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Sn«7JlAR VATAJE DJX:ClI4POSITIC'N

AND

LEAST SQUARES SOl..:';l'IO~

Contributed. by

G. H. Golub* and :::. Reinsch+

1. Theoretical BacyroWlCl

1.1 Introduction.

Let A ~! & rul IIIXI1 !llat.r':'x wlth III 2: n. It 1& well known

(ct. [4) ~.at

A.U 1: ..;x
JlI)ln men men (1)

* The work of thla author vaa in part aupported. by the National Science
Foundation and. Ottice ot Naval Reaearcb.

+ Caae Weatern Reaerve Unlveraity, on leave trQlll Techniacbe Hochachule
Minchen.
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The _trix U con.1sts or n orthononal1zed eigenvector. a ••oc1a~ed

with the n largest eigenvalues or M,T , and the -.trlx V con.iat.

Tof the orthorno~:'1zed eigenvectors of A A. the diagonal elements or

I are the non-negative square roots of the eigenvaluea or ATA ; they

arc::alled Singular value.. We shall a..WIle that

> 0 "> 0 •
- n-

Thus if rank (A). r, 0r+l· "r+2 • •••• an • O. The decOlllpOaition

(1) is called the singular~ dec9!POsltion (S·(D).

If the matrix U is not needed, it would appear that one could aFPly

T
the usual diagonallzation algorithms to the symmetric -.trix A A which

has to be formed explicitly. However, &Ii in the case or linear leaat .quarea

Tproblema, the computation of A A involves unnece.aary numerical inaccuracy.

For example, let

1 1 ]A • B 0

0 e

then ATA • [1~2 1~2] ao that

If ';32 < Eo ' the _chine precision, the cOlllT~ted ATA hal the t'OZ'lll[~ ~1,and the "at one ..,. obtain t lisatl"" 10
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To COIIIIpUte the aincuJ,ar vaJ.ue decQ.1IpOait101l or a given mtrix A,

FOI'S)'tbe and Hear1ci [2), Heatenes [8 ), and lCocbetliantz [9) proposed

lDetboda baaed OIl planl~ rotationa. Kublanov~ [10] wggeated a

~-type _thode The pI'OS"JI deacribd. below tirst uaea Householder

tNnarorationa to reclue~ II. to bicl1qanal lora, and then the QJt

aJ.&or1t.ha to finel the eilenvaluea ot the bicl1&gonal mtrix. The tvo

pha.ea properly ca-bined produce the 11nCUJ,ar value deccaposition of A.

1.2 Reduction to bidiagonal rona.

It vaa abown in [6 ) hOll to construct tvo finite aequer.::ea of

Householder tranatoratiana

(It • 1,2, ••• ,n)

and

(It • 1,2, ••• ,0-2)

("hue

,



ql f!2 0 0

~ e
3 0:

J(O)•

0 0

en

~

0 } (.-oJxn

an upper bidiagonal matrix. If we let A(l) • A and define

A(k+t) • p(k)A(k) (k • 1,2, ••• ,n)

(k .1,2, •.• ,n-2)

then i8 dete~ine1 such that

a (k+i') • 0
ik

I>u.::h that

(i • k+1, ••• ,m)

(j • k+2, ••• ,n)

The Aiingular vaJ.ues of J(O) are the SUIe as th08e of A. 'Thus,

if the singu~r value decomposition of

then
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1.' BinsuJ,ar value decOlIIpO.ition of the bicl1agonal latrix.

By a variant ot the QJ\ algoritlua, the -.trtx J(O) 1. iteratively

d1a£Onalizeu .0 that

where

,

aDd B(l), 'rei) are orthogonal. The ..trice. T(l) are choeen .0 that

the .equenee M(l). J(t)TJ(l) converge. to a diagonal -.trix while the

_trice. S(l) are cho.en .0 that all J(i) are of the bidiagonal form.

(i) (i)'
In [7 I, another technique tor 4eriv1ng (8· ) and (T } 11 given

but thi. i. equivalent to the Mthocl de.cl"ibed belOW.

?or notational convenience, we drop the auttix and uae the notation

M • r J , ii. f!1

The tranaltion J .. j i. achieved by application of Given. rotation. to

J alternately trc:. tk.a ri(lbt an4 the len.. Thua

(2)
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"'hert.:
(k-l) (It)

1 0

o 0
1

~osQk -dnQk (k-l)
....
L.L

It sinQk coaQ
k

(k)

1

0 0

0 1

and Tit is defined analc-,f,ously to Sk with Q)k instead of Q
k

•

Let the first ar.gle, ..l be arbitrary while all the other angle.
.:

'ire c},()cen so 'thRt J has : r: same form as J • l'hUf,

T
2

annihilates nothing, generates an entry (J)21 '

"T annihilates (J)?l ' generates an entry (J)13 ' (,)oJ_

T
3

annihilate& (J)l3 ' generates an entry (J)32 '

and finally

s~ annihilates (J}n,n_l' and generates nothing.
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*

Fip;ure 1

IJn~ M: ~s 8. trl-dhlwnalll''\tt'i.x just BS M is. 'He ::tlOW that the first

angle, g2' vhi~h is still unl1etermined, can be chosen liO that the transition

M - M is a QR transformation with a given shift s.

'Ihe <Jsua.l ~ a Igor I t.hm with shift. is JesC'ribed as I'o I lows:

(M-sI)

R T + ~Is 3

"' T R Js s

" M
S

(4)

viler', TTT • I and R 1s!in upper triangulAr 1!I'1.rix.
S s B

It hits 11h'" .:hn....n l>y Francis (5] that it is not. ne cr.aaa ry t.c "olllpute (4J

explicitly but it 1a possible to perform the ~hif't. i.mpid:ly.

be for t~e moment an arbitrary matrix SUCil tr~t

Let m...

(k .. 1,2, ••• ,n)

(i.e., the elements of the rust column of T
5

Are eq,tUll to the rirst

column of T ) and
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Then we ba.ve the following theorem (Franc11) :

i)

11)

iii)

- TM-T)(l',

M is a tri-c1iagons.l ma.~.rix,

the sub-diagonal elements of M nre non-zero,

it follows that M.. DM: D ",llt:::-e D is a diagonal matrix whose d.iagoMls

elements are +1 •

Thus choosing T
2

in (;i) such tha"':. ita first col\1llll\ il proportlona.l

to that of M-SI, the same is true for the first column of the product

T .. T2T:; ••• Tn whi-:h therefore is iJlmtical to that of Ts Hence, it'

tll~ sub-dill.gonal of M does not cC'ntain any non-zero ent~ the cond1tion.

of the Francis theorem arc t'.l1filled and T is t.herf'fore id.en'tical to Ta

(up to a scaling of C0111l!ll1 1.1). Thus the transition (2) 11 ecpivalent

l'to the QR transformation of J J with a given ahift s.

The shift parameter s 5.• c1etel'll'iined by an eigen"a111e o!" the lower

2X2 minor of M. Wilkinson (131 has shown that for this choice of a,

the method converges globally and almost always cubically.

1.4 Test for conve~gence.

If lenl ~ ~ , a prescribed toleran~e, then I~I 18 accepted as

a singular value, and the order of the IIIltrix ia ~d by one. If,

however, I eJ( I ~ ~ for k" n , the IIIB.trix breaks into two, and the

singular values of each block may be oomputed independently.

If ~. 0 , then at lealt one lingular value IIIWIt b~ equal to zero.

In the absence of roundoff error, the matrj x will break if' a 1111ft of ZeI'C'

is perfonted.. Now, suppose at .ome .tage
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At thi. atace an extra .equence of Given. rotation. i. applied frail the

lett to J involving 1'0.,. (k, k+l) , (k, k+2) ,. •• , (k, n) .0 that

~+l • {J)k,k+l i. ar~ihi]ated, but {3}k,k+2' {J}k+l,k are generated,

(J}k+2 k are generated,,
···

18 annihilated, L"ld {J) k ::... generated.n,

!he _trix obtained thu.ly has the fom

..

~.

o

(k)

0
..
-k

~
0 (k)

~k+l ~+l ~+2

en

e -
n CIn

Botc by orthogonality
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Thua chooling ~. IIJ(O'IL€ (€, the _chine precilion) enwrel that all
o 0

e
k

are lell in magnitude than €oIlJ(O)IL. Elementl or ~ not gr_ter

than this are neglected. Hence j breakl up into two part. wh.ich III&Y be

treated independently.
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2. Applicability

There are a large number of appli~at1onll of t.he a ngular value

d.ec0lIIP0.1tion; an exten.ive lilt is given in (7 1. Some 01' these are

a. fo11owl:

2.1 P.eudcinver.e (procedure SVD).--
Let A be a real mxn _trix. An nxm mtrlx X 11 aid. to

be the Jlseudolnverae of A if X atiafiea tle follwing four

prOJ)ertiea:

i) AXA • A

11) XAX • X

i11) (AX)T • AX

tv) (XA)T • XA .
The unique solution ia deno"ted by A+. It. is easy to verify that if

__.1' + + T + +
A • UI:'f , l.hen A - 'It U where 1: - d.la.g( CJi) and.

for a i > 0

Thus the paeudoinverle _y easily be cOIIIpUted. fran t.he output provided by

the procedure ~.

2.2 Solution of homoseneoua equation. (procedure~ or procedure ~nrJ.t)

Let A be a _trix of re.nk r, and suppo.e we vlab to .olve

for 1. r+l, ••• ,n

where Q denotes the null vector.

11



Let

and

Au • Q
1

for i. r+l, ••• ,n

Here the procedure~ or the procedure ,!Unfit with p. 0 _7 be

used tor determining the solution. If the rank of A i. known, then a

modification of the algorithm of Bualnger -.nd Golub [1 ) -.y be undo

2.} Solutions of minimal length (procedure Minfit).,.

Let b be a given vector. Suppose we wish to determine a vector x

so that

If the rank of A i. leas thar. n then there is no unique .olution.

Thus we require amongst all Y. which satisfy (5) that

and this solution 11 unique. It is easy to verify that

The procedure~ with p > 0 will yield the ca.ponenta tor the aolution

to this pz'oblem.
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2.4 A generalization of the least squarea problem (procedure SVD)-
Let A be 8 real DlXn matrix of rank n and. let b be 8 g1'. en

vector. We wiah to construct a vector x such that

(A + fA)x - b + All

and

(6)

Here K ~ 0 18 a g1'9'en weight and the standard problElll is obtained

for K -.. It car. be shown that the solution 111 given by

'1' -1 Tx _ (A A - ~I) A b

where the non-negl'tive constant ~ is determined 8S the _Uest root of

The m1n1.mWD of (6) ia given by 1.lX. Usi.ng the decompodtion A - ur:r
and c - tlb I equation (7) becomes

T ':r 2 )-1
b b - I.lX - <:E(t - 1101 1:': (8)

A combination of bisection and Newton iteration may be used to determine

2
u in the intern.J. 0 S 110 < "n •

It is alao pauible to detel'lldne ~ aa 8 aolu":.ion to • aiJ18Ular value

problElll using a technique used by Forsythe and Golub [~ ]. Consider the

identity



which 1. valid for sny partitioned matrix with X and V .~. and

• 0

det(X) I- 0 • Thu. (7) h equivalent to the c1ete1"lllinantal eptton

[
ATA_~

det
bTA

" allort IIIIllllpulation shOlts that I~ is the _lint I1ngular value or

G ~ (A, *b)

Once ~ i8 determined, the ao1ut~on x can be CClIIIpUted rrc.

the SVD of i\. Thus...,-.,-

( -1)-1
x-Vr-~ c
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'3 • roral. Parameter List

'.1 Input to procec1ure E.YE,.

III number of row. of A

n

witbu

withv

epa

tol

• [1:1Il,1:n]

number of column. of A.

~ if U i. de.ired,~ ?thervi.e.

~ if V i. de aired,~ Clt-hervi.e •

• con.ta.nt u.ed. in the teat. for convergence (.ee Section 5,

(iii» J &boule! not be -.ller than the .chine precil10n E ,
o

i.e., the ••lle.t number for which '+e > 1 in caaputer
.0

arithmetic.

• machine dependent ccnatant wh1~n .boule! be .et equal to

~/ E where ~ 11 the -ne.t llOaitive nUllber repre.entableo

in the cocaputer, .ee [11 J•

repre.ent. the matrix A to be dec~~.ed.

OUtput of procec!ure E!E..

& vector ho1c11ng the aingular valuea ur A, they are non-

negative but not neccuarlly ordered. in deer.-.ing .equence.

u[ 1 :111,' :n]

v[1 :n, 1:n]

repre.ent. the matrix U with orthononalized C01Ulll1.,

(if~ i. true. ot.!1ervi.e ~ i. uaed as a working

Itorage).

repreaent. the orthogona.l _trix V (it~ 11 true.

othervi.e v 11 not u.ed).-
15



,.2 Input to procedure Mintit.

ID

n

p

eps

tol

number of rows of A.

number of columns of A •

number of columna of B, p ~ 0 •

same as for procedure ~.

same as for procedure ~.

ab(1:max(m,n),1:n+p] ab[i,j] represents ai,j' S 1 S m, , S j ~ n ,

ab[i,n+j] represents bi,j' i SiS m, 1 S j S p •

output to procedure !4}-nfj.t.

ab[1:max(ID,n),':n+p) ab[i,~1 represents Vi,j' ~ i ~ n, , ~ j < n

ab(l,n+j] r~pr~lents Ci,j' , ~ i S max(m,n) , , S j S p~

viz. c. tlB .
q[' :n) aame as for procedure ~.

16



SVD (m,n,w1thu,w1thv,ep.,tol) data: (a) reault: (q,u,v);- -
a,n,w1ta~,w1thv,ep.,tol;

a,n;

Boolean W1thu,W1thv;

ep.,tol;

a,q,u,v;

c~t

Caaputation of the aingula.r value. anel cOlllplete orthogonal elecomposition

of a ralr~~ IIII.trix b
A • U cl1ac(q) vT, tlu • .yr..;. I,

where the~. a(1:a,1:n], u(1:m,1:n], v[1:n,1:n], q(1:n] repre.ent

b ~ L .i reapectiveq. The actual p&n.JDeter. correlpOnding to ~ ~ !.

-.y all ~!'! identical unle..~.~.~. In thil case, the actual

para.etera cOZTeapOllc1inc to ~ and !. .at elUteI'. ~::: l: 1.....l\lIIIeel;

integer

c,f,g,h,a,x,Y,z;

e[1 :n];

!2£ 1:-1~ •~ m~

~ .1:-1 ~ 1~ n ~ u(i,.1): ..[i,.1];

cOl8!nt Houaeholc1er' a re4uction to bidiagonal torm;

17



g:-x:-o;

begin

e(l):-g; .:-0; 1:-1~1;-
!2!: j:-l~ 1~ m~ a:-. + u[j,i]t2;

.!! a < tol~ g:..o .!:,l!!,

begin

r:-u[ i, 1]; g:- .!! t < 0~~(.) !!!! -s,i.rl(s);

h:-r*g-a; u[i,i}:-r-g;

.!E!. j : ...! step 1~ n ~

begin

a:-o;

!2!: k:-i step 1~ m~ l :-a + u[k,i)*U[k,j);

f:-·/b;

!2!: k:-i~ 1~ m~ u[k,j] :-u[k,j] + t'*u~k,i]

~j

~s;

q,[i]:-g; .:-0;

£E:: j: ..l.~ 1~ n ~ 6:=5 + u[i,j]f2;

1£ s < tol~ g:..o~

begin

f:-u[1, 1+1]; g:- .!! f < 0~ ..!!il(a) !!.!! -a~~(.);

h:-f*g-.; u[i,i+l]:-f-g;

!2!: j :-l~ 1~ ., ~ e[j] :-u[1,j]/h;

!s!: j:-l~ 1~ m~

18



!S. k:-! .!l!2 1~ n !2 1:-1 + u[j,k)+u[l,k];

ts: k:-! .!!5. 1~ n ~ u[J,k) :-u[j,k] + ,*e[k]

~j

end ••- ,
y: ..bl(q[1)+abl(er1)); if y > x then x:_y

...."".", ~ - -
end 1·- ,

cam.ent accumulation of right-hand transformation,;

ll~~m1:-n~ -,~ 1 ~

begin

!!g"O~

5!!l
h:-u[iJ i+1)*g;

!2£ j:-~ ~ 1 .!:!2ll! n ~ v[J,1):-u[1,J)jh;

!2!.. j :-1. !i!E. t ~ n ~

8:-0;

!2!: it:-!!!!i. '~ n ~ .:-. + u[i,k]*v(k,j);

!2£ it:-!~ 1~ n ~ v[k,J) :-v[k,J) + .*v[k,l)

!!!!! J

~g;

!2£. J:-!~ 1~ n ~ v[1,J]:-v[J,i] :-0;

v[i,i):.1; g:-eli); l:-i

~ 1;

19



comment accumulation of leI~-hand tranaformat1ona;

begin

1: -1+1; g: .q[ i);-
!2!. j :-2:~ 1~ n !!2u[i,j) :~;

.!! g .. 0 1!!!!1

begin

h:-u[1.,i)*g;

!2r j :"2:. step 1~ n .!!2.

begin

!2!:. k:.~!l=P. 1~ m~ s:-a + u[k,i)*u[k,j);

f: ..ajh;

!2!. k:-1 step 1~ m .!!2. U[k,j) :-u[k,j) + f*u[k,i)

~j;

~g

~!.2!: j:.i~ 1~ m ss u[j,i):-o;

u[i,i):-u[i,i) + 1

!!::! i;

comment diagonalizat ion of the bidiagona.l form;

!2L k:-n~ -1 ~ 1 do

begin

~!.~litt!.l3&:

!2!: ~ ..k~ -1~ , ~

20



<.!! ~(e[!J) .!R1.~ goto~! cpnvi'Fif",e!lce;

.!!~(qr~-,]) ~!2. ~ goto C!'-ncellat}~

COIIIIIlellt cancellation of e [ 1] if !. > 1 ;

c:-o; s:-'; !' :-1-' ;

!2!: 1:_!~ 1~ it ~

begin

f:-s*e[i); e[i):-c*e[i);

<II ~(r) - !R!.~ gato M £ coqver4e!ll~~;

g:..qli); h:.q[i] :-as.,rt(flI'f + 8*gh c:-&, h ; a: ..-f/h;

1l~~!.2!:j:-1~'~m~

begin

y: -u[ j,lll ; Z: --u[j, il;

u[j,11]:- y*c + z*s; u[j,iJ:--y*a + z*c-
~ i;

z:=q[k); .!! 1: = k~ seta c~9-enc.;

comment shirt fran bottan 2*2 minor;

f:=«y-z)*(y+Z) + (g-h)*(g+h» / (2*h*y); g:-.~(f*f + 1);

f: .. (X-z)*(x+z' + h*(y/(g f < 0~ f-g~ f+g) - h» / x;

21



coanent next QR transfoI'mllt1on;

!2!: 1:=1+1 step 1~ k ~

begin

g:=e[i); y:~q~~}; h:=s*g; g:=c*g;

e[i-1] :..~: ..~ (f*f + h*h); c: ..fjz; s: ..h/z;

f:=x*c • g*~; g:=-x*s + g*c; h:=y*s; y:=y*c;

!!~ ~£!! for j:=1 ~ 1~ n ~

begin

x:=v[j,i-1); z:=v[j,i);

v[j,i-1):=x*c + z*s; v[j,1]:=-x*s + z*c

end j;

q[i-1]:=z:=s~(f*f+ h*h); c:=f/z; s:=h/z;

f: ..c*g + 8*y; x:=-s*g + c*y;

1!~ ~.!2!: j:=1 ~ 1~ In ~

begin

y:=u[j,i-1]; z:o:u[j,1);

u[j,~-ij:..y*c + Z*8; u[j,1]:"-J*s + z*c

~j

~ i;

c'?4nverf!.ence :

if z < J teen

begin co~~~~nt q[k] is made non-negative;

q[k] :=-z;

ll~ 1illm!2£ j:-1~ ,~ n ~ v[j,k]:-.v[j,k]

~z

~k

~ s..Vp;
22



procedure Minfit (Jll,n,p,~.!.2!)~: (ab) ~es~9.}.:.: Cq) j

!!!2! m,n,p,epl,tolj

integer m,n,p;

!!!! eps,tol;

!!!!l ab,q;

cClIIDent

Caaputation of the matrices diag(9), "!.J and C s\lch t,hat for given real

.;!~ _trix ~ and~ matrix !

~ A V • diag(q) and %B. C with orthogonal matrices Uc and Y:-
The singular values and the matrices V and C may be used to determine X- - -
minilllizing (1) IIAX-BIIF and (2) Ilxllr with the solution

x• V * Pseudo-inv~rse or diag(q) * C.

The procedure can also be used to determine the complete solution of an

underdetermined linear system, i.e., rank(A) • m < n.- - -
The array q[1 :n] represents the matrix d1agc.~), ~ and! together are to

be given as the rirst ~ raws of the array ab11 :mr.xi:n,n), 1;atR!. :I. is

returned 1n the first n rows and columns of ab while C is returned in the--
last R. columna of ~ (if f. > .2'>;

!!!! c,r,g,h,s,x,y,%;

cOllDent Houaeholder' a reduction to bid1qonal form;



g: -x: -0; np: -n+p;

!2!: 1:-' step' until n ~

begin

e[l];-g; s;-o; !;-1+1;

f2!:. j:-l~ 1~ m~ s:-s + ab{j,i]T2;

!! s < l2!~ g:-o~

begin

f:=ab[i,i]; g:= .ll f < 0~ 8~(8) ~ _••~rs);

h:=f*g-s; ab[1,i];=f-g;

!2!: j:=.! step 1~ np ss

beg1n

s: ..O;

!2!:. k:-1 step 1~ m .!!2 s:-. + ab[k, 1]ttab[k.,j};

f:-S/h;

!2!: 1t:-1 step 1~ m~ ah[k,j]:~b(k,j] + r*ab[k,i]

~j

~ s;

qJi] :.g; s:-o;

if i ~ m~!2!: j:-!~ 1~ n.!!2 .:-s + a'b[i,j]T2;

if s <!2!.~ g:-o else

beg1n

f:-ab[i,1+1]; g:- if f < 0~ s~(s) !!!! -.~(8);

h:-f*g-.; ab[1,i+1):-f-g;

!2!: j:-! step ,~ n ~ e(jJ:~b(l,jl/h;

for j :-1 8tep 1~ m !!2

24



.:-0;

!2!: k:-.!!!!2 1 l!2ll! n ~ s:-. + ab[j,k)*&.b[i,k];

!2!: k:-:,~ 1 l!2ll! n ~ ab[j,k] :oeb[j,k) + s*e[k]

~j

end ••- ,
y:..b.(q[i]) + abs(e[i); if y > x then x:.y
~ ,.",.".., - -

~ 1;

caament acc~lation of right-hand transformations;

!2!: i:OII1~ -1~ 1 do

~

h:oeb[i,i+1]*8;

!2!: j:-.!.!!!E 1~ n ~ ab(j,i]: ..b[i,j]/h;

!2!: j:-l!i!E 1~ n ~

begin

1:-0;

!2!: k:-!.~ 1~ n ~ 8:-. + .b[i,k]*ab[k,j];

!2!: it:-!~ ,~ n ~ ab[k,j]:oeh[k,j) + l*ab[k,i]

~g;

.!2!: j :-.1 !i!E 1~ n ~ ab[i,J]:..b[j,i]:.Q;

ab(i,i):-'; g:-e(l]; .1:-1

~ i;
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epa:-epa*Xj n1:-n+1j

for 1: 5 n 1~ 1 ~! m do

£2!: j:-n1 ~ 1~ np 22 sb[i,j] :-0;

comment diagonalization of the bidiagonal form;

!2!: k:-n~ -1~ do

begin

comment cancellation of e[l] if 1 > 1;

cancellation:

!2!: i:-l.!1!£ 1~ k ss
begin

f:-s*e[i]; e[i):-c*e[i]j

<II ~(f) -!R.!.~ goto~ !. conveue,ucej

g:-q[i]; q[i] :-h:-~(f*f + g*g)j c:-g/hj a:_r/hj

begir.

y:-ab[11,j]; z:-ab[i,j);

ab[11,j]:-c*y + a*z; ab[i,j]:--a*Y + c*z

~ i;
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~ !. ~o&eUMF':
z:.qrk); .!!.! • k~ goto conver,encej

=~t mitt from bott(lll 2*2 minor;

x:.q[.!); y:.q[k-1]; g:-e[k-1]; h:-e[k]j

t:.«y-z)*(~z) + (g-h)*(g+h» / (2*hily); g:-.a~(f*f + 1);

t:_«x-z)*(x+z) + h*(y/(ll r < 0~ 1'-g ill!. r+g) - h» / x;

COGiU.er.t n~xt ~ tran&furm&.t~un;

!2!: i: -1.+1~ 1 !:!:!!til k ~

besin

g:-e[1]j y:.q[i]; h:-.*gj g:-c*g;

e] 1-1] :-z: -!¥l(f'*1' + h*b); c:_r!Zj .:-h/ z;

t:-x*c + g*.; g:-X*. + g*c; h:-y*sj y:-y*C;

!2!: j: -1 ~ 1~ n ~

~

x:-ab[j,i-1]; z:-ab[j,i)j

ab[j,i-1):_x*c + z*s; ab[j,i]:--X*s + z*c

~j;

q[i-1]:-z:-!Stt(f*f + h*b); c:-r/z: s:-hjz;

f:-c*p; + a*y; x:--a*g + e*y;

.!S. j: -n1 .!1!e. '~ rtp !!2
begin

y:- ab[i.l,j]; z:-ab[i,j);

ab{i-1,j):-c*y + .*z; ab[i,~J:-a*y of· c*z

~j

~ 1;

ell] :.0; elk] :.f; q[k] :..x; goto~ £ at1tttai;
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~onver"ence :

.llz<O~

begin cClIIIIlent q[k] 18 _de non-negative;

q[k] :--z;

!2!: j : .. , ~ ,~ n ss ab[j,k] :--ab[j,k]

~z

~k

~&nritj
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5. Orsanizat1onal and Notational Detaill

(1) The matrix U conliats uf the first n colunulS of an orthogonal

uatrix tJc ' The following modification of the procedure EYE. would

produce U inltead of U: Afterc

ca.ment accumulation of left-hand transformations;

inaert a atatement

.!!~~ !2!: i:-n+1 ~ 1~ m !!2
begin

!2:: j:-n+1 ~ , ~ m .!!£ u{i,j) :cOj

u[i,i] :-1

~ i;

MOreover, replace n by III in the fourth and eighth line after

that, i.e., write twice !2£ j: ....!~ 1~ 11\ ~.

(11) >m • n 1a aslUlllt"d for' procedure EtE.. This is no restriction;

T
if m < n , atore A ,i.e., ua~ an array at [1:n,1:m) where

at[i,j] represents aj,i and call !YE(n,m,withv,Withu,eps,tol,at,q,v,u)

producing the IIl*m J1Btrix U and the n*m J1Btrix V. There is no

restriction on the values of ~ and !l. for the procedure ~nf1t.

(11i) In the iterative part of the procedures an element of J(1) is

considered to be negligible and is consequently replaced by zero

if it is not larger in -.gnitude than £x where E is the given

tolerance and



The largest LiflbUlar value a i :..s bounded b" x/ft $ al $ x/2 •

(iv) A pro~am organi~at~on was chosen which allows to save storage

locations. To this end the actual parameters corresponding to II.-
and u may be identical. In this event the original information

stored in II. is overwritten by information on the reduc:lon.

This, in turn, is overwritten by ~ if the l~:Ler is desired.

Likewise, the actual parameters corresponding to a and v !My-
'iet"ee. Then v is stored in the upper pare 0: a if it is-
desired, otherwise ~ is not ~hanged. Finally, all three

parameters ~,

withY • true.--
u , and v may be identical unless withu •-

This apecial fea~ure, however, increases the number of multiplications

needed to form U roughly by a factor !Y~.

I

(v) Shifts are evaluated in a way as to reduce the danger of overflow

or underflow of exponents.

(vi) The singular values as delivered in the array q are not necessarily

ordered. Any sorting ot' them should be acccmpanied by the corresponding

sorting of the columns of U and V , and of the l"O'ofS of C •

(vii) The fonral pare.meter list may be cOIIlpleted by the addition of a limit

for the number of iterations to be performed, and by the addition of

a failure exit to be taken if no convergence is reached after the

specified number of iterations (f. e., 30 per singular value).
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6. l!Ierisal Propertle.

The wtabll1ty or the Houaeholder tr&n.tormatlon. hal been demons~rated

by Wllklnaon [12]. In ad41tinn, he haa .hown that in the absence of

rowuIoff the QJl. a180rltha has global convergence and a')'IIIptotically is

alJDoat alway. cubically convergent.

The nwaerlcal experiJllenta indicate that the average number of complete

"Jt itera.tion. on the bll1iagonal _trix ls usually Le.. than two per

s1ngul.ar value. Extra condd.eratlon mat be given to the 1mplic1t shift

tecnn1~e which fail. tor a aplit matrlx. The difficulties arise when

there are aall ,'I or ek'" Ua1ng the techniques of Section 1.4,

there can not be n\ale%'ical in.tabllity .ince stable orthosonal transformations

are uaed but uncler apeelal ci.rcyJUtaDcea there flAY be a slnw dalltl in the

rate of ~onverg.nce.



7. Te8t Reault.

Teat. vere curied out on the UllIVAC nos COIIIpUter of the Andrew R.

Jenn1.ng. Ccmputing Center of Caae Wel~tern Re.erve Unlverl1ty. Floatlna

point numbers are repre.ented by a noX'llallud Z7 bit -.ntlaa. an4 a

7 bit exponent to the radix 2, whence .!p.! • 1.510-
8 , .!2! • 10-'1 •

In the following, cc:aputed value. are marked by a tilde and m(A) denote.

IIIILXlai, j I .
First example:

22 10 2 , 7 -1 1 0

14 .. 10 0 8 2 -1 1I

-1 13 -1 -ll 3 1 10 II

-, -2 l.' -2 4 .. 0 ..
A. B •

9 8 1 -2 4 0 -6 -6

9 1 -7 5 -1 -, 6 3

2 -6 6 5 1 1 II 12

4 5 0 -2 2 0 -5 -5

The homogeneou. ay.tem ~. g hal two linearly independent .o1utlona.

Six Q,R tranaroraatl~ vere nece..ary to drop all off-diagonal eleentl

below the internal tolerance 46.410-8. Table 1 givea the .ingular

values in the sequence .. coarputed by procedure.~ and JlinfJ.J.. The

accuracy of the achieved decaapol1tion i. characterized by



Table 1

....
O'k ok-ok

0. 9610-7 -9.6

19.595916 191

19.999999 143

1.9710-7 -19.7 * 10-
8

35.327°38 518

The cOIIIpUted solutions of the homogeneous system are givm by the first

and fourth column of the matrix V (Table 2).

Table 2

.... ....
V

l
v

4 vl-vl
v 4-v4

-0.41~ 9545 0 -1.5 o (ner.

0.4405 0912 0.4185 4806 1.7 0.6

-0.0520 0457 0.3·.a; 9Y.l6 1.2 -1.3 * 10-8

0.6760 5915 0.2441 53C5 1.0 0.,

0.41297730 -0.8022 1713 1., -0.8

Procedure 11infit lo"!l.S used to compute the solutions of the minimization

llrob1e11i of Section 2.3 corresponciing to thp. three right-hand sides as given

by the columna of the _trix B. Table 3 lists the exa':t solutions and

the results obtained when the first and fourth value in Tolble 1 are

replaced by zer~.
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Table 2

xl ~ ~ xl x2 X3

-1/12 0 -1/12 -0. C833 3333 0.17 10-8 -0.0833 3333

0 Q 0 -0.5810-'~ -1.09 -8 -1.1110-810

1/4 0 1/4 0.2500 0002 1.55 l CJ-
8 0.2500 0003

-1./12 0 -1/1;'.: -0.0~,5 3332 0.74
10

-8 -0.083,3 3332

1/12 0 1/12 :).01)) 3334 0.3310-
8 0.0833 3334

Residual

0 8j') 8/5

A s£cond example is the 20*Z1 :natr:x with entries

a .. - {:l_il.,J

-1

if i>j

if i =j

if i < j

1 < i < 20

1 ~ j ~ 21

which has orthogonal rows and singu.lar values 021_k" " k(k+l) ,

k = 0, ••• ,20. Theoretically, the Householder reduction should produce

a matri.{ J(oJ with diagonal -20,0, ••• ,0 and super-diagonal

- i'2O,02" • • ,a20 • Under the i.nf'Laence of roundiap: errors a totally

different matrix results. However, Within workir.e; accuracy ita singular

values agree with those of the original matrix. Convergence is reached

after 32 ~ transformations and the ax' k =1, ••• ,20 are correct within

several units in the last digit, a =1.61 -11.
2l 10

A third example is obtained if the diagonal of the foregoing example

is changed to

;4



a. i = 1
1,

1 ~ i ~ 20 •

This _trix has a cluster of singular values, '\0 to 019 lying between

1.5 and 1.6, 020 = /2, 021 = o. Clusters, in general, have a

tendency to reduce the number of required iterations; in this example,

26 iterations were necessary for convergence. 021 = 1.4910-8 is

found in eighteenth position and the corresponding column of V differs

from the unique solution of the homogeneous system by less than ;.410-8

in any component.

A second test ....as made by Dr. Peter Businger on the CIC 6600.

Acknowledgement: The authors wish to thank Dr. Peter Businger of Bell

Telephone Laboratories for his stimulating comments.
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