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THE KINEMATICS OF MANIPUIATORS UNDER COMPUTER CONTROL

ABSTRACT

This dissertation is concerned with the kinematic analysis of

computer controlled manipulators. Existing industrial and experimental

manipulators are cataloged according to a new model which allows for the

systematic description of both existing and new manipulators.

This work deals mainly with manipulators consisting of six degree­

of-freedom open chains of articulated links with either turning (revolute)

or sliding (prismatic) joints. The last link called the "hand" is the

free end of the manipulator and has additional motion capabilities which

make it possible to grasp objects.

The following problem is discussed: given the desired hand position

and orientation along with the various link parameters defining the

structure, what are the values of the manipulator variables that place

the hand at the desired position with the desired orientation? Solutions

to this problem are presented for any six degree-of-freedom manipulator

with three revolute joints whose axes intersect at a point, provided the

remaining three joints are revolute or prismatic pairs. These results

can be expressed as a fourth degree polynomial in one unknown, and closed

form expressions for the remaining unknowns.

It is shown that this is equivalent to the kinematic analysis of all

single loop five-bar mechanisms with one spherical joint and four joints

which are revolute or prismatic pairs. The extension to the case where

only one pair of axes intersect is discussed. A similar solution for

any manipulator with three prismatic joints is also given.
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A numerical procedure based on velocity methods is developed to

analyze manipulators which cannot be "solved" explicitly. This pro­

cedure is found to be superior to the widely used Newton-Raphson

technique.

The problem of positioning a "digital arm" (Le., a multi-link

manipulator where each joint is only capable of several digital steps)

is discussed. A simple searching algorithm using a look-ahead scheme

is developed. A two-dimensional model and three-dimensional model are

studied.

Given the solution to the position problem, a set of heuristics is

developed for moving a six degree-of-freedom manipulator from an initial

position to a final position through a space containing obstacles. A

mathematical model of objects is developed so that possible conflict

between objects and any link of the manipulator can be detected and

avoided.

Some considerations in choosing a manipulator for use with a

computer are discussed. A set of computer programs - in FORTRAN IV -

are developed to perform the position analysis and trajectory generations

for any six degree-of-freedom manipulator with turning joints.
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CHAPTER I

INTRODUCTION

Remote manipulation involves having a machine perform tasks

requiring human dexterity. Originally, the purpose of a manipulator

was to protect man from the hazards of performing the work himself.

With the advance of technology, the variety of tasks performed in hostile

environments has increased. In addition the scope of the tasks performed

by machines has broadened, so that it is desirable for machines to extend

the capabilities of men and to replace men at tedious as well as dangerous

jobs. Although, today, many processes and machines are automatically

controlled, the problems of remote manipulation have yet to be fully

solved.

One approach to this problem is to use a digital computer to control

a manipulator. Then with information obtained from visual as well as

other sensory feedback, the computer would hopefully be able to direct

the manipulator to perform tasks requiring some intelligence as well as

dexterity.

This dissertation is concerned with the kinematic problems that

arise when a manipulator is subjected to computer control. These include

the problems of position analysis and trajectory generation.

In Chapter II, we discuss the classification and the description of

manipulators, including a catalog of most of the existing commercial and

special purpose manipulators.
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The position problem is discussed in Chapter III. There we present

methods to find values for the manipulator variables that will place the

terminal device at a given position.

In Chapter IV, we present numerical methods that may be used to

analyze manipulators too complex for analytic solution as described in

Chapter III.

The problems of positioning a digital manipulator are discussed in

Chapter V.

Trajectory generation - the problem of moving a manipulator from a

given initial position to a specified final position - is studied in

Chapter VI.

In Chapter VII we briefly discuss some considerations in choosing

a manipulator for control by computer.

Chapter VIII presents the conclusions and some suggestions for

future work.

In the next section we present a brief history of remote manipulation.

This is followed by a summary of related work on intelligent automata.

Since much of the research related to the position problem has occurred

outside these fields, we discuss that work in Chapter III. In the last

section of this chapter, the contribution of this dissertation to current

research is presented.

1.1 History of Remote Manipulation

The development of remote manipulators followed closely the

development of atomic energy. As the radiation level of atomic energy

increased, so did the hazard to the operator. Thus, shielded environ­

ments and equipment to handle the material were needed. Early
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experiments were carried out using tongs in shielded caves. For more

complex experiments it was deemed necessary to develop remote controlled

manipulators. It was felt that general purpose manipulators could be

used to replace much special purpose equipment. Thus in 1947, the

Argonne National Laboratory began research into remote manipulators and

related equipment. The first manipulators built at Argonne had six

degrees-of-freedom controlled by mechanical drives plus a hydraulically

operated grip. Later versions were driven by electric motors. They

worked well for simple tasks. However, there was no force feedback,

making it difficult to perform experiments where articles came into

-'(
contact with one another [lJ.'

In 1948 the people at Argonne decided to develop manipulators

having force feedback with motion capability analogous to that of the

human hand. This led to master-slave manipulators in which the motion

of the master was mechanically coupled to the slave so that the forces

in the slave would be approximately reflected in the master. Several

versions of these were built at Argonne. One of these, the Model 8, has

been produced by several companies and is commercially available [1, 2,

3, 4].

Although these mechanically coupled manipulators perform quite well,

they have several drawbacks. The main disadvantage is the mechanical

connection which requires the master and slave to be physically close

together. This also means that the shielding enclosure must be designed

*Numbers in brackets designate references in the Bibliography (P. ).
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for the linkage. In addition the strength of the slave is limited by the

strength of the operator's hand. These disadvantages are offset in part

by the fact that the manipulators are fairly inexpensive and are able to

perform intricate operations [l.~ 2, 3, 4, 5].

Externally powered master-slave manipulators using force reflecting

servos have been developed by both Argonne and the General Electric

Company. The Argonne machine is controlled with electromechanical servos

while General Electric's ("Handyman") is hydro-mechanically controlled.

These manipulators have proved as effective as the mechanically connected

master-slaves. They have the advantage that the only connection between

master and slave is an electrical cable. In addition, they have a

variable force feedback ratio. However, their use is not as widespread

as the mechanical type. Perhaps this is due to their high cost and the

complexity of the force reflecting servo system [1, 6 J.

Powered manipulators, not of the master-slave type have also been

successfully developed by General Mills, Inc., Programmed and Remote

Systems Corporation,AMF, General Electric, Westinghouse Electric Company,

FMC, among others. They are often used in radiation experiments along

with the more precise master-slaves. They are also used in an under­

water environment on submarines 17, 8J. Electric and hydraulic-powered

prosthetic arms have also been developed ~, 10J. All these are generally

controlled by joy sticks, toggle switches, or similar devices.

All of the above mentioned manipulators require the presence of a

human operator. In their design much effort is made to have an inte­

grated man-machine system. This is reflected in the research of

Mosher I?, llJ, Goertz [l.2J, and Bradley [13J whose emphasis is directed

-4-



towards developing systems in which the operator does not feel his

remoteness but is made to feel as if he were performing the task him­

self. This is accomplished with force reflecting servo-systems giving

kinesthetic feedback similar to what a human would feel. Such work will

have application in materials-handling, underwater work, and perhaps

earth-moving equipment. It also may be applicable to problems of remote

master-slave manipulators with time delay. Farrell ~~ has indicated

the feasibility of such schemes.

There are some problems that the master-slave system does not

adequately solve. Since the master-slave system by definition requires

a master, it does not remove the tedium that is basic to most manipulative

tasks. In addition, for exploration of space, the time delay will become

excessive for anything further distant than the moon. Thus we have

motivation to develop manipulator systems with intelligence.

1.2 Intelligent Automata

Computer-manipulator systems such as AMF's Versatran and Unimation,

Inc. 's Unimate ~~ are presently in use in industrial materials-handling

situations. These machines are programmed to move through, a pre-determined

series of positions. They are used on assembly lines to unload punch

presses, conveyor belts and similar fixed cycle type operations. Working

three shifts a day, they can economically compete with human operators ~~ •

However, they do not have any decision making ability, so that, if the

parts are not in the right position or if the cycle time varies, these

machines will not operate successfully. In addition they must be re­

programmed for slight changes in the process. It is thus desirable for

such systems to incorporate decision making capabilities.

-5-



Ernst [I.SJ, using a manipulator equipped with sensory feedback,

developed a hand-computer system capable of stacking blocks. His system

was able to learn about its environment with information gained from

touch sensors. The work at MIT's Project MAC ~~ has recently extended

the work of Ernst to include visual inputs and to develop a hand-eye

system capable of manipulating objects. The: aim of Project MAC is to

develop an autonomous system with vision capable of performing manipulative

tasks requiring increasing levels of decision making ability.

Rosen, Nilsson, Raphael, ~O, 21, 2~ , and others at Stanford

Research Institute have developed a mobile vehicle under computer control

that performs tasks in a real environment. The primary goal is to develop

a system receiving visual and other sensory information from the vehicle,

and then use this information to direct the vehicle towards the completion

of tasks requiring the abilities to plan ahead and learn from previous

experience.

Other research in manipulator-computer systems has been in using

small digital computers to assist rather than replace operators in manipu­

lative tasks. Beckett ~~ at Case Institute, has developed such a system

in which a typical use of the computer is to find minimum transit time

paths and direct the manipulator around predefined obstacles. In obstacle

avoidance his routines keep the hand outside of effective boundaries

placed around obstacles.

The Supervisory Controlled Manipulator, is again a system with

limited intelligence intended to assist rather than replace an operator.

For this system Whitney ~~ developed a state-space model of manipulative

tasks. He shows that tasks, such as pushing blocks on a table, or

-6-



deciding how many and in what order blocks should be moved or pushed

aside in order to position a new block, may be expressed in terms of

discrete state spaces. A state is defined to be the configuration of

the task site.

The Hand-Eye Project, of the Stanford Artificial Intelligence

Project [2~ , is oriented toward solution of computer supervised hand­

eye problems of increasing complexity. Current work is on basic problems

involving manipulation of simple objects and analysis of visual data.

Eventually it is hoped that the system will be developed to the point

of being able to assemble machines.

1.3 Contributions of this Dissertation

In Chapter II the description of manipulators is put on a systematic

basis. We present conditions leading to degeneracy in six degree-of­

freedom manipulator and conditions in which combinations of one degree­

of-freedom joints are kinematically equivalent to more complex joints.

Finally, a catalog of existing manipulators is presented.

The main analytical work is presented in Chapter III. Here solutions

to the position problem are discussed. Methods are given to solve any

six degree-of-freedom manipulator containing three revolute joints,

whose axes intersect at a point, provided the remaining three joints

are revo1utes or sliders. The extension of the method to more difficult

arrangements is dealt with in the case where only one pair of revolute

axes intersect. A method of solution for a six degree-of-freedom

manipulator with three prismatic joints is also presented.

In Chapter IV a numerical procedure based on velocity methods is

developed to analyze manipulators whose solutions cannot be expressed

-7-·



as in Chapter III. This procedure, along with the more conventional

Newton-Raphson method are programmed for a digital computer and the

results compared.

In Chapter V methods are developed to place the end of a new type of

digital manipulator at a specified position. A simple searching

algorithm is made more powerful by the addition of look-ahead. The three

dimensional problem is attacked with insight gained from studying a

planar model.

The trajectory generation problem is discussed in Chapter VI. A

set of heuristics is given for moving the manipulator from an initial

position to a final position through a space containing obstacles.

Possible conflict between all links of the manipulator and nearby

obstacles is detected, and hopefully avoided.

In Chapter VII some considerations in choosing a manipulator for use

with a digital computer are discussed. The desirability of being able to

arbitrarily locate the hand throughout the workspace brings up the problem

of zones. Some insight into this problem is presented.

Much of the above has been programmed and tested on a digital

computer. In particular the numerical solutions and the heuristics for

trajectory generation have been programmed to result in a fairly general

kinematic package. With only smallimodification these routines could

be used with any six degree-of-freedom manipulator.

-8-



CHAPTER II

CLASSIFICATION OF MANIPULATORS

2.1 The Basic Model

In order to analyze and compare manipulator configurations, it is

desirable to develop a mathematical model that can be used to describe

all manipulators. A manipulator is considered to be a group of rigid

bodies or links. These links are connected and powered in such a way

that they are forced to move relative to one another in order to posi-

tion a hand or other type of terminal device. The first link is assumed

connected to ground by the first joint while the last link is free and

contains the hand. In addition, each link is connected to at most two

others so that closed loops are not formed. For the purpose of this

work~ the assumption is made that the connection between links (the

joints) have only one degree-of-freedom. With this restriction~ two

types of joints are practical - revolute and prismatic.* A revolute

joint only permits rotation about an axis~ while the prismatic joint

allows sliding along an axis with no rotation. A schematic representa-

tion of these joints is shown in Fig. 2.1. If a manipulator is considered

to be a combination of links and joints, with the first link connected

to ground and the last link containing the terminal device, it may

be classified by the type of joints and their oider. For example, a

manipulator comprised of three revolute joints, a prismatic joint,

*A1though others might wish to include screw joints, we feel that the
difficulties encountered in building screw joints make them impractical.
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and two revolute joints, in that order, would be designated 3R-P-2R,

where R is used for a revolute and P for a prismatic joint.

Given a broad classification according to the joints, a sub-grouping

is made by looking at the links. Now, each joint has an axis associated

with it, and two adjacent axes are connected by a link. Thus a link

description is just the description of the relation between two adjacent

axes. A link model? shown in Fig. 2.2? has the following parameters:

a i : The common normal between the axis of the i th joint and the

axis of the (i+l)th joint.

e. ;
1.

The distance between the lines a. and ai-l measured along
1.

the positive direction of the axis of the ·th joint.1._

The rotation of the line a i relative to the line ai-l about

the axis of the i th joint.

a.: The angle between the (i+l)th axis and the i th axis. The
1.

positive sense is determined according to the right-hand

screw rule with the screw taken along ai pointing from the

(i+l)th to the i th axis.

If the joint"i is a revolute? then ai, si and a i are constants

while 8i is the variable associated with that joint. If joint i is

a prismatic joint, then a i ? a i and e. are constants while
1.

is

the variable. The sub-classification is then made according to the

non-zero and s ..
1.

For example, if all the and S.
1.

of a

4R manipulator were non-zero, it would have the sub-classification

sla2a3s4a4' It may be noted that for the last link, i = n, an?a n and

sn are not well defined as axis n+l is non-existent. For this reason?

-10-



if the last joint is a revolute, the parameters of the last link will

not be included in the description. If, however, the last joint is a

prismatic then sn will be included. For'the fir'st link sl has an

arbitrary reference that will be considered zero so that sl will be

included only if the joint is prismatic. An example of a 4R, s2a2s3

is shown in Fig. 2.3.

2.2 Special Cases: Degeneracy and Kinematic Equivalence

The most general manipulator has all non-zero link parameters.

However, in practical manipulators there are many zero parameters which

lead to special cases of interest. The first is degeneracy. This

exists when the number of degrees-of-freedom of the last link is less

than the number of joints. A manipulator with more than six joints

would be classified in this category, as a rigid body can have a maximum

of six degrees-of-freedom. The existence of four or more prismatic

joints leads to degeneracy, since motion from one joint can in general

be obtained as a linear combination of the motion of the remaining

three. Also, if four or more revolute axes always intersect at a

point, then rotation about one axis can be expressed as a combination

of rotations about the other three. Special values of the parameterr' a

can also lead to degeneracy. An example is given by those values of a

for which four revolute axes are always parallel, and hence normal to

the same plane.

In addition to degeneracy, non-zero parameters may make combina­

tions of revolute and prismatic jQ~nts kinematically. equivalent to

more complex joints. Thus if three revolute axes intersect at a point

-11-
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ax IS of rotation OX'IS of sl ide

LINK 2

(b)

Figure 2,1. Schematic Representation of Joints.
(a) Revolute (b) Prismatic

aXIs L

~---- Q~----~

Figure 2.2. The Link Model.

QXlS l + ,

Figure 2.3. Schematic of a 4R, s2a2s3 manipulator,
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they are equivalent to a spherical joint which we denote by the symbol

S. Also, if the axes of a revolute and a prismatic joint coincide, they

are equivalent to a cylindrical joint denoted by the symbol C.

A 4R manipulator may be used to illustrate these special cases.

The most general case is shown schematically in Fig. 2.4a. A sufficient

condition for two axes to intersect is that their common normal be

zero. For example if a 2 is zero, then axes 2 and 3 intersect

(Fig. 2.4b). For three axes to intersect at a point, the two common

normals, as well as the displacement along the intermediate axis must

be zero. For example, if a 2 = a3 =8 3 = 0, the result is equivalent

to a spherical joint and the 4R manipulator is kinematically equivalent

to an S-R manipulator (Fig. 2.4c). For four axes to intersect at a

point (resulting in degeneracy), three adjacent common normals, and the

displacements along the two intermediate axes must be zero (Fig. 2.4d).

Degeneracy also occurs if the equivalent of two spherical joints exist.

In this case, it is possible for the link connecting the two sphere

centers to rotate about itself.

A cylindric joint results when the common normal and the angle

between a revolute and adjacent prismatic jo~nt are both zero. An

example of an R-P-R being equivalent to an R-C manipulator is shown

in Fig. 2.5.

2.3 A Catalog of Manipulators

With the above scheme we may classify most of the manipulators that

have been built in the last several years. Some manipulators since

they contain a very large number of links are omitted from the table.

-13-



(0 )

(c)

(d)

Figure 2.4. (a) A general 4R,als2a2s3a3 manipulator.
(b) A 4R,a

l
s

2
s

3
with one pair of intersecting axes.

(c) A 4R,a
l

s
2

manipulator and spherical equivalent.
(d) A degenerate 4R manipulator.
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R

R

(a)

R

(b)

Figure 2.5. (a) An R-P-R manipulator
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These generally have a snake-like structure, and even though these

manipulators may fit into the basic model they contain many joints

usually with limited freedom in each joint and similar link parameters

for all links. We call such manipulators "ORMS "'l'( and cons ider them

separately in Chapter 5.

Table 2.1 contains a catalog of some recently built manipulators.

*ORM is the Norwegian word for snake.
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CHAPTER III

SOLUTIONS

3.1 Statement of the Problem

In remote manipulation it is desirable to place a rigid body (the

hand) at a specified position in space with a specified orientation.

Thus, a manipulator needs to have at least six degrees-of-freedom. More

joints than six lead to a problem that is not deterministic with the

specifica tion of hand position and orientation. We therefore limit this

work to manipulators with six degrees-of-freedom.

The problem we wish to solve may be stated as follows: given the

desired hand position and orientation, along with the various link

parameters, find the values of the manipulator variables that place the

hand at the desired position with the desired orientation. This problem

is related to the displacement analysis problem in three dimensional

kinematics.

The result of the displacement analysis of a mechanism is the

relationships between input and output. That is, if one link is driven

in a prescribed manner, we wish to find the resulting position of the

rest of the mechanism.

The most general one degree-of-freedom, single loop mechanism is the

so-called "seven-bar chain". This mechanism is composed of seven one

degree-of-freedom joints connected to one another in a general manner to

form a single closed loop. Mechanisms comprised of spherical and

cyclindric joints may be derived from this seven bar by an appropriate

-19-



choice of link parameters leading to kinematic equivalence, as discussed

in Chapter II.

If one considers a seven bar mechanism where one link is considered

fixed, while an adjacent link is driven relative to it by motion in the

connecting joint, then the position and orientation of the driven link

are known. The problem of displacement analysis is to find the

resultant configuration of the mechanism, or equivalently the motion in

each of the remaining six joints. We then observe that the manipulator

problem resulting from specifying hand position and orientation is

analogous to the displacement analysis problem resulting from driving one

of the links.

3.2 Survey of Existing Solutions

Although displacement analysis of mechanisms has been of interest

to kinematicians for many years, no method has been developed that can

be applied to all cases. Dimentberg [40, 41J obtained solutions for

several four-link mechanisms using screw algebra and Dual numbers. He

also reduced the five-link RCRCR mechanism to the solution of a single

polynomial of degree eight. Yang [42] using dual number matrices, was

able to express the input-output relation of this mechanism as a single

polynomial of degree four. Others have used (2x2) dual matrices, dual

quaternians, and vector methods to obtain solutions of four link

mechanisms £43, 44, 45J. The (4x4) matrix method developed by Denavit

and Hartenberg L46J has also been used to analyze four-link mechanisms

[47, 48). For more than four links, this method has been applied using

iterative numerical techniques ~9J. Urquardt ~OJ showed that solutions

were possible where the mechanisms had three or more prismatic pairs.

-20-



Earnest 151 J has found geometric solutions to several special

manipulator configurations. We present his solution to the manipulator

shown in Figure 3.1:

Referring to Figure 3.1) it can be seen that the

point Q lies on a line formed by the intersection

of a plane perpendicular to axis 1 containing line

..£1 ) and the plane perpendicular to axis 6 containing

~2 In addition Q must lie on a sphere with P

as a diameter. The intersection of the line and the

sphere thus fix Q

Sharpe [52J studies the problem of placing the end of a snake-like

chain (which could be used as a manipulator) at a specified target. An

"n-link snake" is composed of n links connected with revolute joints

to form a planar chain. The joints in general have continuously variable

angles. However) he does discuss the case where angles may take on

only two values. He presents an adaptive approach using a simple searching

procedure to handle this case.

LIN?
..¥'

AXIS I ~-_DP------~- ~C

Figure 3.1. Example manipulator used to demonstrate geometric solution.
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3.3 Method of solution

In this work, we use (4x4) matrices to attack the manipulator

problem. solutions for manipulators containing three intersecting

revolute axes are presented. The most complex of these requires the

solution of a single polynomial of degree four. This is equivalent to

the solutions of all single loop five-bar mechanisms containing one

spherical joint and the rest either revolute or prismatic. solutions

for manipulators with any three joints prismatic are also presented. The

extension to more difficult problems is discussed witha 6R, a
2

a4

manipulator having adjacent axes orthogonal used as an example.

3.3.1 Notation

Throughout the text we use scalar, vector, and matrix quantities.

Matrices are denoted by capital letters and may have subscripts (e.g., A
2
).

Vectors are denoted by underlined letters and may have subscripts and one

or more superscripts in front of the letter. Vectors are generally used

to locate points relative to a coordinate system. The subscripts are used

to differentiate between points, while the superscript indicates the coor~

i+1
dinate system to which the point is referenced (e.g., Xn, would repre-

Sent a vector from the origin of coordinate system i+l to a point n).

If no superscript appears it is assumed to be 1, or else no origin is

implied. At times we wish to express a vector in a coordinate system which

differs from the one in which the vector is formed (the so-called "refer-

ence system"). If the system used to express these coordinates is different

from the reference system, we enclose the vector in brackets and use ar,=

otl',-'i"E;l1P'=~:rscript to denote the system in which the components are expressed

(e.g., i L: i+1KnJ_ )., . If the outer superscript is not used, it is asstime'd

-22-



to be the same as the inner superscript. Scalar quantities are written

as lower case letters, with or without subscripts (e.g., als l ). If

they represent coordinates of points, then a superscript is sometimes

used to designate the coordinate system to which they refer. Where no

superscript is used, the number 1 is implied. Angles are denoted by

lower case Greek letters with or without subscripts (e.g., l:Jl a ) .

Points are occasionally given a name (e.g., lithe point X2 ") and

referred to by name.

The trigonometric functions sin, cos, and tan are abbreviated

s, c, and t respectively (e.g., sin l:ll is written sl:J l , cos 0. 1

as cal' etc).

3.3.2 Mathematical Preliminaries

In order to analyze the kinematics of a manipulator, we first

establish the relation between two Cartesian coordinate systems as

shown in Figure 3.2. We define the following:

and

the length of the common normal between

i+l .
z-ax~s •

i .
z-ax~s

a:
i

the angle between i+l z and i z measured in the

right-handed sense from

i+l
to z .

i z along a line from i z

distance from 0i to the common normal a.
~

~.: angle the common normal makes with ix-axis.
~

Then there exists the transformation [46J to express the coordinates of

a point in one system given its coordinates in the other. If we denote

the coordinates in system i by (ix, i y , i z ) and in system i+l by

( i+l i+l i+l .\ .x, y, z/, we define the vectors ~X

-23-·
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i
x

i
i X Y

i
'z

1

and

i+1
x

i+1
X

i+1y

i+1
z

1

so that the transformation is:

where

(3.1)

1

s.
1.

c8i -sl:lica.
i

s8i s a.i a i c8
i

a
i

s 8i
se. c e. ca.. -c e. sa..

1. 1. 1. 1. 1.
Ai =

0 sa.. ca..
1. 1.

0 0 0

The inverse also exists and is defined by:

i+1x = A.
-1 i x

1.

where

ceo sBi 0 -a.
1. 1.

-1 -s e. ca. c e. sa.. sa.. -sica.i
1. i 1. 1. 1.A =

i s e. sa.. -c e. sa.. ca.. -s.ca..
1. 1. 1. 1. 1. 1. 1.

0 0 0 1

(3.2)

-24-



For n+l coordinate systems there are n transformations between

neighboring systems. These may be multiplied, in the following order,

to give the coordinates in the 1 system of any point fixed in the

n+l system:

.•• A n+lX
n

Now to appropriately fix these coordinate systems in a manipulator, we

make i z correspond to axis i, i x to common normal ai-l and

define i y in a right-handed sense. This is shown applied to a sample

manipulator in Figure 3.3. For a six degree-of-freedom manipulator we

write:

(3.3)

where IX is a vector to any point, expressed in the ground system

and 7x is a vector to the same point expressed in a system fixed in

the terminal device. We define

With this definition (3.3) becomes:

l~ = Aeq 7~

and the inverse yields:

7 -1 1
~ = Aeq X

Now, if we let P be a vector from the origin of system 1 to the

origin of system 7, and ~ , m , and n, be three unit vectors

aligned with the 7x , 7y , 7z axes respectively, then when ~ , m

and P are expressed in system 1, they may be used with equation

(3.5) to find Aeq. That is, using (3.5) we may write

-25-
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r
o·c.

Figure 3.2. Relation between two coordinate systems.

Figure 3.3. The relationship between coordinate systems fixed
in the manipulator.
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from which we may solve for the elements of Aeq to obtain:

t~l
m n l

P1-EZ ml n· P2Aeq m2 2 (3.7)...£3
03

n3 P3
0 0 1

It is thus seen that position and orientation of the terminal device

can easily be found, knowing the manipulator variables, 9i or

si' i=l, .. , 6 , by the matrix product equation (3.4).

However, for computer control of manipulators, the problem is to

find the manipulator variables, given the terminal position and

orientation (Aeq) •

We shall first consider a six-revolute arm and the problem of

finding 81'".,8 6 given Aeq. Equation (3.4) represents twelve

scalar equations, nine dealing with orientation and three with position.

However, only three of the orientation equations are independent so that

there are six equations in ei' .... , e
6

the form:

cel cEJ2 c8
3 cB4 c8S c86 ,

sel c82 c83 s84 s8
S

se6 ,

These equations have terms of

(3.8)

These terms contain both sines and cosines, which we may define in terms

of the tangent of the half-angle.

1+t Z8 .-1
2

-27-
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Then if we substitute (3.9) into the six equations, the typical term,

as shown in (3,8) becomes (letting t = tan JLi , i=l,.,., 6 , and
i 2

removing the denominators which are common):

+ ....

Thus we see that these equations are quadratic in each of the unknowns

and the degree of the highest degree term is lZ.

However, not all the equations contain all of the unknowns and by

judiciously choosing the three orientation equations, the unknowns 81

and 8
6 can be eliminated from some of the equations. We use the

six equations:

Fl (tl"'" t s ) = 0 (3.10)

FZ (t1,· .. , t s ) 0 (3.11)

F3 (t 1,··· , ts) 0 (3.12)

F4 (t2' ••• , t s ) 0 (3.13)

Fs (t2,· .. , t s ) 0 (3.14)

F
6 (tz'" ., t6) 0 (3.15)

which are obtained respectively from the 'l~', '24', '13', '33', '34',

and '32', elements of the matrix of (3.4). We note that (3.10) - (3.14)

~o not contain t 6 , and (3.13) (3.15) do not contain t
1

• Of the

five equations in which the variables t l , .•. , ts appear at most

quadratically, three equations are of degree 10, while, two are of

degree eight. If we eliminate t l between (3.10), (3,11), and (3.lZ),

the result is two equations of at most degree eight in the unknowns

t z, ... , t s whose total degree is 32. These together with (3.14) and

(3.15) give us four equations for t 2 , .•• , ts' Proceeding in this

-Z8-



manner eliminating one variable at a time, we would finally obtain a

single polynomial of degree 524,288. Even though this method of

elimination introduces extraneous roots, we would still expect, according

to Bezouts' theorem*, (10)3 x (8)2 or 64,000 common roots, a number much

too large to cope with. The general problem, attacked in this manner,

is insoluble. At this point we shall define a "soluble case" to be one

in which the degree of the final eliminant is low enough to find all

roots. In practice all the roots of an eighth degree polynomial can be

found within a few seconds using a digital computer and the roots of a

fourth degree within one-half second. A solution is said to be

"closed-form" if the unknowns can be solved for symbolically.

Even though the general problem is beyond reach, many practical

manipulator configurations are soluble. The existence of three revolute

axes intersecting at a point leads to a soluble class. In the next

sections we explore the possible combinations of three intersecting axes.

3.3.3. Last Three Axes Intersecting

If the last three joints are revolutes and their axes intersect

as in Figure 3.4, then their point of intersection, as designated by the

vector E3 is only a function of motion in the first three joints and

the constant link parameters. E
3

is known by specifying the hand

position and orientation. We want to solve the three scalar equations

represented by:

(3. 16)

~"'Bezouts' theorem gives an upper bound to the number of common solutions
for a set of equations. The upper bound is the product of the total
degrees of all the equations.
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Figure 3.4. The most general manipulator having the last three revolute
axes intersecting.
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for the variables associated with the first three joints. We now derive

an important result used in the solution of this problem. We define

the vector ~j

P. = A1 ..• A.
-J J

(3.17)

where Ai (i = 1, ..• , j) is defined in equation (3.1). It is seen

that ~j is a vector specifying the position of a point (0, 0, Sj+1)

which is fixed in coordinate system

We may write (3.17) as

P.
-J

j+1 .

o
o
Sj+1
1

f 1(83 , ... , Aj )

A1AZ
f Z(83 , •.. , Aj )

f Z(83,··· , A.)
J

1

where

f 1 0

f Z 0
= A3 ... Aj

f 3 s j+1

1 1

Then using (3.1) for A1 and AZ (3.18) becomes

(3.18)

(3.19)

P.
-J

c81g1 + s81gZ

s81g1 - c~lgZ

(~1[Se2(a2 + f1) - cB2(-dl2f2 + S~2f3)],\

\ + ca1(sa
Zf Z + ca

Zf 3 + sZ) + sl )

1

-31-
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where

g2 = -s82cQ
1(aZ+f1) + c82cQl(-cQ2f2 + sQ

2f 3)

+ sIX I (sQ2f 2 + cQ
2f 3 + s2)

Denoting the components of Rj by Xj , Yj , Zj , we define

Rj = x4 + 2 (Zj- s l)2J Yj +

With (3.20) for the components of (p. ) , (3.23) becomes-J

Rj = f 1
2 + f 2 + f 2 + al2 + a 2 + s22 + 2a2fl2 3 2

+ 2s 2 (sQ2 f 2 + CQ2f3) + 2alLC92(a2+fl)

+ sA2(- CQ2f 2 + SQ2 f 3)]

We note from (3.20) and (3.24), that we may write:

(F1CG2 + F2s 82) 2a l + F3

(F l s 82 - F2c 82)SQl + F4

where,

Fl = a2 + f l

F2 =-CQ2f2 + SQ2f3

2 2 2 2F3 f l + f 2 + f
3

+ a l

+ 2s2(sQ2f2 + cQ2f3)

F4 = CQ 1(so" 2f 2 + eel2 f 3+s 2)

Equations (3.25) and (3026) prove to be very useful as 91 has

been eliminated, and 82 appears in a very simple form.

Returning to the manipulator problem~ the above equations

apply with j = 3. In which case by using (3.1) for A3 (3.19)

becomes:

-32..,
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(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)



S4s83sQ3+a3c83

-s4c83sc:.3+a3s83

s4ca3+s3

(3.31)

(3.32)

(3.33)

so that with (3.21), (3.22), and (3.31) equation (3.20) represents

three equations in three unknowns. If the first three joints

are prismatic, then (3.20) represents three linear equations and

is easily solved. The other possibilities are somewhat more

difficult, but may be solved as follows:

Substituting (3.31) in (3.27) - (3.30) yields respectively

Fl = a2+s4s83sQ~+a3c83

F2 =-ec:.2(-s4c83srr3+a3s83) + srr2 (s3+s4crr3)

2 2 2 2 2 2
F3 al +s2 +a2 +s3 +a 3 +s4 +2s2s3~2+2s2s4ca2~3

+ 2s3s4c~3+c83(2a2a3-2s2s4SQ2S~3) + s83(2a3s2s~2

+ 2a2s4sQ3) (3.34)

F4 = cQ.1La3s83sa2+s3CQ2+s2+s4(-c83SQ2sc:.3+CQ2ca3)] (3.35)

Now we note that the left hand side of (3.25) and (3.26) are

known and that if al = 0 , (3.25) reduces to

When (3.34) is used in (3.36) it is simply a function of 83 •

Then making the additional substitution

= (3.37)
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2 tan 9 3
"Z

1 + tan 93
2

into (3.36):; yields a quadratic in tan 83 Similar simplifi-
L

ca tion results if SO"l =0 , as (3.26) reduces to a quadratic. If

however scxl and a1 are non-zero, we eliminate s82 and c82

from (3.25) and (3.26) to obtain the polynomial

(R3 - F3)2 (z - F4)2
+

(3.38)

(3,39)

Upon making the tan 83 substitution and using (3.27) - (3.30) equation
"2

(3.39) is of degree four in tan 83 After getting 83 , 82
"Z

may be obtained from (3.25) or (3.26) and 91 from (3.20).

Here we take the x and ~y components of X3 as defined

in (3.20)

x = c8lgl + se l g2

y = selg l - ce l g2

Solving for gl and g2 we find

gl xce l + yse l

g2 -yce l + xse l

so that gl and g2 can be computed from (3.42) and (3.43).

Then examining (3.21) and (3.22) using (3.31) we note

gl = Ce2hl(e3) + se2h2 (e3) + al

g2 = CCXl[ce2h2(83) - se2hl(83)] + sn'lh3 (83)

-34-
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where

h2 = s4 (c83ca2s()"3+s0'2s0'3) - a3s83c()"2+s3s0'2

h3 s4(-c83s0'2s0'3+ca2~3) + a 3s83s0'2

If co'l = 0 then (3.45) is easily solved for 83' If

co'l # 0 we eliminate 82 from (3.44) and (3.45) to get the

(3.46)

(3.47)

(3.48)

polynomial

(3.49)

Expressing s83 and c83

polynomial of degree four.

in terms of tan 83 leads to a
"2

Upon obtaining the four roots of

(3.49) we substitute into (3.44) and (3.45) to get 82 and

finally (3.20) for sl'

Solve (3.26) for s2, using this in (3.25) results in a

fourth degree polynomial in

revolute case.

Then proceed as in all

Similar to 818283 variable with the exception of s3

being the variable in the final polynomial which is of degree

four.

2.12223 variable

The left-hand side of (3.44) may be computed from (3.42), then

(3.44) which is quadratic may be solved for 83 • Finally sl and s2

may be found from (3.20).
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~~~3 variable

It is possible to eliminate 92 as in the case of s19293

variable, resulting in a quauratic in s3 .

~~22.3 variable

Equation (3.25) is solved for s2 and used in (3.26) resulting

in a quadratic in s3 ,91 is found as in the all revolute case.

Methods have been presented to find the first three variables.

At this time we leave the problem of finding the last three angles to

be dealt with later in this work (see Section 3~3.6).

3.3.4 First Three Axes Intersecting

Next consider the three intersecting axes to be the first

three, as in Figure 3.5. The solution of these is analogous to

the previous example. We define a vector 7p from the hand to

the point of intersection of the three axes, as shown in Figure 3.5.

We note that when 7,p is expressed in a coordinate system fixed

in the hand, that it is just a function of the last three joints.

That is:

we get

A4- l then the

(3.50)

(3.51)

right-hand side qf.(3.5l) just contains the three variables associated
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with the last three joints. In addition, we compute the components

of 7p from

where Aeq is the known matrix (3.7). We note that the rotation

-1
portion of Aeq is just the transpose of the rotation portion

of Aeq. In fact, if

all a 12 a
13

a
14

a 21 822 a
23

a
24

Aeq = (3.52)
a31 a 32 a 33 a34

0 0 0 1

then

-1
all a 21 a

31
a

14

a 12 a 22 a 32 a 24
-1

Aeq-1 =

aD a 23 a 33 a34
-1

0 0 0 1

(3.53)

The elements denoted as

simply applying

thus

-1 -1 -1a14 , a24 ,a34 are determined by

Aeq-1 Aeq = I

i=1,2,3

(3.54)

From this point on the method of solution follows the same steps given

in Section 3.3.3 for the case of the last three axes intersecting.
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Figure 3.5. General ManipUlator in ~hich the First Three RevOluteAxes Intersect at a POint.
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3.3.5 Three Intermediate Axes Intersecting

Another possibility is for the three intersecting axes to be

located as in Figure 3.6, where there are two other joints toward

the base end and one on the hand end. We denote the position of

the point of intersection by Xz with the coordinate (xZ' yZ' zZ) ,

and define the vector ~Z from the base of the arm to Xz and the

vector 7y from the origin of system 7 to Xz as in Figure 3.6.-Z

Consider the case where all joints are revolutes, then in

system 7, the hand system, the point Xz has a fixed z co-

ordinate, and is a constant radius from the origin. We write

the coordinates of Xz in system 7, using equation (3.5) and

-1
Aeq as defined in (3.53)

7 -1
(3.55)Xz allxZ + aZ1YZ + a3l zZ + a 14

7 -1 (3.56))72 = alZ~Z + aZZYZ + a 3ZzZ + aZ4

7z -1
Z a13YZ + aZ3YZ + a33 zZ + a 34 (3.57)

Since 7zZ is a constant, say Cl ~ (3.57) may be written

-1
Cl a13 xZ + a Z3YZ + a33zZ + a34

We define the constant, CZ, to be the square of the radius

7 Z 7 Z 7 ZCz = (xZ) + (yZ) + ( zZ)

(3.58)

(3.59)

Then using (3.55), (3.56), and (3.57) for

(3.59) becomes

7x 7y and 7z, ,

Z Z ZCz Xz + yz + Zz - ZXZa 14
Z Z Z+ a14+ aZ4 + a 34

where (3.54) has been used for ai4-l

-39-
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Figure 3.6. Manipulator with three intermediate revolute axes inter­
secting (i.e. a

3
=s4=a

4
=0).
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With j = 2 (3.20 becomes

[a2(c9lc92-s9ls92OXl) + s2sQlsal+alc9l + s3(c9 l s92sa2 +

selc92OXlsa2+s9lsalca2)]

[a2(s9lc82+celSe2cal) - s2c9 l sa l + als9 l

+ s3(sels92sa2-c9lc92calsa2-c9lsalox2)]

[a2s92sal + s2cal + sl + s3(-c92salsa2+calca2)]

1

and (3.27) - (3.30) become

(3.61)

{3.62)

s3 sa2

2 2 2 2al+s2+a2+s3+2s2s3ca2

(3.63)

(3.64)

So that using (3.62) - (3.65) and (3.23)~ equation (3.39) becomes

(3.65)

Then (3.58), (3.60) and (3.66) are three equations for the unknowns

(3.66)

(X2Y2Z2)' Ordinarily the system would result in an eighth degree eliminant

but since (3.60) and (B.66) may be combined to form

-41-
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The equations (3.S8) (3.60) and (3.67) may be combined to yield

a single fourth degree polynomicilinorievariable ,say z.

After the values of z are determined it is possible to back

substitute and obtain corresponding values for x and y.

Once the coordinates (x2, Y2' z2) of the point X2 are

found, 82 and 8
1

may readily be found from equation (3.61).

86 "is easily evolved by noting:

7 -asx2

7Y2 7 -1 -sSsaS
Y2 =A

7z2
6

-sScaS

1 1

Using (3.2) for
-1

with 0 (3.68) becomes:A6 , a
6 = s6 = ,

-aSc86 - sSs86

a Ss86ca6 + sS(-c86saSca6-caSsa6)

-aSs86sa6 + sS(c86saSsa6-caSca6)

1

Since xZ' Y2 and z2 are known (3.SS), (3.S6) and (3.S7) may be

used to calculate 712 , Then (3.69) may be solved for 86 , The

problem of solving for 83 84 8S will again be deferred (see

Section 3.3.6).

The preceding solution was for all revolute joints. We now

consider the cases in which joints 1, 2, and 6 may be prismatic.

(3.68)

(3.69)

Eliminating s:82 and c82 between the x- and y- components

of (3.61) results in a quadratic in x2 ,and Y2. Then this equation along
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with (3.58) and (3.60) can be reduced to a single fourth degree poly­

nomial in either x2 or Y2'

~~2~6 variable

Forming (3.25) and (3.26) with j = 2 and tl~n eliminating s2

between them, a fourth degree equation results in a manner similar

to the all revolute case.

~1~~6 variable

First s2 may be eliminated between the x- and y- components

of (3.61). The resultant is a linear equation which along with (3.58)

and (3.60) can be combined to form a single quadratic.

If s6 is variable instead of

no longer apply. However, the point

9
6

' equations (3.58) and (3.60)

X2 must lie on a known line.

This line, in the direction of axis 5 may easily be found, and may be

written in terms of two known constant vectors c and b and the

parameter t as:

= c + b t , (3.70)

where b is a unit vector parallel to this line and c is any fixed

point on the line. Eliminating t, yields two equations between

xz ' yZ ,and z2. Then with these in place of (3.58) and (3.60),

the procedure is the same as previously indicated.

The second possibility for three intermediate axes to intersect

is as shown in Figure 3.7. This is just an inversion of the case

treated in this section and may be solved in a similar manner.
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3.3.6 Completing the Solution

It can be seen from the foregoing that if three adjacent revolute

axes intersect at a point, then the solution to the problem can be

reduced to a single equation of degree four. If, in addition, two of

the remaining three joints are prismatic, the problem reduces to a

quadratic.

Simplification will also result, if special geometry exist in

addition to the three intersecting revolute axes. Consider the all

revolute case, with only a1' a2 , and s4 non-zero and

o 000
a1 = 90 , a2 = 0 , a3 = 90 , a4 = 90 , as 90, as shown in

Figure 3.8. This is the configuration used for the hydraulic arm at

the Stanford Artificial Intelligence Project. With the above values,

equation (3.17) becomes

a 1c8 I + a 2c8 1c92 + s4(c91c92s93+c91s92c93)

13 a 1s91 + a 2s91c8 2 + s4(s91c82s93+s91s92c83)

a2s92 + s4(s9 2s93-c92c9 3)
1

and (3.27), (3.28), (3.29), and (3.30) become

F1 a2+s4s93

£2 = s4c93

F3 = 2a2s4s93 + s4
2 + a 2 + a 2

2 1

F4 0

So that equation (3.2S) becomes:

R3 = s42 + a22 + a12 + 2a2s4s83 + 2a1a2c92 + 2a1s4 (c92s93

+s92c8 3)

-44-
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Figure 3,7, Second possibility for the case of the three intermediate
revolute axes, shown intersecting at the point x

2
,

Figure 3.8. Schematic of the 6R, a a s4 manipulator used at the
Stanford Artificial Inteil~gence Project, With~1=90o,

000
~2=0, ~3=90, 0(4=90, ~=90 ,
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(3.77)

which is quadratic in s8 3 when c83
2 is replaced by 1-S8

3
2

After finding 83 we compute 82 from (3.71) and (3.76) and 81

from (3.71).

Since the above arm is used in the Stanford Artificial Intelligence

Project, we shall use it to illustrate the method of finding the angles

associated with the three intersecting axes. Designating the direction

of the i th axis by the unit vector illi' we write

UJ (3.78)

Using (3.1) for A1' •• " A4 and the above values of ~ the

result is

c81c82s83 + c81s82c83

s81c82s83 + s8 1s82c83

s82s83 - c82c83

o

(3.79)

so that ill4 may be computed from (3.79) as we have solved for 81 ,

82 ' and 83. ill6 is known since the hand orientation is specified.

In addition,

illS illS 1
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where a
4

and ~s are link parameters of the arm. In fact

~4 = _90 0 and ~s = 90°. We can find the components of illS by

simultaneously solving (3.80)~ (3.81) and (3.82). We observe

7 -1 -1 [~JG!isJ = A6 AS ~

-1 -1
using (3.53) for A6 and AS with ~4 = ~s = 90 0 and ~6

(3.83) becomes:

and

where Aeq is the known matrix specifying hand position and

(3.83)

a

(3.84)

(3.85)

orientation equation (3.7). Its inverse is found as in Section 3.3.4.

So that we easily derive 86 by equating the right-hand sides (3.84)

and (3.85). We also write

(3.86)

and
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which yield 85 G To obtain 8
4

we proceed similarly

and

o

o

1

o

s84c85c86 - c84s8
6

~s84c85s86 - c84c86

s84s85

o

(3.88)

which yields 84 •

(3.89)

We have indicated a procedure to find the rotation about three inter-

secting revolute axes when these are located at the hand. The method

is applicable when any three axes intersect. However, the equations

must then be rewritten in terms of the illi and 8i associated with

these axes.

3.3.7 Solution for Any Three Joints Prismatic

A six degree-of-freedom manipulator with any combination of three

revolute and three prismatic joints is soluble. This arises from the

fact that, the orientation of the hand is independent of the displacement

in the prismatic joints, and is only a function of rotation in the three

revolute joints. In addition the orientation is independent of the

position in space of the revolute axes. Consider the manipulator shown

schematically in Figure 3.9. The direction of the first revolute axis

is always fixed. With the hand orientation specified, the direction of

the third revolute axis becomes fixed. In addition we know the angles

which the axis of the second makes with the axes of the first and third

revolutes. If we designate the direction of these revolute axes by the
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unit vectors, ill2' ill3 ' and illS then we may write

(3.90)

(3.91)

(3.92)1

cosS l

ill3 • illS

ill3 • ill3

where 81 and 62 are the known angles. The equations (3.90)

(3.91), (3.92) are then solved for the components of ill3. The

joint angles may be found in a manner analogous to that used in

the previous example, as the now known direction ill3 ' can be

expressed only as a function of 92 which leads to a simple

equation for 92 • ill3 can also be written in terms of 95 alone,

yielding 9
5

• Once 92 and 95 are known, 93 is easily found

by rewriting (3.4) as

Using the values we found for 92 and 9
5

plus the constant angles,

we compute the rotation portion of the right-hand side of the above

equation. Then writing A3 as in (3.1), we may solve for c93 and

s93 ' thus finding 93. The displacements in the prismatic joints may

be found from (3.4). Since all the angles are now known and the s's

only appear linearly, the displacement portion of (3.4) easily yield

these three unknowns sl' s4 ,and si

3.3.8 More Difficult Arrangements

In the previous examples, the existence of three intersecting

revolute axes enabled us to separate the problem into two parts -

one dealing with position and the other with orientation. The two

problems were then solved separately. That is we solved a three
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degree-of-freedom position problem and then a three degree-of-freedom

orientation problem. A more difficult problem is one in which position

and orientation do not separate. An example is the case where just two

revolute axes intersect. Consider the 6R, a 1s2a2s3s4a4s5a5 mani­

pulator shown in Figure 3.10. Here axes 3 and 4 intersect. The vectors

7~ , g ,and R are as shown in Figure 3.10. We make the following

observations:

(3.93 )

(3.94)

-1 -1 -1 [g J=A A A
654 1

. 0

Then using (3.1) for the A's (3.93) - (3.96) become (taking

,.50-

(3.95)

(3.96 )

(3.97)

(3.98)



Figure 3.9. A general P-2R-P-R-P manipulator.

Figure 3.10. A 6R,al~2a2s3s4a4s5a5 manipulator. Axes of joints
3 and 4 ~ntersect.
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Q =

~3 (e9 189 280,2+89 1c8 2ca 18a2+s81salca2)

I+a2(c91c82-s81s82oal) + s2s8 1sa l + a 1c8 1

I
s3(s81s82sa2-c81c82cJlsa2 - c81salc~2)

+a2(s81c82+c81882cal) - s2c81sal + a 1s8 1

s3(-c82salsa2+calca2) + a 2s82so'l + s2 ca l

1

a4(-c8Sc86+s8Ss86oaS) - a Sc86 - sss86sa S

+s4(-s8s c86sa4 - c8ss86sa4oaS-s86ca4saS)

a4(c8Ss86+s8Sc86caS) + a Ss86 - ssc86sa S

+s4(s8sse6sa4-c8sc86s~4caS - c86ca4sas)
I

l-a4s8s s()',s + s4(c8ssa4s()"S-ca4caS) - sscas

1

(3.99)

(3.100)

c81s82s~2 + s81c82calsa2 + s81sa1ca2

ill3 = s8 1s82sa2 - c81c82ca1sa2 - c8 1sa 1ca 2

-c82sa1 sa2 + ca 1ca 2

o

,-
I s8sc96S04 + C8s8868a4caS + s86cQ4srt.S

7Gu4J = -s85886so4 + c8sc86sa4caS + c86co 4saS

: -c8s sa4saS + ca4caS

L 0

-S2-

(3.101)

(3.102)



In addition (3.99) and (3.100) respectively yield

2 . 2 2- 2- 2
~ = s3 + a2 + s2 + a1 + 2a1a2c92 + 2a1s3s~2s92 + 2s2s3c~2

7p2 = a4 2 + sS2 + aS
2 + s42 + 2a4aSc9S + 2s4aSs9Ss~4 + 2s4s5~4

(3.103)

(3.104)

Our approach to this problem is to solve for the coordinates (x~ y~ z) of

the point of intersection of axes 3 and 4. With this in mind we

where we have defined g in terms of its components

and

Similarly eliminating 95 between the z-component of (3.99) and

(3.103) leads to

(3.106)

(3.107)

(3.108)

W 1[7 ] 1[7 ] 7 7 d ) 1[7gJ2 •e note g. g = P P an using (3.98 for .

we form

-S3-
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also

7x x

7y
Aeq-1

y
= (3.110)

7z z

1 1

where -1Aeq is defined as in equation (3.S3). Thus using (3.100)

for 7z , (3.109) for 7p2, (3.108) becomes

r;_2_+_R_2_-_2_Q._._B._-_(a_4.:...2_+s......../_+a----:;;S_2_+s_4_2_+_Z_s4.;..s_S....ca._:l 2

t 2aS J

(3.111)

We next want to express

and use the relation

!J23 and 01/--+ in terms of x , y ) and z

(3.112)

For this we need c91 ) se l ' ceZ ' sBZ ' ceS ' sBS ,c96 ', s9
6

explicitly

expressed in terms of x, Y ) z. We note c92 and s92 are

simply obtained from the z-components of (3.99), and from (3.103)

and are

_ S3 S1l.2G: -(sZca.1+S3ca.lca.2~
sal

(3.113)

-S4-



az[z -(SZca.l+S3C(X.lC(X.2~
sal

(30114)

eel and se l from (3.99) are, after simplification

x(s3s82S(Xz+azc8Z+al) - Y [s3 (c8ZC(X.I S(lZ+s()',lC(X.Z) - a Zs8Zca.l + S2 S(l1]

xZ + yZ

(3.115)

y (s3 s €lZ sO:Z+aZceZ+a 1) + x ~3 (c8Zca.lsaZ+s(llcaz) - aZs@Zc(x'1 + SzS(ll ]

xZ + y2

Where we may use (3.113) and (3.114) for eeZ and s8Z . When (3.113)

(30114)~ (.3.115) and (3.116 ) are used in (30101) to express l.\L3 in

terms of x , y , and z ~ the result is a third degree expres s i.on in

x , y , and z. If we do similar things with @s and 8b for W4

then (30HZ) becomes a polynomial of degree six in x, y , Z 0 Thi.s

along with (3.103) and (3.111) are three equations for x, y , and

z. However, they are of such large degree that finding all the roots

is not feasibleo Though there are some special cases of interest.

For a 6R 1 aZa4 manipulator, with a.l = 0:3 = (Xs = 90° and

(Xz = a4 = -90 0 the equations reduce to a degree which is workableo

This config-uration is shown in Figure 3.11. Equation (3.105) reduces

to

and (3.111) reduces to

x2 + y2 + z2 + x42 + Y42 + z4Z - 2xx4 = ZYY4 = 2z4z = a4 2

-55=

(3.117)

(3.118 )



Figure 3.11. A 6R,a2a~ manipulator with adjacent axes orthogonal.
X

2
(x,y,Z) is the point of intersection of axes 3 and 4.
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where R in (3.111) has been replaced by its components, x4' Y4 ' z4 '

and the indicated dot product performed.

(3.99), (3.100), (3.101), (3.102) reduce to

from (3.119) we obtain

7p =

W.3 =

a2c81c82

a
2
s81c82

a2s82

1

-a4c8Sc86

a4c8Ss86

-a4s8S

1

-c81s82

-s8 1s82

c8
2

o

-s8Sc86

s8Ss86

c8
S

o

(3.119)

(3.120)

(3.121)

(3.122)

-S7-

(3.123)

(3.124 )

(3.12S)



using (3.123), (3.124), (3.125) in (3.121)

-xy

(3.126 )

replacing c82
2 by 1 - s82

2 and using s82 from (3.125), (3.126)

becomes

-xz

1

from (3.120) we obtain

-yz

-z2+a 2
2

o

(3.127)

(3.128)

s86 = -.!.L
a4c8S

sElS
_7

z
a4

(3.129)

(3.130)

substituting (3.128), (3.129), and (3.130) in (3.122) and simplifying

gives us

7[~J =
1

_7 7
y z

_7y7z

-7z2+a 2
4

o

(3.131)
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We now rotate to express it in terms of system 1 by

W4 = Aeq 7[Wq.J

with Aeq as in (3.53) and 7[W4J as in (3.131) we get

(3.132)

-a217x7z - a22 7y7z

-a317x7z - a327y7z

o

7 2
- a23 Z

7 2
- a33 Z

(3.133 )

To eliminate 7x , 7y , 7x from (3.133) we use (3.110) with Aeq from

(3.53) which after simplification yield:

1

-1
-(a13x+a23y+a33z+a34 ) (x-x4)

-(a13x+a23Y+a33Z+a34-1) (y-Y4)

-(a13x+a23y+a33 Z+a34- 1) (z-z4)

o

(3.134)

Then using (3.127) for ill3 and (3.134) for ~ the equation

ill3 • Jil4 = 0 results in the polynomial:

z(a13x+a23Y+a33z+a34-1) (x2+y2+z2_xX4-yY4-zz4-a22-a42)

-1 2 2 -1 2 2 =
+ za34 a4 + z4a2 (a13x+a23y+a33z+a34 ) + a2 a4 a33 0

(3.135 )

We note that linear combinations of the equations (3.117), (3.118) and

(3.135) can be formed to reduce the degree of the equations.

Equation (3.117) we leave as is. Combining (3.117) with (3.118)

leads to

and using (3.136) and (3.117) in (3.135) yields

-59-
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2 x 2 2
+ z42

a42)J0 =. xz[a13(:~ 4 + Y4

2 2
a 2 x42 + Y42 + z 2 a 2

+ yz[a
23

(- 2 4 4 )]-- _.
2 2 2

2
x42 + Y42 + Z42 a42a2 )]+ z2[a (-- - --33 2 2 2

2
+x (a 13z4a2 )

+y (a23z4a22)

-1 2
a 2

+ z [(a33z4a2
2

) + a34 (- _2_
+ a34 a4 2

2 -1 2 2
+ z4a2 a34 + a2 a4 a33

(3.137)

_ a42

2 )J

The equations (3.117), (3.136) and (3.137) are three equations for

x , y ,and z. The linear equation (3.117) can be used to eliminate

one variable easily. Another variable can be eliminated between (3.136)

and (3.137) leading to a polynomial of degree four. This procedure

has been carried out and programmed on the PDP-6. An analysis program

was used to generate inputs with known angles to check the results.

A typical example was generated by the arbitrary input angles

78 0

link parameters a2 = 84 = 15" which gave:

Aeq =

-0.322

0.555

-0.801

o

-0.481

0.641

0.598

o
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0.816

0.577

0.037

o

12.066

18.035

-5.609
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For the above, the four sets of cornman roots were real and lead to

four sets of angles for each root. They are shown in Table 3.1.

If al#O then the solution may first be expressed as three

quadratic equations in three unknowns (x , y ,and z) and finally

as an eighth degree polynomial. With al#O, a2#0 , a4#0 , and a's

as before, and with x, Y ,z defined as before, (3.105;) becomes

222 222 222(x + Y + z ~ al - a2) + 4al (z - a2 ) = 0 (3.138)

and equation (3.111) reduces to (3.118) as previously noted. To

form W3 we use cel and s8
l

from (3.115) and (3.116). Next

we use c82 and se2 from (3.113) and (3.114) and substituting

these quantities into (3.101), we obtain after simplification:

~ 2z2 + (x2+y2+z2_a2 2) + 2a
2

2 - a 12

o

- 2yz

- 2xz
1

2a2[(al+~1 (x2+y2+z2-a22-a12)J

= --------------W-3

(3.139)

W4 is as before and given in (3.134). By using (3.139) and (3.138)

in (3.112), by replacing (x2+y2+z2) with its equivalent from (3.118),

and by simplifying, (3.112) becomes:

o x
2

(2a 13z4x4)

+ y2 (2a23z4Y 4)

+ z2[a
33

(-.,R 2_a42+a12- al)
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2 ·2. 2 2 2
+ zx[2a33z4x4 + 2a13z4 + a13 (-K -a4 +a l -a l ) J

2 2 2 2 2 -1
+ x[a13 z4(- g +a4 -al +a2 ) + 2a33a4 x4 + 2a34 z4x4J

. 2 2 2 2 2 -1+ y[a23z4 (- ~ +a4 -a 1 +a2 ) + 2a33a4 y4 + 2a34 z4Y4J

+ z[a
33

z
4

(-B. 2+a42_a12+a/) + 2a33a42z4 + a34-1(2z42_Ji2 + a42

2 2
+ al - a2 ) J

-1 2 2 2 2 2 . 2 2 2 2
+ [a34 z4(-.R. +a4 -al +a2 ) +a

33
a4 (-R +a4 -al +a2 )J·

(3.140)

When (3.118) is used for x2 + y2 + zZ in (3.138)) that equation becomes

quadratic. This together with (3.118), and (3.140) are the three

quadratics for x, y ,and z. Eliminating two variables produces

a single polynomial of degree eight. The preceding was programmed on

the PDP-6 to yield a final polynomial in z. For the link parameters

a l =13 , a2=15 , a4=15 ) several examples were run. Examples were found

in which eight sets of values did indeed satisfy the three quadratics.

One of these, generated in the input angles 8 1=9 0 , 82=175 0 , 83=1880 ,

84=1730 , 85=1740 , 86=169 0 , led to the following set of elbow positions:

x y z

1 -25.342 11.820 1.048
2 -24.457 -13.534 1.200
3 -1. 914 -0.569 0.294
4 -1.919 -0.304 1.307
5 -1. 960 0.399 -0.019
6 -1. 979 -0.168 -0.641
7 -12.297 0.735 14.985
8 -18.119 1.073 -14.088

Now, in order to extend the above problem to include a5~0, we

must define a new variable

(3.141)
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We then replace the terms (x2+y2+z2) with W in (3.105) (3.111),

and (3.112) and appropriately rewrite ~4' Equations (3.105)) (3.111),

(3.112), and (3.141) become quadratic in w) x ) y ) and z. The

details of this may be found in APpendix V. According to Bezout's

theorem this system has at most 16 sets of common roots. However, no

method is known by which three of the variables may be eliminated to

attain one polynomial of only degree 16.

To summarize the above we have found that:

1. A 6R, a2a4 may have as many as four different

configurations leading to the same hand position

and orientation.

2. A 6R, a1a2a4 may have as many as eight different

elbow positions (the elbow is considered to be the

point of intersection of axes 3 and 4) leading to

the same hand position and orientation.

3. A 6R, a 1a2a4a
5

will have at most 16 different

positions that the elbow can assume for each fixed

hand position and orientation.
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CHAPTER I V

NUMERICAL SOLUTIONS

Our solutions so far have been made possible by the existence of

special geometry. To analyze more general cases, iterative procedures

must be used •. Two procedures are presented to handle these cases.

The first employs the well-known Newton-Raphson technique* and the

second applies velocity methods.

4.1 Newton-Raphson

The Newton-Raphson method assumes the existence of an approximate

solution. Then the equations are linearized and an increment to this

approximation is computed hopefully leading to a more accurate approxi-

mation. We write

i = 1, .•• ,6
(4.1)

where 8io is the first approximation, and OA i is the increment, and

tJ
i

is the more accurate approximation. We may then write (3.4) as

I~(A. ~e ) -s(8. + 08 .) cal. s(8 + 68,) sa" a. c ( A. +08.) I'~O i ~o ~ io ~ ~ ~ ~o .~

I

A. s( 8io+ !S@i) c( e. + oA,) c~i -c( O. + oO,)sa. a s (e, + at) )
~

, ~o 1. 1.0 1. ~ i ~o i

l 0 sa. ca. s.1. 1. ~

0 0 0 1
(42 )

*This method was applied to seven link mechanisms with revolute pairs
by Uicker, Denavit, and Hartenberg (49J. The approach presented here
is simil~r to theirs. They assumed the motion of one link to be
prescribed as an input and found the displacement of the rest of the
mechanism as they incremented the input;



Then expanding c(8. + 08.)
~o ~

and s(8 + 08) , using trigonometric
io i

identities for the sum of two angles and letting c(08.)=1,s(08 )= 6S
~ i i

(4.2) becomes

c 8. -s 8 en. s8 sa. a cS -s e. -c e ca.. ceo sa. -a s e
~o io ~ io i i io ~o io ~ ~o i i io

se cS. ca. -c e sq.. a se oe~ c8 se ca. sG sa. aic8ioA· io ~o i io ~ i io + io io i io i~

0 sa. ca.. s 0 0 0 0
i :J. i

0 0 0 1 0 0 0 1
(4.3)

which we write as

A = A + fif:J B
i io i io

(4.4)

where A. and B are defined from (4.3). Using (4.4) in the basic
~o io

eqn. (3.4) and retaining only terms of degree one or less in

have

1)8 we
i

be (BlOA20A30A40~SOA60)1

+ 1)9
2 (AlOB20A30A40ASOA60)

+ 08 (AlOA20B30A40ASOA60)3
(4.5)

+ I)€!4 (AlOA20A30B40ASOA60)

+ 08
(AlOA20A30A40BS~60)S

+ c8
6 (AlOAZOA30A40ASOB60)=Aeq-AlOAzOA30A40ASOA60

The matrix equation (4.S) contains six independent linear equations

that may be used to compute ~e ,(i=1, ••• ,6). It is noted that the
i

preceding was developed for revolute joints, but the method is also

applicable to manipulators with prismatic joints provided appropriate

changes are made in the B.
~o

This method lends itself to computation on a digital computer. A

program has been written implementing this scheme. The inputs to the
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program are the joint angles of the manipulator in its initial state,

and the desired final hand position and orientation. The output is a

set of angles leading to the final state. If the final state is a great

deal different from the initial state, then solutions of (4.5) will not

yield "small" corrections and the method will not converge. In order

that (4.5) be valid it is necessary to generate intermediate

targets. The right-hand side of (4.5) represents a translation and a

rotation. Intermediate goals are specified by taking a fraction of

the total rotation and translation. The program begins with the initial

angles as the first approximation. Then it computes the next approxi-

mation based on an intermediate goal, A new intermediate goal is computed

and the process continpes until a satisfactory set of angles is found or

the method fails to converge after a fixed number of iterations, See

Appendix I for details.

4.2 Iterative Velocity Method

The iterative velocity method is based on the fact that a change in

position and orientation of a rigid body (in this case the hand) can be

expressed as a screw - a rotation about and a translation along a single

fixed axis. In addition, for small motion, it can be shown that the

screw is related to the angular velocity.

We write Wand V as approximations respectively to the angular

velocity of the hand and the linear velocity of a point in the hand at

*On the right-hand side of (4.5), Aeq represents the desired position and
the product of the six matrices represents the present position, Hence,
the difference gives the displacement which may be represented as a
rotation and a translation.
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the origin:

n (4,6)

v = h 6.q; ~ - n x r 6.q;
6.t !':,t

(4,7)

where quantities on the left-hand side of the above are found from the

screw; !':,~ is the amount of rotation, n is a unit vector parallel

to the screw axis, '-~ is the pi teh of the screw, and r is a vector

from the origin to the screw axis. The details are shown in Appendix II.

In addition we may express the angular and linear velocity as functions

of the rotations in the arm joint s, That is

6
W

<,:-1
W/~

i=l -i

6
V =-2: w x r

i=l -i -i

(4.8)

(4.9)

where W is the angular velocity of the hand due to the rotation about
-i

axis i and r is a vector from the origin of system 1 to axis i,
-i

We make the approximation

where n·-1.

6.EL
W. =:.......!, n. (i=1, ... ,6)
-1. !':,t -1.

is a unit vector parallel to axis i

(4,10)

and we assume that the

motion of the hand from initial to final position is small, so that

(4,8) and (4.9) may be written using (4.10) as

W L
i=l

L\ e
i (4.11)

v
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Then equating the right hand sides of (4.11) and (4.12) to the right-

hand sides of (4.6) and (4.7), and we obtain two vector equations repre-

senting six scalar linear equations in

dividing by ~t yields:

6A. , i=1, ••. ,6. Equating and
1.

(4.13)

6-2: (69. n x r ) = H 6~ n - n x r
i=l 1. -i -i

(4.14)

The right-hand sides of (4.1) and (4.14) are computed from the known

changes in position and orientation of the hand. Since the initial

configuration of the manipulator is known, we have values for the

n. and r
-1. -i

As long as the changes in position and orientation,

as represented by the screw, are small, then the solution of this set

of equations gives small changes in the joint angles. Thus the r.
-1.

and the n. do not change very much a~d we are justified in using
-1.

their values in the initial state. To apply this method we must insure

that the right-hand sides 6f these equations are small. Therefore,

for large motions, we take only a portion of the screw to compute

the incremental change in the angles. We also limit the change that

is made at each iteration.

If any of the revolutes are replaced by prismatic joints, this

method may still be applied with appropriate changes in (4.11) and

(4.12).

A computer program has been written utilizing the above scheme,

details of which can be found in Appendix II.
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4.3 Comparison of the Methods

It was desirable to test and compare these methods to determine

their practicability in finding solutions for complex manipulators. In

addition it was hoped that the velocity method would be faster as it does

not require the matrix multiplication that the more conventional

Newton~Raphson method does. A 6~.s2a2s3a4 manipulator was used as a

trial for the two methods. For the purpose of testing, the target hand

positions were generated by sets of known angles. Programs were written

in FORTRAN IV for the PDP~6. With this machine, an iteration using

Newton~Raphson took 0.140 seconds while the velocity method took 0.097

seconds. A typical example is:

With the parameters of the arm fixed at

0.
1 = a = a = 90

0

3 5
0.

2 = 0.
4 = ~900

a' = 0.3752

s3 = 12.2

a3 = 0.375

s = 9.5
5

and arbi trarily

a = 5.9
6

a, 0
6

the target was generated by the angles

@ = 1000
8 = 1000 e = 300 e =

1 ' 2 ' 3 '4
e = 50

0
, 8 = 0 .

5 6
This leads to the hand position specified by position vector

!:2 =[:~: ~~~l
0.3l~
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and the orientation (specified by two unit vectors fixed in the hand,

12 pointing in the direction of the hand and ~2 in the direction of

the sixth revolute axis);

[0.86~L
2

= 0.492
-0.042 t

o.3l~
~2 0.486

-0.816

The initial configuration of the arm was

81 = 70°, 82 = 80°, 8 = 40° e4 = 0, e = 60° e = 30°
3 ' 5

,
6

with

[ -W·
229

J
-0.979 CO.10~~l = 20.295 11 ' O,.19~ ~l = -0.220

14.141 , 0.061 -0.970

The velocity method resulted in:

e = 100.00, e = 100.00, e = 30.00, 9
4

= 30.00, e 50.00, 8
6 = 0.00

1 2 3 5

U
7

•
9l4J~ = 21.001

2 24.863 l
O.87~1 =0.492

2 -0.042 ~
0.3l~

~ = 0.486
2 -0.816

Number of iterations = 10

Run time

The Newton-Raphson method resulted in:

= 0.97 seconds

el = 100.00 82 = 100.00 e = 30.00
4 "5

-0.01

~
7 .9l~:g, = 21. 002

2 24.862 ~
0.87U1 = 0.492

2 -0.042

Number of iterations

Run time

~ =I~:~~~
2 l:0.8l~

= 13

= 1.82 seconds

From the results of many tests similar to the above the following

was observed:
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1. For small motions (rotations of about lOP in each joint) both

methods converged to solutions but the velocity method generally

had fewer iterations.

2 1 . ( . of 100
- 900 1.·n h"). For arger mot1.ons rotat1.ons eac JOl.nt,

Newton~Raphson did not always converge within the upper limit

of 400 iterations. The velocity method did in all cases tested.

3. For even larger motions, the velocity method did not always

converge within 400 iterations but did converge in all examples

when allowed more than 400 iterations. However, such was not

the case with Newton-Raphson. In some examples even after

4000 iterations, it 'still did not converge.

Both methods become very time consuming whenever the course of the

solution takes the arm to the equivalent of a "stretched Ol,lt" position.

That is whenever the hand is in a position from which it cannot move

in an arbitrary direction and rotate about an arbitrary axis, the

system of equations formed in both the above methods degenerates.

Generally, these methods \\lark their way out of such predicaments by

taking very small steps, and by benefiting from round-off error inherent

in the computations. The further the distance between initial and

final states, the more degeneracies that are likely to be encountered

ept'ctite't.o'thefinal state.

Even though convergence is occasionally slow, the velocity method

reached a solution in all cases tested, thereby proving it to be useful

for complex manipulators. In particular for a short range of motion it

was very efficient. Thus it might be used most effectively to find

the :final set of angles, when a first approximation has been obtained

using a rather stthplified model of the manipulator.



cnAPTER v

A DIGITAL MANIPULATOR

5,1 Description of the Manipulator

One type of manipulator whose solution does not fall into the

class previously discussed is one containing more than six degrees-of=

freedom but having a limited motion in each joint, An articulated

arm of this type having many degrees=of-freedom was described by Anderson

and Horn [37 J, They found that such a design was practical for use in

an underwater laboratory, In fact, they claim that this design opti=

mized many desirable criteria such as slenderness, cost, microdexterity

and range of operation,

If, in addition to restricting the range of freedom at each joint,

we allow only a finite number of states to exist at each joint, then the

arm becomes digital in nature, This makes it easy to be interfaced with

a digital computer, The concept of such an arm was suggested by

L Leifer who together with V, Scheinman developed working models for

the Stanford Artificial Intelligence Project (see Figure 5,1), Since

the arm is snake=link in form, they named l.t the "ORM" (the Norwegian

word for snake),

'We shall examine the problem of finding a solution for a digital

arm, It can be seen that knowledge of the state of each joint together

with knowledge of the link geometry is sufficient to specify the position

of the hand, The orientation freedom of this device is limited, In

practice it would need to have a wrist capable of putting the hand in
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Figure 5.1. Working model of the ORM developed at Stanford.
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the proper orientation. We, therefore, examine the problem: given the

desired position of a point in the hand, to find the state of each joint

leading to this position.

The problem is divided in two parts. The first is to consider

a two-dimensional arm and develop a technique to solve it. The second

is to develop a method for three dimensions with insight gained from

looking at the two-dimensional problem.

5.2 Two-Dimensional Model

The two-dimensional or planar arm to be considered is binary in

nature. In other words, there are only two states for each joint. If

the arm is made up of n links, there are 2n possible configurations.

A model of this arm is shown in Figure 5.2, where the angle between two

adjacent links can be either +80 or -eo where e
o

is a constant.

y

x

HAND

Figure 5.2. Binary Arm,

If we number the joints l, ..•. n, and denote the rotation in the i th

that the end of the final link is

joint by 8i ' i=l, .... n, our problem is to find the 8. such
l.

l.I.close"tb the desired target.

Since there are exactly 2n possible configurations, there are

at most 2n points that the end bf the arm (the hand) can
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reach. Thus, in general, the hand cannot be placed at an arbitrary point.

Hopefully, however, with sufficient links the hand could be placed close

to any arbitrary point within its workspace.

There exists a well-defined transformation (see Appendix III)

to find the position of the hand, given the ei' However, the inverse

problem (i.e., given the hand position, find the associated e.) has
1.

yet to be solved. Theoretically, we could exhaustively examine the

2n possibilitie~ construct a table and then choose the one that places

the hand closest to the target, but in practice this would be too time

consuming. We therefore need a systematic method to help in dealing with

such a large solution space. If we define the error as the Euclidian

distance of the hand from the target, the scheme outlined in Figure 5.3

suggests, itself.
WITI"I ARM IN

SOME. ~'R13'TRARY

COI\IFIGURATION

CHOOSE ez TO

MINIMI'Z.E. ERROR

YES

FINISH

Figure 5.3. Sequential Search Procedure.

In this method the arm is put initially into some arbitrary con-

figuration and the position of the hand computed. Starting at the
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origin each joint is examined sequentially to see if the other state

at that joint would reduce the error. If it does reduce the error,

the change is made. That is, the rotation at that joint is considered

to be reversed and the position of the hand computed while the rest

of the arm remains rigid. The state of that joint is then changed

if necessary to reduce the error. However, the existence of local

minima prevent convergence of this method in many cases. It is

Possible to get improvement by using look-ahead. Instead of considering

changing each joint singly, the results of changing that joint along

with changes in the next k joints are considered. This may be

called k-stage look-ahead, and would involve computing the hand position

Zk+l times for each joint. There are now many strategies possible using

combinations of O,l,Z .... - stage look-ahead. There is, of course,

a trade-off between the amount of look-ahead and computation time.

For instance, one strategy was to use no look-ahead until the error

could not be reduced, then try I-stage until no impIDvement resulted

then Z-stage etc. The process was halted if the error was sufficiently

small or the look-ahead became too large (usually 3-stage was as much

as was allowed).

For purposes of trying these strategies, an arm with twenty-four

1 inch links, with possible rotations of ~15° in each joint was

modeled in the computer. Tests were started with the arm extended

along the x-axis as shown in Figure 5.4. The results are presented in

Table 5.1. Computation times are shown in Table 5.Z.
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y

x-
Figure 5.4. The arbitrarily chosen initial starting

configuration for the arm~

It can be seen that no strategy tried was best in all cases. These

methods had the additional disadvantage that the shape of the arm itself

was not predictable. It was hoped that improvement would result if the

searching was started after the hand was put at a point near the target

by some simple procedure.

In order to place the hand near the target, a curve connecting

the origin and the target was generated, whose arc length was equal to

the length of the arm, and whose curvature did not exceed that which

the arm could assume. Curves made up of segments of four circles having

the above properties were used (details of the derivation of these

circles are presented in Appendix III), and a rought attempt was made

to match the arm to this curve. After the rough curve match, the

previously described searching technique with I-stage look-ahead was

used. Various curve matching algorithms and different radius circles

were used. Some of the results are shown in Figures 5.5 through 5.9.

Figure 5.5 shows the configuration resulting after four loops with

no look-ahead, then two loops of I-stage look-ahead. The procedure was

started with the arm aligned along the x-axis as in Figure 5.4.

Figure 5.6 is the result of first matching the arm to a curve composed
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of segments of four circles, and then using two loops of l-stage look­

ahead.

Since the arm can tilt t15° at each joint and the joints are a

fixed distance apart the arm bends in a circle if all the tilts are in

the same direction. The radius of this circle is the minimum that the

arm can assume. In Figure 5.6, the radii of the circles used to generate

the circle segment curve have this minimum radius. To match the arm

to the curve, the state of joint i was chosen so that joint i+l

on the arm was as close as possible to point i+l on the circle-segment

curve. As can be seen, this procedure definitely influenced the shape

of the final result. It may be noted from Figure 5.6, that in the

attempt to match the arm to the circJ.e~segmentcurve the arm lagged the

curve. One attempt to remedy this, was touse larger radii circles to

generate the curve. It can be seen from Figure 5.7 that this improved

the match.

To reduce the lag even further, the state at joint: i· was chosen

So that joint i+l was as close as possible to point i+2 on the curve.

This appeared successful as can be seen in Figure 5.8. An attempt to

match the arm to the curve in both slope and position was made.

Figure 5.9 shows the results· of this scheme. The arm ~omewhat took

On the shape of the curve, but not as much as in the other schemes.

The results presented were for the target (10,10). However, they

are similar to those obtained for other targets. The best results

were obtained when the radii of the circle segments were larger than

the minimum. For radii of too great a magnitude, no curVe existed that
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x

Figure 5.5. Result of arm after 4 loops of 0 look-ahead and two loops
of I-stage look-ahead. The starting configuration was
along the x-axis, as in Fig. 5.4.

-81-



o
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8

2

o

y

Target (lO,lO)~O

o

o Points on curve made up of four
circles

*~~~~~ A~m after simple attempt to match
curve

Position of arm after two loops of
sequential i-stage look-ahead search

+

4

+

o

o

o

+

Figure 5.6. Result of trying to match arm to curve made up of segments
of four circles, and the improvement after two loops of
i-stage look-ahead. Radii of circles is equal to minimum
radius that the arm can assume. The curve matching tech­
nique was to choose 91 so that point i+l on the arm was
as close as possible to point i+l on the curve.
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circles

~*~--*~ Arm after simple attempt to match
curve

~f----++ Improvement after two loops of
1-stage look-ahead from above
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Figure 5.7. Similar strategy to that in Fig. 5.6. In this case the
radii of the circles is 1.2 times the minimum radius that
the arm could assume.
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Target

10

8
() Points on curve made of circle0 up

segments

* * Arm after attempting to match
curve

+ Arm after two loops of sequential
l-stage look-ahead

+
4-

+
2

o
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x

+
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Figure 5.8.

+

Result of trying to match arm to curve made up of segments
of four circles, and improvement after two loops of l-stage
look-ahead. Radii of circles is 1.2 times minimum that
arm can assume. The curve matching technique used was to
sequentially choose e~ so that point i+1 on the arm was as
close as possible to point i+2 on the curve.
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(10,10)J
o

Target

4

+

Arm after two loops of sequential
I-stage look-ahead

o o Points on curve made up of
circle segments

~*~~.. Arm after attempt to match curve

o

10

-2
+

Figure 5.9. Result of trying to match arm to curve made up of segments
of four circles, and improvement after two loops of I-stage
look-ahead. Radii of circles is equal to minimum radius
arm can assume. The matching technique was to sequentially
choose 51- so that (Xi+l-:i(+I~+(Yl+'-Yl·+I)\5@·"'-~?)-(~i+I-Xt;>J was

l+l- "l l+1 - XL
a minimum, where (xl ,Yt) is the coordinate of joint i on
the arm and (xi . .;\) is the coordinate of point i on the
curve. This matching criteria puts a weight on the slope as
well as the position of the links.
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could connect the origin and the target point. A value of 1.2 times

the minimum seems to be about optimum. It was found that this allows

for a measure of control over the final shape of the arm as well as

generally reducing the position error,

5,3 Three-Dimensional Model

This arm is similar to its 2-dimensional counterpart, The differ-

ence is that two axes of rotation exist at each joint, The axes inter-

sect and are 90 0 apart. (See Figure 5.10.) We assume our model to be

constructed so that eight states are allbwedateach

AXIS 1

Figure 5.10. Typical joint in 3-dimensional digital arm.

joint: These are: either a rotation of +e about axis 1 with none
- 0

about axis 2, or a rotation of ~8 about axis 2 with none about
o

axis 1, or rotations about each such that the net result is a rotation

~~ about axes midway between axes 1 and 2. Thus, two links can be
o

tilted with respect to one another ±8 about 4 different axes that areo
o45 apart. If we denote the rotation about axis 1 as 8 ~nd the rota-

tion about axis 2 as ~ , then the possible states are:
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State 8 cp

1 +8 a
0

2 -8 a
0

3 a +6
0

4 a -80

-1 1
Sin-IV sine)5 +tan c.:r. tan 6 )

2 0 2 0

-1 1 ..1 1 . e)6 +tan c.rtan6 ) -sin C,J2sl.n2 0 2 0

7 -1 1 -1 ..L-tan Sf: tanG) -sin ~_ sin e )
2 0 2 0

S -1 1.. +sin..1(J...sin 8 )-tan (.[: tanS)
2 0 ~2 0

where the values of 8 and cP in states 5-S are the actual rotations

about axes 1 and 2, leading to equivalent tilts about axes at 450

to 1 and 2 (see Appendix III). An n-link arm would then have Sn

possible configurations. Again there is a well-defined transformation

to find the position of the hand given the angles (See Appendix III)

but no such transformation exists to find the angles given the hand

position.

The procedure presented in Figure 5.3 is still applicable except

S states exist at each joint. Then each joint would be examined

sequentially and the state at that joint is chosen which minimizes

the Euclidian distance of the hand from the target. With k-stage

look-ahead variations in the joint under consideration plus all

possible combinations of the next k are considered. Then only the

joint under consideration is moved. The position of the hand must thus

be computed Sk+l times for each joint and the time involved in these

computations will limit the amount of possible look~ahead.
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An arm with 24 I-inch links and possible tilt of ±15° between each

link, was modeled in the computer. The arm was placed initially in

the configuration of Figure 5.3 and strategies involving combinations

of no look-ahead and I-stage look-ahead were tried. Results are presented

in Table 5.3. Computation time for one loop of sequential search is

shown in Table 5.4. Details of the algorithms used are in Appendix III.

In general, the results are encouraging. It seems that this

approach works better in three-dimension than in two as the errors

are lower. The reason for the improved behavior can be attributed to

the additional possible states at each joint. Computation time is

longer in three dimensions, limiting look-ahead to one stage if real

time problems are to be undertaken by the arm.

5.4 Discussion

Many variations of the aforementioned strategies are possible.

For example, one may start sequential searching and making moves at

the hand then work toward the origin. It is also possible to find

the joint at which a change would reduce the error by the largest

amount, make this change, and then continue the process of changing

the joint that makes maximum reduction in error.

A reason for starting at the origin and working toward the hand

is that in general a fixed rotation near the origin will cause the

greatest deflection of the hand. Thus, in many cases making a change

near the origin turns out to be the change that makes the maximum

reduction in error.

Another approach is to take two joints at random and consider

the result of simultaneous changes in each. The two-dimensional
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curve matching scheme could be extended to three-dimensions to give the

arm a better starting configuration. It might be possible to break the

spatial problems down into planar problems. Another idea is to divide

space up into several regions, store a configuration that places the

hand in each and then initially start the hand in the region closest

to the target.

Many strategies are possible, none clearly better than others.

Perhaps further study would show that certain ones work better in certain

areas of space. It then might be possible for the computer to learn

which was best for a particular region.

Different error criteria might be better. cartesian coordinates,

with the base of the arm aligned along the x-axis were used. This might

mean that error in the x-direction should be weighted differently than

error in the y- or z-direction. Perhaps the arm can better reduce angu­

lar error than radial error and this should be taken into account. Again

learning might be applicable in selecting one error criteria for a given

region or for optimizing weights placed on different quantities in an

error function which is to be minimized.

In order that this arm be useful, the points in the reachable space

must be close together. With a 24 link arm, there are 824 (approximately

1021 ) possible configurations. There will be fewer reachable points than

configurations, but reducing 8
24

by a factor of 10 or 100 or 1000

still leaves a large number of points. Near the boundary of reachable

space, the points will be further apart, but in the interior, the

density whou1d be very high. Assuming that a 24 link arm has a working

volume of . 5x104 cubic inches and 1018 reachable points exist, then
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the average density is 2xl013 points per cubic inch, or if the points

were equally spaced, they could be 0.00004 inches apart. This leads

one to believe reachable points should be close enough to any arbitrary

point in the space. The problem, of course, is to find the configura­

tion that leads to a position near a desired point.

The results indicate that it is possible to find a solution for

this digital manipulator. The solutions obtained are far from optimal

but close enough to be useful~. The dimensionality of the problem is

staggering at times, but it is in fact the large number of solutions

that give hope for any sub-optimal technique.

Further improvement is possible. By streamlining the subroutines

used for basic computations, computer time could be reduced. The

incorporation of different strategies for different zones would be

useful.

Although the problem of finding a set of angles to place the hand

at a given target appears soluble, the arm itself has serious limitations.

The primary drawback is the inability to control its motion. Since

there are discrete states at each joint, a wild motion is likely as

each change is made. That is, the position is undefined when motion

occurs. In addition, positions close in space may be very different in

arm configuration. In conclusion, the arm is interesting but in its

present state has no immediate usefulness.
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CHAPTER VI

TRAJECTORY GENERATION

6.1 Problem Statement

In remote manipulation a typical problem is to move from an initial

configuration to some new position and then to grasp an object. In

order to carry out this task, the position problem must be solved. This

results in a set of values specifying how much to rotate each joint in

order to move the manipulator from its current or initial configuration

to the desired final state. However, in such a case no explicit infor­

mation exists describing the intermediate states between the initial and

final position. It should be noted that the initial and the final

configurations may be physically far apart, and the space through which

the manipulator must move to attain the final state will in general

contain obstacles. It is therefore necessary to find a "path" along

which the manipulator can move and not collide with any of the obstacles.

This problem will be referred to as trajectory generation. We attempt

to solve this by defining sets of intermediate values for the joint

angles which lead the manipulator to the final state in a manner which

avoids collisions.

A person performing manipulative tasks avoids obstacles very simply.

His eyes observe a possible conflict and he knows intuitively to raise

his elbow or change his direction slightly. He sees "the world" in

which he is working. He knows immediately which objects he is likely to

encounter and which he will not corne near. For a computer controlled
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manipulator the problem is not so simple. The problems of "world"

modeling, conflict detection, and collision avoidance must all be faced

in order to generate a trajectory between initial and final manipulator

configura tions.

As a first step in dealing with this very difficult problem, a set

of routines have been developed that provide a mathematical description

of the world. Other routines simulate proposed trajectories through

the space and sequentially examine points along the trajectory for

obstacle conflict. If conflict is detected these routines suitably

modify the trajectory. Several basic strategies to get from the initial

to the final position are programmed so that if one fails, another can

be explored. A block diagram of this system is shown in Figure 6.1.

In the development of these routines, an attempt has been made to

be as general as possible in order that the programs be applicable to

any manipulator, performing a wide variety of tasks. In the next

sections, we present a description of these routines.

6.2 World Model, Obstacle Description, and Conflict Detection

For this system a simple model of the "world" is used. The basic

elements of the world are assumed to be: planes, spheres and cylinders.

It is assumed that all objects of interest can be modeled with these

elements.

The boundaries of the workspace, usually formed by table tops or

walls, are modeled as infinite planes. These planes are represented by

a unit vector, £, and by scalar t. Vector b is normal to the plane and

points inward toward the workspace. Scalar t, the distance of the plane

from the origin, is measured in the b - direction.
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Simple, somewhat regular objects which are not planar or cylindrical

in shape are modeled· as the smallest sphere, that circumscribes the

object. A typical object modeled' in this manner might be a cube, a

pencil sharpener or a coffee cup. The assumption is made that all such

objects are supported by an infinite plane. Thus we represent a sphere

by ~' a vector describing the location of its center, ~, a unit vector

from the direction of support, and t, the radius of the sphere.

Cylinders are used to model objects containing a predominant axis

such as a tower. In addition, cydinders are building blocks for more

complex objects. For example, a manipulator is modeled as a group of

cylinders each of which corresponds to one of the manipulator's

structural members. The assumption is made that all cylinders are

supported from an infinite plane or from another cylinder. We then

represent a cylinder by a line segment corresponding to its axis and by

the maximum distance of points in the object from this line, d. We have

then:

b: a unit vector parallel to the axis pointing away

from the direction of support

a: a vector describing the position of the base of

the axis

t: the length of the axis

d: the radius of the cylinder

With this representation it is convenient to consider the cylinders to

have a hemisphere capped on each end thereby assuring that all points on

the surface have the same minimum distance, d from the line segment

representing the axis.
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Each obstacle, then, has a list of properties which include its

type (plane, sphere, or cylinder), the composite object to which it

belongs, and the aforementioned parameters which are required for its

quantitative representation. The interpretation of ~, ~, t and d is

varied according to the type of the object. Such models of all objects

considered to be obstacles to the manipulator are stored in the computer.

The process of conflict detection consists of determining if the

manipulator and the objects in its workspace will be brought to the same

place at the same time. This is accomplished by computing the distance

between the elements of the manipulator and the elements of the work­

space at various positions along the proposed trajectory. A conflict

is then predicted if this distance becomes too small.

It is undesirable to compute the distance between the manipulator

and all of the objects in the workspace. To consider all the objects at

each position along the trajectory would be time consuming. In addition,

much of this computation would be wasted as for an arbitrary position,

the manipulator would be so far from a large number of objects that a

collision with these would be very unlikely. We would thus like to

consider only objects near the manipulator. For this reason we divide

the reachable space of the manipulator into small regions. In all the

work to date, sixty-four subdivisions have been used. The workspace is

considered to be a rectangular parallelapiped with edges parallel to

the axes of a fixed Cartesian coordinate system. The small regions are

defined as the volumes between three sets of equally spaced planes parallel

to each of three mutually orthogonal faces of the workspace. Then a list

of objects completely or partially inside each region is associated with



that region. For conflict detection, only the objects occupying the same

region or regions as the manipulator are considered.

As a result of dividing the space into regions, we have the problem

of finding in which region(s) various obstacles are located. In addition

we will have to identify the region(s) the manipulator occupies at various

positions along its trajectory. We wish to keep this analysis simple in

order that the time saved in not having to deal with all obstacles in

the workspace is not lost in trying to locate the manipulator in various

regions. Since the faces of our subdivisions are made perpendicular to

the coordinate axes, we can easily eliminate many regions by comparing

the minimum and maximum coordinates (x, y, z) of an obstacle, with the

coordinate boundaries of the regions. To find in which of the remaining

regions an obstacle lies we compute the distance from the center of each

of the regions to the obstacle (a fairly simple process in view of the

simple world model). We then compare this distance with the radius of

a sphere totally enclosing the region to determine if the object is in

the sphere. If the object is in the sphere, we assume it to be in the

region. This procedure may cause an object to be considered inside a

region when in reality it is outside. However, this process is con­

siderably simpler than trying to find whether an object cuts any part

of the actual region.

Routines were developed which divide space into regions and

appropriately enter or remove objects from lists associated with the

regions. These routines also store the properties of each obstacle.

The conflict detection routine starts with the first link of the

manipulator and finds which regions this link is in. It then finds the
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distances between all the objects in these regions and the link. A

collision is predicted if the distance between any object and the link

is small enough so that, with the link continuing along its present

course, a conflict would occur. If a collision is predicted, a flag is

set and the routine specifies. the obstacle and the link closest to the

obstacle. If no collision is detected the procedure is carried out for

the remaining links in the manipulator. A block diagram of this program

is presented in Figure 6.2.

The method for determining distance between a manipulator link and

an object depends upon the type of object. For spherical objects, the

distance between the sphere center and the cylinder-axis of the link is

computed. The actual distance is then found by decreasing this by the

sum of the radii of the sphere"and the cylinder (representing the link).

For planes, the distance between the plane and the cylinder-axis of the

link is computed. This distance is decreased by the radius of the

cylinder to form the actual distance. For objects modeled as cylinders,

we find the distance between the object axis and link axis, and decrease

this by the combined radii of the cylinders. Details of these calculations

are found in Appendix IV.

6.3 Trajectory Generation and Obstacle Avoidance

We have the problem of finding a series of closely spaced inter­

mediate positions connecting initial and final states. These represent

a trajectory that the manipulator can follow while avoiding all obstacles

in the workspace. The approach used is to start by choosing a plausible

trajectory, simulate the motion along the trajectory and then if conflict
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Figure 6.2. Block diagram for conflict detection routine.
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occurs, to modify the trajectory. This modification is made on the basis

of local geometric conditions in the area of conflict. (A program,

called AVOID, accomplishing this will be discussed in more detail later

in this section.)

Often if more than one obstacle is present, a move that appears

good to avoid one obstacle is bad to avoid another. This may lead the

manipulator to oscillate between objects. It is also possible for some

joints to be at their physical limits so that the avoidance routine does

not find a good move. Finally, the avoidance routine itself may come up

with a non-productive move. It is therefore necessary to continually

ascertain whether or not progress is being made toward the goal. If no

progress is being made, it is then necessary to decide whether a slight

change in strategy is sufficient or whether a whole new strategy is in

order.

A program based on the above approach called TRLTRJ, has been

written. The inputs to the program are two sets of joint angles, one

set specifying the initial position and the other specifying the final

position. In addition the desired increment between intermediate

positions is specified. The output from the program is an array of

angles specifying the intermediate positions.

Four basic strategies are built into the program. The first, and

least complex, just increments each angle towards the final goal. The

second strategy computes two intermediate positions to move the manipu­

lator up and then over a concentration of bbstacles. The third and

fourth strategies both try to fold the manipulator to shorten it and then

move it in front of any obstacles. These last two differ in that one
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shortens the manipulator by moving joints in one direction toward the

physical stops while the other folds the manipulator by moving the joints

toward the stops in the other direction (in the program, we call these

directions positive and negative, respectively).

The program starts by trying the first strategy_ If any obstacle

is encountered, this strategy is abandoned for the time being and the

second strategy started. If while pursuing this second basic strategy,

a conflict is predicted 1 an attempt is made to modify the trajectory

using the program AVOID. If this strategy fails after using AVOID the program

continues and tries the third and finally, if necessary, the four strategy

in a similar manner. If the fourth strategy failS,the program returns to

the first strategy and tries it using AVOID. If it does notpro'duce a

trajectory, it is assumed that all obstacle avoidance strategies have

failed and the :program halts.

If any of the following occur, the program considers that no progress

is being made and hence a strategy has failed:

1. The avoidance routine (AVOID) is not able to generate a

move due to joints being at their physical stops.

2. A collision is predicted with the manipulator at the same

point on the trajectory where a conflict had previously

been predicted with that same obstacle (hence it is

assumed the program is in a loop).

3. A conflict is predicted with a,plane for the second

time, while trying to avoid the same obstacle.

(Assumedly we cannot get around the obstacle.)
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4. The manipulator oscillates between two obstacles, and no

net progress toward a goal is being made.

5. More than 200 intermediate sets of angles have been

selected without the manipulator reaching a goal.

6. More than 350 intermediate sets of angles have been

explored.

The following conditions cause a slight change in strategy but do

not cause the strategy to be abandoned.

1. A plane of infinite extent is encountered while trying

to avoid an obstacle. At this point we assume that

the manipulator is moving in the wrong direction to go

around this obstacle. The strategy is to go back to the

first point we encountered this obstacle and try to go

around it by going in the opposite direction. (This

notion of direction will become more clear with the

description of AVOID.)

2. An oscillation of the manipulator between two obstacles

is detected. The action that the program takes is to

go back to the point where the second of the obstacles

was encountered and try to go around it in the opposite

direction. If this happens twice at the same position

on the trajectory, it is assumed that no progress is

being made and the strategy has failed.

A block diagram of TRLTRJ is presented in Figure 6.3.

The subroutine AVOID is used to generate small perterbations in a

trajectory when conflict is predicted. The program attempts to define
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a "good" direction and a "bad" direction. It then tries to move the

link for which a collision has been predicted as much as possible in the

good direction while not moving in the bad direction. This is accomplished

by defining small changes in the joint angles of all the links between the

base and the "colliding" link. Ideally these angle changes are chosen so

that the link will have a large velocity component in the good direction

and zero component in the bad direction. If the link does not have enough

freedom (i.e., there are too few joints preceding the link or the joints

are at their physical stops) to make a move in this manner~ an attempt

is made to move in the negative bad-direction. If this too is~not

possible then no move is made and a flag is set indicating that the

strategy has failed.

The underlying idea used in choosing a good direction is that all

obstacles are supported by either an infinite plane or another obstacle.

Then if an obstacle lies between the manipulator and the target, one

could eventually get around the obstacle by moving away from the direction

of support. In addition an attempt is made to move in the general

direction of the target. This target will normally be the final position

but may be an intermediate goal generated in a strategy of TRLTRJ. If

the predictedtconflict has occurred in the process of avoiding a different

obstacle, the target becomes the position generated by AVOID when the

manipulator encountered the first obstacle. The good direction is chosen

taking into account the type of obstacle and the relation between link,

obstacle and target as follows:

If the obstacle is a plane or a sphere, the good direction is

specified by a vector from the point of conflict on the link to the same
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point on the link with the manipulator at the target position. (The

assumption here is that the sphere is relatively small and lies on the

plane of support.)

If the obstacle is a cylinder, then the process is a bit more

complicated. Recall that a cylinder may be part of a more complex

obstacle (for example the towers in Figure 6.4). If no other part of

the possibly complex obstacle, of which the cylindrical obstacle is a

member has been recently encountered, then the good direction is:

1. The direction of the axis of cylinder, if the

obstacle appears* to be between the manipulator and

the target.

2. The vector sum of unit vectors in the axis direction

and the direction the link must move to get to the

target, if the link is above the cylinder.

3. The direction the link must move to get to the

target, if obstacle is not between the manipulator

and the target.

When the cylindrical obstacle is part of a more complex obstacle

and when an element of this complex obstacle has been previously en-

countered, then the good direction ismmilar to the above with the

following exception: the positive axis direction is replaced by the

negative axis direction whenever the point of conflict on the obstacle

is nearer the far end of the obstacle (i.e., away from the point of

i~We say "appears" because a cylindrical object may not itself be between
the manipulator and the goal, but the complex obstacle which it belongs
to, may indeed be between the manipulator and the goal.
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(a) simple tower (b) Y-shaped tower

Figure 6.4. Towers used as obstacles. (a) mcdel is a single cylinder.
(b) and (c) are each modeled with three cylinders.
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support). In this way we are able to follow the contour of a complex

obstacle.

Once a good direction has been established for an obstacle it

remains the same until:

1. The manipulator is clear of the obstacles, or

2. An oscillation has been detectedJby TRLTRJ, in

which case wherever the positive axis direction

was to be used, it is to be replaced by the negative

axis direction and vice-versa.

The bad direction is always specified by a vector from the link to

the obstacle, along the line defining the minimum distance between them.

A block diagram of AVOID is presented in Figure 6.5.

6.4 A Test of the Program

The trajectory generating routines were tested by incorporating

them into the block stacking program developed at :t:heStanford

Artificial Intelligence Project L25J. The block stacking program

represents current research work in hand-eye systems. An electric

motor driven manipulator of type 6R, s3 a 3 s5 as (see Figure 6.6) and

a vidicon T.V., interfaced with the PDP-6 computer form the basic system.

Programs written by Singer and Ping1e L25J enable the manipulator to pick

up blocks from a table and build block towers. The blocks are originally

placed at random on the table but within view of the vidicon. A block

is then located on the table by appropriate analysis of the T.V. picture.

Next, the manipulator moves to grasp the block and then places it to

bui1d<-a tower. A new block is found and the process continues.
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Figure 6.5. Block diagram of AVOID.
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Figure 6.6. Electric Arm at Stanford Artificial Intelligence Project.
A prothestic arm originally built at Rancho Los Amigos
Hospital, this arm has been modified for use in hand-eye
research.
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The trajectory generating routine is used to find trajectories when­

ever the arm is moved except in the last stages of actually picking up

or setting dOw-n a block. At these times, the manipulator control is

transferred to a special routine whose function is to lower or raise the

hand along a specified path with a specified orientation.

Objects considered to be obstacles are the table top~ the support

structure for the arm~ and any block tOTtlerS that have been built. In

addition, to make life difficult for the program, several other obsta.cles

(see Figure 6.4) were added. Since the range of vision of the T.V.

camera is smal~~ and its recognition powers to date is limited to cubes,

a sub-program was written so that the external obstacles could be added

to the data structure by cOIIlmands from the teletype.

After allowing the program to run, with the different obstacles in

varying locations, the trajectory generation program was seen to perform

fairly well (see Figure 6.7). Where possible~it was generally able to

go over or in front of the obstacles. However, the procedure occasionally

failed when the manipulatorvlas started in a configuration in which joints

were near their physical stops. In these cases a successful maneuver

might have been to move those joints well away from the stops a.nd try

again (a procedure not built into the-program). In addition~ if the

objects were so placed that the arm could o>:lly get through by going

between two objects~ failure generally occurred.

Whenever more than one or tvw strategies were tried~ the computation

might run upwards of 20 seconds. Hmi1ever ~ 1110St manipulative scenes are

fairly static~ so that once a trajectory had been found through a given

set of obstacles, it could be used :repeatedly. This process would save
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Figure 6.7. Example of trajectory enabling manipulator to go over
obstacles.
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having to re-analyze the trajectory for every move, thus conserving

computer time. In addition we could move backward on the same trajectory

to get back through the space again.

With this program we have attacked the problem of moving a multi­

link manipulator through a space composed of three-dimensional objects.

Had we been concerned with having just the hand avoid obstacles on a

plane, the problem would have been much less complex, as the hand could

be made to follow an arbitrary curve. Such is not the cas~, when

considering a conflict with all links of a manipulator. We cannot inde­

pendently specify the position of each link of a six degree-of-freedom

manipulator. There are just not enough freedoms. However, the programs

developed above do enable us to deal with the problem of conflict for a

general multi-link manipulator. These programs perform the basic

function of allowing a manipulator to perform tasks in the presence of

obstacles.
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CHAPTER VII

CRITERIA IN THE DESIGN
OF A MANIPULATOR FOR COMPUTER CONTROL

7.1 Kinematic Criteria

As mentioned earlier, a manipulator needs to have six degrees-of-

freedom to grasp a rigid body with a specified orientation at a specified

position in space. In addition, the kd:.nematic solution must be easily

programmed and solved. This indicates the desirability of a closed-form

solution rather than iterative techniques. The closed-form solutions

are faster and find. all configurations leading to the desired terminal

position and orientation while iterative techniques find only one.*

In fact, the iterative schemes may not find a solution even though

several may exist. The question of the existence of a solution is

important, as this existence indicates whether a given position and

orientation is physically attainable. It is desirable to have solutions

exist throughout the workspace or at least know where they do not exist.

Thus a factor in the design of a manipulator is the zones in which the

terminal device can be placed in an arbitrary manner.

The problem of zones is closely allied to that of solutions. The

existence of a solution for a given position and orientation automatically

guarantees that that point is within the zone of reachable points. One

method of investigating zones would be to solve the position problem for

*The iterative technique may however be used to good advantage when the
distance between positions is very small. Then the iterations converge
quickly, and there is only one solution being sought.



many points and many manipulator configurations. This however is very

lengthy and not at all general. Alternatively, we attempt to give a few

general remarks about zones.

When on the boundary of the zone of reachable space, the hand

cannot be moved in an arbitrary direction or rotated about an arbitrary

axis. Another way of saying this is that the hand cannot move along an

arbitrary screw. Mathematically this happenslwhenever the determinant

formed from the left-hand sides of equations (4.13) and (4.14) vanishes.

The existence of a solution would enable us to express the and

appearing in (4.13) and (4.14), in terms of the hand position and

orientation. Then forming the determinant we would have a polynomial in

terms of the hand position and orientation whose vanishing would correspond

to the boundary of r~achab1e space. We would then have a surface in

six-space which bounds reachable space.

As this representation is highly non-linear, as well as dependent

upon the existence of a solution, it is often more fruitful to examine

the problem from a geometrical viewpoint. For example, consider the

6R,s3s S manipulator with all adjacent pairs of axes perpendicular, as

is shown in Figure 7.1. We note that the wrist point, W, defined by

the vector R, can lie anywhere within a sphere of radius r about the

shoulder point, 0, where:

(7.1)

Furthermore, if the wrist position is fixed, then the direction the

hand points, defined by ~6 in Figure 7.1, is arbitrary. Through

appropriate rotations in joints 5 and 6, ~6 can be made to point in

any direction. However, the total orientation of the hand cannot be
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arbitrarily specified for a fixed wrist point as the direction defined

by ill6 in. Figure 7.1 is limited in range. We note that illO must

always be perpendicular to illS . ·Hence, .ill6 may lie anywhere in a

plane perpendicula r to illS Now the s.pecificationof the wrist

point does not fix the elbow point, A, and in fact the triangle OAW may

be rotated about P. We observe, then, that ~5 must lie on a cone

whose axis is P, with apex at Wand whose cone angle is fixed by

triangle OAW. Then ~6 will lie in planes through W, perpendicular

to the elements of this cone. This defines a second cone, inside which

IJj

-6 can never point. These cones are shown in Figure 7.2. Referring to

Figure 7.2, the elements of cone 1 form the locus of IJj-5

always lie outside cone 2.

while will

If it is desirable for the hand to have a full range of orientation

freedom, then a manipulator whose: last three joints are revolute and

whose axes intersect is appropriate. Consider such'a configuration,

shown in Figure 3.8. Here the last three axes intersect and provide

maximum orientation freedom for the hand. In addition this configuration

has a wide range of positions that the wrist point, defined by R3 '

can assume. Referring to Figure 3.8 we note that the wrist point can be

placed anywhere inside a circle normal to axis 2, about P1 , whose radius

r obeys the constraint:

(a -s ) 2 /' r 2 ./ (a 2+"'.4) 224 '::: - ,0
(7.2)

Rotation of the first joint then rotates this circular anu1us to generate

a torus which is the locus of points the wrist can reach.

It is possible to examine many manipulator configurations in this

manner. Table 7.1 presents the results of such examination of 6R manipu-

1ators with two and three non-zero link parameters. Whether or not a

solution exists is also included in Table 7.1.
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w

Figure 7.1. A 6R,s3sS manipulator

o

CONE;. \-

Figure 7.2. Cones showing possible loci for ~5 and W,
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TABLE 7.1

Solubility and Orientation Re8triction8 in 6R Manipu1ator8

MANIPUIATOR REMARK MANIPUIATOR REMARK MANIPUIATOR REMARK

1 a
1

82 D 16. a283 D 31.
,
D84a4

2. a1a 2 D 17. a 2a3 S G 32. 848S D

3. a 8 D 18. a2. 84 S G 33. 84aS D
1 3

4. a 1a3 S G 19. a 2a4 N R 34. a48S D

5. a
1

8
4 S G 20. a28S S R 35. a4a5 D

6. a 1a4 S G 21. a2a S S R 36. 8Sa5 D

7. a 18S D 22. 83a3 D 37. a1 82a2 D

8. alaS D 23. 83 84 S G 38. a18283 D

9. 82a 2 D 24. 83a4 S G 39. a182a 3 S G

O. 828 3 D 2S. 83 8S S R 40. a18284 S G

11. 82a3 S G 26. 83aS S R 41. a 182a4 S G

12. 8284 S G 27. a3 84 D 42. a18285 D

13. 82a4 S G 28. a3a4 S G 43. a 18
2
a

S D

14. 828S D 29. a38S S R 44. a 1a 283 D

IS. 82aS D 30. a3aS S R 4S. a 1a 2a3 S G
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Table 7.1 (continued)

MANIPULATOR REMARK MANIPULATOR REMARK MANIPULATOR REMARK

~6. a l a 2
S 4 S G 63. a l a

4
a

5 S R 80. s284a4 S G

47. ala2a4 N R 64. a l s5a5 D 81. 82 8485 S G

48. ala2s5 S R 65. s2a283 S G 82. 8284a5 S R

49. ala2a5 S G 66. 82a 2a 3 S G 83. 82a485 S G

50. a 183a3 S G 67. 82a 284 S G 84. 82a4a5 S R

51. a 18384 S G 68. 82a 2a4 NR 85. 8
2

8
j
a

5 D

52. a183a4 N G 69. 82a 28
5 S R 86. a 283a3 S G

53. als3 85 S R 70. 82a 2a5 S R 87. a2838
4 S G

54. a183a 5 S R 71. 8283a3 S G 88. a283a4 N G

55. a l a384 S G 72. 828384 S G 89. a28385 S R

56. a l a 3a4 N R 73. 82s3a4 N R 90. a283a5 S R

57. ala3 85 N R 74. 828385 S R 91. a2a384 S G

58. a l a3a5 N R 75. 8283a5 S R 92. a2a3a4 N R

59. a 18
4

a
4

S G 76. 82a384 S G 93. a2a3 85 N R

60. a 1848
5 S R 77. s2a3a4 NR 94. a2a 3a 5 N R

61. a 184a
5 S R 78. s2a3s5 N R 95. a284a4 N R

p2. a la485 S R 79. 82a3a5 N R 96. a28485 N R
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Table 7.1 (continued)

MANIPUIATOR REMARK MANIPUIATOR REMARK MAN IPUIATOR REMARK

97. a s a N R 105. s3 s4a4 S G 113. a3s4a5 S R
2 4 5

98. a 2a4s 5 N R 106. s3 s4s5 S R 114. a3a
4

s 5 S R

99. a 2a4a
5 N R 107. s3 s4a5 S R 115. a3 a4a5 S R

100. a2 s 5a 5 S R 108. s3a4s 5 S R 116. a3s5a5 S R

101. s3a38 4 S G 109. s3a4a5 S R 117. s4a4s 5 D

102. s3a3a4 S G 110. s3 s5a5 S R 118. s4a4a5 D

103. s3a3s 5 S R 111. a3s4a5 S G 119. s4s5a 5 D

_.," -

104. s3a3a5 S R 112. a3s4s5 S R 120.
8 4

s5a5 D

Key to Remarks: D - degenerate
S - Soluble
N - Insoluble

R - Restricted orientation for
reachable wrist positions

G - No orientation restriction
for reachable wrist positions
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7.2 Additional Considerations

Aside from kinematic considerations, there are many less objective

criteria in choosing a manipulator for use with a computer system. For

the sake of completeness we mention some of these additional considerations,

and give a few remarks about several of the more important ones.

1. Ease of Interface with a Digital Computer.

The actuators of a manipulator must be such that their

control may be easily assumed by a digital computer.

In addition position feedback must be available.

This will generally be from potentiometer or shaft:

encoders.

2. Power Source.

Manipulators are in general electrically, hydraulically, or

pneumatically powered. Electricity is universally available

and inexpensive • Hydraulic power provides the means for

converting a large amount of energy to motion with a

minimum of weight, thus an advantage where speed is

required. Pneumatically powered manipulators, working

off of air, are cleaner than hydraulic systems. However,

for safety reasons, they must operate at a much lower

pressure and therefore will have poorer dynamic response.

3. Structural Rigidity.

The structural members must have a minimum deformation

under load so that the position of the hand may be

accurately computed from the rotations in the joints.
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In addition the joints must contain a minimum of play

for the same reason.

4. Range of Freedom

It is desirable that each joint of a manipulator possess

a large range. Even though a position might be reachable

from a kinematic point of view, the physical limits on

actuators will greatly reduce the range of these. In

fact, many of the problems encountered while using the

obstacle avoidance programs were due to the very

restricted range of motion on the electric arm

(Figure 6.6).

5. The Outline of the Manipulator.

We would like the manipulator to have a slim outline

so that it could work in tight places. In addition

a smooth profile might be desirable so that it would

be easily recognizable in a T.V. image.

6. Other Factors.

Additional factors to be considered are: precision,

speed~ cost controllability (i.e., the ability to

follow a prescribed path), and safety.

When choosing a manipulator we cannot hope to maximize all of these

considerations. Many of these are influenced by the type of task per­

formed by the manipulator. For example, if a goal for the hand-eye system

is to assemble a machine containing small electronic components, the

manipulator must be capable of very delicate movement and position

accuracy. For tasks involving throwing or catching objects, the arm
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must be able to move rapidly~ and be accurately controlled. Thus some

applications require obvious tradeoffs (e.g., precision and speed),

and in others certain considerations predominate.

From experience with the two manipulators used at the Stanford

Artificial Intelligence Project we may make some comment on specific

arms. The project presently has two arms. One is a modified electric

prosthetic arm (Figure 6.6). The other is hydraulically powered

(Figure 7.3).

The d.c. electric motor driven arm has proven acceptable for

stacking blocks. After some experimentation~ a rate modulated pulse

dc system seems to be an excellent way to control the arm. With position

feedback via potentiometers, and an external power supply, it is

satisfactorily interfaced with the computer. However, it is somewhat

lacking in the range of freedom and structural integrity - problems that

could be overcome with a second generation arm of this type. It is not

particularly fast nor particularly precise. The precision problem stems

partly from the poor structure, and partly from the control problem

caused by the inherent inertia in the motors. It i.s expected that with

refinement of the control scheme, the precision and controllability could

be considerably improved.

Although experience with the hydraulic arm is limited at this time,

it shows promise of great speed. It also appears structurally sound,

and has a wide range of freedom in its joints. It is somewhat massive

due to its high speed and torque capabilities. At this time, the control

problem using two-stage servo-valves appears soluble. The physical danger

to personnel and equipment is obvious and this arm is housed in a room
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Figure 7.3. Hydraulic Arm at Stanford Artificial Intelligence Project.
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isolated from the computer. This makes the interface with the computer

T.V. system difficult, though soluble. In addition the forces involved

require that the arm be firmly anchored to the floor.

At present these manipulators are used for fairly simple tasks.

As the hand-eye program becomes more advanced the tasks will become

more involved. At some future time, then, one might expect to be able

to say more about choosing a manipulator for computer control in a more

complex environment.
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CHAPTER VIII

CONCLUS IONS AND SUGGESTIONS FOR FUTURE WORK

In this dissertation~ the kinematic problems associated with

manipulators have been explored. It is hoped that the classification

scheme and catalog of manipulators, presented in Chapter II, will lead

to manipulators being compared on a scientific basis. Manipulators whose

exteriors seem much different~ are often kinematically equivalent. Thus

solutions for one manipulator are applicable to another.

It is seen that the problem of positioning a manipulator is directly

related to the displacement analysis of mechanisms. The solutions

presented for cases with three revolute axes intersecting at a point

seem to be previously unknown. These results therefore represent a

contribution to spatial linkage analysis.

It is felt that these solutions, along with the extension to the

special cases with only pairs of axes intersecting, give insight into

the kinematic analysis problem for the most general six degree~of­

freedom manipulator. That is, for the special case of three intersecting

pairs of axes, four different configurations were found leading to the

same hand position and orientation. For two pairs of intersecting axes~

eight configurations were found~ and for only one pair of axes inter~

secting~ sixteen configurations were shown to be possible. In all of

these special cases, adjacent axes were orthogonal~ and the adjacent

common normals intersected one another. Since no axes nor adjacent

common normals intersect in the most general problem~ it is almost
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certain that the general problem has even more possible configurations

leading to the same hand position and orientation.

The possibility of a very large number of configurations indicates

that, even if a solution to the general problem could be expressed as a

single polynomial in one unknown, this polynomial would be of such a high

degree that it would be impossible to find all the roots. We conclude,

then, that the complete solution to the most general problem is not at

this time technically feasible: perhaps, someone, someday will solve the

problem. Kinematicians have been trying for over 50 years.

The iterative technique, based on velocity, was found to be superior

to the Newton-Raphson method both in the amount of time taken per iteration,

and in the range of distance between positions where convergence occurred.

The iterative technique may be used to good advantage when the distance

between positions is small. Thus an approximate model having a closed

form solution could be used to find starting points from which the

numerical procedure could be used to find actual solutions.

The problem of placing the end of a digital manipulator at a target

appears soluble. The results have shown that the hand can be placed

close to an arbitrary point. Different strategies could be developed

that might save computer time and improve performance. Matching the

arm to a curve, as was done in the planar model, would undoubtably help

shape the arm. However, if this manipulator is to be used, its in­

herent drawbacks must be remedied. That is, the motion between states

must be made controllable.

The trajectory generation and obstacle avoidance routines were

found to perform a basic function: they allow a manipulator to work
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within a space composed of large obstacles. Previous attempts at

obstacle avoidance dealt only with keeping the hand away from obstacles.

In this work, possible conflict between obstacles and all links of the

manipulator is considered. Future work should attempt to remedy the

following shortcomings:

1. The description of obstacles needs to be improved •. In

this work, obstacle properties were defined using a data

structure within the confines of FORTRAN. Many useful

properties, such as the relation between obstacles were

not stored. With the development of a more sophisticated

world model, using a higher level programming language,

the manipulator and obstacles could be modeled more

precisely. This would lead to more accurate conflict

detection and better information about which direction

to move to get away from an obstacle.

2. The problem of moving between two closely spaced obstacles

has not been adequately solved.

3. The computer time to generate trajectories may be

excessive. This is in part due to the attempt to make

the routines applicable to a variety of manipulators.

For example, the analysis program used to compute hand

position and orientation is applicable to the most

general arm. Fast machine language subroutines to perform

dot products would decrease machine time.
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4. At present the routines do not benefit from past

experience. Improvement might result if previously

generated trajectories were stored and parts of them

were used over again when similar situations arose.

The problem of zones has not been fully explored. Although a

mathematical interpretation of zones is presented, it is not totally

satisfactory as it depends upon the existence of a solution. Geometrical

methods give insight into special cases, however they have the dis­

advantage of not being generally applicable.

In this work six degree-of-freedom manipulators were studied

because it is necessary to have six degrees-of-freedom to grasp an

object at an arbitrary position with an arbitrary orientation. However,

since manipulators with more than six freedoms have not been studied,

future work might involve investigating the use of additional freedoms.

For examp1e~ extra degrees-of-freedom would be useful in avoiding

obstacles.

It is felt that the theoretical results of this investigation, and

the computer programs developed from them, yield a "universal" kinematic

analysis and trajectory generator procedure. It is expected that the

package of computer programs (which will be further documented in a

project memo) can be applied to any six degree-of-freedom manipulator

with turning joints.
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APPENDIX I

DETAILS OF SOLUTION13Y NEWTON-RAPHSONMETHOD

The inputs to the program are:

NBM: the maximum number of iterations

THM: the maximum allowable correction in radians

XBM: the maximum allowable change in target

~112N1N2: TwO vectors fixed in the hand in their initial and

final positions. L is the direction the hand points

(the direction of 7x.-axis) and" B is the direct4.on

of the sixth revolute axis. The subscript 1 refers

to initial, 2 to the final position .

R1 and R
2

: Vectors specifying the initial and final position

respectively of a point in the hand.

Theta: A 1x6 vector giving the initial joint angles (i.e.,

8i ~ i=(l,.~.,6)

In addition the program uses the following subprograms:

ARMCON: Specifies the parameters of the arm

HANDPO: Analysis program that computes the position and

orientation of all the links in the arm, using

the present values of the joint angles.

MATINV: Routine to invert matrices and solves the linear

equation A~= ~ •

The program basically solves the matrix equation (4.5). The Aio are

-129-



found from the analysis program and the coefficients of the OR are
i

generated by successive matrix multiplication, The matrix Aeq is

obtained from the inputs, It is of the form

~;) (~2J ·
analZal3al4

Aeq = Q:!Z) (!iZ) aZIaZZaZ3aZ4 (AI-I)
0 0 a3la3Za33a34

0 0 0 1

Since the rotation portion of the matrix is composed of nine elements

and only three are independent, we select the equations formed from

give us six independent equations,

Specification of Intermediate Goal

If the changes in position and orientation represented by the

right-hand side of equation (4,5) is too large, (4.5) is not valid

and an intermediate goal is necessary. The unit vector Land N

respectively rotate through angles defined by the arccosines of 1
l
'1z

and and For intermediate

goals, and !il are rotated through fractions of their total

rotation. In addition, the same fraction of fz-II is added to II '

A block diagram of this is presented,
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Figure Al.l. Block diagram of
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APPENDIX II

DETAIlS OF ITERATIVE VELOCITY :METHOD

We first present a method for finding the screw given:

1
1

and ~1: Two vectors fixed in the hand in its initial state.

12 and ~2: The same two vectors after a change in position and

orientation.

fl and K
2

: Vectors from the origin of the 1 system to the same

point in the hand before and after the change in

position and orientation.

The direction of the screw axis n and the magnitude of the rotation

~ can be found from the following statement of Euler's theorem:

~
(12-11) x (!!2-!!1 )

n tan "2"= (A2-1)-
(12-1

1
) (!!2+!!1 )

if we define

(12-11) x (!!2 -!!1) (A2-2)W -
(12-L 1) (~2+!!1)

then
W

(A2-3)

~ = 2 arctan Iwi . (A2-4)

The normal from the origin to the screw axis, !., is computed from

1r =~
- 2
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The magnitude of the translation, S, is

s = W • ('£2 - PI)

l}il (A2-6)

Lastly, defining the pitch of the screw H as

H = ~
cp

rn = ~ • ~2 - Rl)
't' l}il arctan (I}il )

we have all the necessary parameters of the screw.

(A2-7)

(A2-8)

We next show that for infinitesimal motion, W is related to the

angular velocity. We write

dLl + d211 At2_L2 = Ll + -=- b,t D

-dt --at;
2

N = N + dBl b,t + Q Bl 6t2
-2 -1 dt 'dt2

o
=~/+ d cp 6t + dfcp b,t2

cP ;WI dt dt2

+ .• 0

+ . 0 •

+ .00

(A2-9)

(A2-1O)

(A2-11)

using the above in (A2-2)
1 x dBld.1 t:,T 6t +

W
crt ' ~ (A2-12)= 1
dj. b,T • 2Bl +
~

and in its equivalent from (A2-l)

W = tan (1 f:,.t + .. 0 ),g (A2-13)

Then equating the right~hand sides of (A2-l3) and (A2-l2) and taking

the limit as f:,.t ~ a we get

(A2-l4 )

which are equivalent expressions for the angular velocity of the hand.
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If we define the approximate angular velocity, ill to be

(A2-lS)

and the rotation is small so that from (A2-3) we find n and from (A2-4)

/:) r.p = 2 arc tan I~I (A2-16 )

Now the approximate velocity of a point in the hand at the origin is:

v (A2-l7)

(A2-l8)

where H, lio~ ,~, and r are the screw parameters formed from the

change in hand position and orientation.

Inputs to the program

This program has the same inputs as the Newton-Raphson program.

In addition to the same subprograms, it requires:

SCREW which computes the screw defined by flf21l12~lB2

using equations (A2-l) - (A2-7).
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~ITION I&- PRESENT PosIT

Figure A2.1. IHock diagram of SOL12 - the iterative velocity method.
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APPENDIX III

MATHEHATICAL DETAILS FOR THE DIGITAL MANIPULATOR

A3 .1 Transformation to find hand position given the angles (Planar
Case)

We use the basic link model described in Chapters II and III.

For the planer case, the z-coordinates and the angles between adjacent

links are all zero. In addition, we assume that all the common normals

are the same length, d so that we may rewrite (301) as

=Ic8i
-s 8i dC8

1Ai s 8i c8i dsei
(A3-l)

L 0 0 1

and similiarly from (3.17) we may describe the position of the hand

(A3-2)

where n is the number of links in the arm.

A3.2 Transformation to Find Hand Position Given the Angles (3-Dimen­
siona1 Case)

Consider the link element shown in Figure A301. The link model

(Chapter II) and transformations (Chapter III) are applicable to

-.t::'ei Zt Z, +\

----------------- d-------- ---------.--

Lgure A3 1, The Basic Element fOT a Three-Dimensional Digital Arm.
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this manipulator. We note that each of the "joints" of Figure A3.l

actually contains two degrees of freedom. Using (3.1) we may write

the transformation due to a rotation about each axis, so that the

transformation between adjacent elements may be written

c e. ccp. -sei -c8i sCPi d ce· ccp.
1. 1.

1. 1.

s8. ccp. c8i -s e. scpo d s 8i ccp.
1. 1. 1. 1. 1.

B. = (A3~3)
1. scpo 0 ccp. d scpo

1. 1. 1.

0 0 0 1

and the coordinates, of the end point of the last link, (x,y,z) are

Bl •••• B
n (A3-4)

where n is the number of elements in the arm.

To find rotations about axes z. and
1.

I
Z.

1.
(Figure A3.l) which

lead to a tilt of about an axis midway between Z.
1.

and z t ,
1.

we note that this is equivalent to rotating zi through 4S o about

xi and then rotating xi +
l

through 80 about the new zi axis.

Then using equation (3.1) to express these rotations, the resulting

transformation matrix is

cGo -s8 0 dc80
0

s80 ceo -1 dseo

T = .[Z .[Z .[Z .[Z
(A3-S)

s8 C80 1 ds8
~ _~

.[Z .[Z .[Z .[Z

0 0 0 1

Then the direction of the xi+l axis is represented by a vector com-

posed of the '11', 'Zl', and '31' elements of (A3-S). These elements
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must be equal to the corresponding elements of (A3-3) which lead to:

scp s' 80

J2
and t 80

t8 J2

A3.3 Derivation of Curve Composed of Segments of Four Circles

We want to find a curve made up of segments of four circles

connected in such a way that adjacent circles are tangent to one

another. Thus a smooth transition between the elements of the curve

exists. In addition we require that the total arc length be specified.

We also specify the slope of the curve at each end and the radii of

the circles. Consider such a curve shown in Figure A3.2. Given the

radii of the circles and the position of the base of the arm, we

easily locate center A.

Figure A3.2. Curve composed of segments of four circles.
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The known angle that the tangent to the curve at the base makes with

the horizontal ~ is one~half the allowable joint rotation. The

end point on the curve is specified by its coordinates (x,y), and the

end slope by the angle ~l. This then fixes center D, from which

the line segment AD, and the angles ~ and a are defined. Next

we must locate the centers Band C , and find the angles 81' 82'

83' and 84 which define each segment of the curve. For the purpose

of derivation, we introduce the angle e~ between line AD and AB •

If we denote the radii of the circles by r , then~

"QA = r ]AB = BC = CD 2r

and define R such that

R =AD

(A3-6)

(A3-7)

Then from Figure A3-2 we observe

(A3-8)

and

or

Next impose the constraint that the total arc length is L

or

L
r
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Combining (A3-9) and (A3-l0) by subtraction and addition yields

e 8)-:1. L+ eo )( 1 + 3 - '2 (r cP - T -:If

(82 + 84) = ~ (1: - cP + 60 + :If )r T

(A3-11)

(A3-l2)

Writing the law of cosines for fiBCD yields

BD2 = 8r
2

(1 - cos83) (A3-l3)

,6BAD yieldsThen writing the law of cosines for

_2 2 2 ,
BD = 4r + R -4rR cosal

d ·1 1·· -2 fan we may eaS1 y e 1m1nate BD rom

(A3-l4)

(A3-13) and (A3-l4) to obtain

cos 8~ = - E + 1 + 2E cos 8
3R q R

Now we combine (A3-8) and (A3-ll) to get

(A3-l5)

(A3-l6)

where
1 1: 80S = 2(r - :If + cP - 2a. + T) (A3-l7)

We next eliminate 63 between (A3-l5) and (A3-l6), which after

simplification results in

where
4r 2

1 - R cos S + 4ir

o (A3-l8)

(A3-l9)

2(1
2r

R
cos

1
0) (E - )
p R 4'::'

R
(A3-20)

r 1 2 r 2 2
k3 = (- - r) - 4~ (1 - cos S)

R 4 R R
(A3-2l)

from which al may be obtained.
1

Knowing el
twe compu e

1
81 from

1

(A3-8) which locates center B. Once B is known, center C is

found by considering the intersection of two circles of radius 2r,
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one with center at B ~ the other at A. Once the circle centers

are located, the angles e2 , 83 ' 84 can be easily found.

A3.4 Description of Programs - 2-Dimensional Model

First the arm is put into an initial configuration either in an

arbitrary manner or with the subroutine INITIAL that matches the arm to

the curve composed of circle segments.

Recalling that the coordinate transformation exists:

1
X =A

1

the multiplication of the transformation is broken into 3 parts

(AI ••• Aindex -1) (Aindex ••••Aindex + look) (Aindex + look + 1·· .An)

where "index" is the number of the joint under consideration and "look"

is an integer giving the number of stages of look-ahead. Then the

first and third term are generated by a sub~outine that transforms

coordinates. These are temporarily stored. Then the middle term is

generated for all possible a. , i = index ,
~

, index + look • The

matrix multiplication is performed for each. and 8 d is chosen- in ex

that leads to minimum error. Index is then incremented by 1 and the

process repeated.

Description of INITIAL:

This subroutine generates a curve composed of segments of four

circles, and then generates points on this curve corresponding to

joints of the arm. The arm is then made to follow the curve by various

techniques.
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Techniques for curve matching.

1) 8. is moved so as to put position of joint i+1 as close
1

as possible to point i+1 on the curve.

2) position of joint i+1 and slope of link i are made as

close as possible to curve at corresponding point on curve.

3) A procedure named "match-ahead" tries to match (i+1)!h

joint with (i+l+6)th point on curve (~ is the number of

joints of match~ahead) by moving 6.•
1

The radius of the four circles can be made greater than or equal to

the sma lles t radius tha t the arm can turn.

A3.5 Description of Programs - Three-Dimensional Model

This program is simi1iar to the two-dimensional case with the

exception of changes to make it more efficient.

After the starting configuration and amount of look-ahead are

specified, three matrices are generated. They are

1) the identity matrix

2) (B
l

3) (B2+look

B1+1ook)

B )
n

where "look" is the amount of look-ahead and Bi is defined as in

Equation A3~3. Call these M1 M and M3 •
~ 2' ,

Then (M )(M )(M) is the total transformation matrix. This
1 2 3

10ok+1
8product is evaluated for the different M

2
matrices and the

state at joint 1 chosen which minimizes the error.
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Then M1, M2, and M3 are re ... defined

M1 = M1 x B1
-1

M3 B2+1ook x M
3

M2 = (B2X 1 ••• ,xB2+1ook)

and 62 is chosen in a manner simi1iar to that of 61. The process

continues.
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APPENDIX IV

DETAIlS OF CONFLICT DETECTION

The methods presented here result directly from classical vector

geometry,

A4,l Obje£!s as Spher~~

Note that the physical links of the manipulator are modeled as

cylinders. We compute the distance from the line segment that is the

axis of this cylinder to the center of the sphere, The problem is then

to find the distance between a point and a line segment. Consider the

line

r = a + bt (A4-l)

and the point P, described by the vector P as shown in Figure A4.l,

p

line

x
Figure A4,1. Distance Between Point and Line,

If a is a vector to the end of the line segment, b a unit vector

parallel to the line, t l the length of the line segment and

0:; t :s t 1

then r is the locus of points on the line segment, A vector, d, from
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the point to the line, normal to the line is given by

(A4-2)

To see if this normal cuts the segment of interest, we note from

Figure A4.1 and equation (A4-1)

r ~+1?P'<'=E..+~ (A4-3)

where t* is the value of t where the normal intersects the line,

then from (A4-3)

(A4-4)

Then if

o < t* < t- - 1 ,

the normal intersects the segment. If this is not the case, we find

the distance between P and the end points of the line segment and

choose the minimum. A routine called PTLINE performs these calculations ..

A4.2 Objects as Infinite Planes

Here we find the distances between the end points of a line segment

and a plane. Consider the plane described by ~, a unit vector normal

to the plane and p, the distance of the plane from the origin measured

in the b - direction. If r describes a point, then a vector from

the plane to the point, nOl~a1 to the plane is given by, d

(A4-5)

A routine PLLINE performs the computations.

A4.3 Ob jects as Cylinders

The problem is to find the shortest distance between two line

segments, which are the axes of the cylinders. Consider line 1 and
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line 2 given by:

£1 ~1 + £1 t l

£2 .§;2 + E.2 t 2

(A4-6)

(A4-7)

as shown in Figure A4,2,

are vectors to the end of the lineIf respectively: .§;1 ' ~2

segments, E.l' £2 unit vectors parallel to the lines, tlO • t 20

the length of the line segments and

then

0 /' t
1 < tiD'"

0 < t
2

/' t
20"-

are the loci of points on the line segments, A vector.

i • from line 2 to line 1.

x
Figure A4,2, Distance Between Two Lines,

normal to both is given by

d
(A4-8)

Now to find where the normal cuts the lines we find where line 2

pierces the plane containing line 1 and d The locus of points. r

in this plane may be written

(A4-9)
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This is of the form:

r . n - p = a • (A4-10)

where nand p may be found from (A4-9). Then line 2 pierces this

plane at the point P2 defined by the vector £2

£2 = ~2 + ~2(P-~2 . ~)
b • n
-2

(A4-11)

where nand p are as in (A4-10). Now the corresponding point on

line 1 is found from:

We next determine if £1 and

(A4-12)

lie on the segments of interest

in a manner similar to that used in A4.1. If this is not the case

then we check the distance between endpoints of one line segment to

the other line segment and vice versa with the methods of A4.1. A

routine LNLINE performs these computations. It uses PTLINE if necessary.
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APPENDIX V

SOLUTION OF A 6R,a a a a
124 S MANIPUIATOR AS FOUR QUADRATICS

In section 3.308 we showed how the solution of a 6R~ala2a4

manipulator could be reduced to a single polynomial of degree eight.

We now present the details of how a 6Rsala2a4aS manipulator (with

adjacent axes orthogonal) can be expressed as four quadratic equations

in four unknowns. As in section 3.308, we write equations for the

coordinate (x, y, z) of the point of intersection of axes 3 and 4

(see Figure 3.10).

To include we use equation (3.100) with a
4

# 0 ~ as # 0

= s3 s4 = ss = 0 , to obtain:

-a4 C9S c86 -as c86

a4 c 6S s 86 +a Ss 96

-a
4

s8
S

1

Similarly (3.104), and (3.111) become respectively:

7
p

2__ 2 2
a4 + as + 2a4 as c8S

and

~2 + ~2 _ 2g • B: -(a~ + a~3 2 +4a; ra 13x + a
23

y + a
33

z

Then from the components of 7p in (AS-I) we find:
7

c66 = __x_
a4

c 8S +a s
7

s 86 = --,-Y_-

a4c 8S+as
7 7

s6s ="_~-'-
a4
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and from (3.104):

7 2 2 2
cBS = .R.. -a4-as

2a4a
S

(AS-7)

Then equation (3.122) may be written with c8S' S8S' S86 ,and ce6

from (AS-4) = (AS-7) which results in~

-2
7 7
x z

7 [~4] =
1 7 7

2a4(a4c8S+aS) -2 y z

7z 2 + 7p 2 2 2
-2 + a

4 - as

0

(AS-8)

(AS-9)
1

To express Q)4 in system 1 we use (3.132) and (AS-8) to obtain:

7 777 7 2 2 2
-2 z (all x+a12 y+a13 z)+a13 ( f +a4-as)

7 777 7 2 2 2
-2 z (a

21
x+a22 y+a23 z)+a23 ( P +a

4
-a

S
)

7 7 7 7 7 2 2 2
- 2· z (a31 x+a32 y+a33 z)+a33 ( f +a4-as)

f£4

o

Making use of (3.109) for
7. 2
P and (3.110) for 7x 7y , and

(AS-10)

o
L

where the dot product in (3.109) has been evaluated, ! has been expres-

sed in terms of its components (x4' Y4 ' z4) , and (x2 + y2 + z2) has
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(AS-H)

(AS-12)

been replaced by the new variable W (equation (3.141). We now may

form (3.H2) with ()(,3 = 900
• We use (3.129) for (l)3 and (AS-10) for

(l)4 ' and obtain after dividing by common factors and simplifying:

-1 r 2 2 2 2 2Jo = 2z(a13x+a23y+a33z+a34) t R -a4+aS-a2+a1
221. 2 22

+(W+a2-a1)La33(W+~-2xx4-2YY4-2zz4+a4-aS)

, +2z4 (a13x+a23y+a33z+a;Z)]
-1 2 2 2

+2za34(W+~ -2xx4-2YY4-2zz4+a4-aS)

TI1Pnwriting (AS-3) with Q and ~ expressed in terms of their compon-

ents (x, y, z) and (x4 ' Y4 ,z4) respectively, along with the

definition (3.141), yields:

~+R2_(2xx4+2YY4+2zZ4)-(a~+a~)J2
2[ -1 2 2J

+4aS ~a13x+a23y+a33z+a14) -a4 = 0

Similarly (3.138) becomes after introducing W from (3.141):

22222 2(W-a
1
-a2) +4a

1
(z -a2) = 0 .

The equations (AS-II), (AS-12), (A-13), and (3.141) are the four

quadratics in the unknowns x, y, z, and W .

-lS0-
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