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Several algorithms are presented for solving linear |east squares

probl ems; the basic tool is orthogonalization techniques. A highly
accurate algorithmis presented for solving least squares problens with

linear inequality constraints. A pethod is also given for finding the
| east squares solution when there is a quadratic constraint on the

sol ution



0. Introduction

One of the nost common problens in any conputation center is that of
finding linear |east squares solutions. These problens arise in a variety
of areas and in a variety of contexts. For instance, the data may be
arriving sequentially froma source and there may be some constraint on
the solution. Linear |east squares problems are particularly difficult
to solve because they frequently involve large quantities of data, and
they are ill-conditioned by their very nature.

In this paper, we shall present several nunerical algorithns for
solving linear |east squares problens in a highly accurate nanner. In
addition, we shall give an algorithm for solving linear |east squares
problem with linear inequality constraints.

1 Li near |east sauares

Let A be a given mxn real matrix of rank r and b a given

A

vector. W wish to determne X% such that

m n 2
b. - L LX., = mn.
égé( + £§£a1JXJ)

or using matrix notation
Jo-ax],, = i n. (1.1)

If npn and r<n, then there is no unique solution. Under these
conditions, we require anongst those vectors x which satisfy (1.1) that

Bl = mn.

For r =n, X satisfies the normal equations

aTax = aTv . (1.2)
Unfortunately, the matrix ala is frequently ill-conditioned and
influenced greatly by roundoff errors. The following exanple illustrates

this well. Suppose



which is clearly of rank 4 . Then

r -
1+e° | 1 1
2
. 1 1 1 14e°
ATA =L 1 1+& 1+e? 14

and the o, genvalues of ATA are kel , & s ) £ ssure that the

el enents of ATA are conputed using double-precision arithmetic, and then
rounded to single precision accuracy. Now let n be the |argest number
on the computer such that f£(1+n) = 1 where f£(...) indicates the
floating point conputation. Then if ¢ < /q,

, [1 1 1 17
T 1 1 1 1

fL(A'A) = L1 1 1 ,
11 1 1

a matrix of rank one, and consequently, no nmatter how accurate the Iinear

equation solver it will be inpossible to solve the normal equations (1.2).
LONGLEY [1967] has gi ven exanples in which the solution of the normal

equations leads to alnmost no digits of accuracy of the |east squares problem

2. A matrix deconposition

Now “3[”2 = (XTZ)1/2 so t hat “Q;f”E = ”.3.’”2 when Q is an orthogonal

matrix, viz., Q,TQ, =1 . Thus

where ¢ = @ and Q is an orthogonal natrix. W choose Q so that

~

~

@A =R= [.5 (2.1)

}(m-n)xn
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where R is an upper triangular matrix (). Let

> B
n

(:::) | r
nn
t hen )
Hb-Ax“2 = (c,-r..x -r _x - -r x )2
~ M2 17111 "1272 T In' n
_ 2
+ (CZ r22x2 b oo mm r2nxn)
2
+ + -
Y (cn rnnxn)
2 2 2
+ + +
Cn+l Cn+2 SO Cm *
Thus Hb-Ax“i is mninmzed when
T T Tt e  T%n T o
r22x2 oot I'2n3cn=(:2
nn™n = n
i.e., Rk = ¢, where
~T
c = (01)02)'°')cn) )
and
a2 2 2 2
||E Ai(”e =Chy1 tCup t et (2.2)
Then

R'R = [R10]T[R:0] = R'R

= real"[ea] =4Ta (2:5)
and thus RRis sinmply the Chol esky deconposition of A?A.

There are a nunber of ways to achieve the deconposition of (2.1);
e.g. one could apply a sequence of plane rotations to annihilate the

el ements bel ow the diagonal of A A very effective method to realize
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the deconposition (2.1)

is said to be a Househol der transformation if

P =1 —2uuT

, wu=1.

T

Note that 1) P =P and 2) PP = |

that P is a symetric, orthogonal transformnation.
Let A(l) = A and |et A(g) : A(B) see

A1) _ k), (k)

where PU) L1 - oy (R), (00T )T ()

chosen so that
transformtions

(2)

11

0

A(k+1) _

(kt+1) _ E}1‘(1f;+1)_
k+l k Tkt k

~

()

12

(3)
"22

\,\ 0
\,
"-. f 0
-
.\\ J
0

- 2uuT

= fE

;l) =0 . Thus after k

~e~

(k = 1,2,...,n)

’ A(n+l)

is via Househol der transformations. A matrix P

- 2uuT + huuT_u_uT =1 so

~e

be defined as foll ows:

=1 . The matrix P(k) is

n,

a(k+l)
kt+1,k+1

a(k+l)
m, k+1

L)
In
L03)
2n

(k+1

%kn )

a(k+l)
mo

Not e t hat Iaé§+l)l = (E:j=k (agz))g)l/2 since PK) is an or t hogona

transformati on.

GOLUB [1965] and GOLUB [1965].

The details of the conputation are given in BUSI NGER and
The Househol der transformations have been used

in a highly effective manner by KALFON et al. [1968] in the inplenentation
of the projection gradient nethod.

Cearly

R=A(

n+l1)
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and
q = p(Mp@) L)

al though one need not conmpute Q explicitly. The nunber of nultiplications
required to produce R is roughly im?-&?/j) wher eas approxi nately
nm2/2 mul tiplications are required to formthe normal equations (1.2).

3. The practical procedure

It is known that the Cholesky nmethod for solving systens of equations
is nunerically stable even if no interchanges of rows and colums are
performed. Since we are in effect performing a Chol esky deconposition
of a%a no i nterchanges of the columms of A are needed in nost
situations.  However, nunerical experiments have indicated that the
accuracy is slightly inproved by the interchange strategies outlined
bel ow, and consequently, in order to ensure the utnost accuracy one
shoul d choose the colums of A by sone strategy. |n what follows,
we shall refer to the matrix A(k) even if some of the colums have
been i nterchanged.

One possibility is to choose at the k% stage the colums of
A(k) which will naximze laﬁ§+l)l This is equivalent to searching for
t he maxi num di agonal el enent in theOChoIesky deconposi tion of A%A
Let

m
NN Y (agk).)2 for J = kk+l,...,n .
dJ bt 1,J
J=k
-Then since laﬁ§+l)l = (sﬁk))l/z , one should choose that colum for which
) "
:sf ) is maximzed. After A(k+l) has been conmputed, one can conpute
s§k+l> as follows:
(k+1) (k) k+1l) 42 .
S,j = Sj -(a'((. k,j) ) (J = k'+l)"’)n)

since the orthogonal transformations |eave the colum lengths invariant.
Naturally, the sgk) 's must be interchanged if the colums of A(K) e
i nt er changed

e e
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The above strategy is useful in determning the rank of a matrix
If the rank of Ais r and the arithnetic is performed exactly, then

after r transformations

A | T | Yoo
0 N
and '
s§r+l) =0 for j = r+l,...,n
which inplies N=0 . In nost situations, however, where rounded
arithmetic is used M =¢. It is not easy to deternine bounds on ¢

when the rank of A is unknown.

The strategy described above is nost appropriate when one has a
sequence of vectorsfaﬁéz,...,y for which one desires a |east squares
estimate. In many problens, there is but one vector b and one wishes
to express it in as few colums of A as possible. or more precisely,
one wishes to determne the k indices such that

£ - Tay 5,
(b, - Ya.. X. )" =nmin.
e g;l 1y Jdy
VW cannot solve this problem but we shall show how to choose index k
when the first k-1 indices are given so that the sum of squares of

residuals is maximally reduced. This is the stage-wise regression problem

W define _
(2) (2)
rll rlk all seeey alk
(3) 3)
E(k+l) - Top oo o Ty _ 8on" sees, aék

Q | . O | |

{

{ . ! o (k1
Trk Sk :

. ] i J

Let E<l> =bh and c(k+l) = P(k>c(k) * Now ﬁ(k)&(k-l) = E(k) wher e

%(k'l) is the least squares estinmate based on (x-1) colums of A and

7oy T
e O o0 ey L hus by (2.2
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”C(k+l) ) “R(k+1)%(k)”§ _ i (o (k+l)>2

- - J=k+1 J

_ Jzk( J(k+l 2 (Cékﬂ))e
- gk“;(.k) % (clgk+l))2

since length is preserved under an orthogonal transformation. Consequent | y,
we wish to choose that colum of A™) which will maxinize lclgkﬂ)l
Let

(Z k) .(k for j = k+l,...,n
Then si ncelc(‘k+l)l = l(zrln x S? gk )/s( )l one shoul d choose t hat

col um of A(k) for which (t(k)) /s( Is maximzed. After F( ¥ i's

applied to A( ) , one can adj ust t;.K) as follows:

(k+1)_ L&) _ a(k+l)c(k+l)
J J kj k

In many statistical applications, if (t<k))2/ <k is sufficiently small,
then no further transformations are perforned.

4 Statistical calculations

In many statistical calculations, |t i's necessary to conpute certain

-auxiliary information associated with ATh These can readily be obtained
‘from the orthogonal deconposition. Thus

T

2
det(AA)=(rllxr22x .. o.oxr)

nn
Si nce

A’ =rR , @)yl .oglgT
The inverse of R can be readily obtained since R is an upper triangular
mtrix. It is possible to calculate (ATA)'l directly fromR . Let
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(78) 7 = x = (xp X Xy)

Then from the relationship

RX=R"
. ~aT _ L .
and by noting that {R ]ii = l/rii’ it is possible to conpute X pX  reeesXy

The number of operations is roughly the sanme as in the first nethod but
nmore accurate bounds may be established for this nethod provided all inner
products are accunulated to double precision.

In some applications, the original set of observations are augnmented
by an additional set of observations. In this case, it is not necessary
to begin the calculation fromthe beginning again if the nethod of
orthogonalizat»i on is used. Let ijl,lél correspond to the original data
after it has been reduced by orthogonal transformations and |et Ay, b,
correspond to the additional observations. Then the up-dated |east squares

solution can be obtained directly from

A b
2 ~2

A: ’ b = e .
By 1

This follows imediately from the fact that the product of two orthogonal
transformations is an orthogonal transformation.

The above observation has another inplication. One of the argunents
frequently advanced for using normal equations is that only n(nt+l)/2
nenory locations are required. By partitioning the matrix A by rows,
however, then simlarly only n(n+l)/2 locations are needed when the
met hod of orthogonalization is used.

In certain statistical applications, it is desirable to remve a row
of the matrix A after the least squares solution has been obtained. This
can be done in a very sinple manner. Consider the matrix

>}
[l

where o« is the row of A which one wishes to renove, B is the corresponding

elenment of b, and i =/-1 . Note that
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STS = TR - TCX = ATA - Ta
Let
cos e 0
¢} 1
2y, 41 =
sin ©

-

W choose cos 6 so that {s(g)}
(2) 2 2
{S }l,l = ‘/(rll-al)

()1

1,3

53y

ntl,J

S(}> =8 , and S(2> = Z

= (rllrlj-afaj)//(ril-ai)

0 -cos G‘

~ “1,n+l

n+1,1 0.

. 2 2
= l(alrlj-ajrll)A/(rll-al)

o (1)

Thus

j =2,5,.;,_,1’1

J =2,3,s04,n .

Note no conplex arithmetic is really necessary. The process is continued

as foll ows:
Let

k,n#l | 0

n+l

-Ccos ©

n+1l

(4.1)
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Then

k+1 (k
s( ) = zk’n+ls s k = 1,2,...,n ,

and cos @, is determned so that (S(k+l>} = 0. Thus roughly 3n°

k,n+l

mul tiplications and divisions and n square roots are required to formthe

new R .
Suppose it is desirable to add an additional variable so that the
matrix A is augnented by a vector g (say). The first n colums of

ﬁ(n) are unchanged. Now one conputes

h=p®™ L e300

(n+1) and apply it to P(n). ”P(I)b . This

technique is also useful when an auxiliary serial storage (e.g. magnetic
tape) is used.

It is also possible to drop one of the variables in a sinple fashion
after R has been comput ed.  For exanple, suppose we wish to drop
variable 1 , then

Fromh one can conpute P

12 .. rln

T

SR |

22

il
1l

r
nn

nx(n-1)

"By using plane rotations, sinmilar to those given by (k.1), it is possible
to reduce R to the triangular form again.

5. GamSchmdt orthogonalization

In $2, it was shown that it is possible to wite

QA =R . : (5.1)

The matrix Q is constructed as a' product of Househol der transformations

10
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From (5.1), we see that

A= QR= PS8
T ,
where PP =1I , S: . Each row of S and each colum of P is
uniquel'y determined up to a scalar factor of nmodulus one. | order to avoid

conputing square roots, we nodify the algorithnms so that Sis an upper
. . : . T

triangular matrix with ones on the diagonal. Thus PP _ , a diagonal

matrix. The calculation of P and S may be calculated in two ways.

a) Cassical GamSchnidt Al gorithm (CGSA)

The elenents of S are conputed one colum at a time. g

k)

(k;
A = [31’22’“"Pk-l’i‘k”“’i‘n]

-

and assume

T . s
P; by = aijdi » 1< 1,3 < k-l

At step k , we conpute

Sik = (,13? 2,/4;) ) l<i <kl
k-1 .
P =8 - iz_:lsik P; ’ d = Hgk”g .

b) Mdified Gam Schm dt Algorithm (MgsA)

Here the elenents of S are conputed one row at a tinme. s gefine

A rm mgae, el

and assume
T = T (k) .
2 Ej - gij% B8y T o= 0 » 1<14,j<k-1 , k <f<n.

~

At step k , we take H = @}Ek) , and conpute

A = “Bk”: v Sy = (Ei 3151{))/‘11{ , ffgkﬂ) = Egk)'skz Py s

11

k+lSJl<l’].



In both procedures, s . =1 . The two procedures in the absence of
roundoff errors, produce the sanme deconposition. However, they have
conpletely different nunerical properties when n>2 . |f Ais at all
"ill-conditioned", then using the CGSA, the conputed colums of P will
soon |ose their orthogonality. Consequently, one should never use the
CGSA without reorthogonalization, which greatly increases the amount of
conputation.  Reorthogonalization is never needed when using the MG3SA
A careful roundoff analysis is given by BJBEK[1967]. RI CE [1966] has
shown experinentally that the MSSA produces excellent results

The MGSA has the advantages that it is relatively easy to program
and experimental ly (cf. JORDAN [1968]), it seems to be slightly nore
accurate than the Househol der procedure. However, it requires roughly
mn2/2 operations which is slightly more than that necessary in the
Househol der procedure. Furthernore, it is not as sinple as the Househol der
procedure to add observations

6. Sensitivity of the solution

Ve consider first the inherent sensitivity of the solution of the
| east squares problem  For this purpose it is convenient to introduce the
condi tion number «(A) of a non-square matrix A . This is defined by

€)= oy/a, oy = mmx Vel / Il » o, = i lhsl / Tl

2 2 .
so that oo, and < are the greatest and the |east eigenvalues of ATa

Fromits definition it is clear that «(A) s invariant with respect to
unitary transformations. |f Ris defined as in (2.1) then

o (R) = 0,(a) , o (R) = o (&), k(B)= K(A) |

while

IEll, ana o &) = 1/ K7, -

o, ()

The conmmonest nethod of solving |east squares problems is via the nornma
equations

AAx = Ab . ' (6.1)

12

e o = g
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The matrix A'A is square and we have
K (ATA) = Ke(A)

This nmeans that if A has a condition nunber of the order of ot/2 t hen
ATA has a condition nunber of order 2t and it will not be possible
using t-digit arithnetic to solve (6.1). The method of orthogonal
transformations replaces the |east squares problem by the solution of

the equations Rx = § and k(R)= k(A) . |t would therefore seemto have
substantial advantages since we avoid working with a matrix with condition

nunber KE(A) .
W now show that this last remark is an oversinplification. To this
end, we conpare the solution of the original system[A :b] with that of

a perturbed system It is convenient to assune that
9, = ”A”2 = HE”Q =1

this is not in any sense a restriction since we can make [JAl, and [jp|,
of order unity nerely by scaling by an appropriate power of two. e ngw
have

1

K(A) = k@®) = R, = 1/a_
Consi der the perturbed system

(A+ezib+ee) ol = lell, = 1,
where ¢ is to be arbitrarily small. The sol ution %of t he perturbed
system satisfies the equation

(4 + eE)T(a 4 eE)X = (A + eE)T(g +ee) (6.2)

If X is the exact solution of the original systemand Qis the exact
orthogonal transformation corresponding to A we have

-

R | | R+ eF | £ )
‘OVA-.= Wl ’ Q(A + EE)-’- EEEEEEX ’ Qeu 070,
0 eG ~ g
J g |
and
r= b-AXx , A'r = ¢
13
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Equation (6.2) therefore becones

(a + eR)T(a + ¢E) = (a7 + eET)(Ax + g+ ee)

giving
T . . . ~
R + ¢F R + eF - R + eF R £
AR seessee X = escse e es e x+€ .:’. +EET1‘ .
eG eG |7 eG o1~ g

Negl ecting ¢ where advantageous,

- P~ _ - - -
(R + eF) (R + eF)x = (R + a-:F)'-I RX + e(R + eF)T £+ eE r + 0(52)

X

B+ er)™ R+ e®+ er)h o+ (@R &l + o(e?)
- - % - &R P+ eR £+ eRTL A 4 s(E:‘{TE)_l’ETg + 0(e?)
gi ving
iz, < e”l"-‘t'l!IEHFﬂefl%llg + ell'ﬁ‘lnenfll . elZ 2 Izl llzll, + o(e®)

< ex@Kl, + exa) + e @)zl + o(c?) .

W observe that the bounds include a term EKE(A)”I‘HE. It is easy to
verify by means of a 3 x 2 matrix A that this bound is realistic and
that an error of this order of magnitude does indeed result from al nost

any such perturbation E of A . W conclude that although the use of

the orthogonal transformation avoids some of the ill effects inherent in
the use of the normal egustions the val ue « gA) is still relevant to sone
extent.

When the equations are conpatible ”5“2 =0 and the termin k°(a)
d&appears. In the non-singular linear equation case r is always null

and hence it is always k(A) rather than « (%) 'which-is relevant.

Since the sensitivity of the solution depends on the condition nunber,
it is frequently desirable to replace the original unknowns x by a new
vector of unknowns D™Xx where D is a-di agonal matrix W th-non-zero

di agonal elenents. Thus we wish to find § for which

~

Fo-c3l, = nin

14
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where C = AD and § = D "% . Let & e the set of all n x n diagonal
matrices with non-zero diagonal el enents. W wish to choose D so that

k(AD) < k(aD) for all Ded .
Q
Let Deﬂn and {%}ii = l/“giﬂe . VAN, DER smuis [1968] has shown that
k(AD) </n k(ad) .

Therefore in the absence of other information, it would appear that it is
best to precondition the matrix A so that all colums of .o matrix A
have equal length. In practice, one adjusts the exponents .« :na stored
el ements of A so that the mantissa of the floating point repr esent at i on
i's not changed,

7. lterative refinement for l|east squares problens

The iterative refinement method nay be used for inproving the
solution to linear |east squares problems. |qt

Qp = b-A% s a>0

~

so that

aalp = & v-afag = o

Wen a =1, the vector o is sinply the residual vector r . Thus

oIl | A o b

e iral | T Bl , (7.1)
or i i

Cy = g

One of the standard nethods for solving linear equations may now be used

to solve (7.1). However, this is quite wasteful of nenory space since the
di nensi on of the systemto be solved is (mn) . W may sinplify this
probl em somewhat by noting with the aid of (2.3) that

15
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1
JaI ' 0 Ja I 7&1\.
= = Ww. (7.2)
1 ,T 1 =T 1l =
— 0 -
7amA 7a R 7a'R

Once an approximate solution to Cy = g has been obtained, it is
frequently possible to inprove the accu;‘acy of the approximate sol ution.
Let y be an approxi mate solution, and | et v =~g-qu . Then if y = y+8 ,
& satisfies t he equation

Cd =v . (7.3)

Equation (7.3) can be solved approximately from the deconposition (7.2). O
course, it is not possible to solve precisely for 8 so that the process
may be repeateds

VW are now in a position to use the iterative refinement method
(cf. MOLER [1967], W LKI NSON [1967]) for solving linear equations. Thus one
m ght proceed as follows:

1) Solve for x(o) using one of the orthgonalization procedures outlined
in§2or 5 R must be saved but it is not necessary to retain Q. Then

()

~

(-t

QI

y(s+l)

2) The vector Is determned from the relationship

NCE OO

wher e
) o (8 (7.4)

v

55(8) - gy

~

This calculation is sinplified by solving

L(8) = (s)
wls) G s

The vector v(s) must be calculated using double precision accuracy and
then rounding to single precision.

16
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3) Terminate the iteration when [\6(8)“ / IIX‘(S)H is less than a
prescribed nunber.

Note that the conputed residual vector is an approximtion to the
residual vector when the exact solution %X is known. This may differ
from the residual vectorconputed from th; approximate solution to the
| east squares probl em

There are three sources of error in the process: (1) conputation
of the vector v(s) , (2) solution of the system of equations for the
correction vectar §(s) , and (3) addition of the correction vector to
t he approxi mation y ® It is absol utely necessary to conpute the
conponents of the vector v(s) usi ng doubl e precision inner products and
then to round to single pr;cision accuracy. The convergence of the iterative
refinement process has been discussed in detail by MOLER [1967]. Generally
speaking, for a large class of matrices for k > kg all conponents of vy )
are the correctly rounded single precision approximtions to the conponents
of y There are exceptions to this, however, (cf. KAHAN [ 1966]).

Experimentally3 it has been observed, in nost instances, that if
180, / 15", < & where
M, = mex .|
1<i<n
t hen k 2> [t/p] . W shall return to the subject of iterative refinenent

when we discuss the solution of linear |east squares problem with |inear
constraints.
A variant of the above procedure has been anal yzed by BJORCK [1967b],
[1968], and he has also given an ALGOL procedure. This has proved to be
a very effective method for obtaining highly accurate solutions to |inear
" least squares problens.

8. Least squares problens with constraints

~

Frequently, one wishes to determine % so that |[b-A%|, is ninimized
subject to the condition that~G3c = h where Gis a pxn matrix of rank p .
One can, of course, elimnate p of the colums of A by Gaussian elimnation
after a pxp non-singul ar subrratrjx of G has been determned and then solve

17



- the resulting normal equations. This, unfortunately, would not be a numerically
stable schene since no row interchanges between A and G would be permtted.

- If one uses Lagrange nultipliers, then one nust solve the (n+p)x{n+p)
system of equations.
L ~ - r - .-
X ATy
2 =| " (8.1)
- A D :

where M is the vector of Lagrange nultipliers. Since % = (AT A)'lATb-(ATA)'lGTx :

aafa)y™t ¢f & = &g
wher e
Note z is the least squares solution of the original problem wthout
constraints and one would frequently wish to conpare this vector with the
final solution ¥ . The vector z , of course, should be conputed by the
- orthogonal i zati on procedures discussed earlier.

Since ATA = BR , aata) Y6t = w'w where W= ET¢T . After Wis
conputed, it should be reduced to a pxp upper triangular matrix K by

orthogonal i zation. The matrix equation

- R = Heg

shoul d be solved by the obvious method. Finally, one conputes
%X = z- (ATA)”l G7:

wher e (ATA)'lG%. can be easily conputed by using 51
It is also possible t0o use the techniques described in §7. Again,

—
l et r.= b-A% so that from(8.1)
[ ) A - - r
- I A 0] rr b
'“'" 8.2
. " . (8.2)
A 0 G X = e
0 G 0 A h
- — - b _J , - -
18
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or
Dz=g

Note Dis an (mn+p)x(mtntp) matrix. W may sinplify the solution
of (8.2), however, by noting that

[ 1 [ ' 1r
1| aAalo I ]0]oO I1|lalo
T T T < -
At olat | = AT|-E | o ol &|-B (8.3)
ol glo o | sT| " olo] s
L J L J L

where B = ((N‘;‘R;‘)T = PS and PTP= I with S: N . The deconposition

(8.3) can be used very effectively in conjunction with the nethod of iterative
refinement.  BJORCK and GOLUB [1967] have given a variant of the above
procedure which requires Q and P .

9. Linear least squares solutions with inequality constraints

Again let A,G be given real nmatrices of orders mxn , pxn , Wth
m>n, and let b, h be given real vectors of orders m, p . For any
vector x we define

r = b-Ax

and we wish to determine an x such that
Ok = i

- subject to

Gx >h

~

Qur problem can therefore be stated as follows: find r , x , wsuch that

~

R
Gx - w=h
¥20

' =i

19
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These probl ems can be sol ved by quadratic programming but we present

an algorithmin this section which leads to a mich snaller SYStem of equations
and highly accurate results.

[f we define

rTr - yT(r+Ax-b) - zT(Gx-w—h)

M

f(r,w,x,y,2) =

~ e~ o~ e~

where we require without loss of generality that z >@,, then an equival ent

~

problemis to determne r,w,x,y,z such that

w,z > ©

~ o~

f = mn.

Equating to zero the partial derivatives of f with respect to r.x.yv.z
respectively, we get

roy -9
'y - Gz =0
r+Ax-E=O
Gx - w- h=8
Further, let the elements of w,z be w,z, (I = 1,2,...,p) . Then
of
6;;— a Zl .

‘Now if w. >0 in the optiml solution, the constraint w, > 0 is not

-binding and we have

w. >0 =z, =0
i i

Since z, >0, this further neans that

20



z, > 0 = w, = 0 .,
1 1

(For ot herwi se, z, > 0 = v, > 0 = z, = 0 which is a contradiction.)
Accordingly, our problemhas become one of finding a solution of the

system
A =b (9.1)
ATr + GIz =0 (9.2)
& - w=h (9.3)
such t hat
z2e . w2e . fwo

Ve now determine an orthogonal matrix Q and an upper-triangul ar
matrix R such that

A = QR »
where R is nxn and non-singular if rank(A) = n . Then
a"a = Q'R = R'R .

Letting B = (e 17T and elinmnating r from(9.1) and (9.2) it is easily
verified that

~

% + R 1Bz , (9.4)

"
1t

wher e

% = (R)"L aTp

is the unconstrained |east squares solution (i.e., the solution of (9.1) and
(9.2) withz=0).% is found by the methods of §7.

W now Eete;mine~if %satisfies the original inequalities: if we
define q = GX-h and find that g > 6 then the constraints are satisfied
and X solves the problem )

"QOtherwise, we substitute (9.4) in (9.3) and obtain

21
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-earlier in determ ning whether of not

Gk + R'le) -wW=nh

or
\
BTBz+q:w
where we further require' > (9.5)
I
z >0 | w>e | z7w =0
~ == ~ = -~ J

Thus we find that Z,W solve the Linear complementarity problem (LCP)
defined by (9.5). ThlS is a fundanental mathenatical programm ng problem

and several algorithms have been devel oped for finding solutions (e.g. see .

LEMKE [ 1968], COTTLE [ 1968], COITIE and DANTZI G [1968]). The matrix M= BB

is positive sem-definite, and this is one of the cases when, for exanple,
the principal pivoting nethod in COTTLE [1968] guarantees termnation wth
a solution, or with an indication that none exists.

Once z has been found it would be a sinple matter to substitute
into (9.1),~(9.2) and find r,x from

r+Ax=b '
-~ T (9.6)
ATr -GTz

~

In practice, however, if we are concerned with the accuracy of our estimte
of x we use the solution of the IcP (9.5) only to determine which elenents
of v~v are exactly zero. These are the v, which are non-basic in the
solution of (9.5). (There is certainly at least one such w, , for
otherwise we would have z = 6, w>6 |, which is the case checked for

x solved the problem)

Ve now delete from (9.3) those constraints for which w, is basic,

obtaining an Zxn system of equations

~

Gx =

1

where 1< 2 <p.
If zis the vector z with the corresponding elements deleted, the
remaining step is to solve the system
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r + AX =D
ATy + 8% =0 (9.7)
a'X =h

where we are now working with original data and can therefore expect a
more accurate solution than could be obtained from (9.6). W can now apply
the methods of §8 to this system of equations.

The standard nethods for solving the linear complementarity problem
anploy the el ements of W as the initial set of basic variables, with all

elements of =z initially non-basic. In general, it is probable that only

a smal |l propo;‘tion of the inequalities in the original problemwill be
constraining the system which neans that only a small proportion of the w
will be non-zero. Hence it mght be expected in general that only a small
number of iterations (relative to p ) should be required to bring some of
t he zy into the basis and reach a feasible solution.

In our particular formof the problem since the matrix M= BB
has its largest elenents on the diagonal, accuracy can be conserved, to
within the limts of the error in formng M, by interchanging rows
whenever a colum of Mis brought into the basis in such a way that the
di agonal elenments of M become diagonal elenments of the basis matrix.
This is easily done if the LU deconposition of the basis is calculated
each iteration as in the treatnent of the sinplex nmethod by BARTELS [1968]
and BARTELS and GOLUB [ 1969].

Note that B = (GR'l)T can be deternmined colum by colum via
repeated back-substitution on the system

RTB = GT

The al gorithm presented here can be used for any quadratic progranmmng
probl em when a positive definite quadratic formis given. Suppose we wish
to determne an x such that

Tox + d'x = mn.

[
18]

(9.8)
subj ect to & >

1>
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Since Cis positive definite, we may wite

C = &R

where R(N]) is the Cholesky factor of C. Such a deconposition can

easily be conputed. If we now define 'b = - % R"Td (and calculate b
from®Db = - #d)we find that
b - Rxng = bTb - 2bex~ + X'R'Rx

- b + d'x + X ox

and consequently if we determine an X such that
b - Rl = nin.
subject to G« >h

then x will satisfy (9.8) as required.

10.  Singul ar systens

If the rank of Ais less than n and if colum interchanges are
performed to maxi mze the diagonal elenments of R, then

L) | B | Soemie
o | 0
when rank(A) =r . A sequence of Househol der transformations may now be
‘applied on the right of A(r+l) so that the elenents of S(n_r)xr become

anni hilated.  Thus dropping subscﬂts and superscripts, we have
T | 0
010

where T is an rxr upper triangular matrix. Now

2L



b T T
Ib - axl, = b - & T 2%,

= e -Tyll,
where ¢ = Q@ and y = z'x . Since Tis of rank r , there is no unique
solution SO "that we impose the condition that “3‘”2 = mn  But Hyll2 = Hx“2

since T is orthogonal and Ilyll2 = min. when

Yr+1 :yr+2:' t :ym
Thus

This solution has been given by FADEEV, et, al. [1968] and HANSON and
LAWBON [ 1968]. The problem still remains how to nunerically deternine
the rank which will be discussed in §12.

11. Singul ar val ue deconposition

Let A be a real, mxn mtrix (for notational convenience we assunme
that m>n ). It is well known (cf. IANCZOS [1951]) that \

A = UV (11.1)
wher e
W=, Wl o= .
and
~ -
Ul.
Z = »
%n
A | 3m-n)xn
L O .

The matrix U consists of the orthonormalized eigenvectors of A%T , and

the matrix V consists of the orthonormalized eigenvectors of A*A . The

‘
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di agonal elenents of T are the non-negative square roots of the eigenval ues

of aa ; they are called singular values or _principal values of A. W
assume

1=72 n -
Thus if rank(A) =r1 , 01 = Fppp =+ + + =0 = 0 . The deconposition
(11.1) is called the_singular value decomposition, (SVD).
Let
0
A = _ (11.2) .
AT

It can be shown that the non-zero eigenvalues of A always occur in #
pairs, _viz.

xj(K) = + crj(A) (j = 1,2,..4,r) . (11.3)

12, Applications of the SVD

The singular value deconmposition plays an inportant role in a nunber
of least squares problenms, and we will illustrate this with some exanples.

Throughout this discussion, we use the Euclidean or Frobenius norm of a
matrix, viz.
2,1/2
all = (2|ay 1)

A) Let u, be the set of all nxn orthogonal matrices. For an arbitrary
nxn real matrix A, determine Qe such that

la-ql| < |la-x||  for any Xeu .
It has been shown by FAN and HOFFMAN [1955] that if

A = U , then Q = UVT
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B) An inportant generalization of problem A occurs in factor analysis.
For arbitrary nxn real natrices A and B, deternine Qeld such that

la-Bql| < |A-BX|| for any XeU

It has been shown by GREEN [1952] and by SCHONEMANN [1966] that i f

B'a = s, then Q = W

C) Let W@ﬁkzl be the set of all mxn matrices of rank k . Assune
i

“Ad/zrﬁle . Determ ne Bdnﬁr’z (k < r) such that
la-B| < la-X|| for all X (kr)l

[t has been shovx;ﬁ by ECKART and YOUNG [1936] that if
T T

A= UV, then B = ua, v (12.1)
wher e
"1
, 0
Qk_ = O : | (12’2)
a.
k
- -
Note t hat
_,2 2y1/2
JaBll = -l = (o2, + ..+ T (12.3)

D) An nxm matrix X is said to be the pseudo-inverse of an mxn
matrix Aif X satisfies the follow ng four properties:



— o

r

— r— 1

i) AXA =A,
i) XaX =X,
i) (ax)" = ax
iv) (XA)T =xA
W denote the pseudo-inverse by A" . e wish to determine A nunerical ly.

It can be shown (cf. PENROCSE [ 1955]) t hat A" can al ways be determned and
is unique. It is easy to verify that

A+ = VAUS (12.4)
wher e )
L
(o
1
T, 0
%
A = ) .
0 "z
°r

9

nxn

In recent years there have been a nunber of algorithnms proposed for
conputing the pseudo-inverse of a matrix. These algorithms usually depend
upon a know edge of the rank of the matrix or upon some suitable chosen
par anet er. fbr exanple in the latter case, if one uses (12.4) to conpute
the pseudo-inverse, then after one has conputed the singular value
deconposition numerically it is necessary to determ ne which of the singular
val ues are zero by testing against sone tolerance.

Alternatively, suppose we know that the given matrix A can be
represented as

A = B+8B
where 5B is a matrix of perturbations and

o8l < .
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Now, we wish to construct a matrix B such that

la-Bl| < n
and

rank (B) = minimm .

This can be acconplished with the aid of the solution to problem (Q). Let

_ T
Bk = UQkV

where ok is defined as in (12.2). Then using (12.3),

B=8B
P
i f
2 2 2,1/2
(Up+l+dp+2+...+cn)/ <
an. d
2. 2 2,1/2
(op+cp+l+_,,+on) > g
Since rank($) = p by construction,
B = vatu?
b

ot o
Thus, we take B" as our approximtion to .

o

- E) Let Abe agiven matrix, and b be a known vector. Deternine %
SO thgt anongst  al I~x for which HB-A§||2= mn, ||x||2= fin. It is easy
to verify that )

X =Atb

~

13. Calculation of the SVD

It was shown by GOLUB and KAHAN[1965] that it is possible to construct
a sequence of orthogonal matrices
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P (O
k=1 k=1

via Househol der transformation so that

P(n)P(n—l)‘..P('l)AQ(l)Q(e) ,Q(n-l) - Pag = 3

and J is an mxn bi-diagonal matrix of the form

[ 0 o |
@ B
a, B, 0
O ' Bn-l
[0
n
3 O ] (m-n)xn

The singular values of J are the sanme as those of A . Thus if the
singul ar val ue deconposition of

J = Xy
t hen
A = PXsY' Q'
so that
U =PFX : V=Ql .

GOLUB[1968] has given an algorithm for conmputing the SVD of J ; the
algorithmis based on the highly' effective QR algorithm of FRANCI S [1961,1962]
for conputing the eigenval ues.

It is not necessary to conpute the conplete SVD when a vector b is
given. Since k = vetute L it s only necessary to conpute V,Z and uTh 5
note, this has a strong "flavor of principal component analysis. A1 ALGOL'
procedure for the SVD has beeen given by GOLUB and REINSCH[1969].
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4. Quadratic constraints

A

W wish to determne % so that
|[o-A%{, = min.
when
H%Hg =Q

Such problems occur in a nunber of situations, e.g. in the nunerical solution
of integral equations of the first kind (cf. PHILLIPS [1962]),
solution of non-linear |east squares problens (cf. MARQUARDT [1963]).
Using Lagrange nultipliers, we are led to the equation

and in the

@A)z = AT
where the real constant x* is determned as the smallest root of
2 -2 T
o' -bTA(AiA-AI) 2ap=0. (14.1)
: o T T .
Using the deconposition A = Uzv™ and ¢ = U'b , equation (14.1) becomes
2 -
o"-c'z (1) 5 = 0

A conbi nation of bisection and Newton iteration nay be used to determne j* .

. . 2
It is easily shown that a* <. = (cf. FORSYTHE and GOLUB[1965]).

It is also possible to determine jx as a solution to an eigenval ue

- probl emusing a technique given by FORSYTHE and GOLUB [1965]. Consi der the

identity

X Y .
det = det(x) det (w-zx"ly)
Z W

which is valid for any partitioned matrix with X and W square and
det(X) # 0 . Thus (14.1) is equivalent to the determnantal equation

[kATA~AI)2 ATv
det |
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Now there exists a vector p and a nunber g such that

T
@aar)Pp + aa =0 | wlap+aiq=o0.

~ ~

A sinmple elimnation shows that x* -nust satisfy the deternminantal equation
det[(ATA-a1)2 - o2 ATeoTa] = 0 (14.2)

It is possible to transform (14.2) into a 2nx2n ordi nary eigenval ue

probl em
Once \* is determned, the solution % can be conputed fromthe

SvD of A . Thus,

% = V(z:-x*z'l)'lc .
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