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ABSTRACT: In this work we show that it is possible to express
most properties regularly observed in algorithms in
terms of 'partial correctness' (i.e., the property that
the final results of the algorithm, if any, satisfy some
given input-output relation).

This result is of special interest s&ne;'pa.rtial

correctness' has already been formulated in predicate
calculus and in partial function logic for meny classes

of algorithms. ( )

—
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Introduction

We normally distinguish between two classes of algorithms: deterministic
algorithms and non-deterministic algorithms. A deterministic algorithm
defines & single-valued (partial) function, while a non-deterministic algorithm
defines a many-valued function. Therefore, while there are only a few -
properties of interest (mainly, termination, correctness, and equivalence)
for deterministic algorithms, there are n;any more (determinacy, for example)
for non-deterministic algorithms.

In this work, we show that it is possible to express most properties
regularly observed in such algorithms in terms of the 'partial correctness'
property (i.e., the property that the final results of the algorithm, if
any, satisfy some given input-output relation). ‘

This result is of special interest since 'partial correctness' has
already been formulated in predicate calculus for many classes of deterministic
algorithms, such as flowchart programs (Floyd (1967 a) and Manna (1969)),
functional programs (Manna and Pnueli (1970)), and Algol-like programs
(Ashcroft (1970)); and also for certain classes of non-deterministic algorithms,
such as choice flowchart programs (Manna (1970)) and parallel flowchart
programs (Ashcroft and Manna (1970)). See also Cooper (1969 a, 1969 b).
Similarly, Manna and McCarthy (1970) have formulated 'partial correctness’

of functional programs in partial function logic.



1. Deterministic Algorithms

An algorithm P (with input variasble x and output variable z) is

said to be deterministic if it defines a single-valued (partial) function

z = P(x) mapping D, (the input domain) into D, (the output domain).
That is, for every §er > P(t) 1is either undefined or defined with

P(t) €D, .

Examples: 1In the sequel we shall discuss the following four deterministic

algorithms for computing 2z = x! where Dx = Dz = {the non-negative integers} .

(a) The flowchart programs P, (Figure 1) and P, (Figure 2). Here
(yl,ye) - (yl-l,yl-ye) » for example, means that ¥, 1is replaced
by yl-l and Yo is replaced by Y15 » simultaneously.

(b) The functional programs

P3: z = F(x) where
F(y) <= if y = O then 1 else y*F(y-1) ;
and
P): -z = F(x,0) where

F(x,¥) <= if y = x then 1 else (y+1)-F(x,y+1) .

Here '<=' stands for 'is defined recursively by' (see McCarthy (1963)).
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Figure 1: The flowchart program P, for canputing z = x!
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Figure 2: The flowchart program P2 for computing z = xi



Let ¥(x,z) be a total predicate over D _xD, (called the output

predicate), and let §eBx . We say that

1. (1) (P,&) is partially correct with respect to V¥ if

either P(8) is undefined, or P(t) is defined and V(E,P(¢)) =T ;

(i1) (P,t) 1is totally correct with respect to ¥ if P(t) is

defined and V(&,P(t)) =T ;

(1i1) (P,t) 4is defined if P(t) is defined.

Let Pl and PE be any two comparable deterministic algorithms,
j.e., algorithms with the same input domain Dx and the same output

domain I)z . We say that

2. (il) (3?1,§) and (Pg,g) are partially equivalent if either Pl(ﬁ)

or ?2(»5) is undefined, or both Pl(E) and Pe(g) are defined
and Pl(g) = Pg(g) 3

(i1) (Pl,g) and (Pz,g) are totally equivalent if both ?1(5)

and 132(5) are defined and Pl(g) = Pz(g) .

S (1) (Pl,g) is an extension of (Pz,g) if whenever P2(§) is
defined, then so is Pl(g} and Pl(E) & Pe(g) 3
(i1) (I’l,E) and (Pe, E) are equivalent if either both Pl(i:‘,) and
Pe(g) are undefined, or both Pl(g) and ?2(5) are defined
and P (8) = By(t) -
Qur main purpose in this section is to show that all these properties

can be expressed in terms of partial correctness as described in the

*
following theorem -/

5 For abbreviation, we use ~ ¥ to define the predicate which is T
exactly for those values where ¥ is F , V¥ to mean "for every
output predicate ¥ ...", and &V to mean "there exists an output
predicate ¥ such that ..." .




THEOREM 1

(a) (P,t) is totally correct w.r.t. ¥ if and only if (P,%) is not

partially correct w.r.t. ~V j;

(b) (Pyt) is defined if and only if (P,&) is not partially correct

w.r.t. F (false);

(¢) (Py,t) 1is pertially equivalent to (P,&) if and only if ¥V [(P,¢)

is partially correct w.r.t. V¥ or (PE,E) is partially correct

w.r.t. ~¥] ;

() (:pl,.g) is totally equivalent to (Pe,g) if and only if WV [(Pl,g)

is not partially correct w.r.t. ¥ .r (Pa,g) is not partially

correct w.r.t. ~¥] ;

(e) (Pl,g) is an extension of {Pe,g) if and only if Vv {(Pl,g) is

partially correct w.r.t. ¥ implies (Pé,g) is partially correct
w.r.t. V¥] ; and finally

(£) (P},&) 1is equivalent to (P,,8) if and only if ¥V [(P),8) is
partially correct w.r.t. V¥ if and only if (Pa,g) is partially

correct w.r.t. V] .

Proof of Theorem 1. The proof of (a) is straightforward. (b) is a

special case of {a) since by definition (Pl,§) is defined if and only

if it is totally correct w.r.t. T (true). (c), (d)and (e) are best proven
by considering the corresponding contra-positive relations and using the
fact that ?1(§) and pg(g) are defined and Pl(g) # Pe(g) if and only

if Pl(i) and P,(t) are defined and 3*[¢(§:P1(§)) F ¥(E,P,(E))] -

(e") (pl,g) is not partially equivalent to (re,g) (i.e., both Pl(g}
and P,(&) sre defined and P(t) £ Py(t)) if and omly if I¥[(P),¢)

is not partially correct w.r.t. V¥ and (Pe,g) is not partially correct

W.I‘at- Land "F} ;




(a*) (Pl,g) is not toally equivalent to (PE,E,) (i.e., either Pl(g)
or Pz(g) is undefined, or both Pl(E,) and Pz(g) are defined and

Pll'f,) # P2(§)) if and only if WIV[(P;, t) is partially correct w.r.t. ¥

and {Pe,g) is partially correct w.r.t. ~ V] 3 and

(e") (Pl,g) is not an extension of (Pz,g) (i.e., either Pe(g) is
defined and ?l(g) ijs undefined, or both Pl(g) and P2(§,) are defined

and Pl(g) # Py(t)) Aif and only if T[(P,E) is partially correct

w.r.t. ¥ and (Pe,g) is not partimlly correct w.r.t. ¥] .

(f) follows directly from (e) since (Pl,E,) is equivalent to (Pa,g)

if and only if (Pl,g) is an extension of (PE’E') and (PE’ t) is an

extension of (P1,§) i

Suppose for a given deterministic algorithm P (mapping integers
into integers) we wish to formulate properties such as being total and
monotonically increasing (i.e., x >Xx' = P(x) > P(x') ). Unfortunately,
our definitions of partial and total correctness are not general enough to
jnclude such simple properties in a natural way. However, we can include
them by introducing more general notions of partial and total correctness.

Let P, (L<i<n) be n deterministic algorithms with input

variables X; s output variables Z: jnput domains Dx , and output
i

domains D, respectively. Let '{fr(xl, IPREREE z ) be any total predicate
i
over Dxlezlx xDxnxDzn and let §ieri (L<i<n) . Wesay that

L., (i) (Pys 51), -ees(Ps gn) are partially correct w.r.t. ¥ if either

at least one of the Pi(gi) is undefined, or each Pi(g i) is

defined and :3(;1’?1(&1)"“’E'n’Pn(gn)) =T .

(11)  (Ppsty)se-es (B g ) ere totally correct w.r.t. V if each

P (t;,) is defined and W(E Py (85 e s 8P (8)) = T
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Note that for n = 1 we obtain properties 1(i) and 1(ii) as special
cases of properties L(i) and 4(ii), respectively. For n = 2 and
w(xl,zl,xe,ze): X, =X, D%y = Zy s properties (i) and 4(ii) reflect
properties 2(i) and 2(ii), respectively. For n = 2 and
\If(xl,zl,xz, 22): X, > X5 D2y >z, where Py and P.? are identical to P,
we obtain the above monotonicity property.

It is interesting that these general notions of correctness can

still be expressed just by means of the usual partial correctness, as

described below.

THEOREM 2

(a) (Pl,gl), . ..,(Pn,'_é,n) are partially correct w.r.t. ¥ if and only if

UMY .Eﬁn{ Pl(E‘l) js partially correct w.r.t. V¥,

and 'PE(E,E) is partially correct w.r.t. V¥,

-

and Pn(gn) is partially correct w.r.t. L

and Vy,-. .Vynwl(gl,yl) and ... and ﬁn(gn,yn) implies ;(gl,yl, ._..,E,_n,yn) 11 3
(v) (Pl,gi),...,(Pn,gn) are totally correct w.r.t. ¥ if and only if
YV .- .wn{ Pl(gl) is partially correct w.r.t. ¥,

and Pe(ﬁe) is partially correct w.r.t. ¥,

and Pn(gn) is partially correct w.r.t. v,

implies syl..,.gynwl(gl,yl) and ...and ¥ (& ,¥,) and 'é(gl,yl,...,gn,yn)]} .

Proof of Theorem 2. It is straight forward that the right-hand side of (a)

implies the 1eft-hand side. To prove that the left-hand side implies the
right-hand side, choose ¥; in such a way that vi(g i’“i) =T if

and only if P,(t,) is defined and 7y = P (,) - (b) follows from (a)
since (PyrEy)seer (P ,6,) are totally correct w.r.t. ¥ if and only if

(Pl,gl), Swd (Pn, §n) are not partially correct w.r.t. ¥ s
T



2. TFormulation of Partial Correctness of Deterministic Algorithms

The above results imply that if one knows, for example, how to

formulate partial correctness of a given deterministic algorithm in

predicate calculus, the formulation of many other properties of the algorithm

in predicate calculus is straightforward. As a matter of fact, partial
correctness has already been formulated in predicate calculus for many
classes of deterministic algorithms.

In this section we illustrate the flavor of such formulations.

(A) Flowchart Programs and Predicate Calculus

Let us consider, for example, & flowchart program P of the form

described in Figure 3, with a given output predicate ¥(x,2) over DxxDZ ?

Here, input(x) maps D into Dy , test(x,y) is a predicate over
D yxby , operator(x,y) maps Dxny into D}r , and output(x,y) maps

Dxxl)y into Dz .

C_START_D

¥y + input(x)

Y - operator (x,¥)

Figure 3: The flowchart program P
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We associate a predicate variable (unspecified induction hypothesis)
Q(x,y) with arc a and the given output predicate V(x,z) with arc B,

and zonstruct the following formula WP(x,‘l’) :

3Q{ Q(x,input(x)) --- initialization
A ¥ylQ(x¥) A ~ test(x,y) D Q(x, operator(x,y)) ] --- induction
A ¥ylQ(x,¥) A test(x,y) D ¥ (x, output (%,¥)) 1} ' === conclusion

or eguivalently,

%{ Q(x,input(x)) --- initialization
A YylQ(x,y) o IF test(x,y) THEN V(x, output (X,¥)) --- conclusion

ELSE Q(x,operator(x,y))]} . --- induction

Here, IF A THEN B ELSE C stands for (A D B) A (~ADC) . Note that
D > IF A THEN B ELSE C is logically equivalent to (D A A>B)A(DA~ADC) .
The key result is that for any given input EeD, (P,t) is partially

correct w.r.t. ¥ if and only if wP(g,w) is true (Manna (1969)).

Example 1: In particular, for the flowchart program P, (Figure 1),
*
it follows t‘nat:—/ (Pl’ t) is partially correct w.r.t. z = x! if and

only if W_ (&,z=x!) is true, where W (¢,z=x!) is
Py 5

s{ Q(t,&,1)

A ¥y ¥y, [a(k,¥,5¥,) DIF v, =0 THEN y, =¢! ELSE Q(&,¥,-1,5,°Y,) 1} -

Note that for Q(g,yl,yz) being the predicate yz-yl! = ¢! , the formula

in braces { } is true.

= Here, D _=D, = {the non-negative integers} , ¥y-= (yl,yg) , and

Dy = fall pairs of non-negative integers} .

9



Example 2: For the flowchart program P, (Figure 2), it follows
similarly that: (Pe, ) 1is partially correct w.r.t. z = x! if and only

if W_ (&,z=x!) is true, where W (,z=x!) is
Pa o

Af{ a(t,0,1)

Note that for Q(% ,yl,ya) being the predicate vy, = yli , the formula in

braces { 1 is true.

(B) Functional Programs and Predicate Calculus

Consider, for example, a functional program P of the form

z = F(x,input(x)) where

F(x,y) <= if test(x,y) then output (%,¥)

else operatorl(x,y,F(x, M(x,y))) 5

with a given output predicate ¥(x,2z) over D _xD_ . Here, input(x)
maps D into Dy , test(x,y) is a predicate over nxny , output(x,¥)
maps Dxxny into Dz , operatorl maps Dxxnyxnz into Dz , and
operator2 maps Dxny into Dy .

We associate a predicate variable (unspecified induction hypothesis)

Q(x,y,2) with F(x,y) , and construct the following formula WP(x, V)

3 yz[Q(x, input (x),2) D ¥(x,2) ] -- conclusion
A Yy[IF test(x,y) THEN Q(x,y,output (x,¥)) -- initialization

ELSE Vt{Q(x,ggeratorE(x,y),t)

>Q(x,y,operatori(x, y,t)]]} -- induction

The key result is that for any given input EeD_ , (p,&) is
partially correct w.r.t. ¥ if and only if WP(E,‘F) ig true (Manna and

Prueli (1970), see also Park (1970)) .

10



Example 5: For the functional program P3 -

z = F(x) where

F(y) <= if ¥y = O then 1 else y-F(y-1) ,

it follows that: (P5,§) is partially correct w.r.t. z = x! if and

only if W_ (E,z=x!) is true, where W_ (E,z=x!) is
Py P

R{ vzlQ(e,z) o z=8L]
A Yy[IF y =0 THEN Q(y,1) ELSE vt{Q(y-1,t) > Q(y,y-t)]]} -

Note that for Q(y,z) being the predicate z = y! the formula in

braces { } is true.

Example L: For the functional program Ph :

z = F(x,0) where

F(x,y) <= if y = x then 1 else (y+1) 'F(x,y+l) ,

it follows that: (Ph,g) is partially correct w.r.t. z = x! if and

only if Wy (¢,z=x!) is true, where Wy, (¢8,z=x!) is
L 4

3{ Vvz[Q(E,0,2) oz = &!]
A Yy[IF y = & THEN Q(&,y,1) ELSE V‘b[’Q(gﬂﬂ'l:t) SQ(E,y, (y+1) 't)]}} .

Note that for Q(%,y,z) being the predicate z-y! = £! , the formula
in braces { ] is true.

The formulas constructed here are independent of the syntax of the
language in which the algorithms are expressed, and, therefore, we can
use our results to formulate in predicate calculus the equivalence of
algorithms defined by different languages. From part (f) of Theorem 1
it follows, for example, that for every input ¢ , (Pl,g) and (P3,§)

are equivalent if and only if vw[wP (t,¥) = ij(g,»&)} is true.
1
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The reader should realize that the flowchart program P (Figure 3)
can be represented equivalently (see McCarthy ( 1962)) by the functional

program P! :

z = F(x,input(x)) where

F(x,y) <= if test(x,y) then output (x,y) else F(x,operator(x,y)) -

However, Wy, (x,¥) 1is

Q{ vz[Q(x,inEgt(x),z) o ¥(x,2) ]
A YylIF tﬂﬁ(xay) THEN Q(xsy':ﬁtﬂt_(xﬂf))
ELSE Vt{Q(x:OEerator(xﬁrY):t) o) Q.(x’}':t) ]}} H

while WP(x, ¥) was

i alx inEEt(x))
A Yyla(x,y) o IF Es_g(x,y) THEN *(xioutEEt(xsy)) ELSE Q(X,gp_eratﬂr(x’y))}} .

Although both WP(x,*) and Wy, (x,¥) essentially formulate partial
correctness of (Pyx) W.r.t. Vv, they seem to be quite different.
Intuitively, the difference between the two formulations is that Q(x,¥y)
in WP(x,w) represents all current values of (x,y) at arc « during
the computation of P , while Q(x,y,2) in Woo (x,¥) represents the

final value of z when computation of P starts at arc & with initial

values (%,y) -

(c) Functional Programs and Partial Function Logic

Consider again a functional program P of the form

z = F(x,input(x)) where
F(x,y) <= if test(x,y) then cutput (x,¥)

else operatorl(x,y,F(x,operator2(x,y))) »

with a given output predicate ¥(x,2z) .
12




We construct the following formula -W'P(x, ¥) :

TF{ [*F(x,input(x)) > ¥(x,F(x,input(x)))]

*
A Yy[F(x,y) = if test(x,y) then output(x,y)

else operatorl(x,y,F(x,operator2(x,y)))1} .

Here, "dF" stands for "there exists a partial function F mapping
Dxny into D, such that .+a"; " *F(x,input(x)) " stands for the
total predicate (mapping D, into {r,F} ) "F(x,input(x)) is defined";
and £ is just the natural extension of the usual equality relation,
defined as follows: A L B if and only if either both expressions A
and B are defined and represent the same element (of Dz , in this case)
or both expressions are undefined.

The key result is that for every given EeD , (p,t) is partially

correct w.r.t. V¥ if and only if ﬁP(g ,¥) is true (Manna and McCarthy (1970)).

Example 5: For the functional program Ph :
z = F(x,0) where
F(x,y) <= if y = x then 1 else (y+1) ‘F(x,y+1)

’

it follows that: (Ph,g) is partially correct w.r.t. z = x! if and

only if ﬁPh(i‘ s 2=Xx!) is true, where ﬁPh(g s2=x!) is
ar{ [*F(£,0) > F(§,0) = &!]
A ¥y[F(E,y) = if y = ¢ then 1 else (y+1)-F(t,y+1)]} .
Note that for F(&¢,y) being the partial function

(g:/yz if y<t¢t
F(ﬁ,y) = \
undefined if y>¢

the formula in braces { } is true.

13



3. Non-Deterministic Algorithms

One natural extension of our study is obtained by considering non-
deterministic algorithms rather than deterministic algorithms.
An algorithm P (with input variable x and output variable z) is

said to be non-deterministic if it defines a many-valued function P(x) ,

mapping elements of D (the input domain) into subsets of D, (the
- output domain); that is, for every &eD_ , P(t) is a (possibly empty)
subset Z of D, , where each (eZ 1is the final result of some

computation of P with imput E .

Examples: We first describe three non-deterministic programs for computing
z = x! , making use of the deterministic programs Pl'Ph introduced in

Section 1.

(a) Parallel flowchart program: In Figure 4 we have described a simple
parallel flowchart program PS for computing 2 = x! . The program
jncludes a 'BEGIN-END' block which consists of two branches, the left
branch being the body of program Pl and the right bra.nc_h being the
body of program 11'2 , after changing the test statements to ¥y = yi

in both -

1k



Figure L: The parallel flowchart program

15
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P5 for computing z = x!

>



(v)

The program is executed as follows. First statement o is
executed. Entering the block either the statements in B or the
statements in 7 are executed, chosen arbitrarily. The execution
proceeds asynchronously, i.e., between the execution of two consecutive
B's , we may execute an arbitrary number of 7y's ; and conversely,
between the execution of two consecutive y's we may execute an
arbitrary number of B's . B and 7 cannot be executed at the
same time. Therefore, one can consider execution to be performed
with a single processor switching between the two branches. We exit
from the block and execute statement ©& when either of the two branches
reaches the END node. Such parallel programs are discussed in detail

in Ashcroft and Manna (1970).

Choice flowchart program: In Figure 5 we have described a choice

flowchart program for computing z = x! . A branch of the form Q

is called a choice branch. It means that upon reaching the choice

branch during execution of the program, we are allowed to proceed with
either branch, chosen arbitrarily. Such choice flowchart programs have

been discussed in detail by Floyd (1967 b).

Note that for any given input x both P5 and P6 yield the
same set of computations. For x = 3 , for example, there are
exactly 8 different possible executions of each program. In general,

for every non-negative input x , there are 2® aifferent possible

computations of each program.

16



(‘.‘fl) yi: YE) « (x,0, 1)

Nopvp) = - Lyy vt (v]53,) ~ 1+ (vi+L) "Y,) @

:

k

(e)

Figme 5: The choice flowchart program P(: for computing z = x!

Choice functional program: Consider the following choice functional
program PT H
z = F(x,0) where

F(y,y') <= if y = y' then 1 else choice(y-F(y-1,¥"), (y'+1) F(y,y'+1)) .

The choice function here has the same meaning as the choice branch
in P ; it corresponds to McCarthy's (1963) amb (ambigucus) function.
For every non-negative input x there are again o different possible

computations of P.? .

17



In this section we shall discuss several properties of non-
deterministic algorithms. For non-deterministic algorithm P and

input §€Dx we say that

1.(i) (P,t) is T-defined if there exists a finite computation P

with input ¢ (or, equivalently, P(&) £ 0 );
(1i) (P,t) 1is Y-defined if every computation of P with input ¢
is finite;

(iii) (P,&) is partially determinate if all finite computations of

P with input ¢ yield the same final result (or, eguivalently,
P(t) is either empty or a singleton);

(iv) (P,t) 1is totally determinate if all computations of P with

input & are finite and yield the same final result.

Let ¥(x,z) be a total predicate over D_xD, , and let EeD, .

A finite computation of P with input £ 1is said to be correct w.r.t. ¥

if for its final value [ , V(¢,L) =T . We say that

2.(1) (P,t) is partially F-correct w.r.t. V¥ if either there exists

an infinite computation of P with input & , or there exists a
finite computation of P with input ¢ which is correct w.r.t. V¥ ;

(11) (P,t) is totally ¥-correct w.r.t. V¥ if there exists a finite

computation of P with input ¢ which is correct w.r.t. V¥ ;

(ii1) (P,t) 4is partially ¥Y-correct w.r.t. V¥ if every finite computation

of P with input E is correct w.r.t. V¥ ;

(iv) (P,t) 1is totally V-correct w.r.t. ¥ if every computation of P

with input ¢ is finite and is correct w.r.t. V¥ .
Let Pl and P2 be any two comparable non-deterministic algorithms,
i.e., algorithms with the same input domain Dx and the same output domain Dz

We say that
18



3.(1)

(11)

L. (1)

(11)

5.(1)

(ii)

(Pl, t) and (Pe,g) are partially determinate-equivalent if all

finite computations of Pl and 'P2 with input ¢ yield the
same final result (or, equivalently, Pl(g) U P2(§) is either
empty or a singleton).

(Pl,ﬁ) and (Pe,g) are totally determinate-equivalent if all

computations of Pl and P2

the same final result.

with input ¢ are finite and yvield

(pl,g) partially extends (P2,§) if, for every finite camputation
of P2 with input & , there exists a finite computation of Pl

with input £t that yields the same final value (or, equivalently,
Py (8) 2 P,(E) );
(Pl,g) totally extends (P2,§) ;4 (Pl, t) partially extends

(Pys t) , and if there exists an infinite camputation of P, with

input & , then there is also an infinite computation of Pl with

input £ .

(:pl,g) and (Pe,g) are partially equivalent if (Pl,g) partially

extends (PE’ t) and conversely (or, equivalently, Pl(g) = ?2(5) );

(?3',§) and (Pe,g) are totally equivalent if’ (Pl,g) totally

extends (PE’ t) and conversely.

Our mein purpose in this section is to show that all these properties

can be expressed in terms of the two notions of partial correctness,

nemely partial F-correctness and partial V-correctness.
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THEOREM >

(a) (P,t) is T-defined if and only if (P,t) is not partially Y-correct

w.r.t. F (false);

(b) (P,&¢) 4is y-defined if and only if (P,£) is not partially J-correct

w.r.t. F (false);

() (P,t) is partially determinate if and only if YV[(P,t) is

partially Y-correct w.r.t. V¥ or (p,t) is partially ¥-correct
W-I.'t. ~ WI ;

(@) (P,t) is totally determinate if and only if YV[(P,¢) is not

partially F-correct w.r.t. V¥ or (P,t) 4is not partially F-correct
w.r.t. ~¥]

(e) (P,&) is totally J-correct w.r.t. V¥ if and only if (P,&) is not

partially V-correct w.r.t. ~V 3

(£) (P,t) is totally ¥-correct w.r.t. V¥ if and only if (P,&) is not

partially "-correct w.r.t. ~V j

(g) (Pl,g) and (P,,t) eare partially determinate-equivalent if and
only if W[(Pl,g) is partially Y-correct w.r.t. V¥ or (Pg,g)
is partially Y-correct w.r.t. ~¥] ;

(h) (Pl’ t) and (PE,E) are totally determinate-equivalent if and only if

W{(Pl,g) is not partially @-correct w.r.t. V¥ or (Pz, E) is not
partially J-correct w.r.t. ~ ¥] 3
(1) (Pl,g) partially extends (P,,t) Aif and only if W{(Pl,'é) is

partially ¥-correct w.r.t. V¥ implies (P2,§} is partially

¥-correct w.r.t. V] ;

(3 (Pl,l_i,) totally extends (P,,8) if and only if W[(P,,&) is
partially T-correct w.r.t. V¥ implies (Pl,g) is partially

g-correct w.r.t. V] ;



(k) (Pl?g) and (Pg,g) are partially equivalent if and only if

w[(yl,g) is partially ¥-correct w.r.t. V¥ if and only if (Pé,g)

is partially ¥-correct w.r.t. ¥] s

(£) (Py,¢) and (P,yt) are totally equivalent if and only if W¥[(P,,§)

is partially 7-correct w.r.t. V¥ if and only if (Pé,t) is

partially F-correct w.r.t. V] .

Proof of Theorem 3: (a), (b), (e) and (f) are straightforward by

definition. (c), (d), (g), (h), (i), and (j) are best proved by
considering the corresponding contra-positive relations. (k) and (2)

follows from (i) and (j), respectively.

. Formulation of Partial Correctness of Non-Deterministic Algorithms

For a given non-deterministic program P and an output predicate
¥(x,z) , we would like to construct two formulas Wﬂ(x,ﬁ) and w”(x,v)

in predicate calculus, such that for every given input value EEBx 2

(i) (p,&) is partially S-correct w.r.t. ¥ if and only if WA(E,¥)
is true, and ‘
(ii) (P,E) is partially V-correct w.r.t. ¥ if and only if Wi (e,V)

is true.

Then, using the formulas wg(x,w) and wv(x,v) , the formulation of the

other properties of P in predicate calculus is straightforward.

Following Ashcroft and Manna (1970), one can formulate properties of
the parallel flowchart PS by first translating it to the equivalent choice
flowchart program P6 and then make use of the formulas W% (x,¥) and

W; (x,¥) . We shall therefore illustrate the construction of Wﬁ(x,i) and
&
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Wv(x,*) only for the choice flowchart program P, (Figure 5) and the
choice functional program PT . The main idea behind this formulation is
that the effect of the choice branch is represented by an tv ' connective
in WH(X,W) , while it is represented by an 'A ' connective in Wv(x,w)
(see Manna (1970)).

To construct w§6(§ , z=x!) , associate the predicate variable

Q(E,¥-5¥!5¥,) Wwith arc a in Figure 5 and the predicate varisble 2z = x!
17¥1°72

with arc B . Then W; (6,z=xt) 1is
6

d{ Q(t,t,0,1)
A Yy ¥3¥y,IQ(E, ¥ Y sYp) D TF ¥y = v) THEN yp = £F
ELSE [Q(&,¥,-1,¥}¥;°¥p) A Q631+, (¥5+1) ¥ 11} -
The reader can verify easily that for every non-negative integer & , the
formula W (g, z=x!) is true for Q(g,yl,yl,ya) being the predicate
Yo' yl. = &1 yl. . W (g ,z=x!) is similar with the "A ' connective
replaced by 'V ',

To construct w; (¢, z=x!) , associate the predicate variable

T
Q(y,y',2z) with the function varisble F(y,y') . Then W; (¢, z=x!) is:

T
3 { Yz[Q(E,0,2) Dz = et}

A Yy¥y'[IF y = y' THEN Q(¥,¥"51),
ELSE Vt{Q(lV'lxi‘f':t) =2 Q(Y:Y':Y’t)]

A YE[Q(y, y'+1,t) D Qly, vy’ (y'+1) ) 111 -

The reader can verify easily that for every non-negative integer £ , the
formula W (¢,z=xt) is true for Q(y,¥', z) being the predicate

T
z.y'! = y! . Wﬁ (¢ ,z=x!) is similar ‘with the 'A ' connective replaced

’?
by 'v?',
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