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ASPECTS OF SPEECH RECOGNITION BY COMPUTER

ABSTRACT

This thesis describes techniques and methodology which are useful
in achieving close to real-time recognition of speech by a computer.

To analyze connected speech utterances, any speech recognition system
must perform the following processes: preprocessing, segmentation,
segment classification, recognition of words, recognition of sentences.
We present implemented solutions to each of these problems which achieved
accurate recognition in all the trial cases.

The preprocessing process involves the division of the speech
spectrum into convenient frequency bands, and calculation of amplitude
and zero-crossing parameters in each of these bands every 10 milliseconds.
In the software simulation, two smoothing functions divide the speech
specirum into-two frequency bands (above and below 1000 Hz). 1In the
hardware implementation, the spectrum is divided into three bands using
bandpass filters (i.e. 150-900 Hz, 900-2200 Hz, 2200-5000 Hz).

Utilizing the parameters generated by the preprocessing procedure,
the segmentation process determines whether the characteristics of the
sound are changing in time or are similar. Portions that possess similar
parameters are grouped together to form sustained segments and portions
that possess changing parameters form transitional segments, resulting
in the segmentation of connected speech into parts approximately
corresponding to phonemes.

The classification process assigns a phoneme-group label to each
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segment by looking at segment characteristics which are obtained by
averaging the preprocessing parameters over the entire segment.

In learning mode, the sound description so generated is stored in
a lexicon in a form suitable for fast retrieval. In recognition mode,
heuristic procedures search the lexicon and build a list of probable
candidates by considering rough features of the utterances. 7hen each
candidate description is compared with the incoming messape description
and the candidate of best-match is selected. The comparisons are performed
first by determining correspondences between segmental descriptions and
then by evaluating similarity scores on the basis of the closeness of
parameters for the corresponding segments.

The sentences of limited languages whict are defined by a grammar
are decoded first by obtaining a segmental deescription of the scntence
and then by scanning the sentence description forward or backward looking
for "kaown" (previously learned) words. At any step feedback from the
grammar is used to eliminace from the matching process the syntactically
ilcorrect word representations.

Some significant results presented in this disertation are:

@ 95% correct recognition for a single-speaker list of 5L words

{n 2-3 seconds per word, after 4 training-rounds, above 924
correct recognition being already achieved after 1 training-
round (tested for ? speakers).

@ 854 - 90% correct recognition for a ilst of sk words recorded

by 10 speakers in 9-12 seconds per word, after 4 training-rounds.
@ 974 correct recognition for a single-speak:~ 1i- . of 70 French

words in 2-3 seconds per word.

v



® 94 correct recognition for a single-speaker list of 561 words
and short sentences in 16-17 seconds after 3 training-rounds.
Decoding of 3-4 seconds long, syntactically structured sentences
in 10-15 seconds.

The research described above leads us to the following conclusions:

@® The fact that, using crude parameters, we were able to obtain
satisfactory results indicates that it is not the type of
preprocessing which matters, but rather the power of the subsequent
algorithms,

@ The present controversy about the best elementary unit to be used
in the analysis of speech (phoneme, syllable, word, etc...) seems
unwarranted. In this investigation we used all of them at various
stages of the analysis,

@ Accurate recognition of limited laiguages ran be achieved even
though an accurate phoneme-like classification is nct available.

@ Techniques of Artificial Intelligence, such as the reduction of
search gpace by means of heuristics, appear to hold great promise
for speech recognition.

@ Attempts at building more powerful syntax-direc:ed sentence
analyzers are likely to be more fruitful than a great amount of

effort spent in devising preprocessing techniques.
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Chapter 1
INTRODUCTION

Speech is, perhaps, the most extensively investigated of all the
human perceptual and motor processes. For a long period of time, research
in this area was aimed at speech synthesis and speech transmission.
Recently, advances in technology and the availability of new machines
able to deal with large amounts of data have made attempts at efficient
speech analysis possible, and, as an extension, automatic speech recognition.
First attempts at speech recognition by computer were restricted to the
recognition of simple sounds, !ike vowels and digits, just as preliminary
attempts at picture processing were restricted to the recognition of
characters. However, approaches developed for the recognition of
characters, such as the use of a metric in a multidimensional space
partitioned by hyperplanes, could not be easily extended to the analysis
of the complex sequence of sounds which are part of a spoken message.
Here, the structure of the message and the interrelationships among the
gouads of the message are the important factors.

Our approach to the speech recognition problem can be summarized
as follows:

1. Development of procedures for the extraction of relevant
parameters from the speech wave (preprocessing procedures).

2. Formulation of heuristic procedures to segment spoken messages,
represented by the speech parameters previously extracted,into discrete
parts,to classify those parts, and thereby create a deacription of the

messages.



7. Formulation of heuristic procedures to match the message

descriptions generated by the segmentation process with prestored
(or "learned ")representationa.

4. Development of artificial languages specifically designed to
simplify the problem of determining word boundaries and to resolve
phonetic ambiguities in the analysis of long connected-speech utterances.

In this chapter some of the main problems associated with computer
speech recognition are discussed and a model of a general purpose speech
recognizer is presented. Then, the efforts of other researchers in this
arca of Arcificial Intelligence are reviewed. Finally, the !ast section
outlines the aim and scope of the present work and the methods and material

uged.



I-1. WHAT IS SOUND? HOW CAN ONE SOUND BE DISTINGUISHED FROM ANOTHER?
These questions must be answered before we can effectively recognize
speech, Phoneticians have provided us with several terms for describing
speech sounds: morphemes, syllables, and phonemes. Unfortunately their
idealized classiffcations, based on articulatory, acoustical or perceptual
properties of sounds are more qualitative than quantitative and are meant
for use by humans rather than by machines. To further complicate the
problem, a phoneme, considered to be the smallest perceptual unit of a
language, may have different allophones which do not necessarily present
similar acoustic properties, nor are the acoustic characteristics always
invariant within a given phonemc. Connected speech is created by a contin-
uous motion of the vocal apparatus from gound to sound, so that the vocal
tract dwells only momentarily in a state appropriate to a given phoneme.
Furthermore, a phoneme is a relative concept dependent on the language
(e.g., in Japanese, the words raw and lgw would be treated as the same
word because /r/ and /1/ are different allophones of the same phoneme.
In Hawaiian, pack and back would be considered the same word because
/p/ and /b/ are different allophnnes of the same phoneme), These
difficulties with the definition of a phoneme suggest that it might be
degirable to consider a different unit of sound more amenable for machine
recognition than the phoneme.

One can define a gound on a purely acoustic basis:

..As a sustained segment in which the acoustic characteristics of
the sound remain relatively constant (i.e., vowels, nasals, fricatives,

ailences, etc.).



..As a transitional sesoment in which the acoustic characteristics
vary with time (any segment which is not a sustained segment ).

Note that, in such a scheme, an ideal phoneme may be spread over
several segments, or two phonemes may be grouped into one segment .

Likewise, the conventional definition of a 'word" is not appropriate
to computer recognition of speech. In all the languages of some interest
words are determined by the written form of the language and not by the
acoustical properties c¢f the spoken form, In order to break up an
utterance into independently recognized words, we must provide a means
of defining acoustical boundaries between them. For example, on a purely
acoustic basis we can define a gyllable to be that part of the speech
signal which lies between two silences or between a fricative and a
silence. A word then is formed by concatenating one or several syllables.
Under this hypothesis, /HOW ARE YOU/ is considered a word of one syllable
and /RESCAN/ a worc of two syllables.

Based on these definitions an efficient speech recognizer should
have the following characteristics:

..It must be able to determine the boundaries of sounds and to

classify those gsounds as belonging to some categories.

..It must be able to determine the boundaries of words composed of
several gounds and to recognize those words.

In this model, we are not limited to specific sounds or words.

A sound may correspond to a phoneme or several phonemes, and a word may

correspond to several conventional words or only to a syllable.



I-2. WHY ARE SPEECH RECOGNITION SYSTEMS INTERESTING?

There are several motivating factors for attempting to provide
speech input to computers. Although many people are intuitively aware of
the advantages of such facility, they deserve to be explicitly stated:

1. Universality: speech is the most universal and natural mode
of communication among men.

«. Fast Data Transfer Rate: Statistics have shown that in
normal speech an average of 4 to & words (12.5 phonemes ) are uttered each
second. Therefore, if man-machine communication is our main concern, this
medium is faster and better than a teletype.

3. No need to be close to the Computer: The fact that one does
not need to be close to the computer to operate it, and the simplicity
of the required remote station (e.g., a telephone handset) give more
convenience to such a system.

4. Versatile Motor Process: Adequately programmed, it may provide
its user with additional motor processes and additional effectors besides
the usual hands and feet. For example, in space exploration, a voice-
controlled guidance system could help the pilot in thg execution of all
the simultaneous tasks he must pertorm.

Unfortunately, at present some disadvantages tend to inhibit the
development of practical speech recognition systems:

1. Prohibitive Cost: It is the main disadvantage of such a system.
For example, to recognize the users' commands in a time-gharing environment,
a large scale computer would have to be used to perform the uecessary
analysis. However, as research continues, more problems are being sol-ed,

and the price of hardware is constantly decreasing, so that a $50,000
’ 5



"Speech Reader' station is conceivable in the future. For many situations,
such a station would be more conven-.eit than a card-reader, and faster
than a teletype.

2. Handling of Different Voi:es: To be usable, a 'Speech Reader"”
should be able to deal with differint accents and different voices. An
obvious solution to this problem is to train the machine with several
speakers. However, the limited memory available preven:s from using
a large number of different voices. A better apprvach seems to be the
use of transformations on the speech input which novwalize it with regard
to the speaker characteristics before the recognition process. Some
of these transformations are being studied, and bopefully, solutions will
be found in the next few years.

3. Handling of Natural Spoken Languages: The well known
difficulties encountered are those which prevent the use of natural
languages when dealing with computers. The problem is even more severe
for speech recognition, since the spoken form of a language is, in
general, less structured grammatically than its written form. This
area represents an active field of research in the theory of grammar
and semantics. Although researchers usually deal with the written form
of natural languages, many of the results obtained will be directly
usable by speech recognizers. Today, in the absence ..i good solutions
this problem can be circumvented by the use of rigorous syntaxes, in
the same manner (hat highly-structured programming languages were adopted
to conveniently program computers.

This thesis describes working systems covering various aspects of

speech recognition. We do not pretend to have golved all the problems

6



involved in the recognition of connected speech., We have solved some
of them in restricved environments. Hopefully, in the near future, our
solutions will be 'improved and more problems will be solved, thus

increasing the field of application of speech recognition systenma.

-



1-3. PREVIOUS ATTEMPTS AT SPEECH RECOGNITION BY MACHINES .

Many attempts have been made to recognize speech. In this
investigation, we shall confine ourselves to the recent research in the
areas which are directly relevant to our work, namely the areas of recognition
of isolated words (or messages), and utilization of linguistic constraints
to decode connected speech utterances defined as a sequence of segments

We shall review the attempts made by Davis, Biddulph and Balashek
(1952); Reddy (1967); Gold (19661; and more recently Bobrow and Klatt (1368);
who attacked the problem of recognizing speech by the analysis of real data
as recorded by a microphone (or a tape recorder). We shall also discuss
the research performed by Reddy and Robinson (1968) and Alter (1y68) who
attempted to recognize connected speech by applying linguistic constraints
to the analysis of hypothetic string of phonemes which might be produced by
an acoustic recognizer.

David, Biddulph and Balashek (1952) attempted to recognize telephone
quality digits spoken at normal speech ratecs The speech spectrum was
divided into two frequency bands, one below and one above 900 Hz. Axis-
crossing (zero-crosszings) counts were then made on each band energy to
determine the frequency of the maximum syllabic rate energy within each
band. A two dimensional frequency protrayal was built from the preceding
analysis; following this, a comparison was performed with each of ten
standard digit patterns and the digit of best match selected Such a
procedure cannot be extended to the recognition of large vocabularies or to
the analysis of long utterances. Nevertheless, the technique of separating
the speech spectrum into frequency bands and counting the zero-crossings in

each band can be extended for use as a parameter extraction method iu a

8



more sopnisticated system.

The specific aim of Reddy (1967) was to produce a phonemic
transcription of a connected speech utterance which was readable and bore a
satisfactory resemblance to what was said. The original data to his phoneme
recognition system was the waveform digitized by an analog-to-digital
converter sampled every 50 ys (20,000 Hz). This speech wave was divided
into a succession of 10 millisecond segments. These minimal segments were
then grouped together toc form larger segments approximately corresponding
to phonemes. Once the segmentation and classification into phoneme groups
were performed, Fourier spectrum analysis was utilized to further classify
the segments. The immediate goal of this work was to obtain a phoneme
string from a connected speech utterance and was based on single speaker
data. The present work extends the heuristics utilized so that they become
usable in a multispeaker enviromnment and associates the segment 3tring
classified into phoneme groups with words and sentences of limited lamguages.

Gold (1966} investigated the problem of recognizing words spoken by
different speakers. Each word was analyzed by a spectrum analyzer, a pitch
detector and a voicing detector. Fifteen features were extracted by
segmenting the sound, detecting the stressed vowel, and making measurements
on the stressed vowel and its neighboring segments. These measurcments
were filed for 540 words uttered by ten speakers. A decision algorithm
wag devised while analysing and stcring these data. Then, during a second
pass, all of the 5%0 words were passed through this algerithm and the
results tabulated, each speaker's word being compared to the words said by
all of the cther speakers. The results obtained were about the same level
of accuracy as our results are, however, since he used all of the other
speaker data for the recognition of one, we are not able to effectively
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compare the two systems. We suspect that because he used only a part of
the utterances (stressed vowels and neighboring segments) to determiue the
similarity between words, his system is less effective for vocabularies which
are not well-balanced (i.e., when they contain words with the same stressed
vowel).

Bobrow and Klatt (1968) have based their limited speech recognition
system (LISPER) on the comparisons of distinctive features extracted
directly from the outputs of 19 bandpass filters. Their original data was
composed of several word lists recorded by two speakers in a very quiet
room (S/N ratio >35 db). Although LISPER uses a different approach than
ours, it is of interest because it permits us to directly compare the
performances of the two systems. We could run under our system the two
word lists (recorded by Ken Stevens and Carl Williams, which Dr. Bobrow
graciously provided us with), which Bobrow and Klatt used to obtain their
statistical results. Comparison of the results indicates that our approach
is slightly better for single speaker lists when the vocabulary is phonetically
well-balanced, and much better when the number of possible confusions is
increased, this being true even in a noisy enviromment (S/N ratio o 15 db).
The main shortcoming of their model appears to be that sirce the utterances
are not segmented, their work cannot easily be extended to the analysis of
long sentences in which a division into small components (phonemes or words)
is necessary. Lacking timing information, we are unable to say how effective
their search and classification strategy was and whether or not the recogni-
tion was done 1in close-to-real time.

Ag far as we can determine, both Gold and Bobrow‘and Klatt use a

maximum-1likelihood type of classification system which calculates similarity
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measures for all the candidates in the lexicon. Any algorithm which does
not effectively eliminate most of the candidates before computing

similarity measures cannot be used in dealing with large vocabularies.

By contrast most of our time and effort has been spent in devising efficient
heuristics for the reduction of the candidate space.

Reddy and Pobinson (1968) and Alter (1968) have investigated the
problem of recognition of long sentences represented by sequences of phoneme-
like segments. In both cases, the input to the programs was a sequence of
typed phonemes. To solve zmbiguitiss arising from similar words or from
errors in the input string, both used a dictionary of allowed symools and
linguistic information fFortran grammar in Backus-Naur form for Alter, a
simplified English grammar for Reddy and Robinson). While they were useful
ideas, they were not tested with actual speech input. Our experience suggests
that these resea.chers may have had t> modify their model substantially
be. ore they will be able to handle word boundary problems. If they had, we
believe that they would have discovered that neither English nor Fortran are

well suited for man-machine voice communication.
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I-4. AIM AND SCOPE OF THE INVESTIGATION:

The specific goal of this research was to build a high accuracy,
limited vocabulary, recognition system working in real-time, or close to
real-time, and to use it in the analysis of connected speech utterances
of highly-restricted languages. The vocabulary of the recognizer, limited
only by the memory size of the computer, can be as large as 1000 messages
of up to 1.5 seconds duration on our machine.

This dissertation, describes a message recognizer and its use in a
voice-controlied visual feedback manipulator and a voice-controlled desk
calculator. For each of the two examples a finite-stage grammar (manipulator)
or a linear grammar (desk calculator)is used to assist in the recognition of
connected speech utterances and to resolve phonetic ambiguities. Although
the system is not restricted to any particular gpeaker, it gives better
results for the speakers with whose voices it is trained. The statistical
results given in the last chapters are based on data obtained using
several different speakers. In all the phases of the research, no attempt
was made to artificially reduce the noise level of the room since that

would not be the norwal mode of man-machine communication.

Methods and Material

Most of the regsearch has been done on the PDP-6 computer available
at the Stanford Artificial Intelligence Project. A general diagram of the
machine can be seen in Figure I-1l. Recently, a PDP-10 processor was added
to the existing system and both machines were used to implement the desk
calculator. Since real-time operation was the main goal of this last

application, a large amount of computation power was required. As Fortran v
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was the only algebraic language originally available on the PDP-6
computer, this language was chosen to program the large amounts of
arithmetic computation involved in all the procedures. The stored word
lexicon, requiring a complicated list structure with two independent

sets of pointers for each stored message representation, is manipulated

by means of Fortran compatible machine language subroutines. Likewise,

the necessary Input/Output operations and the display package wetc
implemented in the more flexible machine language. Later, the often utilized
parts of the Fortran portion of the system were recoded in assembly language.
Finally, for the desk calculator in which speed was one of the main concerns,
we gimplified some of the algorithms and coded then entirely in machine
language. Nevertheless, in the present dissertation, all of the described

algorithms are presented in ALGOL notation.

Organization

This dissertation is organized in the order a speech recognition system
impiementation should follow. Except for the Desk-Calculator (Chapter vi),
which exhibits a real-time application similar to the Hand-Eye-Ear program
(Chapter V), each chapter is the logical continuation of the previous ones.

In Chapter II we describe a procedure and its hardware implementation
for the extraction of significant parameters from speech. Such a preprocess-
ing procedure ie necessary to reduce the large amount of data contained in
a speech utterance.

In Chapter III we present a segmentation procedure of the speech
waveform using the parameters obtained through the preprocessing procedure.

Each created segment is then classified as belonging to one of the broad
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categories VOWEL, FRICS, BURST, STOP, NASAL and CONST. The segmentation
procedure is general and can be used to recognize acousti: sound boundaries
with good accuracy. The simple classification algorithm presented was
found to be sufficient for our purpose, since average parameters are kept
along with the label in order to characterize a segment.

In Chapter 1V, we describe the system EARS {Effective Analyzer and
Recognizer of Speech) whicl’ is able to learn and recognize as many as 1000
words and messages. Several heuristics to reduce the candidate space and
a solution to the segment synchronization problem are given. To match
the segmental parameters of an input utterance against known parameters
of the same phrase, one must determine correspondence between the segments
of the two utterances. The synchronization procedure first maps vowel to
vowel and fricative to fricative. The few unmapped segments between any
two pairs are then mapped on the basis of similarity of segmental parameters.
A global similarity evaluation is performed utilizing the mapped segments
aui%best-match type comparison chooses the respoase, Statistical results
are given along with some evaluation of the principal heuristics used.

In Chapter V, we describe the utilization of the word recognizer
in the analysis of connected speech utterances: the HAND-EYE-EAR program.
Unlike the previous example, in which the utterances were recognized as
a single unit, here the commands are analyzed by recognizing individual
words within the senteces. At any step, feedback from a finite state grammar
ig utilized to eliminate syntactically incorrect word representations from
the search process. Statistical results for several sentences uttered by
different speakers are given.

In Chapter VI we describe a real-time sentence analyzer. The sentences
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are desk-calculator statements, the vocabulary consisting of some 35
words. The segmentation of the uttered commands is executed by the PDP-6
computer while the experimenter is talking. The decoding of the command
and its execution is done in the PDP-10 processor using a left-to-right
parging of the statement. The grammar used is a simple linear grammar
which, by look-ahead, reduces the search while recognizing the words and

. interprets the statements while executing the commands.
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Chapter I1
PREPROCESSING FOR SPEECH ANALYSIS

IT-1, INTRODUCTION

The average information rate of the human voice signal has
been estimated to be as high as 300,000 bits per second. Various
preprocessing techniques have been proposed to reduce this huge mass
of information to a more manageable level, e.g., spectrum analysis,
approximation by orthogonal functions, zero-crossing analysis, etc...
This chapter describes two procedures for preprocessing speech
which are extensiors of the zero-crossing analysis technique.

One of the earliest attempts at speech analysis using the
frequency spectrum of the voice was made by Dudley (1939) with his
invention of the vocoder. The fundamental frequency amplitude and
the short time amp.itude spectrum for ten discrete frequency bands
were extracted from the speech gignal. The circuit consisted of a
frequency discriminator to obtain the fundamental frequency, bandpass
filters, rectifiers and low pass filters for the other frequencies.
Since the original development of the vocoder, many different versions
and variations of this scheme have been constructed. Flanagan (1965)
has thoroughly reviewed mnst of the techniques which have stemmed
from the original wveocoder.

Two general methods for representing signal waveforms by
orthogonal functions have been described in the literature. Mathews,
Miller and David (1961) used Fourier series expansion in a "pitch-

synchronous analysis of voiced sounds". Dolangky (1960] performed a
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similar analysis, but instead used orthogonalized, exponential functions.
These methods are useful for digital processing of the signalg, but
they can be time-consuming.

Peterson (1951) was one of the first investigators to use zero-
crosging information to analyze speech. His idea was to take the
average density of zero-crossings of the speech wave and of its time
derivative as approximations to tae first and second formants,
respectively. A number of refinements of this zero-crossing technique
have been made. Mungon and Montgomery (1950), Devid, Biddulph and
Balashek (1952) pre-filtered the speech signal into frequency ranges
appropriate to individual formants. The zero-crossing rate and the
amplitude were then measured in each of the bands. At Stanford
University, Reddy (1966), in an attempt to recognize speech by
computer, used the amplitudes and zero-ciossings of digitized speech
waves to segment speach utterances and to clasgify segments into phoneme
groups. He primarily used the amplitude information to group acoust:-
cally similar 10 ws segments. Because of their high variability, zero-
crossings were used only as a secondary parameter.

In the first parameter extraction procedure Presented, the
variability of the parameters is reduced by two computer-coded smoothing
functions. These functions are equivalent to low pass =nd high pass
filters with approximately 1000 Hz cut-off frequencies. Amplitude and
zero-crossing parameters are then based on the output of cach of these
equivalent filters. The parameters extracted were not completely
“atisfactory, due to the low reliability of correlating high frequency

components obtained by differencing techniques with the appropriate
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speech sounds. Howevef, the results obtained from the subsequent
processes were acceptable, e.g., 95 percent correct for the segmentation
procedure (Reddy and Vicens, 1968).

In order to obtain a more accurate repregsentation of the speech
signal, it was decided to divide the speech spectrum into three frequency
bands {150 Hz-900 Hz, GOOH2z-2200 Hz, 2200 Hz-5000 Hz) and to determine
amplitude and zero crossing parameters in these banda.

Since close to real-time recognition was desired, it was also
decided to realize this new preprocessor in hacdware form. This resulted
in a low data rate device (3500 bits/sec) using bandpass filters and
analog circuitry which provides the input for an analeg ta digital
converter.

These two preprocessing procedures were developed on our time-
shared PDP-6 Computer. Audislinput for the first procedure consists of
a microphone connected to an A-D converter via an amplifier. The speech
signal is sampled at ¢ ({00 samples per second and digitized to 9 bits
.Q d: dvnamic range). With the second method, six parameters, which
are accumulated by the analog speech preprocessor, are digitized to 6

bits accuracy every 10 ms. (600 samples per second}.
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I11-2, THE SOFTWARE SPEECH PREPROCESSOR
Since significant changes do not usually occur within any 1C ms
of speech, we use a 10 ms interval as our basic unit, and call it a

minimal segment. Let an arbitrary wave within a minimal segment be

represented by a discrete function f;, whose values are the ordinates of
this wave at n equidistant points. The amplitude of the wave on the
minimal segment is then defined to be Max f{- Min f§ . The zero-crossings
i=1l,n i=1l,n
of the wave on the minimal segment is the number of sign changes of fi.
After investigating several possible parameters, we found the
zero-crossing and amplitude parameters of a smoothed speech wave to be
less variable than the original wave. In addition, we found it desirable
to have a measure of the high frequency components present in the
speech wave. Therefore, two other parameters were obtained by sub-
tracting the smooth wave from the original and measuring the ampliatude
and zero-crossings of the residual wave.

II-2-1, The Smoothing Function

The amplitude and zero-crossing parameters just defined for the
smooth and residual waves are very sensitive to the chaice of the smoothing
function.

The simplest function one can use is the regular averaging

function defined by yp =1 =x4n X, . This function was tried and was
n

]
j=o+l

found not to be sufficieatly accurate with respect to the residual wave

computation. After a mathematical study of the problem and a new try,

the function y = {14€) x, was finally chosen. It will be
P 2q+1 i ]
J=p-q

shown that € depends only on q and on the frequency of the wave,
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but not on p . The following paragraph describes the mathemacical
approach taken to solve this problem and evaluates the value of ¢,
Let us now suppose that the original wave is a sine wave. Then

i 1 i=C+n
the wave obtained from the regular averaging process, {E g_—_—“ xj)
’

T=AT
is always smaller in amplitude than the original wave, and the higher

the rrequency of the original wave is, the smaller the resultant output

vwvave becomes. We shall show that for a sine wave, the original wave:
=

d th d wave: 1 x,, are related b
xp’ an e smoothed wcve ypa SqiT j’ y

j=p-q

yp=(1-€} xp where € is independent of p and has a significant value.

Let X, = A sin (wton) be our original wave. ¢ represents the
radian frequency of the sine wave, and to the sampling period of the
analog-to-digital converter (to = 100 ps).

Let the sequence yp be defined by the averaging process:

Yo = mqiT ‘Lplz‘ g = 2;+1 ﬁ A sin {utod).
i=pq j=p=q

In order to evaluate this term, let us introduce the sequence

1 =
z, = ST i: : A cos (Otoj) and the complex sequence

i=p-q
U =z + y = A S e]'wtoJ which is a geometric series.
P P P 2q+1
i=p-q
igt_ (p-q) _ _iwt (p+q+l)
Then U_ - A g d e hd ,
P 2q+l 1 - eiwto

and U A AYP e “ittoq _  dwt, (4+1)
P~ Zq+ 1 - elwto

rationalizing U = & _ .lwtop (e-h”t°q - e iwtO(q+1)) (1 - e-“”t°)
2q+l (l-eﬂ”tO) (1 -e -iwto)
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A eimtop (g:h"toq + eiwtoq -eh”to(q+1) -~ eiwto(q+1»

so U =

P 2q+1 _

2 - eu”to -e 1wto
Applying now the formulas: eiB +e-iB = 2 cosp , eiB - e-iﬁ= 2!sinp ,
we obtain:
‘ _ : sin @ t, 2q+l
y - A olwt P coswt q coswto(q+1) LA olwt P ~
P 2q+l 1 - cosmto 2q+l sin Qgt

In the preceding equation, the underlined quantity is real,
therefore we can immediately deduce the value of yp, the imaginary part

of the zomplex sequence Up:

sin @t 29+l
A °
y. = 5 sin pt p.
it 2q+i sin at o
2]

—_—

=t

If the term mloq is small, we can expand the sines in a taylor

series:
5
sinp = g - ;L. +0(p°)
5
(2q+1)yto gzg+1)5 wto 3 (mtog) )
i r 5! 2 ) + 0 ( B
yp - 2q+1 3 5 sin we P
Wy L “_’Eg) vo (‘&)
2 3., 2 2
) (2q+1)° ‘”_':2)2 + ‘”toq)l‘t
3. 2 2
y_ A sin @t p
P 1 t \2 wt
1 - [l 4 | [==
=1 |7
yp = All - g(;ﬂ.w t°2 + O ‘ ‘uto) h) ) sin mtop




2

As noted previously, the term € = i} ) to2 dapends on the

o
frequency of the wave (w) and on the A-D sawpliig period tos but not on
p (i.e., not on the position of the points on the original wave).

Let us now substitute some numerical values in the formula to
obtain an approximation to €. Assuming that q = 2 (we average over 5
points), t, = 100 ys (corresponding to 10,000 samples per second}, @ =
1000m (the frequency of the sine wave is 500 Hz), we obtain:

wt = 1000 x 1:)-1+ = 0,17 , which is small enough to justify the

truncated Taylor expansion of the
sine function.
Then ¢ = — (o.m)z; C.]

‘The preceding remarks on the smoothing of a sine wave led us to

use, on the speech wave, the modified averaging function

R A 1
yp = ; 2 xj where k = e = 1+ .
j=p-2

€ is computed for each minimal segment using the smoothed value c¢f the
zero-crogssings of the preceding 1C ms minimal segment: N . The value of

¢ with respect to N is given by

€= 3{2 P 10t o 1070 8

From the engineering point of view, this corrective factor shifts the O
db level of the filter as a function of the fundamental frequency of the
wave. In other words, our smoothing function is equivalent to a low pass
filter with variable gain depending on the fundamental frequency of the
wave.

I11-2-Z, The Algorithm

Given 'he data rate ¢’ the analog-to-digital converter (20,000
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samples/second), the maximum frequency of the digitized signal is
restricted to 10,000 Hz. A primary averaging over two points diminishes
the maximum frequency from 10,000 Hz to 5,000 Hz. A secondary averaging
over five points with the use nf the corrective factor just described
results in the smooth wave on the minimal segment. Subtracting the
smooth wave from the wave obtained from the primary averaging yields

the residual wave on the minimal segment; the actual averaging computation
is carried out using five ''ring" registers to store the current and the
four preceding values of the original wave and one register for their
sum. The smooth wave 1is obtained by one additicn, one subtraction, one
multiplication (corrective term) and one division. The residual wave is
obtained by one subtraction: the central point xp (stored in the central
of the five ring registers) minus the vaiue obtained for the smooth wave.
Zero-crossing and amplitude parameters are then ccmputed for each of the
two waves and stored for future utilization.

As speed was one of the main goals of this algorithm, it wus
written in machine language. The Algol version given next is only an
equivalent and was never used on the machine (Algorithm 1).

II-2-3, Conclusions

Displays of these four parameters, for different messages can be
seen in Figure II-1. The zero-crossings of the smooth waveform provide
an estimate for the dominant frequency under 1000 Hz, which is usually
the Formant 1 frequency. The zero-crossings of the residual wave provide
an estimate for Formant 2, except for fricatives where it represents the

dominant frequency over 1000 Hz.



PROCEDURE PREPROCESS
COMMENT SOFTWARE SPEECH PREPROCESSOR i

BEGIN

INTEGER AHPLRESlDUALDLD.AHPLSHODTHDLD.AMPLNAX.
AMPLSHOOTHMAX , AMPLSMOOTHMIN, ANPLRESIDUALMAX,
AMPLRESIOUALMIN, ZRXSMOOTHNE , ZRXRESIOUALNS,
WAVEFOQM, STGREAMPLA:4], SUM,EPSILON,
AMPLSMOOTHNEW, AMPLRESIDUALNEN,
INDEx1, INDEX2, INDEX3, INDEX4;

COMMENT
ARRAYS TO STORE THE COMPUTED RESULTS
DEFINED AS GLOBAL ARRAYS IN THE MAIN PROGRAM

INTEGER ARRaY STORAMPSMOOTHL1:15@],STORAMPRESO(111508],
STORZRXSMOOTHL1:150],STORZRXRESO(11158))

INTEGER PROCEDURE NEWSAMPLZ

BEGIN COMMENT WILL GIVE THE NEXT SAMPLE FROM THE
RAW SPEECH WAVEFORM 3

ENDJ

INTEGER PROCEDURE SIGNCHANGE(VALL,VAL2)}
INTEGER VAL1,VALZS
IF VAL1eVAL2 < @ THEN 2
ELSE IF VAL1eVvALZ2 = O THEN 1
ELSE D)

INTEGER PROCEDURE MIN(VALL,VAL2)
INTEGER VAL1.VALZ ¢
IF VALl € VAL2 THEN VAL1
ELSE VALZ2

I%EGER PROCEDURE MaAX(VALLiVAL2)
INTEGER VAL1,VAL2 !
IF VALl 2 VAL2 THEN VAL1
ELSE VALZ

COMMENT THE FOLLOWING PROGRAM WILL EXTRACT FOUR PARAMETERS FROM
THE SOUND WAVE : ZERO-CROSSINGS AND AMPLJTUDES OF A SMOQTH
WAVE AND OF A RESIDUAL WAVE FDR 150 18 MS MINIMAL SEGMENTS

cUM 1 AMPLRESIDUALOLD t= AMPLSMOOTHOLD e AMPMAX i3 D3
FOR INDEX3 te @ STEP 1 UNTIL 4 00 STOREAMPLINDEX3) := A3
INDEX3 := EPSILON t= @ 3 INDEX4 t= ¢ i

Algorithm 1. Preprocessing Procedure .
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FOR INDEX1 1» L STEP 1 UNTIL 158 DO
BEGIN

COMMENT  SMOOTH WAVE COMPUTATION |

AMP_SHOOTHMAX 1= AMPLRESIOUALMAX t¢ 0 }
AMP_SHOOTHMIN 13 AMPLRESIQUALMIN 1= 102€03
ZRXSMOCTHNB 1= ZRXRESIDUALNB t= 2
FOp INDEX2 e g4 STEP 1 UNTIL 182 DO
BEGIN
WAVEFORM ts (NEWSAMPLE+NEWSAMPLE)/2 }
SUM 1® SUMGWAVEFORM=STOREAMPLINDEX3]
STOREAMPC INDEX3) i= WAVEFORM ;
IF INDEX3 < 4 THEN INDEX3I 1=z [NDEX3+1 |
ELSE INDEX3 1= g
AMPLSMOQTHNEW 1= SUMS(1PDB+ERSILON)/3000 }
ZRASMOOTHNE 2 ZRXSMOOTHNB+SIGNCHANGE(
AMPLSMOOTHNEN, AMP|.SMOOTHOLD)
AMPLSMOOTHMAX ts MAXCAMPLSMOOQTHMAX,AMPLSMOOTHNEW) 3
AMPLSMOOTHMIN 1s NINCAMPLSMOOTHMIN, AMPLSMOOTHNENW) 1

COMMENT NOW RESIDULAL WAVE COMPUTLTION ;

AMPLRESIDUALNENW :3 STYOREAMPL INDEX4)=AMPLSMOOTHNEW 1
IF INDEX4 ¢ 4 THEN INDEX4 := [NDEX4s+1
ELSE INDEX4 = g ;

ZRXRESIDUALNE t= ZRXRESIDUALNB+SIGNCHANGE (

AMPLRESIDUALNEW, AMPLRESIDUALOLD)
AMPLRESIDUAL ts MAX(AMPLRESIDUALMAX,AMPLRESIDUALNENW) 3
AMPLRESIDUALMIN := MIN(AMPLRESIDUALMIN,AMPLRESIDUALNEN)}
ENO}

COMMENT STORE alL THE RESULTS IN THE CORRESPONDING ARRAYS

ZRXSMOOTHNB 1= ZRXSMOOTHNB/2 }

STORZRXSMOOTHCINDEX1] 18 ZRXSMODTHNB
STORZRXRESDCINDEX1) :s ZRXRES]OUALNB/2

STORAMPSMQOTHL INDEX1) 13 AMPLSMOOTHMAX=AMPLSMODTHMIN ;
STORAMPRESDCINDEX1) t= AMPLRESIDUALMAX=AMPLRESIDUALMIN ;
AMPMAX 1= MAXCAMPMAX,STORAMPSMOOTHEL [NDEX11)

COMMENT COMPUTE THE CDRRECTIVE TERAM FOR THE NEXY SEGMENT

EPSILON ts ZRXSMOOTHNB+2 |
END}

COMMENT NORMALIZE THE AMPLITUDE PARAMEYERS ;
FOR INDEXL is 1 STEP 1 UNTIL 152 DO
BEGIN STORAMPSHNOTHC INDEX1) t= 324STORAMPSMOOTHL INDEX1)/AMPMAX;
STORAMPRESD[ INDEX1) :s 3J2eSTNRAMPRESDL INDEX13)/AMPMAX

END
END PREPROCESS )

Algorithm 1 (continued). Preprocessing Procedure .
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As simple, unweighted averaging functions do not have good filter
characteristics, the parameters we obtained were still not completely
satisfactory. In particular, the zero-crossings of the residual wave
obtained by differencing presented discontinuities which resulted from
using a single estimator to characterize several dominant frequencies
above 1000 Hz. The segmentation achieved using the four parameters was
about 95 percent correct (Reddy and Vicens 1968) and, thus, the recognition

process, based on this segmentation, was only 90 to 95 percent correct.
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11-3. THE HARDWARE SPEFCH PREPROCESSOR

Minimal segment, amplitude and zero-crossing are defined as in the
preceding section. The last two are now determined using analog
circuitry sampled every 10 ms.

To separate the high frequency components, it was decided tc divide
the speech frequency spectrum into three frequency bhands, roughly
corresponding to Formant 1, Formant 2 and higher frequencies. As vowels
contain, in general, more reliable information than other phonemes, the
choice of the cut-off values of the filters was dictated by known
parameter values for the vorils (Peterson and Barney (1952)), see
Figure 1I-2.

The complete circuit as represented on Figure I1-4, is a hybrid
circuit, partly analog (e.g., peak-to-peak detectors, zero-crossing
counter;) and partly digital (e.g., channel multiplexer clock). After
;amplingFQy the A-D, it provides the recognizer system with € parameters:
amplitude' and zero-crossing parameters for each filter output. The
digital portions of the circuit were built using DEC R geries modules,
the analog portions were "home made' on compatible flip-chip modules.

The filters are bandoass types with 6C0 ohm input and output and were
manufactured by TT Electronics, Inc. For each filter the cut-off ratio
on both sides is F/Fc-0.65 at a 40 db attenuation.
11-3-1. The Analog Circuitry

The analog circuitry is built to supply voltages to one thannel
of an analog-to-digital converter through the internal chennel multipleyer
of the device. The parameter values are accumuiated in capacitors which

are sampled and reset every 10 ms by the digital clock. The time
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necessary to sample and reset one parameter is approximately 90 micro-
seconds; this results in an error of less than 1 percent over a 10
millisecond interval.

A peak-to-peak detector and a zero-crossing counter are mounted
on the same double standard board and accept a 1 volt analog signal as
inpus.

The reset pulses are DEC positive-going pulses (-3 to O V) of
Lo ys duration created by the clock.

The Peak-to-Paak Detector

The peak-to-peak detector is represented on Figure 1I-5, is
composed of three distinct parts: a m!k_ggm a negative
peak detector and a differencing amplifier.

The two peak detectors have an identical design, only the polarity
of the active ciccuitry is reversed. Both of them use an operational
smplifier mounted on a unity gain feedback anplifier. The 0.1 F
capacitor in the feedback loop is charged to the peak value previously
detectec and is maintained at this charge by the operational smplifier.
The field-effect transisto- present in the feedback loop preveants the
charg:. leakage from the 0.1 F capacitor. The other circuitry shown
serves to compensate the frequency response of the operational amplifier
and to discharge the 0.1 F capacitor when reseting the circuit.

The differencing smplifier subtracts the two voltages present on
each : Jacitor and smplifies the result with e gain of 5, giving an
output between O and -10 V, thus using the full scale of the A-D converter.
The sutput wavefcrm of the pesk-to-peak detector, superimposed on the

oatnut wvaveform for two different frequencies and levels, may be seen on
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Figure II-8.
The Zero-Crossing Counter

The zero-crossing counter, as represented in Figure I1I-6, is also
composed of three distinct parts: a differential amplifier, a flip-flop
and an integrator.

The differential amplifier, built with a double transistor (two
identical transistors in the same package) amplifies the input signal.
1f the signal level is high enough, each sign change of this signal
changes the state of the flip-flop. This acceptance level is adjusted
by means of the 20K potentiometer represented on the drawing. After
several tests, this potentiometer was adjusted for an acceptance level
of 0.03 V on the original signal, i.e., the zero-crossings are counted
only if the amplitude of the original signal is higher than 0.03 V.

Each time the flip-flop changes its state, it charges up the
integrator by a small amount through the two matched 100 pF capacitors.
The necessary fixed refzrence voltage is obtained by means of a zener
diode (1N38&84) clanping the output of the flip-flop.

The integrator uses an operational amplifier to charge up the
7600 pF capacitor. This capacitor is discharged by a field-effect
transistor during the reset period.

The values of the 7€00 pF capacitor, 100 pF capacitors and the
reference zener diode are such that -10 V, which is the full scale level
for the A-D converter, represents 100 zero-crossings. The offset of the
integrator is compensated by a resistance network connected to the
inverting input of the operational amplifier. Again the operational

amplifier frequency compengation circuitry and the reset circuitry are
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presented in the drawing . Figure II-Y shows the cutput of tha integrator
alonyg with the input to the circuit for a given trequency.
The Channel Multiplexer

The purpose of the channel multiplexer is to connect each circuit
to be read to the A-D converter via a common bus. Figure TI-7 represeuts
a schemati~ of the entire multiplexer which is composed of six analog
multiplex switch circuits. Each has a separate control or trigger
input, and a separate analog input. All the analog outmuts of the
switches are tied together to a common bus going to the A-D. The
control irputs are compatible with DEC logic, i.e., the switch is ON
when the trigger is in the TRUE state (-3 V), OFF when the trigger is in

the FALSE state (0O V).

IL-3-2. The Digital Civcuitry - The <lock

A logical diagram of the clock, the only digital circuit present
in the device, is shown on “igure II-10. 7This clock is a pulse generator
which 'manages" all the other circuit components. Three kinds of
pulses are generated:

- The setup pulses sent to the selected mu'ltiplexer trigger.

- The read pulses sent to the analog-to-digital converter.

-~ The reset pulses 3enc to the circuit previously read.

The setup pulses are negative going pulses (O V to -3) of LO s
dutation. As long as the trizger is in the TRUE state (-5 \,, the
corresponding switch stays ON and the selected analog circuit component
is conaected to the A-D cor.ercter.

The read pulges 2ce standard 100 nanosecond pulses (-3 V to O V)

sent to the external clock input ot the A-D converter (a provision is
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made on our converter, such that each time a standard pulse is sent to this
specific input, a read operation is initiated.) The read pulses are bys
late with respect to the beginning of the setup pulses, so that the
selected circuit is switched into the bus when the reading cycle is
initiated.

The reset pulses are positive going pulses (-3 V to O V) of Lo
us duration. As long as the voltage is O V, the corresponding capacitor
in the analog circuitry is discharged. A detailed pulse timing chart for
one 10 ms read cycle is shown on Figure II-11.

Since 10 ms is the basic sampling period (minimal segment ), a read
cycle of the six parameters must be initiated every 10 ms. Two independent
clocks are necessary: a 10 ms master clock which initiates two one -shot
multivibrators which in turn define the 50 W8 intervals. A counter stops
this 50 ys clock after seven periods and the device waits for the next
10 ms pulse coming from the master clock.

Setup and reset pulses are obtained from the output of the L
us one-shot multivibrator through a binary-to-octal decoder driven by
a counter. The setup pulse of one circuit is obtained by inverting the
reset pulse of rhe previously read circuit.

The read pulses are notained from the output of the 1C us one-shot
multivibrator through another one-shot delay and a standardizing pulse
amplifier. The delay was adjusted so that these pulses are L us late
with respect to the setup pulses.

The clock must fulfill some requirements imposed by the A-D
converter or by our sampling scheme:

- Pulses must not be sent to the external clock input of the
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converter when someb:iy else is using it. A very simple solution to this
problem ~as implemented: the clock iifonly allowed tv run when the

b

corresponding A-D converte: Channil is ¢ :lected by t*b PDP-6 system.

- When initiating a read op#}ation for a series| of samples, we
have to be sure that the first parﬁheter we get is the right one (or all
of them would be interchanged). This was done by restarting the master
clock each time a clear signal is sent by the system to th: converter,
indicating that a new operation is initiited. Another one-shot
multivibrator was necessary to allow the clock to finish rhe preceding
cycle.

Figure 11-12 shows all the circuit components in their actual

form. All of them were mounted on plugahtle standard flip-chip boards.

I1-3-3, The Hardware Preprocessor Service Routine

As described earlier, the device is cornected to an analog to
digital corverter. The latter communicates with the central srocessor
and the core memory through a medium-speed Data Control DEC type 136 and
an I/0 bus (Figure I-1), The hardwars preprocessor is initisted by an
input operation from the central proce:ssor, and the si» parameters which
are extracted every 10 milliseconds are packed by taz DEC type 136 into
two 36 bit words and stored in core memory. In ord:x to make avaiiable
to the segmentation procedure some convenient numbers. it is necessary to
unpack and to normalize the original parameter data. The hardware
preprocessor service routine is a r:al-time user's progrem which starts
the I/0 operation (and the tape recorder if this device is used), unpacks
and normalizes the parameter data after detection of the sound baginning,
detects t.e end of the sound and stops the I/0 operation (and the tape
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recorder). A real-time user's program is treated as a special case by the
time-sharing system: it is restarted every 16.7 millisecond (60 Hz}, and
is executed 1in parallel with the regular user's program. Furthermcre,

it runs in supervisor mode, thus allowing for all kinds of special
Input/Output operations and system manipulations. The hardware preprocessor
service routine processes the microphone input buffer while the Data
Control DEC type 136 is filling up the same buffer. The two processes
‘i.e., data control and real-time program) are not loosely connected
since, in a given period of time, the real-time program treats more
samples than the Data Control can create (it fills up two 3¢ bit words
every .C ms), When necessary, the redl-time program waits for the other
process. This program checks the audio input every 16.7 millise~onds.

Tf relevant information is coming in, this information is unpacked,
normalized, transferred to our input buffer and checked for silence. When
a long silence has been detected, the program, assuming that the speech
utterance is finished, gives the estimated size of the input buffer,

stops the I/0 operation in the supervisor, turps the tape recorder off

if this device is used, and fturns itself off, thus returning the control
to the regular user's program.

II-%-4. Conclusions

Displays of the six paramcters obtained for t<e messages previously
analyzed with the software preprocessor can be seen on Figure II-13. dy
comparing the two sets of pictures (Figures II-1 aad 11-1%), one can
easily see that the new sets of parameters are smoother than the provious
ones. Furthermore, the noise of the room is reduced and the service routine

gives us the duration of the sound (represented by the vertical line),

=
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rhe sample always starting at the beginning of the input buffer. The
parametars derived by this process appear to result in better segmentation

and recognition by the other stege: o+ the system.
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T1-k, CONCLUSIONS

The procedures described above for the extraction of significant
parameters of speech form the first step in a more elaborate speech
recognition system presented in the subsequent chapters. Their validity
is proved only because the complete system gives satisfactory recognition
scores. The fact that we have obtained good results is due in part to
the judicious choice of parameters but is mainly due to the power of the
subsequent recognition algorithms. In fact, we think that any other
significant parameters may be used in place of the ones used here without
degradation of the results. The main reason for the choice of parameters
is to provide a reasonable compromise with resoect to simplicity of the
system and completeness of their representation oi the speech signal.
On the other hand, they do not always give a complete representation,

and occasional confusions result,
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Chaptcr |!1

SEGMENTATION AND DESCRIPTION OF CCNNECTLED SPEECH UJITERANCES

I1I-1. INTRODUCTION

If we plot thc changes in air pressure produced by a speech urterance
as a tine -vs- pressure graph we obtain a speech wave such as the one given
in Figure 111-1 Note that neither the words of the utterance nor the
sounds within words are separatced as in the case of the written form of ihe
human language, and yet we are able to associate discrete written forms with
continuous spoken forms. To be able to make similar associations, a machine
must be capable of dividing ronnected speach utterance into discrete parts.
This problem is known as the problem of segmentation of connected speech.

Segmentation of speech 1s of intercst in many different arcas of
speech research. In speech recognit:ion one must match the incoming signal
with the known linguistic elements It is unrealistic to attempt to do one-
for-one pattern matching at the waveform level or by using the cutput of
any preprocessing procedure similar to rfhose described in the first chapter
What 1s needed is a transformation which will reduce the parameters to be
macched to a manageable level. Segmentation, as described in this chapter,
is one such transformation, which generates a description of the incoming
signal using the paraveters produced by the preprocessing procedure. For
example, the representation cf the word gix might be as follows. 'Fricative,
followed by 2 trancition, fo.lowad by a vowel, followed by a transition,
followed by a stop, [ollowed by a fricative, each with the following
parameters:... " For the racognition of a limited set of messages (even

as many as l000) such a description is usually adequate ,Chapter IV). For
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an automatic phonetic typewriter system, one might need a further investigatioa
of the transitional segments to determine whether the word was six or slits.

At present, parameters for specech synthesis systems are obtained by
the tedious manual measurement process which might take several days or even
months to generate a sinrle sentence. An automated parameter measuring
process based on segmen.ation shoul&.reduce the time to minutes or even
seconds. In speech compression systéms, a segmentation program coupled with
a pitch period determination program can be used to replace a periodic
sustained segment by a single pitch period and a repetition factor.

Fry and Denes (1955), Sakai and Doshita (1963), Hughes and Hemdal (19€5),
Gold (1966) and Reddy (196€) have all had to develop segmentation procedures
in connection with their speech recognition systems. The first two had to
build special purpose hardware to segment the sounds.

Two computer coded segmentation procedures were implemented,
corresponding to the software preprocessor and che hardware preprocessor.
As they show the same basic ideas, only the latest, intended to process the
output from the hardware, will be described in some detail. In both cases,
we attempted not to restrict the algorithm to a single cooperative speaker.
Also, no attempt was made to artificially reduce the noise level of the room
since that would not be the normal mode of man-machine communication.

The segmentation program is written in Fortran IV and uses LK of 36
bit words of core memory. Intermediate and final results were displayed on
a CRT display to determine the goodness of segmentation and to trace downa all
the possible errors.

A detailed flow chart of the various stages of the segmentation program

is given in Figure II1-Z., The input to the procedurc is a matrix built by

by
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the hardvare preprocessor seivice routine which contains, for each 10 ms
period, the six normalized parameters extracted by rhe analog device.
Closeness indices are computed between adjacent minimal segments
characterized by these parameters. The primary segmentation procedure
sroups: together adjacent miniwal scgments that may be regarded as being
similar, forming primary segments. The secondary segmentation procedure
divides these primary segments into smaller segments if the within-segment
variation of parameters is too high. The closeness indices are then
recomputed between the secondary segments using the averag.: parameters and
weaker weights. If two adjacent secondary segments are sufficiently close,
they are combined to form lerger segments, A classification procedure labels
all the sustained segments as possibly belonging to one of the phoneme
groups: fricative, vowel, stop, nasal, consonant or barst. On the basis
of the labeled segments, some additional combining is performed, e.g., of
adjacent fricatives or stops. A feature matrix, containing some general
information on the speech utterance, along with the average parameters for
each segment is then built. This matrix is the internal representation of
the speech utterance used in all the subsequent processes: storing,

retrieving, matching.



111-2. PRIMARY SEGMENTATION

The purpose of the primary segmentation procedure is to group
together similar adjacent minimal segments which are produced by the
preprocesging procedure. The segments created are labelled sustained

or transitional and stored for the next procedure.

In order to perform this first grouping, we must provide a criterion
which will define the similarity or closeness between two segments. To
allow some compactness in our formulas, let us use the vectorial notation.
A minimal segment is then represented by a n - component vector V. and a

speech utterance by & matrix Um , m being the number of minimal segments

xn
(i.e., the duration of the utterance in 10 ms unit). This representation,
adequate to carry out the computation involved ia this segmentation
procedure, is in fact our initial representation of the sound (Figure III-L
displays these 6 parameters).

One cin define the closeness of two segments in terms of Euclidian
distance between the two points of the n-dimensional space; however, such
a simple met~ic proves to be unsatisfactory in this case. To be effective,
the metric should ignore the intra-phoneme variability and be sensitive
to inter-phoneme variability. Our experiments have shown that the
closeness index function should obey the following heuristics:

Hl. Since certain parameters have a large range of variation, the
closeness function should provide for appropriate weighting of parameters.
Let us assume that this is specified by means of a weight vector W of
dimension n (same as V).

H2. Unvoiced fricatives, mainly /s/, have to be trvated separately

because of the great variation possible in all the parameters. However,
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these are easily recognized because of the large value of the zerc-crossing
parameter in the third frequency band and the relatively small amplitude
in the first band.

H%3. When a zero crossing parameter is less than a minimum, this
means that the amplitude of the sigral in this frequency band was too
small to exceed our 0.03 volt acceptance level during the 1C ms period
(the zero-crossing counter, Chapter II). Therefore we consider this para-
meter erroneous and decrease the corresponding weight accordingly.

HL . Although most of the parameters may be similar, a drastic change
in one parameter should result in a 'not-similar' indication. Let the
drastic change threshold be defined by a limit vector L.

H5. If the difference between corresponding parameters is less than
a minimum, then the two parameters should be considered as identical.

Let the minimum difference threshold be defined by a vector M.

HG. The larger the parameter value, the greater should be the
difference that we are willing to accept. This suggest the use of a
relative error function such as %1 .

H7. When the parameters are close to zero the relative error
function %X can take abr.ormally large values even though the difference
between the parameter- is 1ot correspondingly large. In order to correct
this defect, we use a modified relative error expression: % This
choice may seem arbitrary, but it arises simply from the replacement of
an initial scale function by a second degree approximation.

Our first atterpt to represent the closeness index between two
numbers was to multiply the value obtained for‘LX— by a factor £(v)

y
defined by:
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f(y) = 1 if 1<y

f(y) = 1/2 if 6 y < 12
f(y) = /4 if 0sy <6
K as shown in Figure III-3

" _—

0 6 2 | 3
LY
Figure I11-3 Rationale for the Choice of ‘T;Tas Basic Closeness Measure

Of course such a representation was very inconvenient because of

the discontinuities presented at y = 6 and y = 12. A cure was to replace
1
this scale function by the parabola hvﬁ vy {shown in Figure III-3).
1
The weight vector W can take into account the constant factor L VQﬂ

thus leaving Aﬁ our basic closeness measure for all y.

Now we can precisely define the closeness index function c¢. Let

V1l and V2 be the parameler vectors representing two adjacent minimal
segments. Then the elements of the relative difference vector R are

given by:

4% - A

Vi, + Vv o ‘e
i

Let C represent a closeness vector, whose clements are given by:



Figure IIl<., Regult of the
preprocessing procedure for
the sound: 'JOHN HAS A BOOK"

Figure III-5. Segments after
primary segmentation

Figure 1II-6. Segments after
secondary segmentation
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c, =2, if |“1 - v21| <M

= 2.5 - wi X Ri’ otherwise.
Kow closeness index between V1 and V2 may be defined as follows:
n
¢ =min (-4, E Ci) , if \V/(Ri > Li);
i=] i=1,n
n
= § Ci’ otherwise.
i=]

the constants of the closeness index computation are chosen so that the
closeness index will be positive if the minimal segments are similar and
negative otherwise.

An Algol equivalent of the similarity computation procedure is given
next. (Algorithm 2). Two parameters defined in the procedure are not yet
defined: MORVARPARAM and SPECIALWEIGHT, their use will be explained in
the secondary segmentation description.

The primary segmentation consists mainly of creating larger segments
by combining together all the adjacent minimal segments having closeness
indices greater than or equal to zero. All segments whose indices are less
than zero are not combined with any segment and therefore form transltioﬁal
segments. A display of the primary segmentation for the sound "JOHN HAS
A BOOK" can be seen in Figure III-5. For most of the sounds, this primary
segmentation already provides a satisfactory division. However, where the
parameter transitions are so gradual that there is a little noticeable
change from segment to segment, this procedure could result in grouping
together two acoustically different parts of the sound. The detection of
such segments and the consequent error recovery is left to the secondary

segmentation.
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INTEGER PROCEDURE CLOSENESS(SEGSTORG,SEGNB1, SEGNB2,WEIGHTSET,

MORVARPARAM,SI2SEGSTORG)

INTEGER SEGNB1,SEGNEB2,WEIGHTSET,MORVARPARAM,SI2SEGSTORG ;
INTEGER ARRAY SEGSTORGL1:SIZSEGSTORG,117) 1

COMMENT

TH1S PROCEDURE COMPUTELS TWE CLOSENENS VALUE BETWEEN THE
TWO SEGMENTS STORED IN THE ROWS SEGNBL AND SEGNB2 OF THE ARRAY
SEGSTORG

WEIGHTSET INDICATES WHICH SET OF CONSTANTS IS TO BE USED
IN THIS CLOSENESS INDEX COMPUTATION ,

MORYARPARAM FLAGS THE MORE VARIABLE PARAMETER AS DETECTED
B8Y THE PHQCEOURE CHWECKVARIATION , THE WEIGHT CORRESPONDING TO
TH1S PARAMETER MWILL RE SLIGHTLY INCREASED ,

THE REAL ARRAYS WEIGHT[1!2,1:63 AND RATIOLIM[1%2,116)
ANp THE INTEGER ARRAYS LIM[1:6] AND ZRXLIM[116] ARE DEFINED
AS GLOBAL ARRAYS IN THE MAIN PROGRAM AND FILLED WITH CONSTANTS
AT COMPILE TIME (IF POgsliBSLE, OR WHEN STARTING THE PROGRAM),

WEIGHTC1,1) t» 4.0 , WEIGHT(2,1] := 4,08 ,
WEIGHTC1,2) 12 7,5 , WEIGHT(?2,2]) 1= 6,0 ,
WEIGHTC1,3) = 4,2 , WEIGHT[2,3] 1= 4,p ,
WEIGMTC1,4) 2 7,5 , WEIGHTL2,4] 2 5,0 ,
WEIGHMTZ1,5) 12 4,3 , WEIGHT[2,5]) 1= 4,0 ,
WEIGHT[1,06] t= 7,5 , WEIGHTL2,6) t= 5,8 ,
RATIOLIMLL,1] = 2,5 , RaTIOLIM(2,1) 2 2,08 ,
RATIOLIM{1,2) 1= 1,2 , RATIOLIM(2,2) := 1,0 ,
RATIOLIMC1,J) 1= 2,5 , RATIOLIM(2,3] 3= 2,08 ,
RATIOLIMCLl,47 1= 1,2 , RAYIOLIM[2,4] = 1,0 ,
RATIOLIMCL,.3 15 2,5 , RATIOLIM(2,:] = 2,0 ,
RAYIOLIM{1,6) 1= 2,0 , RATIOLIM{2,6] := 1,6 ,

LimM(1) 3= 3 ,LIM{2] ¢
LIMg5) 1= 4 , | [M(8]

2, LIMC3Y t= 4, LIN[4] = 4,
=10 ,

ZRXLIM{1) $= @ , 2RXLIM 2] iz 2 , #RXLIM[3] 13 9 ,
PRXLIM{4) 1= 14 , ZRXLIM{L) := 0 , ZRXLIM(G] 1= 3@

Algorithm 2, Closeness Evaluation Procedure .
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BEGIN REAL REALCLOSE )
BOOLEAN NONSIMILAR}
INTEGER PARAMNE 3
LABEL ENDLCO

COMMENT
FRICATIVE TYPE wS* SPECIAL CASE i THOSE SEGMENTS ARE
DETECTED AND A POSITIVE VALUE 1S GIVEN TO CLOSENESS IN ORDER
TQO HAVE THEM COMBINED ,

IN THE NEXT LINES, AMPL(,] STANDS FOR SEGSTORG(,,1)
AMP3(, 2 " SEGSTORGE, , 33
zEROXZTL,1 ¢ SEGSTORGC,,6] !

IF AMP3LSEGNB1) 2 AMP1CSEGNB1] AND AMP3(SEGNB2] 2 AMPL[SELNB2)
THEN IF ZEROX3CSEGNG1] 2 60 AND ZEROX3ICLSEGNR2) 2 62
THEN CLOSENESS = 8
ELSE IF BEROX3ICLSEGNB1) 2 45 AND ZEROXJILSECNB2]) 2 45
AND AMPLESEGNB1) S 6 ANO AMPL[SEGNB2] € 4
THEN CLOSENESS 1= 8

ELSE BEGIN

COMMENT
GENERAL CASE

REALCLOSE 1= 0,8
NONSIMILAR 1= FALSF
FOR PARAMNB 18 1 STEP 1 UNTIL 8 DO
BEGIN TEMP1 i1s MAX(SEGCSTORGISEGNB1,PARAMNB],LIM[PARANNB]) }
TEMP2 15 MAX(SEGSTORG[SEGNB2,PARAMNB],LIMIPARANNBY)
SPECIALWE|GHT (=
IF PARAMNG = MORVARPARAM THEN 1,2%
ELSE 1,0 3

COMMINTY
SPECIALMEIGHT 1S USED TO INCREASE THE TESTS CORRESPONDING
TO THE PARAMETER FLAGED BY THE PROCEDURE CHECKVARIATION 1

DIFF to ABS(TEMP1-TEMNP2) |

IF DIFF < LIMCPARAMNB] THEN BEGIN
REALCLOSE ts REALCLOSE+2,0
GO 1O ENDLOG
END

RATIO ts DIFF/SQRT(TEMPL+TENP2)

Algorithm 2 (continued). Closeness Evaluation Procedure
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COMMENT
THE NEXT STATEMENT REFLECTS THAT IF THE ZERO«CRDSSINGS ARE
UNDER A CERTAIN THRESHOLD, THEY ARE CONSIDERED ERRANEOQUS AND
THEREFORt WE OECREASE THE CORRESPONDING WEIGHT

IF TEMP1 s ZRXLIMCPARAMNB] AND
TEMP2 € BRXLIMLPARAMNB] THEN RATIO s RATIO0#D,7 )
Ir RATIO > RATIOLIMCWEIGHTSET,PARAMND)

THEN NONSIMILAR t3 TRUYE 3
REALCLOSE t1ec REALCLOSE+ (2,5~
SPECIALWEIGHTAWEIGHTLNEIGHTSET,PARAMNBISRATIO) ;
ENDLOO: END

IF NONS[MILAR THEN CLOSENESS t* MIN(-4,REALCLOSE)
ELSE CLOSENESS 8=z REALCLOSE )
END

END CLOSENESS 3

Algorithm 2 (continued). Closeness Evaluation Procedurs .
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I11-3 SECONDARY SEGMENTAT ION

The purpose of the secondary segmentation pruocedure is to correct
the possible errors of the primary segmentation by looking at the variation
of parameters in the sustained segments and at the local maxima and minima
of the amplitude parameters in the transitional segments.

Every time a segment is created, the total variation for each
parareter is kept. 1If, in any sustained segment, this variation exceeds
a certain limit, the segment is divided into smaller segments. The limit
computation, based on heuristics similar to those of the primary segmenta-
tion, depends also on the duration of the segment.

Hl. The limit computation should provide for appropriate weighting
of parameters. Let W be the weighting vector.

H2. Unvoiced fricatives, /s/ have to be detected and treated
separately as in the primary segmentation.

H3. 1f the difference between corresponding parameters is less than
a minimum, then the two parameters should be considered as identical.

Let the vector M be the minimum difference threshold.
Hi. The larger the parameter value, the greater should be the

difference that we are willing to accept. This suggests the use of a
Ay

relative error fuaction such as
H5. The limit should depend on the duration. But two contradictory
heuristics seem to direct this duration dependency:
~The longer the segment, the more likely that itg parameters vary
significantly. In other words, the longer the segment, the weaker our

tests should be.
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-The longer the segment, the more likely it represents two different
phonemes with similar parameters. In other words, the longer the segment,
the stronge: nur tests should be to detect this case.

To reficct such contradictory heuristics, a discontinuous function
of the duration i~ used. A graphic representation of this function is
given on Figure III-7. As indicated by the drawing, the tesks remain
constant, with respect to the duration, from O to 60 milliseconds. Then
they decrease in intensity from 60 to 120 milliseconds, and for segments
longer than 120 milliseconds, they again increase.

/RRLIM

1
'
!
'
+
1
h
]
'
,

0 mg 120 ™3 DURATION

Figure III-7 Graphic Representation of the Factor Varlim
Therefore VARLIM is defined by:
VARLIM = 3, if DURATION £ 60 ms
= 4 - DURATION/60, if 60 < DURATION < 12C ms
= 2+(DURATION-120)/100, if 120ms < DURATION
Using again our vectorial rotation of the primary segmentation,

and calling VIMIN and VIMAX the minimum and maximum vectors for the
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segment whose average vector is V1 we can now precisely define the variat ion
checking function.
For all i do steps l1-3:

L. TL = VIMIN,, if VIMIN, > M,

= Mi' otherwise.

2. T2 = VIMAX,, if VIMAX, - M,
i i i

= Hi’ otherwise.
3. 1f |T1-T2} > M, DO STEPS 3a, 3b, 3c

3a. Ri - ]TI-T2|

T1+T2

3b. V,.eVARLIM x W x/if TI4T2 < 10.0 then 0.75
i 1 -
else 1.0

5.c. if R, < \A ther keep Vi/Ri and i

o 7 ‘,' =
let i be defincd by \j.Rj Max (Vi/Ri)

This j flags the most variable parameter according to our tests
and is the value of the variation checking function. I1f there is no i

such that Ri < V,, the value of the procedure CHECKVARTATION is 0O, indicat-

i’
ing that all the parameters were accepted as being not variable. Algorithm
3 is an Algol representation of this procedurs.

When a parameter is found to have too much variation within a
sustained segment the subdivision is achieved by recomputing the closeness
index between adjacent minimal segments with a modified weight vector W.
The feedback from the variation checking procedure to the closeness

computation procedure is done using the parameter MORVARPARAM. As one can
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INTEGER PROCEDURE CHECHVARIATION(ITGNEY
INTEGER SEGNE 3

COMMENT

THIS PROCEDURE CHECKS THE PARAMETER VARIATION IN EACH
SUSTAINED SEGMENT AND FLAGS THE HOST VARIABLE PARAMETER ,

THE AUILT SEGMENTS ARE STURED IN SEGSTORG ARRAY, THE
MINIMAL SEGMENTS BEING STORED IN THE ARRAY SEGIN

ALL THFSE ARRAYS ARE DEFINED IN THE MAIN PROGRAM AS
GLOBAL ARRAYS SEGSTORG(1:6@,1:25),5E5IN(1:158,147] .

IN THE FOLLOWINGS LINES ,

AMPiMAX[,] STANDS FOR SEGSTORG{ (,6)
AMP3IMAYC, ) " SEGSTORGL.»181
ZEROX3C,) SEGSTORGC,,20) ,
DURATINNL,] SEGSTORGC,,31 ,
ZEROXIMIND, ] SEGSTORGE,,19) »
AMPLL ) SEGSTORG(,,5) ,

THME REAL ARRAYS WEIGHTVAR[1161 AND LOWERLIM[116] ARE
DEFINED AS GLOPAL ARRAYS IN THE MAIN PROGRAM ANp FILLED WITH
CONSTANTS AT COMPILE TIME (IF POSSIBLE, OR WHEN STARTING THE

PROGRAM ),
LOWERLINCL1) :z 6,0 , LOWERLIN[2) 1= 2,9 ,
LOWERLTMC3) := 4,8 , LOWERLIM[4] 3= 4,2,
LOWERLTM(5) = 4,8 , LOWERLIM{6] = 10.2,
WEIGHTVARI1] = 1,75 , WEIGHTVARC2) s 2,0,
WLIGHTVARC3] := 1,75 , WEIGHTVARC4] 1= 2,0 ,
WEIGHTVAR(S] iz 2.8 , WEIGHTVARCe) 3= 1,253

Algorithm 7. Variation Checking Procedure .
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BEGIN
INTEGER ARRAY WKEEPLARGVARINDEX([116]
REAL ARRAY KEEPLARGVARCL1863 1)
REAL VARMAX,VARLIM, TEMPY,TENP2 ;
INTEGER KEEPINDEX,J
LABEL RETURN

COMMENT
FRIGATIVE TYPE "S» SPECIAL CASE i [F THE SEGMENT IS A
FRICATIVE TYPE #S», THE FOLLOWING SPECIFIC VARIATION TESTS ARE
PERFORMED 1

IFf ZEROXICSEGNB) 2 42 AND AMPIMAXCSEGNRB) s 7
AND AMP3IMAX[SEGNB] 2 AMPLMAX[SEGNB)
THEN BEGIN IF ZEROX3IMINCSEGNB) < 30
THEN CHECKVARIATION 1% 6
EkSE CHECKVARIATION v 2 3
GO 10 RETURN
END

COMMENT
GENERAL CASE »
FIRST STEP
THE LIMITING FACTOR FUNCTION OF THE SEGMENT DURATION 1S COMPUTED)

IF DURATIONLSEGNB) ¢ 12 THEN
IF DURATIONCSEANB] ¢ &6 THEN VARLIM 1= 3,8
ELSE VARLIM 1= 4,0-DURATIONCSEGNBY/6,D
ELSE VARLIM := 2,9o(DURATIONCSEGNE]=-12,0)/10.0 3

COMMENT
SECCOND STEP 1 THE VARIATION CORRESPONDING TO EACH PARAMETER
OF THIS SEGMENT 1S5 COMPUTED ,
THE & AVERAGE PARAMETERS ARE KEPT IN THE SEGSTORG ARRAY
IN THE COLUMNS 5,8,11,14,17,20 ALONG WITH THEIR MINIMUM AND
MAXIMUM VALUE WITHIN THE SEGMENT IN THE ADJACENTS COLUMNS ,
FOR EXAMPLE! AMPY FIRST AVERAGE PARAMETER 1S xEPT IN COLUMN H
WITH AMPYMIN [N COLUMN 4
AND AMPLMAX [N COLUMN 6

FOR J :s 4 STEP 3 UNTIL 19 DO
BEGIN TEMPL $= SEGSTORG(SEGNB,J] 3
TEMP2 = SEGSTORGCSEGNS, Je2] 1
IF TEMP1 < LOWERLIMCJ/3) THEN TEMP1 t= LOWERLIM[J/3)}
(F TEMP2 ¢ LOWERLIMC[J/3) THEN TEMP2 3@ LOWERLIMCJ/3H
SUM t= TEMPL1eTEMP2 ¢
DIFF 1= ABS(TEMP1-TEMP2) 1

Algorithm 3 (continued), Variation Checking Procedure .
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IF DIFF 2 LOWERLIMC./3] THEN
BEGIN RATIO 1s DIFF/SUM 1

COMMENT
NOW WE WILL COMPUTE THE VARIABILITY THRESHOLD CORRESPONDING
YO THIS SEGMENT AND THIS PARAMETER, IF THE PARAMETER IS SMALL, WE
WILL LOWER THIS THRESHOLD TC PERFORM A WEAKER TEST )

VARTHRESHOLD 5 VARLIMSWEJGHTVAR{J/33#IF SUN S 18,0 THEN .,7%

ELSE 1,2
COMMENT
PERFORM THE VARIABILITY CHECKING )
IF RATIO < VARTHRESHOLD THEN BEGIN
KEEPINDEX s KEEPINDEX+1 !
KEEPLARGVARCKEEPINDEX] 1=
VARTHRESHOLD/RATIO
KEEPLARGYARINOEXCKEEPINOEX) 18 J/3
END
END
END JLOOP |
COMMENT

THIRD STEP : THE MORE VARIABLE PARAMETER FOR THIS SEGMENT
WILL NOW BE CHOOSEN BY LOOKING IN XKEEPLARGVAR ARRAY

IF KEEPINDEX @ THEN BEGIN
VARMAX i1a KEEPLARGVARINDEXC1Y 3
FOR g 1s 2 STEP § UNTIL KEEPINDEX DO
IF VARMAX ¢ KEEPLARGVARCJ) THEN
vARMAX 13 KEEPLARGVARCJ]
CHECKVARIATION in VARMAX }
ENO
ELSE CHECKYARIATION 1o B )
END}
RETYRN1 END CHECKVARIATION 3

Algorithm 3 {(continued). Va-iation Checking Procedure .
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see in the closeness procedure, the modification gives greater weight

to the parameter found the most variable, which is a natural idea.

On the basis of these new closeness values, the original sustained
segment is replaced by two or more segments. This process is recursively
repeated uging the smaller segments until the variability in the segments
is within acceptable limits.

Local maxima and minima of the amplitude of the waveform are
phonemically significant (they usually represent significant vowels and
consonants). When a phoneme is articulated for a very short period of
time, it has a rapidly varying on-glide and off-glide. When closeness
indices are computed for this portion of the sound, one may find that
no two adjacent segments satisfy our definition of being close. Thus
they may end up being part of a longer transitional segment. A special
effort is made to detect and recover such extrema by searching the
transitional segments. In this case, the original transitional segment
is replaced by two or more segments, the local extremum being a 10 ms
sustained segment. Certain very short burst segments are also recognized
in the same manner. Again this process is recursively repeated until
there is no longer a transitional segment containing a local extremum
or a short burst. A display of tﬁe secondary segmentation can be seen
in Figure III-6. At this point, the beginning and ending of the speech
utterance are scanned to suppress the segments which may be considered

as silence on the basis of average parameters.
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II1-4. COMBINING

The purpose of the combining process is to group together acoustically
similar secondary segments. This task is performed in two distinct passes:

..The first one treats the transitional segments.

..The second combines similar adjacen:c segments.

In general, the transitional segments are null-segments (Reddy 1967b),
therefore, they do not contain any pertinent information, and a special
effort is made to reduce those segments as much as possible. This is dune
by extending the sustained segments onto the transitional if the parameters
are not too different.

In order to combine secondary segments, we determine whether or not
two segments are similar by using the same closeness function defined in
primary segmentation. The parameters used in the closeness indice
computation are now the average parameters for the secondary segments. As
we are dealing with average parameters, the weights are decreased to make
the procedure less sensitive to smaller variations.

Ideally we wouid like to combine any two adjacent s-gments which
have similar parameters. However, it is not uncommon in speech to have
two phonetically similar sounds adjacent to each other. Thus, one must be
very careful in deciding whether ti.o secondary segments can be combined.
The following heuristics are useful in making that decision.

. 1f two segments are very close (say ¢>0) we combinc them.
Otherwise, we never combine a local maximum and a local minimum which are
ad jacent.

. If a segment is not an extremum, then it is a candidate for combining

with an adjacent segment. By looking at the closeness value, one can
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determine whether it is closer to the preceding or the following segment.
The two segments are then combined if the closeness value between the
candidate and the chosen neighbor exceeds a threshold. <his threshold is
independent on the duration of the segment, i.e., 1f the segments are long,
we should be reluctant to combine them.

Although it may seem easy to determine extrema in a given speech
utterance, we found it a non-trivial problem because of the high accuracy
required. This extrema detection procedure is used at several levels of
the segmentation program. Its first use was described in the preceding
section: secondary segmentation. It is also used in the combining
process to prevent the combination of adjacent minimal and maximal segments.
The classification procedure uses it again to label the vowels defined as
local maxima of the amplitude. If this procedure is unable to detect any
extremunm present in a given utterance, the resulting sound description
will certainly be wrong. At best, a vowel will be classified as consonant,
but if the average parameters of this vowel are close to those of an
adjacent segment, both will be combined and the segmentation will be
totally erroneous. For example in the word "accumulate” (Figure II11-8)
the two vowels /u/ and the consonant /m/ have the same average amplitude
and almost the same average parameters. Therefore if the first Ju/ is
not found to be a local maximum, the /m/ is not identified as a local
minimum and the two phonemes are combined. The problem is further
complicated by the fact that the extrema detection procedure should detect
only the relevant extrema, i.e., be insensitive to the intra-phoneme
variation of amplitude.

For the purpose of this procedure, let us define Ai’ Yamplitude' of
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Figure III-8, Segmentation error in N Ve

“ACCUMULATE". /u/ and /m/ are combined
together to form one segment .
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N

Figure I111-9. Clagsification error
in "DIRECTIVE". The first /i/ has not

been marked as & significant meximum
and has been classified CONST .

SEGARTATION PROCENY
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Figure I1I-10. Classification error

"l i b A
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in “ACCUMULATE". The second /u/ has
been classified CONST .
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the ith segment as:
0 <Al <63
A, = 2%1. +A2 + A}i/2+puxi/3o 0<h2 < 63 DUR; in milliseconds
0<A3 <63

Ali' A2i, A}i being the three average amplitude parameters for the ith
segment and DUR  its duration. Let [Ai} be the set of all the Ai's for

the speech utterance. The jth segment will be a local extremum if and

only if Aj is a gignificant cxtremum of the set {Ai}' A gignificant

extremum is defined by the following heuristics:

- . < >
Aj is gignificant maximum of [Ai] if AJ'l + 10 < Aj > Aj+1 + 10
-Aj is gignificant minimum of {Ai} if Aj-l - 10 > Aj < Aj+1 - 10

-I1f we have a "plateau’’ where the extremum is spread over several
segments, the segment of longest duration will be the §ignifiégnt extremum,

-At the beginning and end of the speech utterance, where ghg sound is,
in general, limited by silence, we will only look for local maxima.-

This significant extremum definition was found to be effective in almost
all the speech utterances we segmented. However, if the local extremum is
very mild, or does not exist, the procedure may fail to detect it. The
Figures III-9 and I1I-10 show such occasional errors.

The combining process consists of detecting and marking the local
minima and maxima. Then the closeness indices between adjacent segments
are computed. If two adjacent segments are found to be "close", they are
combined into one segment. The average parameters and the closeness indices
with the preceding and following segments are recomputed. This process 1is

repeated until none of the adjacent segments are 'close". Figure III-11
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Figure III-11. Segments after
combining process

Figure III-12, Result of the
segmentation procedure

Figure 1.I-13, Classification of
segments into phoneme groups




shows a display of the segmented sound after the combining process. At
this point two small segments are added at the beginning and the end of the
utterance, in order to characterize the silences limiting the sound. They
may be irrelevant if the message starts with a vowel, but in some cases,
they represent the only chance of solving ambiguities. For example,

the initial segment is the only difference between the acoustical forms

of the two words: 'core” and "four". In general, the preceding processes
have deleted those segments as being noisy and it is necessary to add

them now that the message boundaries are precisely known.
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TI1-5. CIASSIFICATION INTO PHONEME GROUPS

The segmentation procedure consists of primary segmentation,
secondary segmertation and combining. This section describes a method of
assigning linguistic labels to the segments. The sustained segments are
classified as belonging to a phoncme group such as fricative, vowel, stop,
nasal or burst. These phoneme groups are similar to the conventional
linguistic grouping of phonemes, but without the requirement that the
groups be mutually exclusive. The rationale for the choice of such
grouping, and a clissification procedure are given by Reddy (1967a). The
procedure used in the present system is simpler and oriented more towards
word recognition than phoneme recognition. Since each segment is re-
presented by its label as well as the average parameters computad during
the segmentation, we do not need a precise phoneme recognizzr. Another
difference with Reddy's procedure is that we do not detect the null
segment, i.e., segments represanting a phoneme boundary which cannot be
associated with any lingvistic phoneme. They are labeled according to
their parameter values.

I1f a segment is noiselike,‘then it is labeled FRICS. Othervise,
if the segment is a local maximum of amplitude and satisfies some specific
tests, then it is labeled VOWEL. Otherwise, it 1s labeled STOP, NASAL or
CONSONANT depending on the average parameters of the segment.

A detailed flowchart of the ciassification procedure is presented
on Figure III-1i. Since we hav~ attempted to make this flowchart
meaningful, certain tests of secondary nature have been left out so as to
avoid cluttering up the drawing with details. Since a flowchart is self-

explanatory, individual tests will not be described, only the vowel
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Figure III-14, Flowchart of the claseification Process
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subclagsification procedure will be further described.

In the followlng chapter (the EARS system), we shall discuss
several heuristics which reduce the candidate space of the lexicon search
process. The conceptual ideas behind all of these is that rough features
extracted from the incoming message and the stored candidates can be used
to discard from the list of candidates all those with drastically different
rough characteristics. The vowel categories, as intended in this and the
following chapters are such rough features. The vowel segments are sub-
classified into nine subcategories with respect to their zero-crossing
parameters: 21 and Z2. As shown on Figure III-15, the plane (Z1, z2)
is divided into 9 regions bounded by straight lines. Each of these

regions defines a vowel subclass.

22 4
3 6 3
(1250 Hej 27F
2 5 é
(300 Hy; 18
i 4 7
(300 Ha) (45%04-) #

Figure I1I-15. Vowel Subclassification
Although the phonemes labeled during the primary classification
(i.e., FRICS, VOWEL, NASAL, CONST, STOP) are similar to the conventional

linguistic phonemes, the segments labeled BURST do not present the



characteristics of conventional BURST (i.e., short fricative segment
generally found after a STOP segment and characterizing a plosive:

p, t ox k). In our case, a segment is labeled BURST if it presents some
of the characteristics of a FRICS but not all of them (i.e., the segment
is too short, or the power of the first formant is too high, etc...).

In the following chapter, we shall describe a lexicon search procedure
based on the number of vowels and the number of FRICS segments of the
utterance representation. In order to increase the cha-ces of finding
the correct answer, two levels of search are performed when attempting to
recognize a given utterance. The first level search:. the candidates
with the same representation (BURST not being considered as FRICS). If
no candidate matching the incoming utterance is found during this first
pass, the second level of search, in attempting to find a satisfactory
match, replaces these BURST labels by FRICS, along with some other label
modifications on the fricative segments and the vowels.

Despite the relative simplicity of this classificaticn algorithm,
we obtained satisfactory results since we characterized the segments by
their average parameters when precise information wus needed. It is
indeed possible to subdivide the sounds into smaller groups. However,
the tendency towards erroneous grouping seems to increase in proportion

of the number of groups.
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[I1-6 REPRESENTATION OF THE UTTERANCE THE FEATURE MATRIX
The results of the previous processes are summarized in an array

that we called the feature matrix. This feature matrix which is used

for all the storing, retrieving and matching processes forms the internal
rcpresentation of the speech utterance.

The first row which is uti1lized for a fast retrieval of the possible
candidates and for the reduction of the candidate space contains general
information on the utterance, namely:

-The number of the vowels.

-The number of ‘nvoiced Fricatives.

-The numbe1 ¢. vows (number of segments +1).

-Pointers to the segments representing the vowels.

-A rough image of the message which gives the relative position
of vowels and S's (i.e., a vowel is represented by the octal number 1,

a FRICS by the octal number 2).

Each subsequent row which represents a segment using label, duration
and average parameters, 1s utilized in similarity computation.

Examples of such feature matrices for two utterances of the sound

"JOH:l HAS A BOOK' are shown on Figure 111-16.
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VOWNE = 4 FRICSNE = 1 ROWNB = 13

VOWEL ROW POINTERS = S 8 ie 12

TYPE DURAT[ON SET OF PARAMETERS
Al 1 A2 #2 A3 23
SToR 58 MS 3 2 '] "] 1 ]
EURST 58 MS 2 o 2 25 11 54
TRANS 33 MS 44 [} 24 22 9 46
YOWLA 70 MS 61 164 46 19 19 51
CONST 52 MS 49 7 34 a9 21 53
NASAL 82 MS 13 4 2 4 b 35
VONWLS 80 MS 32 7 2% 21 29 $6
FRICS 109 MS 1 [} ] fa 11 ??
vowL2 53 MS 26 q 7 18 4 45
STOP 98 MS 4 3 [’} 2 1 1
vouL 4 183 MS 48 7 13 17 i 39
SToP S MS 1 a ] 2 1 ]
CRUDE REPRESENTATION OF THE MESSAGE = 11211PP2@@a0
YOWNE = 4 FRICSNS = 1 ROWNB = 11
VUOWEL ROW POINTERS = 4 [ 8 16
TYPE DURAT NN SET OF PARAMETERS
Al £1 A2 22 A 23
sSToP 50 MS 3 2 [} ] 1 i
BURST 4" MS 2 ? [ ] 16 13 57
vUsL8 168 MS 69 18 57 21 28 44
NASAL 62 MS 15 4 1 3 1 39
YOWLS 112 MS 37 8 28 24 17 52
FRICS 92 MS 2 1 ] ] 8 83
vowL2 50 MS 31 4 7 19 4 45
sTQP 9@ MS 3 3 [ ] [} 1 "]
vOuWL4e 1908 ™S 57 7 18 17 2 50
STOP 50 MS ] -] ] [} 1 1

CRUDE REPRESENTATION OF THE MESSAGE = 112110888080

Figure IIT-16, Feature Matrices for the Sound : JOHN HAS A BOOK .
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LII-7, RESULTS AND CONCLUSIONS

We illustrate the segmentation achieved by a number of pictures
(Figures I1I-17 to I111-23) and some timing information performed on a wide
variety of speech utterances with the latest version ¢f the program.

The figures are direct photograplis of the CRT display artached to
the computer and were obtained with the early program (software preprocessor) .
Today, 1t would be impossible to obtain such displays, since the original
wave is no longer read into the computer. Each figure has a title, usually
of the uttered sentence, the envelope of the entire utterance {on the first
line), and the speech waveform (on the lines 2 - 4). The speecn waveform
is displayed on three lines, the third line being the continuation of the
second and the fourth being the continuation of the third. The captions
underneath each line indicate the segmentation obtained. Each segment
begins with the first character of the caption and ends with the first
character of the next capticn. If the segment 1s a sustained segment,
then the caption indicates the phoneme group to which 1t might belong.

The beginning of a transitional segment is iniicated by a single character
T,

Figures LI11-17 through 111-22 show that the speech wave is segmented
into parts approximately corresponding to phonemes. They also indicate
the places where a segmentation scheme based primarily on the acoustic
information can be expected to differ from an idealized phonemic
segmentation.

-A single phoneme might be divided imnto two segments
This is especially true at the beginning and ending of the sound (see

Figures III-20 and III-22
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"GIVE SOME MILK"

Figure I11-17. Segmentation of the sound :

Figure II1-18, Segmentation of the Sound :
"PLEASE COME HOME"

e mics A

Figure I1I-19. Segmentation of the Sound :

"“LOVE TRIUMPHS"
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Figure I1I-01. Segmentation of the Sound :
"MIDST CF HELL"

&1

¥ CORITOREL

Figure I11- 0. segmentacion cf Lpe Sound
"A QUEEN OF THE JUNCLE"

PLURSEL MORN WOTER

—

CORTTTMOUE

Figure I11-.., Segmentation of a vet of
notes using a Fluegel Horn .




-Occasionally two phonemes which are acoustically
similar might be grouped into one segment. For example /r/ and /i/ in
TRIUMPHS (Figure III-19).

~Phoneme group classification may not agree with
conventional grouping, e.g., the syllabic /1/ iu JUNGLE (Figure 111-20)
is best classified as a VOWEL and /1/ and /i/ of PLEASE (Figure III-18)
have opposite classification from what we would expect. These are primarily
questions of classification and not segmentation, the reader is referred
to Reddy (1967a) for further discussions.

The program has been tested mainly using male speakers in the
noisy enviromment of the machine room. Good segmentation has been obtained
for few utterances by female speakers. Figure 111-23 shows the segmentation
of a sequence of notes using a Fluegel Hornm. Although it is meaningless
to assign phonemic labels to musical sounds, the figure illustrates the
segmentation achieved. This segmentation procedure has heen used for
geveral months as a basic tool for sound analysis, thus processing several
thousands of speech utterances. The few errors that occur are usually
due to speaker sloppiness or due to poor response characteristics of the
microphone. Some of these errors could be eliminated, if desired, by
tuning the program for a given speaker and microphone cambination. As a
general purpose procedure was desired (not limited to a few people or
specific equipment) this tuning has been performed.

To close this chapter, let us now give asome timing results
per formed with the latest version of the program (hardware preprocessor).
Figure III-24 represents the results of a series of tests performed by the

author speaking directly into the computer. The utterance durations varied
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Figure 11I -23, Segmentation Time-vs-Utterance Duration .
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from 400 ms (YES) to 3.5 seconds (PICK UP EVERY MEDIUM BLOCK STARTING AT
'THE BOTTOM RIGHT CORNER). By looking at the Figure, one can see that the
segmentation is done in near-to-real-time (exactly 1.5 times real time).

If we recall that this program is coded in FORTRAN IV, and therefore can
probably be speeded up by at least a factor of 2 if we translate it in
machine language, the segmentation can be performed in less than real

time. This realization leads to the possibility of a real time segmentation
procedure to be executed while a speaker is talking. Such a procedures was

in fact programmed and is described in Chapter VI of the present dissertation.



Chapter iV
RECOGNITION OF WORDS
IVv-1. INTRODUCTION

In this chapter, we will discuss the recognition of words (or phrases
treated as a whole) which might be isolated or which might be part of a
longer utterance. Such a system is of interest because description of
cornected speech utterances in terms of the words contained in them can be
performed only if the system is capable of recognizing their elementary
parts. In the following chapters, we shall show how the word recognition
system is used in the decoding of connected speech utterances of limited
languages. That is, the system is utilized to identiiy the terminal
symbols of sentences of languages defined by two specific grammars.

The main problem to be solved in a message recognition system is the
genoration of a sufficiently compact representation of the messages so
that retrieval and comparison of utterances can be performed with minimal
effort. Representations of speech by digitized waveform or by spectral
data are harlly suitable for either of the above functions. In Charcers
11 and III, we have seen how a sequence of transformations {i.e., pre-
processing, segmentation, and sound clagsification) reduces the raw data
into a sequence of labeled segments characterized by average parameters.
This condensed representation which adequately represents an utterance by
a small number of r¢levant parameters, was found accurate enough to allow
the recognition of mes:rages by similarity computation.

The problem of storage and data representation within a lexicon
requires the consideration ol the following factors:

-1. Given the structure of the message that we wish to recognize, it
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should be possible to associatively lock up the lexicon to determine the
appropriate list of candidates.

-2. The data structure should provide appropriate linkages between
different acoustic descriptions of the same message, although these
acoustic descriptions may have been entered in the system at different
times.

-3, The data representation should be sufficiently compact so that
at least a thousand word vocabulary can be conveniently handled on presently
existing conventional computer systems.

The data structure presented in this ﬂﬁapter attempts to satisfy
these requirements.

Before one can effectively recognize any message of a given language,
one has to generate a lexicon of words and their acoustic descriptions
which may be used for comparison purposes. Such generation may be
automatic when the problems associated with sound synthesis from a phoneme
string are solved. However, present attempts at synthesis of speech are
inadequate for use in an effective speech recognition system. The other
possibility is to let the computer generate its own descriptions based
on actual human speech. In this work we use the latter method to generate
the entries in the lexicon, i.e., we train the system with examples of
the words and messages of the language uttered by different speakers. This
permits us to essentially postpone solving the problems of speaker
variability and the problems associated with the effect of context on the
acoustic characteristics of a given phoneme.

Another problem to be solved is the minimization of computation so

that recognition may be achieved in close to real-time. For this we need
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effective and efficient heuristics tc perform the following functions:

-1. Selection of the probable candidates.

-2. Segment synchronization.

-%2 Message similarity determination.

Selection of probable candidates takes the form of a series of
procedures capable of extracting from a large lexicon a small list of
highly probable candidates. The candidates are initially selected on the
basis of the structure of the incoming message. Several heuristics acting
on rough features of the utterances are then used to further reduce this
list, and to order it so that the most probable responses are congidered
first. The rough features which were found useful in rhis candidate
space reduction problem depend on vowel spectral characteristics determined
for the incoming utterance and for the candidates in the candidate list.

The problem of segment synchronization is related to the fact that
two utterances of the same phrase, even by the same speaker, may result
in quite different acoustic descriptions. In order to evaluate the
similarity between the two utterances, one mus; specify correspondences
between their segments. Since vowels and unvoiced fricatives are more
reliably detected than other segments, the synchronization procedure maps
VOWEL for VOWEL and FRICS for FRICS, the remaining unmapped segments between
any two pairs of mapped segments being then linked on the basis of
similarity of parameters.

Given that we have to evaluate the similarity between two segments,
the similarity functicn to be used is not unique for every segment pair.
It has to be adaptive with respect to the type of the segments to be

compared. For example, one must use difierent weighting factors when
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comparing two fricative segments as opposed to two vowels,

The above discussion illustrates the problems which have to be
solved in the implementation of a successful word recognition system,
namely: representation, learning, and recognition., Sections IV-2Z, IV-3,
and TV-b give the details of solutions to these problems and their
implementation. Section 1V-) presents a global view of the EARS system
(Effective Analyzer and Recognizer of Speech) which is an isolated word
recognition system. Section IV-6 exhibits some results obtained using
the system. They were obtained through the processing of several word
lists, namely:

-1. List of S4 words from Gold (1966) recorded by Stevens and
Williams at Bolt, Beranek and Newman, Inc. (8/N ratic > 35 dbj.

->. List of 5k words from Gold recorded by ten different speakers
in a noisy enviromment (S/N ratio m 15 db).

-3. List of 70 French words and shori sentences recorded by the
authbor (S/K ratio o 25 db).

., List of 501 English woids and chort senternces recorded by
Siagzer (S/N ratio s 15 db).

For ease ¢{ reading, in the following gections, we shall designate

by incoming message the messige to be recognized by the procedure.
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IV-2. ORGANIZATION OF THE 1LEXICON

To satisfy the requirements mentioned in the introduction, the
lexicon is provided with two independent list structures, nemely:

-A list structure which depends on the phonetic representation of
the message (i.e., the mumber of vowels and the number of unvoiced
fricatives).

-A list structure which depends on the print name of the message
{i.e., the first character and the last character of the message print-
name ) .

Each '"learned' message forms a block of contiguous storage which
is linked by forward and backward pointers to the preceding and following
elements in each of the two independent lists. A typical sample of a
"learned" message is shown on Figure 1V-1. The block is simply formed
by condenging the feature matrix of the message (Section III-7) and by
appending to this packed form a header composed of four pointers and
a trailer which is tke message print name in its ASCII form (7 bits per
character).

The first row of the feature matrix, which contains the number of
vowels, the number of S's, the number of rows, pointers to the vowels
and the crude message repregentation is packed into the storage words
marked {2), (%), (%) on the drawing. The subsequent matrix rows are
packed 7 bits per parameter (i.e., two 36 bit memory words per row) and
stored in the area marked (5). The memory word (2) also contains
information needed by the lexicon handler subroutines, namely:

-An active or inactive flag. A block marked inactive will be

deleted from the lexicon when a garbage collection will be executed and
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its storage block returned to the available storage.

-The total size of the block in memory words.

Both quantities were found useful for the implementation ot an efficient
acrviaee collector.

The first clement of a given list is determined by a table look-up,
and the last eleuwent is signaled by a null pointer. The initial tavle
lovk-up in the phonetic indexing table is done on the basis of the
nunber of vowels and fricatives present in the pointed-to representations,
namely, the index value is e¢iven by the relation:

S#VOWELNB + FRICSNB
The initial table lcok-up in the print-name indexing table is done on the
basis of the first and last alphanumeric characters ot tie message
(special characters and blanks are skipped duriag this index computation
process).

Since it was decided to use Fortran IV as basic language for
coding the system, the lexicon handler was implemented by a series of
small Fortran compatible machine language subroutines. For maximum
flexibility, one would like most of the system to be coded in the easily
modifiable Fortran language. However, a certa’n degree of sophistication
from the lexicon hindler is needed to avoid wasted computation time and
tedious Fortran programming.

The compromise we chose was to implement a few basic subroutines,
ramely:

-1. INITIAL which initializes a lexicon free-storage, i.c.,

resets the available storage pointer and the two

indexing tables to zero.
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-5, INSERT which, given the feature matrix and print-name
of a message to be "learned", creates a block in
the lexicon aad thereby modifies both list structures.

-3. DELETE which, given the storage address of a block in the
lexicon, marks this block inactive, and modifies
both list structures so as to isolate this block.

-4, LISCAN which, given the feature matrix of a message to
be recognized, returns a complete list of candidates
with the same phonetic structure (i.e., same number
and relative positions of vowels and fricatives, and
vowels similar to those of the incoming message ) -

-5. LISSPN which, given the written representation of a message,
returns a list of all stored messages having the same
print—name.

-6. EXPAND which, given the storage address of a block in the
laxicon, returns an unpacked feature matrix
represenzing the stored element so that the matching
process deals only with identically structured
feaiure matrices .

Added to this Fortran compatible package are a garbage collector
(automatically initiated when INSERT needs more storage) and several
second order subroutines (i.e., storage comprehensive printouts, packing
subroutines, etc...). The garbage collector collects all the storage
blocks previously deleted and restructures the lexicon in contiguous
storage, thus updating the pointers in each block. Since each block is
provided with forward and backward pointers, this task is performed in
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one pass through the lexicon storage. When the lexicon storage area is
fiiled up with active blocks and no garbage collection is possible,
insertion requests are no longer honored; in other words, the system
stops learning.

To conclude this section, let us show that this storage organizaticn
gatigfies the precited requirements:

-The two independent list structures described insure a fast
retrieval of previously-learned messages having a phonetic structure
or print-name similar to that of the incoming message-

-The condensed form of a learned candidate block satisgfies the
last requirement. For example, an utterance like JOHN HAS A BOOK (Figure
111-17) consists of 1l segments, and occupies thirty 36 bits words of
memory. Therefore, 1000 such messages can be stored in a 30,000 memory
word lexicon {on our machine the maximum possible size of the lexicon

is 90,000 memory words).
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IV-3. CANDIDATE LIST BUIL.DING PROCESS

In the following sections, we shall describe a candidate selection
process which, given an utterance representation to be recognized and a
list of possible candidates, chooses the candidate of best-match. As
far ag we can determine, all word recognizer programs previously
described in the literature use such a candidate selection process for
selecting the best-match candidate, but the process is applied to the
entire lexicon, This method, though it has proved efficient for small
vocabularies (say 50 words) becomes very inefficient when the number of
messages is increased to a thousand, or more. This is because the
implementation of sophisticated candidate selection procedures is paid
for by large amounts of time-consuming computation. We shall first
describe how the list of possible candidates can be reduced to a few
entries by a small number of reievant tests applied to the acoustic
structure and the vowel characteristics of the messages.

The lexicon organization previously described provides the first
phase in candidate space reduction. The procedure, given the initial
list from the lexicon, acts in three stages:

-1. Elimination of all candidates whose overall structures (i.e.,
relative positions of vowels and S's) are different than that of the
incoming signal.

~2. Elimination of all the candidates with drastically~different
vowel zero-crossing characteristics.

~3. Elimination of all the candidates having low vowel-similarity

gcores obtained by comparison to that of the incaming message.
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The initial list of candidates, consists of all representations
having the same number of vowels and S's as the incoming message and is
obtained directly from the lexicon. However, the procedure LISCAN which
performs this selection task, skips over the stored candidates having
crude representations different than the incoming message one and does
not enter them in the candidate list. This operation i: realized by a
direct camparison of the crude representation of each stored cendidate
(see word (2) Figure IV-1) and the crude representation of the coming
message present in its feature matrix (see Figure III-14;.

The second stage eliminates from the candidate list all those
having drastically-different vowel characteristics and orders the list
so that the most similar candidates are placed fir.t. The necessary
decisions are made on the basis of zero-crossing parameters for the
vowels. In Section III-5, a procedure was described which classifies
the vowels into nine subclasses according to the values of the parameters
Z1 and 22 (estimators of the Formant 1 and Formant 2 frequencies).
Figure 1V-2 reminds this vowel subclassification procedure. The
procedure described here uses this information to modify the candidate
list. To do so, it utilizes a table (Figure IV-3) which defines crude
dissimilarity values between each pair of vowels on the basis of their
subclass values. For example, a vowel with a subclass value of 3 and a
vowel with a subclass value of 5 have a crude dissimilarity of 4. Each
@ eutry in the table indicates a prohibited correspondence, i.e., if a
candidate vowel and the corresponding incoming message vowel are in
prohibited correspondence, the candidate is eliminated from the initial

candidate list.
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Figure 1V-2. Vowel Subclasses .
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The procedure simply looks up in the table the dissimilarity values
for all the incoming message vowels and the vowels of the corresponding
candidate. If a prohibited correspondence is detected, the candidate
is eliminated. If this does not happen, the dissimilarity values are
added and form an overall dissimilarity value characterizing the
candidate. This process is repeated for all the candidates in the
candidate list and the list is reordered by increasing order of
digsimilarity values.

For reasons of efficiency, the third attempt at the reduction of
the candidate space is implemented as part of the segment synchronization
procedure. It is described in detail in subsection IV-4-2. Basically,
the procedure computes a similarity score between the vowels of the
incoming message and the vowels of each candidate in the list, using
the segment-similarity evaluation function which is described in the
following sections. If this score is below a threshold, the entry is
eliminated from the candidate list.

The three stages of reduction of the candidate space described
above, have different strengths depending on the incoming message and
on the learned vocabulary. The first stage, while very effective when
the message conteins several vowels and S's, is useless when the message
contains no fricative. The second stage is not very effective, from
the standpoint of candidate space reduction (on the average only 20
percent of the candidates are eliminated). However, the simplicity of
the algorithm and the fact that it orders the candidate list by
decreasing similarity makes it effective in reducing the average computer
time needed to recognize an utterance. The third stage is extremely
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effective and eliminates an average of 60 percent of the selected

candidates.

I1f the candidate list becowes empty at any step, the procedure

return+ a failure.
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IV-L. CANDIDATE SELECTION PROCESS

The previous sections have described how a small list of
acceptable candidates can be obtained from a large, carefully organized
lexicon by efficient heuristic procedures. This section discusses how
a unique identification of an incoming message can be derived from this
list of acceptable candidates by similarity computation.

Several problems which have not been clearly explored in the
previously mentioned literature have to be solved before one can
implement an efficient selection procedure based on similarity computaiion:

-1. Given two u"t2rances to be matched, one has to decermine
correspondences between the elements of the two utterance representations.
Of course, segment synchronization is not a problem if the vocabulary
merely consists of short monosyllabic or dissyllabic words, such as the
ten digits used for many previous experiments in speech recognition. On
the other hand, if a system capable of efficiently recognizing utterances
containing several syllables is desired, it becomes crucial to attempt
to solve this problem. The strategy we use employs a ‘'similarity
evaluation function'" to link segments produced and classified by
previous stages in the recognition process.

2. Given two utterances to be matched and correspondences
between their components, one has to determine a similarity measure to
evaluate the closeness between the correspcnding elements.

-3, Since the lexicon i3 organized on the basis of the number of
vowel aad fricative segments, a classification error in the incoming
utterance results in an erronecus list of possible candidates (i.e.,

the "correct" utterance is not included) and consequently in a failure
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of the recognition process. To attain good recognition, one has to
attempt to recover from such a situation. The procedure we have
implemented checks the incoming message representation to detect border-
line cases of vowels and unvoiced fricatives, modifies the incoming meesaze
representation with respect to these borderline cases and initiates new
searches of the lexicon.

The present section, which is the most important of the chapter,
is divided into four subsections:

-1. Ovevall description of the candidate selection prucess.

-2, Segment synchronization procedure.

-5, Similarity evaluation procedure.

-4 .. Error recovery procedure.

IV-h-1. Overall description of the candidate selectioun process

A detailed flowchart of the candidate selection process is shown
on Figure Iv-4. The procedure BUILDLIST searches the lexicon, and
computes a "similarity" between the incoming message and all the eatries
in the acceptable candidate list. This similarity computation is
performed first by calling the segment synchronization procedure which
creates linkages between the segments of the two representations to be
matched and then by averaging the similarity values obtained for each
puir of linked segments. The results of this camputation are stored
for the selection process which chooses the best-match candidate. 1If
one of the candidates obtains a score greater than or equal to 95 percent,
the process immediately stops ar.l returns the candidate print-name
(excellent-match-candidate heuristic). Since the initial list of

candidates is o.dered on the basis of the similarity of vowel parameters
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(i.e., vowel subclasses, Section IV-3), this high score, if it occurs at
all, is likely to happen early in the search, thus saving a large amount
of computation time. As the frocess continues, modifications of the
initial candidate list take place: each time a quite good similarity
score is obtained (>80%), the list is rearranged so as to place next-in-
order all entries having the game print-name. In doing so, we assume
that if a candidate obtains a score of 804, it js likely that one of the
candidates having the same print-name will obtain 95% or move.

In normal message identification, this procedure is called each
time a new representation of the utterance is built. The initial
representation is, of course, the representation determined through the
segmentation process. However, since the error recovery procedure changes
the original represeatation of the utterance, new calls of this BUILDLIST
procedure might be necessary to investigate other parts of the iexicon.

The selecting process, which is utilized when no candidate with
a very high similarity score is found, is « simple algorithm acting on
the scores stored by the matching process. Each candidate left in the
candidate .ist at this point, is characterized by three scores:

-1. 5imilarity score for vowels.

-, Similarity score for non-vowels.

-%. QOverall similarity score.

On the basis of these three numerical values, the selecting proceas
chooses the ‘est-match candidate. The first decision is made on the hasis
of the cver:.:1 similarity scores. If the overall scores of several
candidst.s ere close, a second decision is made based on the vowel

scores. If :everal randidates are still left after this second stage,
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the algorithm considers the non-vowel scores. If there is more than one
candidate still present in the set of possible responses, the candidate

with the best overall score ig finally chosen. Of course, the process
terminates at any stage when the number of considered candidates reduces

to 1. The print-name of the chosen candidate is returned as the recognition
response, provided it satisfies the acceptability criterion (overall score

>T5%) .

Iv-4-2. Segment synchronization procedure

A detailed flowchart of the segment cyn:hronization p ocedure is
given on Figure Iv-5. Moreover, the process is illustrated by a set of
CRT photographs which ghows its differe r stages (Figure 1V-, and Figures
1v-12 to 1V-16).

Since unvoiced fricative segments and vowels can usually be more
reliahl - detected than other phoueme cla:ses, the synchroiization
procedure first maps vowel to vowel and fricative to fricative. Hoever,
it is not uncommon that if the vowel is preceded or followed by a high
consonant sound like /r/ or /1, this consonant is incorrcctly classified
VOWEL, thus creating a mislinkage at this early state of the mapping.

The same mislinkage may occur if the vowel is a diphthong, in which case,
either part of it can be classitied VOWEL. To correct this defect, a
procedure redefines the links on the basis of gimilarity of parameters
between the linked vowel segments and the congonant segments adjacent to
them. The similarity of parameters between segments is defined by the
similarity functiou wi.ich le dogcribed in the following subsection.
Figure IV-6 illustrates this vowel mapping correction procedure. The

messages to be matched are two different uttcrances of: A QUEEN OF THE
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Figure IV-6. The Vowel Mapping Correction Procedure .



JUNGLE. The first photograph presents the status of the mapping links
just before the correcting procedure. As one can easlly see, the second
lirk, which is built on the basis of the segment labels, is incorrect. It
corrcap: ds to the diphthong /wi/; in one utterance /w/ was labeled
VOWEL, in the other /i /. The second photograph shows the status of the
mapping links after the correcting process. On the basis of similarity
of parameters, the second link has been modified, and is now correct. A
crude evaluation of the overall contribution of this heuristic to the
quality of the recognition will be given in the section IV-T.

The mapping procedure continues by computing a similarity score
between all the now correctly mapped vowels. 1If the obtained score is
below a certair threghold (i.e., score <0), the candidat: is eliminated

from the candidate list. This is the third computation-time saving
candidate space reduction procedure previously mentioned (Section 1v-3)

The program proceeds by mapping the segments between any two pairs
of mapped segments on the basis of parameter similarity as shown on the
flowzhart. This process is recursively repeated until the program
cannct effect any more mapping. The few remaining unmapped segments are
then candidates for combining with their preceding or following segments.
Since these se¢cond-order combinations are in general degrading both
represencations to be matched, one must be very careful when applying
them. The closeness index between segments is computed using the
closeness function defined in the segmentation procedure (Section 111-2).
Orf the basis of the closeness values between the unmapped segment and its
adjacent segments, the closer one is chosen; if the closeness value between

the unmapved segment and the chosen segment is high enough, then a
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combination occurs. These combinations are done one at a time and in a
parallel manner on both representations; that is, each representation is
alternatively considered. Each time a combination occurs, the mapping
process is reentered in an attempt to map the segment result of the
combining. This mapping - combining process ig recursively repeated
until no more combining or mapping can be performed. The overall

similarity evaluation procedure is then executed.

Iv-h-3 Similarity evaluation procedure

The similarity evaluation procedure computes several similarity
scores on the two representations to be compared, namely:

- lowel similarity score.

-i.0" -vowel similarity score.

-Overall similarity score.

The overall similarity score i: computed from the two preceding
scores, weighted by the relative dur tion of vowels and non-vowels in the
two utterance representations. Likewise, the contribution of each segment
to the corresponding score is proportional to its duration. To achieve
this task, the similarity evaluation procedure utilizes an elementary
similarity function which calculates the simila-ity between a pair of
segments, one belonging to the incominz message representation, and the
other to the stored candidate represencation. This function is also used
by the mapping process of the segment s chronization procedure in
deciding which segments have to be linked between any two pairs of
already linked segments. As in the segmentation procedure, in which we
had to define a comparable closeness [unction, « simple-minded metric

proves to be unsatisfactory. The reqiirements of this new similarity
10:



function are the same as those of the segmentation closeness function.
Therefore, since the basic closeness function k .AEL___ has given
satisfactory results in defining the closeness betweZn adjacent segments

of the same utterance, we decided to use it here. Moreover, this similarity
function has a supplementary requirement: It cannot oe unique for all the
pairs of linked segments. Since the segments to be compared have different
characteristics, this similarity evaluation function has to be adaptive
with respect to the type of segments to be matched. For example, one

must use different weights when comparing two vowels in which the amplitude
parameters, Z1 and Z2 (estimates a formant 1 and formant 2 frequencies)

are the important factors, as opposed to the 1atching of two fricatives

in which A3 and 23 (escimates for formant 3) vre the important factors.

The weights were so chosen that the valu»s of the segment similarity
procedure is between -1000 and 100. An 81;:] equivalent to this similarity
evaluation procedure is given (Algorithm L) The various weights present
in the procedure were heuristically determined through the consideration

of a large set of specific examples.

IV-L -4 Error recovery procedure

Since the search of the lexicoa is erecuted on the basis of the
number of vowels and number of fricative seuments (FRICS), a
clasgification error, at an earlier stage, would have caused an incorrect
lexicon search. In order to correct thls defect, we implemented an error
recovery procedure. This procedurc takes the form of a series of
secondary searches which are only initiated if no satisfact ry candidate
{s found during the primary speech. To do so, the incomirg message

representation is examined for borderline cases of vowels (a sonorant
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INTEGER PROCEDURE SIMILAREVAL(SEGNTL,SEGNB2);
INTEGER SEONB1,SESNB2;

COMMENT
THIS PROCEDURE EVALUATES THE SIMILARITY BETWEEN THE TWO
SEGMENTS:
SEGNBL BELONGING TO THE COMING MESSACE REPRESENTATION ANp
SEGNH2 BELONGING TO THE STORED CANDIDATE REPRESENTATION 3

gEGIN

INTEGER PROCEDURE SCORE(PARAM1,PARAM2,WEIGHT,INFLIM,RATIOLIM)}
INTEGER PARAML,PARAMZ, INFLIM;
REA| WEIGHT,RATIO_IMt

COMMENT
THIS PROCEDURE EVALUATES TAE SIMILARITY BETWEEN THE TWO NUMBERS
PARAML AND PARAM2, THE WEIGHTING FACTORS AND THE LIMITS ARE
DEFINED BY WEIGHT,RATIOLIM AND INFLIM 3

BEGIN INTEGER TEMPL, TEMP2,D1FF
REAL RATIO:

TEMPL ::= ]f PARAML > INFLIM THEN PARAM]
ELSE INFLIM
TeMP2 ti= 1f PARAMZ > INFLI!M THEN PARAMZ
ELSE INFLIM

DIFF t:= TABS(TEMP1-TEMP2) ;
IF DIfF € INFLIM THEN SCORE :i= 120
ELSE
BEGIN RATIO ::= WEIGHTSDIFF/SQRT(TEMPL*TEMP2)
IF RATIO > “ATIOLIM THEN SCCRE ::x «298
ELSE
BEGIN SCORZ ::=z 11M . @e(1,8-RATIO)
It SCCRE > 102 THEN SCORE :t1s 120 ;
IF SCORE < =222 "HEN SCORE ::= «202
END
END
END SCORE 1

COMMENT
IN THE FOLLOWING L ES, T 7 ZOMING .S 07 PIRAMETEZRS aR’
CHARACTERIZED RY A SUBSCR.,Z" 1 (!.f. < . ,7 7%, URL)
THE STORED CANNIOAT: PARSM{ TERS BY : SUHSCRIPT
(1,E, A32,TYrE?) , SINCE EACr SEGF: ~ 1S CHARACIZ:-{2EQ BY
B PARAMETERS, THE PROCEUURE TEALS "4 16 PARAMETLAYG @

TYPEL, TYPEZ LABELS .7 Tat VONSIDERED SEGMENTS

DEFIN-S Ao TRANSITION
. CONST
g NLSAL
" STOP
BURST
- FFICS
VIWEL (9 SUHCLASSES )

OV ALNES
. ]

-

FS

E B

Algorithm Similarity fvaluation Procedure
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COMMENT

DUR1,DUR2 SEGMENT OURATIONS

121,412

A21,A22 AVERAGE AMPLITUDES FOR THE THREX FREGQUENCY
A31,A32 BANOS ,
211,%12

221,222 AVERAGE Z2ERQ-CROSSINGS FOR THE THREE FREQUENCY
231,232 BANDS ,

IN THIS PROCEQURE, WE ASSUME THAT THESE PARAMETERS ARE DEFINED
AS GLOBAL PAR/METERS ( ARRAYS ) IN THE MAIN PROGRAM ,

THE SWITCH DECMAT, WHICH IS DESCRIBFD NEXT MAKES THE FUNCTION
ADAPTIVE W1TW RESPECT TO THE SEGMENT LABELS )

LABEL CDNSTCONST.CONSTNASAL.CONSTSTOP,CONSTBURST,PROH[E!TED.
NNFi;CONST.NASALNASAL.NASALSTOP.NASALBURST,NASALVD“EL.
5YOPUONST.STOPNASAL.STOPSTDP.SYOPBURST.STOPFRlCS.
BURSTCONST,EURSTNASAL,BURSTSTOP.BURSTEURST.BURSTFRICS.
FR[CSSTOP,rR]CSBURSY.FRlCSFRlCS,CONSTVOHEL.BURSTVOHEL.
vouELCONST,vDHELNASAL,VOHELaunsT.VOHELvouEL »
FlNstH[LAREVAL.SDNORANYSONORANT 1

SWITCH OECMAT tis
CONSYCONST,CONSTNASAL.CONSTSTDP.CONSTBURST.PROH[B'TEDq
CCNSTVOHEL.NASALCONST.NASALNASAL.NASALSTOP-NASALBURSTa
PROHIB]TED.NASALVOHEL.STOPCONST.STOPNASAL.STOPSYOP,
STOPBURSY.SYOPFH]CS.PRDHIBITED.BURSTCONSY.BURSTNASAL-
BURSTSTOP.BURSTBURST.BURSTFR[CS.BURSTVDHEL,PRDH]BITED,
PROH]B]TED.FRICSSTOP.FRlCSBURSY.FR!CSFR!CS,PRDHIB!TED.
VUHELCONST,VONELNASAL.PRUHIBlTED.VOHELBURST.PRORlBlTED.
VOWELVOWEL

INTEGER LIMIT, INFLIML, INFLIM2}

REAL H[lGHTl,HEIGHTz,RATlOLlHl.RAT[0L1H2.FACT:

STARTING POINT JF THE PROCEDURE
INIT aL SWITCHING 3

GO TU DECMAT iaoHlN(e.HAxtl.TYPE1[SEGN81]))0
NlN(b.HAX(1,TYPEEESEGN92]))-7] ]

STOPSTUPSSTOPBURSTIBURSTSTOP:

SIHlLAHEVAL!I’SCURE(DUR1[SEGNall.DURZCSEGNBZ].5.625.2-1.5)
+SCORE(A11[$EGN913.AlZCSEGNBZJ.B.625.4.1.5)
oSCORE(AEl[StGNBIJ,A22[SEGNBZ].G.625.4.1.5) '

Algorithm k4 (continued), Similarity Evaluation Procedure
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COMMENT
IF FURMANT3 SL1TL.E (AVERAGE AMPLITUDE IN THE THIRD
FREQUENCY BA' .y IS 730 SMALL, THE CORRESPONDING ?LRO-CROSSING
1S ERRATIC AND CONSEJUENTLY MUST NOT 8L TAKEN AS ONE 0F THE
FACTORS DEFINIMG THE SIMILARITY BHETWEEN THE TWO SEGMENTS

1F a31(SEG 311+432[{SEGNE2Y € 6 HEN
pE. N SIMILAREVAL z:z IMILAREVAL/3 3
0 TO rINSiHILﬂ‘tVAL
Enb
ELSE
BEGIN SIHILAﬁivle==(Sl"1LAREv5L*
SCORE(E31ESEGN813.ll?[SEbNaz]’B,625.4.1.5))/4 H
GO TO FINSIMILAREYA
END

aUQSTaURST'FR[CSSTOF!STDPFRICS:

SIMILAREVAL =
NAX(4¢,(SCORE(UURL[SEGHB1J.LURZ[SEGNBZJ,D.25.2.1.5)
.MAx(za,(Sccnh(zlltstckhl].212:SEGN$2].0.525.2.1.5))
+ SCORE(AittSEcNBLJ,A1ZESLGNBZ].E.525,2.1.5)
+ SCORF(ill[SEGNBL]/Z,il?ESEGNBZJ/Z.ﬂ.625.4.1.5)
+ SCORF(ASILSEGNBIJ.AS?(SEGNBZ].B.OZS.2.1.5))/5):

G0 TO FINSIMILARE /AL 3

PROHIBITED:

SIM{LAREVAL ::=z -1088 3
60 TU FINSIMILAREVAL 3
FRXC;BURST:BURSTFRICS:VRlCSrRlCS:

SIMILAREVAL i+ SCORE(DUPIKSFGNBIJ,9UR2ESEGNBZ].F.625.2.1.5)3

IF SIMILAREVAL < 5@ THEN LiM ::= 2@
ELSE LIm 3= 50 3
SIMILAREVA. 1= MAX(LIM, (SIMILAREVAL

'ZOSCOQE(ZS&ESFGNBt‘/?.132[5EGNBEJ/2.J.625.4 q,0)

*SCORE(AIIIEFGhri].Ai?[SEGNB?J.U.625.4-l.ﬂ]

+SUORE (A31C4EGH L /7, A320SEGNB2)/2.8 625,2,4,21'/5) i
GO TU FINSIMILAREVAL 3

CIMMENT
IF THE AMPLITUDES ALl AND A1 ARE VERY DISSIMILAR, THL TW0
MATCHED SEGMENTS SHOULG GET A LOA SIMILARLTY SCORE, EVENTHOUS
THE OTHER PARAMETERS aRE CLOSE .
NASAL AND STOP SEGMENTS PRESENT THESE CHAIACTERISTICS WHEN
MATCHED, 1.E, ONLY THE PARAMETER a1 1S DIFFERENT

STOPNASAL:STUPCONST:CONSTSTDP:NASALSTOP:
SIMILAREVAL iz SCURE(A11[SEGN51].Al?(SEGN92].0.625.1D-2.i‘ }

1F SiMILAREVAL < B THEN GO TO FINSIMILAREVAL
ELSE Go To SToPSTOP 3

Algorithm L continued). Similarity Evaluation Procedure
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COMMENT
IF AL1 AND A12 ARE VERY DISSIMILAR THE SIMILARITY SCORE SHOULD
, BE LOW, INDEPENDENTLY OF THE OTHER PARAMETERS ,
[F THEY ARE AT THE SAME LEVEL, THEN IF THEY ARE SMALL
THEN THE COMBINATION 1S LIKELY TO BE A BURST=BURST TYPE
IF THE AMPLITUCE PARAMETERS ARE HIGH THEN IT IS A CONST-CONST ;

CONSTBURST:NASALBURSTIRURSTNASAL :BURSTCONST: VOWELBURSTIBURSTVONEL!

SIMILAREVAL 1= SCORE (AIIESEGNﬂilal12[SEGNBZJad.659.2cL.5) '
IF SIMILAREVAL < @ THEN GO TO FINSINILAREVAL
ELSE
IF MAX(AL1CSEGNBL],A12CSEGNB2)) 2 4 7HEN GO TO CONSTCONST
ELSE GO TO BURSTBURST 1

NASALNASAL:

1F DURLLSEGNBL1I < % OR OUR2[SEGNE2] < 5
THEN BEGIN
SIMILAREVAL 11= SCORE(AL1CSEGNBL),A12(SEGNB2]),0,425,3,2.0)3
IF SIMILAREVAL ¢ @ THEN GO TO FINSIMILAREVAL
ELSE GO TO CONSTCONST
END

ELSE GO TG CONSTCONST

CONSTCONST:

RATIOLINL iz »,3 | RATIOLIM2 3= 2,5 3
WEIGHTL :3= WEIGHT2 :t= 2,0 3
GO TO SONORANTSONCRANT 3

VOWELVOWEL : VOWELCONST: VOWELINASAL 1CONSTVOWEL tNASALVOREL S

RATIOLIMNY 1is RATIOLIM2 t31s @,0 3
WEIGHTL 32 WEIGHTZ2 :ts P,1 3

COMMENT

IF THE TWO MATCHED SEGMENTS HAVE SIMILAR AMPLITUGES, THWEN THE
AVERAGE OF Ay AND A2 OQVER THE TWO SEGMENTS IS USED TO COMPUTE
THE WEIGHTS WHICH APPEAR IN THE SCORE CALLING SEQUENCE ,

IF THEY ARF VERY DISSIMILAR, FACTOR WILL BE COMPUTED ONLY
WITH RESPECT TO THE SEGMENT OF LARGEST AMPLITUDE ,

TME CUNGCEPTUAL JDEA BEMIND THIS WEIGHT DEPENDENCY ON THE
AMPLITUDE OF THE SEGMENTS TO BE MATCMED IS THAT :

THE SMALLER THE POWER OF THE SOUND (REPRESENTED BY

THE SEGMENT AMPLITUDE), THE MORE LIKELY !TS PARAMETERS WILL
VARY FROM ONE UTTERANCE TO ANOTHER EVEN THOUGH THEY ARE SPOKEN
BY THE SAME SPEAKER ,

FOR EXAMPLE, WE KNOW THAT STRESSED VOWELS HAVE CONSISTENT
PARAMETERS, BUT PAPAMETERS CORRESPONDING TO UNSTRESSED SOUNDS
HAVE A LARGE RANGE OF VARIATION

Algorithm 4 (continued). Similarity Evaluation Procedure
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SONORANTSONQRANT!

IF 1ABS(AL11CSEGNB11+A21[SEGNB1]-A120SEGNB2]-A22(SEGNB2))/2 5 12
THEN FACTOR fts
(A11CSEGNAL1+A21[SEONB1I+AL2 [ SECNB21+A220SEGNBR]) /4
ELSE FACTOR 1=
(MAX(A11CSEGNB11+A21LSECNB1], A120 SEGNB2)+A22[SECGNB2))~183/2

RATIOLIML 2:= RAT]OLIHIO(ZGU.B—Z.B'FACTOR)li"-' i
RATIOLIM2 it= RATIOLIM2+(30@,0-FACTQR) /68,0 §
WEIGHTL (3@ WEIGHTL+(FACTOR«48,2)3/148,08 }

WEIGHT2 22 WEIGHT2+(2oFACTORS42,2)/240.0

SIMILAREVAL :ix
SCORE(DURICSEGNBI].0UR2(SEGNB2J.0,625,2.1.5)

‘;OSCORE(!ll[SEGNRI]o!LZESCGNG?].HElG“Tl.lunATIOL|"1)

*SCORE(‘llESEGNBl].IlZESEGNezl,HElGHTZ.Z.RATXOLlRZ)IZ

oSCORL(32-A21ESEGNBIJ/AIi[SEGNBi],32.&22{SEGN02]IA12[SEGNBZJ.
WE1GHT2,2,RATIOLIN2)

OSCURE(32.A31[SEGN81]/A11[SEGNBI].320A32ESEGNBZ]lAlZESEGNBZ]-
WEIGHT2,4,RATIOLIM2)/2

DIVISOR iz 6

COMMENT
IF A2 PARAMETER 15 SMalL, THEN %2 1S ERRaTIC 3

IF A21(SEGNBL1J 2 8 DR A22(SLGNB2) 2 8 THEN
BECIN SIMILAREVAL 13z SIMILAREVAL« )
«2-SC0RE(i!i[SEGNBt].ZZZ[SEGNEZJ.K€(GHTI.2.HATIOLIN1) 3
DIVISOR ::= DIVISOR+Z
END;

COMMENT
IF A3 PARAMETER IS SMaALL THEN 23 Is ERRATIC 3

IF A31({SEGNS1) 2 8 OR A32(SEGNB2) 2 8 THEN
3EGIN SIMILAREVAL ::=z SIMILAREVAL
+$CORE(ESI[SEGNHLJ.ESZESEGstl,HElGH71.4.RATl°LlH1) 1
DIVISOR :ts DIVISOR+1
END )

SIMILAREVAL 313 SIM]ILAREVAL/DIVISOR ¢
GO TO FINSIMILAREVAL

Algorithm 4 (coatinued). Simllarity Evaluation Procedure
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CONSTHNASAL:

IF DURLCSEGNBLl ¢ 5 OR 241CSEGNBLY 2 3
OR AL1CSEGNBL] € 18eA24[SEGNE1]
OR A11CSEGNB1] 55120A31[SEGN81) THEN GO TO CONSTCONST
LSE
BEGIN SIMILAREVAL 1= SCORC(Ail[SEGNBlJ.A12ESEGNEZJ.D.35.4.2.0)l
IF SIMILAREVAL < 2 THEN GO TO FINSIMILAREYAL
ELSE GO TO CONSTCONST
END

NASALCONST!

1f ODUR2CSEGNB2) € S OR 212CLSEGNB2]) 2 5
OR A12CSEGNE2] S 10eA22CSgGNO2)
OR A12¢SEGNB2] § 124A32[SEGNB2] Tugu GO TO CONSTCONST
ELSE
BEGIN SIMILAREYAL 1:=
scontcatxtszcnata.sztszunszn.a.ss.a.z.o) 3
IF SIMILAREVAL < @ THEN GO YO FINSIMILAREVAL
o ELSE GO TO CONSTCONST
EN

FINSIMILAREVALIEND SIMILAREVAL

Algorithe & (continued). Similurity Evaluation Procedure
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consonant might have been clagsified VOWEL, or a wesk vowel might have
been classified C(NST or NASAL) and borderline cases of fricatives {an
unvoiced fricative might have been classified BURST or a voiced fricative
might have been classified FRICS). A feasibility value is assigned to
each borderline case and the borderline case 1ist is arranged in decreas-
ing order of feasibility.

1lhe following heuristics were found useful in defining the border-
line casges:

-1f a NASAL or CONST segment is a mild local maximum (a strong
local maximum would have been classified vowel), it is candidate for
becoming a VOWEL segment and its feasibility value is

0A163
Al + A2 + A3 + DURATION/20 - 90 0<A2<63 DURATION in ms
OA363
The heurisiic concept behind this statement cam be expressed as follows:
The larger the segment amplitude and duration are, the more likely that it
represents a vowel.

-1f a non-stressed vowel is short, or has a low amplitude, it 1is
candidate for becoming a CONST segment. Its feasibility value is:

90 - Al - A2 - A% - DURATION/20
(The smaller the amplitudes and duration are, the more likely that the
segment is not a vowel.)

-1f a FRICS segment is short or does not have excellent unvoiced
fricative characteristics, it is candidate for becoming a BURST.

Its feasibility value is given by:
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»
-

(90 - DURATION/20 - 23)/3 + (A3-Al)/2 0<Z3<100
(the shorter and less noisy the segment is, the more likely that it is
not a FRICS.)

-If a BURST segment has a duration greater than 4Cms it is candidate
for becoming FRICS. 1Its feasibility value is:

(DURATION/20 + 23 - 90)/3 + (Al-A3)/2
(The longer and noisier the segment is, the more likely that it is FRICS.)

After this preliminary detection of borderlinc cases, the feasibility
computation and the reordering, the first elements in the borderline case
list are the most likely to be incorrectly classified.

Then each probable 'clagsification error" is combinatorially modified
and several new candidace lists are built by calling the procedure
BUILDLIST (Flowchart - Figure IV-4). The meaning of the term
“combinatorially" which is used in the preceding sentence, is best
explained by an example:

Assuming that three borderline segments @ @ @have been
detected in the incaming message representaiion, the following actions
are performed by the procedure: ‘

-Modify @ , store the acceptable-match candidates by calling
BUILDLIST.

-Msdify Q) , call BUILDLIST.

-Modify (@) , call BUILDLIST.

-Modify () and @ , call BUILDLIST.

-Modify (D) and Q) , call BUILDLIST.

-Modity () and (D , call BUILDLIST.

-Modify ) , @ and @ ., call LUILDLIST.
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On the basis of this new set of stored acceptable candidates,
the selecting process chooses the best-match candidate which is given as
the response if its overall similarity score is higher than the
acceptability threshold (> 4%).

To avoid too much computation time, the number of “corrected”
classification borderline cases is limited to three (the three most
likely to be in error, of course) and the procedure is allowed to run
for no more than 15 seconds (30 seconds for the 561 word list). When
this time hasg elapsed, the selecting procedure is called to choose
between the candidates stored so far. A crude estimation of the

effectiveness of this heuristic is given in section Iv-7.
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IV-5. ISOLATED WORD RECOGNITION - EARS (Effective Analyzer and Recognizer
of Speech)

In order to evaluate the effectiveness of the storing, retrieving
and matching processes, they were utilized as central elements of an
igolated word recognizer: the EARS gystem. A flowchart of the system 1is
showr on Figure IV-7.

The speech utterance coming from a microphone or a computer-
controlled tape recorder (AMPEX PR10) is digitized by the hardware
preprocessor. It is then analyzed by the segmentation procedure which
builds the utterance representation (i.e., feature matrix described at
the end of Chapter III). This feature matrix finally enters the
candidate selection process which attempts to identify it and gives the
written=form of the utterance if an acceptable-match has been found.

The similarity scores between the incoming representation and the salected
candidate (if any) are used to selectively learn new utterance
representations. Namely, if the score is below a threshold, which
-depends oa the number of candidates with the same print-name already
learned, then the new representation is entered in the lexicon and

will be used in the following tries. The system is interactive with

an experimenter at a teletype or display congole: The program types

the answer when it recognizes a message and request the message print-
name when it does not recognize it.

To train a system, one simply speaks in the microphone and types
in the associated print-names when the system requests them.

Added to this basic pattern recognition system are several input/

ovutput facilities and debugging aids.

118



RECORD THE SPEECH __| PREPROCESSING PROCEDURE
UTTERANMCE (UP TO L.5

SFCONDS OF SPEECH

EXTRACT RELEVANT PARAMETERS
FROM THL SPEECH WAVE AND
NORMALIZE THEM.

)

SEGMENTATION PROCEDURE

OIVIDE THE UTTERANCE INTD
DISCRETE PARTS ROUGHLY
CORRESPONOING TO PHONEMES,

CLASS IFICATION PROCEDURE
LABEL THE PREVIOUSLY DEFINED

BASIS OF THE AVERAGE
PARAMETERS,

CAND IDATF SELECT {ON PROCED

SELECT A CANDIDATE FROM THE
LEXICON ON THE BASIS OF THE
HIGHEST SIMILARITY SCORE.

/‘n's\
LI |N'IAI|TY

OISPLAY: . DISPLAY 0ISPLAY

! DO MOT RECOGNIZE THIS YOU SAI0: YOU SA1D:

MESSAGE. FOLLOWED BY THE PRINT NAME FOLLOWED BY THE PRI WAME
OF THE CHOSEN CANDIDATE. OF THE CHOSEN CAND IDATE.

ACCEPT THL PRINT NAME OF
THE MESSAGE FROM THE
EXPER IMENTER, 0
LEARNING PROCESS ™

INSERT THE MEW SOUND DES- DETERMINE THE NUMBER OF
CRIPTION ALONG W ITH THE ACOUSTIC DESCRIPTION IN
PRINT NAME IN THE LEXICON,
THE LEXICON WITH THE SAME
P ) ASK FOR A DIFFEAEN WORD
W5ITH THE SANE MEANIG.

Figure IV-7. Overall Flowchart of the EARS System .

119



The input facilities allow the experimenter to read a lexicon
constituted during a preceding session or to read predigitized utterances
from geveral input devices of the PDP-6 - PDP-10 dual processor system
(disk, magnetic tapes, dectapes). This feature has been heavily used
for the statistical tests performed on the program.

The corresponding output facilities allow the experimenter to store
& lexicon and digitized utterances on external permaneat memory.

The debugging aid is provided by intermediate printouts which can
be selectively initiated ard ks a get of display routines capable of
displaying the "thinking process". The display package and man-machine
interaction were found to be the most powerful tools for debugging such
4 large system in which the overall changes caused by a procedure
modification could not be predicted.

Tae statistical tests exhibited in Section IV-6 and the CRT
photographs shown were obtained while using EARS.

The collection of subroutines which compose the system EARS
occupies 35,000 words of memory. This number includes the display
package, but not ;he lexicon, whose size depends on the size of the
vocabulary. For the word list we processed, the lexicon space provided
was, on the average, 90 memory words for each utterance to be recognized
(for a single-speaker list), f.e., 5,000 for the 54 word lists recorded
five times by one speaker, 10,000 words for the 54 word lists recorded
by 10 different speakers, 50,000 for the list. of 561 words.

The program in opevation is illustrdted by a portion of the typed
dialog between the experimenter and the system as appearing at a teletype

console, (Figure IV-8). To render this conversation more understandable,
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ek
SAY A MESSAGE PLEASE

I DID NOT RECOGNIZE TH1Y MESSGE.»
WOULD YOU TYPE [T PLEATE

JOHN HAS A BOOK
%
SAY A MESSAGE PLEASE

YOU SAID : JOHN HAS A BOOK

YES
L]
SAY A MESSAGE PLEASE

I DID NOT RECOGMIZE THIS MESSAGE.»
WOULD YOU TYPE IT PLEASE

A QUEEN OF THE JUNGLE
*%

SAY A MESSAGE PLEASE

I DID NOT RECOGNIZE THIS MESSAGE,
WOULD YOU TYPE IT PLEASE

PLEASE COME HOME
%

SAY A MESSAGE PLEASE

1 DID NOT RECOGNIZE THIS MESSAGE»
WwOULD YOu TYPE [T PLEASE

HOW ARE YQU TODAY
*
SAY A MESSAGE PLEASE

YJU SAID : A WUEEN OF THE JUNGLE

YES

-t

SAY A MESSAGE PLEASE

YOU SAID : PLEASE COME HOME
YES

L 4

SAY A MESSAGE PLEASE

YOU SAID : JOHN HAS A BOOK
YES

L L ]

Figure 1IV-8. Typical dialog between the system and an experimenter .
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the responses irom the system are indented and the exper.mmter‘s &re not.
Moreover, the internal decisions of the Qarioua procedures are illustrated
by a set of photographs (Figures IV-9 through IV-23}. Since the initial
data wvere read from a previously created magnetic tape file, the utterance
name appears at the top of the display, under the name of the procedure
currently in use. When the system is processing data coming directgly
frum the microphone, the inscription UNKNOWN, MICROPHONE INPUT replaces
this name (e.g., Figure IV-6). These photographs were taken during
one of the $tntiat1cal tests, and the system had already examined 129
word representations (middle of the third word list from Gold recorded
by K. Stevens), thus storing more than a hundred of them.

For this case, the effectiveness of the candidate space reduction
heuristics is exhibited by the small number of comparisons ultimately

performed (only 3 candidates went through the whole process).



Figere IV-Gg. The six parameters
extracted from the speech wave

by the hardware preprocessor are
being processed by the segmentation
procedure .

Figure IV-10, The utterance SEVEN
has been segmented and the segments
have been classified in phoneme
groups ., The resulting description
of SEVEN 1is :

FRICS, followed by VOWEL, fol-
lowed by NASAL, followed by VOWEL,
followed by two NASAL's and one
STOP .

Figure IV-11. The lexicon search
procedures have built the list of
acceptable candidates on the basis
of rough features of the utterance.
Six cendidates have been selected .
All of them exhibit one FRICS follo-
wed by two VOWEL's .
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BA3764
AN3I651
Bra2ie6
91753
Br1434
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Figure 1V-12. The first candidate
is investigated by the similarity
evaluation procedure . The proce-
dure establishes links between
corresponding segments of the two
representations; VOWEL's and FRICS's
are mapped .

(che utterance segments are repre-
sented by the amplitude in the
first frequency band : Al).

Figure IV-1%, On the basis of gimi-
larity of parameters, more linkages
are built between any two pairs of
previously mapped segments . The
procedure refused to map the seg-
ments between the two VOWEL's

since their parameters were found
too disgimilar .

Figure IV-1U, The initial mapping
process terminates here. Each
segmant left unmapped will now
be combined, if possible, with
one of ita adjacent megments .

12h




Figure IV-15. The combining process
has combined two of the remaining
segments with one of the segments
adjacent to them . The corresponding
links were destroyed .

Figure IV-16. The links are recreated
on the basis of similarity of pare-
meters . The segment synchronization
procedure terminates . The two cen-
tral segments which correspond to
the /v/ of SEVEN and the /k/ of
CYCLE are not linked since they

were found too dissimilar .

Figure 1V-17. Three similarity
scores have been computed and
stored :
- vowel similarity score : 88%
- non-vowel similarity score : Lg%

- overall similarity score : 63%
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Figure IV-18. The next candidate is
immediately eliminated since the
vowel parameters are too dissimilar.

Figure IV-19 . The next candidate
is also sliminated for the same
Teason .

Figure IV-20. A different utterance
of GYCLE has been accepted with the
following scores :

= vowel similarity score : 90%

= non-vowel similarity score : 59%

~ overall similarity score : 704
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Figure IV-21. The candidate SEVEN wva
present at the fifth place in the
candidate list has been accepted A
with the scores @

- vowel similarity score : 92¢ T HF

- non-vowel similarity score : Shé

i

- overall similarity score : 93¢

Figure IV-22. Another representation
of STORE is eliminated .

il

Figure IV-23. On the basis of the
stored similarity scores, the can-
didate SEVEN is chosen . Since its
overall similarity score is higher
than 80%, its print name is returned

to the main program which displays srost
the program's decision . s -ow
sk n N
- "N u n

YOU AL ¢ SEVEN




IV-6. RESULTS

The EARS system was utilized in several direct experiments in
which it had to recognize messages said by various speakers. In order
to obtain statistical results, we tested the program with '"canned" data
recorded on audio tape. Several message liasts were proceased, namely:

=l. A word list from Gold (1966) recorded by Dr. K. Stevens and
C. Williams. These lists recorded at Cambridge (Massachusetts) were
graciously provided by Dr. D. Bobrow. The messages were recorded on
high quality magnetic tape in a very quiet room (S/N ratio > 35 db).
Figure IV-24 summarizes the regults obtained, i.e., statistical results
on accuracy and time-taken, and the confusions which arose. 1In this
and the following tables an EH? entry means that the program rejected
the utterance and an OK characterizes a correct recognition. The
confusions are signaled by the name of the confused-with utteraace.

-2. Word list recorded by J. Singer. To exhibit the large
learning ability of the program, we made it process a large liat of
words and short sentences. The original list was 600 words long, but
for technical difficulties (i.e., read errors on the computer tape
holding the digitized data, samples exceeding the buffer size of the
system, etc...), we had to remove 39 entries from the list. Moreover,
since the computer time involved in such experiments is quite large
(about 10 hours), only 4 sets of wirds were recorded and the first
training round was oaly learnsd without identifying the utterances. The
results are summarized in Figure IV-25. The word set was extracted from
"A spoken word count" by Jones and Wepman and the sentence set from the

play "Box and Cox" by J. Morton. The noise of the room was quite high
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Figure IV-25.(continued). List of 561 English Words .
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(/N a5 15 db). Since this vocabulary is less well-balanced than the
previous one, the results preseuted are poorer as far as the second and
third passes are concerned (thc reader should note that some word pairas

" which are likely to be confused: "relax-relaxed", "gserious-gseriously"”,
"poasible-possibly", "listen-lesson”, 'thick-sick" are in the vocabulary).
Finally, the results obtained for che fourth pass are at the expected
level of accuracy. A fifth pass would have yield 94-95¢ accuracy.

=3. A French word list recorded by the author. To show that the
program is independent of any specific language, a test was performed on
a French word vocabulary. Figure IV-26 displays the obtained results.

-4. A word list recorded by 10 different speakers, (one each).

Two figures: 1IV-27 and IV-28 summarize this program run. The gpeakers
were randomly chosen amongst the Stanford Artificial Intelligence
Laboratory Staff. Figure IV-27 illustrates the results obtained for this
random order list. In the second run (Figure IV-28), the order of the
speaker was modified so as to place at the beginning of the list, people
judged to have dissimilar voices.

The difficulties encountered when dealing with lists recorded by
several speakers are numerous, the next paragraph will sumrarize some
of them.

As far as we could determine, the stressed vowel of any word is
pronounced quite consistently by different speakers, i.e., the parameters
corresponding to Formantl and Formant? do not vary very much from one
speaker to another. But the remaining part of the words is subject to
large variations: These variations affect the stress and the relative

position of the sounds within the word. Consonancs in unstressed
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Figure IV-26. Results obtained for a list of 70 French words .
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Figure IV-28. Results obtained for a list reordered on the basis of
voice dissimilarity between speakers .



syllables may contain less fricative nuise, a weaker stop burst release,
or an incomplete stop closure as compared to the same consonants in
sressed syllables . The substitution of an incomplete gesture for a
consonant cluster is also common in unstressed syllables of naturai
speech. None of these effects would necessarily produce word recognition
difficulties if they appeared consistently in the data. Unfortunately,
they do not, and their range of variation is quite large. Althouzh we
cannot provide the original sound samples with this digsertation, the
variability between speakers is illustrated by a set of photographs:
Figures IV-29 to IV-34.

Figure IV-2G represents an utterance of MULTIPLY provided with
three distinct vowels. Figure IV-30 and IV-51 show a different
utterance of MULTIPLY. This last sample is characterized by a complete
absence of the /t/, in fact the sound heard is more like MULIPLY than
MULTIPLY. The program's incorrect !dentification given for this utterance
was OUTPUT. Figure IV-32 through IV-34 show two utterances in which the
first unstressed vowel is very mild aid was incorrectly classified by the
segmentation program. Both resulted in incorrect identifications, i.e.,
EXCHANGE was identified as SCALE and DIVIDE as FIVE. It is probable
that for this latter case, the error recovery procedure would have
corrected ~he classification error, but since the similarity score for
FIVE was quite high (83%4) it was returned as the response and no
correction was attempted.

Also, we found that the variable subject-to-microphone digtance
was addding a non-negligible variation factor to the experiment. A

microphone held too close to the lips records the expiration after the
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Figure IV-29, Utterance of MULTIPLY
showing three distinct vowels . —

RenENtaTION PROCERD
MRIINY

Pigurs IV-30. Different utterance 'Ifm/\

of MULTIPLY in which the /t/ was

not pronounced . L

L T
MRIMY

Pigure IV-31. Resulting classifica-
tion error, one vowel has not been

detected .

138



LELIERTAT IO PROCCSS

. & eCotoegy
—~
Figure IV-32, Utterance of B
EXCHANCE {n which the first vowel
/e/ was not clearl; pronounced , g
s
oA -
AN
- Wi
i) ’ 4 o

Figure IV-37%, Utterance of DIVIDF
in which the first vowel /1i/ is g
almost inexistant . ‘_[\
#1—-——'\
‘ U v -
JECAEETATINN POOLELE
) . v
L~
Figure IV-34. Resulting classifica- 4
tion error .
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utterance, giving the illusion of an extra sound. This difficulty is
usually corrected by the use of a wind screen or by special heuristics
within the program. More work is needed to reliably discriminate
batween speech and expirations (note that /h/ sounds are special cases
of expiration). On the other hand, a microphone held too far away from
the mouth resulis in loss of resolution due to the ensuing lower signal-
to-noise ratio. Some of the samples were in fact so noisy that the
preprocessor service routine had trouble detecting the utterance when

reading the original audio tape.
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IV-7. EVALUATION OF SOME OF THE PRINCIPAL HEURISTICS

Since the heuristics interact, it is in general very hard, if not
impossible, to evaluate the contribution of one heuristic to the overall
performance of a given program. In ocur case, for example, it would be
impossible to predict the overall change in the program's quality
resulting from a heuristic modification in the segmentation procedure
or from a different lexicon organization. Fortunately, the few important
heuristics of the candidate selection process are not likely to interact
with the others. To give a crude evaluation of these, one can simply
suppress them fram the program and show the resulting degradation of
quality. 1In this section we shall illustrate the effectiveness of the
foliowing heuristica:

-1. The vowel mapping correction heuristic which redefines the
links between corresponding vowels on the basis of similarity of
parameters. ”(sﬁﬁsection V-4 -2)

-2. The error recovery heuristic (or multisearch heuristic) which
initiates a second level of aeerchzs if no satisfactory caudidate is
found during a primary search (subsection IV-li-4).

-3. The excellent-match-candidate heuristic which stops the process
immediately if a candidate with a similarity score higher than 954 if
found.

Figure IV-35 summarizes the results obtained with each of these
heuristics being turned off.

-Table (A) presents the results obtained with the full program for
the list recorded by Dr. K. Stevens which was experimented on.

-Table (B) presents the results obtained with a program not
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provided with the vowel mapping correction process. The overall quality
of the program, in all the passea, has decreased by a factor of 5§.

-Table (C) presents the results obtained with a program not
provided with the error recovery procedure. The overall quality has
again dropped by 54, and the results exhibit the fact that this
heurigtic is more effective at the beginning when there are fewer
samples in the lexicon. On the other hand, this heuristic is time
consumming, and could be suppressed if one is more interested in speed
than in performance, (for example, in real-life use of the program, the
speaker can occasionally be requested to repeat his last utterance if
the program failed to recognize it).

-Table (D) presents the results obtained with a program not
provided with the excellent-match-candidate heuristic. The quality s
at the same level but the time taken to identify a word is increased by
304. The effectiveness of this heuristic, which increases with the
number of stored samples for a given utterance, is also exhibited in the
preceding results. In all'the runs previously presented, the average
computation time per message drops by an appreciable amount for the
last lists to be processed. This fact, which may seem abnormal since
the size of the lexicon is increasing, results from an increase in the

number of successful applications uof this heuristic.
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1v-8. CONCLUSIONS

The results presented show that recognition of speech does not
depend so much on the accuracy of the utilized parameters since high
scores were achieved with very crude and questionable parameters. Any
other techniques: spectrum analysis, formant trackers, polynomial
expansions, etc... can be expected to work reasonably well provided
subsegquent algorithms are carefulily designed. In the same wmanner, an
accurate phoneme-like classification is unnecessary, although such
features might be useful to reduce the search, it remains to be seen
whether the reduction resulting from accurate classification will
exceed the amount of effort required to perform the necessary
classification error 1ecovery task.

As far as we can determine, the problem of devising heuristic
procedures to reduce the search space in speech recognition is
investigated for the first time. These procedures are effective and it
is clear that they have to be further developed if a speech recognition

system having close to human abilities is desired.
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Chapter V

THE HAND-EYE-EAR SYSTEM

V-1. INTRODUCTION

Shannon, Minsky, McCarthy, and others have congidered the
possibility of a computer with hands, eyes, and ears at one period or
another juring the latter oart of the last decade. The main obstacles
to the realization of the idea were the unavailability of suitable
computers and Input/Output devices, and the prohibitive cost of such &
system. Ernst (1961) and Roberts (1963) were among the first few who
used a computer to realize these objectives. Glaser, McCarthy and Minsky
(1964 ) proposed that the first major attempt at the biological exploration
of Mars would be made by a computer controlled autamatic laboratory,
containing a wide variety uof perceptual input devices and mechanical
manipulators which can perform, under computer control, many of the tasks
of blo-chemical laboratory, requiring only a limited supervision by the
experimenter on earth.

At Stanford Artificial Intelligence Project an integrated HAND-EYE
system had been implemented under the PDP-G time-sharing system. This
initial system, able to perform simple sorting and stacking operations
on cubical blocks, has been described in detail in some recent
publications by Wichman (1967); Pingle (1966); Pingle, Singer and Wichman
(1968); and Pieper (1968). As an illustration of the exieting
capabilities of the speech recognizer program, it was decided to provide
this HAND-EYE system with a speech analysis program able to "understand"

spoken commands, thus Luilding an {ntegrated HAND-EYE-EAR system that

s



obeys the experimenter's voice.

In this chapter, we shall describe the overall structure of the
system with some emphasis on the speech analysis program, since it is
more within the scope of the present dissertation. In the rest of the
chapter we will describe the following aspects of the HAND-EYE-EAR system:

. .Presentation of the gystem configuration with a few details on
the "eye" and "arr” subsystems. A complete description is given in the
references previously mentioned. (Although this section is not the
result of research made by the author, it was added for the sake of
completeness.)

..Analysis of the different calibration and training operations
one must perform in order to run the system.

..Description of the “ear” subsystem. The use of a grammar (whose
BNF is given) with a convenient vocabulary (terminal symbols) allow the
decoding of long sentences (up to 5 seconds long) in 5 to 10 seconds.

..Presentation of the results obtaiaed and conclusions. A
sequence of snapshots of the program in operation as depicted on the
CRT display attached to the computer, and some statistical results
obtained from the data generated by four different speakers will appear

at the end of the chapter.
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Vv-2. SYSTEM DESCRIPIION

v-2-1. Task Description

Several blocks sre scattered on a large table provided with one TV
camera, an electric manipulator and a TV monitor (Figure V-2). Nearby,
an experimenter, holding a microphone, watches the screen of a ZRT digplay
(Figure V-1). The blocks in the field of view of the TV camera are
traced on the display screen. Then the computer, using the CRT to
express itself, requests a command from the experimenter. A sentence
like "PICK UP THE SMALL BLOCK STANDING ON THE TOP RIGHT CORNER" is
spoken into the microphone. The computer "thinks" for 4 to & seconds,
the arm moves, picks up the specified block and places it at the top of
a stack. A new scene representation which omits the block just taken
away appears on the screen of the CRT, and the process continues. The
previous scenario is usually executed in about 30 seconds. For a
computer to be able to perform such relatively complicated tasks
requiring interaction with i1ts enviromment without human intervention,
it must be provided with two distinct parts:

-Certain gpecial hardware items such as a microphone, a TV camera,
an artificial arm manipulator, etc...

-A program residing in the computer memory which specifies the

behavior of the system.

v-2-2. Hardware Configuration

The current HAND-EYE-EAR system consists of a vidicon television
camera, an electrically powered arm, and a common microphone, all

connected to the PDP-6 - PDP-10 computer system (Figure I-1).
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Figure V-1. The HAND-EYE-EAR system .

Figure V-2. Details of the HAND-EYE part .

148




Visual input to the system is provided by the vidicon television
camera operating in accordance with EIA standards. The video signal {is
digitized to 4 bits (16 levels of light intensity) and sampled at zn
instantaneoug rate of 6.5 million samples per second. Making use of
interleaving, any rectangular portion of the image, up to 666 x 500 points
for the full field of view, may be read into memory under program control
in two video frame times (1/15 secands).

The electric arm was originally designed &s a device to be strapped
to a paralyzed human arm. Six degrees of freedom permit it to place its
"hand" in arbitrary positions and orientations within its reach, plus a
finger-closing motion. It is powered by small permanent magnet gear-head
motors mounted on the arm, giving joint velocities of 4 to 6 r.p.m., with
small loads. Position feedback s provided by potentiometers mounted at
each of the six joints. The hand is a two finger parallel grip device
and is approximately the size of a human hand. The maximum reach of the
arm 1is about 68 centimeters (27 inches) and its weight ig about 7
kilograms (15 pounds). Power to the actuator motors is supplied by a
series of constant-width 16 volt pulses, whose repetition rate is
determined by the controlling program.

Audio input to the gystem is provided with a crystal microphone
connected to the hardware preprocessor which is described in the Chapter
I1 of the present dissertation. Sentences up to 5 seconds long are
read and processed into the computer memory, each time the experimenter
is requested by the computer to speak a cammand into the microphone.

Other peripheral equipment used includes a point-plotting CRT

display (DEC model 30), a standard TV monitor, and a display (or teletype)
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congole. The arm and camera are mounted on the top of a large table.
The other equipment is distributed around the table at conveaient

locations. A complete view of the svstem is given on Figure V-1.

V-2-3. Software Configuration

All of the programs of the HAND-EYE-EAR system are run under the
PDP-6 - PDP-10 dual processor time-sharing system. The present set of
programs consists of:

-l. An "eye" section which is capable of reading the camera and
which generates a scene description. If we digitize the light intensity
at every point in the whole field of view of the television camera, the
computer will receive 666 x 500 or 333,000 samples, or 1,332,000 bits
of information per frame. The problem of scene description is the
formulation of routines which will abstract meaningful descriptions of
objects of interest in the scene and their positions.

The existing eye program locates cubical blocks of variou. sizes
sc2ttered at random on a contrasting.background. Depth determination
depends on the assumption that all cbjects rest on a known planar
surface ("The support hypothesis', Roberts, (1963)). Mathematically,
this is simply a mapping between two fixed planes which, within the
HAND-EYE-EAR system are the top of the table and the image plane of the
camera. The edge tracing program in use does not reliably detect subtle
differences in brightness between adjacent surfaces of the same or
similar objects, so that only the outlines (or exterior edges) of the
objects are traced. (Figure V-9).

-2. An "arm" section which, given the position of a cube, can
pick it up and move it to a desired position. In order for a
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manipulator to graap objects with arbitrary positions and orientatioas,

it must have at least seven degrees of freedom: tnree for position, three
for orientation and one for grasping. The geometric configuration of

the arm is shown on Figure V-3. 1,2,........6,7 represent the actuators;
S1, S2, S3 are the links of the arm and PO, Pl, P2, are the shoulder,

elbow and wrist joints respectively.

Figure V-3. Schematic Representation of the Electric Arm
To solve the arm positioning problem one must compute the deflection
angles required to achieve a desired position and orientation. In
general, there are multiple solutions to any given positioning problem
(in our case 16 solutions). However, not all of thege are realizable
since the aym has mechanical stops which limit the deflections to certain
ranges. Several methods of solving the positioning problems with or
without constraints (e.g., existence of obstacles) have been devised by
Singer, Pingle, Wichman (1968) and Pieper (1968). The existing conmtrol
system used with the arm consists of an analog-to-digital converter for
reading potenticweters on joints, an output register for motor pulsing,
and a servo-control program, Siace this program must operate in real
time within the time-shering system, it is treated as a special case by

the system, and is given control every 1£.7 milliseconds {or 60 times a

151



second). The program acts as a simple proportional servo which
calculates the pulse rate for each motor. Velocity damping is unnecessary
siace t};e joints have a great deal of internal friction.

T3, mép "ear" section which is capable of reading the microphone
and which 4generates a sound description. The speech signal, as reflected
by the changes in voltage generated by the microphone, results in a data
rate of about 180,000 bits per second of speech. Typically, a one
second interval of a normal utterance consists cf between 5 to 10
different sounds, which usually require less than 50 bits to represent
in the written form. The preceding chapters presented a way of reducing
a gpeech sample to its written representation. All the procedures
previously described are used here to analyze the spoken command and
reduce it to & command word of 36 bits of information. No major changes
were made in the preprocessing, segmentation and classification
procedures. The speech analysis control program was modified to
determine the boundaries of words before recognizing them separately,
and the word recognition procedure was altered to peruit the removal
from the list of candidates of all of those which are not wanted. (To
allow feedback from a specified gramua..)

-4 . A control program which sequences the other programs. To
perform the block-stacking task described about, the control program
first initiates the "eye" routines to obtain a scene description, then
the “ear" routines which request a command from the experimenter, analyze
it and return a command word. Using the scene description, the control
program chooses a block with respect to the experimenter's directive, the

block position is computed and the "arm" program is called to pick it up.
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-5. A set of calibration and training routines which relate the
camera and arm coordinate aystems to the work-space and allow the user
co train the word recognizer of the "ear" program.

This collection of programs occupies approximately 75,000 words of
storage including data areas. The languages chcsen were machine
language and FORTRAN IV and no major interfacing problems were found
when loading the entire system in the same load-module. Figure V-4
represents a diagram of the system showing the flow of data from one

process to another.
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V-3. CALIBRATION AND TRAINING OPERATIONS

Before runaing the program, several calibratioms of the "eye" and
the "arm"™ subprograms have to be performed. Likewise, the “ear" part
must be trained to build up the lexicon needed by the word recognizer
(candidate selection process).

During the initialization phase, the "eye" routines execute two
distinct calibrations without human intervention:

-The first one determines the clipping levels of the TV camera
based on the range of variations of light intensities of the scene.
These two voltage levels define the "black" (4 bit value 0) and the
"white" (4 bit value 15) of the digitized TV image., Between these two
extremes, the light intensity is digitized to 4 bits which give 16 levels
of brightness. Since the illumination of the acene is likely to change
from one experiment to the other, one has to adjust these levels each
time a new experiment is initiated. The culibration is achieved by
scanning the video outpit of the TV camera trying several voltage values
(8 clipping levels are provided, thus making 28 possible combinations)
until the darkest parts of the scene are "black" and the brightest are
'Yhite”, thereby giving the largest possible resolution.

-The second one relates four points on the table to their positions
ia the TV image. The only visual information available to the computer
is the TV image. A theory, deacribed by Roberts (1963), shows that the
knowledge of the coordinates of 4 points of a plane, and the coordinates
of their images on the image piane of a camera, provides enough inform-
ation to define a geometric transformation mapping the points of the

plane to their images in the image plane. Of course, this transformation
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is incomplete since only the points of the plane are correctly transformed
(6 points are necessary for a full spacial transformation)., The "eye"
calibrating routine traces around four rightangled triangles permanently
placed on the table and locates their right angles, whose fixed position
on the table is known by the routine. Figures V-5, V-6, V-7 illustrate
this calibration step. The routine uses this information to compute a
matrix used for transforming any point in the camera coordinate system
into the coordinate system on the table top.

The only infamation available to the "arm" routines is the
resistance values of the potentiometers placed at each joint. These
resistances transformed into voltages by an external power supply, are
measured by the analog-to-digital converter. The converter output
levels must be related to the corresponding joint angles. To perform
this operation the arm is placed in a standard position, in which the
relative position of each joint and the position of the hand in the
coordinate system on the table top and the vertical axis, is fixed. In
this arm position each joint angle value is known by the program and the
corresponding resistance value is read by the A-D converter, thus mapping
the arm angular coordinate system to the table-top coordinate system,

Two training facilities are provided by the "ear" routines. The
simplest one allows the program to read in and use a lexicon built
during a preceding session. The other one provides for feeding the
program with new word representations, the written form of these words
baing iped by the =xperimenter. Of course, both methods can be uged
concurrently, i.e., reading an old lexicon and completing it with new

word representations. Training the word recognizer using ifsolated words
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Figure V-5. View of the table top
showing the four triangles used to
compute the transformation matrix .

Figure V-6. The edge follower is
tracing the wides of the rightangled
triangles . The results of its analy-
sis appears on the CRT display .

Figure V-7, The triangles have been
traced, and the four corners used by
the calibration routine are marked .
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was found to be unsatisfactory for two principal reasons:

-1. The first problem is that vowels are stressed differently for
1solated words than for the same words used in a long sentence.

=2. The second is the problem of word ending. When a word 1is
part of a connected utterance, it ends quite rapidly when the next word
begins. If this word is at the end of a sentence or isolated, the sound
dies down slowly, thus giving a completely different acoustic description.

Therefore, the lexicon was built using fragments of short sentences
containing the desired words. The process is as follows:

-l. A sentence is read into the computer through the microphone
and the hardware preprocessor.

-2. The sentence is segmented and the segments are classified
into phoneme groupe.

-3. The display of the sentence representation appears at the top
of the CRT screen.

=4. 0a the basis of what was said and the segmentation results,
the experimenter gelects a fragment of the sentence, and passes it to
the candidate selection process. If this portion is recognized
correctly, the corresponding representation is not learned (not introduced
in the lexicon). If the routine fails to recognize it, the exper imenter
is requested to type the equivalent written-form. The representation is
then introduced in the lexicon with its written equivalent. In the
section results and conclusiong (section V-5) we exhibit the set of
sentences used to train the program for obtaining statistical results.

For a given speaker, the program needs an average of two or three

representations for each yord to be recognized. This number increases
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slightly i{f the number of speakers increases (for 4 speakers, an

average of 5 to 7 representations is necessary).
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V-4 THE "EAR" PART OF THE '"HAND-EYE-EAR" PROGRAM.

The problem, simply stated, is to recognize commands to the system
in quasi natural english. Since the system is only able to look at a
given scene and pick up blocks, the vocabulary is very limited. However,
the sentences used to define size and positicn of a block are typically
2 to 4 seconds long and contain between 5 and 15 words. Furthermore,
the number of different valid sentences is large and all of them have
to be interpreted correctly. These constraints (duration and number of
the valid sentences) preveated us from using the scheme previously
described (Chapter IV) in which an utterance is recognized as a whole.
Therefore, we decided to break up the connected speech utterances into
several words composed of syllables, each word being recognized separately.
To accomplish this we had to solve the problem of locating word boundaries
in connected speech.

Like many other aspects of English, the problem of locating word
boundaries in connected speech can be ambiguous. For example, sound
degcription /AISKRIM/ could have resulted from the words "I scream" or
"“ice cream”. One obvious solution to this problem is to require the
speaker to pause for a few milliseconds between words or phrases. But
this gets to be annoying after a while. To render this problem
unambiguous, a better solution is t. use a grammar acting on a restricted
vocabulary. For example, let us congsider connected speech utterances
of the form.

(See next page)
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<command>: :=<function name> <argument list>

<argument list>::;<argument>|<argument list> <preposition> <argument>

<function name>::=PICK UP|STACK|ASSIGN|ADD|SUBTRACT|....

<argument>: := BIG|BLOCK|LEFT|SIDE|....

<prepositions>::= AT|TO|OF|FR(M|....

Ly carefully choosing the function names, the possible arguments,
and the associated prepositions, it is posaible to determine the word
phrase boundaries. Certain keywords play an important part in thia
determination. A good example of such a word is BLOCK, which starts a
silence (B) and ends with a silence (K). The syllable in between these
two is not likely to be modified by the adjacent sounds. In other words,
BLOCK can be recognized in any context with a low percentage of error.
As a result, such a heuristic as "scan until you find BLOCK" may be used
quite safely. Use of restricted special purpose command languages for
comnunication to the computer such as the one above is not unreasonable
in view of the fact that we have had to make a similar compromise for
programming languages. How interesting the spoken language can become
in the future will depend on how realiably and precisely future programs

can generate sound descriptions.

V-ii-1. V¥ocabulary and Grammar of the HAND-EYE-EAR System

The vocabulary and the grammar chosen for the HAND-EYE-EAR
program is as follows:

(See next page)
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SYNTAX:

Qmam>::-¢@and 1> | <command 2>

<command 1>:.= <order 1> EMPTY

<order 1>::= RESCAN|STOP

<command 2>::=PICK UP <argument list>

<argument list>::= <every> <size indicator> EMPTY <position indicator>

<every>::= EVERY|EMPTY

<size indicator>::= EMPTY | <size> BLOCK

<size>::= SMALL|MEDIUM|BIG|EMPTY

<position indicator>::=<position 1> | <position 2> | EMPTY

<position 1>::=<position'> SIDE| <position'> SIDE

<position 2>::= <pogition'> <positicn'> CORNER|
<position'™> <pogition'> CORNER

<position'>::= LEFT|RIGHT|EMPTY

<position'>::= TOP|BOTTOM|EMPTY

SEMANTICS :

The meanings of some of the terminal symbols is obviocus, but some
others like RESCAN and EMPTY need explanation.

The command 'rescan" is used to indicate that the gcene might be
disturbed and that the vision program should generate a new scene
description.

The terminal symbol EMPTY means no speech utterance at all or
sounds not recognized by the word recognizer. If any of the non-terminal
symbols is finally reduced to EMPTY the middle value is assumed (i.e.,

if <size indicator>=EMPTY, a medium size block will be assumed).

162



Sentences like 'pick up the small block standing at the top right
corner’, "rescan the scene', "pick up every block' are syntactically
correct,

An overall flow chart of the sentence decoder is shown on Figure
V-8. Given a command, the speech analysis program segments the whole
utterance and gencrates a sound description. The syllable toundaries are
located by utilizing the FRICS or BURST segments and the minimum aplitude
segments. The scanner groups together one or several syllables to form
a word candidate and calls the word recognizer to obtain the written
repregentation of thias part of the sentence. Feedback from the grammar
takes the form of a list of allowed words, and only these words will be
used for matching against the incoming utterance by the word recognizer.
V-4-2. Syllable Boundaries Determination

In this paragraph, a gyllable will be defined to cousiat of gne
vowel segment and other adjoining segments. The boundaries between two
syllables will be heuristically determined by the following rules:

=l. 1If there is no fricative segment between two vowels, the
boundary between the two syllableg defined by these vowels is at the
segment of lowest amplitude. This lowest amplitude segment is, in turn,
part of both syllables, i.e., when the gyllable at its lefthand side is
considered, this segment is part of it, and when the gyllable at its
righthand side is considered, it is also part of it,

=2. If ther~ is a fricative segment pvetween the two vowels, the
boundary between the two syllables defined by these vowels is the boundary

between the fricative segment and the preceding segment.
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Figure V-8, Overall flowchart of the sentence decoder .

164



Accord ing to thegse rules, the word RESCAN {is composed of two
syllables: .RE. and .SCAN.

These heuristics are only valid in our restricted vocabulary,
mainly Because no word ends with /S/ so that if an /S/ is found, it is
certainly at the beginning of, or inside, a word and therefore at the
beginning of a gyllable part of that word. Furthermore, these heuristics
are relaQi!gly easy to implement since the fricative segments in the
utterance representation are labeled FRICS or BURST and the local minima
of amplitude are detected and marked by the gegmentation procedure.

The process gimply corsists of scanning each utterance representation
and marking the beginning and end of each syllable. A syllable is then
composed of all the scgments between a beginning and an end marker.

Almost all the common gyllables defined in our vocabulary correspond
to these "computed" syllables, words like PICK, UP, BLOCK, SMALL form
syllables. The only exceptions are created by THE LEFT AND THE RIGHT.
These are often grouped into one syllable by the program, since the
power of the /3/ in THE does not usually excead the power of /1/ in
LEFT or the power of /r/ in RIGHT. These difficulties can readily be
overcome if we train the word recognizer with the representation of
THE LEFT and THE RIGHT in place of LEFT and RIGHT.

V-4-3. Word Recognition

In this paragraph a word is defined as a group of one or more
adjacent syllables. Furthermore, only the words included in the
vocabulary (terminal symbols of the grammar) are considered. In all the
the cases the recognition is attempted from short words, (one syllable)

to long words (up to three syllables); i.e., the program first attempts
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to recognize a monosyllabic word, 1{f no acceptable representation is
found which matches this word; a second adjacent syllable is added and
recognition of the resulting two syllable word is attempted; if the
program fails to give the written equivalent of this group of segments,
it tries a three gyllable word, if again no possible match is found, the
program notes the failure and makes decisions on the basis of the
sentence parts already recognized. The word boundaries are determined
only when a word is recognized; i.e., the word begins at the beginning

of its first gyllable and ends et the end of its last syllable.

V-b-4. Sentence Recognition

The recognition of sentences beginning with STOP and RESCAN presents
no major difficulties since only the first word of the sentence is to be
recognized. However, the decoding of PICK UP commands is not a trivial
problem. Assuming that PICK UP has been recognized as a two syllable
word, two anchor poiants at which the program is supposed to find
relevant information are provided in the sentence. The first of these
is the end of the utterance which, according to the grammar, must
contain the necessary position information. The second is the word
BLOCK scmewhere in the middle of the utterance. This word was chosen
because it is an easy-to-recognize monosyllabic word. According to the
grammar, this word must be preceded by the size information aud/or the
word EVERY.

The decoding of these commands is thea done as follows:

=1. Recognize PICK UP

=2. S§can the sentence from the left to the right comparing all the
syllables not starting with a fricative segment with the stored
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representations of BLOCK.

=3. When BLOCK is located, scan from right to left to recognize
the adjectives preceding BLOCK.

-4. Then recognize the last word of the sentence (SIDE or CORNER )
and recognize the preceding adjectives.

At each step, feedback from the grammar takes the form of a list of
allowed words; i.e., when the program is reducing <size> to a terminal
symbol, the only word representations considered by the candidate selection
process are those of SMALL, MEDIUM, BIG and EVERY, thus reducing the
search time by a factor of 3 and eliminating most of the ambiguities.

Figures V-13 to V-21 illustrate the decoding of the sentence
"PICK UP EVERY SMALL BLOCK STARTING AT THE BOTTOM RIGHT CORNER". To
exhibit the details of the "thinking" process, intermediate displays are
shown. In normal operation, unly a simplified representation of the
utterance {at the top of the screen) and the results of the recognition
(at the bottom of the screen) are displayed. The 90 geconds mentioned
for the pass is the time taken with these intermediate displays turned
off.

Figures V-9 and V-10 illustrates some decisions taken by the
program which could not reduce a non-terminal symbol. In one case, the
sentence was PICK UP ANY BLOCK. ANY was not recognized because it is
not in the vocabulary. The program noted the failure and proceeded. In
the second case, the word RIGHT was not recognized. The two ARROWS at
the top of the screen delimit the three~ yllable word considered in the
last attempt to reduce the non-terminal <position>. In normal operation,

the program procveds taking the decision displayed on the screen.
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In hybrid mode, (i.e., decoding and training) it will stop at the end of
the decoding procces and allow the experimenter to train it with nev

representations of the words not recognized.
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[ -2 4 Reex

Figure V-9. The program did not recognize the
adjective before BLOCK . (this word was ANY
not in the vocabulary).

Figure V-10. The program did not recognize the
positional adjective RIGHT . The two arrows
under the utterance description limit the three
syllables word considered in the last attempt
to reduce the non-terminal (positien) .
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V-5. RESULTS AND CONCLUSIONS
V-5-1. Results of the Sentence Analyzer
We illustrate the results obtained with the sentence-analyzer by
a series of pictures (Figures V-1l to V-25) and statistical results
performed with recordings made by several speakers (Figures V-26 to V-28).
The pictures are a direct photograph of the CRT dieplay caken during
a program run. They clearly illustrate the different phases of the
process. The detailed comments written by the side of each picture
relate it to the operations executed by the computer at the same moment.
As we previously stated, most of the sentence analysis displays presented
in these Figures are intermediate displays which are not shown in the
normal operation of the program. Only the top portion which represents
the utterance description and the bottom portion where the result of the
recognition process appears are ordinarily displayed. The statistical
results were obtained using sentences recorded by four speakers.
Figure V-27 gives the sentences used t6 build the lexicon of the word
recognizer and the sentences used to test the sentence analyzer. The
voices of the first two speakers were used to train the '"ear" routine.
To do so they had to speak the training set fiva times and the test set
once, vhile the next tw~ speakers spoke only the test set. Figure V-28
and V-23 show the results obtained. The noise was quite high (S/N ratio
m15db), since the recording was made in the machine room. Moreover the
speakers were talking at normal speed, as shown by the timings given for
each sentence. These timings (given in seconds) include (1) the duration
of the spoken command, (2) the time taken by the segmentation process to

segment the utteiance and classify :he resulting segments into phoneme
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Figure V-11. The "EYE" routines are
locating cubes in the field of view
of the camera . Only the outlines

of the objecta are seen . They are
tested in various ways to determine
whether or not a detected object is

a cube . Three cubes have already be¢en
found ; the "edge follower” is tracing

the edges of a fourth one .

Figute V-12. The entire scene has been
determined, the scene description has

been generated, and sizes have been
attributed to each cube . the "EYE"

routines terminate here, the control
will now be shired by the "ARM" rou=~
tines and the "EAR" routines until {t

will be necessary to generate a new
scene description .

Figure V-13.

valr for him for 30 seconds before
complaining . The recorded speech
utterance has a duration varying
from 0.3 second to 5 seconds, the
sound input being stopped when a
long silence is detected .

In the present case, the uttered

gsentence was :"PICK UP EVERY SMALIL
BLOCK STARTING AT THE BOTTOM RIGHT
CORNER" .

The "EAR" routines are
requesting a command from the expe~
rimenter . He can start speaking as
soon as the display disappea.s, but
the microphone service routine will
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Figure V-1, The spoken command has
been recorded correctly and the "EAR"
program is analyzing it . Segmentation
and classification into phoneme groups
are being performed on the entire ut- e You
terance, thus creating a scund descrip-
tion . This process takes from (.5 to
6 seconds depending on the duration of
the uttered sentence .

(about 4 seconds in this case)

Figure V-1¢. The segmented utterance
appears at the top of the CRT screen,
(more precisely, a display of the pa- Adsfel s
rameter Al, defined in the chapter II).
The two arrows indicate the portion

sita w
of the utterance description currently e w v m s
being analyzed . 3everal stored repre- ;EE-_' nonn
sentations of PICK UJP were found to rHaw @B e
match this part of the sentence . On
the basis of similarity values, PICK UP
was accepted as the first word of the
cowmmand .

FICY LP

cfigure V-16£. The sentence analyzer scans

the utterance description to find BLOCK. ’
A match has been found for the group of

segments indicated by the arrows . The now
program was trained wicth several diffe- - . v -7

rent speskers, which explains the low e 3, [
similarity scores obtained by some of :-EEE e

the stored representations . e anw

FICK UP Rocx
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Figure V-17. The program backtraces
from BLOCK to find the qualifying
adjective . An acceptable match has
been found for one syllable before
EIOCK . Two stored representations
ot SMALL have matched this part of
the utterance .

Figure V-18. The program backtraces
again from the beginning of SMALL,
looking for EVERY, several stored
representations of EVERY have matched
the part of the command delimited by
the arrows .

Figure V-19. The sentence is now exa-
mined from the end . According to the
grammar, the position informatLiom {a
contained in this part of ilhe sentence .
Only two words are possible here : SIDE
or CORNER . In this case, CORRER f{s
recognized .

(AL 4 Sl BLOCK

L)

[l ™ W &

o & e

= 22E
sveey

(3 L

FiCr UP EVERY BWALL  ROCK

1 ] L}
.
oaiman
“— L
FiCt UP EVERY SWRLL  BLOCK comes

173




Figure V-20. The program then backtra-
ces from the begimming of CORMER to
recognise the adjectives befure it
(CORNER expects two positional adjec-
tives). Several syntactically valid
stored rapresantations were accepted.
On the basis of the highest similarity
valus, RIGHT was chosen .

Pigure V-21. Backtracing from RIGHT, the
program recognizes BOTTOM . The sentencs
is now entirely decoded ; a command word
containing the useful information is
built and passed to the control program
which will now resuma t!:iis task by acti-
vating the “ARM" routines .

Figure V-22. The block chosen by the
control program (SMALL block nearest
to the BOTTOM RIGHT CORMER) is marked
on the CRT screen, and the coordinates
of the cormers of this block are pas-
sed to the "ARM" routines . The arm
displacemaents will be computed, and
the arm pick up and stech the block .
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Figure V-23. The block previously taken
away disappears from the screen . As
the system was ordered to pick up all
the small blocks, a second block is
marked as the next to be picked up .

Figure V-2h. The last remaining block
is marked and will readily disappear .

Figure V-25. The command has been exe-
cuted, and the final scene description
appears on the screen . In few secends
the program will request a nmew command
from the experimenter .

The time taken to pe: form this pass
through the entire system was about 90
seconds, most of it spent in the arm
displacements .

(this does not include the time taken
to produce the displays corresponding
to the "EAR" routines).
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TRAINING SET

RESCAN
sToP
PICK UP
PICK UP
PICK UP
STANOING
STANDING
STANDING
STANDING
STANDING

THE
THE
THE

OM

oN

SMALL BLOCK STANDING ON THE RIGHT SIDE
BIG BLOCK STANDING ON THE LEFT SIDE
MEDIUM BLOCK STANUING ON THE TOP SIODE

THE
THE
THE
THE
THE

BOTTOM SIDE

TOP LEFT CORNER
BOTTOM LEFT CORNER
TOP RIGHT CORNER
BOTTNOM RIGHT CODRNER

PICK UP EVERY SMALL BLOCK
PICK UP EVERY MED]UM BLOCK
PICK UP EVERY SIG BLNCr

YES

TEST SET

RESCAN
PICK UP
PICK UP
PICK upP
PICK upP
PICK uP
PICK UP
RESCAN
PICK uP
PICK UP
PICK UP
PICK UP
RESCAN
PICK UP
PICK UP
PICK P
PICK uP
PICK UP
PICK UP
RESCAN
PI1CK UP
PICK UP
sTopP
YES

THE SMALL BLOC« STANDING ON THE RIGHT S]DE

THE BIG BLUCK STANDING ON THE TOP RIGHT CORNER

THE MEQIUM BLOCK STANDING ON THE BOTTOM LEFT CORNER
EVERY SMALL BLACK STARTING AT THE RIGHT SIDE

ANY HLOCK

THE SMaLL BLOCK STANDING ON THE TOP LEFT CORNER

THE BIG BLOCK STANDING ON THE BOTTOM SIDE

THE HLOCK ON THE TOP LEFT CORNER

EVERY BLOCK

EVERY MEDIUM BLOCK STARTING AT THE BOTTOM RIGHT CORNER

EVERY B8]G HLOCx STARTING AT THE TOP LEFT CORNER
MEOIUM BLONK ON THE TOP SI1DE

SMALL BLOCK ON THE LEFT SIDE

MEOIUM BLOCK ON THE CENTER

THE
THE
THE
THE
THE

THE
THE

8IG

BLOCK STANDING ON THE BOTTOM LEFT CORNER

HLOCK ON THE RIGHT TOP CORNER

SMALL HBLOCK STANDING ON THE LEFT BOTTOM CORNER
MEOJUM 8LOCK STANDING ON THE RIGHT SIDE

Figure V=26, Training set and test set used to obtain scatiatical

results on the sentence analyzer .
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UTTERED SENTENCES UTTERANCE SEGMEN, DECODING

OURATION  TIME TIME
RESCAN 2,999 S 9,950 S 9,683 S
PICK UP SMALL BLOCK RIGHT SIDE 2,590 S 3,934 5 4,4%3 S
PICK UP BIGC BLOCK TOP RIGHMT CORNER 2,788 5 4,166 S 4,050 S
PICK UP RIG BLOCK BOTTOM LEFT CORNER 3,020 S 5,780 5 5,984 S
PICK UP EVFRY SMALL BLOCK RIGHT SOE 3.012 S 5,417 S 5,016 §
PICK UP EYERY 8LOCK 0,839 S 1,033 s 2,433 S
PICK UP SMALL BLOCK TOP LEFT CORNER 3,040 S 5,608 S 1,934 S
RESCAN 1,000 S 0,867 S 3,817 S
PICK JUP 8SIG HLOCK BOTTnM SIDE 2,758 S 3,500 S 5,480 S
PICK UP BLOCK TOP LEFT CORNER 2,100 S 3,684 5 3,483 S
P]ICK UP EVERY BLOCK 1,150 S 1,116 S 1,617 §
PiCK UP EVERY MEDIUM BLOCK BOTTOM RIGHY CORNER 3,319 S 7,000 S 6,984 S
RESCaN 1.042 S 9,934 5 2,4%3 S
PICK UP EVERY 31G BLOCK TOP LEFT CORNER 3,349 S 6,183 5 3,788 S
PICK UP MEDIUM BLUCK TOP SIDE 2,180 § 3,700 S 8,133 S
PICK UP SMALL BLOCK LEFT SIDE 2,368 5 3,284 S 2.7%8 S
PICK UP MED]UM BLOCK 2,040 S 4,2%2 S 5,780 S
PICK UP BIG BLOCK BOTTNM LEFT CORNER 2,990 S 4,150 S 4,133 S
PICK UP BJG BLOCK RIGHT TOP CORNER 2,360 S 3,258 S 3,467 S
RESCAN 1,020 S 0,933 S 0,917 S
PICK UP SMALL BLOCK LEFT BOTTOM CORNER 3,260 5§ 5,450 S 4,533 S
PICK UP MEDIUM BLOCK LEFT SIDE 2,658 5 4,259 S 5,016 S
sTQOP 8,690 S 9,383 S 2,167 S
YES 0,690 S 9,533 S 9,183 S

RESCAN 2.780 S 2,600 S 9,484 S
PICK UP SMALL SLOCK RIGHT SiDE 2,749 S 4,367 S 3,617 S
PICK UP BIG BLOCK TOP RIGHT CORNER 3,058 S 5,733 s 4,989 S
PICK UP MEDIUM HLOCK BOTTOM R]GHT CORNER 3,130 S 5,880 S 5,134 §
PICK UP sesen SMALL BLNCK RIZHT SIDE 2,880 S 5,167 S 2,733 S
PICK UP BLOCK 1,320 S 2,083 5 2,800 S
PICK UP SMALL BLOCK TOP LEFT CORNER 3.298 S 5,733 5§ 3,800 S
RESCAN 0,888 S 2,666 5 B,600 S
PICK UP BIG BLOCK BQTTAM SIDF 2,620 S 4,456 S 3,784 S
PICK UP BIG BLOCK TOP LEFT CORNER 2,308 S 3,350 S 5,233 S
PICK up EVERY SLOCK 1,160 S 1,733 s 2,917 S
PICK UP EVFRY MEDIUM BLOCK BOTTOM RIGHT CORNER 3,058 S 8,200 S 2,%16 S
RESCAN B, 848 S 9,867 S 0,856 S
PICK UP weses BIG BLOCK TOP LEFT GORNER 2,968 S 4,983 S 3,834 S
PICK UP MEDIUM BLOCK TOP SIDE 2,890 S 5,534 S 5,388 S
PICK UP SMALL BLOCK LEFT SIOE 2,290 S 3,933 S 2,334 S
PICK UP MEDIUM BLOCK 2,219 5 4,180 S 6,533 S
PICK UP BIf BLOCK BOTTOM LEFT COFNER 2,890 S 4,358 S 4.767 S
PICK UP BLACK RIGHT TOP CORNER 2,320 S 3,3%0 S 3,487 S
RESCAN 0,810 S 0,500 S 9,300 S
PICK UP SMALL SLOCK LEFT BOTTOM CORNER 2,852 S 5,966 S 12,284 S
PICK UP MEDIUM BLOCK RIGHT SIDE 2,750 S 7,334 S 3,380 S
sTop 0,748 S 9,467 S 9,217 S
YES 8,728 S 0,584 S 2,233 S

Figure V-27. Sentence aualysis results for 2 speakers whose voices
vere ugsed to train the computer .,
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UTTERED SENTENCES UTTERANCE SEGMEN, DECODING

OURATI]ION TIMC TINE
RESCAN 20,962 S 1,180 S 92,784 S
PICK UP SMALL BLOCK RiGHT SIDE 2,820 S 3,583 S 4,750 S
PICK UP B16 BLOCK TOP RIGHT CORNER 2,920 S 4,558 S 3,909 S
PICK UP EVERY 316 BLOCK BOTTOM LEFT CORNER 2,968 S 45,283 S 5,684 S
Pi1ck UP EVERY SMALL BLOCK RIGHT SIDE 2,95# § 3,483 S 3,183 S
PICK UP MEDIUM BLOCK 1,330 S 1,433 5 2,767 8
PICk UP gHAEE 8LOCK TOP LEFT CORNER 2,878 S 3,534 S 4,916 S
snaese 8,760 S ©,817 S 2.,8%2 S
PICK UP BIG BLOCKR RIGHT SIDE 2,718 S 4,916 S 3,520 S
PICK UP SMALL 9LOC P LEFT CORNER 2,988 S 2,958 S 2,317 S
PICKX UP sesases BLOCK 1,076 $ 1,366 S 2,484 S
PICx UP EVERY MEDIUM oLQCK HOTTOM RIGHT CORNER 3,892 S 5,934 S 4,383 §
RESCAN 8,998 S 2,884 S 9,683 S
PICKX UP EVERY AIGC BLOCK «es sene ssscas 2,788 S 5,250 S 6,350 S
PICK UP BIG HLOCK Y0P SIDE 2,362 S 2,650 S 3.,8%2 S
PICK UP SMALL 9LOCK LEFT SIDE 2,210 S 2,960 S 3,082 S
PICK UP MEDJUM 3LOCK 1,898 S 2,166 S 4,767 S
PICKX UP BIG HLOCK BOTTNM LEFT CORNER 2,818 S 3,684 5 4,783 S
PICK UP BLOCK RIGHT TOP CORNER 1,888 S 2,650 S 3,650 S
RESCAN 0,668 S 9,816 S @,752 S
PICK UP SMALL BLOCK HT BOTTOM CORNER 2,980 S 5,2%0 S 5,533 S
PICK UP EYERY BIGC ELDCx RIGHT SIQE 2,798 S 3,383 S 5,352 S
stTop 8,720 S 2,558 S 6,217 S
YES 0,460 S 2,483 S 0,201 S
RESCAN 8,960 S 0,666 S 1,9% S
PICK UP SMALL BLOCK LEFT SIDE 2,570 S 4,900 S 3,900 S
PICK UP RIG HLOCK TOk EFT CORNER 2,860 5 3,784 S 4,233 S
PICK UP MEDIUM 8L0CK B%'fUH LEFT CORNER 2,676 S 5,950 S 5,883 S
PICK UP EVERY SMALL BLOCK RIGHT SIDE 2,758 S 5,380 S 3,707 S
PICK UP EYERY BLOCK 1,249 S 1,367 S 2,933 S
PICK UP =eese B_OCK TOP LEFT CDRNER 2,730 S 4,250 S 3.%00 S
RESCAN 9,960 S 2,763 s 1,050 S
PICK UP BIG 8LOCK BOTTOM SIDE 2,630 S 3,756 S 4,166 S
PICK UP BILOCK TOP R]JGHMY CORNER 2,820 S 3,984 5 3,633 S
PICKX UP EVERY HLOC 1,350 S 1,3%¢ s 2,267 S
PICK UP eesee BIGC HLOCK BOTTOM RIGHT CORNER 3,330 5 6,183 S 7,258 S
RESCAN 9,920 S P,767 S B,%66 S
PICK UP EVERY BIG BLOCKX TOP LEFT CORNER 2,948 S 6,433 S 3,817 S
PICK UP MEDf{UM BLOUCK TOP SIDE 2,120 S 2,966 5 3,108 S
PICK UP SMALL BLOCK LEFT SIDE 2,200 S 2,717 5 3,166 S
PICK UP MEDIUM ©LOCK 2,000 S 2,633 S 4,733 S
PICK UP BIG HLOCK BOTTNM RIGHT CORNER 2,820 S 5,316 § 4,967 S
PICK UP BLOCK RIGHT TOP CORNER 2,320 S 3,734 5 4,352 S
RESCAN 2,908 S 8,717 S 2,917 S
PICK UP SMALL BLOCK RIGHT BOTTOM CORNER 3,118 S 4,608 S 5,100 S
PICK UP MEDIUM 3LOCK RIGHT SIDE 2,608 S 4,316 S 5,3%9 S
STOP 2,740 S 3,%16 S 9,208 S
YES 2,470 S 9,408 S 0,193 S

Figure V-28. Sentance analysis results for 2 speakers whose volces
were unknown to the computer .
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groups, and (3) the time taken to decode the sentence. The character
strings at the left of the Figures are the sentence analyzer output.
They were slightly modified to render them more comprehensgible; i.e.,

"#" and each

each non-recognized word was replaced by a series of

incorrectly recognized word was underlined.
Although the percentage of correctly recognized sentences is not

exceptionally high 85.5% correctly recognized for the two apeakers

utilized to train the program, and 66.€§ for the other two, the number

of correctly recognized words is more impressive (964 and 90% respectively).

Furthermore, the program is capable of detecting some of its own failures,

that s, those which occur when one of the nonterminal symbols cannot

be reduced, and for these cascs it can be modified to reaquest the

experimenter to repeat the sentence. Likewise, to insure a correct

execution of a given task, it can be provided with execute and reject

commands; i.e., 1f 8 sentence has been correctly decoded, the

experimenter requests its execution by saying "execute”, but if it has been

incorrectly decoded, he says '"reject" and repeats the same command again.
An interesting point of the exhibited results is the ,.oyram's

failure to recognize the lith command of the third speaker (Figure IV-u8).

The program did not recognize corner at the end of the sentence and

therefore could not recognize the two preceding adjectives since it

could not determine the boundaries of these two words. This illustrates

the well known problem of error recovery of syntax-directed compilers.

0f course, in our simple case, an ad hoc techaique could have been

devised to recover from such & blunder But ‘. & more general case, the

problem of error recovery, when the program fails to detect ‘he boundaries
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of one word is one of the most difficult sub-problems in the general
problem of connected speech recognition.

Although the recognition times presented are already short (an
average of 9 seconds was taken for the recognition of the longest sentences),
ome could effectively eliminate the time required for segmentation by
using the real-time segmentation program described in the next chapter
(desk-calculator) which divides the utterance into discrete parts while
the experimenter is talking. Likewise, the replacement of the actual
grammar by a stricter one (without the terminal symbol EMPTY added to
allow the decoding of quasi natural english sentence) in which a left-
to-right pvarsing algorithm can be applied could slightly reduce the
decoding time. Under these conditions, a L second long sentenca could
be recognized in 3 to 4 seconds, that is about 3 times faster than a
trained typist can type it.

V-5-2. Conclusions

It will be probably a long time before a computer can equal the
perception and dexterity of a human being. This will require not only
advances in the area of computer architecture and in the quality of the
external devices, but algso a better unders;anding of perceptual and motor
processes.

Even the limited progresa achieved so far can result in comp:ter
hand-eye-ear systems that are better suited ‘or some purposes than
human beings. For example, they may sez ihings and hear sounds that a
person cannot and they can work in areas prohibited to humans (nuclear
energy laboratories for example). They may be faster, stronger, more

economical or more expandable than men. -
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The fact that a computer may not be able to "understand" all the
things it can gsee or carry on fluent conversation should not be a cause
for extra concern. Let us consider the case of programming languages.
Although we have not been able to communicate with computers in a natural
language, a great deal is achieved using structured ad hoc languages like
Fortran or Algol. We believe that this will be the case with visual
and voice input to the computers or with computer control of manipulatora.

We foresee several practical applications that can profitably use
the techniques described in this chapter. One that is most often
mentio..ed is the possible bandwith reduction in picture and speech
transmission systems. Computer concrollel carts which can navigate
themselves, automated factories, where computer controlfed manipulators
with visual feedback can handle many situations which cannot be presently

handled by fixed .equence manipulators, voice controlled data retrieval

systems are within the range of the present state of the art.
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Chapter VI
DESCAL

A VOICE CONTROL1.ED DESK-CALCULATOR

Vi-1l. TNTRODUCTION

The speech analysis subgystem of the HAND-EYE-EAR system [i.e., the
EAR part) does uot Wﬂlly utilize the power of the word recognizer which
s available to it. Thi; word recogrizer, which is able to accurately
differentiate between the words of iarge vocabularies, is only requived
in this case to decode sentences constructed from a lo word vocabulary.
Syntactical contraints further reduce the list of candidates to at most
L4 entries each time a recognition is attempted. In this especially simple
case, a much simpler ad-hoc algorithm could have been devised to resolve
any remaining ambiguities. In this chapter, we shall describe a more
exacting application of the speech recognition system: a voice controlled
desk-calculator DESCAL.

The sentences ar: structured by a linear grammer acting on a
vocabulary (i.e., set of terminal symbols of the grammar) composed of
46 words (or terms like RUB OUT). While processing spoken cuiyands, the
granmar is utilized twice, namely:

-1. To reduce the search and eliminate phonetic ambiguities by
look-ghead during the decoding of the sentence.

-2. To direct the left-to-right parsing algorithm while executing
the command.

Desirable characteristics of a voice controlled desk-calculator are:

-1. The uttered words should automatically appear as ycu speak,
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without waiting for the compiction of tre whole sentence (unlike the
HAND-XEYE~EAR cvslen, Lo wale” the cowraad was civen all ot the same time
in a connected épeech utteraonce).

~. <Should the computer make a mistake at any given point, it siould
be possibie to alter by voice command the word whici was erronvously
recognized. This requirement is in contradiction with the preceding one
if the computer system utilized is unable to recognize words much faster
than a person can utter them. If an error is noticed after several other
words have been uttered, it becomes necessary to ''erase" the symbols
following the error before attempting to fix it and to repeat all of them
afterwards .

-5, The language used for controlling the calculator should be
natural so that users will concentrate on their computation and not on the
form of the statements.

To satisfy the first requirement we had to reprogram the utterance
description generating process and the utterance recognition in order to
increase their speed. Since the previous chapters have shown that the
speech analysis processes (segmentation and classification into phoneme-
like -groups) were almost performed in real-time, we decided to execute
them while the experimenter is talking. To per iorm this transformation,
the corresponding programs were simplified, coded in machine language
and jncorporated into the hardware preprocessor service routine, the only
program capable of processing the micropinone input buffer while the input
operation is executed (in a parallel fashio.).

Because of syatem limitations which are mainly due to the slowness of

the available computer (1.0 ps or 2.0 us memory cycle time, 2.5 ys for
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a fixed point addition), it was impossible to recognize a given terminal
synbol in real—time,.even with the¢ search spacé reduction 7é;u1ting from
the syntactical constraints. The anount of computation time recessary
to recognize a werd is typically 0.5 to 1 second, but since this program
is run under the timc-sharing system, this basic time ca. be largely
- increased if there are several users working on the machine and if the
program is swapped in and out o memory.
To overcome these 'imitaticns, we could have implemented a speech-
input similar to the HAND-EYE-EAR :ystem sprech-input (Chapter V); that
is, a full desk-calz=u'ator statement is read-in through the microphone and
thegxgnalyzed. In this hypothesis, the decoding of the statement would
have bcen done by first determining the syllable boundaries and then by
recognizing each word in the same manner the EAR part does. Of course,
the word recognizer wou]d have to be trained with actual words taken from
few typicfl ipo?eqifettences. If this had been done, anil if a recognition
errorocc\tred,thc only solution would be to reject the whole statement
and to rép?at it, whicih is annoying if only one of the symbols ls‘erroneousv
To satisfy the second requirement, we decided to use a word ak”a time
input because it e¢liminates the erasing problem and it makes the calculator
independent of the speed of the machine. At present, the experimenter
has to wait one second before saying the next word. Of course, this is
not fully satisfactory,'buq if a‘fa;ter computer was available (]ii; CcnC-
6600 or IBM 3€0/91), a short sflence” between words wculd be sufficient tol
perform the recognition of the preﬁ%ously uttered word. In fact, since ’.
the recognition is performed in 0.5 to 1 second, a 5 times faster camputet'

would be sufficient to implement a real-time desk-calculator (such a
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computer is already common since an IBM 360/91 is 30 timea faster than the
FDP-10 we used). \

The language described in the uext section attempts to satisfy the
third requirement.

The chapter will present the structure of DESCAL along with the
modifications effected on the recognition system in order to increase its
speed which 1is one of the wain goals of this last application. The chapter
can be summarized as follows:

-1, Presentation of a language adapted to the specific voice
controlled desk-calculator task.

=2. Description of efficient speech analysis and recognition
procedures capable of decoding and executing syntactical correct commands
in real-time (or almost real-time. The words are read in one at a time and
are recognized in 0.5 second to 1 second).

~3. Description of the results obtained and conclusions. A set of
photographs exhibiting the execution of a simple camputation as displayed
on the CRT console used as physical support of DESCAL terminates the
chaptev.

The collection of subroutines shich compose DESCAL occupies 14K words
of memory: 7 K words of buffer and lexicon storage area and 9K of machine

code.
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VI-". THE TANGUAGE OF DESCAI,

Tho uscfulness of any desk-calculator will depend on its convenience.
It has to be at least as good as usual desk-calculators as far as the
cencranlity of the op?rations which can he performed on such a device is
concerned. This wﬂ;‘achieved by implementing a 10 register machine
provided with 7 basic operations and 10 arithmetic functions. All these
basic components are easily modifiable and expandable by a tew modifications
performed on the tables which implement the grammar.

Languages for speaking to machincs would in general have a different
structure than their written counterparts. Desirable characteristics of
a spoken command language are:

-1. The sentences of the language have to be easy to speak and
natural sounding. For example, sentences like: "ALPHA EQUALS BETA PLUS
GAMA SEMI-COLON" are unsatisfactory for speaking.

-2. The terminal symbols (i.e., words of the vocabulary) have to be
chosen so that the phonetic ambiguities and word boundary ambiguities are
minamized.

LThe language described in this section attempts to satisfy these
requirements. Whenever these requirements are in contradiction, the convenience
has precedence over the choice of the terminal symbols (e.g., the digits
were left in their normal spoken forms even though ambiguities may arise
from the acoustic similarity betwean FIVE and NINE).

For reason of convenience, and to allow interesting arithmetic
functions, all the numbers of DLSCAL are real. Of course, integer numbers
are permitted in fnput, but they are immediately converted to their

real representation.
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VI-2-1. Syntax of the language

The language of DESCAL is defined by the linear grammar which is

representcd by rhe folloving set of bhackus-haur productious:
<command> ::= <statement> EXECUTE | <statement> ERASE

<statement>> ::= -store statement>  computc stateuent’>
)

~arithmetic statemnent’

<gtore statement> ::= STORE <real number> INTO <register>

<real number> ti=  <fnumber> |<fnumber> 4 <snumber>
<fnumber™ , 1= <gnumber> l<smmber> . “number>
<smmber> ‘= <number>|— <number>

<mumber> sim <digit> |<digit> <uumber>
<digit> Cim oltlz 5 hislel'(lelg

<compute statement> ::= COMPUTE <function> OF <register>
<function> ::= SQUAROOT |s1mv. I COSINE ITANGENT I LOGARITHM I

RATURALOG l EXPONENT I ARCS INEI ARCOSINE l ARCTANGENT

<arithmetic statement> ::= <operator> <register> <preposition>
<register.

<operator> ::= MOVE | ADD | SUBTRACT |HULT1PLY i DIVIDE

<preposition> ::= BY I 0 I FROM

<register> ::= ZULW | STIK | sTAR | KILO losmni

PAPA ] WEST | SISTER | WHMISKY| FOX
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V1-2-?. Scmantics of the Language

EXECUTY, When a desk-calculator statement has been correctly recopnized
by the sencance'recognizer, its execution is requested by
saying "EXRCUTE'". Two differcnt actions take place at that
point

= The command is cxecuted by an interpretive program.

- The representations of the utterances marginally rccognized
are introduced into the lexicon, so that the system is
continuously improving 1ts performances.

ERASE 1f an error has odcured, or if the experimenter changes his

+ mind, he rejects the cntirc stotement by saying "ERASE"™. The
statement is erascd and ipnored (not cxecuted).

RUB OUT (not in éhe grammar) This terminal symbol is allowed at any
moment in a statement. It provokes the deletion of the
previously uttered termiral symbol and piaces the syntax-
directed sentence analyzer in the corresponding state.

To explain the other statements we shall use a convenient algol-like

notation.

STORE real number INTO register s repister w—realnumber

COMPUTE function OF register smp repister w—function (register)
MULTIPLY registerl BY register' =p repisterle-resister! x recister:

DIVIDE  registerl BY register ° o registerle-registerl / register?
ADD register TO register: =p rcgister?e-registerl + register?
MOVE register]l TO register” =9 regis!erPm-register

SUBTRACT registerl FROM register’spregister’e-register’ - registerl
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Vi-2-5. Implementation of the Syntax-Directed Statemen’ Analyzer

Syntax-directed recoguitioa is implemented by means of tables of
syntactically corcecc terminal syubols at thz current stage of the analysis.
A flowchart of the sentence analyzer is given on Figure VI-1. Each box
RECORD and RECOGNIZE ....contains, between parenthesis, the list of
syntactically correct terminal symbols. Only these will be considered as
possible candidates by the recognition process. In the implementation, a
table of allowed terminal symbols is attached to each of these boxes. Any
probable candidate, which was selected by the lexicon search procedures
(Chapter IV), and whose print-name is not preaent in the current table of
allowed symbols is eliminated from rhe list oivyﬁbbable candidates. This
process considerably reduces the searech sgpace of the word recognition
process and eliminates all ambiguities mainly because the vocabulary is
carefully chog2n. When a symbol is recognized, its print-name is placed
in a storage arca which contains the print-names of tiie stacement parts
already recognized. We will refer to this storage area which is used by
the statement interpreter during the execution of the command as the
written-form of the statement. Then, the syntax-directed analyzer assumes
the next state (i.e., set up for the next table of allowed symbols)
depending on the name of the last recognized termimal symbol  For example,
if STORE has been recognized as operator, the program gets ready to
recognize a number a~.d will stay in this state until INTO is recognized,
then it will get ready to recognize a register and so on.......

As long as a terminal symbol is not recognized, the prucess stays in
the same state (i.e., utilizes the same table of allowed symbols) and

requests new utterances of this word by displaying question-marks.
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When the word-recognizer makes an identification error, the expevrimenter
may use the RUB OUT feature. The word RUB OUT is allowed anywhere within
a statement (i.e., its print-name is part of all the tables of allowed
symbols). Whenever this word is recngnized, the process suppress the
last recognized symbol from the statement written-form and replaces the
syntax-directed sentence analyzer in its previous state by utilizing the
remaining parts in the written-form of the statement. The process which
returns to the previous stete utilizes the grammar in the same manner as
the interpreter uses it to analyze the stored written-form‘during execution.
VI-2-4. Comments

The sentences of the langnage defined by this grammar are short and
quasi-natural. People can speak and remember these statements easily:

ADD STIX TO ZULU EXECUTE
CCMPUTE LOGARITHM OF FOX  EXECUTE
DIVIDE STAR BY SISTER EXECUTE

Acoustic ambiguities arise only during the recogrition of the digits
{in particular 5 and 9). But for the sake of convenience, we decided not
to change their names.

Although the DESCAL vocabulary may be globaly ambiguous (e.g., TO and
TWO, FOR and FROM, BY and NINE are very likely to be confused), these
ambhiguities do not create any problem as a result of the use of the

grammar .
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Vi-3. THE WORD RECOGNITION SYSTEM OF DESCAL

The previous section has described the language of DESCAL and how a
grammar can be used to decode sentences made of several words. The present
section explains the process which records and recognizes a spoken terminal
symbol, each time this action is requested by the syntax-directed analyzer.
As i the previous chapters, the recognition of a given utterance is
performed in two distinct steps, namely: generation of a description of
the utterance and ::lection of a best-match candidate in a lexicon which
contains the descriptions of previously "learned" utteraaces. The
procedures which are described in the next three subsections are conceptually
identical to those described in the Chapters III and IV of the present
dissertation. However, since speed is one of the main goals of this
second application, several important modifications had to be made to
the system in order to reduce as much as possible the time necessary to
recognize a given utterance.

Vi-7-1. The Utterarce Description Generating Process

Utilizing the heuristics presented in Chapter III, a completely new
process which analy=zes the utterance and generates a compact description
while the experimenter is talking was programmed. A detailed flowchart
of this fast segmentation-classification-into-ponene-;roups is presented
on Figure VI-2, This program is a real-time user's program, i.e., it is
restarted every 16.7 ms by the supervisor and runs in parallel with the
regular user's program. In fact, the latter is not running at that time
since it is waiting for the A/D converter input operation to be finished

(I1/0 which is terminated by the real-time user's program as shown on the

flowchart). The sequence of operations is as follows: the regular user's
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program initiates the real-time program and the A/D converter input,

these two processes are executed in parallel on tlie microphone input buffer.
The control is returned to the regular program when a long enough silence
has been detected in the input speech data.

Sy examining carefully the new segmentation process, one will be
able to isolate the primary segmentation, the most important part of the
secondary segmertLation (parameters with too much variation in a sustained
segment), the combining process, and the classification process. All
of then are described in Chapter III. The main difference is that instead
of a sequential execution, all the processes are now organized in a
coroutine fashion. The primary and secondary segmentations are performed
directly on the minimal segments. The combining, detection of extrema and
classification are performed each time a low amplitude segment, which is
necessarily a FRICS, STOP or BURST is found. The conceptual idea behind
this classification scheme is that in general, one needs contextual
information to decide the type of a given sonorant segment (VOWEL, CONST,
NASAL). On the other hand low ampliitude segmenta can be classified
without reifcrring to their adjacent segmenta. Therefcre, they furnish
anchor points between which a classification can »e nerformed.

“he funcrion which computes the closencss Lietween any two segments
{(closeness function) is describad in Section iI1--. The classification
algorithm is kept in its coriginal form [Sectior III-5), and so are the
combining procesc and the extrema detection procedure (Section III-L).

The complete real-time program returns to the regular user's program a
atandard feature matrix as presented on Section III-6 which enters directly
the recognition process. ~
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VI-3-2. The Recognition Process

The recognition process is almost identical to the process described
in Chapter IV. The only two modifications which were performed are a
translation of all the procedures into machine language and the removal
of the error recovery procedure (Section IV-4-4) which has proven to be
time consuming for a little improvement of performance. Since the
experimenter is able to repeat his last utterance, in case of failure,
we felt that tie sgving in time realized was worth the few additional
errors.
VI-3-3. The Learning Process

The organization of the lexicon, which is described in the Section
IV-2, is not altered for use n DESCAL. Consequently, the lexicon handler
subroutines are left in the same form. Only the learning scheme
was slightly modified so as to make the program self-improving. Two
distinct learning phases are executed by the program. The first one
takes place when the program is started. The experimenter is requested
to speek three times the words of the vocabulary. These utterances are
analyzed, the descriptions are generated and stored in the lexicon along
with the corresponding character strings. Then the program accepts
degk-calculator statements and recognizes each utterance. While this
process 1is going on the utterance descriptions which represents the words
of the sentence are stored along with the recognition scores they
obtained and their corresponding character strings. When the word EXECUTE
is recognized, the program, assuming that it correctly identified all
the previous utterances, stores in the lexicon all the utterances which
obtained low similarity scores, thus constantly improving its performances
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by a continuous learning. This process :cntinues until the lexicon is
full of learned data., The utterance description storage is, of course,
altered by the RUB OUT command which deletes the last uttered word which
is supposed incorrectly recognized.
VI-3-4. Comments

Since no statistical tests were performed on this word recognition
process, we cannot compare it precisely to the process presented in Chapter
1V. On the utterances it had to recognize, its performances were
satisfactory (about 90 percent were correctly recognized), but these
sentences were easy to segment (utterances composed of vowels, silences
and fricatives) and the grammar was helping a great deal the recogniiioa
process. We believe that this program might not have performed as well
if we had to segment several adjacent soncrant sounds or if we had to

distinguish phonemically ambiguous words.
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VI-4 RESULTS AND CONCLUS IONS

As in many of the preceding chapters, a typical computation executed on
DESCAL will be explained by means of CRT pictures (Figures VI-3 through
VI-14). They exhibit the computation of the hypotenuse length of a
rightangled triangle when the lengths of the other sides are known.

When the computation ends, the lengths of the sides are stored in the
registers STIK and STAR, and the hypotenuse length is in PAPA. Besides

the syntax-directed sentence decoder and the real-time utterance description
generating process, DESCAL is provided with conversion routines for numbers
(character string to floating-point representation and vice-versa) and a
small interpreter which executes the desk-calculatcr statements. Since
thene procedures have not special interest, they will not bc described

here.

Figures VI-15 and VI-16 ¢xhibit two error messages issued by DESCAL.
SYNTAX ERROR means that the input sentence is not symtactically correct.
Since the only symbols accepted by the input routine are the syntactically
valid terminal symbols, this erxtor message occurs very unfrequently,

(unless there ias an error im the coding of the algorithm which can then
be traced and fixed). ARITHMETIC OVERFLOW means that one of the register
value is too large (for example when iividing by 0). In this case, the
command is not executed.

DESCAL is a working system which demonstrates that a reasonable desk-
calculator responding in real-time to the experimenter's voice can be built
on today's existing computers (about 5 times faster than a PDP-10). If£
we had a 30 times faster computer (like CDC 6600 or IBM 360/91), it may be
possible to handle 20 people in time-sharing, which would perhaps be of
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interest, not so much for a desk-calculator type application, but as a cata-

retricval system.
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Pigure VI-3. Initial state of
DESCAL . Ths program is waiting
for the microphone input .

Figure VI-4. The operator STORE
and the first digit L have been
recognized, the program is waiting
for ths next number componsnt .

Figure VI-5. The register which
follows INTO has not been reco-
gnizsed . The program requests a
new uttarance of the same word
by displaying 77777 .

HERE IS JESCAL AT YOUR SERVICE

Sy ' [ 4 L - ] [ 4
 2e [ [ 4 A a .
A . [ ST ' [ 4
o ' [ s ”
"o . [ T . (4

MEFE IS CPSCA. AT YOUR SRVICE
v ' [ asow . .
mx [ [ ~en ' [
e ] . - ' ”
[, ] . ’ SR ”
L B [ Y [
g L]

HOE IS SESCA AT YOUR SERVICE
b T [ [ 4 s [ 4
m ' [ on ] [ 4
[ [ 4 v ] [ 4
[ ' [ 4 |MEWR ¢« [ 4
[T [ e . (4
4 [ 4 20
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MERE IS SESCAL AT TR SERVICE

Figure VI-6. The desk-calculator L ’ -w .
statement has been entirely deco- ”m ") e [
ded and appears at the bottom of
the CRT display . me ’ -r o .
[, ] ' [ . 14
me [ weawy . ’
SR [ J 209 STIR
HERE TS CUSCAL AT TOUR SERVICE
nv ’ osom .
Figure VI-7. When the experimenter I sy ~en . .
says EXECUTE , the command is ,
executed . The value appears in hiiael ’ - o ’
the register STIK . " ' [ [ - .
Ko ’ ’ wy . [}
e » o ST

.71 ‘ [ L ] [}
s 1 ¢, PPN rn s [
Figure VI-68. The next statement — .
has been decoded and executed . on * ' - ’
[} v [ ] TR [ 4
e ' f ] Y [
m @ 20w ST
SR s.ew a2
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Figure Vi-y., The preposition TO
was found too weak (amplitude
parsmeters were too sm:a2ll) . The
prigram; requests a lo:der version
of it bafore attempting the reco-
gnition .

Figure VI-10. The computation
executed on DESCAL proceeds .

Figure VI-11l. One can easily
follow the computation on the
10 registers of the machine .
Only the 4 moet recent state-
ments are displayed on the CRT
screen .

MENE IS DESCAL AT TOUR SERVICE

aav ] [ ] L - S 4

oy LRI LI L o} ' 4

R 1 03, ARSEREYS T ] 4

an 1 [ SIS . 4

e ' [ ] W [

orwm L 4 D T

s .90 Do STAR

o TN

FEAK LADER ALEASE
MU IS JESCAL AT TOUR SERVICE

v ] [ L - N} [ 4
STIX + oo, MRNERERS § R 1 58, SO ¢
E - t o3, (RSP ¢ | - -4 ] »
ran ' [ 4 IR [ 4
me . ey »
e L 4 2w TR

E .00 290 ST

~on = ™ [}

MO IS SESCAL AT YOUR SERYICE

AV ] [ asam 4
STIX 1 o4, SRR § A 1 of a3
e v o3, ARSI ¢ Y 1 o3 ARNRENE ¢
~n 1 4 =25n 14
e . [ ] Y 4
SR 2.00% ¢ 29 I
gz 7 » L)
o SR » -
MATIY e L)
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Figure VI-12. The program computed
the squaresof the two sides of the
rightangled triangle in the regis-
ters PAPA and WEST .

Figure VI-13. PAPA now contains
the square of the hypotenuse
length .

Figure VI-1k. The computation

terminates here . The lengths of
the sides are in STIK and STAR .
The hypotenuse length ia in PAPA.

HERE IS JESTAL AT TOUR SERVICE

aav ' . agow ’
”x 1 A4, SIS ¢ L o) v 4. 50PN
STAR 1 o1 SRSNEN ¢ L4 1 o3 SARINRE
L] . [ AR [
Mo (4 ey [
L = ™ [ )

L3 SR ro -

MATERLY WA [ 4 ~n

MATIRY WY [ 4 T

HERE IS JESCAL AT TOUR SERVICE

1Y) ' [ amam o [
X N ) ] N
o (N | - 1 *9 MENEANE
[ ' [ SR . »
Lo ] [ ey [
[ ] SR ro T

NATIRY PN [ 4 ram

NATIRY WOT [ 4 -sr

~p | -4 ™ [ . )

MERE IS JESCAL AT YOUR SERVICE

nv * L4 v [ 4
STIK 1 o 4. APPSR ¢ 1 o8 SUPPIS ¢
I v o3, SRR ¢ (X
R ' » v [
e . [ 4 ) [ 4
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MRE IS SESCAL AT YOUR SERVICE
b7 (T} 1 [ 4 - - B [ 4
STIK 1 o8, PRSEREE{ o o Y 1 3. SOOI §
ST 1 23, PRPPPI ¢ msT 1 o3 SENEIInE
~an 1 [ J AISTER ¢ ”
nne [} ” Y [ 4
MATILY ST [ .4 st
~o st b4 rren
anVvIE SuWaweT o FAPA
ass SWIAR DWMR osa

Figure VI-15. The decoded statement was not
syntactically valid . The statement was
erased, replaced by the inscription :

*%% SYNTAX ERROR ***, and not executed .

MERE IS OESCAL AT TOUR SERVICE

AN 1 [ J - [] [ 4
ST Ny 1 L g} t o3, WIS |
STAR [N 1) - t o9, BEIPEIINE
an ' [ SN . ”
e ' [ 4 " . [
~D 4 To PR

apR SusaeT ar o]

e SWEER ETUNR e

e AN OWLAE el

Figure VI-16. A division by 0.0 has been
ordared . The desk-calculator complains ,
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Chapter VII

CONCLUS 1ONS

The principal goal of this work has been the efficient recognition
of specch by a computer. To achieve this, several hardware and software
techniques had to be~developed. New approaches to probloms already solved,
and new solutions to problems not investigated before have beea describhed
Amongst these are:

-1. Implementation of a preprocessor, which extracts amplitude
and zero-crossing parameters in adequate frequency bands .

3 Use of a closeness function to segment Lhe utterances on the
basis of their acoustical propertics

- Investigation of the segment synchronization problem and
design of a working solution which uses the segments obtained through
the segmentation process

-4. Reduction of the candidate space by a carefully organized
lexicon and by tests performed on rough global featlrj* charACtﬁrizing
the utterances to be matched ‘

-5, Investigation of the problem of recognition of connected
speech utterances and implcmentation of two working systems able to
decode sentences of limited languagcs.

The research described in the preceding chapters leads us to tie
following conclusions about the nature and methodology of speech analysis
and recognition by a computer.

-1. The fact that, using very simpie-minded and crude parameters,
we have been able to achieve very high recognition scores implies that

the present preoccupation with spectrum, formant trackers, polynomial
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expansionsg, etc... seems unwarranted, and any one of these schemes will
work reasonably well provided the subsequent algorithms are carefully
designed. The reasons we used the zero-crossing technique are that it is
simple and direct to obtain. One should be able to replace it by any
other technique and still obtain good, it not better, results. 1f the
prime interest of the reader is speech recognition, we suggest that he
get out of the preprocessing loop and investigate the subsequent and
intellectually stimulating problens.

-2. The present controversy about the impossibility of phonemic
segmentation also seems unwarranted. In our investigation, we do not ask
whether phoneme, syllable, or word are the units to be dealt with. We
use every one of these concepts ranging from subphonemic level to word
level at various stages of the analysis

-5. In the recognition of limited languages (even with large
vocabularies), it is unnecessary to have very accurate phoneme-like
classification, although such feature might be useful to reduce the
search, it remains to be seen whether the reduction resulting from
highly accurate classification will exceed the amount of work needed to
perform the necessary classification and associated error recovery task.

-4. Almost any reasonable classification technique will work in
speech recognition, however if one is to hope to achieve recognition
close to human abilities, then one has to rely heavily on the techniques
developed in Artificial Intelligence research, namely: reduction of search
space by means of heuristics based on the problem characteristics.

=5. 1t is not clear whether one has to ever try to distinguish

between unvoiced stops /p/, /t/, /k/, (or other such similar groups)
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if he 1is dealing with limited languages, even if the language is some
form oy simplified English It appears that the syntactic constraints
provided by the erammar are sufficiently powerful to resolve any such
ambiguity. In the light of our experiments, it seems reasonisle te spend
effort in devising techniques to build more and more powerful grammar
rather cthan in deciding what preprocessing techniques to use.

Because of the immensity of the task, it was not possible to
consider some other aspects of speech recognition which have to be solved
before we can have any semblance of a sophisticated speech recognition
system. Future work on the subject should include:

-1 Implementation of a learning system.

The success of this speech recognition system and its accuracy
are based on a large number of weights and thresholds. At present,
these quantities are adjusted by hand through long and tedious debug-modify
cycles. The implementation of a learning program which will replace these
"handcrafted" values by accurate numbers deduced from the examination
of thousands of data should considerably improve the system.

-2. Elimination of the variation of parameters from one speaker to
another . At present, the system must be trained with the experimenter's
voices in order to have a good recognition rate. This defect may partly
disappear if the system is provided with ''learned' coefficients obtained
through the processing of speech data uttered by a large number of
different speakers. A more promising approach which is unaer investigation
at the moment is the normalization of the preprocessor output on the
basis of voice characteristics for a given speaker. The data necessary

to the normalization program could be obtained by the analysis of a
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standard set of words uttered by the speaker before any experimentation

->. Study and design of larguages well suited for speech
recognition.

The main shortcoming of the two languages presented in this thesis
is their simplicity. A careful choice of the vocabularies and more
sophisticated grammars should allow the ifmplementation of what we can
call: spoken programming languages. For these, not only should the
sentences be syntactically unambiguous, but it should be possible to
determine word boundaries and to recognize words unambiguously. This
extension of the present work is also under investigation, and interesting
solucions should be obtained in the next few years.

The list of possible extensions of this thesis could be easily
expanded. It is clear that a large number of problems remain to be
solved in the arsgrof automatic speech recognition. The computers are
not yet capablelﬁf carrying on fluent conversations, but for the first
time, a computer program was able to "understand” a simple English

sentence made of several words and to "execute' the corresponding task.
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