 279 ; 128 | 6.430-15 ! : ;
! ' 5 31 i i t 101z .89"-20 © P38 L 16 1 1.00'-k
68 . 27 ¢ 9.86'-1 | 289 : 133 B.88'-16 ? ; 59 ]; : !
‘ ; 3‘ E f IR | L.8y1-2L N I B b.oar g
78 32 ¢ L.shel . 308 ¢ 1o 7.350-26 2 ’ | ‘
" P o 5 ; 5 0 oz | L.Bovgh 6 | 27 | 1.86'-8
o | 38 | 6.920-3 | 319 . 1h5  3.870-16 | AN i i i
TR ) i’ | 7| | L I B
10 ’ 5 ¢ 1.18t'-3 330 150 9.92°- . | |
i : ; ] ; - z ! il < (0.2113249, 0.78B6751) R B Y
ELE A R L {358 | 157 9.92-17 | -
| » | f | ! 58 43 | 1.88'-16
i 29 | 55 | B.257-6 | 373 1 162 1.65'-17 L _ ]
by 0 & [ oeazt-6 } 8% | 167 . 1.020-17 o (01006728, 0.M0f2037,
e 65 | 207 | o | v | um T g.gsias ' 05957963, 0.8973272)
{ | i ‘ : .
Pk 1o 7.910-8 b2l | 179 . 6.021-23 | n=-6 = 6 (continued)
| : j ! j ‘ , i N e N e e
: 17k } 77 ¢ 3.95'-8 ¢ b36 18k 5.801-23 | %—nf ] nl! f(f) ¢ I o “1‘} (g)
! ' i ' : . : - _i T I ]
Io18s 8 | 3.00'-8 | heh 191 5.891-03 ‘ F—_l 0\ IS - kflﬁl 58! 2.1h'-5
; i ! ; ! ! ! H i ; ! :
w9 | w0 | 50 L6 | 98 sg9rees | E AT 3 s ] s
: : § : | ! i ! :
1 209 . 91* i j.89'-8 1 ; 37 i 15 | 1.801-2 ; 159 72{ 2_711_6
| 219 i 9 | 7679 | Cos1 | o2 1.1 | E 8L 80 . 13ty
L et el e e n s ‘ 1‘ i ;'
Pog6 ’ 29 7 5.69'-3 5 ‘ i 195 | 87 ¢ 6.59'-10
T ~ (=9.73 % 1w07f B 9.75><10'8 , 5.31x 1077 ; 5.51)(10‘7) , lying 81 ; 26 ] 2.070-3 } | 200 [ gk 1.387 210
approximately in the subspace {(1on,; X, Ay 2], ms expected. ' 107 " { aor. | oos 01} 7.000-15
1 M Mor Rl ’ 9.89'-5 | } i
¥ See the comment under Table 7.1. E‘Tl [ 51 uT -5 ) } 538 108 J‘L 377 -15
nT (0.066877, 0.288741, 0.366682, 0.633318, 0.711253, 0.933123)
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Table 7.5 continued Diagram 7.1: Rosenbrock
Key: B: Our method,
n=23 -
R | ‘ i - | . — D: The method of Davies, Swann and Campey,
n, o on, i fx n, ! n, | f(x )
£ 1 - ~) ! f i 1 [ (N) ; as given by Fletcher (1965),
Sl , » ] - R E I .
1 ) o 0.0386176982859 ? 208 .92 ‘[ 0.00552699687 47 , ' P: Powell's (196%) method, as given by Fletcher (1945),
29 1 10 0.0171124413073 ! oPRh " 101 i‘ 0.005513139249k , T §: Stewart's method, as given by Stewart (1967).
47 ; 19 : 0.0109131815974 ol 3 110 | 0.0035180637576 | a; A = 10glo(f(§)._f(g))
65 1 28 | 0.0102860269896 262 | 119 0.0035176364629 i
f _ i !
8 1 37 0.0093337335931 ~80 ; 128 0.0035171964541
t ) e i ,:
102 | w6 0.0071908595069 io308 1 158 | 0.0035168743745
[ : J i
12y } 55 ©  0.0049952481593 fo326 1 IW7 . 0.00351687378%0
1L } 6 0.00hL13R512463 345 ! 156 0.0035168737290
It {74 | ©.00379koh16125 364 165 J 0.0035168737288
i S g RO
190 J 83 i 0.00253907221.59

L (0.043153, 0.193091, 0.P66329, 0.500000, 0.500000, 0.733671,

0.806910, ©.9568L7)

-2 -+~ + 4 +- + r >
250 0 25 50 75 253 100 125 150 Ny
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7T

Diagram 7.2: Helix

Key: B: Our method,
D: The method of Davies, Swann and Campey, as given
by Fletcher {1965},
P: Towcll's (1964) method, as given by Fletcher (136h),
9: Stewart's method, as given by Stewart (1967).

sdo okt
ne

-24%7

7.7

Diogram 7.5

Singular (Powell's function of four variables)

Key:

B:
D:

B
5:

& = log (£(x) - £(y))

-+~

Qur method,

The mecthed of Davices, Swann and Campey, as

given by Fletcher (1965),

Powell's (1964) method, as given by Fletcher (1965},

Stewart's method, as given by Stewart (1967).
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Diagram 7.5: Chebyquad, n = 4

7T
. Key: H: Our method,
d e b =2 ' i
D:Lagr-un_T b Che yquad; 1 D: The method of Davies, Swann and Campey, as given
] by Fletcher (1965)
H H ) sthod » 7
Key: H: Ourmethod, P: Powell's (196k) method, as given by Fletcher (1065),

D: The method of Davies, Swamn and Campey, as given 8: Stewart's method, as given by Stewart (1967).

by Fletcher {1963),
P: Towell's (1964) method, as given by Fletcher (1965), A= loglo(f(x) -f(u))
Stewnrt's method, as given by Stewart (1967).

8 = log, (£(x) - f(g))

=
-4

-

-16 " ! - + +
: 0 2% 50 75 100 125 n
256 ' 257 f
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Diagram 7.6: Chebyquad, n = & . _ Diagram 7.7: Chebyquad, n =8

- Key: B: Our method, . .
§ Results for Stewart! d not lab
D: The meclhod of Davies, Swann and Campey, as given ’ ( * s method not available.)

by Fletcher (196b), Xey: DB: Our method,

P: Powell's (1u6l) method, as given by Fletcher (1965),
S5: Stewart's method, as given by Stewart (1967). D:  The method of Davics, Swann and Campey, as given
A = loglo(f(x) - £(u)) by Fletcher (1965),
i = b p P: Powell's (1964) method, as given by Fletcher (1965).
fa) .
b = Tog, (£(x) - (1))
D
P
D
-1
+
, =14 +— + + 1 + - + + -+ e >
0 100 200 00 00 00 n
—lG-é——C—F——k—+——+ﬁﬁ,i——-4-—~—% ¥ + + > 3 4 5 f

100 200 300 400 500 n,
258
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8. Conclusion

Powell (1964) observes that, with his determinantal criterion for
accgpting new search directions f{see Section 3), lhere is a tendency for
the new directions to be accepted less often as the number of variables
increases, and the quadratic ccnvergence property of his basic procedure
is lost. OQur aim was to avoid this difficulty, keep the gquadratic V
cbnvergence property, and ensure that the search directions continue to
span Lhe whole space, while using basjcally ihe same method as Powell
{and Smith (1962)) to generate conjugate directions.

The numerical results given in Section 7 suggest that our algorithm
is iastcr'bhan Powell's, and comparable to Stewart’'s, if the criterion
is the number of function evaluations required to reduce f(f) to a
certain threshold. Also, our algorithm seems to be reliable even for
very ill-conditioned problems like Watson (n = 9) and Hilbert (n = 10) ,
while Stewart's method breaks down because of numerical difficulties on
same functions, e.g., the Rosenbrock and Singularhfunctions (see
Stewart (1967)). However, we should not try to conelude too much from

the numerical results: see the warning in Section 7.

Theoretical convergence results

Suppose that all arithmetic is exact {i.e., there are no rounding
errors), and consider our algorithm with the slopping criterion removed.
Oince the algorithm keeps on performing linear searches along n
orthogonal directions, the same conditions that ensure convergence of
the method of coordinate search to a local minimum will ensure convergence

of our elgorithm. In particular, the algorithm will converge to the

-9

3
{unique) mirimum for all functions [ which are ¢° , strictly convex,

and satisfy
lim f(Ae) =+ = (8.1)
AN oen -
for all nonzero vectors e . Of courSe, this result is of little

practical interest, for in practice rounding crrors may be very
important: see Section 5.

Tt is plausible that, if the Hessian matrix of f i& strictly
positive definite at the minimum, then our algorithm will converge
superlinearly. McCormick (1969) shows that this is true for the reset
Davidon-Fletcher-Powell algorithm, provided a Lipschitz condition is
satisfied. Figures 7.1, 7.2, and 7.4 to 7.7 certainly suggest that
convergence 1s superlinear until rounding errors become important. We
do not have a proof of this conjecture though: perhaps additional
conditions on f , or a slight modification of the algorithm, are

necessary.

9. An ALGOL W procedurc and test program

The procedure praxis, plus a driver program and Lest funcetions,
is plven below. The language is ATGOL W (Wirth and Hoare (1966),

Bauer, Becker and Graham (1968)), but none of the special features

 of ALGOL W have been used, so translation into another dialect of

ATGOT, should be straightforward.
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BEGIN COMMENT: LONG REAL C,F,G,H,S$,X,Y,Z:

TEST PROGRAM FOR PROCEDURE PRAXIS. LONG REAL ARRAY E(1l::N);
LWAAAALALLELLLLLLL LS L LSS LSS COMMENT: HOUSEHOLDER'S REDUCTION TO BIDIAGONAL FORM;
: G := X = 0;
LONG REAL PROCEDURE PRAXI!S (LONG REAL VALUE T, MACHEPS, H; FOR 1 := 1 UNTIL N DO
INTEGER VALUE N, PRIN; BEGIN
LONG REAL ARRAY X(#); LONG REAL PROCEDURE F, RANDOM); EC(FI) := G; S := 0; L := 1+1;
BEGIN COMMENT: FOR J 2= 1 UNTIL N DO S := S+AB(J,1)#u2;
' IF 5<70L THEN G := 0 ELSE
THIS PROCEDURE MINIMIZES THE FUNCTION F{X, N) OF N BEGIN
VARIABLES X(1), ... X(N), USING THE PRINCIPAL AX!S METHOD. F := AB{I,1); G := |F F<0 THEN LONGSQRT(S)
ON ENTRY X HOLDS A GUESS, ON RETURN IT HOLDS THE ESTIMATED ELSE -LONGSQRT(S):
POINT OF MINIMUIA, WITH (HOPEFULLY) |ERROR] < H == F+*G-5; AB(1,1) := F-G;
SQART(MACHEPS) | X| + T, WHERE MACHEPS 1S THE MACHINE FOR J := L UNTIL N DO
PRECISION, THE SMALLEST NUMBER SUCH THAT 1 + MACHEPS > 1, BEGIN F := 0;
T IS A TOLERANCE, AND 1.1 1S THE 2Z-NORM. H IS THE MAX|MUM FOR K := | UNTIL H DO F = F + AB(K,1)sAB(K,J};
STEP S12ZE: SET TO ABOUT THE MAXIMUM EXPECTED DISTAMCE FROM F = F/H;
THE GUESS TO THE MINIMUM (1F H 1S SET TOO SMALL OR T0O FOR K := | UNTIL N DO AB{K,J) := AB(K,d) + F=AB(K,1I)
LARGE THEN THE INITIAL RATE OF CONVERGENCE WILL BE SLOW). END J
THE USER SHOULD OBSERVE THE COMMENT ON HEURISTIC NUMBERS END §;
AFTER PROCEDURE QUAD. Qel) := G; 5 := 0;
PRIN CONTROLS THE PRINTING OF INTERMEDIATE RESULTS. IF 1{=N THEN FOR J := L UNTIL N DO
IF PRIN = 0, NO RESULTS ARE PRINTED. S := S + AB(I1,J)=*=2;
IF PRIN = 1, F IS PRINTED AFTER EVERY N+1 OR N+2 LINEAR IF S<TOL THEN G := D ELSE
MINIMIZATIONS, AND FINAL X IS PRINTED, BUT INTERMEDIATE BEGIN
X ONLY IF N <= &, F ¢= AB{I1,1+1); G := IF F<O0 THEN LONGSQRT(S)
IF PRIN = 2, EIGENVALUES OF A AND SCALE FACTORS ARE ALSO ELSE =-LONGSQRT(S);
PRINTED. H := F*G-S:; AB(1,1+1) := F-G: )
tF PRIN = 3, F AND X ARE PRINTED AFTER EVERY FEW LIMEAR FOR J := L UNTIL N DO E(J) := AB(!,J)/H;
MINIMIZATIONS. FOR J := L UNTIL N DO
IF PRIN = 4, EIGENVECTORS ARE ALS0 PRINTED. BEGIN S := 0; :
FMIN IS5 A GLOBAL VARIABLE: SEE PROCEDURE PRINT. FOR K := L UNTIL N DO S := S + AB(J,K)*AB(1,K);
RANDOM 135 A PARAMETERLESS LONG REAL PROCEDURE WHI1CH RETURMNS FOR K := L UNTIL N DO AB(J,K) := AB(J,K) + S+E(K)
A RANDOM NUMBER UNIFORMLY DISTRIBUTED IN (0, 1). ANY END J
INIETIALIZATION MUST BE DONE BEFORE THE CALL TO PRAXIS. END §;
THE PROCEDURE 1S MACHINE-INDEPENDENT, APART FROM THE OUTPUT Y = ABS(Q(1)) + ABS{E(C1)): IF Y >X THEN X := Y
STATEMENTS AND THE SPECIFICATION OF MACHEPS. WE ASSUME THAT END 1; ’
MACHEPS«=+(-4) DOES NOT OVERFLOW (1F 1T DOES THEN MACHEPS MUST
BE INCREASED), AND THAT ON FLOATING-POINT UNDERFLOW THE COMMENT: ACCUMULATION OF RIGHT-HAND TRANSFORMATIONS;
RESULT IS SET T0O ZERD; FOR | := N STEP -1 UNTIL 1 DO
. BEGIN
PROCEDURE MINFIT (INTEGER VALUE N; LONG REAL VALUE EPS, TOL: IF G™=0 THEN_
LONG REAL ARRAY AB(»,x); LONG REAL ARRAY Q(=#)); BEGIN .
BEGIN COMMENT: AN IMPROVED VERSION OF MINFIT, SEE GOLUB & H := AB(I,I1+1)*G;
REINSCH (1969), RESTRICTED TO M = N, P = 0. FOR J := L UNTIL N DO AB{J,1) := AB(1,J)/H;
THE SINGULAR VALUES OF THE ARRAY AB ARE FOR J := L UNTIL N DO
RETURNED IN t, AND AB 1S OVERWRITTEN WITH BEGIN S := 0;
THE ORTHOGONAL MATRIX V SUCH THAT FOR K := L UNTIL N DO S := S + AB(I1,K)*AB(K,J);
U.DIAG(Q) = AB.V, FOR K := L UNTIL N DO AB(K,Jd) := AB(K,dJ) + S#AB{K,1I)
WHERE U IS ANGTHER ORTHOGONAL MATRIX: END 4J
INTEGER L, KT; END G;
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FOR J := L UNTIL N DO AB(I,d} := AB(J,I1}) := 0;
AB(I,1) :=1; G := E(1); L :=1
END I;

COMMENT: DIAGONALIZATION OF THE BIDIAGONAL FORM;
EPS := EPS=*X;
FOR K.:= N STEP -1 UNTIL 1 DO
BEGIN KT := 0;
TESTFSPLITTING:
KT := KT + 1; IF KT > 30 THEN
BEGIN E(K) := 0L;
WRITE ('"'QR FAILED")
END;
FOR L2 := K STEP -1 UNTIL 1 DO
BEGIN
L == L2;
IF ABSCE(L))<=EPS THEN GOTO TESTFCOMVERGENCE;
IF ABS(Q(L-1))<=EPS THEN GOTOQ CANCELLATION
END L2;

COMMENT: CANCELLATION OF E(L) IF L>1;
CANCELLATION:
C:=0; 5§ :=1;
FOR | := L UNTIL K DO
BEGIN
F := S*xE(1); E(1} := C+E(1);
IF ABS(F)<=EPS THEN GOTO TESTFCONVERGENCE:;
G :=Q(t); Q1) :=H := IF ABS(F) ¢ ABS{G) THEN
ABS(G)~LONGSQRT(1 + (F/G)=»#2) ELSE IF F = 0 THEN
ABS(F)*LONGSQRT(1 + (G/F)»«2) ELSE 0;
IFH=20THEN G :=H := 1;
COMMENT: THE ABOVE REPLACES Q(I1):=H:=LONGSQRT(G»G+F=F)
WHI1CH MAY GIVE INCORRECT RESULTS IF THE
SQUARES UNDERFLOW OR IF F = G = 0;

C :=G/H; S := -F/H
END t;
TESTFCONVERGENCE:

Z := Q(K); |IF L=K THEN GOTO CONVERGENCE;

COMMENT: SHIFT FROM BOTTOM 2#2 MINOR;

X :=Q(L); Y := Q(K-1); G := E(K-1); H := E(K);

F o= ((Y=2)%(Y+Z) + (G-H)*(G+H))/(2%HwY);

G := LONGSQRT(F+*F+1);

F o:= ((X=Z)e(X+Z)+H*{Y/(IF F<Q THEN F-G ELSE F+G)-H)})/X:

COMMENT: NEXT QR TRANSFORMATION
€ :=8§ :1=1;
FOR | := L+#1 UNTIL K DO
BEGIN
G := E(I); ¥ :=QC1); H := 5+G; G := G*(C;
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E(l1=1) := Z = IF ABS(F) < ABS(H) THEN
ABS(H)*LONGSQRT(1 + (F/H)=+2) ELSE IF F == 0 THEN
" ABS{F)*LONGSQRT(1 + (H/F)*+2) ELSE 0;

IF 2 =40 THEN Z =F :=1;
C := F/2; § H/Z:
F 1= X#C + G*S G 1= =X«5 +GxC; H = Y=5;
Y 1= Y=C;
FOR J := 1 UNTIL N DO
BEGIN
X 1= AB(J,I-1); Z := AB(J,1);
AB{J,1-1) := X*C + Z+*S8; AB(J,1) := -X«5 + I=(C
END J;
Q(1-1) := 2 := IF ABS(F) ¢ ABS(H) THEN ABS(H)+*

LONGSQRT{1 + {(F/H)+=22) ELSE |F F "= 0 THEN
ABS(F)=LONGSQRT(1 + (H/F)=+2) ELSE 0;
IF Z = 0 THEN Z := F := 1;
C 1= FfZ; S := WI1I;
F := C*#G + S*Y; X 1= =S*G + C»Y
END I:
E(L) == 0; E(K) :=F; Q(K) := X;
GO TO TESTFSPLITTING;

CONVERGENCE :

IF Z<0 THEN
BEGIN COMMENT: Q(K) IS MADE NON-NEG;
Q{K) 1= -7;
FOR J := 1 UNTIL N DO AB(J,K) := -AB(J,K)
END Z

END K

END MINFIT;

PROCEDURE SORT:
BEGIN COMMENT: SORTS THE ELEMENTS OF O AND CORRESPONDING
COLUMNS OF V INTO DESCENDING ORDER;
INTEGER K;
LONG REAL S5;
FOR | := 1 UNTIL N - 1 DO
BEGIN K :=1; S :=D(1); FOR J := 1 + 1 UNTIL N DO
IF D{J) > S THEN
BEGIN K := J; S := D(J) END;
IF K > | THEN
BEGIN D(K) := D
BEGIHN S :1= V(
END
END
END
END SORT;

(1): DC1) := S; FOR J := 1 UNTIL N DO
J,o 1) V(J, 1) = V({J,K); V(J,K) =S

PROCEDURE PRINT;
COMMENT: THE VARIABLE FMIN IS GLOBAL, AND ESTIMATES THE
VALUE OF F AT THE MINIMUM: USED ONLY FOR :
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PRINTING LOG(FX - FMIN);
IF PRIN > 0 THEN .
BEGIN INTEGER SVINT; SVINT := INTFIELDSIZE;
INTFIELDSIZE := 10;
WRITE (NL, NF, FX);
COMMENT: 1F THE NEXT TWO LINES ARE OMITTED THEN FMIN 18
NOT REQUIRED;

IF FX <= FMIN THEN WRITEON (" UNDEFINED ") ELSE
WRITEON (ROUNDTOREAL (LONGLOG (FX - FMIN)));
COMMENT: "I0CONTROL(2)" MOVES TO THE NEXT LINE;

IF N >4 THEN I1DCONTROL{2);
IF (N {(= 4) OR (PRIN > 2} THEN

FOR 1 := 1 UNTIL N DO WRITEON{ROUNDTOREAL(X(1))};
I10CONTROL(2); INTFIELDSIZE := SVINT
END PRINT;

PROCEDURE MATPRINT (STRING(80)} VALUE S; LONG REAL ARRAY

V(e,=); INTEGER VALUE M, N};
BEGIN COMMENT: PRINTS M X N MATRIX V COLUMN BY COLUMN;
WRITE (5);
FOR K := 1 UNTIL (N-+ 7) DIV 8 DO
BEGIN FOR | := 1 UNTIL M DO
BEGIN 1QGCONTROL(2);
FOR J := 8#K - 7 UNTIL (IF N < (8+*K) THEN N ELSE 8#K)
DO WRITEON {(ROUNDTOREAL (V (1,J)))
END;
WRITE (" "); |OCONTROL(2)
END
END MATPRINT;

PROCEDURE VECPRINT (STRING(32) VALUE S; LONG REAL ARRAY V(v);
INTEGER VALUE N);

BEGIN COMMENT: PRINTS THE HEADING S AND N-VECTOR V;
WRITE(S);

FOR I := 1 UNTIL N DO WRITEON(ROUNDTOREAL(V(I1)))

END VECPRINT;

PROCEDURE MIN (INTEGER VALUE J, NITS; LONG RFAL VALUE

RESULT D2, X1; LONG REAL VALUE Fl; BOOLEAN VALUE FX);
BEGIN COMMENT:
- MINIMIZES F FROM X IN THE DIRECTION V(«,6J)
UNLESS J<1, WHEN A QUADRATIC SEARCH 1S DONE
IN THE PLANE DEFINED BY QO0, Q1 AND X.
D2 AN APPROXIMATION TD UALF F'' (OR ZERO),
- X1 AN ESTIMATE OF DISTANCE TO MININUM,
RETURNED AS THE DISTANCE FQUND.
IF FK = TRUE THEN F1 IS FLIN(X1), OTHERWISE
X1 AND F1 ARE IGNORED ON ENTRY UNLESS FINAL
FX > F1. NITS CONTROLS THE NUMBER OF TIMES
AN ATTEMPT 1S MADE TO HALVE THE IMTERVAL.
SIDE EFFECTS: USES AND ALTERS X, FX, NF, NL,
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IF J < 1 USES VARIABLES Q... .
USES I, N, T, M2, M4, LDT, DMIN, MACHEPRS;

LONG REAL PROCEDURE FLIN (LONG REAL VALUE L):
COMMENT: THE FUNCTION OF ONE VARIABLE L WHICH 1S
MINIMIZED BY PROCEDURE MIN;
BEGIN LONG REAL ARRAY T(1::N);
IF J > 0 THEN
BEGIN COMMENT: LINEAR SEARCH;
FOR | =1 UNTIL N DO T{I) := X{I) + L=V(1,d)
END
ELSE
BEGIN COMMENT: SEARCH ALONG A PARABOLIC SPACE-CURVE;
:= L+(L - QD1)/(QDO#¢0DO + QD1));
:= (L + QDO)=(QD1 - L)/(0QDO*QD1);
QC := L=(L + 0D0)/(QD1+(QDO0 + QD1)};
[

FOR := 1 UNTIL N DO T(1) := QA*QO({1)+QB+X(1)Y+QC»Ql(!l)
END;

COMMENT: INCREMENT FUNCTION EVALUATION COUNTER;

NF := NF + 1;

FCT, N)

END FLIN;

INTEGER K; BOOLEAN DZ;

" LONG REAL X2, XM, FO, F2, FM, D1, T2, S, SF1, $X1;

SF1 := F1; SX1 := X1:
K = 0; XM :=0; FO :=FM := FX; DZ := (D2 < MACHEPS});
COMMENT: FIND STEP SI1ZE;
S t=0; FOR I := 1 UNTIL N DO S = S + X(|)#x2;
= LONGSQRT(S);
= M4*LONGSQRT(ABS(FX}/(IF DZ THEN DMIN ELSE D2)
+ S=LDT) + MZ2+LDT;
S = MixS + T;
IF DZ AND (T2 > S) THEN T2 := S;
VF T2 < SMALL THEN T2 := SMALL;
1F T2 > {(0.01»H) THEN T2 := 0.01+H;
IF FK AND (F1 <= FM) THEN BEGIN XM := X1; FM := F1 END;
IF “FK OR (ABS(X1) < T2} THEN
BEGIN X1 := |F X1 >= OL THEN T2 ELSE -T72;
F1 := FLIN(X1)
END; .
IF F1 <= FM THEN BEGIN XM := X1; FM := F1 END;
LO: IF DZ THEN
BEGIN COMMENT: EVALUATE FLIN AT ANOTHER POINT AND
ESTIMATE THE SECOND DERIVATIVE:
X2 := IF FO < F1 THEN =Xl ELSE 2=X1; F2 = FLIN(X2);
{F F2 (= FM THEN BEGIN XM := X2; FM := F2 END;
D2 = (X2u(F1l - FO) - X1*(F2 - FO)}/{X1aX22(X1 - X2))
END;
COMMENT: ESTIMATE FIRST DERIVATIVE AT 0;
Dl := (F1 - F0)/X1 - X1+D2; DZ := TRUE;
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COMMENT: PREDICT MINIMUM; ; LONG REAL S, SL, DN, DMI!N, FX, F1, LDS, LDT, SF, DF,

X2 := IF D2 ¢{= SMALL THEN (IF D1 ¢ 0 THEN H FELSE -H) ELSE QFl, QbG, QDl, QA, QB, QC,
-0.5L+D1/D2; M2, M4, SMALL, VSMALL, LARGE, VLARGE, SCBD, LDFAC, T2;
IF ABS(X2) > H THEN X2 := IF X2 > 0 THEN H ELSE -H; LONG REAL ARRAY D, Y, Z, Q0, Q1 (1::N);
COMMENT: EVALUATE F AT THE PREDICTED MINIMUM; LONG REAL ARRAY V (L::N, 1l::N);
Ll: F2 := FLIN(X2):
IF (K < NITS) AND (F2 > FO) THEN COMMENT: INITIALIZATION;
BEGIN COMMENT: NO SUCCESS SO TRY AGAIN; K := K + 1; ) COMMENT: MACHINE DEPENDENT NUMBERS;
IF (FO < F1) AND ((X1=X2) > 0) THEN GO TO LO; SMALL := MACHEPS=®=»2; VSMALL := SMALL#**2;
X2 := 0.5L«X2; GO TO L1 LARGE := 1L/SMALL; VLARGE := 1L/VSMALL;
END; M2 := LONGSQRT(MACHEPS); M4 := LONGSQRT(M2);
COMMENT : INCREMENT ONE-DIMENSIONAL SEARCH CQUNTER;
NL := NL + 1; COMMENT: HEURISTIC NUMBERS
IF F2 > FM THEN X2 := XM ELSE FM := F2; LEAE A L AL LR RS L]
- COMMENT: GET NEW ESTIMATE OF SECOND DERIVATIVE; '
D2 := IF ABS{X2%(X2 - X1)) > SMALL THEN IF AXES MAY BE BADLY SCALED (WHICH IS TO BE AVOIDED IF
(X2%«(F1 - FO) ~ X1+(FM - FO))/(X1=X2%x({X1 - X2)) POSSIBLE) THEN SET SCBD := 10, OTHERWISE 1.
ELSE IF K > 0 THEN O ELSE D2; IF THE PROBLEM 1S KNOWN TO BE !LLCONDITIONED SET
IF D2 <= SMALL THEN D2 := SMALL; ILLC := TRUE, OTHERWISE FALSE.
X1 1= X2; FX t= FM; KTM+1 |S THE NUMBER OF ITERATIONS WITHOUT IMPROVEMENT BEFORE
IF SF1 < FX THEN BEGIN FX := SFl; X1 := SX1 END; THE ALGORITHM TERMINATES (SEE SECTION 6). KTM = 4 IS VERY
COMMENT: UPDATE X FOR LINEAR SEARCH BUT NOT FOR PARABOLIC CAUTIOUS: USUALLY KTM = 1 IS SATISFACTORY;
PARABOLIC SEARCH;
IF J > 0 THEN FOR ! := 1 UNTIL N DO X(I) := X(1) + X1#V(1,J) SCBD := 1; ILLC := FALSE; XTM := 1;
END MIN;
LDFAC := IF ILLC THEN 0.1 ELSE 0.01:
PROCEDURE QUAD; KT == NL := 0; NF :=1; QF1l := FX = F(X,N);
BEGIN COMMENT: LOOKS FOR THE MINIMUM ALONG A CURVE T := T2 := SMALL + ABS(T); DMIN := SMALL;
DEFINED BY QO0, Q1 AND X IF H < (100*T) THEN H := 100+T; DT := H;
LONG REAL L, S FOR | := 1 UNTIL N DO FOR J := 1 UNTIL N DO
S := FX; FX := QF1l; QF1 :=5S; QD1 := 0; V(l,J) := IF | = J THEN 1L ELSE 0OL;
FOR I := 1 UNTIL N DO D(1) := QDO ::= 0; FOR I :=1 UNTIL N DO Ql(1) := X(Il);
BEGIN S,:= X{1); X{1) := L := Q1i(1);: QlcCl}) :=S; PRINT;
QD1 := QD1 + (S - L)w=2
END COMMENT: MAIN LOOP;
L QD1 := LONGSQRT(QD1); S := 0; LO: SF := Db{(l); D(l1l) =S := 0;
IF (QDO > 0) AND (QD1 > 0) AND (HL >= (3=N=N)) THEN COMMENT: MINIMIZE ALONG FIRST DIRECTION
BEGIN MIN (0, 2, S, L, QF1, TRUE):; MIN (1, 2, D(1), S, FX, FALSE):;
QA := L*(L - QD1)/(QDO»(QD0 + QDl)J: IF S <= 0 THEN FOR 1 := 1 UNTIL N DO V(I,1) := =V(1,1)
QB := (L + QDO)+(QD1 - L)/(QDO«QD1); IF (SF <= (0.9=D{1))) OR ({0.9+«SF) >= D{(1)) THEN
QC := L=(L .+ QDO)/(0QD1=(ODO0 + QD1)) FOR 1 := 2 UNTIL N DO D(!) := 0;
END B FOR K := 2 UNTIL N DO
ELSE BEGIN FX := QFl: QA := QB := 0; QC := 1 END; BEGIN FOR I := 1 UNTIL N DO Y(1) := X(1); SF := FX;
QD0 := QPbl; FOR | := 1 UNTIL N DO ILLC := ILLC OR (KT > 0});
BEGIN S := Q0{1); Q0C1) := X(1); L1: KL := K; DF := 0; IF ILLC THEN
XC1) 1= QAxS + QBX{I1) + QC+Ql1(1) BEGIN COMMENT: RANDOM STEP TO GET OFF RESOLUTION VALLEY;
END FOR | = 1 UNTIL N DO
END QUAD; BEGIN S = Z(1) := (0.1«LDT + T2+10+=KT)*(RANDOI-0.5L);
. COMMENT: PRAX1S ASSUMES THAT RANDOM RETURNS A RANDOM
BOOLEAN LLC; NUMBER UMNIFORMLY DISTRIBUTED IN (0, 1) AND
INTEGER NL, NF, KL, KT, KTM; THAT ANY INITIALIZATION OF THE RANDOM NUMBER
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GENERATOR HAS ALREADY BEEN DONE;
FOR J := 1 UNTIL N DO X(J) := X(dJ4) + 5=v(J, 1)
END;
FX = F(X, N); NF := NF + 1
END;
FOR K2 := K UNTIL N DO
BEGIN SL := FX; S = 0;
COMMENT: MINIMIZE ALONG "NON-CONJUGATE"™ DIRECTIONS;
MIN (K2, 2, D(K2), S, FX, FALSE):
S 1= IF ILLC THEN D{K2)=(S + Z(K2))ww2 ELSE SL - FX;
IF DF < S THEN
BEGIN DF := §; KL := K2
END
END;
IF TILLC AND (DF < ABS{100*MACHEPSx*FX)) THEN
BEGIN COMMENT: NO.SUCCESS ILLC = FALSE SO TRY OMCE
WITH (LLC = TRUE;
ILLC := TRUE; GO T70 L1
END;
IF (K = 2) AND (PRIN > 1) THEN VECPRINT ("NEW D", D, N):
FOR K2 := 1 UNTIL K = 1 DO
BEGIN COMMENT: MINIMIZE ALONG "CONJUGATE" DIRECTIOQONS;
S = 0; MIN (K2, 2, D(K2), S, FX, FALSE)
END;
Fl := FX; FX := SF; LDS := 0;
FOR 1 := 1 UNTIL N DO
BEGIN SL == X(1); X(1) := Y{1); SL := Y{1) := 5L - Y(!1);
LDS := LDS + SL+SL
END;
LDS := LONGSQRT(LDS); 11F LDS > SMALL THEN
BEGIN COMMENT: THROW AWAY DIRECTION KL AND MINIMIZE
ALONG THE NEW "CONJUGATE™ DIRECTION;

FOR | := KL - 1 STEP -1 UNTIL K DO
BEGIN FOR J := 1 UNTIL N DO V({J,! + 1) := V(J,1);
DCI + 1) := D(1)
END;

D(K) := 0; FOR 1 := 1 UNTIL N DO V(I,K) := Y(1)/LDS;

MIN (K, &, D(K), LDS, Fl, TRUE);
IF LDS <= 0 THEN

BEGIN LDS := -LDS;
FOR 1 := 1 UNTIL N DO V(I,K) := =v(I,K)
END

END;

LDT := LDFAC¥LDT; IF LDT < tDS THEN LDT := LDS;

PRINT;

T2 := 0; FOR I := 1 UNTIL N DO T2 := T2 + X(1)*%2;

T2 ;= M2Z*LONGSQRT{(T2) = T;

COMMENT: SEE IF STEP LENGTH EXCEEDS HALF THE TOLERANCE;

KT 2= IF LDT > (0.5#7T2) THEN Q0 ELSE KT + 1:
IF KT > KTM THEN GO TO L2
END;
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COMIMENT: TRY QUADRATIC EXTRAPOLATION IN CASE WE ARE STUCK
- IN A CURVED VALLEY;
QUAD ;

ON = 0; FOR | := 1 UNTIL N DO
BEGIN D(1l) := 1/LONGSQRT(D(1));
IF DN < D(1) THEN DN := D(I)
END;

IF PRIN > 3 THEN MATPRINT ('"NEW DIRECTIONS", V, N, NJ;
FOR J := 1 UNTIL N DO :
BEGIN 5 := D{J)/DN;
FOR 1 := 1 UNTIL N DO V(1,J) := S#v(l,J)
END;
IF SCBD > 1 THEN
BEGIN COMMENT: SCALE AXES TO TRY TO REDUCE CONDITION

NUMBER ;
S 1= VLARGE; FOR 1 := 1 UNTIL N DO
BEGIN SL := 0; FOR J := 1 UNTIL N DO SL := SL+V{l,J)*+2;
Z{1) := LONGSQRT(SL);
IF Z(1) < Mk THEN Z2{1) := Mk; IF S > Z(t) THEN § := Z(1)
END;
FOR | := 1 UNTIL N DO

BEGIN SL := §/Z{1); Z{1) :=1/SL; IF Z(l) > SCBD THEN
BEGIN St := 1/SCBD; Z(1) := SCBD

END ;
FOR J := 1 UNTIL N DO V{(1,J) := SLev(l,Jd)
END
END;
COMMENT: TRANSPOSE V FOR MINFIT;
FOR 1 := 2 UNTIL N DO FOR J := 1 UNTIL | - 1 DO
BEGIN S := V(I,d); V(I,J) := Vv({J,1); V(J,1) := S END;

COMMENT: FIND THE SINGULAR VALUE DECOMPGSITION OF V.. THIS
GIVES THE EIGEMVALUES AND PRINCIPAL AXES OF THE
APPROXIMATING QUADRATIC FORM WITHOUT SQUARING THE
CONDITION NUMBER;

MINFIT (N, MACHEPS, VSMALL, V, D);

IF 5CBD > 1 THEN

BEGIN COMMENT: UNSCALING; FOR' 1 := 1 UNTIL N DO
BEGIN S5 1= Z(1};
FOR J := 1 UNTIL N DO V(I,d) := S=V([,d)
END;

FOR | := 1 UNTIL N DO
BEGIN S := 0; FOR J := 1 UNTIL N DO S :=5 + V(J,[)#*2;

S := LONGSQRT(S); D(1) := sS*D(1); S := 1/S;
FOR J := 1 UNTIL N DO V(J, 1) := 5+V(J,1)}
END
END;
FOR I := 1 UNTIL N DO
BEGIN D(I) = IF (DN«D(1)) > LARGE THEN VSMALL ELSE

IF (DN#»D(1)) < SMALL THEN VLARGE ELSE (DN=D([))*=(-2)
END;
COMMENT: SORT NEW EIGENVALUES AND EIGENVECTORS;
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SORT;

DMIN = D{N}; IF DMIN < SMALL THEN DMIN := SMALL;

T1LLC := (M2«D{1}) > DMIN;

IF (PRIN > 1) AND (SCBD > 1) THEN

VECPRINT ("SCALE FACTORS", Z, N);

IF PRIN > 1 THEN VECPRINT ("EIGENVALUES OF A", D, N);

IF PRIN > 3 THEN MATPRINT ("EIGENVECTORS OF A", V, N, N);
COMMENT: GO BACK TO MAIN LOOP;

GO 7O LO;
L2: IF PRIN > 0 THEN VECPRINT ("X 18", X, N);
FX
END PRAXIS;
COMMENT: RANDOM NUMBER GENERATOR

AR AR A AR A I Ak kdhd ok hddkh

PROCEDURE RANDOM RETURMS A LONG REAL RANDOM NUMBER UNI1FORMLY
DISTRIBUTED IN (0,1) (INCLUDING 0 BUT NOT 1).

RANINIT(R) WITH R ANY INTEGER MUST BE CALLED FOR ’
INITIALIZATION BEFORE THE FIRST CALL TO RANDOM, AND THE
DECLARATIONS OF RAN1, RAN2 AND RAN3 MUST BE GLOBAL.

THE ALGORI THM RETURNS X(N)/2=%56, WHERE

X(N) = X{N-1) + X{(N=-127) (MOD 2%=55).
SINCE 1 + X + X#%127 1§ PRIMITIVE (MOD 2), THE PERIOD 1S AT
LEAST 2#%127 - 1 > 10%438, SEE KNUTH (1969), PP. 2B, 34, LG4,

%(N) 1S STORED iN A LONG REAL WORD AS
RAN3 = X(N)/2%«56 - 1/2, AND ALL FLOATING POINT ARITHMETIC
15 EXACT;

LONG REAL RANL:; [INTEGER RANZ; LONG REAL ARRAY RAN3 (0::126);
PROCEDURE RANINIT (INTEGER VALUE R}:

BEGIN R := ABS(R) REM 8190 + 1;
RAN2 := 127; WHILE RAN2 > 0 DO

BEGIN RAN2 := RAN2 = 1; RAN1 := -2L#*55;
FOR | := 1 UNTIL 7 DO
BEGIN R := (1756*R) REM 8191;
RAN1 := (RAN1 + (R DIV 32))*(1/250G);
END;
RAN3 (RANZ) := RAN1
END

END RANINIT;

LONG REAL PROCEDURE RANDOM;

BEGIN RANZ := I|F RANZ = 0 THEN 126 ELSE RANZ - 1;
RAN1 := RAN1 + RAN3 (RANZ2);
RAN3 (RAN2) := RAN1 := IF RAN1 { OL THEN RAN1 + 0.5L

ELSE RAN1 - 0.5L;
RAN1 + 0.5L
END RANDOM;
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COMMENT: TEST FUNCTIONS

LA LA AL L L LR LS L L

LONG REAL PROCEDURE ROS (LONG REAL ARRAY X(=*); INTEGER VALUE N);
COMMENT: SEE ROSENBROCK (1960);
LoOL»((X(2) - X(1)ww2)}#42) + (1L - X(1))#=2;

LONG REAL PROCEDURE SING{LONG REAL ARRAY X(#);INTEGER VALUE N):
COMMENT: SEE POWELL (1962);
(X(1) + LOL#X{2))%#2 + SLe(X(3)-X(4))*22 + (X(2)- 2L*X(3))**h
+ 10L=(X(1) = X(u))#el;

LONG REAL PROCEDURE HELIX(LONG REAL ARRAY X{(*);INTEGER VALUE N);
COMMENT: SEE FLETCHER & POWELL (1953),
BEGIN LONG REAL R, T;
R := LONGSQRT (X(l)**Z + X{(2)x*2);
T := IF X(1) = 0 THEN 0,25L ELSE LONGARCTAN (X(2)/X(1))/(2L»
3.14159265358979L);
IF X(1) < 0 THEN T := T + 0.5L;
100L*C(X(3) - 10L+T)#*+2 + (R = 1L)**2) + X(3)#x2
END HELIX;

LONG REAL PROCEDURE CUBE(LONG REAL ARRAY X(#);INTEGER VALUE N});
COMMENT: SEE LEOM (1966): )
100L=+(X(2) - X{(1)*e3)=+2 + (1L - X{(1))wx2;

LONG REAL PROCEDURE BEALE(LONG REAL ARRAY X(#);INTEGER VALUE N);
COMMENT: SEE BEALE (1958);
(1.5L = X{1)*(1L - X(2)))»*2 +
(2.25L = X(1)+(1L = X(2)+#2))%*2 +
(2,625L - X{L)*(1L - X(2)*%3))*+2;

LONG REAL PROCEDURE WATSON (LONG REAL ARRAY X(*);
INTEGER VALUL N);
COMMENT: SEE KOWALIK & OSBORNE (19G8);
BEGIN LONG REAL S, T, U, Y;
S 1= X(1)#*%2 + (X(2) = X{1)##2 = 1L)*2;

FOR 1 := 2 UNTIL 30 DO
BEGIN Y == (I - 1)/29; T := X(N);
FOR J 1= N - 1 STEP -1 UNTIL 1 DO T := X(Jd) + Yx*T;

U = (N = 1)*X(N);

FOR J := N - 1 STEP -1 UNTIL 2 DO U := {(J - 1)#X{J) + Y&U;
S =5 + (U = T*«T - 1L)**2 "

END;

S
END WATSOHN;

LONG REAL PROCEDURE CHEBYQUAD (LONG REAL ARRAY X();
INTEGER VALUE N);

COMMENT: SEE FLETCHER (1965);
BEGIN
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LOHNG REAL F, DELTA, TPLUS;
BOOLEAN EVEN:
LONG REAL ARRAY Y, TI, TMINUS (1::N);

OELTA oL;

FOR J 1 UNTIL N DO
BEGIN Y(J) := ZL#«X{J) - 1L;
DELTA := DELTA + Y(J);
TI(J) == Y(J); TMINUS(J) := 1L

END;
F := DELTA%+2; EVEN := FALSE;
FOR 1 := 2 UNTIL N DO '
'BEGIN EVEN := TEVEN; DELTA := 0OL:

FOR J := 1 UNTIL N DO :
BEGIN TPLUS := 2L*Y{(J)*TI1(J) - TMINUS(J);
DELTA := DELTA + TPLUS;

TMINUS(J) = TI(J};
TI(J) = TPLUS )
END;

'DELTA := DELTA/N - (IF EVEN THEN 1/(1 - 1=1) ELSE 0):
F 1= F + DELTA#»2
END;.

- o

END CHEBYQUAD;

LONG REAL PROCEDURE POWELL (LONG REAL ARRAY X(=x);
INTEGER VALUE N);
- COMMENT: SEE POWELL (1964);
3L = 1L/{1E +-(X{1) - X{2))#=x2) -
LONGSIN(O.5L*3.14159265358979L+X(2)* X(3))=-(IF X(2) = 0 THEN
. OL ELSE LONGEXP({=((X(1)+X(3))/X(2) - 2L)#%2));

LONG REAL PROCEDURE WOOD(LONG REAL ARRAY X(+);INTEGER VALUE N);
COMMENT: SEE MCCORMICK & PEARSON (1969) OR COLVILLE (1968);

S 100L=(X(2) - X(1)wa2)#*2 + (1L - X(1))##2 + 90L*(X(L} -
X(3)}#=2)}2w2 + (1L = X(3))#22 + 10.1L+{(X(2) = 1L)*x2 + (x(4)
= 1L)#*22) + 19.8Lw(X(2) - 1L)*(X(4) - 1L);

LONG REAL PROCEDURE HILBERT (LONG REAL ARRAY X{(*);
INTEGER VALUE N);
COMMENT: COMPUTES XT.A.X, WHERE A IS THE N BY N HILBERT
MATRIX, SEE GREGORY & KARNEY (1369), PP. 33, 66;
BEGIN LONG REAL S, T;
5 1= 0L; FOR | := 1 UNTIL N DO
BEGIN T := 0OL; FOR J = 1 UNTIL N DO
T:=T+ X/l +J - 1);
S.:i= 5 + T«X(1)
END;
S
END HILBERT;
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LONG REAL PROCEDURE TRIDIAG (LONG REAL ARRAY X(#);
INTEGER VALUE N);
COMMENT: COMPUTES XT.A.X - 2E1T.X, WHERE N > 1,

(1-1 0 0... 0
(-1 2 -1 0 ... 0)
(0 -1 2-1...0)
A = v vaad
(o . -1 2 -1)
(0 0o -1 2),
AND E1T = (1, 0, ... , 0).

SEE GREGORY & KARNEY (1969), PP. 41, 74;
BEGIN LONG REAL S; ) -

S 1= X{(1)=(X(1) - X(2});

FOR 1 := 2 UNTIL N - 1 DO

S 1= &« XCD)=((XCI) = X(1 - 1)) + (X(1} - X(1 » 1)));
S + X(N)+(2«X(N) - X(N - 1)) - 2+X{1)

END TRIDIAG;

LONG REAL PROCEDURE B0OX (LOMG REAL ARRAY X{=);INTEGER VALUE N);
COMMENT: SEE BOX (1966) OR BROWN & DENNIS (1970);
BEGIN LONG REAL P, §;
S :=0; FOR | := 1 UNTIL 10 DO
BEGIN P := -1/10;
S 1= 8 + ((LONGEXP(P«X (1)) - (IF (P*X(2)) < (-40) THEN ©
ELSE LONGEXP(PwX(2)))) -
X(3)#«(LONGEXP(P) - LONGEXP(l0*P)))u#2
END;
S
END BOX;

COMMENT: GENERAL TESTING PROCEDURE

*i*iiIi**ﬁtiwt**t**t***tt;

PROCEDURE TEST (STRING (80) VALUE S; LONG REAL VALUE H:
LONG REAL PROCEDURE F; [INTEGER VALUE N);

BEGIN LONG REAL FMIN; INTEGER TiM;
WRITE("™ "); WRITE("™ "); WRITE(S):
WRITE("N =", N, ™ 4 =", ROUNDTOREAL(H)); WRITE(" ");
COMMENT: INITIALIZE RANDOM NUMBER GENERATOR; RANINIT(L);
COMMENT: TIME(2) RETURNS CLOCK TIME IN UNITS OF 26 MICROSEC;
TiM := TIME(2);
FMIN := PRAX!S (1'-5, 16+%(-13), H, N, 1, X, F, RANDOM);
WRITE ("TIME (MILLISEC) =", ROUND({TIME(2) - TIM)/38.4));
WRITE(" ") .
END TEST;

COMMENT: TESTING PROGRAM

l'lt*t*!*'l"l‘l‘i'l'!'tt;
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LONG REAL FMIN, LAM;

COMMENT: INCREASE DIMENSIONS FOR
LONG REAL ARRAY x({1::20);
COMMENT: INTFIELDSIZE CONTROLS THE OUTPUT FORMAT QF
INTFIELDSIZE := 7;

N> 20:

INTEGERS;

X(1) :=
TEST

=1,2L; X{2) := 1L; FMIN := 0
(""ROSENBROCK'S FUNCTION WITH A PARABOLIC VALLEY",1,RO0S,2);

X(1) = X(2) := 3;
TEST ('"ROSENBROCK'S FUNCTION ", 3, ROS, 2);

X(1)
TEST

:= X(2) := 8;
("ROSENBROCK'S FUNCTION", 12, ROS, 2);

X(1) := -1;
TEST

x(2

: 1= X(3) := 0;
("HELIX", 1,

HELIX, 3);
X(1)
TEST

1= =1,2L;
("CuBE", 1,

X(2) := -1;
CUBE, 2);

X(1)
TEST

1= X(2) := 0.1L;
(""BEALE"™, 1, BEALE, 2):

X(1) := 0;
TEST

X(2) := 1;
(""POWELL", 1,

X(3) 1= 2;
POWELL, 3);

FMIN := 0; X(1) := 0; X(2) := 10; X(3) := 20:
TEST ("BOX", 20, BOX, 3): h

X(1)
TEST

1= 3L;  X(2) := -1L; X(3) := OL; X{4) := 1L;
("POWELL'S FUNCTION WITH A SINGULAR JACOBIAN",1,SING,4);

FMIN
TEST

1= 0;  X(1)
("'woop",

1= X(3) = -3;

: X(2) :=
10, WOOD, 4);

X(4) := -1;

FOR N := 2 STEP 2 UNTIL 8 DO
BEGIN FOR | := 1 UNTIL N DO X(1) := I/(N + 1);
FMIN = IF N < 8 THEN OL ELSE 0.0035168737256779L;
TEST ("CHEBYQUAD', 0.1, CHEBYQUAD, N)
END;

FOR N := 6 STEP 3 UNTIL 9 DO
BEGIN FOR | 1 UNTIL N DO X(I) := 0;
FMIN := IF N 6 THEH 0.00228767005355L ELSE
IF N 9 THEN 1.,399760138098'-6L ELSE OL;
TEST ("WATSON", 1, WATSON, M)
END;

u an

FOR N := 4, 6, 8, 10, 12, 16, 20 DO
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BEGIN FOR 1 :=1
TEST ("TRIDIAG",
END;

FMIN := 0; FOR N
BEGIN FOR I :=1
TEST ("HILBERT",
END

END.

UNTIL N DO X(1)
2«N, TRIDIAG, N)

UNTIL N DO X(1)
10, HILBERT, M)

=

= 0L;

:= 2 STEP 2 UNTIL 12 DO
2= 13

FMIN

-N;




Bibliography

This bibliog;?aphy contains references relevant to the minimization
ofrnon}inear fUncﬁions, and other references referred %o in the text.
There is no attempt at completeness, but a large number of recent (up
torlate 1970) references on unconstrained minimization have been included.
There are also some references dealing with constrained problems, with
methéds for convefting constrained probleﬁs to'unconstrained problems,
and with methods for soiving nonlinear equations. For a brief survey,
see Section T7.1. References on linear and quadratic programming have
generally been excluded, and we have n&t attempted to dupiica‘te the
largerbibliographies in Jacoby, Kowalik and Pizzo (1971), Kﬁnii and
Cettli (19/0), Lawson (1968), und Ortega and Rheinboldt (1970).

‘In lieg of annotatipns, the chapter and section numbers of references
to each entry ;cu'e given in parcntheses alter the enlry.

References which are not known to have appeared have been assigned

the year 1971l. (Some may have appcared late in 1970.)

278

Abadie, J. (ed.), 1970, "Nonlinear and integer programming',
North-Holland, Amsterdam. (7.1, 8)

Adachi, N., see Tokumaru, Adachi & Goto (¥970).

Akaike, H., 1959, "On a successive transformation of
probability distributlon and its application to the
analysis of the optimum gradient mgthod", Ann. Inst.
Statist. Math. of Tokyo 11, 1-16. (7.1)

Akilav, G. P., see Kantorovich & Akilov (1959).

Aliran, R. R. & Johnsen, S. E. J., 1370, “An alzorithm for
solving nonlinear programming problems subject to nenlinear
inequallty constraints", Comp. J. 13, 2, 171-177. (7.1)

Andrews, A. M,, 1969, "The calculation of orthogonal vectors",
Comp. J. 12, 4l1l1l. (7.5)

Armlijo, L., 1966, "Minimization of functions having Lipschit;-
continuous first partial derivatives", Pacific J. Math. 16,
1-3. (1.2) '

Avriel, M. & Wilde, D, J., 1966, "Optimal search for a maximum
with sequences of simultaneous function evaluations",
Management Sci. 12, 722-731, (5.7)

Baer, R. M., 1962, fNote on an extremum locating algorithm",
Comp, J. 5, 193. (7.5)

Baker, C. T. H., 1970, "The error in polynomial
interpolation", Numer. Math. 15, 315-319. (2.4)

Balakrishnan, A. V. (ed.), 1970, "Symposium on optimizqtion
“(Nice, June 1969)", Springer-Verlag, Berlin, (7.1, 8)

Bard, Y., 1968, "On a numerical instability of Davidon-~like

279



methods'", Math. Comp. 22, 665-666. (7.1)

Bard, Y., 1970, "Comparison of zradient methods for the
solution of nonlinear parameter estimation problems", SIAM
J. Nﬁmer. Anal. 7, 1, 157-186. (7.1)

Bard, Y., see Greenstadt (1970).

Barnes, J. P. G., 1965, "An algorithm for solving nonllnear
equatlons based.on the secant method", Comp. J. 8, GB6-72.
(7.1)

Bartels, R. H., 1363, "A numericalrinvestigation of the
simplex method'", Tech. Report CS 104, Computer Sci. Dept.,
Stanford Uni., (7.1)

Bartels, R. H. & Golub, G. H., 1969, "The simplex method of
linear programming using LU decomposition', Comm. ACM 12,
5, 266-268. (7.1) '

Bartels, R. H., Golub, G. H, & Saunders, M. A,, 1970,
“"Numerlcal techniques in mathematical programﬁing", Tech.
Report C5 162, Stanford Uni. {(7.1) -

Bauer, H., Becker, S. & Graham, S., 1968, "ALGOL W language
.deécription", Tech. Report CS 89 (revised as C5 110 with
E. Satterthwaite, 1969), Stanford Uni. (4.&, 5.6, 6.6, 7.9)

Beale, E. M. L., 1958, "On an iterative method for finding a
Tocal minimum of a function of more then one variable",
Tech. Repﬁrt No. 25, Statistical Techniques Researcﬁ Group,
Princeton Uni. (7.7, 7.9)

Beale, E. M. L., 1968, "Mathematical programming in practice",

Wiley, New York. (7.1)

280

Becker, 5., see Bauer, Becker & Graham (1968).

Beckman, F. 5., 1960, "The solution of linear equations by the
conjugate pgradient methad", in Ralston & Wilf (1960), (7.3)

Beightler, C. S., see Wilde & Beightler (1967).

Bell, M. & Pike, M, C., 1966, "Remark on algorithm 178(EL),
DIRECT SEARCH", Comm. ACM 9, 684. (7.1)

Bellman, R, E,., 1957, "Dynaﬁlc programming', Princeton Uni.
Press, Priﬁceton, New Jersey. (l.é) »

Bellman, R. E. & Dreyfus, 5. E., 1962, "Applied dynamic
programming', Princeton Uni. Press, Princeton, New Jersey.
(1.2, 4.1)

Bennett, J. M., 1965, "Triangular factors of modified
matrices'", Numer. Math. 7, 217-221. (7.1)

Bennett, J. M. & Green, D. R., 1966, "Updating the inverse or
the triangular factors of a modified matrix", Tech. Repoét
42, Basser Computing Dept., Uni. of Sydney. (7.1)

Berman, G., 1969, “Lattice approximations to the minima of
functions of several variables", J,. ACM 16, 286-29u. (7.1)

Bjorck, A., 1967a, "Solving linear least squares probiems by
Gram-Schmidt orfhogonalization", BIT 7, 1-21. (7.1)

Bjorck, A., 1967b, "Iterativg refinement of linear least
squares solutions 1", BIT 7, 257-278. (7.1) ‘

Bjarpk, A, 1968, "lterativerrefinement of linear least

squares solutions 11", BIT 8, 8-30. (7;1)

Boothroyd, J., 1965a, “Algorithm 7, MINIX", Comp. Bulletln 9,

104. (5.3)

2681




Boothroyd, J.. 19§5b, "Cortification of Alzorithm 2, FIBOMACCI
SEARCH", Comp. Bulletin 9, 105. (5.3)

Bowdler, H., Martin, R. S., Reinsch, C, & Wilkinson, J. H.,
1968, "The QR and QL algorithms for symmetric matrices",
Numer. Math. 11, 293-306. (7.4)

Box, G. E. P., i957, "Evolutionary operations: a method for
increasing industrial! productivity"™, Appl. Stat. 6, 3-23.
(7.1)

Box, M‘ J., 1965, "A new method for constrained optimization
and a comparison with other methods", Comp. J. B, 42-52.
(7.1)

Box, M. J., 1966, "A comparison of several current
optimization metﬁods, and the use of transformations in
constrained problems", Comp. J. 9, 67-77. (7.1, 7.3, 7.7,
7.9) '

Box, M. J., Davies, D. & Swann, W. H., 1969, "Non-linear
optimization techniques", ICl1 Monograph Ne. 5, Oliver and
Boyd, London. (5.4, 5.5, 7.1)

Brown, K. M. & Dennis, J. E., 1368, '"On Newtqn—like iteration
functions: general convergence theorems and a specific
algorithm'", Numer. Math. 12, 186-191. (7.1}

Brown, K. M. & Dennis, J. E., 1970, "A new algorithm for
nonlinear least squares curve fitting", Tech. Report 70-57,
Dept. of Computer S;ience, Cornell Uni. (7.1, 7.9)

Brown, K. M. & Dennis, J. E., 1971la, "A guadratically

convergent finite difference analog of the

282

Levenberg-Marquardt algorithm for nonlinear least squares

curve fitting", to

Brown, K. M. & Dennis,

appear. (7.1)

J. E., 1971b, "Derivative free

analogues of the Llevenberg-Marquardt and Gauss algorithms

for nonlinear least squares approximation',

(7.1}

Broyden,

application to function minimization", Math.

c. G.,

368-381. (7.

Broyden,

c. G.,

to appear.

1967, "Quasi-Hewton methods and their

1, 7.7)

1969,

Comp. 21,

"A new method of solving nonlinear

simul taneous equations', Comp. J. 12, 1, 94-99. (7.1)

Broyden,

C. G..

1970a,

"The convergence of a class of

double-rank minimization algorithms, Parts | and

Inst.

Broyden,

quasi=-Newtan

Buehler,

Maths.

c. G.,

R. J.,

Apps.

1370b,

G, 76-90 & 222-231. (7.1)

nn", o J.

"The convergence of single-rank

methads", Math., Comp. 24, 3%65-382. (7.1)

see Shah,

Buehler & Kempthorne (1964).

Businger, P, & Golub, G, H., 1965, ﬂLinear least squares

sclutions by Householder transformations'", Numer. Math. 7,

269-276. (7.1)

Buys, J.

Cantrell,

method and the Fletcher-Powell method”™, J. Optzn.

AppS.

D., see Haarhoff & Buys (1970).

J. W., 1969, "Relation between the memory gradient

b, 67-

1. (7.

1)

Cantrell, J. W., see Miele & Cantrell (1968, 1970).

Carroll,

C. W.,

1961,

"The created response surface

283

Thry. &

technique

J



for optimizing nonlinear restrained systems'", Operations
Res. 9, 169-184. (7.1)

Cauchy, A., 1840, "Sur les fonctions interpolaires", C. R..
Acad. Sci. Paris 11, 775 {(or see Qeuvres complétes,
Gauthier-Villars, Paris, 1897, Vol. 5, L0S-424). (2.2)

Cauchy, A., 1847, "Méthode générale pour la résolution des
systemes d'dquations simultanées", é. R. Acad. Sci.

Paris 25, 536-538 (or see Qeuvres compléte;,
Gauthier=-Villars, Paris, 1837, Vol. 10, 399-&02)._(7.1)

Chazan, D. & Miranker, W. L., 1970, "A non—gradieht and
parallel algorithm for unconstrained minimization", SIAM J,
Control 8, 2, 207-217. (7.1, 7.3)

Chernousko, F. L., 1970, "dn optimal algorithms for search",
in Dold & Eckmann (1970a). (&4,1)

Ciark, N. A., Cody, W. J., Hillstrom, K. E. & Thieleker, E.
A., 1967, "Performance statlstics of the FORTRAN IV (H)
library for the IBM System/360", Argonne Nat. Lab. Report
ANL-7321. (6.3)

Cody, W. J., see Clark, Cody, Hillstrom & Thieleker (1967).

Collatz, L., 1964, "Functional analysis and numerical
mathematics", Springer-Veriag, Berlin {(translation by H.
Oser, Academic Press, New York, 1966, Chs. 17-20). (3.1)

Coiville, A. R., 1968, "A comparative study of nonlinear
programming codes", IBM New York Scientific Center Tech.
Report 320-2949. (7.1, 7.7, 7.9)

Cooper, L., see Krolak & Cooper (1963).

28}

Cox, M. 5., 1970, "A bracketing technique for computing a zero
of a function", Comp. J. 13, 1, 101-102. (Q.Z, 4.5)

Craggz, E. E. & Levy, A. V., 1969, "Study of a supermemory
zradient method for the minimization of functions", J.
Optzn. Thry, & Apps. &, 191. (7.1)

Curry, H., 1944, "The method of steepest descent for nonlinear
minimizatijon problems", Quart, Appl. Math. 2, 258-261. (7.1)

Daniel, J. W., 1967a, "The conjugate gradient method for
linear and nonlinear operator equations", S1AM J. Numer,
Anal, 4, 10-26. (7.3}

Daniel, J. W., 1967b, “Converpgence of the conjugate gradient
hethod with computationally conQenient modifications",

Numer. Math. 10, 125-131. (7.3)

Daniel, J. W., 1970, "A correction concerning the convergence

rate for the conjugate gradient method", SIAM J. Numer.
Anal. 7, 277-280. (7.3)

Davidon, W. €., 1959, "vVariable metric mgthod for
minimiiation", Argonne Nat. Lab. Report ANL-5990 (Rev. TID

4500). (5.7, 7.1)

.Davidon, W. C., 1968, "Variance algorithm for minimization",

Comp. J. 10, 406-410. (7.1, 7.7)
Davidon, W. C., 1969, "variance algorithms for minimization",
in Fletcher (1969%a). (7.1, 7.7)
Davies, D., 1968, "The use of Davidon's method in nonlinear
programming®”, IC1 Management Services Report MSDH/68/110.

(7.1)

285



Davies, D., 1969, "Some practical methods of optimization",
ICI Management Services Report MS§DH/69/90. (7.1)

Davies, D., see Box, Davies & Swann (1969), Matthew§ & Davies
(1969), Swann (1964).

Davies, D. & Swann, W. H., 1969, "Review of constrained
optimization™, in Fletcher (196%9a). (7.1)

Davis, P. J., 1965, "Interpolation and approximation', 2nd
ed., Blalsdell, New York & London. (6.2)

Dejon, B. & Henrici, P. (eds.), 1969, "Constructive aspects of
the fundamental theorem of algebra™, Interscience, New
York. (8)

Dekker, T. J., 1969, "Finding a'zero by means of successive
l1near interpclation”, in Dejon & Henrici (1969). (1.2,
4.1, 4.2, 4.3, 4.4)

Dekker, T. J., see van Wijngaarden, Zonneveld & Dijkstra
(1963).

Dennis, J. E., 1968, "On Newton-1ike methods'", Numer. Math.
11, 324-330. (7.1)

Dennis, J. E., 1969a, "On the convergence of Newton-1like
methods", in Rabinowitz (1969). (7.1)

Dennis, J. E., 1969b, "On the local convergence of Broyden's
method for nonlinear systems of equations', Tech. Report
69-46, Dept. of Computer Science, Cornell Uni. (7.1)

Dennis, J. E., 1969c, "On the convergence of Broyden's method
for nonlinear systems of equations', Tech. Report 6%-48,

Dept. of Computer Science, Cornell Uni. (7.1)

286

Dennis, J. E., see Brown & Dennis (1963, 1970, 197la, b).

Dijkstra, E. W., see van Wijngaarden, Zonneveld & Dijkstra
(1963).

Dold, A, & Eckmann, 8. (eds.), 1970a, "Colloquium on methods
of optimization (Novisibirsk, June 1968)", Springer-Verlag,

Berlin., (7.1, 8)

~Dold, A. & Eckmann, B. (eds.}, 1970b, "Symposium on

optimization (Nice, June 1969)", Springer-Verlag, Berlin &
New York. (7.1)

Dreyfus, 5, E., see Bellman & Dreyfus (1962),

Eckmann, B., see Dold & Eckmann (1970a, 1970b).

Ehrtich, L, W., 1971, “"Elgenvalues of symmetric five-diagonat
matrices", to appear. (4.4)

Evans, J. P. & Gould, F. J., 1970, "Stability in nonlinear
programning'", QOper. Res, 18, 107-118. (7.1)

Fiacco, A. V., 1961, '"Comments on the paper of C. W. Ca}roll",
Cper. Res. 9, 184. (7.1)

Fiacco, A. V., 1967, '"Sequential unconstrained minimization
methods for nonlinecar programming™, Ph, D. Thesis,
Northwestern Uni. (7.1)

Fiacco, A, V., 1969, "A general regularized sequential
unconstrained minimization technique', SIAM J, Appl. Math,
17, 6, 1239-1245. (7.1)

Fiacco, A. V. & Jones, A. P., 1969, "Generalized penalty
methods in topological spaces'", SIAM J. Apps. Math. 17, 5,

396-1000. (7.1)

287



Fiacco, A. V. & McCormick, G. P., 1968, "Nonlinear
programming: sequential unconstrained minimization
techniques", Wiley, New York., (7.1)

Flanagan, P. D., Vitale, P. A. & Mendelsohn, J., 1969, "A
numerical investigation of several one-dimensional search
procedures in nonlinear regression problems”, Technometrics
11, 265-284. (5.4)

Fletcher, R., 1965, "Function minimization without evaluating
derivatives - a review", Comp. J. 8, 33-41. (1.2, 7.1, 7.3,
7.5, 7.7, 1.9)

Fletcher, R., 19656, "Certification of Algorithm 251", Comm.
ACHM 9, 686. (7.1)

Fletcﬁer, R., 1368a, "Generalized inverse methods for fhe best
least squares solution of systems of non-linear equations”,
Comp. J. 16, 392-399. (7.1)

Fletcher, R., 1968b, "Programming under linear equality and
inequality constraints", ICl Management Services Report
MSDH/68/19. (7,1)

Fletcher, R. (ed.), 196%a, "Optimization", Academic Press,

New York. (7.1, 8)

Fletcher, R., 1969b, "A class of methods .for nonlinear
programming with termination and convergence properties",
Report TP 386, AERE, Harwell, England. (7.1)

Fletcher, R., 1969c, "A review of methods for unconstrained
optimization™, in Fletcher (1969a). (7.1, 7.5)

Fletcher, R., 1969d, "A technique for orthogonalization",

288

J. Inst. Maths, Apps. 5, 162-166, (7.5)

F]etchér, R., 1970, "A new approach to variable metric
algorithms", Comp. J. 13, 3, 317-322. (7.1)

#letcher, R. & McCann, A. P., 1969, "Acceleration techniques
for nonlinear programming", in Fletcher {(196%a). (7.1)

Fletcher, R. & Powell, M. J. D., 1963, "A rapidly convergzent

ﬁdeséent‘method for minimization™, Comp. J. 6, 163-168.

(7.1, 7.7, 7.9)

Fletcher, R, & Receves, C. M., 1964, "Function minimization by
conjugate gradients", Comp. J. 7, 149-154. (5.4, 7.1, 7.4)

Forsythe, G; E., 1968, "0On the asymptotic directions of the
s-dimensional optimum gradient method", Numer. Math. 11,
57=76. (7.1}

Forsythe, G. E., 1969, "Remarks on the paper by Dekker'",
in Dejon & Henrici (1969). (4.1)

Forsythe, G, E. & Moler, C. B., 1967, "Computer solution of
linear algebraic systems', Prentice-Hall, New Jersey. (7.2)

Fox, L., Henrici, P, & Moler, C. B., 196?, "Approximations and
bounds for eigenvalues of elliptic operators"™, SIAM J.
Numer. Anal, &, 1, 89-102. (6.1)

Francis, J., 1962, "The QR transformation. A unitary analogue
to the LR trfansformation, Comp. J. 4, 265-271, (7.4)

Freudenstein, F. & Roth, B., 1963, "Numerical solution‘of
systems of nonlinear equations", J. ACM 10, 550-556. (7.7)

Gauss, K. F., 1809, "Theoria motus corporum coelistium",

Werke, Vol. 7, Book 2, Sec. 3. (7.1)

289



Gilt, P. £, & Murray, W,, 1970, "A numerically stable form of
the simplex algorithm", Tech. Report Kaths. 87, NPL,
Teddington, England. (7.1)

Golab, S., 1966, "La comparaison de la rapidité de convergence
des approximations successives de la méthode de Newton ;vec
la méthode de "reguta falsi'"", Mathematica (Cluj) 8, u5-49,
(5.1)

Goldfarb, D., 1966, "A conjugate gradient method for nenlinear
programming", Ph. D. Thesis, Princeton Uni. (7.1)

Goldfarb, D., 1969a, "Extensions of Davidon's variable metrlc
method to maximization under linear inequality and equality
constraints", S'AM J. Appl. Math. 17, &, 739-764. (7.1)

Goldfarb, D., 1369b, “Sufficient conditions for the
convergence of a variable metric algorithm", In Fletcher
(196%9a). (7.1)

Goldfarb, D., 1970, "A family of variable-metric methods
derived by variational means", Math. Comp. 24, 23-26. (7.1)

Goldfarb, D. & lLapldus, L., 1968, "A conjugate gradient method
for nonlinear programming problems with linear constraints",
Iindust. Eng. Chem. Fundamentals 7, 142-151. {(7.1)

Goldfeld, S. M., Quandt, R. E. & Trotter, H. F., 19638,
"Maximization by improved quadratic hill-cliimbing and other
methods", Econometrics Research Program Res. Mem. 95,
Princeton Uni. (7.1)

Goldstein, A A., 1962, '"Cauchy's method of minimization",

Numer. Math. 4, 146-150. (7.1)

290

Goldstein, A. A., 1965, "On steepest descent”, SIAM J. on
Control, Ser., A 3, 147-151. (7.1)

Goldsteln, A, A. & Price, J. F., 1967, "An effective algorithm
for minimization", Numer. Math. 10, 184-189. (7.1, 7.7)

Golub, G. H., 1965, "Numerical methods for solving linear
least squares problems", Numer. Math. 7, 206-216. (7.1)

Golub, G. H., 1968, 'Least squares, singular values, and
matrix approxfmations“, Aplikace Matematiky 13, 4L4-51. (7.1)

Golub, G. H., see Businger & Golub (1965), Bartels & Golub
(1969), Bartels, Golub & Saunders (1970).

Golub, G. H. & Kahan, W., 1965, "Calculating the singular
values and pseudo=-inverse of a matrix", J. S1AM Numer,
Anal., Ser. B 2, 205-224, (7.4)

Golub, G, H, & Reinsch, €., 1970, "Singular value
decomposition and least squares solutions", Handbook Series
Linear Algebra, Numer. Math. 14, LO03-420. (7.4, 7.9).

Golub, G. H. & Saunders, M., 196%, "Linear least squares and
quadratic programming", Report CS 134, Stanford Uni., (7.1)

Golub, G. H. & Smith, L. B., 1967, "Chebyshev approximation of
continuous functions by a Chebyshev system of functions',
Tech. Report CS 72, Stanford Uni. (5.4)

Golub, G. H. & Wilkinson, J. H., 1966, "Note on the iterative
refinement of least squares solution", MNumer. Math. 9,
139-148., (7.1)

Goto, K., see Tokumaru, Adachi & Goto {(1970).

Gould, F. J., see Evans & Gould (1970).

291



Graham, §., see Bauer, Becker & Grabham (1968).

Green, D. R., see Bennett &VGreen {1966).

Greenstadt, J, L., 1967, "On the relative efficiencies of
gradient methods", Math. Comp. 21, 360-367. (1.2, 7.1)
Greenstadt, J. L., 1970, "Variations on variable metric )

methods", 'Math. Comp. 24, 1-22 {appendix by Y. Bard). (7.1)

Gregory, R. T. & Karney, D. L., 1969, "A collection of
matrices for tesfing computational algorithms",
Interscience, New York. (7.7, 7.9)

Gréss, 0. & Johnson, §. M., 1959, "Sequential minimax search
for a zero of a convex function'", MTAC (now Math. Comp.)
13, ‘u4=51, (1.2, 4.1)

Haarhoff, P. C. & Buys, J. D., 1970, "A new method for the
optimizﬁtion of a nonlinear function subject to nont!inear
constraints™, Comp. J. 13, 2, 178-184. (7.1)

Hadley, G., 1964, "Nonlinear and dynamic programming",

" Addison Wesley, Reading, Massachusetts. (7.1)

Hanson, R. J., 1870, "Computing quadratic programming
problems: linear inequality and equality constraints™,
Tech. Memo. 240, JPL, Pasadena. {(7.1)

Hartley, H. 0., 1961, "The modified Gauss=-Newton method for
fitting of hon]inear regression functiohs by least
squares'™, Technometrics 3, 269-280. (7.1)

Henrici, P., see Dejon & Henrici (1969), Fox, Henrici &
Moler (1967). |

Hestenes, M. R., 1956, "The conjugate gradient method far

292

solving linear systems", Proc. Symp. Appl. Math. &, Amer.
Math. Soc., Providence, 83-102., (7.3)

Hestenes, M. R., 1969, "Multiplier and zradient methods", J.
Optzn. Thry. & Apps. 4, 303. Also in Zadeh (1969}. (7.1)

llestenes, M, R. & Stiefel, E. L,, 1952, "Method of conjugate
gradienfs for solving linear systems", J. Res. Nat. Bur.
Standards, Sect. B, 49, 40%-436, {(7.3)

Hext, G. R., seevSpendIey, Hext & Hiﬁsworth (1962).

Hill, 1. D., see Pike, Hill & James (1967).

Hillstrom, K. E., see Clark, Cody, Hillstrom & Thieleker
(1967).

Himsworth, F. R.,, see Spendley, Hext & Himsworthr(1962).

Hoare, C., see Wirth & Hoare (1966).

Hooke, R. & Jeeves, T. A,, 1961, "Direct search sojution of
numerical and statistical problems™, J. ACM 8, 212-229.
(7.1) k

Housecholder, A. S., 1964, "The theory of matrices in numerical
analysis'", Blaisdell, New York., {7.4)

Householder, A. S., 1971, "The numerical treatment of a single
nonlinear equation', té appear. (3.1)

Huané, H. Y., 1970, "Unified approach to quadratica]lk
convergent a]gorithm; for functlon minimization", J. Optzn.
Thry. & Apps. 5, 405-423. (7.1)

Isaacson, E. & Keller, H; B., 1966; "Anaiysis of'numeéical
methods", Wiley, New York, (2.2, 2.4)

Jécoby, S. L. S., Kowalik, J. S. & Pizzo, J. T., 1971,

293



"|terative methods for nonlinear optimization prohlems",
Prentice-Hall, Englewood Cliffs, New Jersey (to appear).
(5.8, 7.1, 8)

James, F. D., see Pike, Hill & James (1967).

Jarratt, P,, 1967, "An iterative method for locating turning
points", Comp. J. 10, 82-84. (1.2, 3.1, 3.2, 3.6, 3.7,
3.8, 3.9, 5.1)

Jarratt, P., 1968, "A numerical method for determining points
of inflexion", BIT 8, 31-35. (1.2, 3.1, 3.2, 3.6, 3.9)

Jeeves, T. A., see Hooke & Jecves (1961).

Jdenkins, M. A., 1969, "Three-stage variable-shift iterations
for the solution of polynomial equations with a posteriori
bounds for the zeros'", Tech. Report CS 138, Stanford
University, (3.5)

Johnsen, S, E. J., see Allran & Johnsen. (1970).

Johnson, 1. L. & Myers, G. E., 1967, "One-dimensional
minlmlgation_using scarch by golden section and cubic fit
methods', Report N68-18823 (NASA), Manned Spacecraft
Center, Houston. (5.7)

Johnson, S. M., 1955, "Best exploration for maximum is
Fibonaccian', RAND Corp. RM-1590, (5.3}

Johnson, S. M., see Gross & Johnson (1959), Beliman (1957),
Bellman & Dreyfus (1962).

Jones, A. P., 1970, "SPIRAL - a new algorithm for non-linear
parameter estimation using least sguares", Comp. J. 13, 3,

301-308. (7.1)

Jones, A. P., see Flacco & Jones (1969),

Jones, A. P. & McCormick, G. P., 1969, "Penalty methods in
optimal control theory', RAC-TP-371, Res. Anal. Coro.,
Mclean, Virginia. (7.1)

qudan, T. L., 1968, "Experiments on error growth associated
with some linear least-squarcs procedures'", Math. Comp. 22,
579-588. (7.1)

Kahan, W., see Golub & Kahan (1965).

Kalfon, P.,, Ribiere, G. & Sogno, J. C., 1968, "A method of -
feasible directions using projection ogperators', presented
at IFIPS Congress, Edinburgh, 1968. (7.1)

Kantocrovich, L., Vv, & Akilov, G. P., 1959, "Functional analysis
in normed spaces'", Moscow (translation by D. Brown, edited
by A. Robertson, MacMillan, New York, 1964). (3.1)

Kaplan, J. L., see Mitchell & Kaplan (1968).

Karney, D. L., see Gregory & Karney (1969).

Karp, R. M. & Miranker, W. L., 1968, "Parallel minimax search
for a maximum", J. Comb. Thry. hf 1, 19-35. (5.7)

Kaupe, A. F., 1964, "On optimal search technidues", Comm., ACM
7, 38. (6.7)

Keller, H. B., see lsaacson & Keller (1966),

Kelley, H. J. & Myers, G. E., 1967, "Conjugate direction
methods for parameter optimization", prcscnted at the 18th
Congress of the Internationa] Astronautical Federation,
Belgrade. (7.1)

Kempthorne, 0., see Shah, Buehler & Kempthorne (1964).

295



Kettler, P. €., see Shanno & Kettler (1969).

Khabaza; I. M., 1963, "An iterative least-square method
suifab\e for solying large sparse matrices'", Comp. J. G,
202-206. (7.1)

Kiefer, J., 1953, "Sequential minimax search for a maximum",
Proc: Amer. Math. Soc. 4, 503-506., (1.2)

Kiefer, J., 1957, "Optimal sequential search and approximation
methods under minimum regularity assumptions', S1AM, J.
Appl. Math. 5, 105-136. (6.7)

King; R. P., 1966, "Necessary and sufficient conditions for

- ine&ualiﬁy constrained extreme values", Ind. Eng. Chem,
(Fund.)} 5, 484, (7.1)

Knuth, D. £., 1969, “"The art of computer programming', Vol. 2,
Addison-Wesley, Reading, Massachusetts. (7.9)

Kogbetliantz, E. G., 1955, "Solution of linéar equations by
d}égonalization of coefficients matrix", Quart. Appl. Math,
13, 123-132. (7.4)

Kowalik, J. S. & Osborne, M. R., 1968, "Methods for
unconstrained optimization problems", Elsevier, New York.
(1.2, 2.6, 3.7, 5.3, 5.4, 7.1, 7.3, 7.7, 7.9)

Kowalik, J. 5., Osborne, M. R. & Ryan, D. M., 1969, "A new
method for constrained optimization problems'"™, Oper. Res.
lf, 973; (7.1)

Kowalik, J. S., see Jaccby, Kowalik & Pizzo (1971).

Krolak, P. D., 1968, "Further extensions of Fibonaccian search

to nenlinear programming problems", SIAM J. Control &, 2,

296

258-265. (5.3)

Krolak, P. D. & Cooper, L., 1963, "An extension of Fibonacclan
search to several variables”, Comm. ACM 6, 639. (6.7)

Kublanovskaya, V. N,, 1961, "On some algorithms for the
solution of the complete eigenvalue problem', Zh, Vych.

Mat, 1, 555-570. (7.4)

Kunzi, H. P. & Qettli, W., 1970, "Nichtlineare Optimierung:
Neuere Verfahren Bibllographie", Springer-Verlag, Berlin. (8)

Kﬁnzi, H. P., Tzschach, H. G. & Zehnder, c.’ A, 1968,
"Numerical methods of mathematical optimizatien”, Academic
Pre;s, New York. (7.1)

Lancaster, P., 1966, "Error analysis for the Newton-Raphson
method", Numer. Math. 9, 55-68. (5.2)

Lapidus, 1., see Goldfarb & lLapidus (1968).

Lavi, A & Vogl, T. P.(eds.), 1966, "Recent advances in
optimization techniques"; Wiley, New York. (7.1, 8)

Lawson, C, 'l.., 1968, "Biblicgraphy of recent publicaticons In
approximation theory with emphasis on computer
applications™, Tech., Mem. 201, JPL, Pasadepa. (8)

leon, A., 1966, "A comparison of eight known optimizing
procedures™, in Lavl & Vogl (1966), (7.7, 7.9}

Levenberg, X, A, 194k, "A merhod for the solution éf certain
non-linear problems in least squares", Quart. Appl. Math,
2, 164-168. {(7.1) ‘ l ,

levy, A V., see Cragg & lLevy (1963},

Lt11, S. A, 1970, "A modified Davidon method for finding the

297



minimum of a functions using difference approximations faor
derlvatives", Algorithm 46, Comp. J. 13, 111-113. (7.1)

Lootsma, F. A., 1968, "Constrained optimization via penalty
functions", Philips Res. Report. 23, L08. (7.1)

Locotsma, F. A., 1970, "Boundary properties of penalty
functions for constrained minimization", Thesis, Eindhoven,
Holland. (7.1}

Luenberger, D. G., 1969a, "Optimization by vecror space
methods'", Wiley, New York. (7.1, 7.3)

Luenberger, D. G., 1969b, "Hyperbolic pairs in the method of
conjugate gradients", SIAM J. Appl. Math. 17, 6, 1263-1267,
(7.1)

Luenberger, D. G., 1970, "The conjugate residual method for
constrained minimization problems", SIAM J. Numer. Anal. 7,
3, 390-398. (7.1)

Maddison, R., 1966, "A procedure for nonlinear least squares
refinement in adverse practical conditions', J. ACM 13,
124-134, (7.1)

Magee, E. J., 1960, "An empirical investigation of procedures
for locating the maximum peak of a multiple-pecak regression
function'", Lincoln Lab. Report 22G-00u46. (1.2)

Mangasarian, 0. L., 1969, "Nonlinear programming", McGraw
Hill, New York. (7.1)

Marquardt, D. W., 1963, "An algorithm for least squares
estimation of nonlinear parameters", J. SIAM 11, 431-441.

(7.1)

298

Martin, R. S., see Bowdler, Martin, Reinsch & Wilkinson
(1968). V

Martin, R. S., Reinsch, C. & Wllkinson, J. H., 1968,
"Householder's tridiagonalization of a symmetric matrix",
Numer, Math. 11, 181-195. (7.4)

Matthews, A. & Davies, D., 1969, "A comparison of modified
Newton methods for unconstrained optimization'", ICI
Management Services Report MSDH/69/94. (7.1)

McCann, A, P., see Fletcher & McCann (1969).

McCormick, G. P., 1969, '"The rate of convergence of the reset
Davidon var?ab]e metric method", MRC Report 1012, Uni. of
Wisconsin. (1.2, 7.1, 7.8)

McCormick, G. P., see Flacco & Mchrmick (1968), Jones &
McCormick (1969).

McCormick, G. P. & Pearson, J. D., 1969, "Variable metric
methods and unconstrained optimization'", in Fletcher-
(1969a). (1.2, 7.1, 7.7, 7.9)

Mead, R., see Nelder & Mead (1965).

Metnardus, G., 1967, "Approximation of functions: theory and
pumerical methods", Springer-Verlag, Berlin & New York.
(3.7)

Mmandelsohn, J., see Flanagan, Vitale & Mendelsehn (1969).

Miele, A. & Cantrell, J. W., 1969, "Study on a memory gradient
method for the minimization of functions", J. Optzn. Thry,
& Apps. 3, 459-470. (7.1)

Miele, A. & Cantrell, J, W., 1970, "Memory gradient method for

299



the minimization of functions", in Balakrishnan (1970).
(7.1)

Milne, W. E., 1949, "Numerical calculus", Princeton Uni.
Press, Princeton, New Jersey. (2.2)

Miine-Thomson, L. M., 1933, ”THe calculus of finite
differcnces", MacMillan, London. (2,2)

Miranker, W. L., 1969, “Parallel methods for approximating the

" root of a function", 1BM Jour. Res. & Dev. 13, 3, 297-301.
(4.5, S.f)

Miranker, W. L., see Chazan & Miranker (1970}, Karp &

Mirénker (1968).

Mitchell, R, A. & Kaplan, J. L., 1968, "Nonlinear constrained
optimization by a non-random complex method", J. Res. NBS
(Engr. and Instr.) 72C, 249, (7.1)

Moler, C. B., see Forsythe & Moler (1967), Fox, Henrici &
Moler (1967). '

Morrison, D. D,, 1968, "Optimization by least squares'", SIAM
J. Numer. Anal. 5, 83. (7.1}

Murray, W., 196%9a, "lll=conditioning in harrier and penalty
functions arising in constrained nonlinear programming", in
"Proceedings of the sixth international symposium on
mathematical programming", Princeton, New Jersey, 1967. (7.1)

Murray, W., 19695, "An algorithm for constrained
mln{mizatlon", in Fletcher (1969a). (7.1)

Murray, W., see Gill & Murray (1970). 7

Murtagh, B. A., 1969, "Optimization methods with applications

300

to chemical engineering desigA", Ph. D. Thesis, Uni. of
London. (7.1)

Murtagh, B. A. & Sargent, R. W. H,, 1969, "A constrained

"~ minimization method with guadratic convergence", in
Fletchér (196%a). (7.1}

Murtagh, B. A. & Sargent, R. W. H., 1370, “Computational
experience with quadratically convergent minimization
methods", Comp. J. 13, 2, 185-194, (7.1)

Myers, G. E., 1968, "Properties of the conjugate gradient and
Davidon methods'", J. Optzn. Thry. & Apps. 2, 209-219. (7.1)

Myers, G. E., seexdohnson & Myers (1967), Kelley & Myers (1967).

Naur, P. (ed.), 1963, "Revised report on the algorithmic
language ALGOL 60", Comm. ACHM 6, I, 1-17. (1.1)

Nelder, J. A. & Mead, R., 1965, "A simplex method for function
minimization", Comp. J, 7, 308-313. (7.1, 7.4}

Newman, D. J., 1965, "Location of the maximum on unimodal
surfaces", J. ACM 12, 395-398. (1.2, 5.3, 6.7)

Noriund, N. E., 1954, "Vorlesungen uUber Differenzenrechnung",
(reprinted), New York, (3.1)

Qettli, W., see Kunzi & Oettli (1970).

Ortega, J. M., 1968, "The NewtOn-Kantorévich theorem", Amer.
Math. Monthly 75, 658-660. {3.1)

Ortega, J. M., 1970, "“Solutlion of nonlinear sy;téms of
equations', Notes for Uni. of Michigan Conf. on Numerical
Analysis, June 1970. (7.1)

Ortega, J. M. & Rheinboldt, W. C., 1970, "lterative solution

301



of nonlinear equations in several variables'", Academic
Press, New York. (3.1, 3.2, 3.6, 7.1, §)

Osborne, M. R., 1969, "A note on Powell's method for
calculating orthogonal vectors", Austral, Comp. J. 1, 2le.

(7.5)

Osborne, M. R., see Kowalik & Osborne (1968), Kowalik, Oshorne

& Ryan (1969).

Osborne, M. R, & Ryan, D. M., 1970, "An algorithm for
noplinear programming', Tech. Report 35, Computer Centre,
Australian National Uni., Canberra. (7.1)

Osbdrne, M. R. & Ryan, D. M., 1871, "On penatty function
methods'for nonlinear programming problems', J. Math.
Anal. Apps. (to appear). (7.1)

Ostrowski, A. M., 1966, "Solution of equations and systems of
equations", Academic Press, New York (2nd edition). (1.2,
3.1, 3.2, 3.6, 3.7, 4.2, 5.1, 7.1)

Ostrowski, A. M., 1967a, "Contributions tc the theory of the

method of steepest descent", Arch. Rational Mech. Anal. 26,

257-280. (7.1}
Ostrowski, A. M,, 1967b, "The round-off stability of
iterations", Z. Angew. Math. Mech.rk7, 77-82. (5.2)
Overholt, K. J., 1965, "An instability in the Fibonacci and
the golden sectionrsearch methods" BIT 5, 284, (5.3)
dverholt, K. J., 1967, "Note on Algorithm 2, Algorithm 16 and
Algorithm 17", Comp. J. 9, 4lu. (5.3)

Palmer, J., R,, 1969, "An improved procedure for

302

orthogonalising the search vectors in Rosenbrock's and
Swann's direct search optimization methods", Comp. J. 12,
69. (7.5)

Pearson, J. D,, 1969, "Variable metric methods of
minimization", Comp. J. 12, 2, 171-178. (7.1)

Pearson, J. D., see McCormick & Pearson (1969).

Peckham, G., 1970, "A new method for minimizing a sum of
squares without calculating gradients", Comp. J. 13, 4,

C418-420. (7.1)

Peters, G. & Wilkinson, J. H., 1969, "Eigenvalues of Ax = ABx
with band symmetric A and B", Comp. J. 12, 39B-40h. (1.2,
4,1, 4.2)

Pierre, D. A., 1969, "Optimization theory with applications",
Wiley, New York. (5.4)

Pietrzykowski, T., 1969, "An exact potential method for
constrained maxima*, S1AM J. Numer. Anal. 6, 229, (7.1)

Pike, M. C., Hill, 1. D, & James, F. D., 1967, "Note on
Algorithm 2, FIBONACCI SEARCH and on Algorithm 7,

MINX", Comp. J. 9, G416, (5.2) .

Pike, M. C. & Pixner, J., 1967, "Algorithm 2, FIBONACCI
SEARCH'", Comp. Bulletin 8, 1l47. (5.3)

Pike, M. C., see Bell & Pike (1966).

Pixner, J., see Pike & Pixner (19067).

Pizzo, J, T., see Jacoby, Kowalik & Pizzo (1971).

Powell, M. J. D., 1962, "An iterative method for finding

stationary values of a function of several variables",

303



Comp. J. 5, 147-151. (7.7, 7.9)

Powell, M. J. D., 1964, ™An efficient method for finding the

minimum of a function of several variables without
" calculating derivatives", Comp. J. 7, 155-162. (1.1, 1.2,
5.4, 7.1, 7.3, 7.5, 7.6, 7.7, 7.8, 7.9)

Powell, M. J. D., 1965, "A method of minimizing a sum of
squares of non-linéar functions without calculating
derivatives'", Comp. J. 7, 303-307. (7.1, 7.7)

Powell, M. J. D., 1966, "MInimization of functions of several
variables", in Walsh (1966). (7.1)

Powell, M. J. D., 1968a, "On the calculation of orthogonal
vectors", Comp. J. 11, 3, 302-304. (7.5)

Powell, M. J. D., 1968b, "A FORTRAN subroutine for solving
systems of non-linear equations', Report R-5947, AERE,
Harwell, England. (7.1)

Powell, M. J. D., 1969a, "A hybrid method for nonlinecar
equatlons", Report TP 364, AERE, Harwell, England. (7.1)

Powell, M. J. D., 1969b, '"Rank one methods for unconstrained
optimization", Report TP 372, AERE, Harwell, England. (7.1)

Powell, M. J. D., 1969¢c, "On the convergence of the variable
metric algorithm", Report TP 3B2, AERE, Harwell, England.
(7.1)

Powell, M. J. D., 1969d, "A method for nonlinear constraints
in minimlzation problems", in Fletcher (1969%9a), (7.1)

Powell, M. J. D., 1969e, "A theorem on rank one modifications

to a matrix and its inverse", Comp. J. 12, 3, 288-290. (7.1)

30L

Powell, M. J. D., 1970a, "“A survey of numerical methods for
unconstrained optimization", SIAM Review 12, 79-97. (7.1)

Powell, M. J. D., 1970b, "A new algorithm for unconstrained
optimization", Report TP 393, AERE, Harwell, England. (7.1)

Powell, M. J. D., 1970c, '"Rank one methods for unconstrained
optimization™, in Abadie (1970). (7.1)

Powell, M. J. D., 1970d, "A FORTRAN subroutine for
unconstrained minimization, requiring first derivatives of
the objective function', Report R-6469, AERE, Harwell,
England, (7.1)

Powell, M. J. D., 1970e, "Recent advances in unconstrained
optimization", Report TP 430, AERE, ﬁarwell, Enzland. (7.1,
7.7)

Powell, M. J. D., see Flatcher & Powell (19G3).

Powell, M. J. D. & Reid, J. K., 1968, "On applying Householder
transformations to linear least squares problems", Report
TP 322, AERE, Harwell, England., (7.1)

Price, J. F,, see Goldstein & Price {(1967).

Quandt, R, E., sce Goldfeld, Quandt & Trotter (1968).

Rabinowitz, P. (ed.), 1969, "Proceedings of the conference on
numerical methods for nonlinear algehraic equations", (7.1, 8)

Rall, L. B. (ed.), 1965, "Frror in digital computation', Vol.
2, Wiley, New York., (8)

Rall, L. B., 1966, "Convergence of the Newton process to
multiple sotutions', Numer. Math. 9, 23-37. (7.1)

Rall, L. B., 1969, "Cecmputational solution of nonlinear

305



operator equations", Wlley, New York. (7.1)

Ralston, A., 1963, "On differentiating error terms", Amer,
Math. Monthly 70, 187-188. (1.2, 2.1, 2.6)

Ralston, A., 1965, "A first course in numerical analysis",
McGraw Hill, New York. (1.2, 2.8)

Ralston, A. & Wilf, H. 5. (eds.), 1960, "Mathematical methods
for digital computers', Vol. 1, Wiley, New York. (7.1, 8)

Ralston, A. & Wilf, H. 5. (eds.), 1967, "Mathematical methods
for digital computers', Vol. 2, Wiley, New York. (8)

Ramsay, J. 0., 1970, "A family of gradient methods for
optimization", Comp. J. 13, 4, 413-417. (7.1)

Reeves, C. M., see Fletcher & Reeves (1964).

Reid, J. K., see Powell & Reid (1968).

Reinsch, C., see Golub & Reinsch (1970), Martin, Reinsch &
Wilkinson (19GR), Bowdler, Martin, Reinsch & Wilkinson
(1968},

Rheinboldt, W. C., see Ortega & Rheinboldt (1970).

Ribiere, G., see Kalfon, Ribiere & Sogzno (1968).

Rice, J. R., 1966, "Experiments on Gram-Schmidt
orthogonalization”, Math. Comp. 20, 325-328. (7.5)

Rice, J. R., 1970, "Minimization and techniques in nonlinear
approximation'", S$IAM Studies in Numer., Anal, 2, 80-98. (7.1)

Richman, P. L., 1968, "e-calculus", Tech. Report CS 105,
Stanford Uni. (1.2, 5.3}

Rivlin, T. J., 1970, "Bounds on a palynemial', J. Res. Nat,

Bureau of Standards-B, 74B, 1, &47-54. (1.2, 6.1)

306

Robbins, K., 1952, "Some aspects of the sequential design of
experiments", Bull. Amer. Math. Soc. 58, 527-53G. (1.2)

Rosen, J. B., 1960, "The gradient projection method for
nonlinear programming. Part 1. Linear constraints', J.
StAM 3, 181. (7.1)

Rosen, J. B., 1861, "The gradient projection method for
nonlinear programming. Part 2. MNonlinear constraints", J.
SIAM 9, 514, (7.1)

Rosen, J. B. & Suzuki, S., 1965, "Construction of nponlinear
programming test problems', Comm. ACM 8, 113. (7.1)

Rosenbrock, H. H., 1960, "An auvtomatic method for finding the .
greatest or least value of a function", Comp. J. 3,
175-18u, (5.8, 7.5, 7.7, 7.9)

Roth, B., see Freudenstein & Roth (1963).

Ryan, D. M., see Osborne & Ryan (1970, 1971), Kowalik, Osbarne
& Ryan (1969). 7

Sargent, R, W, H,, see Murtagh & Sargent (1969, 1970).

Satterthwaite, E., sce Bauer, Becker & Graham (1968).

Saunders, M., see Golub & Saunders {(1969), Bartels, Golub %
Saunders (1970).

Schroder, E., 1870, "Uber unendlich viele Algorithmen zur
Auflosung der Gleichuﬁgen“, Math. Ann. 2, 317-365. (3.1, 3.2)

Schubert, L. K., 1970, "Modification of a guasi-Newton method
for nonlinear.equations with a sparse dacobian"; Math.
Comp. 24, 27-30. (7.1)

Shah, B. V., Buehler, R. J. & Kempthorne, 0., 1964, "Some

307



. . e e . iahles"
algorithms for minimizing a function of several variables®, Stanford Artificial Intelligzence Report AIM-121. (7.7)

. M . - . N s
SIAM J. Appl ath. 12, 74-92. (7.1) Sogno, J. C., sce Kalfon, Ribiere & Sopno (1968).,

. F.. " lgori luti f . . . .
$hanno, D. F 1963 An algorithm for the solution o Sorensen, H. W., 1969, "Comparison of some conjugate direction

nonlinear estimation problems with linear constraints" . e e . . .
P ’ procedures for function minimization'", J. Franklin

Gulf Research and Development Co. Tech. Memo 161. (7.1) Institute 288, 421. (7.1)

. 1] e H i=N d -
Shanno, D. F., 196%9a, "Conditioning of quasi-Newton methods Spang, H. A., 1962, "A review of minimization technlques for

. P . d i . . H
for function minimization", Center for Math. Studles in nonlinear functions", SIAM Review 4, 343-365. (7.1)

Business and Economics Report 6910 (revised), Uni, of Spath, H., 1967, "The damped Taylor series methad for

Chicago. (7.1) C e .. .
g minimizing a sum of squares and for solving systems of

" ._N d ll‘ t . .
Shanno, 0. F., 1969b, "“lnverse quasi=Newton methods Center nonlinear equations", Comm. ACM 10, 726-728. (7.1)

. i i i 1 Eco ics Report 6938, . e .
for Math. Studies in Business an nom P Spendley, W., 1969, "Nonlinear least squares fitting using a

Uni. of Chicago. (7.1) modified simplex minimization technique", in Fletcher

Shanno, D. F., 1970a, "Paramcter selection for modified Hewton (1969a). (7.1)

f i inimization", SIAM J. Numer. Anal. -
methods for function minimization®, Spendley, W., Hext, G. R. & Himsworth, F. R., 1962,

7, 3, 366-372. (7.1) ""Sequential application of simplex designs in optimization

h , D. F., 1970b, "An accelerated gradient projection )
Shanno, D ‘ ‘ & prod and evolutionary operation', Technometrics &, 441. (7.1)

i i 1i timation”, S1AM .
method for linearly constrained nonlinear estimati Sproull, R., see Swinehart & Sproull (1970).

. 1. Math. 1 2, 322-334. 7.1) . . ' .
J. App a 8, ( Stewart, G. W., 1967, "A modification of Davidon's

. F. , P. C., 1969, "Optimal nditioning of . . P i i
Shanno, D. F. & Kettler c » “Uptimal co ! & minimization method to accept difference approximations of

- " di . .
quasi-Newton methods'", Center for Math. Studies in Busine¢ss derivatives™, J, ACM 1k, 72-83. (1.1, 1.2, 7.1, 7.7, 7.8)

' 1 i. icago. (7.1 )
and Economics Report 6937, Uni. of Chicazo. ( ) Stiefel, E. L., see Hestenes & Stiefel (1952).

i . " i i of maximum ) . . . .
Smith, C. S., 1362, "The automatic computation axth Sugie, N., 1964, "An extension of Fibonaccian searching to

i i i ", NC i. Dept. R t SC 84b6/MR/LO,
1ikellhood estimates™, B Sci ee epor /MR/ multidimensional cases", IEEE Trans. Control AC-9, 105. (6.7)

(7.1, 7.3, 7.8) Suzuki, S., see Rosen & Suzuk! (1865).

ith . .s Golub & Smith (1967).
Smith, L. B see Golu Swann, W. H., 1964, '"Report on the development of a new direct

" hi erception"
Sobelf 1., 1970, “Camera models and machine p p P) search method of optimization", 1CI. Ltd. Cent. Inst. Lab.

308 300



Research Note G4/3. (1.2, 7.1, 7.5)

Swann, W. H., see Box, Davies & Swann (1969), Davies & Swann
(1969).

Swinehart, D. & Sproull, R., 1970, "SAIL",VStanford Artificial
Intelligence Project Oparating Note 57.1, April 1970. (7.7)

Takahashi, |., 1965, "A note .on the conjugate gradient
method", Information Processing in Japan 5, L4L5-49. (7.1)

Thfeleker, E. A., see Clark, Cody, Hillstrom & Thicleker
(1967,

Tokumaru, H., Adachi, M. & Goto, K., 1970, "Davidon's mcthod
for minimization problems in Hilbert space with an
application to control problems', SIAM J. Control §, 2,
163-178. (7.1)

Tornheim, L., 1964, "Convergence of multipoint iterative
metheds™, J. ACM 11, 210-220. (3.2)

Traub, J. F., 1964, "lterative methods for solution of
equations", Prentice-Hall, Englewood Cliffs, New Jersey.
(2.2, 3.1, 3.2, 4W.5)

Traub, J. F., 1967, "The solution of transcendental
equations", in Ralston & Wilf (1967). (3.1, 3.2)

Trotter, H. F., see Goldfeld, Quandt & Trotter (1968}.

Tzschach, H. G., see Kunzi,.Tzschach % Zahnder (1968).

Vercoustre, A. M., 1970, “"Etude compérative des méthodes de
minimization de Fletcher et Powell et de Davidon", Bulletin
dé la direction des édtudes et recherches sdérie C -

Mathématiques, No. 1, 57-76. (7.1)

310

Vitale, P. A., sce Flanagan, Vitale & Mendelsohn (1969).

Vogl, T. P,, see Lavi & Vogl (1966),

Voigt, R. G., 1969, "Rates of convergence for iterative
metﬁods for nonlinear systems of equations", Uni. of
Maryland Computer S5ci. Center Report 69-37. (3.2, 7.1)

wall, D., 1956, "The order of an iteration formula", Math.
Comp. 10, 167-168. (3.2)

Walsh, J. {(ed.), 1966, "Numerical anélysis: an introduction",

Academic Press, London & New York. (8)

Wells, M., 1965, "Algorithm 251: Functicon minimization', Comm,

ACM 8, 3, 169-170. (7.1)

van Wjjngaarden, A., Zonneveld, J, A. &‘Dijkstra, E, W,, 1963,
“Programs AP200 and AP230 de serie AP200", edited by
T. q. Dekker, The Mathematical Centre, Amsterdam. (1.2, 4.1)

Wilde, D. J., 1964, "bptimum seeking methods", Prentice-Hall,
Englewood Q}iffs, New Jersey. (1.2, 4.5, 5.3, 5.7, 7;1, 7.5)

Wilde, D. J. & Beightler, C. S., 1967, "Foundations of
optimization"; Preﬁtice-Hall, fnglewood Cliffs, New Jersey.
(7.1)

Wilde, D. J., see Avriel & Wilde (1966).

Wilf, H. 5., see Ralston & Wilf (1960, 1967).

Wilkinson, J. H., 1963, "Rounding errors in alzebraic
processes", HMS0, London or Prentice Hall, New Jersey.
(hiZ, G.3, 7.2)

Wilkinson, J. H., 1965a, "The alzebraié eizenvalue problem",

Oxford Uni. Press, Oxford. (7.2, 7.4}

311



i,

Wilkinson, J. H., 1965b, "Error analysis of transformations Wolfe, P., 1969, "Convergence conditions for ascent methods",

based on the use of matrices of the form I-2ww®", in Rall SI1AM Review 11, 226-235. (7.1)
(1965). (7.4) Zadeh, L. A. (ed.), 1969, "Computing methods in optimization

Wilki05§n; J. H., 1967, "Two alzorithms based on successive _ problems™, Vol. 2, Academic. Press, New York. (7.1, B8)
inear interpolation'", Tech. Report CS 60, Stanford Uni. Zangwill, W. 1., 1967a, "Minimizing a function without
(1.2, 4.1, 4.2) ‘ . 7 - calculating derivatives'", Comp. J. 10, 293-296. (7.1, 7.3)

Wilkinson, J. H., 1968, "Global convergence of QR algorithm", Zangwill, W. 1., 1967b, "Nonlinear programming via penalty
Proceedings of IFIPS Congress, 1968. (7.4) functions", Mgmt. Sci. 13, 3u4-358. (7.1)

Wilkinson, J. H., see Peters & Wilkinson (1969), Golub & Zangwill, W. 1., 1969, "Nonlinear programming: a unified
Wilkinson (1966), Martin, Reinsch & Wilkinson (1958), approach"”, Prentice-Hall, Englewocod Cliffs, New Jersey. (7.1)
Bowdler, Martin, Reinsch & Wilkinson (19G8). Zangwill, W. 1., 1969b, "Convergence conditions for nonlinear

Winfield, D. H,, 1967, "Function minimization without programming algorithms", Mgmt. Sci. 16, I. (7.1)
derivatives by a sequence of quadratic programming Zehnder, C. A., see Kunzi, Tzschach & Zehnder {(1968).
probiems", Report 537, Enginecring & Applied Physics Zeleznik, F. J., 1968, "Quasi-Newton methods for noniinear
Divislon, Harvard Uni. (7.1) equations', J. ACM 15, 265-271. (7.1}

Wirth, N. & Hoare, C., 1966, "A contribution to the Zonneveld, J. A., see van Wijngaarden, Zonneveld & Dijkstra
development of ALGOL", Comm. ACM 9, 6, 413-431. (1.1, &4.4, (1963).

5.6, 6.6, 7.9) Zoutend}jk, G., 1960, "Methods of feasible directions",

Witzgall, C., 1969, "Fibonacci search with arbitrary first Elsevier, Amsterdam & New York. (7.1}
evaluation", Report D1-82-0916, Boeing Scientific Research Zoutendijk, G., 1966, "Nonlinear programming: a numerical
Labs., Seattle, Washington. (1.2, 5.3, 5.4) ' survey', J. SIAM Control 4, 194-210.°(7.1)

Wolfe, P., 1959a, "The secant method for simultaneous ' Zoutendijk, G., 1970, "Nonlinear programming, computational
nen-11lnear equations', Comm. ACM 2, 12, 12-13. (7.1) methods™, in Abadie (1370)., (7.1)

Wolfe, P., 1963, "Methods of nonlinear programming' in "Recent
advances In nonlinear programming", edited by Graves &

Wolfe, McGraw Hill. (7.1)

31z 313






:

L




