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~\OTATIONAL COlfVENTIONS

'!be standard n:>tational conventions ot S!!t theory as given t.y

IIalJM)a (l~], tor ex.aple, are a.c~d throughout the text. Aside tre:a

the notat1oaa introduced belmt. &l1 others are introduced when they are

used.

Sequences or n-tup1ea

A sequence ot n 1 telllB , 1. e., an n-tuple vill be represented as

.)1' n < 1 , and u s1&ply x tor n - 1 •o

_ lie-,. sat, I equ,~ce or whatever, containing the it..

Xo- ~, ••• , 11:&_1 ' 1s the null. list, set. sequence or whatever it n - 0 •

The lIatural a-bers

The set ot natural nWlbers [0, 1, 2, ••• ) , as detined set theo­

retical.1y by ~l- [14 I, is denoted by w. Since, according to this

derlnicion, W is vell ordered by the "E" or set membership relation,

the notation x < W will bt. used in lieu of x E W •

the set ~ - [L} ,i.~.. fl, 2, ••• } t is denoted by UI­

Then, x < W - means 1 < x < W •

vii



CHAPl'ER 1

INTRODUCTION

The Need tor a Theory

Computer progr.-.ing is not yet a science, but rather still same­

'What ot an art. It. great deal of ingenuity and heuristic methodology is

required when we attempt to debug a progr.-; convince ourselves that a

ccaputation will terminate; show two prograas are equivalent; or certify

that a ccapUer is correct. Although the "art" can never be tu.l.ly

rellOved tr~ I\&llY ot these endeavors, if J!1Ore "science" could be sployed,

then at leut our attack on these problema wculd benefit traD the resul.tant

organizatiOD and sophistication, and perhaps in BCDe cues even be made

susceptible to aechanlzed iJIIplementation. CIle wll¥ ot inJecting "science"

into cur approach would be to tol"llUJ..ate a "theol'J ot ccaputatiOD".

Ideal..l.y, wbat we went is a theol'J ot cClllputat1011 rich enough to adIIIit

interesting statements about prograa, cClllpUtations end caapUers. IIDd

powerful. enough to admit proof ot the correctness or these st.t.-ents.

The theon we consider here falls short ot thi<; ideal in the sense that

we treat only one small area or concern, nuae:.:, J the equivalence ot progr...

There 1& .. pvallel between c<ap\lter programs and sentences in a torMl

theory of ...th...Ucal. logic. Progr.. take on meaning 0Illy when the

machine 011 which thq are executed is specitied; sentence. in a tomal

theory tue on llellDiDB only when the mathematical syats in which they are

interpreted 18 8pecit1ed. Thus. a tormal theol'J or ccaputat10n lQlld se_

ta have intuitive appeal, and it 18 Just such an approach that we t.ake here.
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!....'l'b!O!'l of Strg Equivalence

!be aort ot theory th!l.t concerns us here il one ",hove well-t"or1Iled

fOlWollu (vttl) expr.... the strong equivalence (Le., equivalence tor all

lnterpretatiClD') ot tvo progrsms trcu a certa.1 :-oeltricte.. class ot progrUls.

!be notiClD ot lUeb a terlal thecry has been explured by lanov Uti], but his

re.ultl ar·' ab!!tract in Dltoture and mirror only the coarser f'ep.tures of

procr" u we know thea. The theory developed here cutter I trail Iar.~v' I

in that tbe aort ot prosr... we conlider provide a tar IIIOre detailed pre­

leription tor ~t&tioos and 1n tact ar~ ALGOL-like in structure and.

beba~,r ~i ••• , cooslst ot assignment ~tatement8 and condl~ional branches).

A aug••t.l.'Ye _&logy ia that our theory i8 to Ianov's, a" . fir.t order

precUcllte c&lculul l.a to the pre,·,. 'it_ ~al calculus. In fa<: , tht.

elldeavor con.tit-ut•• a new and we be:leve necellary ster in the toraal­

iutlon md detectim ot the Itrong eQ.Ulv..~.ence of ALG-JJ,·11lte prosr--.

El.-hl Progr_ aDd Ccaputlng Structurea

'l'be literature abo·'nd. in dirterent tora~ ·epre.1oJ;;l~atiml ot AIOOL­

liltflt prosr-- 1D the context ot theoretical analys( I. 'n..,•• ve:r:v rrca the

cCliplicatect ettort. ot Ianov (16], Ershov (9) and N&r&liabu ~] to the IlOre

auccinct approaches ot Luclth_ and Park 1.14), Paterlon £36, Cooper l5] cmd

Gluahkov (1). levertbelel., each ot the.e .utters .~ ditticulty it ve

bike &I OW' objective a representat10n that 11 .uttlc~ently AUJOL-lilte md

yet ~able to f0l'lll61 treatMnt.

for our tozwal theory, we consider the cl... of el-..nt&l proII'''.

'!'bele are .uti-eotrcce, III.l1t1-ex1t flowchart. lIIIde up ot (1) two-wq

COD41t1onal brmch.1 on the truth-value ot quntlfler-tree t~&I (qttl)

2



ot the fir.t order predicate c&l::ulua with equality, uel (~:.) operator.

called aa.i§Q!!nt sch~ta which asslgn the values of a set of te~ to

a set of dhtinct variables. This repreaentation &8 expl.ieated f'Ull)' in

Chapter :5 avoida the cnaberacee ccmplexity of det1DitiCil given l.y b-abov

[9] and lfU'aa1llban ~ tor tbeir !i-beau, and at t~e a.. t1ae alleviate.

the unnece.s&r7 deficiencies in expre£sion faun!'! in the otber reprelen­

tatioos .entioned above. In additiOD, by making ua~ ot ~e tormal entitiea

ot the predicate calculus, we g~ aceeas to tbe ab\l1da."\ce of results

already known tor tbis tonu.lism.

~ite recently, md independently or this llUtbor, Engeler [8] and

Manna ~ have introduced representationl; ot prosr'" whieb U'e very

s1Jllilar to the el~tal presr.. considered bere. However, both ot

these authors stu~ the ten41.nation ot progr. execution not the ItrOOi

equivalence ot prosr--.

The a..-ntica ot an eleaental presr_ is dettned with respect to a

matb--.tlcal systea, called a caaput1ng structure, ot the lort uaed to

provide interpretatiCil tor foraU.&8 ot the predicate calculua. In

Chapter 2, ve define auch structures precisely and indicate bow var ioUi

basea ot ccaputation can be expressed &8 c~ting structures. In

Chapter " we define just how ccaputing structures are utilized to give

the s-.mtica ot eleaental progrUUl.

Also introduced in Chapter , i. the notion of sUblcriptea vU'iable.

'lbp.re ve detine a nev data structure called 8. hierarchial .~ and show

how a~ch a structure can be acce.aed by a 8ubscripted variable to produce

a value.



The strong Equivalence Decision Problem

In Chapter 4, we introduc~ the wtts ot our theory and det~e the

coocepts of equlV&l.ence and st.rong ec;.uivalence in tens of the validity

and general valHity of these wffs, Luckham and Park ~), Ka.luzh."lil: u.9l,
and Paterson (}6j define these notions SiJllilariy.

In Cl'apter 5, we examine in some detail the question of efff.:tive

dE:cidabillty of strong equivalence. Very recently, and independently of

tn:'.s author, Luckhsm, Park and PJ),terson {25~ have cocsidered this protJ.;,e~

In scce detail for a Bub-clasp of the ClUB of elemental progr8lll8. He-w­

ever, "e ob':.a11' our basic undecidability res,l1t in Cha.pter 5 by utiHz1.ng

I. related result for partial recursive functions, whereas wckham, Park

and ~teraon utilize certain reswlts for Turing machines ~d two-headed

au~a.ata. This appe8~ to recursive function theory makes our proof ot

undecidability ~ri~f and easy to follow.

As preface ~o these results, we prove the univereality of elemental

programs. Er shov [9) shows in a roughly sketched torm how to ccmpute &1.1

partial recurs1ve tUnctions in his formalism, b'lt he tails to explicate

the detail:). Wf. give a n\;w scheme which generates an elemental progr_

for evaluating any partial recur~ive function at arbitrary arguments;

the generating scheme utilizes the variab1es to s:iJllulate a tirst-in­

1aat-olAt stadt when the generated elemental progrlllll is executed.

In caltrast to t.be pessiJll1stic general undecidability results, certain

sub-cases ot the decision problem are found in Chapter 5 to yie1d a tavor­

able so1ution. we first show that strong equivalence ill decidable tor the

sub-clus of elemental programs in which nc t'unction letters appear. The

saae result if: obtained for the sub-class of e1emental progr_s in which

4
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Jf the logical validity f0;' '{ffs i.::-,.;:" f;r';;:1 : ..<.1 tc calculus, "''' obtain

decidability of stror~ e~llv~~ence for thrt~ further s~b-classes of

elemental pro~rems: (i) the s\lb-class whose algorit."UUS have no loops,

(11) the sub-class whC'se elemental progrllms ~ontain no operators, and

(11i) the sub··clasli whose elemental proe;r!lllls al:ways terminate, i. e.,

terminate in all cOIIIpUting strl.'l'tures. As mentioned above, Paterson ~6j

has considered similar questions, but except for the case of aJ:ways

terminatir.g elemental progr~, our results were obtained independently.

Syntactic and Semantic P:!'op."~

In Chapter f, we consider various syntactic and semantic preliainaries

to the introduction o! lUI. inferential system ofaxicas and rules ot inter-

ence tor the ronDal theory of strong equiValence.

First, we define the notion of f'orward substitution <J! assigQlellt

schemata into other &.3signment schemata and into qfts. '!'belle s1Jlple

syntactic operations, here examined in detail apparently for the first

t::.me, reveal the basic semantic interaction bet"cdD operators and between

operators ann qtts.

To carry out derivations in the formal theory frca. hypotbeses, we need

the not.acn at instantiation of wUs. Thus, fran a general statl"tlleJ1t ot

equivalence given by SaDe wff, we want. to pr-oduce when needed in a deri-

vatiou. any relevant instance 01' tha.t equiva.len:e all g.l.ven by SaMI new

vtt. We give a powt>rtul theorem which prescribt':. :l sUl':::'cient condlt1Cl1l

tor an instance of a vrt to be valid wh('.n the wtr Itsel:t 18.
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We then turn our attel"t1ou to the atfLldard ma.ttera of ccmposition,

4eca-poaitioD and replacement of elemental programb. Here, we discuas

the.e oper.~loaa with respect to the graph theoretic properties of

el..-t&1. progr.., aa do Erahov [9" Naru1Jllb.an (3'ij and Kaluzhnin [l~.

'ftM ~.rentl&1. Sya~_

The vtta ot our formal theory having teen defined aDd studied, we

introduce in Chapter 7 the inferential system of the tormal theory. We

dl.cus. the UIUal notions ot derivablli tr, ccmpletenea. end extended

ec.pl.eteneaa IIlId :ollow Fef'erman {lO] and ~endelson (3~ 1n these mattera.

P1'ca the proot of' undecidE.bilit:y, we obtain the further result that

DO axicaatlc ccmplet.e tbeory ')~ stron~ equivalence exist.. However,

we proceed to .pecify an inferential system at fifteen axioms and tive

rile. of' interenee. The first seven axioms cbaracter1ze the properties

ot q·"ts; the next four, the propert1es (;t aslligmaent schemata; and the

lut tour, scme or the graph theoretic properties of el_ental progr....

The first tvo rules character!?e strong equiv&lence as an equivalence

relation in the ordinary sense; the third rule permits instantiation 01'

vfi.; the tourth rule provic\es a 'Dridge between strongly equivalent

...iaz-mt .cbeaata and qttr. exprc881nS the equality at tenu; lII1d the

fifth rule peZWitl r'!ltonulation of an el-.ntal progr. 1L "iterative"

tOl'll into "recursivl''' or "-;:Loaed" fona, but this rule.J not ettectively

applicable, so that the theory 19.'ot ax1aaatic.

Thia interential tlyst_ is apparently t.be tirEi" IUcb for 4eriv1Ds

.tatelieDta ot atrons equivalence between progr.... rich in atructure ..

the el~tal progr.. considered bere. Earlier ettorta include McCarthy'1

ax1autizt.t1oo of' the equivalence of conditiooal expre~.iOll. ~O]; tanev' s

6



already discussed results [16j; and this author's prcof Gf ccmp.Let enes s [2JJ

of an e.xicmatization of the "assign" and "cont.ent s fu..;ctions fir, gi en.

b., McCarthy (2~; and. to scme extent, these ef'forts relate tc the current

endeavor. The inferential system is shown to be sound in the sense that

all deriv~le vtt. are g~erally valid, i.e., express the strong equiV&l~ce

ot two element&! progrllllls.

Completeness Results and Appllcations

The f/erall completeness prop'!rt1es of our non-axiama1... ,": r,,;ry ,,-,­

unknown. It is neverthel~ss com~lete or even extended ccmplete, as we

show .;.0 Chapter 8, tor those sets ':)f wft& expressing the stro:l(, )quiv&lence

of \~.) a two w~ branch and the always true branch; (ii) two sequences ot

asoignment schemata. or further, any two elemental programs witlout qtf.;

(iii) two eleaental pngrams without loops; and (iv) two elemental prograu

WhlCh al~ays halt. 1.e., 1n all c:mputin~ structures.

We then conside_' an lUi~':.ization. cd' the properties of assigmunt

schemata consisting of a sing:e assignment of a te~ to 8. variable, ana

conjecture that this e.xiomatizat1on 1s complete.

To illustrate the considerable derivatie;,nal power 1t the tonl&l theol7.

we consider in Chapter B several applications: (1) the reorgUllzatiOl1 ot

a simple loop trca FORTRAN form. where the body of the loop 18 executed at

least once. to ALGOL tona, where the body ot the loa! ,., poss,.bly not be

executed at &11; (11) the detection of an elemenul proBrea th&t &lvl¥'

fana to halt; (iii) loop reorganization to point up end 1801a\e po..lble

non-halting executions; (1V) tbe removal fran a loop ot a loop-1Ilclependat

operatiOll; (v) the tr3..11'ile~· of a loop-transparent operatioa trca betore tbe

7



loop to after it; (Vl) the detection of strongl;I eq~'lvuent always halting

elel'l8Dtal prosr.., (vii) tb·' deC'lctlOn or the S'wl'("'''t; equlvaler!ce of two

elemental progr.. l"rca certa~n hypotheses on tbt' f.~ sebra1c properties

or functions appearing in them. e.g., ~ommutatLvitJ or identity•

.!!l.i~~.~_. ~ -mdltiona and K-events

The essential motivation tor this work i~ the study, detection and

c1ar1vation of the stror ~ equiv&lence of el_ental progr... Beeause this

property is in general both undecidable and una.xiClD8.thable, we teel there

should be a basic ccmaitaent to snarpentng our FoJ"nlyt1c tools as IDUch as

possible. The ala, then, 1s t , provide an or,·,&I.t ..· d l~'uprehensive method.

tor the detect:'on or strong equivalence, to whl'';''/er ;.. ,mt sucb is obtain-

able.

To this eDd., we turn in Chapt'?t" } to the notions 01' reguJ!:or expresaiooa

aDd regular events, a6 defined b)' Heene [2~, U'l~ u f'urthe:' studied by

Harrboo ll~, S&l~ f3S, McNaughton and YlIIIIada DJJ, aDd iUlII othera.

We shOlol how to map tmY elEilllental progra into a (ini te autceaton, and thence

into & charact.erizing regullU' expression. Indep enuen ,~J.y C'f this author,

Engeler [ e] a.nd Ito {181 use a ,;iJn11ar regular expression re?resentation.

we then develop tbrough a series of theorema the notion of in!t1&l

C<lIld1t1on. '!bu., given 11 y vcrd 1n the regular event associated w1 th an

el.ental Pl"ocraa. we J·~f1ne ar. initial ~ondition that holds vI t!l respect:

to a given 1nterpre~ati~l (i.e., camputi~ structure, if aD ~~y if the

ele.ental progr., when t!xeC\l.ted in "W:1at <:caputing atruc1;ure, genf.1.':'ate.

the given word. We then reca::t anew the definition o~ atr,"\:,,~ ~(lUlvalenLe

1n terss ot a po.sib~· iJU'1n 1. - e proposit!ona.l form involvinf' the inltiiL.

8



conditioN the words in the regular events associated with the ~le.eDtal

f)rogl'1IaUI involved. We give an .;.nteresting theorem ..hacn ser-ves to verify

this recasting ot the definition ~f strong equivalence.

All ot this l~ads to an operative teol in the detection of strong

equi\"alence. W~ sheM that it twe elelllental pr'Jgrama have the same

regular event &8socisted with [;he.:n, then they !U'~ st1"ongly equivaJ!'nt.

Since the eq-4allty of regu.lar evente is decidebl, (c1. Sal.omaa 13a), tl: LS

gives us an effective handle on strong equivalenc!.

To sh~~!n this technique somewhat. we in~r)duce the notion of

:=~. This r~!ormulatior. of the semantics tor the regular expreaaion

aasociated with an elll1ental prognm (now called a K-expresa~) reflecta

the pr~\1ously ignored r-roposit1onal. structure ot those letters 1r the

al.phebet tor that elemental program that are qfts. We first prove that

i' ';wo elemental progrlUl1B have t.'1e Mille K-event asaociated with th_, then

they are .troogly equival.ent. Equ&11ty of K-events, L, e., the K-equlval -::.=!

of X-expre.sioos, 1a shown to be deCidable concurrently with an ex.a1nati3D

of a fora&! theory of X-equivalence and ~ proof that this Ul~ory is caaplete.

Since equality of regular events implies equality of X-eveb~s but not Tic.­

vers., thi. rewult tberefore givea us • stronger effective b&Dd1e an .troas

~quivu,.ence.

This laat re~t also gives us a !resb and pellucid ret~stlOb ot

the equivalence problea tor abstract prosr- eeh--.ta as studied by IUIOV (l6]

and Rutleqe ~1. Thi. toUows siDce if we reatrlet our el.-.t&1 pr<lp'''

by pe1'Il1tt1.D8 but a single 4lstizlct 'YU'iable, we ban the abatract e....

In tbia dtuatlcm, X-equlvalence and atrong equival_ce an identical.

9



DOtiODl. loA vell, Ito [lBJ cOD61ders the equ1vahnce prol)lea tor a clu8

ot DClluletem1nilt1c abstract progr_ schemata and his politive tolutiCll1,

Obta1Ded independently at this author, URplles a polltlve ao1utiCll1 to the

detellliD1at1c cue. However, be does not canaider K-eventa and

X-equhaleace, u detined tere, nor the relation at th~8e to the strona

equivalence ot el_ental programs.

To aharpen our atrong equivalence detection tools even further, ve

iDtro4uce the Dotion ot .hi f't lIet. 'nlis concept wu firlt introduced

by Jana" [l~ and aublequen tly exte:aded by Rutledge (37]. "or each operator

ocC\lrring In an eleaental progrum. we can effectively specify woich atca1c

qttB occurring in the algoritblll "an be atf'er:ted, i. e., with regard to their

tnth-value, ty the execution at the given opera'. or. l'bia allowa ua to

retine our DOUcm at K-equivalence and 10 theretore strengthen our ability

to detect atr~ nqulvalence.

CCIlelud1.n&~a

The ecmteat between strong equivalence 8lId the theoretician 1s not

yet rflaolved. The opponer:.t haa gotten in sc.ae strong blowa, viz., un­

dec'.dabllity ed unaxic.atizabllity. a.at, we have cClWltered with 8.

aJC'W8rtul toraal Uleory and potent analytic toola. nlere are still e. great

II8lIY potcm'wllL1.ly productive attackl to btl conllclered; thia endeavor, it

ae.a, blu _rely scratched the Burt.ce ot the atrcmg equivalence probl_.

In the C.mCl:ldiug reD&rkB at the end ot this work, we cOIl&idl!r what ac.e

at tmae u yet untried attacks might be.

10



Reproduced from
best available copy

COt-L"lJ'l'lNG STh JC'TUI~r_::

languape itself is de r inec. But nor

one nat.lrally cC1I1es :'r. contact fir-s, v i th the ;1T'mit:ves of tne

"ituf ~ion; doma i.n of the protlem S"'l.'~", t.r'an s f'ormat i on s t c aid H'

estao:i t shed, scme algorithmic pre,:.-:',: ~"iIJ be unde-r t.axen teo generate

the r-equ i r ed solution, and on Ly then 'W1.i1 1':' riemes f,,'" specifying such

algorithms be r e Levant.. 'I'o s pec ify a semantic basis, we will use a

computi~g structure.

A cUQputing structure is a mathematical structure ccmprised of a

lon-empty set, called the docain. and finitely many rela,,-',1s, runcti():H~,

and desigr,uted individuals in th~ domain. The relations and functions

are to be ~,otal, L e , , defined for all argum~nts.

We classifY ccmputing structures according to their s~ructural

similarity. To specify this classification we ~se ~ Signature which 1s

of the form

s • < <no,···,r1t_1>, <mo•••. ,ml _1>. p>

where no"'" ~-l' mo"'" ni-I E ur; k. 1 pEw and where if

Ita.:> ~r teO, the respective members ot the triple 8 are simply O.

11



By a .computing stru,:ture '1' 5 iL'nature s we mean a sequence

D • < D, R , ••• , R, l' F , •.. , FL l' a. , ••• , a 1 >..... 0 11.- ,- - a p-

such that

( 1)

(11~

(i11)

(iv)

D is a non-empty possIbly l~finite set, the domain
n

ReD i fer < K , the r{:at~ons
1 P'. m

ir i : D -4 D for i «. i I t.ne fun{ t Lcns

a
1

€ D for 1 < P , the de s Lgnat.ed Individualr

Rote that thc tirat eleDIent of sequence .£. '..0::., D is the domain D.
""'l

In the sequel, when a CCDputill~ structu e is not. explicitly detiDed, we

w111 designate its dcmain in t.n l s t'U...n i on , As.,UIIled present in evelY

structure, regardless of signature, is th€ relation ot equality over the

dc:.ain of that structu!.

!X!!ples of CCDPuting Struct~r<:~

As examples of CCDputing structures for whiet there if some interest

iu cODstructing programs, we can first mention sa.e tb~t are algebraic

..th...tical structures.

(i) The Boolean algeura

< 0, <2,2,1>, C1> serves as the <'~antic '1aEiz tor t.he loeical construch

of aeveral progruming languages.

(11) The cOIIIIlUtative ring of ·:omole; nUlliberl < C, +, x, 1> with

f 1811~.turc <0, <2,2>, 1> might serve Sol, t"c ,ll!llAnt'iC basis for a ~~leX'

&ritbmetic programming language.

As t'Urther examples, lie ,:an c i t e thl folic-wing non-algebraic systems •
....

(1) The CClllpuUng structure <.2,b, TZE, TMI, ADD, ALB> with

signature < <1,1>, <2,1>, 0> superficially .1.JIIles part or the order code

1'1 the IBM 709<J cceput.er . Her" 2;(' cenot.e s the set, of all }6 bit worda

over {O,l}, and

12



TZE [00 ... 0)

accordhF!. '0 sOIIle'::o!:vtn~ent rulf'

or binary addition which Lgr.cr-es overt' .>101, and

AIS : 236 -+236 so thB.~ nS(bob 1 •• ·b35) = b1b2•· .b350 •

Here, the mnemonics TZE, TMI, ADJ and ALS serve only to indi cate the

contexts in which these relations and operations might be used. ThU8,

the addition lDstruction or. s~e co~puter Might U8e the ADD operation

together witt various data transmisf;io"'s, overflow teats and 80 on, tc

carry ~ut ~ts action.

(ii) The CCDput~ng "truc';;ure <Cu, T'L.E, ADDl, SUBl, e- with

s:"gnature <L, <1,1>, 1'> is used .'c,r cClllpu~ing with the natural nUlllbera.

Here,

1'ZE • [oj

ADT,-. w ... W so th:tt ADD1(n) = I: + 1

SUBl 'JJ ... w so the-:v ~'''J'31h)'' D - 1 ~.f n > 0

o tf!!=O

Tbis system serves as semantic basis for several of the machines studi~

in recursive t'unctia:: theory, e.g., the URM of Shepherdson and Sturgis (40)

or the register IlIGchines detined by Gandy ;:;>. J.

(iii) The ~caputing structure <W, ':'1 0 TRANS> with .1gnature

<2, 2, e- i. the bUh for ccaputation ~rt Post tes ayne.u (ct. 1)avi. [7 ».
Here, w. A* 1s the set ot worda over lome finite alphabet A, aDd

~ • f<x, 1> : x E A and y. xz for BaM z E W }

'l'RAlIS : W x W~ W 80 that TRA1nI(x, Y) • y'x viler. y. ~ I tar

8~ U € A •



M!Dl Sorted Computing Structure~

We should remark at this point that there are certain ..tb_tlcal

".t~ which cannot be formulated in a r.at~ral way as caaputiDg

atructures in the sense used above (e.g., modules, of which vector

apaces are instances; et, Feferman [JOJ). Since it would C ;:. :.n be of

interest to construct programs for sucn systems, there is som~ aottvation

tor extending the concept and definition ot both s1.Jnature and ccaputing

structure to accomodate them. Howev~r, in the sequel, we concern ouraelves

only with the sort of signatures and computing structures already intro­

duced. Therefore, the discussion sf how these concepts can be extended

to leneral1zed signatures and many-sorted Cc&J)uting structures is relegated

to Appendix I.

RelllU"k:o :

(i) As we shall see, a computing !tructure constitutea the bare

booes of a class of partial functions computable via progr... interpreted

in that structure. This viewpoint seems tc be in syapathy with Scott's

feeling [ ] that 1'unctions computed by va.rious IIl&chines are "lIOre bade"

than the sets a('cepted by them.

(11) The notion of selll&Dtic basis is also employed by McCarthy [~l,

wnen he defin,'s a class of functions c{]i~ cc:.putable in tenlS of a

base set 7 of tunctions, relations and constants.

(111) It 1s conceivable that we collld -pacify a ceaput1D& _tructure,

undoubtedly a many-sorted one, to alrror the true c~lexitl ot the

operations and tests in, say, the IBM 1090 caaputer. However, our ability

to carry out theoretical analyses would then be b.-pered by ~ac-.

14



notations and invclved formal procedures. The degree tc which the

formulation prestnt~c ~ere ralls short of reality reflects the decree

of cOIllprOlllise required to aChieve a tractable theoretical approach.

at courae, a polaible alternative tor tbe rut ~e 11 to delign caaputera

with elegant and eainentl.)' blemiah tree operatiooal characterhtica ao

aa to tac111tate the theoretical analysis of t.he~r behavior. '1'bls 11

obvioualy the theoretician, not the engineer, talking.

15
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CHAL'T1h :

E~NJ''';' PROGRAMS: SYN':'AX 1\..•.l' SI;;)·v..;rro:C::

The ~ivatioD tor tormulating a set of rules for the prescription of

&lgoritlas is that we wet to have a convenient uniform method or specifYing

calculatiCills in scae III&theaatical structure of interest. Usually, our attention

is focused on a specific structure, say S-expres61ons, real numbers. 1\.<1 ing

aachine tapes, the natural J1\IIIIbers or whatever. Of course, of't~n we may be

torced to do our calculati(".lls in II. structure different trca th~ one intended,

dther kDow~ (e.g., we decide tha. it 1s better to ccapute with pointer

liDked -.chiDe worda instead ot symbolic 3-expressions) or \mkDow1.Qgly (e.I.,

we may think of doing real aritbT"nlc, but truncated float1Dg point arit.t.etic

is substituted instead).

As indicated in Chapter 1, we will define &.lgoritbu in terms of flow­

charts labelled with assigJaent scheaat.. and QUlIZltitier tree tonmlu o't a

first order predicate calculus with equality (qtts). There are several reuon.

tor purllU1.Dg a theoretical lID&1yais ot alBoritbllls specified in this v~.

(i) We cm euil.y apply the flowchart method 01' prescribiDg &l8oritJlu

to specify calculatioos in v1rt~ &l1 ..thematic&! structures 01' interest.

Tbis is important it we are to stu~ th~ stroog equivalence probl_ wb1ch rMlS••

over all. structures.

(ii) utUizillg assignment schellata aDd qtts in a flowchart sch.- 1n

sc:.e s.se provides us with 1Il&X:im&l ceeput1D8 power. '!'huR, as we show later,

1n the structure ~, U, ~ we call c~te ill partial recursive tuI1diCllls.
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(111) The tlowcbart method for prescribing computational pr¢cesse6

baa proved its.lf' to be both natural and intultive. The hope then 1.s

tbat tbe•• properties will propogate into the theoretical analysis of'

tbe.. proc..... .. well.

(b') It the. reaults obtained here are to be useful, then t~e prosr-­

¥bo.e propertiea are analyzed should be closely related in structure and

lDtat to actual ccaputer prosr". ADd in spite of their linear striDs

repre.enta"lOD, lIOdel'D AInOL-like progr.. are indeed buically tlowcharti

ot "'1ImaeDt. lAd branches. In tact, v&l'lat1011s in & program caused by

'quu!1iDB It. tlovchart into a linear string in different wa,ys are not

real.l1 ot intere.t.

We wUl detine tbr :'tach signature I, a f'0I'II&1. languqe, Ls ' ot

el~tal P'OI!''' (cr E-;:rosr.. "" ve shul usually tva th_) tor

.pec1t7ina alaorit!lu that utilize COlllPuting structures ot that signature.

Strcaa equivalence, wh1ch we loosely said in Chapter 1 vu "equivalence tor

all interpretatiooa", wUl reter, tor eacJ1 signature s, to the equlvalenr.e

ot --PI'OP''' in L. tor all e<aput1.ng structures ot that slpatve.

'!'be Bptu ot I-RI'ClIl'''

For .ach .1pature s, we detine the to~ languase. L. to be the

aet ot all I-prop''' •• <x, r, it> vh~re X il a tinUe bOll-tapty let

ot DOd•• j r i. a partial II&P over X such that tor each x € X wbere

r 1. detined, rx 11 either y or the ordered pair <Y, r> tor ae.e

J •• E X j and ;t: X 1 ... U • u I u E is a C<lI1dat'!!lt labelliDg at the

DOlle. in X with operator. trca .... di'scr1a1nator.!rca Q, initiator.

trca II. (bo.bl ••.• ) and tera1natorl !rca E • (eo' e1' ••• ). (Iote: w.

wr1te (xl iwsteu ot Z(x) f'or the label of node x € 1 .) We define

XU) • {x : x (; I. [x] E"'), i.e., xU) 11 the sub-set of nodes l&bel~ed

vltb _ operator. S1a1larly tor xeO). 1(8) aod xC!) .

17



'Bat lAbell1D& ~ of u:. I-procr- •• <x, r ,"> beiDg conal.tent MUl.

(1) [xl f: .4- _ rx • 7 for ~ :I € X •

(11) [xk ~ • rx • q, p for.c:aJ! 'T, Z I; X •

(111) ['!CJE -e • rx • 'T for.ea" '¥ E X, and tor all Z E X, x 1. Dot

I'eacbllbl. 'Ii. r fr'ca z, 1••• , 1, DOt ill the trllD.1tin cl.o8Ul"e or r

(ct. 8er&. [1] tor a til.cu••1oo ot reachabUity).

(iT) (:1:k l.1 ~ DOt det1.D.d. at x.

(y) u s: .t1pala.' that • <J nocle. are 1ebelled v1tb 1D1t1ator. cd

n < .s. D04e. vitll tua1DatoT', the tile.....t be 'bo''b1, ••• ,'b ..1 aDd

.o,e1, ••• ,e
D

_1 reapect1~. III tb1. cuei C i. called. & Qpe ~ It>

&lear1tIlL

R--.rU1

(1) III the Hi; 15 • (bo'b1, .•. ), 'b2, far ~., .tu4s for 1taelt,

1.e.. tar the lett. "b" 1Ub.cr1~ b7 an:!,. '!I:Id, lJ ,aDd,.f., II .ad

t u..u., 1ft .et. of ronal CClD.t1tueDt.. Bowftr, 1M otten ... 'lee or

the ract t!a&t nb.or1pt. are 1ftUl UDdvRoocJ ·de.1patlou far natural ~'J

so we ..,. oRe .... "the l-th n.ri~." tar "'1 or "'be were lr. < 111'. Ito

ecIDtIlI1CID Iboa14 nnlt t.raI tbl. Ulbl. u ....

(11) Here the tezw1nolClD' aa4 aetbodoJ.oD' are .C8ftbat QClIltrOY.ra1&1.

tea. w••q L. 1•• tam.! 1......, b7 "tClllMl" we -- "JIIII'e1l' ~1eau,

det1Md", _ tIl1I ..,.... with~ UAP til mat c..... OM~ of •

tomal 117..... Li "bat -.1pulat1Cl1l ofr~ _4 apr•••1clDI or the 17..... c.

be upre.1ed lD a prec1.. r1ll1t1.t1c: vet! 1.D'fOl'li.Da~ qzatu; it the QDtax 1.

an-.ed pooper1¥, tbe ethetl~•• or 'YU'1ou Dot1C1D' CClDCU'D1Dc the 17....

~Hlt-eY1timt. C&l'DIlp [, J .a",. foraal .tnoda, U ''lc:h, • b1S boo.t
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aueb to the consternation r. " cprtair ',tlL:r Math<>r.latL'1ll 10/'Lei 811:. • :'urr::, [6)

Y1&Oroualy r~strates ~ainst Car-nap"; inn:,vations and he chide .. the "nyntax

Ilddicta" Uld others to "Rign a dec Iarat i on of independence" fran purely

qntactical Mthods. In fact, pureIy t'c,.'rm&l mt'thLdolo@,,j- (see, e.g., Karp (22))

CUl eully lead to intractable situations. For this :luthor, Curry's advice

15 well-taken, IIIId we adopt a IlCXl1ewh'lt lll1ddle cOl.'rse, making romal those pal t .

ot the endeavor that will protit f'rCXl1 formalization (1. e., the sets 'l, Q,

Uld e) Uld lie av1Dg intormal those parts that would suffer tran it (i.e., the

organizatlon ot ID E-progrlllD as a graph defined in a set theoretic JUDner).

In thia l18bt, our dea1gD&U;m ot L as a "tormal" language is, in part. a
s

aillllc.er (eee, nevertheless. we shall continue to 8;lply).

To define the sets A- IDd fa. we first introduce a first order predicate

~ucu.lua with equaJ.lty, pc.. Bote the dependence of this CaJ.cu.lU8 011 the

.ignature 8. To see the coonection between the definitions which tollow Uld

the. cCllpUtins 8tructures tor wbich the ~oritbDa in La are de tined, recall

that a repre8entative ctaplltiag atructure ot signature

The COUIltably-aany symbols ot PC are:
s the variables the

constants ko•••• ,Ap-l. the function letters to••••• ~_l.

re- •••• r lf_1• cd tbe s)'Jllbols "(". ")", "_", "=1'. ",.J' and

the relation letters

., "•

We now de tine the teIWS ot PC •- .
'!be coaBtllllts k. •• ., 11. 1 are tenrw.o p-

(1)

(11)

(ii1)

is a term.

The variables

For Ull.Y 1 <.t.

are tenu.

fi('O"'" t )m; -1
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(iv) An expression is .. 1;e1'lll only it 11; can h shown to be so t.hrough a

tinite Dumber ot appl1catioo6 ot (1), (11) and (iii) above. (rtot.e: hereat'ter,

th1s last proviso will be referred to ~ ... the "extremal clause".)

'!'ben tbe quantifier-free tol'llll.11aa (qffs) ot Pes are detined as tollows.

or course, the set "Q ot dhcr1a1na'tors 1s just the set ot qtra ot PCs•

(i) For aay i < k , it TO' ••• ' are tenu then

ri(TO'···' Tn -1) is a qtf.
i

(11) It T and 0 are terlllS, then (T .. a) is a qtr.

(iii) It p and q are qtts, tben (- p) and (p :J q) are qtts.

(iv) Extremal clause.

We cen detiDe otber propos1t1on~.l cc 'L..'JIo"lii-nB u tolle,wa.

(i) (p A q) will stand for -(p:) ... q)

(11) (p V q) rill stend tor «- p) :;l q)

(ill) (p E q) vill stand tar «p:) q) A (q:;l p»

The conjunction ('to· ao) A ('t 1 • 01> "-••/\ ('to_1 • GO_I>' where ~1 Md 01'

1 < n < w, are teru. will be abbreviated 10 the sequel as (Ti • °1)1 < n •

A1$ the operators 10 It. we take us1peDt scb..ta ot the rona
u :. T •o 0

~ :. 't
1

..... u
n_l

: · 't
o

_
l

vbere 0 < ~ , and where it n - 1 we haft ablply DO:. "lo. Here

To••••• 'tn_1 are tenu ~ PCs and u o••••• Un_l are distinct 'YVl~les at

PCa• (The intent bere 11 that the teNS 't 0' ••• ' '(n-l ' are c~t.d betore

any uaigJaents are dale.) We will abbreviate expreuI0118 ot t.be abcn'e tom

as (u1 : .. 't 1)1<0 lUld reter to the ut ' i<o , as the ...aigned variables.
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III F1&Ure 1 1s an example of an E-program shewn in flo'""chart form. We

wUl c&ll thi. tDnllof lID E-program its diagrllllllll&tic representatioo (dr).

llectuae the dr ot lID E-progr_ is such a convenient representation, we will

18 the HqUl defiDe B-prOgrlUl'.B in teras ot their dr's rather thaD give the

acmaal .et-tbeo:retic c1et1DitiCll. We detine tbe dr of an E-program

• • < X, l',oC> U tollow••

(1) '!'be cir ot x £ X(,&) U XC!) 1& a eirele enelo.1q [x]; ot

x E xU), ar~ _clo.1q [xli aDd ot x E x(I), an oval enclosing [x],

til) rw &ll x £ X euch tbat rx. y tor eoae y EX, the dr ot the

pu'tial -.p r actiDI on x eoaa1at. of an arrow f'1UI the dr ot x to the

lIr of '7. Pol" &ll x € X such that rx. q, t> tor sc.e y, z € X, the

dr at tile part1&l.. r actiDI on x coaa1.t. ot tv'oJ arrow. h'ca the dr

of x, mM to the lIr ot ., JAbelled with the le1lter T and the other to the

dr ot & 1Melled with the letter r. 1IbIm it ie uaa.bipcu, the T and F

~ will 'be dzooppecl, ud the COIlftDtloa adopted. that the arrow. trca the dr

of x rill pdat do-. ..s. the l.n.o.t eM vUJ. be the '1' &rI'OW.

(111) oa. the lIr of •• <x, r, 7', coaallt. ~ the dr. ot the DOdes

SA X, "o1lld by the cir ot the part tal -.p r actlns on the node. in X.

'fa 11ft ... iD4lcatloa 01' tile IlIDerality ot L., and to fUrther

1J.1aftI'IdIe til. 1M& of • 41.._tie re.....ctat1oa tor I-progr.., we b....

ocannoted tile r-.... art1tiel&l ~le 01' r!pre 2•

......,
(1) ID ap1te ot. ract that we will DDt baft occuiClll to den.- lID

&-prapo. lD tMwwtlc teal, but ratbel' vUJ. &1..,.. -oP1O¥. 4r ot that

&-prclII'., _ tM1e•• wUl reta1A the aet-tbeoretic deftD1t1Cl1l .. will

21



Figure 1

A type <2, 2:> E-prosr_ in La where a. < -a, 2, 1> , <2, 2, 1>, 2> •
In tUa eXl.lllple !2' r 2 md ILl' which are penDisaable, do not appear.



rqvd tne 4r aerely u an aid t.{, understanding. We IK t.ni r "c..:a-:~\ t.hc

.1D~aet1c MDlp&latlODa required Ul app].y1.Jlg a formal thE'or)' arc much

...ler to deacrlbe aad ettectively carry out 1D set-theoretic te~ rather

u.D 1D teaw ot bou., arron. ovala. etc.

(11) III P1CUft 2. we a.. that the detlDltlc;m ot B-progr_ allows

tota1.1J lao1&ted cc:.paDeDta Uld other ceaponent8 not reachable t'rCID any

IICCle in X(I). .Aa well. c:ert&1D loops ODce IlZltered can n~Yer be lett.

IDtultlvel¥ apeM1Jl8, 1DclUalOl1 ot thea. COD.truct. would usually be

c:luaed .. poor or ~per prop'~. Hovenr, by aaUting thea bere,

we U'e taclq up to the tact that sucb cODatn.ct. do appeu with untortu­

Date replarlt7 111 actual prosr.., an4 theretore abould be subject to

--.q11. 111 ~ the0J7 ot cc::.pltat101l with pr....tlc loala.

e111) 'Dw l-pI'OII''' at La can baft~ IlZltrmcea and exU••

DIu, lt we ••t to atuQ or trautora not a vbol.e I-prosr., but ClI1J,y

__ lao1&"'" tr~ that ~ be IlZltered aDl1 lett 111 ...e tbaa cae w."

_ ca 40 10 b7 atract1Dl that h'~t u • B-procr_ with MD,y entrance.

aad exit••

'De a-.tlca at K-J!I!'QII'''

fo eft'ect a cc.patatlcm, we Deed a t)Ope <ll, D> I-prop'''

• • <X. r, ~> 1A 1..' a Datural D-.ber 1 < • , a ~t1llil atructure

! rd aJ.pature ., ad a~ l : W ~ He. '!'be 17P1'01P'- tella 1Ibat

to do; th. IMIber 1 tella vbere to .tazot (i.•. , at whieh 1D1tlator); the

OCIIpItlJll .tnc.... wppll•• the pr'.a1t1fta tor 40iDI It; Uld. the .tate acta

tir.' u 1aplt, the ...~" 4ur1Dl executlCl1l. aDd t1Jlall7 .. output.

we ftrat 11ft tIM ...tlea tor PC • It 1......d tbrouPout thiaa

MCt1Cla tbat tIM a"tun • 1••• < <Do' .• ·' ~~J.",<ao'···' a,-.?, ~



e
o



IID4 tbat .. are coaceraed v11<h 1<he fixed cc.putiDg s'ructure :>f a1p&ture I

D • <II" It , ••• ~ R. l' r •••• t r'l' & ••••• & .» ~- O' -It- ('l ~ 0 p-_

.ut tile f1x~ at.. I : a) ... D •

'l'be I!!!! of a tenI T with reapect to ! aDd t, dnote4

"[R, I It 11. el~ of tbe dc8a1n ad 1, def1Ded recurliftJ¥ .. followl.

(i) It T 11 a ftritltlle Vi • thee T[E, I] • vi[£' lJ • c(l, I),

.... c (1. I), re_ -tbe CClIlteDt, of locatloa 1 1n I". 11 the DOtatlaa for

11 or e(1) iIlt.rodIace4 br McCar'tib¥ [28] .

(11) It T II a CClUt_t k i • tbeD T[£.,~]. k1[,E, e] • &1 •

(lil) It T 1. fi(TO, •••• T. -1)' then T[~ I] •
i

f 1(To" ' " T~_l)[~ &). rl{To[~ t]•••• , 'r.l-1(~ I]).

we w111 • .,. tat qtr p of pc. baa a tI'utb-Y&lQe .1th re.pect to Eo

l1li4 t deDoted ~ P[ElI], ncb that pi';' J itt p 11 .at1atiecl by I in

D in the usual i;US. of the predicate Calcw.U6. A recur.he def1nltlca ot-
p[~ t) tollows.

(1) It p 1. 1"1{,.0'•••• Tn -1). then p[~1J •
1

r 1{,.0, ···. Tn -1) [~IJ .Rl('ro[~IJ••••• 'rn -1 [~I]).
1 1

(11) It P 1, (or. a). theza P(p,l I .. (T • a)[!al]

• T[P,I). alJ?, eI, 1.... T lp.,l I aDd oi~t] are the ._ el-.t ot

tbe~ D.

(111) It p l' (q;:) r). tbeIl P(~t). (q ::> r) l}?.l]

.. DOt llI£,IJ or r[R.I].

(iv) U p 1. (- tJ. then plR,IJ. (- q) [p,t] • DOt llI}?.IJ.
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tor .c.e 1<n •

tor &1.l i<n,

An &..~t .eheaa ~ .. (U
i
:. T1 )1<n applled to tte nate I

produce. a new at&tf t[E., I J. Here, the value. '11[~ I), 1<1. , are

all t1r.t c~tel! lUll! r.ben s".at>atltuted in the atate t at tile pj.acea

c\Jl'rnpoal!1D8 to tile ....aitPled TVlable. ui ' i<n, ao tbat we bcYe tor .&Cb

variable v.1' ,1<10, ot pc.,
VJ[E, t[~ I)] .. Vj[~ I)" c(i, I)

- 'I i [J2, I)

Alternatively, we have

(Vi:k:" Tt)t<n[£' I) - a(in_1, Tn_l[~ u, (.,.1.,(:" Tk)k<D_l[R, I))

it 1 < n < -II)

.. a{1o' To[~ u, I)

it n-l.

where a(l, k. I), reM "the ...~ at quaatlt7 k to l.ocaU.. i 1A I".

Is the notatim 1JlUoduce4 by McC&rtbr 1Jl ~ tor tbe aequae. obtaiD.d trca I

by repl.c1D8 1ta i-th elact by k. We ~ &lao write Wa ..

(Vi:k: - Tk)k<D[£' I] - aUn_1• Tn_l (£, I]. a:~in-2' "D-2[!?, Il, aC•••

aUl • T:L.[~ I]. a(lo' 'fo[!. 11. I»••• i» .

Nov we expl&1A the a..tica ot I-progr__ theuelna. 'I'M t7Pe <a, ~

E-progr_ _. <X, r.ot> applled to the atate I atu-t!DI at 1D1t1atar bit i<a,

producea

-[j!, -a, J>] • -C.. R, I. x)

wbere [ x] .. b i' ud vbere tile partial executlClD taIlc:tim _ 18 4et1Decl

as tollOWI.

(1) It [x]E 13. i •••• it [x) 1a & 1D1t1ator. ~

1(tI, R" t. x) • -(tI. R" I. rx) •

(11) It [x]E A , i •••• 1.t [x) 1. _ ...~t .... t. ~

1(-. R.. t. lit) • -(tI, R.. t(R.. I). rx).



(iii) If [x] E 1:1, Le., if l x] is Ii qff p. and if r- = <Y, z>

tor some Y, z € X , then

E(II, .E" t, x) .. E(II, E" r, :f) if p[E" t]

., E(I, E,. e, a) otherwise.

(iv) It [xl.E l!, i.e., if [xl is a terminator e j , then

E(a, £., t, x) .. <.~, j> •

Clearl1, tor certain a, £., t and i where [x). bi ' E(a, E,. I, x)

clues not terminate, and I[£., <t, 1>] is tberefore indeterminate. It

termination is obtained, so th& t I[,E.. <I, i>] • <I', j> for seae t • : w ... D

and j":: n , we ss;y that wben E-program •. is executed in CClIIIpUtiDg structur.:

E with initial Rtate t, starting at tbe i-th initiator, it!!!!!! at the

j-th terminator produciDg the final state t I •

R-.rlts:

(i) The e(i, t) and a(i, k, t) notationa, after tirst be1Dg

introduced by MeCartby, bave subsequently been used by bia aloas with

Painter [26, ,,] u4 by thil author, ... well [2O,2l.].

(11) Ttle execution ttmctiOD E, OIl reach1Dg a node labelled witb a

qtt p, will take tbe arrow in the dr labelled T (i.e., the left arrow)

if p turns out true and the arrow labelled 1 (r,e.; the rigbt arrow) it

p turns out talse,

(iii) As an alternative tara ot assigaaent s~, we could take

s1llple asslgnaent scbemata, 1.e., those with ooly OI1e asstsned variable.

'l'h1l tor;!l would be sc.evhat more AIDOL-1U", thousb not quite ... general.

In Cbapter 8, we will eX8lin. briefly some ot the iaplicatiOlls ot IUch a

choice.

(iv) A lDOdiflcation in the d.tinitioo of E-progr.. that voul.d uke

tb_ mre AlOOL-like vou1.d be a prmisiOll tor subscripted '!Flablea. ':'.e.,



&IT..,'. III AppeDd1x lIt we sin the detail. ot ••cb_ t~ iDtroduCiJII

.ub.crlpted vUlable.. We redetine tbe .,ynt&x tor temat qft. u4 ...lp­

aePt .cb..tat aDd iDtroduce a Dew data .tructure t the bieruab1&1 .tate.

¥bleb 1. \died to .tare the urq. that ue ace•••ed by aub.cripte4 YU'1ab1.ea.
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CHAPl'ER 4

WlLL-FORMF.D FORMULAS: SYNTAX AND S»Wrl'ICB

OUr principal interest is in the str-ong equivalence of E-progrea, and

so the we~-formed formulas of the formal theory we develop in this and

RU~;c ~ding chr.pt.er s will :;iJDply express for two E-programs ot the IlIIIle type

that they are strongly equivalent.

'1'h.. Syntax of Well-Formed Formula~

Por each s Lgna ture s. we defint~ a formal theory r. e <,T", ,.I.. >
• 8 • a

where 7"'\ is the set of we~-formed fOnDulas (wffl), and ~a'"

explained in Chapter 7, is an inferential system of &x1cas and rules ot

inference. The set ~s is simply the set of all exprel8iona ot the fora

II z: II where II !1l1d II are E-prograas of the SUM! t::pe in L.. aecal!

tn'l.t by "of the same typ..", we me!1l1 with lIke nl&bera of initiatora and 11ke

numbers of terminators.

The Semantics of Well-Formed Formulas

WI'! say that a wft II =8 , where II and e are type <a, Ii> Z-prqp-__

is valid in a canputing structure Eo and write ~D. =8 (1.e., • is

equiv&l.ent to It in E,) iff tor all 1 < m • for all t : tAJ ...~ , we have

that II[,E, <e , 1>] ;; m(!:,. <e, 1>]. The notation x. y IDelUla tbat either

x and y are both indeLerminate. or both are deteminate and x.,.
Notice that if both II snd • haH, producing <t', 1 '> and

"~". i"> respectively, then for equiv&l.ence we requirf: that <t', 1'> •

<~". i"> , i. e., ~ I =~.. and I' = 1-. ThUS, not only muat two E-prosr__

produce the same output !Jtate but they alao IllUst halt at the .... teralnatOl'.

'l'hif, is a natural condition if we are to have substitution ot equiValent aub-

programs.



We !IllY that a wU .:-! i B generally valid aile wrHe +- II :: ['

(I.e., • 18 strOllgl,y equivalent to .,) iff for ~l caRputing: structures

£, • ;:. ill valid in £..

For any set ot vtts lJ.=~ (called either proper axiClllB or

bypotheus), we write lJ. I- • ;: IS itt tor all Calputing structures £.,
it the wtts in lJ. are &ll valid in £.' then .;: IS is valid in D.

In this cue we s83 that .;: IS is a •.antic CCJDlequence of lJ..

Evidently, general validity 18 just a special cue t)t tbia latter concept

since ; ~. =... ~ • :: It ,where ~ 1s the -.pty set.

R--.rks:

(r) We -.v 13e the notion ot s..Uc cousequence to aid in the stu<b'

at equiv&l.euce tar E-prosr-- in particular ccaput1D& structures. l'bus,

it the proper &x1c:aa in lJ. can be shrewdly specitied so that they are &ll

valid cmly in the structure (or clu. ot structure.) at interest, then a

wtt .:: IS will be a ...Uc con.equence of 6 Ju.t iD cue .::. Is

valid iD that structure. When this is the cue, we s8¥ we have axicaa.tized

the properties of tbat structure.

(11) It i. not clear precisely what properties ot structure. can be

axiClMt1zed by a set ot vtt. ot the tOI'll .::.. It..., be that .are

ee-pUcated stat-.At. about strcaa equ1v&l.ellce should be pera1tted 10 ... to

sive us the u1c.ati&1D& power required to characterize cenUn structure.,

lUte the iDtesers, tor enapJ.e. 'l'bua, propoa1tiaaal stateMPts, lUte

• :: • 1\ C =~ ;:). :: !It , or quantitication&l. stat-.nt., 11ke (311)(a(x) :: .)

~ be cWairable. We do Dot p&rlJUe this _tter any fUrther here.



CONCERNING THE IJECIDABILITY OF STRONG EQUIVALENCE

As Oft~ might expect, becauoe of th~ complexity ot the situatioa under

study here, undecidability is iurking in evp.ry corner. There are two

approaches both to the strong ~quivalence problem and to the axiOlDAtiz-

ability problem wbicb we d i scu c. in Chapter 8. On tbe one band we can

examine thes~ problems with respec~ to the whole of -z::: . for various"""'s
sign~tures s; or on the otber hand w~ can consider various subseta ot

;;", s tor arbitrary fixed signatures s. One result obta.los 1aedlatel.y.

Theorem 1: Stroag equiva.lenc€ is decidable tor E-pr08rUUl 10 wbich no

function letters or constants occur.

Thus, ,~= liT ,wbere II =tI E :Mlts ' is decidable tor &D¥ alsoature

f, = < <no"'" ~-r>, 0, 0>

Proof: In this case, since there are no tunctiODa, tbe assigzaent acb_ta

are relegated to merely transferring around the In1tia.l data !rca locat1cm

to location. Thus, La is not too lnteresting or povert\ll a lanauqe.

Consider the type <JIl, 1".> a.lgori thm ~ E Ls witb K < W nodes

labelled with assignment scbeJll£.ta and qffs, and In wbieb tbere Ot'cur

N < l.) distinct variables. Suppose we execute ~ 10 stae cx.put1ng

structure with sCllle initial state ~ . Since elementa 111 the .tate for

variables that do not occur in l are unchanged dur1llg executiCll, and

since there CaD be at .ast N distinct values stored 10 the initial state

( for the N distinct variable. occurring 10 l, then tbere are at

most ,(' d1atinct states that can arise during tbe execution ot I.
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'l'bUI. the ataost N di8tinct 1niti&J. values fur thf' N c i c t i nc , ".Lr~l;ll.H:;"

1ft I are ehurtled around by th~ &S8~ent schemata into at most NN

CODt'1&Urationl .

lOw. .uppoi. that thil ezecutiao of I we are considering tails to

halt. '!'beD tbere exiltl a node x ot I such that execution passes

throuab x lIOre tbUl rIl t1lle1. '!'hie i8 80 because an intinite lWIIIber

ot DOCieI are encOW1tered liuring the DOD-halting executiOD. Cit I, but

.iDce I itlelf haa only a finite maber ot nodes. at least ODe Doele a11st

be eDcouatered 1Dt1n1tel,y otten. Thul. aner at .Olt r'+l pasSel tbrou.gb

aoele x. the current Itate $.t that point auut repeat iteelf. aiDce there

are at IIOat rr' distiDct etatel. Of course. after a Itate repeat. it-

••U at a Dode. executiOD 18 thereafter periodic in Dature with lcae fixed

loop. which includel that node. executiDs repeatedly and seneratiDs a

perioc11c lequence ot .tatel.

SiDe. there are I DOdel 1ft I labelled yith "8~t Ich_ta or

qtt.. • executiOD of C which baa .., tar pasled through at mIt I x ..

aucb DOCie_ il suarmteed to bave generated a repeated state at ODe ot thea,

.0 tbat executiOD aenr haltl. S1Dc~ there are but a nDlte n18ber of

c1i.tiDct patha tbroup C CODailtiDs of lell tbul J( x" nodel. tbe

...... ot diatinct paths aaloeiated Yith baltiDI ezecutlonl. i. e.. thole

HclDaiJll with an initiator and eDd.1a& witb a teraiDatOr, is tberetare tinite.

'!'be I-prop'_ of r1gure ,(a), tor eu.ple, baa but tour paths tbrClUlb

it tbat are uaociated with haltiDI eucutiODl. 'l'bua. we IIay execute tbe

loop aero, ODe, two or three tillel ud tba halt, but it r(u, Y, '. x) 1•

• tl11 talae after three ezecuUODI ot the loop. tIleD the B-prosr- aner



w, Y, x)

Figure 'Cal

~~_r(u, -----,

@ i u::

'-------~--------'

Here u, w, x, Y, z are variables and r is a relation letter.

Here u, v, w are variables and r is a relation letter.

Here v aDd w are variables.



b&lta. 'l'h1. 18 beeauae after tnis point, the contents of u, w, y and x

YIrJ~ perlocl1c~, and 60 ~(\l, W, y. x) will be testing a state

altre.q CCGlIIltved.

1Jl Cbapter 9, ve abow bow to ..aoctate witb the set or all paths

tbzoOQlb I, tbat. beg1n vith an initiator end end wi ttl a tel1llinator, a

aet Tc of triple. <b1' 1', 411 ' where bi Uld eJ lLl'e an witiator

eel ten1Dator reapectivelY, and where t 1. an aaa1gnment sell__, called

_ oPVat1aa 111 thia context. We aq two triplu are aa1l1Ll' ift tbey

baYe tile a.. 1Il1t1ators and tera1natora and tbeir operations, t aAd g,

aq, are atrcacJ.¥ equivalent (i. e. , 1'[,2, n • g(!!,. ~ ] for all cc.puting

structures D aDd atates l : W -. D ). 10 tvo triplea in the set T..._ ""0 •

of triple. tor • are .1allar, and turthel'llOre, with eacb triple

<b
i
, t, 1'1 ....aociate a qff p, c&lled. ita joint initial caadit1oa.

web that 11' C 11 executed in D with initial atate l, startinS at-
b

i
J it v111 b&lt at e

J
_d procluce tbe f1nal state tlEJ l] irt

pC!. I). Dl-. we ROW (TheorMl 25) that tJ2e two B-prosr.. • aad •

are Itroasl7 equiy&l.eat 1ff first, tor eaen pair ot .1allar triplea, OIle

trc:a ;. &ad aae h'c:a T~, the zorreapondiDg Joint initial cCllld1t1aas

are lOCicaUy eQUiv&leat; .4 aecClll4, tor ~ triple in TwP'Te) tor

lIbieb there 18 DO .1a1lar triple in T. po Tw) , its joint inltl&l cmditioo

.uat be identically talae, i.e., a ~ogical contradicti~.

It 1_ 41&1)' to 8how that t.be l-pr08%'- ot '18Ure }(b) baa but ODe path

tIu'ouIb it ...ociated with a h&lt1ng execution. '!'be triple correspaadJas

to thi. path is <bo' v :,. "i, e? s.nd the joint iDlti&l condition tor this

triple 1a r(u) A - r(v). 1'h16 joint initial cOlld1tlCl1l 11 just the



necessary and sufficient condition on th~ initial state for the E-program

of Figure }(b) to halt, having executed v:= w. Notice that the

E-prosr- of Figure ,(c) &.lso has a single path associated with haJ.t1Dg

execution. The triple here is IUSO <bo' u := v, er? ' but its Joint 1D1tiaJ.

coodition is identically true. Thus, since the joint initial cooditions

tor the triple <b, v := w, e> are not logically equiv&.lent, i.e.,o 0

r(u) A - rev) is not identically true, the E-programs of Figures }(a)

and }(b) are not strongly equiv&.lent.

We have &1re&d¥ shown that there are only a :finite DWDber of patha

through • &8sociated with h&.lting execution, each with les8 than x: X JIA

nocies; 81Jallar1¥ tor •• Thus, it suftices to consider only the set of

triples and Joint initial conditions tor pathS of length out to the re-

spective .axu.u.a necessary for • and •• Since the sets ~ aDd

Til of triples are then f1..."lite, we can decide tbe strong equiva1c.uce at

• and • using the procedure outlined above, provided that we caD decide

the logical validity of qffs in PCs and the strong equivalence ot operations.

But, &8 indicated by Church [4 I, since no tunction letters occur in the qtts

of PCs' their lO8ical Validity is decidable, and as indicated in Chapter e
(Theorsa 14, 15 and 16), the strong equiValence of operations, i.e., ..s1p-

Mnt sch_ta, is decidable. Thus, so is r t-- =8T • I
'l'h1s decidabllity re8ult can eaa1J.y be extended to • tar ~arger ~...

of E-prosr.... Thus, strong equiv&.lence is decidable whenever the m.ber

ot paths &asociated with haltin£ eX!lcutiona is finite, aDd tbe logical.

validity or qffs in pc. is decidable. In Chapter 9, we return to tbue

_Uers snd 1Ddicate 1D detail the role ot joint initial caul1tlou in

declsioo procedures tor these caaes.



!here are twc vbvi.as appllcatlOQ$ 01 th15 ~xteLJed decidablltty

nault. Tbul, W~ have t;.a~ ~trong p.qu::.valf'n'~ .:.;; dele-able to: ~-prugr8lllS

vttbout loops L"lC :(1" r,,-p~'I1'~I\o1!'. 1;ha"; !llwa,.v> ~alt (i.e., In a.J.l COIIIputing

caae), prov~de'''' oJ! cour se , thp logical v&lldlt~· of qtf5 is :1ecldablf;.

a cmonic&1 f'CI"E usmg thIS e.xicm~ 'Ull! rules or our forma..: theory. The

relUlt tor ~W~8 halting E-progr~ 1S merely quoted her~ from the recent

work ot Pateraan [36].

A spsc1&l izatian of the m·-.l.'Np., result., wl:Uch G.0"3t? C'Jt depend on

tbe dec1dabllity of logical v&ll~1ty for qtts, 1s thE to:lo~~~~

1beoreia 2: StrC!1§ equivalence for E-pr081'11118 consisting solt'.ly of

....1E-Dt scbemate.., i.e., without any branching, 1s decidable.

If ~'; lt~t. 1.)4) L f'x, r,Z: -•.- T,S : x(Q) • ~} , aLd define

:Jia.(.f) • r. ~. ~ L hn.s : ., l!' ( Ls(,f») , thert '!'beors 2 states tbat

rI-« =tit , vbere • =m€ JMs (J) ~ is decidable for &ny arb!f;rary

.1pature !]. (Incidentally, we dei'int< L (1'1) and T/II. (4j in as II( a

.1a1lar fashion.) Figure ~ 1.11ustrat~s an E-progrlUll C IE L (.4-) •
B

~: 1D Cbapte: 8, we give a deta11~c proof that there 1. ~ etfeetiY.l~

aaerllble CIlIlooicel form for E-progr.. 1.11 Ls C4-) (Th~or.. 110 , 15 aild 16).

u4 thl. solves the de('i.~ion problem for this case. We pcsbpone thls dl.-

CIlII101l. however, de thl1t ..,e can describe the generat10n ot the cmOG1cal

tora ill tenu ~f thE' ax1aa" M.J rules of oor formal theory.

'!'be E-pl'08I'IaB ,dKlse strong ~quivLlenc€ decision problem ve hUe

I

eem.ic1ered aC. far have been 8~t re.trictlve 1A the aenae that the sort.



"1

'rn,- E-program I c 'J'i".,. C/). Hr r"~, f" ••• , f
10

are ass i~;runent ~;chemata.

The E-progr.. • € Jhc.s <W. Herf' PI' .••• Jl.r ar~ qffs.



ot ca.putatl0D8 they &pecl~1 are Dot very compli~ated or interesting.

IAt U DOW CODaider the at.pature & .. <1, 1, D. Ccaputing structures

vttb tb1••!,pat..,.e are ot the tora <D. R • , ... > where the rel..t1oo
000

.0 aDd. t\mctica '0 are WlD&Illc. U we further diar"gard the equality

nlatlCl11 0..- th. ~, then .tructure. of thi. sort l3preaent, in ..

...., the barelt boDe. vith whiCh we a1gbt vut to carry OIlt interesting

_~~tat10D8. lIow, let u e<m81cler the atrcmg equivalence

decla1Cl1l JII'Obl- tor "prccr" in L. tbat do DOt u.e e'P&l1ty. em.

s-dJ.ate n8Ult 11

1Ip!O!'!! 31 8!l'a!I .Enlace 18 decidable tor E-pr0p''' cClDllllt1D§ lo1e1l

of e. bulld !f trc:a .. 11yle -.ua41c Nlat1C1l letter, .. liDfle ~lc

hDetilCll letter, .. 11!Ile CClDltut, but without equal1tz.

It we let L - • (tI E L : 110 qtt ot the toI'Il (,.. cr) oeeur. lA ~ ,
I •

-.d det1De JiiI...- • l'I =• E ,;as : .. • € L.-) , then 1'beo~ , •

.tatel tbat ,.,. =., , _ere • =• E 1i&.s- (4), 11 decidable tor the

lipature I. <1, 1, J> •

!!!!!: lince &-procr.. ben do DOt b&ft IIQ' ...~t 1eJa.at&, ve CaD

U'@Qe, precl.e17 .. lA the proof tor fbeor_ I, that tlulre are but ..

t1Il1te m.ber of patU tbI'ou8b • !-pz'OIZ'~ C ...oel.ted ~th b&lt1Dg

.-cut1clu of c. 1Wtbenon, dec14abWt;y ot 10S1C&1 nlid1tz tor

llft'l obtalu hue, so tbat the Joint initial COIl41t1<m Iiecllicm Foe.dure

ued 1Il 'l'!aeor_ l vill sutt1ce bue .. Wll.

fa bow the jolAt init.1&l CCDdit10D8 are obtained here, coa.&lder

ta. ot ncar. 5. Ben 1Il tb1.~•• 1t 11 abYiou. tbat



there are but tive patbs through ~ associatea witb halting executions.

These give rise to the triph<; <b o' V o .- vo' ,!c? • <...1:11' "» :=- vo' ~o>

and <b
1

, V
o

:- vo' ey , ",h~re vo : = Vo is just a~ identity

operation. The joint initial conditions &Ssociated with these triples

can be easily verified to be respectively

(Pl /I. ~ P, "Pr/) V (- PI " P2 1\ ~ P, /I. Po;) ,

(1\ /I. P2 1\ ~ P, 1\ Po;) v (- I\ 1\ P5 1\ P6 1\ P-r) ,
(.... 1\ /I. P5 1\"1>6) • I
Thus, tor s. <1, 1, J> • E-programa in Ls- have a solvable

strong equiv&lence decision problem when they consist solely ot assilD­

ment schemata (Theorem 2) or solely of qtts (Theorem 3). Nevertheles.,

in general we stU! have the tollow1D8 unfortunate

Theorem 4: Strong equivalence is undecidable tor E-prosr- built up

fraa a single lIODadic function letter, a single monadic relat1<l1l letter,

~ingle constant, but without equality.

Thus, T\-41 :: I8T, where I( =18 € 71Jts - , is undec1~le tor the

signature s .. <1, 1, D , and theretore, for any signature s' such

that Tm. - c hA.s ' -. So even without all the custca&l'l pvapbernal1a
s -

available tor expressing algorithms, we are still saddled nth the tact

that in general the analysis ot strong equivalence cannot be an ettect1ye

proceas,

To prove Theorem 4, we will take a sc:.Iewhat roundabout path ...4

first show that in an appropriate cc.putin& structure we CD ccapute

all partial recursive funct5.ons. '!'bill result w1ll then lead us to the

proof we desJre.
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(1) Tho" princ1p&l point of concern here is tbat tor schemes that are

ot pr....t1c interut, the strong ';'luivalence of E-progrlllU is undecidable.

Of course, if • ccaput1ng structure has a tinite d~in then equivalence

1D tbat structur«: 18 decidable for the sce reasons the ..,tt. ot Theorem 1

.... decidable. So, we Il1ght be t_pted to se,y that, tor eXlllllple, equivalence

ot I11111090 prosr-- 18 decidablt: siDet' the dcaain ~ i8 finite. There are

two reucms q this sort at reasoniDg is not productive. First, the sor t,

at .xa.u.ti... loop urnr1nclmg pertorlled iD the exaple ot Figure 3(a) would

take ~.... 111 .. clm&1n the size of », thua lUltiDg 1apractical the obviOlls

4echiem procedure. Secoad, as suggested earUer, we ...,. not even be aware

ot lIbat cc.patiaB structure our progr_ i8 be1J:lg executed iD, thus render iDs

tile CClDcept ot equ1'ftlence of prosr... scaewbat ;'.mpotent. 1'he aort ot

Ita~t 1M 'WOUld be ...e 1Dterested 1D 1.: "llo aatter vbat cc.puter the.e

~_ ... eaouted ClIl, thq sive the ... relUlt", i. e., .. 8tate.eDt of

etraae equ1Ya1.GCe. .t Lu~ Park -.cl Pater8Clll [25 J Ihow that for ..

ceI'ta1D aub-clus ot pI'OCI'__, even equ1ftleace in all ccaputiDg structv••

vitia tsa1te 4aa1ns 1s UDclec1dab~••

(11) 'l'beo~ 1, 2 IUlcl , discu.. var10ua dec1UbWty relUlts, but

~, all ot thaN relUl.ts der1ve~ the s....10 ot tacts. It the

JNIbeI' of patiha ...ocl.ted with h&ltiDg .X8C"'.1t1Cl1lS 18 f1D1te, &Del it we cc

.ttectl~ detenl1D•• boaDcl OIl the leocth ot auell patiha, then dec1dabWt7

1. obt&tnecl 1D cu.s vbere the leneral 'ftl1d1i;J' ot qft'a i. decidable. 1'h1s

i.~e 1D auch aituatiClll8, the sets ot tr1ple. to be eIleeked. are finit•

.... UWJsSDIb1e, Uw .traGI equivalence ot operatiClD. 1. decidable (this 1.

&ltNlira tbe cue), mel the lOS1cal equ1val.o.DCe ot joint initial CClIld1t1Cl1lS i.

dec1clUle.

(111) !be triples notation, used aert. merel,.¥ tor explC1&~or.r purpo•••,
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(iv) Within the unor-c:..dability 1 imitation:.; inlnos('d by the stMlcture of

lIIuLly1;ic tools for working on the "trong equivalence problem for E-progr....

Partial Recursive Functions

We shall show that givtn e suitllble cClIlpUt1ng struct.ure. \If' can construct

E-progr8IDS to cClDpute all part.ial rer-ursiVt; functions. The reasons for this

demonstration are twofold: firs~, to ~llustrate that E-programs as de tined here

are adequate in the sense that. t.h.>rr i;; no function cc.aput.able in a structure

that we cannot specify with &. suitable E-program. and second, to pro'rid.e &.

coovenient method of proof for Theorem 4 above.

Conaider the CallputiIlg structure !. <6>, Fa, ao> with sipature

s • <0, 1, 1>, where F0 is the successor function, ao is zer!?o. and tbe

equality relation over IAJ is included in N. (Note: we will write :It + 1

fCJr F0 (x) aDd. 0 for B
O•

) For the purposes of defining partial recurli,"

tunctloDa, we also consider the projectioo i'wlctions utexo''''' ~-l) • Xi

for all. n < fA) , all 1 < n and all <Xo' ••• , xn_i> E If as initial or bue

functions. The partial recursive functioDS are obtained trar. zer~, the .uccelaor

and projection functions us'.ng three methods of cClllb1n1n; , tunctiona. ('1'his 11

all giYen by Mendelson in (33).)

(i) Ca!posit1on: givpn the functions

g(xo'···' ~-l)

ho(xo"'" XU_l)

~(xo"'" xn_1)

~1(Xo"'" ~-l)



',I,· .• ·e m < 11), n < AJ, we- s8¥ that the funetioll aef':'T,ed by

f(xo,···. ~-l) - g(ho(Xo"'" Xn_1 ), · · · , hm_1{Xo"'" {,'-l»
1. obtaiDt:d trca the g1ven funCtiODs by caIIpOsition.

(11) Priaitlve recursion: given the f'wlctions

I(Xo' •••• ~-2)

h(xo.···, xn_2' xn_1• xn)
where 1 <, n <:." we.lIIY the tunct10n defiDed by

f(xo,···. ~-2' 0) • I(Xo"'" xn_2)

r(x , ••• , x _~, x 1+1) - b(x •••• , x -2' x l' r(x , .•. , x 0, ~ 1»o --n~ n- 0 n n- 0 n-, n-

la C'bt.uned b"ca the given functlons by pr1m1tive recursion.

(Hi) '!'be unrestr1cted &l-operator: given the fUnction

I(Xo" ' " xn_1, y)

1Ibere n < iJ, we •• that the tunction detined by

t(x , ••• , x 1) • &+z(g(x ••••• x l' z) • o}o n- 0 n-

1Ibich we read u "the 1eaat z such that g(xo' ••• , ~-l' z} • 0". is obtained

frca the giTeD tunctiQD ~ the unreltricted ,,-operator. Here, t(xo"'" ~-l)

ia def"ined for <% , •••• x 1> € w
n

in'tor 8cme k. < w. g(x ... , x , z) = C
o n- 0 n-r

and tor all z < k, e(x , ••• , x l' z} exilts and is not zero; and wheno n-

auch 18 the cue. t(x •••• , x 1) theD haa the value k.o n-

We v1ll now de.cribe a .~ such that tar lIllY partial recura1ve ftmction

cd suitable IU"guamta, we can construct an E-progru. in I.e which when exe~ted

in !!. ee.pltel'l the ft.1.ue ot that tunction at tboae 8rgullleUta. Su.ppo.e that the

tbn~~1on t(xa''' 0, ~-1) 1a det1Ded by a~ !t ... giTeD ~ the initial

1'aIlctiou .ad (1), (11) .. (11i) above. IlD4 that !. <do, .. ·, 4u-r>



where d Etun is a set ot arguments at which t(x , ••• , x 1) is to be_ a n-

eValuated. Then the E-proerBm J( f t' ~) , produced by the generati.llg

function !I using the tOrlll t f and arguments ~, when executed in !
with any initial state, ccmputes 1"(~). The ';;-program !I( r-.» is

illustrated in Figure 6. Here, 9 is another E-program generating tunctiOD;

the composition of E-programs, indicated schematically in Figure 6, is

discussed in Chapter 6.

The E-prosr- !(p, Er) is generated in a recursive tashioo according

to the structure of t r. The variables are utili:z.ed to s1DUate a atack

as D:t>, et) proceeds, the first argument of !Ill acting as a stack pointer

during construction of the E-program. When constructing .P, tt', p < w ,

we &8SU11le that variables vp+l' ••• ' v~ will contain tbe arguments at

which f is to be eValuated, and we arrange for the value ot t at theae

ar~ent8 to be returned in v
p

Coosider first ~p, tt) for the initial tunctioos. lbese detinlt10D8

are given in Figure 7. Figures 8, 9 and 10 show constructioaa tor c~od-

tion, primitive recursion and the unrestricted ~-operator. Also in the 1llua-

trations are representations of tbe run-t1JDe stack showing bow tbe varlllbles

are assigned during E-program construction by .P, l f). ~ the bub ot

these constructions, we have the follo\oltne

Theorem 5: For &1.l partial recursive f'unctions t(xo,~xn_li) with tora it
and ?r§U!l!Dts !~, ... , dn.? ' and then for all initial statea

~ : (oJ .... W • !I{£t' ;!)[}!, <f. 0» is detenlinate and bas a value 9 1
, Q> tor

some f I : CAl .... w itf f(do,.:.:..:..a-dn_l) exists. FurthenDOl'e. in cue

!,(do,..:..:.:.e-dn_l) exists, then t(do,..:..:.:.e-dn_l)" cU. II) ,
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Figure 6

Here the variables vk,. •• ' V
O
+3 are loaded w1th the Arg1D8Dt. dol" "

The variable v 1. u.ed to re~urn the tiDal vlJ.ue. The "ator. tar not
u.1Dg Yo' Y1• 6r v~ w111 becOIIIe appar"ent when we coa.l1derthe proof of
l'beor_" .

d
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p+ta+n+l
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1
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1

value of h.
~

lU'gumt:nts
tor r:

value ~ Il,

arguments
for f

value ot r

~p+nttll+2. "h (" •••• , x 1)")o 0 D-

.p+n....2. "h
1

(x ••••• x 1)")
o n-

2"iwre B

OIl the right is tne de1'initiur. of "P. "r(x ••••• x 1)") ..,here
r(x ••••• ~ 1) is given by composition as 0 n-
r.( g (x •••• ; x 1) ••••• h _lex ••••• ~ 1»' In the left is the ruG­
t1Jle08t~ 8bow!iia the sto'iee iilocatj8ii given b~ !I. The al'ggleDta

tor t, alread¥ pl'Cl'Jellt, are loaded as arh'\ael1ts tor hi' j f •• Then,
hi (Xo" '" xn_1 >. l<m. ill ccaputed and the result loaded as thf~ I-th
arguaent tor p,. Fln&l~. g 16 caaputul with th~se U'g\aents IUld the
result return'!d 9.J th~ v!1lu" 01' t :[1 v,
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CD tIM r18ht 18 the definition ot .P, "f(xo' •• " x 1)") where t(x , ••• , x 1) t s defined by klr 1m.it i ve
recur.iea uatnc .(x ',. •• , lL -2' ad b(Xo"'" x := x ..1' t(x , ••• , Ox -2' xD-~». On the len. i8 tht; r~;,r
t:t.e • tack, the v&1.Sc or rl"x , ••• , x ) ts =CIIl~'Ced ~f!'CIl\ thi inaideDOilt,,:D-Y1rs'. (;he &r~Dts for f
are lCMaded IlDd I eva.luate<t; ~eD, uatik vp .I'i 'I tE!lllpot'8l"1 count.er , h lol r~pe'\td \' ~va.1uate:1 until 1..he

requil'ed dept..h ot recul'Riun Hi actu,eved, Wb~.1 evd.1lolat~ h, the 1'1B', argument,.. v~+2' is lo~dei

with tbe value ot t at the previous level, l,e., vp-+I:l+l' Then vlJ receaven t.r.e ~ "u resollt.



~
-..:I

p+n+l

p+n

p+1

P

t
arguments

tor f

arguments
tor g

!
value for t

Figure 10

On the right is the :ietlnition of g(p, "r( x , ••• , xl)") where f( x , •••• xl: ;." def1r.€J by t:l'"
unrestricted p..:.-operator using g(x , ••• , x )0. On tile lett is the run~tiJ&e stllcK. :he value of
t(x ' ••• , xn_1 ) is c<lIIlputed by sliPly ccm~ting g(x, ••• , X _1' y, ~ k fer y = " 1, ... untiJ
y ~s tound sUch that k. ~. It no such y is r~d, the ~omputatic~ fails to .alt, ar.d ~he valu~
at f(x , ••. , x i) is therefore undefined. The restriction on the unrestrict€'i ~-~peratcr assures

o n- ( ) .J. •us that tor all ,it g x , ••• , X _1' h rotor y. 1, 2, ••• , z-1 J then g,x , ••• , x l' =)
18 detiDed. 0 n .) n-



!£2g!z AD 1DdUetiw proof on tb~ .tructure or !It(Ef' ~ cm ~e given in Balle

deta1l. We v1ll ....ae that the de~iDit1OD of !It(!'!, ~), ..;bt' a.ttendant

~t., Dl! the .tack d1aar" MIte t.be proo! wholly obYioua. I

(i) Er.bov [9] ind1cates, tor bi••ch_e, hov fiowcbart.. can be given to

CCIIIPdle pu't1&l near.1n f\metlO1l8, tNt no deta1ls are given. l'here 18 real':";"

l1ttle ar DO ~tJ' required in ~ coaatruct1on o! "(lr!9 u we have

... aboft; w.. be~ or \be natvalnell o! • nOllebU't repre.entat1on o~

.. 1ft u ,..... to DIeaE'_~. We ... to .bow that ' ... :: • '. 1lbere

• : • E ~. tor .1p.... •• -a, r, l>, 1a upded4eb1a. Recall tbat •

.. • cea\a1D ao t#f of the tara (or. a) •

JI!2!. W - IIIftob • l'OQIb ClIIIU1ae or 1M~ t1J'R b.tqrl -'-?1JIC the

tnaU8. .. 1dU IIbcN bOIf to .tt.ct1nl7 ccaatnact, tor eJt¥ J-.rt1al recur.he

,..s.. t(so' ••• , Jrn.1) aDd - ~t. ~. <do,···, '\..1'> • • tne
<l, 1> ..~ .CEfI ~ E L.· , 1Iba'e •• <1, ~, J> IUch that it ,. E L. ­

ie _ -.. ~ J> ..~ tbat De'Nr balta (1.... , "[J!, <I, Q>) 1a

'dMac ...... tor au! vitia .~e •• -a, ~ 1> aDd all & I 1II.. .Eo)....
(1) tMn m ••• 0CIIIIpIt1Jll~ !. vUb as-taN '. ncb tbat

U S-<l,. ~: " 1_ ft114 111 !. \be r(cto' ••• ' 4a.-1) b. DOt ex1atJ

(Ul ,...,~ n.racwre D. with .ip..... .. 1t---<I,. ~ =, 1. DOt ft114 SA !t \be t(4'o' •••• 4
11

_1) doe. u11t.



Then, exhtea.ce ot a deciaion procedure tor ,~. =., in aeAval,

where • =• € .n~-, woul.d 1aply a decision proeedure tor

T+- !It*(ct' .!) =!l T in particu.lU', Which, t'rc:a (1) aDd (11) .oove, would 1aply

a deci.1em procedure tor the exi.tence of t(do' ••• ' dn_
l)

tor an arbitrary

partial recuraive tunet10n f and v~nts ~. <do, ••• , jn.? However,

this lut probl_ 1. triY1ally undecidable (ct. Mendel,em 1'3, P. 255]), so t.hat

theretore a decis1em procedure tor T~ • =• T ,

liot exiat.

where • =• € hI. - ,
S

doe.

Fl'ca the toregoiDS discuss1em, we see that !t*(~t'!) 18 goiDS to ban to

behave U it it were att-pt1Jlg to cc:apute r(do,. •• , dn_
l),

as it were, in all

caaputiDS atructurea vith signature s. <1., 1, 1>. To aecc:apl.iah tbia toe in­

troduce the CODeept ot m 1.mase ot a natural m.ber. (ct. IAlellha cd Park ~]

where & aetbod ot "representations" 18 used in a s1a11ar caltext.) eoa.1der

an arbitrUT atruc:tuft .Eo. <D, Ro' F0' arl with s1pature •• We a.,y tbat

x € D 18 m l:!!!I! ot n € Itj) itt Ro(1'0k(x», k < n, aDd nolo Bo(1'0n(x» •

If we suppoae R':D ~ (O, 1) such that R'(x). 1 it R(x) aDd R'(x). 0

otherviae, then x la m ia8se at 0 itt the 1Dtinite Sliqueuce at t' s IIDd

O's (R'(,.Jt(X»)IL<-.J bas an initial sqaent c0Il81atiDg ot D l's tol.lowed by

a o. lfotll that it R'(x). 0 then x 18 Ul u..ge ot zero.

We will cooatruct !t*(lt'!) € La· ,where B. <1, 1, 1> , frOID

!l(l r ~) E: L, ' wbere a. <0, 1, 1>, by replacing individual CCIIlStruc:ts in

!!t(ltt~) vitb open subroutines in P(Ett~) which bave tbe required "io

aU c:a.puting a\ructurea" flavor. J'r<a the detinitioo at !It(!t'.!> , we

see that we will ban to s1allate, via open aubr<lutin.a, tbe~

constructs:

(1) load t • ot the arpaenta d • <d , ••• , d I>
- 0 D-



(11) the teat tor equality or the ftluea ot two variables ar ot the

nlue ot .. aiJlBle variable uul 0 •

(111) tIM Rco..aor fuDatiQll +1 ..pplled to the Talue aI .. ftriable

(IT) 1Dlt1&Uz. the Talu. o~ a ftriable to 0

(T) tIM u.~ or the value ot a "fU'1ab~e to mother pertozwed by aD

••s.s-ent aeMu..

We rill CClU1der eacb CIt the.. 1D turD.

Lo~ ot tM ..-ata 1. acC<:llpllabed nth the udal'the aero

....,. 1Jl P1pn U(.). ....., atart1Dl trca .0' we .earch the dcIIain D

_ repu.U4 IIpp11cats.c.a ~ Po' .t eacb atep 10<*101 tor aD 1D1t1al .epent

Wich 1D41cate. tb& 111M cwz eat ftlue or the ftI'1ele Jt 11 111 Jluge of 11 E 1iJ.

If 1~ ao ..... tb&'t the CCIIPQtSJIK.tI:'uctun <D,lo' ' 0' ac? U nd1 that DO

w.p or Il ca be touD4, tIM raat1Jlll wUJ. tau to halt.. naur. ll(b) aboWI

ill det&U boW the ....t l.otw"n••ectla1 ot S(Lrp.!) i ••s..l.ated 11,- ..

....ee or tale.. MCZ'O' in PUtt .9 . If thi••ection of P(l,,!>

lI&l~. SA Ie-~~ ~. ~ 111M ftlu•• ot the w.r1abl••

T., ••• J v~ vUl 'be s-p. orthe~. do' ••• , 411_1 •

Teat1lla tor eqa&1.1't7 ot the nJ.,.,. ot two nr1abl•• 1. accc.pllabed w1tb

__ &14 of tbI aero mown 11& Pipre 12(.). Be.n, the work1DB TWiablea

TO 8nd T1 ... 1I&ed to cbHk \bat tile Ya1Il.. or the ~~.. K .ac! Y are

!alICe. of the _ nahnl ....... bT .evch1ml _&4 UlSJIK repeated IIPJ11c.UOU

of ~o Ud chec'dDl tor 1dct1ty ot 1Ibe 1n1~la.l ........ IeDU'ated at each at-ee•

• lIlJpotiM.1a, tile T&1Ma or Jt 1114 y are 'both s.ae. of acae u.twal Jalber•

.-4 10 the CGiIINtaUClC b&1.ta in IIIIIr'~ 8'tftct;veJ at tenI1Dator' .0 it

_ ft1Ilu of x .4 y are s.-s.. or tbI ... a.ataral. IIIIIber aDd at ~ it-.
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Pipe ll(b}

tM uppeI' I-.PI'OP'- rep1&cee tne lower 1n tOl'S.1..Ilg !II*(lt'!) .



o

Fit$Ure 12( a)

Here, x and y ~" ~ariables. The E-progr.m on the lett replaces the
one on the r1eht 111 !Iti'(lf'~) •

Figure 12(b)

Here x 1s a var1abl"l. The E-prDgl"aa on the lett replaces th... oae OIl

the riGht in ~·(Ef'~)
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T~niDr. tor <.!quuity between 'th· v'llue of b. variablt' ~ ar.d :> is

accc.pl.iahell with the aid or the mcr Sll......1, .I_ f 'p,1U'P -'2(0}. In

S(~_ d) • +.be Q.tt (x. k.) is testiLg for 0 as the current value ot
1.- - ~

YVi~le x j in !I*(tr'~) , the qtt -e,,(x) is testing tor a".l iJuae ot 0

.. the current value of vviab~\: X.

Applying the ftcce..cr tunctiClll is a.ccoaplJ..ah"d with the aid ot the

.acr:. ,hovr-in Figure l}. Here, the value or t.he working variable v
2

is

Ru1;ed ..t "0 _4 atepped up by rflputed applications ot , o " At eacb .tep,

.. cbeck i • .-de u1Jlc the work.1.Dg VU"1~e8 Vc, and vl to see it the CUl'Z'Gt

ftlue of v
2

1, 111 1IIap ot a oatural D\IIber greater by ClIIe tihan the IMIIIer ot

*1cb the 'ftlue ot ~able x 1. an 1aI8e. It tbe CClllpUtatlon balt•• the DeW

ft1.ue of n.r1llble :It will be III iaIIIe of D+l where the old valu. ot :It w..

..... ot D.

IJl1t1al1dDs the ftlu.c ot a vviuu.e to 0 11 accc.pli.b8d with tbe

IIaCrO ot '18Ure 11(_) w1th D aet to O. Her. the value ot the nrlllbJA :It 1t

1a1t1.&'.1&ed i;o '0 ..s then 'fo 1. appUed npe.te~ ..tU 111 s-ae ot 0

1. toaDll. It the cc:.p.1tat1Cl11 balta, the value or x 18 l1li. Wase ot o.

Aa.~ the value ot ClIle YV1llble to another 11 &me with pr~ the

_ cau10nct 111 P(l,.~) at in S(E
t
, !> • 1.e.. an ..d~t .em-.

!bi.~. the 4efiJl1tlOID of the proM" tor OOD8~ the K-pI'QII'_

"'(Eft!J 1Jl L.-. vbu'e •• <1. 1, 1'>, trra the I-pI'qIZ'. !t(tft!J iA

II, ...... <0, 1, l>. h14etlJ, III 1DI!aCt1ft proof OIl the~,.

of a-(lf.,!) 11"". 'U that it tor .a¥ 0CIIIIPl't1D& IItructure Eo, with .'......



\J'
<r

ripe 1.3

Here, x 1... n.r1t.ble. The E-progr_ CD the lett repll.Ces the one on tbe r18bt in ~(t't'~) •

~
ripe l~

An alv..,.. 1DdeteraiDat. tJPe <1, D l-pI'OII'_.



• • <1, 1, 1> and input ,t~t(

then red , ••• , d 1) must be,.."ined. Th.'..~ i s "e:&.,:, , ctetennr.acy uapJ.i",::
o n-

that the required ~e,' wl"re fOWld at every st88e, and this 1JIIplie. tbat tne

executlQ1l ot 'It*(Ef'~) therefore t&1tbt'ul.l,y fvllO\O':u the execution of

!t(Ett!) WhiCh theretore .at haft balted, thUI' iaplying the exi.tence of

t(do' ••• ' dn-: ! •

QD tbe -'alis ot thi. reaul.t, let us ccaplete the proor ot Tbeor_ 4

b7 1JatrodUr.UI& the tiJ'pe -a, 1> l-plosr-!l € Ls-, where •• <.1, 1, 1> ,

1D ncun 14. !'or topolog1Cal reason., ~D, <r, il>] 18 1ndetena1Date

tar all ccaput1I:l8 structure. ! ed 1Dpu1i .~tel & : W~ ~. Let us ':ClU14e1'

'be vtf P(ltt ~ = , e: ~"".- , and note tb&t 1f .(It''!>:!l 11 Dot

ftlld in a eG"t&1n ec.put1.Dl1 ~ctv. E, the the reuca .at be that

P<lt'~) balta in £, 1••• , in ll8ht ot the diecua.io&l Uon, t(do' ••• ' da-1)

al.t.. 'l'hua, it we have .. ded.1C11 procedare tor geDeral 'ftlldit7, aDd we

.,J..:. 1t to the vtt !I*(lt'.!):!l md it .q. "DOt lener&1.l7 TatU", tbeD

theft ftIUIIt .nat .. ca::lput1q nncture .E. 10 1Ihicb the vtt ill qa••t1cm 1. DOt

Yal1c1: which ~ CXJU.I'at' ...JI(J.1.' that t(do' ••• , do_1 ) anat.. In~, there

Gi.t," '" wtf 9f , ! ~ Ji_.- wbich if no: i!I!!!'!l.ll ftl1d tben 1IIpll•• tbat

t(do'" • ~) .!!!!2.

We r.·~w ~ate tbe other &ltematift, ~, 1t 9 t 4 !!,-
IP!!'!llr ~4 tba t(do" •• ' do_1) doe. Dot .nat. 'ro do ti., we iAtrocIace

... cc.put1Da~e !. <x, s, a, 'b> with 11pIrt;ure -a, 1, 1> det1nec\ 10

u.t tile 1nt1Jdte ....-ac. ewer {O, 1) giftD, 'br (S'(cf-(b»)))KfiJ 1• .1ut

0010010110Ql0l10UlOO1Ol101110UllO •••



which in a very obvious way co~-:.ains 1IUISes tor the following sequaaoe or

001012012301234

Since the arg\aeDts

applications of G.

d •••• J d 1 aft loaded by searching fie. b usiDgo r.-

and sir.ce all seuches far images therefore staY 111 the

sequence shown. above. and since an 1Ju6e tor every natural nUllber occurs

infinitely often. then all eearches tor iaages will succeed. This 1IIpl1ea that

it ~(~t. ~) =~ is valid in !. and so P(Ett V dou not balt in !,
then it does so not because 'IllY image searches ta.1l.ed along the vtIir, Nt bee.aaa

~(!t• .!!) does not balt in ~. 1. e. J bec&Us~ t(do, •••• dn_1) does DOt exist.

'l'bua. 11' we have a electsloo procedure for general Y&lldi~. md we &IlP17 it to

the wt!' P(E'tt~) =:R and:t sqs "gener&l..ly valid", then t.be vtt ill flMatlClD

IaPt be valld 1n ! in particular. vb1.ch ot course 1JIpl.ies that t(do"'" tin-I)

does not exist. 'l'hua, it e t d 1a lljenerAA valid theu f(do' .... ~l).-
does not exist.

In~. then, a decialoo procedure tor general Yalld1~ ot vtts. 9f d,-
in particulu, would 1JIply. decisioo procedure tor the existence ot

r(d , ••• , d 1) tor .zbitrary partial. recuraiTe tlmcticma .ad arswa_tso D-

d • <d ••••• d ]:>. which 18 1AlpOs8ible. 'l'ileretore t+-.:.', vbln
- 0 n-
• =s c .JI"'s- tor signature 8. <1., 1. 1>, 18 undecidable. I
R-.rks:

(i) Thill undecidability result is euentla1l¥ that given ~ Pater.OIl (}6)

although OW' aethod ot proot, oota1ned 1nde~dimtl,y. difters couiderabl,y.

The forerunner of both these result. i8 that given by Lu~ ..s Pu'k [a) tor

.cheme. that caapute with the natureJ. nWlbers.
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In Chapter 4, we iotreldue: eel the fOn:lal t.;heory

"'hert' is thE set of wft5 uf is the inferential systea of

::T
s

• In Chapta 5, Wt' eXlllD~llll.l thf: fen':ral validity de c i s i on problem for

vfts i.n 1'1rI. , and in the t-rt·sent ana succeeding chapters, we will caaplete
s

our study of J'~ by d(~elopln~ thf infer~~ti~l system

to speCify:.ng the actual axiomr, anu ru:l"S of inference of

Before we get

in Chipter 7,

we will lIlY tht' nece : GUY @:rounJwork by ".<IU1. '.ning f'urth~r 6YDt'\ctlc and seautie

properties ::>f E-llro~BIIIs in this chapter. We will assume a t'ixed signature

Forward SUt-stitution of Assignment Schemata

The first syntactic notions to be ex~ed are illustrated in Figure 15(a).

We want to know what assignaent schesr;,. x met qtf r will aake the wtts

pictured in Figure 15(&' generally valid.

To begin, let uc cODsider the syntactic subatitutioo ot t~ tor ...labl.s.

It t is a term or qff, then we write (u t ::~ 0i)i<n t ,where D < ~- , to

denote the t.enn or qtt' Qbtained trcm t by the syntllCtic substltution

ot tne ter.B ai' i < 0, for all occurrences in t ot the dl~t~'ct ~i~les

We can conveniently read (u::= a)t as "to "iUl a substituted.

tor u"; the ": :." notation is, e)f cou.rSI:, borrowed rrca lle.cltus-lfaur rom

where it also denotes sUbstitutl00 ()~. strings. We define substitution r1sorOlls17

as rollows.



IV-

Figure 15(a)

Here, f end g are known ..u1gmumt Ichema lind p .. mown qf'f'; x 11
lID UDkDown ..11gnaent Ichema aDd r aD Wlknown qff.

rWe 15(b)

Here, r aDd I are ua~t Icb_ta, p .. qtf, tl the forv&r4
ilUbat1tu1i1ClD of f into I. and. tp the torward lub.t1tut1on ot t
into p.

59



(1) It t Is a varlab1p vj , then

(ui ::- 0i)i<nt • (Ui ::' ai)i<nvj - v. i1' ui " vj '
for alli<n

J

- °t if ui - vj ' for sc.e 1 < D •

(11) If t is a constant k
j

, then (ui ::: a1)1<nt

- (Ui ::- 0i)i<nkj • kj •

(iii) If t is 1'j(To' ••• ' Tm -1)' then (Ui ::- ai)i<nt
j

- (Ui ::- 0i)i<n 1'j(TO' · · · ' T~~_l) a fj«Ui ::- °i)l<n TO, · · · , (U1 ::- 0i)I<nTa
j_1)

(iv) If t is rj(lo'··:' Tn -1)' then (UI ::- 0I)i<nt
j

- (Ui ::~ °i)l<nrj('o'···' 'n.-i) = rj«ui : := °i)i<n'O'···' (u i ::- °i)i<O~D -1)
J j

(v) It t is (Tl - ~2)' then (ui ::- 0i)i<nT

- (Ui ::- °1)1<n('l - '2) - «ui ::= °i)I<o'l - (Ui ::- °i)i<o'2) •

(vi) If t is (p ~ q), then (ui ::- 0i)i<nt

- (u1 ::- °i)i<n(P ~ q) - «Ui : := °1)i<O P ~ (Ui ::- °i)l<oQ) •

(vii) If t 13 (- p), then (Ui ::- 0i)i<nt

- (ui::- a1 )1<n(- p) • <-(u1 ::= °i) i<nP) •

We will write (u1 ::"'" 0i)i<nt if' only~ ot the occurrences ot the

variables ui are substituted tor in t.

Neat, let us define the syntactic operation on two ..a1~Dt scb_ta

denoted by their juxtaposition. Thus, if t • (ui :- ~i)l<n IDd

g II: ('Wj :_ aj)j<ll ' then their juxtapositioo defiDes the UBisa-Dt scb-.

tg. (wJ :: (Ui ::"" Ti)i<naj)j<ll 8& (U
ik:-

T~)k<..l

called the torward substitution of r into g. where {u~}k<.l ia the larS••t

subset ot {ui}1<n disjoint from {~J} j<ll' 'rhus, we substitute tonvd. all

te~ ot t wherever the assigned variables of t occur in the t~ ot S.

and iD add1ticm carry t'onard. those asSignaents of f whOle ..signed varlab~e.

do not conflict with those of g.

60



M well. let u def1De the ayntaetie operation on &D a..1tP-eDt .cm..
IIIld a tena or qU. deD;)ted by their juxtaposition. 'I'hu. if

t. (U
i

:- "::')i<O &Dd t 1& a te1'll or qft, then their Juxtapoa1t1cm detinea

tbe Dft tem or qU

tt - (Ui :1- Ti)i<Dt

caUed the forward BUb.titutioo ot t 1Dto t.

'!'be tir.t .tep 1D the analyaia ot the forvazod aub.titutl00 or a..~t

.~ta 1. the tollgW1Dg

tbeor_ 6: Par!Ul ....1p!eDt acb... t~i I~"'1)i<n ' CCI!PI!t1Dg atructure

! ot !fFOFiate a1patw, .tatel: w ...~ cd either tem 01' qtt t.

t[Reo t(E" I] l - ttl£, I] •

'fINa. execUting &D ..a1plaeDt acl1... t 00 the .tat. I &Dd thea eV&1.uat.tJl& t

~el4a the alae V&1.ue or truth value &8 the torwazod BUb.titutioo of t SAto t,

naluated ua1Dl I.

lroot: We use 1D4uct100 00 the atructure of t. Fir.t caad4er the CUe ....

t 11 a tem.

(i) It t 1. the variable vj ' then

t(~ (Ui :- "'1)1<0 [£, e]l

- "'j[£' CUi :- 'r i )1<D [Rot eJJ

-"'j[D.I] it V.1~Ul taralli<n, or '(1[D.I]·1t "'j-Ui

tor aClClle 1 < n. by ~ det1D1tloA of tbe a-.zltlca ot ua~t

- (Ul n- '(1'1<n Vj[E" I] 117 the de:t1Dlt1oa ot subatitutloa

• CUi II- '(1)1<11 t[}b I] .. required.
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(ii) If t 1s the ccnstant k j , then

t[£, (Ui :- T i )1<n [~ f]]

- kj (£, (u i := '11 )1<n[£' rn
- k

j
(£, d by the definition of the stSllUltics for te:nu

- (Ui ::'"' T1) 1<n k
j

[£, f] by the def.;r.it:on of substitution

- (u i ::'"' T
1)i<n

t[~ t] lUI required.

(11i) It t is fj(Te, ... , Tm -1)' then
1

t[,E., (u i :- Ti)i<n [E" rn
- fj(TO' · · · ' Tm -1) [£, (u1 :~ Ti)i<n[~ t)]

j
- Fj {Te[1?J (\ :- T1 ) i<n [I?, t)), ••• , Tmj_l[~ (ui :c T1 ) i <O (£, t]]) by

the definition ot semantics for tel~.

- Fj«Ui ::- Ti )1<n To[D,~), ••• , ('"i ::- T 1)1<n T
Ill_1 [D,t)) by 1nductioc

j
hypothesis

- f
j
« U

1
~:. T

i
). 'f , ••• , (u

i
:: .. 'f

i
) '1 l)(D. t] by the

1<0 0 i<n IIl j - ,..,

definition ot semantics for terms

Next) let us consider +he case where t i8 a qff.

(i) If t 1s ri(To' . ' . ' Tn -1)' then the proof parallels exactly
j

the proot when t 1s 1 j ( T
O

" ' " Tm -1) •
j

(ii) If t is (p ~ q) , then

t[£, (Ui := 'fi)i<n[£' t]]

.. (p::>q)[}2" CUi:c Ti)i<n(£" u:

.. Dot p[E" CUi :c "i)i<n[~ t l l or q[£, CU1 :- "1)1<0 (~ t]]

by the definition of semantics tor qtt.,

62



-Dot (U
1

::& 1"i)i<n pf,!J, ~J or (U i ::= '~)i<n q[£, ~] by

iD4u~t1OD bypothes1a

.. «U1 ;:". Ti)i<n P :;:) (u: ::= '(1 )1<n q)(£, t l by the det1nlt1on

or 8emautlca tor qtt~

- (U
i

r : r. 't i ) i<n (p :::l q}[£, t] by the detinition ot llubstitution

- (Ui :;= tl)i~ teD, tJ as required.

(113.) It t H (..., p). ....nen the proot paralJ.els exactly the proof

wen t 16 (i/::J q) .

(~, It t 18 {T " a) J then

t(E., (U
i

. c. 't1) i<n[£" ~ I )

.. ('t - aH~ (ui :- "t i )1<n[£' t II

.. 't(E., (u , :- 'ti)i<n [£, rn - a[E, (u~ :- T i )1<n [£' tJ) by

.. (U1 ::- -;i )i<l1't[~ ,,] .. (Ui ;:- "t i) i<na[E., t) by 1.n4uctlcm

hfpothes18

.. «Ui ::,. ~l)i<n 't .. (Ul :; .. 'ti)i<na)[E, t] by the

detinition of thp 3emantica of qtfs

- (Ui ;;- 't i)l<n(T • aH£, tJ by the det1ll1tiOll ot

nbstitut10n

'J.'be toregoiDg theorem 1aaedlately suggests 'the tollov1D8.

Tbeor_l: For &Ill aasipent llch-.ta t - (v :- "l'1)'''- aDd-1- ..~-
6..:..lvn :-- Il',i) j<.N' ccmput1ng .n.ncture £. ot aptl!'OFlate s1p&\ure,

J
.ad atate t : W) ~Eo-

....l[~-!l£, t I ) • ta[E,..1L.
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Tbua, executing two assignment schemata t and g in aequence on & .tate

t produces the same state lUI the forvara substitution ot f into g eucuted

00 ~ '

l!:22!:. It 18 poas rb.Ie to give 811 inciuctJ.n proof ,wer the Il'UIIIbf!r ot f~d~ta

in either f or g, but a :Jrute force method may, in tact., prove ~e Ml'CU'Ul.

d£, flh t)J

- (V
n j

;- 0j)j<R[EJ f[E" t l l

- (V
nJ

:= 0j)j<N[E,,~, where" == t[E" t)

.. :.:r~_l' 0N_I[£' "l, a( ••• a(nl , 01[E" nl, a(oo' 0o[PJ 'I), ..»...» by the

1tfi~ition of semantics fc~ assignment acheaata.

ItOlli, for all J < n

01[.E" ,J
~

• 0j[£' (V
a i

: .. 'l'l)i<J([~ !~J since 11"· t[E" II

- (V.
l

::- Ti)i<JI 0j[£' tJ b;.-·~ 1,

- fa
j
[£, t] by the definltio~ of torvard substitution ot u.~t

schemata.

So that, continu~

g[~ f[E" t] ~

a(.,._1' foIf_1[£., u, a( ••• a(~, fol[E.. tJ, a(no' taol£, u, ..»...»
- a(~_1' faN_l[~ tJ, a( ••• a(~, tOl[£' u, a(Do' taolE, u,

l'I(~l' TM_1[P, tl, a(···&(1I1, TllE" U, &(.0' 'l'o[E,'tJ, t» ••• i» ...»
The next step in the proof rel.1ea OIl certain &x1c.a which cb&!'.cterbe

expressions involving a, the "asSign" tuDetlCl1l, and c, the "cClIlteata"

tunctian. Ius IleDtl<lDed M»ove, these t'UnctiCllla were introduced bf~ [28 l,

and there be also givea the &x1caa



(i) a( t, k., a(j, t J E1) a(jJ t J ti.(l, r~ .. ~)
. .,

i r J1 ...

- 8o(i, k. U if '-

(ii) a(i, c(i, t) , t I 2 t

(iii) e(i. &(J, It, t») e(i, ~ ) if 1. ., .'

.. k if i .. .'

equality of states.

The re_evance of th~rf; "ompleteness results is that :'n the lut expre s s i.on

tor g[E., fiE., ~ ) ) a":>o'fe. i~ -,," lL
i

for sane j < N , i < II, then we can

prove ;;.ha~ the a.ssigmaent tc: m~ can be cmi.t ..ed sioce the one ~o OJ w~. be

t:1e only one to have etfec:t. In fact tbe proof COIls1sts s:lJlply rr::peatec

appUcations of axiom (i) above, Let us suppose, without lack of ~eoeralitl,

that (moJ~"" ~-l) i;; the largest subset ot {ai}i<M disjoint t'r<lll

(D~) j<N' wher<> K ~ M. !'hen. 00 the buis ~f tbe above ;1lscuss.on,

g(E" f[E., t ) )

• a(Iif_.:' faN_l [~ ~ 1, a(.. ~oo' fao (~ &1, a.(~_l' 'r1 _1[E1 ~ 1. 4( •••

a(Jr." T , [D. tj, a(m, ~ LD. &1. t» ... »)...»_ • ~ 0 o~

• (V" r"1) 4L"lf'\ (v ;= -:-. ) idE,. &] lr.r l;~e det1nitlcm
D j v a> a 1 ..

or trf semutics for a;;~.ign:r.ent 8~....t ..

• (V0 .1 , ,,- (·.i·~· :i<..~aj)j<l' ,\ (v
a l

: - 'r i )1< i{{E,. t] 'btthe

4et1n~tion ot forw....-d a·.1batitutlon ot aaaipment scp_ta

• ta[~ ~ J as required. I·
:i} :n (2J,j. we up':'&J.n in detail how the e.lCHJIII8 tor the a tDd

fUDe·.~.on8 ·;an ':1£ used to ~ffe~t tbe simplitication required in the toregoiDI

theorem. :t iii felt ~at ::-e.tatement of au the rt:wlta in ~ 1. Dot

VIU7dJ1-;;eo. here.
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(11) Theorems 6 and 7 lead to a certll1n parsimony in not..tioo for the

diagrammatic =epresentat1ons of E-progr~ and this will proVP. useful when

'ole carry ~t deduction.' 'lsing the drs of variOWl E-progrlUlLS.

(iii) We now know through its forwart. substitution the e;.1tire ettect

ot an operator, whether on another "perator or on a dl scr1Jll1nator. It 18

precise~ the lack of this ccmpletf:' infonnation that dlstinguiahes the schemes

of lanov [16] and Glushkov [13] frO!!l that developed here.

Theorems 6 and 7 seem to tell us that in Figure 15(a) the aal!li8lDent

schema x should be tg and the qtt r should be f'p tor the wtt. pictured

tnere to b" genpr&lly valid. This, in tact, is the cOl1teut ot the tollowlDg

Theors 8: The wtts ot Figure 15(b)(1) md 15(b)(11) are geuerally valid.

Proof: (i) Conaider executing the left-hand E-program I • <X. r, x:» ••,

in an arbitrary ccaputing structure Eo, ot the appropriate Sipatare, with _

artitrary input state ~ : \oJ-.~ Then,

I[E, «, Q>}

• E(I, E, t,"') where w£ X and [v] .. bo

; E(I, £, t, rv) by the definition ot the execution tlmction I

'" E(I, .E" t, x) where XE X and [x ] .. t

- E(I, E" ftE" t), nt) by the definition ot E

= E(lI, E" t[J;2. t}, y) 'Where yE X ad [y]. g

.. E(I, E,. g[E,. f[E,. t J], I'y) by the d.efinition ot E

- E(I, E,. dE,. f(R., t]]. z) where Z4; X and (z] • e"

- <g[.!?If(.!?I t]], a > ~. the definition of E

• <fg[E, t], I) > by i'he'1'C'J'. 7 •
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JIotI, cona1der eueut1A& the r~t-naDc1 E.prosr-, I. <X, r,~> a., ill tbe

._ tUbl~. So

.~ <t, rt> J

• 1(1, Eo, ~. x) ofbere x~ X aDd (xl· be

• 1(1, Eo, ~, rx) bT the detinit10a ot E

• ICI, ~I ~. y) where yE X aDd [y] • tg

• Ie., ~ rg[~ I l, l'y) by Ute detinit10a ot !

• 1(" E1 fg~£, ~ J, It) where zE X aDd [It] • eo

• <tg[~ t 1, c > by the definition ot E.

ftua, tar srb1 trU')' Eo aDd ~,.~ <lJ C1>] • I(~ <I, ~] ,

1. e.. ~ a: =~, as required.

\ ~i ) Con..i.c.f:r t:xecuting '-i.e lett-ban~ E-progr-, •• <XI r, .e> aq,

in aD U'bitr~' ~~ti.a£ atrvcturl! £, 0 ...' the appropriate .ipatul'e, w1th c

arbitrary UlYI11. state ~ : w -+.20 '1'beD,

.rD, <t, c- ~

• Ie-, 2, t, v; where vE X md [v] • bo

• BC., !b t, rv) by the detinlt10a ot I

• B(., !b e, v) where wE X and [w] • r

• B<-, !!., t[~ ~ J, rv) by the det1Jl1t1oa r4 I

• 1(., ~ t[~ :; I, r.) wber" xE X aDd [x] • p

• B(., E,. t[,2, ~), y) if peE, t[£, 1J]. or 1(_, ~ t(£, tJ,z)

otherviae, WDt'l"f' Y, zEX aDd [1']. eO- (It]. -1 b7 tIM det1Jl1t1ca of I

• 1(., '£J r{E" ~ J,y) it !P[.£, t l, or E(., J?, t[J?, I), It)

otberw1ae, by l'beorea 6.



'" <t[P., ~ 1, Ct> it fp[J2, t J or <C(t, ~ J,.l> otterwlse. definitioo of E.

Nmi, consider executing the ri~t-hand 1!:-prugulIl e '"' <X. r,.(> slI¥, 1n the

lame fashion. So

e(b <I, Cl>~

• E(e, J2. I, u) where u EX and [uJ • be

• £(11, E, I, ru) by the definition of F

• E(m. E, l, v) vhere v(X and [vl '" tp

• E(II, ~ t, v) if fp[R, I l, or E(II, ~ I, x) otherwise,

lIhere v, x€X u.d [vJ • f, (xl. r, by the det1D1t1on of E

• E(II, J2, f[~ I I, IV) it fp(J2, I), or I(e, Ro, r(E, t), rx) ·otbenrl.e,

by the definition or E

• E(e, J2, t(~ Il, y) 1f fpCp" Il, or E(e, R" t[R" I), I.) othervl•• ,

where Y,I.€ X Uld [y). eo' [zl • e1

• ~R, ;J, e- it tp[R" Il, or <f[~ tl, 1> otherwise, by

the detin1tl<m of E.

'l'bIla, tor arbitrary .e Uld I, .(Ro, <t, ex» • 1l(J2, <t, Ct>1

1.e., +-. =II , .. required.

Rem&rlta:

(i) ThOUSb the proof of the toregoins theor. 1s sCllllvhat tedlou. it

nevertheless points up the role ot the exeeut101l t\mct~on in .~tlca14

oriented proors ot general. validity for vfts. This sort ot ftrltlcat1tm

of general n.l.1dit} will certainly be required ot all the u1caa in tbe

1Ilferentl&1. .y.t. introduced in the next chapter.
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(11) ...',~ ,'.ouue, tbf' wt!;. or rigure 15(b) vill be k~ uiaas 1n +.bat

JpatUlt tattoo of" Well-romec FolW.\laa

We lImt to ext.eDcl the ideaa of the precedj·.g aect'.on tCi allcw lubatttut10D

Cit teras tor vanab1.ea "Mnever th~ occur in the E-progruaa ot 11 <itt.

ftu wtt l'eau1.tlns !rca such a aubatltu~1on vi.:.l be call.ed U1 iDstll1ce ot the

arl.~Jlal coe. We are alac intereated in apec1fY1D8 the cODdltloos UDder wb1cb

_ iJutuc-e ot • "tt 18 &1.0 & leaantic coo8equeuce of It. Tbi. aart at

8JIlltact1\~ procea. aut be available if we are to carry out derlvatioaa trca

a aet ot proper lJdaaa or ~..he....

rirst, let ua ~xtend "be notioa at .ub.llt1tutl00 to E-prosr__, ud write

(Ui ::. '11 )1<n II ,where n < (,or , to denote the !-prosr- obta1.Ded!rca •

b7 the a1JaUtUleQ\l. slDt.ct1c subatltuttoo ot tbe tema T1 , 1<11, tor all.

OCcu.rreDC'e.lI in • "t tbe diatinct nrlables u1' 1<n. Iote that it ac.e

\&1 ' 141 , occurI as U1 ua1ped variable in U1 ua~t acb.. at • ~

-.ci T i 11 not a \"Viable, then (U1 ::- T1)1<n . 18 DOt a pera1tted BYIlt.ctlc

operatlOl' dnce the re• ...u.t, it the auDstitutiODa were pertomed aa indicated,

would not be an E-progr8ll1.

To live a llO!'e preci.e detinl tlon, suppose that •• <x, r,.%>. '1'heD

CUi ::- 't1 )1<n • • < X, r, ~'> vbere x' 1a det1Aec1 .. tollow... (Bote: we

write Ixl ' tor ,;e' (x) here.)

(1) If (x) t "t U £, then [xl' • [x) •

(11) If (x.' t· u , then [x)'. (U1 ::- 't'l)l<n[x).



T i) i<IJ ... .; : ~ (u J.

( i i ; )

l x l ' = «(U.
1

If

: ;1::

l X) ::'lj' , , , ( .. .) , th.n
y-Jll

,
) ~<lL

Of course, as lIlentionec.: acove , if u
j

~ w
j

fcr SOIDt:' i<n, j<m and"1

not 11 variable, then (\';'1::""[ i) i<n II is not a dei'inec ope r at i on ,

:= 1 J. •
i l<r.

is

To discover when an inct~:~ of a wf1 1S also a semantic consequence thereot,

we need the ccacept s of scope and freeoOOl. Consider t,he :'-l'l'ogram •• <x, r,.t'>

If the variable u occur-s a;o an ".;:;igl'.·i var i ab Le in an assignment schema [xl I

where x € X , then we derine the scope ~f that oceurrenc~ of u to be the set

of variables which have occurrences in the assignment schemata and ~ffll labelling

nodes reacbeble via r trOll x. T~e example in Figure 16 indicates the scopes

of the assigned variables ~ a simple E-progr3D1.

Then, if U("). {w : "'. is a variable md 101 oceura un the tent T) I

we say that tbe tenD T is!!:ll for the variable u in • itt (i) aDd (11)

below both bold.

(i) For each occurrence of a variable 101 E 11('f) as aD ue1gDed varhble

in ., U 1s Dot in tbe scope of that occurrence.

(il) It u occurs anywbere in • as an aasisned variable, tbII1 T ie

s1apl,y a variable ", and for ~ach such occv.rreoce of u as an ..eiped

variable, ... is not in the scope ot -~bat oecurrence.

III Figure 16, notice that u 1s free for Y, and tbet T 1s ~e tor

u J t(u) and 8(u, v) •

We br1us tosether the notioo. ot 8Ub.t1tlltion, .cope ~ rr'Jsdca in

the following
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rUt v••)

{u]

Figure 16

Here. u. v.. ar~ jiatinet varia~les; ~. 8 are tuDctioa letter.;
aDd p. r kre relation letters. The set ot variable....ociated wltb
each aalllgDMDt schema ~s the scope or the ...iped nzolable.
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Theorem 9: For IUlY ngnature s, any wff II:: e E JiJ/1.s ' terms ori~

distinct variables up i<n< w· , if' for all i<n, _'(i. ~~_ fr~~!..._ ui u:
II and e I then

(i) tor all computing structures £ with signature s

~D II =e .. ~DJui .:.::..T)i<O II =e J,.. ,..
or alternatively,

10 this case, we say that (Ui ::~ Ti)1<O. =e is a proper instantiation

of II:: e. Evidently, then, any proper instantiation of a wff is a semantic

consequence thereof.

~: 1'he notion of freedan here is acturlly very simple, and the theorem

follows easily once the nature of an E.program • in which a term l' is tree

for a variable u is understood. We will employ an intuitive proot rather than

a highly technical one since the latter would only obscure the simplicity of the

situation. We vill assUIIle a fixed ccmputing structure Eo.

Let us first consider the simple case of a term f(w), say, vhere f is

a f'unction letter and v is a variable, hing su.bstituted tor the variable

vIC in the t7Pe <m, n> E.program II. In this case, only condition (i) for

treedom is relevant, and ve require that v
tt

is not in the scope ot aD7

occurrence of v as an assigned variable. That is, tor any executioo ot II,

VI vill I&~t be ev&l1a.ted once an assignment to w has been made. It followa,

then, that any !'!valuation ot a SUbstituted occurrence of f(v) during the

executior ot (TIC::'" t(v»)II will simply utHlze the value of v it bad :l.D. tbe

input Itate. 1bUI, executing (vIC::- f(w»)II vith any input state " Bivel the
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aDe r-esuLt u. ·}.,'cuting It with illput .>tate a(K, f(w)[£, I)], Tj) , :.e.,

(V
K

:: .. r(",)I1I!~ <Tj, 1>] -II(E, <a(K, f(w)[E,. IlJ, Tj), 1>J, ror all i<m.

Of c r" . ,. , , the same sor-t of result holds for E-pr0gram 11, L, e.,

(V
K

::= r(l') )~IE,. ~Tj, 1> J ;; 1lf£., <a(K, f(w)[~ 'I), TI), 1>], for all i<m

. f t(..,) . r-ee l''Jr v
K

in 11. But, the hypotheses for 'J'heorem 9 /";ive

us that ~t z: II , '1. e , , fC'r all i<1n, :'or all E. : UJ'" L we hav('
I, -u
~.

.[~ <e, L I(fJ <e, L> I But theI! tt.e transitivity ..)~,: is giV\~5 that

tor all i<1ll •

aince tor W", state 'I: w ... £.:) , there is scme such that

t • a(K, r(\, ~~£, 'I], 'I). 'l'h'~Il, caa.bining the results above, we have

(V
K

::- f(w»II[£, <'I, J>] ;; (vl( ::- f(w) >*E, <1), 1> J, for all i<m. att,

tbis is tru€. for all 'I: W -t~ , so tbat +-£ (vK ::= r(w»)II ;; (vK ::- t(v»",

i.e., ~D(VK ::= r(w»)II =II , as required.-
Extension ot this result to terms with more than one liistinct variable

occurring in it is straightforward. ~t. now consider the more cCCIIplicated

case of a variable '!l. being substituted for another variabl,- v
K

ir the type

<II, II> E-program • , where v
K

occurs in • as an auigt.eJ variable. In thic

case, both conditions (i) and (ii) tor treedall are relevant, so that we require

that vK is not in the scope of MY occurrence or V.J. ILS an ILSsigned variable

and voL is not in the scope of any occurrence at v
K

as an ILSaigned variable.

That is, for an; -execut.L,.r. of ., vK will not be evaluated or be asaiSDed a

value once an a:.:' '_~e!:'.; to v.l has been made, anti v,l will not be evaluated

or be ILSsigned !i new value once all assignment to "j\ has been lDaac. For both

these conditions to be true sialltaneously, el'ther ~ or vK never occurs 1L
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I u an usigned variable. If it is vI( that never occurs in • as an

usigned variable, then we have precisely the case already analyzed above.

It we bave the Ca5~ where I/-i, does rot OCCUJ" as an assigned variable in

II , then it tollows that any evaluaticn ,;;1: a substituted occurrence of v../"

chnlng the executiw of (Vx::"!J)II will smply utilize the value ot 'V..L

it bad in the iDput state. ThUS, except f'lr the values ot vK and "!L-

in the output state (if such is determined), executing (VI ::. Y.l)l with

C2Y input state 1) gives the same result -rs h{ecuting I with input state

a(K, '!t[E., 'I], 1), i.e. t

(VK ::- !l.)I[E" <1), 1>] ~ [ ll[E. <a~K, Vj [EJ 1)], 1), 1> ] tor all i<ll.
vK' v.J,

The notation whereby the "CO' sy):lbol is subscripttld ~ Y II. ..,t ot variables

wa!'! .first used by McCarthy (26], and has also been used by this author [20].

Here, for I(h -a, 1> 1 • ( " lm(£, <e, 1>] to hold, either 'ooth aide.
\10" •• , un_l

are indeterminate, or both are determinate, producing <t', J'> and <C r , j~

'llY, such that j' - J" au:! c{K, t I) .. c(K, e") for all

~€ {m:vmC{uo' ••• 'un_l }} . ~us, tt and e" J1J&.y ditfel· on in

locations corresponding to the variables uo'.·.' Un_I.

In this i!lstanc<', we CaI'! actlail,y say what the relationship 11 between the

values of Vx and v.l in the output state, if' there is one. Suppo.e tbat

(i) (Vx ::- !I)I[£, <1), 1>] - <a', J'>

(11) I[£, <a(lt, v.l[EJ 1)], 1), 1>] - <cI', j'> •

Then evidently, c(.L. a') - c(K, ct'). c(K, Q') - c(K. ,,), e(~ d') • e(..( ,,)

and <at, j '> _ ( ) <d'. j '> •
VI' YJ.



Of' course, the a.e so::-t or result bolds for E-progrlllll ", i.e.,

(TIt : : - T.l)t(j2, <11, 1>] • ( , ) WE, <a (It, v [E" Ill, II), 1>]
vIC VJ

tor all 1<11. Let us IUppose here that

(1) (TIt : : - ~)8l£, <II. 1>] _ ~', J">

(il).£, <a(1t, v[£, Til, II).:t.-] .~", .1">

Here too, we bave c<J, ~'). c(I, ~"), c(I, ~,). c(I, TI),

c<l,~) • c(J, II) and ~', .1"> - ( ) <~", j"> •
VI' !l

Nov f1'oa the hYPOthesel or Tbeor.. 9, ~D.::'" 10 that in particular,

<d', .1'> • q5", .1"> , i.e., d' .~" aDd j' • .1". What we are

nov 1s that <a', .1 '> .. ~', .1">. Well, we have .1' • .1" , so all. that

r..-iDs 11 a'.~' . We proceed .. tollows:

<a', .1 '> L" ( v. )<11', .1 '> • ~", .1"> • ( }~', .1''>. ThuI, we have only
VI' !I VI' !l

to show that c(1t, a') .. c(lt. ~,) and cU, a') • cU, ~,). But

c(lt, at) • c(I, II) • c(K. ~,) aDd cfr/, a') • c(I, d') • c(It, ~,,) • c(J, 1") •

'fhua, taken aU. tcpther, theae reauJ.ts give <a', .1'> • ~', .1">. Blnce th1&

11 true tor all 1<11 and aU II: CA)~~ , we have

"n(VI ::- Vi >- =(,,~: ::- vt)e, i.e., "D("~ ::. v.t*::., u required.- -
This coverl all t.he ':Ue8. It is also euy to verify that the aubltltutiODB

(Ui ::.. T
i

) l<D ""'be dOlLe I~tueously without d-s1Ds the results so tar

proven tor the a1Dgl.e substitution cue. I

Figure 11 illustrates _'everal eXUlpleli or proper 1DstmtiatioD. and in the

Dext chapter, this syntactic operatioD will be incorporated into our inferential

..,ste. as .. rule ot infe~e~ce.
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(x ::- y)
(y ::- h(.:» I... r ,

eo

y ;- g(f(r.(z»)
•

~

o

y : .. f(g(h(z»))
•

,~

-:l
-;j

Q

--
~

~

Figure 17 (contd.i

Here, x, Y, z, u are variables; r, P are relati~n letters; and i, g, h are function le~~er~.

The right-hand E-progrsms result from the left-hand E-progr~s thro~gh the proper instar.tiatic~l~
indicated.



(i) 1'he notions ot ".>ecurrence" ulCi ot a variable or term "occurriDg"

in s~ tOlW.lla bas been lett i.ntor-.l in this diacusaico. Thie 1a a1Jlply

becauae iDtuitiClD alone ia U1 excellent guide in these ..tter•• not bec"Jae th~

tamal detiDition 1s intractable. leferman [10] treatf Ii siAllar

utter tor the predicate ctJ.culus.

(11) The rolea of subatitution, scope ud freedall in this work stell!

cur:lously l1a1lar to related utters in the predicate ::alculus. lor ex_pIe,

see Mendelson ~j. pp. 48 md 53 J. Tbere 1s Ultely IIOre in this tha::1 at t'irlt

aeeta the eye.

Composition. Dec9!pOsition sod Replace.eDt ot E-prO§rams

Before considerlug transtormations on E-progrUlB vbich alter their

t('po~ogical nructure. we must Calsider the syntactic operations of ccapoa1tiOD

and dec~aition ot E-progr.... In Chapter, we leaed heavUy CD an intuitive

understanding ot how the graphs of E-prosr-.s could be c<abiDed to rOnl tbe

graph ot the cc.poslt1on or these, but a few further detaHs are in order to

&like these ideu -.ore forul..

Rougbly spelklng, a Cc:aposition of two E-programs • and • to tom. a

new E-progr_ C is ace<aplished s1llplJ' by pairing in a 1-1 fashion some

terainatorB of • with initiators ot •• and then ~oining • and • together

at thes·! points and s1Jwltlll1eOllsly el1m1nat1D8 these t.eraiDator-1n1t1ator paira.

To usur'! that the result of thia c~altiOD ill in tact 11I1 E-progru we require

there be me: w· initiators and oc::: fI,J- tenalDato!'ti rClrdLinin&, and that theae

be relab..:lled bot bl'.' .,b._l md eo' el, ... ,e
ll

_1 r ..pectin1¥. 'l'h1a ratbel'



loose de!criptian can be made more precise in terms of the set theoretic

cletiniticn uf E-probr~t but :10 r-.al benef'it is ,0 be gained by INch lID

eadeavor. Instead, we use the example f)f ccmpositicnin Figure 18 to

W.ustrate the details.

Roughly spea.kin~. !I. deca!lpOsition of an E-program I: into two

I-programs a and m is accomplished simply by interposing ~ number of

new tenllinator-inltiator pairs between nodes of 1:. and breaking i

lIpU"t of thl:f:e place::;. Of course. proper a.ttention must be paid to the

labelling ot the new initiators and terminator, to assure well-formedness

ot a and 8. This rather loose description call also be made mor"

precise in terms ot the aet-theoretic definition of E-progrsms. but

rather than introducing such opacity, w{; will simply se::! that I: can

be dec~sed :tnto a and " it there exists a composition ot a and

8 to fora 1:. Figure 19 illustrates a si..lllple ~xample of decc.positioo.

If C CIUl be det.:omposed int.o two E-pr~,grams. one of which is a.
we 1I"otI,.\' SIJ8 that a is & sub-V~ogr.. of I: and write 1:(1) instead of

I: to illdicste this. If I ar.u l! are E-}Jcograas ot the a-.e type,

then wt' :Uj,y that the I-program ~(8) arii:('s 1'!"an ~(,l) through

replacement of sub-progrem a lJy 8, provided that the c~sitioo that

toraa I:(a) • anll the compoait~on that forms 1:(8) t U"e ident~ca1.

Figure 20 illu"t!'a',,~:; '; dmple exe!,l~ ot replac.-ent.
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'e

E-progrlllll II

E-progr8lll r

E-prosr- •

Figure 18

A cc.posit1Cl11 of E-progr.. • and e to fOl'll E-progr8lll C. Here, f, g. x, Y, 2. are
aa81paeut acb_ta; aad p, q, r are qtta.



Fl;':U1"<; J ;)

Here, £. &, h, It, J U'e uc1.sJaent ach~:..,. um: p ~S', q£t. 'l'be
lower two B-prosr_ renlt tral the Indlcatc-i .~, , tGlI'0:) Lt Lt.• ot the '
appeftwJ*' t £-pI'ClII'_.
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We bring together tbe notions of CClDpositlon, dcc::mposition and replacement

in the following

1'beurem 10: For any SiguturL s. E-progrwns tl. 11 • ~(.) and 11:(11) in

L • where • and e are of the same type and ~(e) arises from 1(11) by-a....-L.o",;==-:..---=~.....;:.- ..;;.;;..;~~~::-.....;.;;.;~.:.::.:~..;;;;...:...--=.~"---=.=.:.::.......;;,;;--=::-=~~

!!I,laceaent ot sUb-program e by II ,

(1)

~D' =e- (11)

~ ~D ~(.) =reel ~_ ~ternativelY
,.,

r. :: e} ~ 1(11) :' lee) •

.l!:22!: Since 1(11) and I(e) ace formed using the 'Same ccmpos1tioo.

if during the execution of 1(11), II is entered where b
1

was and left wber~

e j Wft.8, thereby producing a certain result. then since ~D.:: e by ~thesis,

dUring the execution of l(e) , e will be entered where b
1

was and lett

where e
J

was, and ~ill thereby produce the ssme result. Thus, and

I(e) are equivalent In D whenever • 8I1d e are.

Remarks:

(i) Theorem 10 will serve as the basta tor a replacement rule of interp.nce

in the inferential system defined ill the next chapter.

(11) The substitutivity properties of equivalence and strans equivalence,

along with their obvious symmetry, characterizE' them as equiValence relations

in the ordinary sen~e.



CHAPl'ER 7

THE lfU'ERENTIAL S!ST~:r~

In Chapter 1, we tnt.r oduce a severl:l.l basic ic.eE.s regarding a formal

theory of' s t r ou; equaval.ence and we ",ill continue here to de ve Lou alont;

those lines. In Chapter 4, we 1I.troduced che formal theorJ

T. ,,< J,l, ,~ > , and. in Chapters 4, 5 and 6 the set
5 S S

beer. stu~ied. In this chapter, the inferential system

is ~reser.te& bnd its ~o~dness j~onstrated.

.7i;'i of ..,ffs has
S

< /;;t J ~>
S

The inferential system J s = <.IlL s' ;(. > consists of an ettectiv€.ly

decidable set ,fxs ~ 7'""s of wffs called the axioms and a finite set 1l

of rules of inference. For any set 6C

the wff II::' ~ is finite~y derivabie from 6 iJ ~1.
S

we write

using

l::. ~ • ::' ~ iff

Tl. By this we

~e~, ~hat the~e exists a finitE sequence of wffs 8
0

, 81"", en_l such that

;. < n , either or ~an be inferred frem 90"'" 81_ 1

1(, and e _
n-~

is II:: ~ •

The rule", of inference in It will be prescribed independently 01' the

signature s In the same spirit, we w111 define -'h by first definings

a finite set A,. 01' axlcma schemata, a1ao independent 01' s, and then

-1,( s = {II ::' ~ € Ji""s : II :' ~ is a.. , instance of scae axian s('hema in -6 } .

It cf S flht.s is a set of wffs such that for any wft .:: ~ € J

and any b. ~ oJ we have l::. +-= II :: ~ • b. ~ II : ~ , then we S8,Y that the

interential system t:i s 18 extended caaplete for d; it we have CI1l,y

~ I z ~ .. ~ • =~, then we say r:I 8 ia caaplete tor qJ. Notice that



extendej completeness implies camr'~tcness. As to be pxpected, whethp.r or

not is cOlDpl~te or ext.ended r.omplete f'or same jepends

on t.he :oignature s, the set d anti, of course, the sets ,~/, and .-(..

In addition, "'e will say tha.t the theory ~- =- < Ih "V:" is cCZllplete
0.1 ;i "s' S

(or extended complete) it ..-2 is cOOIplete {or ectended ccmplet-e) fors

Betbre we fona.tlate d s and study its properties, we should note that

there are definite Itmitations on the axiomatizability of strong equivalence.

i.e., on the existence of an inferential system complete for

that the formal theory :7s • <"''''''s' ~: i' is axiomatic if its inferential

syatem d' a .. <.:1"-a' -I(."> i .. effective, L, e., .f.. s S :Jilt/a is effectively

decidable and the rules in 1l are effectively aPt>licable. 'lhi~ meana that

we can alway. recosnize wben a wff ia an inatance of an axiom achema, and we

can always dete~e it the proposed application ,f a rule of inference is

legitM.te.

In Chapter 5, we showed tbat. the strong equiValence problelll tor wffs in

,f." -
s where a .. <1, 1, 1> , is unsolvahle (Theorem 4). But tbe 1l1n1JD&l

lIInguage Ls ,wbere recall qffa of the fona ('t .. a) bave been suppre86ed,

sufters from anotbt:r unfor.tunate malaise which .at serve as a basic

restriction in our attempts at formulating an axiomatic complete tbeory

of strong equiValence. Conaidcr the followins

'l'heorea 10: POl' the dgnature s.~ l>_-L there exists no effective

inferential ~yat_ ee-plete tor __ !!'ts --:"
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Thus, tor any 818Dature a. < <Do"'" ~-l>' <ao"'" 1II.l_1>' p'>,

it k> 0, .l> 0 and p> 0 , any ettective Interem·lal systelll is ot neceaaity

1Dccaplete. Th1a preclude., then, &Il.Y uicu.tic cccplete formal tbeory ot

atroag equivalence tor t-progrUlS in ay.teas with any appreci~le caaputlDg

power•

.f!:22!: In the proot at Theer.", we establisbed an iaaoorphlSll between the

.et A S ~- ot senerallT valid wtta ot the tona !ltIf (Et , ~) z ~ ,

where d· <d , ••• , d 1> cd the aet B ot pairs < Ct' ~ such that
~ 0 D- ~

ted , ••• , d 1) does Dot exi.t. How, conaicler the .et C ot all pair.o a-

< It, & mel tht' .et D SCot all pair. < Et , ~ web that t(do" •• , dn_I)

doe. exi.t. lIov D ie certainly effective!)' enumerable, tor ex.-p1e, 1»7

caput1n.s eaeh t(el , ••• , el 1) a little bit, 1ntiDitely otten, and notingo D-

wben OIle produce. a t1D&l. .-lue. But, rec&l.1 that D ie Dot effective!)'

decidable (i••• , the I.t __vehlp decil101l probl. tor D 18 unlolvable).

'l'ben, certa1D1¥ B. C - D 11 not ettectiVB1)' tIIluaerable, aince the etteative

...,..rabllity at both B aDd D where BUD. C , VOIl1d. :1.IIpl¥ m exietee.

decilion procedure tor ItJ7 t(do, ... , dn_l ) , 1lIIael,y, pertorm the enl8eratiClDI

ot B Ulcl D until < Er !: cc.ee up; it < ~t' ~ ED, r{do" ' " dn_l)

doea Dot exi.t md it < ~t' !: E D then t{do' ••• , dn_l) doe. exi.t. '1'b1l

1IIp11.. D 11 ett.ctin17 cleciclable, a CCI1vaclictiOll. So we han that B 11

not etteativel7 rlble.

But then neltber il A=~- ettecti'ft17 _rlll)le, linee A _el

B are iac.crpbie. &appoae that there exi.t. an etteaUve lDterentlal IYlt.

c.wpletle for ~- , i. e., we haYe ~. z ._~ • =. tor all

• =• € ~-. TbeD, .iDee the intereati&l qat. i. ettecttn, we cm
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enu.erate all the theorem$, which by completeness yields an enumeration

of all the generally valid wtts in A ~ Jillt
s
- ~ JI"''"s ' a contradiction. Thus,

DO effective interp.ntial system ccaplete for '-"s- exists. I

~.:

(1) In spite ot tbe pesa1JD1aa that this iDccapleteness result is likely to

engender, we can nevertbeless take beart in t~e seyeral areas tor wbich

is both effective IIDd complete and eYcn eJCtended complete. we will tall.e these

.atter. up in Chapter 8 atter introducing tbe sets ~ and ?e.

(1i) ot course, it Ite accept Church's thesis, ve can replace "etfectiYe"

With "recursive" in the &bove diacussia1. Then, < Et . !!? would be a "sequence

DUllber" or .,godel nUllber" generated in an appropriate mIIDIler trca the tom t f

aDd .equence .1. <d ,.... d 1>'
--.. 0 n-

!be Axia.. and Rule. or Interence

Tbere are titteen axica scheaata: ,;b. • {,!!, !!1 .... Al5} • and tive

rule. ot lnfeX'eDce: ~. £!!, ~ ..•• W .

First, we give the rules which characterize "::0' as an equivalence relation

in tbe ordinary senae,

Rll=e-+II=.

R2 I =. =>e(l) =e(e) vbere e(lI) arhea trca e(.) through the

'l'ben, to penlit deriYatims trca bypatheae•• ve bave

'l'be uie. scllmata ,!!,!!1 ...• Eo characterize the properties ot qtfa,

and are illustrated in Figure C!l. Also in Figure 21 18 a rule !J' which is

",vat. pllrticularizatiOD ot y, we aention it bere becauae it reneets the

inataatl.tiaa properties or qtfs.
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Figure 21
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Az1ca aem-ta ~t characterize. qU.. Here p, q are qtt.. Continued next page.
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Figure 21 cootd.

Ax1ca acb-.ta and rule that characterize qUa. Here, P is a qf'f'j u i ' 1<0 J are distinct var1abl.esj
and or1 ' 1<0 , are tema.



The adaD schemata A8,~, ~ and the rule R4 characterize the properties

or ..si~t ~ch~ta, and a~~ illustrated in Figure 22.

AxlaD schema~ characterizes the effect of operators on discriminators,

and ia illuatrated in Figure 2,(a). When this axiom schema is applied, we will

ac.etial!p; aq tbat the operator f is "pushed through" the discriminator p.

The three ax1aD schemata, Al.2. Al} and Al4. provide a chara.ctenzatioo of

the srapb-theoretic properties of E-prognills. In what follows, ... <x, f, 1:>

is ...uaed to be a type <om. n> E-program. First, we have

~ : • =t 1(· )

where i <. ~d .1(.) i. called the i-tb separatlm ot •. RoU8hlY

IpealtiD&, 'i(I) is tormed .. follows

(1) A coW 1
1

18 aade ot the aub-progrllll of _ whose nodes are

reachable via r traD the node labelled wi th b1 •

(11) Then II is ~aed With • so that the node labelled With b1

now lead. into -1 .
AD inatance ot~ 1. ahown in F18Ure 24(a), and this abould uke _ttera

intuitively clear. However, a delllODstration is given in Figure 24(b),

whicb ahowa, albeit in ach..tic tOni, the dec~a1tion and caapoaitim under­

taken to obtain the inatacce ot~ given in Figure 24(a). 'When thia ax1ca

la applied, we vUl ae:aeti.a aq .i(I) la obtained by "aeparaUca".

1Iotlce that aeparatlca givea riae to extrceaua nodea \0 .i'l) which are

not reachable tl"ca Ul¥ initiator node. Axle. schaa AI, doea avq with nell

Dodea. We have,

<}"'..
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Figure 22

The &X1ca .ch_ta and rule that characterize UligDMnt Ich-.ata. Here, f aDd g are ul1gpment
.~taj Ui , 1<n • are di.t1Dct variable'j Tp 01' 1<n • are termaj and I: n ~ n is any 1-1
CII1to penILlt.&Ucm.
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The puah thl"augb adela .ch....
p a qn.

Here t is an "Iigraent schema IIIld

Ben P 1•• qn.

,..,-
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!::It

Figure 24(.)

6)

AD 1D8tcce ot the aeparat100 axiaa ache.&, ~: •••0(.). Here t, s, h, x, y are assignment
ach_ta _d p, r. are qtta.



Scb-at.1c tont of E-progr..
•• • denotec an initlator,
and 0 & tentinator.

• 11 decc.poaed into •
tne <8, 9> I-pI'ClCl'_
Dd & t7pe <5, 5> "DUll"
B-PI:OCI'-.
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Figure 21~ (b) contd.

o

The tinal composition
produces the O-th
.eparation or ..,
t,,(I) .



where 8(a}. <x', r ', .t.'>, X' ~ x(e) u x(€,) u [x E: X: x is r-eachab.Le

via r trca Bc.f' Y € xCj)} ,r' is r restricted tc. X', and ~ I

18 .t restricted to X'. An 1r.stance ot Al) is shOWl, in Figure 24(c).

It a certain section ot an E-progrsm is a cul-de-sa~, i.e., has no

.xtt to a terminator, then we shall w~t to detect this at a graph­

theoretic level. We have,

Ala. : • : 1'1ca)
wbere i < •. Roughly spe&1ng, 0i Ca) is tormed as tollows.

(i) A copy ai 18 lIIIode ot the sub-progrlUll 0: a whose nodes ar e

reachabl.e via r trma the node l.abelled with bi , lUi ~Il the cue ot Al2

when tona1.Dg 'ica) .
(11) It at l.eut one ot the teminator nodes of -i is reachable

trma the initiator node ot ai correspon<!1D8 to that ot a labelled

with b
i

, then fi i (a) •• , i.e., we make no changes.

(i11) It none of the tel'll1nator nodes or .1 1s reachable fran

the :initiator node ot -1 corresponding to that of a labelled b i ,

then a special alW8¥B indetenl1.n&te 2-progr_ ~ ot the B8IIl.e type as

.i 1s cmaposed with • BO that the node labelled with b i DOW leads

:into ~.

An instance of" Al4 is sbovn :in Figure 24(d), and this should uke

_tters intu1t1vel.y dear; the special al.wqs indeterminate E-progrllBl

~ 18 alao illustrated there. HoweVl!!r, a Btep b)' step demonstration is

81... 1.- Figure 24(e) which shows, again in Bche&4tic t011ll, the decca­

posit1on aDd cOIIIpOsitlon undertaken to obtain the :instance of Al4

giftn in Figure 24 (d) •



Figure 24 (c )

An instance ot Al'. Here, g. x. 'Y. z are &8aigIllllent schemata, and p
18 a qrt.

P1gure 24 (d)

ItA inatance ofaxica scb.. .!!!: • =~Q(.). Here. s, g. h. x are
..a~t a~ta. and p. r are q,rn.



Schematic form of
E-program ".

• is deccaposed into
a type <5, 5>
E-procram and a type
<3,;' "null"
E-pro~l'.JJIJ•

SUb-pl'ogr8111 •
is a cul.-de-aa8
.. is that lit
right.

•
o

CoDt1Duecl next page.

Jo'leure 24(e) contd.
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The "null" E-program is
replaced ~ith tbe special
alW~B indeterminate
E-progrlllll.

Figure a (.) CODtd,

ripe 2Il.(t)

S1IIpl1t1caUaa ot the len-bud I-prosr_ of r1pre a(d) ualDa~ .. ~.
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Of courae, further 3impllficatl~ or th~ right-hand .eaber ot the

wtt 1D rlcVe 21t(e) can be mad~ by appJ.y1ng Al4 to tne appropriate sub­

Jll'ClP'e, -.d thm apply1Dg Al' to r~e tbe isolated cceponent.

rtpn aI.(f) abova the t1D&1. result.

ADotber sort ot cul-de-aac is detected by axia. scb~ Al5. As

1l1utrated in F1BU" 2~(b), we are deal1Dg here vith logical, as

oppoIIed to topological 1Ddete:na1Dacy. This sort ot construct can be

ued to d.tine pseudo-qtts vith "undetined" &8 an additional truth-value.

'lbe laat rule ot interence 11 ~ and Is c&ll.ed the recurnioo rule•

..tOl'. SiT1Dg tbe general atateaent ot the recursion rule, ve consider

a reatricted inatance thereof wilich illustratea, in a a1Jllple lI&DIler,

~t or the salient paiuta. This restricted inataDce, which ve refer

to .. !2', Uld lIhich is ill.uatratecl in Figure 25(a), allan ua to inter

a rec:araln c.laaed tom tor Ul E-prosr-. which ia iuitially defined

lteratln!y, i.e., Dot 1.0 closed tom. Aa we abalJ. see 1.0 Chapter 8,

we 10 this restricted tona, the recursion rule ia a powertul derlvat1C1llU

tool _d 18 essential it certain derivationa coocem1Dg E-progr-.s with

loops are to be made.

The reatricted rule ~' is actua.l.ly that u."ecl by McCarthy [28] wheo

discuasing "recursion induction" tor fiovcharta. 'l'hua, it two E-progr..

~ and ~ sathfy the "equation" in the prea1a. at ~', then 1
1

=~ ,
aiDce by ~' both 11 and ~ are strougly equiTaleDt to the recursive,

or c.la.ed tona, E-prngr_ interrecl using ~'.
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2

AU

l

0.

o

~ ==>

o

-

l!o

I-prosr_ .' E-progr_ .'
pl'Ori.de4 tbat 111 Ul7 cc.lpUt1J:l8 D In which the vtts ot A aDd • =.' are valid, then tor all
I : "'1D , it .'(P. <I, 0» -is lndetem1nate, then so 1s .[D <I, 0» •

""0 r- ....

'1pr! 25(.)

'.rile nCNl'aiClD nle, ~'. Rere p is Ul7 qtt aDd ., ., I aDd type ci, 1> E-progr...



l<n

Q> J ,

l<n
where, tor each l<.n,~,!Ill E (-l)1<X (the k distinct type <1, Ie> null
E-prograa), Ci' IIi are any type <I, D E-progrlUlUl, aDd !!t

i
is the .~

closed tOl'll ccap0sItioo (defined In the text) ot the E-progr8111S in
tt5:J 1<41 ; prOVid,}J €hat In any cc:aput1ng structure 1J in which the proper
utali.'l in Ii., aDd the wtts in {_ :' l\.) i are valid, then ror all
t :CaI ... D , aDd 1<n, if !!ti[E.:q, 0>1 ~s indetena1nate, ;;013 -l[D <~.
01" alterii'itlvely, it -1[£' <r, CI> J is det.erminate, so is ~:i [~ «, ~ .

Figure 2?(b)

The recursion rule !!1.
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o
E-progr_ 1)

c

1

E-progr_ tt

eo

E-progr_ ~

npe 2S(c)

Here D.', ad the vtt. {.1 =~)i<' are Ibowl. ,.. well, P, 'It r, I, t
are qtt'J ad t, S, 11, k., Z, J ....*UlipMDt .ch_ta. '1'b1. t1ave 11
CClIltiDue4 ClIl the nut pase.



s

...

Figure 2'{c) contd.

An UIIIple abow1ll8 the 2nd clo.ed torm cc.-poaition ot tlo' tl.L, ~ and ~



'!'biP 8ener&l rona ot the recurs10a rule R5 Is illustrated in

Figure 25{b). '!'be ith closed tona CO!POS1t1on referred to in

Figure 25{b) 18 fozsed!rca the E-progrlUll~ f~1)1<n in a sl.mpL "Way.

For eat'.h tl
i

, 1<.11 , suppose that ~ 15

aQDP Zi' D1 < n , since recall ~, ~i

1m. and ~i is
1

may be members of

Then, we delete, in ~) the entric~ into Mm. ana ~n. ' and In-
1 1

stead set up brancbes h'ee Ii ialld IIi directly t·:' the rti ocriJllin-

and 'tJ
n.

.l.

that is

respectiv~ly in the E-programL
.

k te~inators, and for any ~(or ~!)

atora p and p
Zl D1

We retain one set ot

a bull type <1, lC> E-program, i , c., a s Lng.le branch free the: 1I.itiator

to one ot the terminators, 'We set up ... branch frC1ll I.:. (or IIi) to the

appropriste tenainator. ot the k ~ltlators, we reta~n only ~i' but

relabel it bo' The result of all these operati0&6 is the Itb closed

torm COI!IIlXls1tiOll ot the E-programs r~i) i<o. An ex.ple ot thls con­

struction ia giYeD in Figure 25(c).

The recur.lon rule ~ can be used to i ..plement recur.ion induction,

in a generalized senae, tor flowcn&rta. SUppose that ~i z ~1 ' i < n,

and !-ai':: ~1 ' 1 < n, ana that the aide coad1tions tor application

ot ~ bold 10 each cue. Then, ~1 ==!Il1 and ~1'::!l1' i < n ,

by ~ lAd the ....1 =I~.' , i < n , by !h and~. Without reterrins

to &, we could ue the tenaholosr or recur810n induction Uld 8l1¥ that

aince (11) 1<n uc1 (111 ')1<11 both "aatiafy" the "equatioua"

Xi =S)1 ' 1 < n , aDd aloce both 1 1 ud 11' are "defined (1.e., balt)

tor the s.-e &r~~a", then, by recuratOll inductloo ~1:: -1' , i < 11 •

i'be aide CCIldit101l "def1D.cl tor all &rgl8eZlta" 1a, ot course, eq1l1v&l_t to

the aide cOIlditlOll tor ~.
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It is straightforward to show that using separation (i. e., ~)
and push through (i,.e •• @). we can put any type <l. n> E-pr08Z'am

into a torm directly expres5able as the O-th closed form composition

ot a set {~i) i<ll of E-orogrlUDS, where IIi =tli • i < N • is a set

wtf's like that required for ~ where N < w is the nUlllber of qffG

in the 'Jrigin&1 E-program. Thus, we can prove tl.e strong equival.euce

ot any l;WO type <1, n> E-progrlUllB using R5. But. provill8 the strong

equivalence ot any two type <m, n> E-programs can be achieved by

reducing the probls. via separation. to proving the strong equivalence

of m sets of pairs ot type <1. n> E-programs, which we car. do using

&. Thus. proving any two F.-programs strongly equiv&lent Can be carried

out using recursion induction. L, e., using the recursion rule R5.

Of course, for certain signatures II, the question of whether the

side condition for the application of ~ bolds 1lI&)'. in general, be \11'1-

decidable. However, the possible ineffectiveness of R5 ueyally presents

no problem when c&rry1r!g out relatively simple derivations as the side

conditiun usualJ.,y C&ol be resolved. In tact, J-
s

being ineffective in

general leaves open the possibility that -i is caaplete for :J'ilt js II

we will not pursue this possibillty here, bowev~r.

Remarks:

( i) The axiom schemata !Ii, _~ and AlO, as we shall see, correspond

dircctl;,- to the axioms mentioned in the foregoing chapter for the "assign"

tunCtiul! and "contents" f'unction c

(i i ) 'i'hc adam schemata £, til and M are s1Jll1lar to tobree &x1cas fica

&. set 01 ten r,iVP.D by McCarthy nO J tor conditional expressions. The rest



we obviated by the fiowch&rt representation (as opposed to l10ear strings),

and by tbe preamce ot a rule ot replacement 10 OW' 10terential system.

(Hi) The inferential system J.. implies tbat given by Ianov (16),
s

1.e., we can prove all ot his axiau (and .ore, of cOW'se) in our systtIR. More

on this will appear in Chapter 9.

(iv) It 11, ot course, IDi!.dly unpleasant to bave to use the ass1gzaent

schema V
o

,- V
o

10 tbe special alwqa-indeterminate E-program !. This is

ak\n to not baving logical constanta in tbe propositional calculus, and instead

-.pl~ p V .... P _d p" .... p tor trutb _4 talsity. Ianov, faced with the

aae unpleuantness [16), used an identica.ily false discriminator whose fuse

brlDch returnee:. to itselt, IDd wboae true branch proceeded to the exit ot the

progru ache.e.

Soundnesa ot the Theory :r.a
It the tbeory ~ 18 eo be usefUl at all, we shoul.d require that the

tbeor.. of ;r be generally valid, or at least • .antic cCftuquerlce. ot ~
a

b,ypotheses used in their derivation.

Theorem 11: The theory ~ 18 aOOl1d, i. e., tor all A S; ,7;-s and all

I :', e: & •. A =•:""6 '- I :', •

~: It 18 auttic1ent to show that tbe ule. sch-.ta 10, AI- .cerate

axicaa in - 6-. that are all general.l¥ ftlid, and that the rule. ot interence

in 7l. all preaerve validity, s, e., it a rule 18 I:' II .. I I :' II' then we

require {I:' II} ~ I' :' II' •

Rule !l:: partial equality, ".., , in the detlnitiCft ot validity i'

~tric.
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Rule .!!: '!'beor. 10.

Rule D: Tbeorea 9.

bic. acb_~: tirat cOI1l1der lID instllDce ot the lett bllDd llember ot

~ (et. I"1pre 21(a», •• <x, r, z» a8¥. Aa8Ullle that D 1a an arbitrary-
COIIpUting atructure ot the appropriate aignature, and that t: w .... D is

--0

• U'bitrU7 input atate. Then,

.(£, <I, 0>]

• 1(., E,. I, u) wbere u € X and [u). bo

• 1(_, E, I, ru) 1))' tbe detinition ot E

• 1(_, E,. I, v) 1Ibere v € X, lvl • p uu1 rv. <v, 1>, w, z € X

.1(_, E,. I, w) it p[E,. e], or 1(., p" I, z) it not p[E,. eJ, vbere

(v] • p ucl [II). ~, rv. <x, 1>, x, Y € X, by tbe det1nltioo ot E

• E(_, E,. I, x) it p[£, I l and prE,. I I, or

Ie-, E, I, 1') it p[E, t] and not p[~ eI, or

1(_, E1 t, z) it DOt p[E.. I], where [x) ••0' [1') • e1 ' by the

detinition ot I

.1(_, E,. I, x) it p[p" el. or 1(., E,. e, z) otherwise

• <I, c- it p[~ I). or <e, 2> otberwlae, by the detinition ot E

Now, cooaider executing lID inatanee ot the r18bt blllld ileIIber ot ~ ,

- • <X, r, ~> aay.

B(£, <I, Q> l

• Eel&, J2, e, v, where v E X and [v). bo

• E(" .e, e, rv) by the detinition ot E

• 1(_, ~ I, w) where v € X, [If) • p IIIld J'v. <x, P, x, II E X

109



• E(8, .E,. e. x) it pI£, t J, or E(8, £, ~,z) other"Wise, where

[xl;:'!c and (z~-e2' by the detinitionof E

.. <I, Q> If p[~ ell or <~, 2> otherwise. by the definition of E

Thus, fOT arbitrary D and ~: w .... 120 ' we have

I[£, <to Ct>] .. 8[.E,. <to e- J, i.e., +- I :- l\ tor any instance II:: II ot Al

Ax1C1l1 schemata £ &. !t!. and &: that all instances of these uian

schemata are generally valid can be shown by arguments just a.s simpl.e (and

u tedious too) as that given tor ~.

AxiClll scbeme. A6 and g: tbese are the axica schemata which characterize

"." u toe equalit,r relaticm (ct. Mendelson f3; , p, 75]). Since (or. 't)[£, t)

tor any terlll ,., CCIlIputing structure P. and state ~ : w -.~. then cl.earl,y

~ generates only general.l.y valid wtfs. Schema.!iL. however. requires scmevhat

.ere cClllllent.

Consider the assignment schema

and any .litate ~ :!4I ~~ such that

semantics for ~ffs ~~d terms, we have

for all j < W,

~ .. (v~:- 't'k)k<n ' caaputing structure E.
(Vi .. Tlt)k<:l(£' t l . Then, from the

k
that c{lk, ~) '= Tk{E" ~ J, k<n. Then,

Vj[!?J f[EJ rn .. V/12,. ~ J r: c(j, ~)

If 5 '" i k tor all lc.....r,.

== \[E,. ~) .. c{~, ~) .. ~(j, t)

it j '" ~ for sClIIle k<n,

i.e., t[E.. t] - ~. No..., fran Theorem 6, !'p[£' t) .. pI£, t[,S~]), which

trca the abow result Sives f'p[~ tJ - p~~ l] t i. e.,

(V~ ::- 'rk)P(~ ~1 • p[E, ~l.

Then fica the 8eaaotic8 ror qn8_ (P::l (v~ ::- 'rk)p)(E" t 1. But, trca tM

llO



bnotheaia on r , (v~" T.)k<n[E,., eJ , 110 that, «V
i k

" "k)k<n:::> (p ~

(y~ ::- ~k)P)[D, tJ. It we relax the substitution to only~ or the

occurrences of thP. v~ ' this result still holds, and the general

validity ot the wtts generated by KL is obtamed

Axioa Icbe.a AS: Theorem 8. Recall that the proof of Theorem 8 depended

OIl the uic:aa tor the "aalign" and "contents" !'unction, elpecially,

a(i, It, a(i, 1., 0) • a(1, It, e) •

Axi~ Ichema!2: tallows iJlmedlately fr~ the SlUDe axioma, especially

a(i, c(i, 0, t) .. e ,
applied to the semantics for assignment schemata

Axi~ sChell&.!!Q: follows iDmediately frOlll the same axiOlll8, eapeciall¥

a(i, It, a(J,L, e». a(j,l, a(i, It, e», where 1 ~ j,

~~1ed to the _ecantici for aalignment achell&ta.

!bUe~: it the hypothesi_ 1s valid, then the values at the tenia

..signed to each variable IIlUst be equal. Hence, the rule preserves validity.

Axioa scheu..6!!: Tbeor_ 8.

Axle. schema ~: The separation .i(I) _rely routes execut100 thrOUlb

a COW ot the aub-&rlpb ot I reachable trca the nocie·labelled b i . Since

DO otber nodes are reachable, and since Ii 18 a copy of this sub-sraph, the

execution ot II and .iel) , starting at hi' will be identical.

An.. Bob_ Al': Since nODe ot the node. deleted trea I to to%'tl

8(.) cc be reached durins exe'"'ution of I, their absence in 9(1) will

DOt cau.e tt(1) to execuce ~ differently than I •
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Axica .cb_ Al4: Clearly replac1Jlc OIle eul.-cle-.ac with anntllt'l" ...,111 not

cau.e 01CI) to uecute M.J' clittereDt1¥ than ••

Ax1ca .em-. Al5: It the qtt iI initially tal.e it will rflllUin '0, thus

S1v1D« lID 1Ddetena1Date executiCll1.

Rllle ~ ': CCII1I14er lID arbitral')' ~C8p1till& Itructure .E. in wh1eb tbe vtt.

ot l:l IIDd • =I' ~ 'ft1.id, aDd ltate t : W .... D • Now, con.ider
""'0

A. I'(~ <I, e- UJd B ••'(£, <t, a>] (ct. r1lUre 25(a) tor I' and .').

Suppole that B balt.; then ce two po'11b1l1t1e•.

(1) It P{R" t] , IIDd C[R, <I, ~] haltl in .' ,

then 111 I' the .... vW occur, IIDd A vill halt produc~ the .... outplt

.tate u B, i.e., A. B •

(11) It DOt peE, t J , and tile loop 18 executed D tt... before C 11

executed, men .inea t-n I :: .'(I), we cua pertona D replac-.ot. ot-• b7 I' to S1" ~ ••'CI'(••. (I)••• ». '!'ben, A.,.. ~[,E., «, ~]

wUl behave ju.t u A doe., IIDd ill 11lbt ot the n executiClll' ot the loop

1D ••• ~.B, ceDee A-I.

SUPPO" that A halt.. It B balta too, then we "UCID u ebOft u4

obtain A. I. But, I cumot t,..n to balt, .ince by tile 11_ CClDdlt1C111

OIl~ A ta1la to balt, .. cClIltrM1ctlClD.

'ftIu Ii. balta itt I balt., aa4 1Il cue tbe7 cIg halt,

•tat. & 11 U'bltr..- 1.- I' -.' Del tale L I - I'~ -., r-'D -, roD -- -.. D I =I- , u requ1ncl.-
Rule ~: _ lID U'l\8Dt .1JIUU' to that tor ~'.

A. B •

I
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CHAPl'ER 8

S(J(E CCJmZl'EZIESS RESULTS AND APPLICA7~<?"~

So ter. we have ietiDed the tormal theory

de.on.trat~d it. soundneaa. In this chapter we iaolate some of the aub-cases

tor whieb the iDferential system ~ 6 b caIlpJ.ete or extended ctDplete. In

addition, varioua illustrative e~les are given which demonstrate the

utilitY' and derivat10nal power ot the theory J;.

Extended ~leteDe" tor SiD&1e qttll

Let hi.'(~) C T be the .et at all wtts at the sort depleted iD• lot _ .nrta

Pisure 26~ where p ia allY qU. (llote: we denote the rather trivial &l8orlt~

that lerve. .. the r1Sbt hmd .-ber tor all 1dta 1D

'1'hew- 12: For !Ill .1tp1ature I I the 1Dt.rentlal l;rltea J. -_<A'AI , 1(. >

11 utended ce?!pl.ete tor ~ '..ml:

~: We have 0. t- • ;' ~ ~ 0. ~ • :: ~ , tor UlY 6 c J'ilal ',,%> md

• : ~ € ~'em, trca 'rbeorea ll.

Theretore, we have oaly to IbcN that 6 ~ • :: ~ .. 6 t- • : l , -.t we

do thi. b;r -.kiDg UI. of the obvioua Ulaloa' benea the , ener&l nJ.i4itJ of

1dt1 '.11 ~& '(~) &Dd the logical val1ditJ ot the qnl that occur iD tINa.

(Iote: we denete valid1t7 in £, in tbe leue ot pc.' b7 ~ m4 lcl&ical-ft1.1dit)" b7 ~*.) l'bul, the 1dt • =~ 1D J'teure 26 18 Yali4 1Zl D 1ft-
pi D, I) for all S : w ~ .Eo ' wbich 11 equinJ.eDt to P beilltl ftl14 1Zl R.

1Zl tbe lenle ot PCI , i. e., ~.:: ~ • ~ p. B.r qtenclJhW tb11 Malog- -with tbe predicate ~alculUl, 1f~ have that 6 ~ • : ~ .. 6' ~ p, 1Iben 6'

1. the .et ot qtt. occurrtas in thE wtt. at 6.



lkN, consider the qtta

(i) P ~ (q :::) p)

(11) (p ~ (q:::) r» :::) «p :::) q) :::) (p :::) r»
(111) (~~ -p) :::) «...q :::) p) :::) q) ,

wb1cb occur 10 the vUa 01' Figure 27, and the qtta

(iv) (~i· ~i)i<n

(.) (u1• 'fi)i<n:::) (p:> (Ui ::"'" 1"i)i<D p) ,

vhicb occur. in axie. ac:b--.ta !!!. and g, together with the rules

(vi) lIOdua panena: p, p:::) q .. q

(vii) particularization: p ~(ui ::g 1"i)i<D p ,

,mere (vii) is obtained trca .!} , . The interential ays telll (L) through (vii)

(an adaptatioa 01' that Siven by Mendelaoo [}}), is known to be extended.

calplete tor the qtta 01' PCa • Thull, it we Man by Ii. I-*r that the qtt

r tiD1telr' derivable traa Ii. using (i) tbroqb (Vii) above, then

A ~*r • Ii. ~*r tor all auch r and aets 6 01' qUa.

NOlI, the

derhation 01' P trca /:},' uaing the iDterent1&l syatea (i) tbroqb (v11)

car. be II1Il1cked ~.n a one-to-oae tasbion by • derivation Qt • z ~ trca A

uaing the 'tIUS ot l'1gure 27, the &x1caa liven by ~ and & the rule ~'

ID4 the rule correapooding to lIOdua poIlena aboWD in P18U!'e 28. 1'hua, 11' the

'tift. 01' Fipre 27 and the rule 10 P1.pre 28 can ~ derived uaing d a ' then

A'l-tIp .A~ • =• , ao that tiDally, 6 ~ • =••1i.'!-tIp • 6'1-*P ..AI- • =".
A cllu-ivatioo ot the "U. ot Pigure 27 ua1Dg t:9. 18 liven in Figure 29, Uld a

cIer1vat1..oo 01' the rule in '18U!'e 26 is given in Ptaure }O. I

114



rigure 26

A aember ot 3i~'s(~)' Here p is any qff of PCs .

r1p'! 9
Jia...'(I) CClll'I'.~inl ~ uiClU tor tbe propoaltiOD&l
p, ~ r are lIII7 qna.
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Firat pvt or tile der1vat1ClC ot the aecond vff or Figure 27. Continued next plge.
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~
ee.pletlon ot the derlvatloa ot tbe second vtt ~ r18W'e 27.

M

~

r1lure 29(c)

)

rir.t part ot the'deriYatlca ot the tbird vtt ot Figure 27. ContinUed nellt pace.
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Kotice that ~~
LI

is still complete for Jr_ '(Q) (out ~O~ extended
s

~.te) ftven it rule ~ i. omitted.

(11) Alao, with reterence tc Lbe argument ~cve, if the S-~!lt·J..r~ r. 18

neb that U~/~*p' tor an arbitrary t/ snd p is decidablt:, the::! .0 18

,~ • : U tor an arbitrary A ~ Jr_. 'rQ) and • = ~€ 1'~ '(12)

(111) It ia intere.ting that th~ usual axi~ tor prop~sitlonal calculus

need not be liven here, i.e., we can depend solely on the IIIOre bUic cbaracter-

bation liven by ax1ca schemrtta & thrvugh ~ to provide all aut"quate

axiaaatizatioo.

Izten4e4 Ca!pleteness tor Sequences of Assign!ent ~he.ata

Let 3itt III) C -:r. !:>e the set of 4~1 vrts rJt the sort. 1eni ct!"d L"'l• \It' _ -'7ll.. .
Pipre }l, where tl' i <: .It c w· , and gj' J « L <:w· , are ~. El.ss1~t

.~ta.

~ 1': For !Ill aipat;ure • the Ulterential alat. til ~.h.,~> 1.

extended ccaplete tor J'"1Il 'V/.) •
--- B --

Proof: We- baye 6~. =e .6" •=~ , tor 'illY li C Fllta ''4) &nc'

• ;; II E ~s '(.~:') , t!',,'"1 Tbe( ~em 11.

Therefore, we bave only t.c show tl1~t t~". =e • i:J. ~ • =II. and

life do this by developing thp no, i on or ncnul tom vtta 11.' 71fl' (.{..). It•
• wtt I':: 1)' € 1111\ 'V/.) haa ',he s-.e tom all tht: lett·bllDd b,ypotbes18 tor

.!! (ct. Figure 22). and if '"" ~ ; I' and 1--. tl =1)1, theD I':: 1)' 1.

aaid to be a nonaal tora of th",;fr I z ~ • Evidently. tor ~ cceput1D8

atrw:ture Eo, we have ~D r =~ ':>+-n (\ I ::~'. ~ appl¥1DI this \0 0'.11'

.... -
IlI'OblS we get that l:. ~ :: II r- ~ u' ~' ; 8' )inert:: 6 ' 1s a set of'

DOI"M1 tonu for the wff. in /:) an1 .' =II' h a nonul tora ot .:: e .



Sine... pre••nes It'L.t41tJ'... baft tbat ~'~ I :" 8'. 6'I-!II =,
....zoe , =• E: ~.' {~, md 11 obt&1Ded fr'ca I' :: .' u 1n4icat.ed by

M ju.t u the vt't. 1!1 ~. c ;;,. '(0) are obtained trca the vt't. in ~'_. .
8iDee 'rbeor_ 12 liT•• that J. 1a e:&ta4ed c:.aapl.ete tor A.....'(~ , we baTe

tbat ~. to- 'SII =~.~.~ sa z: 6 , aDd br~ Rk "10 renr..", we obta1D

~.~ !II :: ~ .~~"I' =.'. '1.'b1.1ut step 1. accc.pliabed. .. to.l.lowa:

.tartiDg trca ~' • ae ~ repeateQ7 \IIltU ~~ 1. obtained; then, .1octt

~... 9 :" l , we CUI 4erift '::'; next. we appl,y ~ ad 10 obtain

I' :: .' • AI "lIll1red. We so tar ban reuOIled that ~ ~ • ::. ~

~ ~ • :: 18 • ~'~ I' =.' • 6'~ 111 =,..~' ~ , :: 6.~'~ I' :: .' ;

to turn1ab th. lUt step, 1••• , 6'~ I' :: .'.~ ~ • ::. , we ban CIl17 to

~.trate bow to u.. tI to denn DCmIol tona tor vttG in .h.. '(4) •• s

1'01'. tIac, we .tart trca 6 ID4 derift t.' .4 10 tbeNtore I I :: • I ;

it a 4er1Y&tloa of I'::.' traa .::. c.a be &1~ tbID 1t v111. in

rna'•• order••ern AI a 4erivatiClll o~ I::. traa ./::.' .

Thus. It r-.1n. tor u. to abcN bow .., deaired D~ tom ot • vtt

I :" • € Jnc. I (,4,) CD be cler1ved aiDe J.. We u.. !!.ad !! &$ reqll1red

.4 procee4 U followa.

(1) Appl7 ~ repeatecl1¥ to eacb of I M4 • _tU ClIl17 a aiqle

... tile .eta ot u.1CDed nrlablel 1D tbe two UI~t adl_ta 1deIltical

to tbe de.ired aet.

.dI.ata 1D tile d.a1recl order. I



rs.pre }1

A .-be&" of .TJ..,'~. Here fl' 1 < k < ~- • Mel &J' J < J. < ~- ,
an ..a~t a ta.

y :- f(v) • u :- s(fey), v)u :- .(fey). v) • y :- v

•

•

ruat atep 1a tbe derlntica of a DQIW&l. tora f~ the upper vft. Here
U, y. v an 41.tlnct nrlab1.lla M4 f. e are tunCUClO lettera.
CclDtlJlMd DUt ~.



o

v .- r(w) • u :~ g(t(v). w)

v :- v • v s- v • u :- s(t(v), v) .& v :- r(w) • u :- g(t(v), V)

Y :- V • " :- V • u s- ,(t(v), V) # V:- ... 'Y :- rev) " u :- gCt(y), v)

D

u s- c(rCv), V) " v :- v • v :- v t:! 11 ,- .(tCv), V) • 'Y .- rCv) " v s- v

•o

r1pn g{.) CODtd.

Capletlca of tile dftlvat.lca ot .. .-..l tDlS of __ ",•• -,ft of tbia ncan.

• s- v " WI s- .(t(v). v) • x s- • t!. 11) • X .- X

npe 2{b)

A MOCDI ..-l tara tor tbe t1r8t wff of rlpn ,-l(a). .... & 11 Ii

YVUble 41atJAct trc:a u ... v.
U(



••ice tbat two nartl&l. toru tor a 1ftf II;: t! E ~,. I (,{) may dirt'er only
s

ill ~.~ or tile ..s 19reents in • and II and in the number and sort ot'

-.l1 ...~ts ot the rom 11 := u that occur in both • md t! •

...... ~(.) 1Uutrates the derivation ot a DOl"llal tom tor a wff 1n

.. '(.4J • -.at rlpre ~(b) illustrates how two normal tonu may dUrer by•
1S'YbI a Neca4 nonal torJll tor the s.. wtt.

t.t L.'U) C L be the set ot &ll E-progrus that occur in the wtrs of
- s

AL
s

' (4) ~ -s ' i.e., the set ot all E-progrUlS consisting ot a single

..... of ..s1gmlent schemata. The idea ot normal fOral tor vtfs in

""(4) CaD be extended to yield a canonical tora tor algorltbIDs in Ls 'U) .

• u. m: ~d ~ and proceed u tollows.

(i) Apply!:& repeateclly until a ainsle uslgmaent schema remains.

(11) AppJ,y AF3 followed by !2. to delete all vacuous us1gDMDts ot

.. tcaa. u:- u •

(iii) Apply ~ to arrmge the usigned variables in order by their

"'.cripta.

D' aus proce88 applied to • E Ls '(.4..) yields .' € Ls '(4), then we

s. 'tMt .' is the canonical tOl'll tor •• Of course, we should s~ with

....~ to what property this fona 11; canonical, and that is the content of the

.orea la.., For!Dl signature s Uld •• ' € Ls ''4) with ~lIDClDlcal t0l'll!.

~lmd .' "spectlveJla.-~;;'••' 11 ldeDt!.~al to ,'.

bt; First, we pz'OYe tbat .' identical to ".~.::'. How,

t-. :0 I' .1- • ::.' &D4 ~,::.' ~I- , ::.' by Tbeor_ il. Furthemore,

.' 141entical to .''-I-.';;~', Uld siDee strong equivalence 18 trUlaitive Uld

.-eb1c, 1-.':.'. ~ • ;; t! •
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To pron th_t ~. =..... ' 'Inc! II' are :'dentical, &lillUDle the contrary,

i.e., that ~. =~ ,but .' IDd 8' dirter. Since .' and e' each

cou1.t ot _ '1D&le ...s.p.ent .cb_, thq CaD ditf'er in CIlly bo w8¥s.

(1) A variable u oceur. an ..dgned vviable in .' but not in 8',

.q, or

(11) Aas1fPIMDt. u:- 't' and u:- a ,where 't' and 0 f:I1"e distinct

teraa, occur in .' aDd tI' re.pectiVely.

Consider c..e (i). An "'1fPIMDt u:- 't" occur. in .' and T is

not u since .' is canonical. Thus, _ c~t1D8 .tru~ture D and. .tate-
t : Co.) ~.Eo em be tcnmd ncb that T(E" t ] ~ u[j2" t], aDd so theretore

.' : tI' h nDt valid in R., i.e., not ~ .'= e'. ~t, ~. =.',
... =II' ad ~. =18 , .0 that ~., =18' , _ contradiction.

Consider cue (11). Here _ CcapIlting .tructure ! ud .tate

t t w~Eo e8Il be touncl 'D that T[E, t]" lip, t] , thus g1v1n8 the s..

reault &II (i) above. Bence, ~. =18 •• ' aDd 18' are ideDtieal. I

We nave, theretore, an etf'ecti," teat tor the stroag equivalence ot

I-programs in L. '(,4) , tor MY lipature •• at course, S.-DUC CClD.equence

~s u unvolvabltJ! probl_ here becauae ot it. direct cCGDectiOil with the

1oC1cal V&lld.'1.ty ot qtf'. in pc••

vsing Theora lit, we ca ...i17 obtain a turther reault. In Olapter 5,

we cCIl.1dered o;be $t:t JiJ s (.4 ) ~ 17.s tor arbitru,r sip-tun. " aDd in

'1'beor_ 2, we .:ut ctt prc'\"1ng until DOW that tf-ll =8'l , tor • =II € J-s (4 ) ,

11 d.cidable. Recall that the vtf'. ot ~U) COIltain <lIUy E-progras!rca



LIW> , ...el ';bat DQ catta occur in theae E-progruu (ct. Figure 4(&) tor ...

eDllple). tfe prove the dec1dab111ty relUlt ot 'l'beorem 2 duri1l8 the proot

or the tollovtns

'ftMlorea 15: Par .. aipatve •• tbe iDterent1al aystem

sli~a,k 1. CC!plete tor F_.~

Proot: We ban ~. =II • '"'" • =II, tor 8DY • =II E ~sW} tr~

'l'Mo~ u.

'1'beretore, we bave onl¥ to mow that ,",". =II • ~ • =II , C&d we do

this uaiDs _tbo4a .:lailar to thoae used in the proot ot '!'beor. l~. nr.t,

we develop the notiOll ot a caoaical tona tor E-progrDS in Lau). we ule

!!! aDd ~ u4 proceed as tollow••

(1) Apply ~ at each 1D1Uator to aeparate out the varioua lequeacea

ot uat..-t aem-.t&. (Figure ,,(a) Wustratea this step tor the I-prosr_

ot Figure 4(.). )

(11) Apply ~ at each 1DUiator to detect vb1cb .equence. Dever

tena1n&te, and use AI, to cleU' _.,. all UDl'eacbllble node.. (rtsure "(b)

illustrate. this .~p.)

(11i) Appq !A §. ...d ~ to tbe ~1DI .ub-prosr_, each

canai.t1Da ot a aequeuce ot uatem-nt acb_ta, to put th_ into caDOIlic&l

tona, u we have~ delcribed. (Pipre "ec) illu.trate. thi••tep.)

It thi. proce•• tpplle4 to • e L.(,f) pallia .' € L.{(4), ua..e I.,.
.' 1. the cgoaical tCll'll tor •• 'l'he dec1.1an procedure required tor

l~



e

--

F1ere iiCa)
E-procr_ C '-~ Figure ~(a) 15 processed by,;12. the separc.w.l.UL axiall
sch...

e

Further s1lllp11ticahon '.)f C arises !rca the application ot Al} and !!!t.

c ::

e

F1gure "(c;,

Die CUClIUCaJ. t01'll of E-pI'O&I'a C, where t 1t 2t, and f 4t
S
t , are 1D their

n.pectlYe cU1OD1cal t~.
l}l



!beor_ 16: For!Dl aignature a and UlY •• 'I e: L
II
<-1) with canonical tOrll.ll

I' and.' ..e.pectivell, i-. ='I ... ' and.' are identical.

Proot: It e.1 18 rear.hable tre:. bi in .' but Dot in.' • then clearly

I Mel • CUIDOt be .treacly equivalent. i.e., not 1-. =e , which

ccmtrM.ict. tbe b,ypothe81. tor Tbeo~ 16. -- t .' ·"4 -'....er. ore, -.. .. can be

--.J.T&ed bJ CClIIpU'1D8 the aub-prosr_ ot .' between bi and e j and that

ot .' between b1 Uld e.1' u.1.Dg Thear.. lit. Evidently, th.a

I- I :' ••1' Dd .' are identical; the converae i., .. in Theor.. lit,

tr1Y1al17 true. I
To r.tura to the proot ot Thear_ 15, we DOW cOIl.ider tbe preble. ot

lboIriag that ~ I :' ....~ I : •. rrca Theor_ 16, ~ I : •••' Mel .'

U'. ideatical, .0 that 1-.':'.' by !!. and R2. lurtberllOr.

~ I =I' ID4 ~.:.' .0 that, (Gee ..ain by !!. and ~, ~.:.. I
Rellllh tor other Po..1ble M.1.f5I-Dt ~ta

In a.apter '. we introduced a1llpl...a1plMmt aebellata, 1. e., tho..

each cOlld.tiag ot a .1Dgl.e ..al....t. Let Ao b. the .et ot all 1I111ple

u.~t .eh_ta (relat1ve to a g1YeD .ilDature ., ot cour.e), and let

o AOL. be the tozwal l~e obta1Ded whea 18 the clu. ot operator.. It

'Fna..o 1. the .et ot wtt. built up !rca L.
o • then we went to eona1der the nft

tbeol7 T.o
• < .T~.

0
, tR.~ , wbere J.0

i. 1lk.! tR. exc.pt tbat uica

.=-ata .!!. ~ ~ M UMl rule !!a illu.trated 1D rlawe ,... repace !!§.,

.!2t ~ aDd !!..

Certa1.Dl1 f~ I : lIT tor I. • € L.Oct> • 1.... I:'. € TIJ1.0 ,(#>,
11 decldele b) appqiDg the _thad. ot the toreaolDe .ecUCXl. (liere the
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~: --

where v does' • ()·;cur
in a

vb\!re u doe. [.c·t occur
:t.r. a

!!: -- --

AD lnter.nt1al aub-qat_ tor .1JIple ....i..-mt .cb_ta. Here,
U, v are diat1llct VU'lablu, _d fI, or we taraa.



I-prosr-- or L 0 '(,f) are all type <1, 1:> , and cOll8ist of a single
II

••quenee ot slaple usignment ach....ta.) Moreover, we conjecture the

'l'beorea 11: POI'!Ill .1pature ., the iDfereDti~.s~ateJI ~ao i,!-

ee.plete tOl' :;"",.o'ttl.

Proot: III npport ot thia coa,jecture, notice that eaaenti&lly all we have to

~ 18 tbat !L ~!1 md BIl do not ah. UIY ot the derivational power

attor4e4 _ !fA!!1. aDd ~ tor theor.. • =• c Ji'ht.o'(f) •

CoIla1der • ~ L.o'(jJ) t l11u.trated I,n Figure '5(&). We vant to t1Dcl

all K-prosr.. • ~ L.a'<./') ncb that ~.::., i.e. t .::. 11 der1vable

wi th !!!,!!1. mel ~.

(1) UDder the bypotbe.e. that u awl v are eli.tinct, CJ 11 not u,

T 11 DOt Y, aD4 u doe. Dot eeeue in 0', the deriv&tlcn iD Fipr. '5(b)

can be carrlecl out.

(11) UDder th. bJpotbe••• that u aDd v are diatiDct, 0' 18 not u,

or 1. not v, UId v doe. not occur in a, tile derln.t101l in rtaure '5(c) can

be carr1ed out.

(U1) 1JD4er the b7P0tbe.18 tbat; neitber a DOl' or ia u, th. derifttim

in rteun '5(d, CD be carrl.:1 out.

!Ill. clear1¥ .xbeu.t. all the poal1bU1U•• tor ~progr... € L.O't() ,

ncb that • =. 18 ISeri..le in ~ • alt.,. baft .~ cierive4 81. Jl2. --
aDd !1 ben; u well, ~ 1. tile equ1Y&lea.t in d.a ot NJ.. 'l'bwI, ,J.0

reneet. au ot tbe cieri vatiODal power ot .J.. with reapect to tbe~ 111

I



Figure j ('lj

'Ier( , u, V IU"'~ ·:uril:i.bles. and (J ­, ,'"

Ab-- v := ('.l

o

a)-r a. u :- a

V:"" (u ::- 0)«1 ::.. a)-r) IoU:- a

Since U
don Dot
occur in
a

Here, "" v
not v, an~

.;.r'. Jist"! fl'· larlables. . a

.J -J<:>eF not ':"':u:' in a
is a ~~r!ll not 11 l. cena



v := (u ::= o)~ • u :~ 0

u :8 0 • V :~ (u ::- a)T

b

u :- (V :1- (U ::= :- (u ::- cr)T

SiDee V doe_ DOt occur in fl.

Flme '5(c)

Here, U, v are di.tinct variable.. fI 1. a ter.a Dot u. T 1.. t~
Dot v J aDd v doe. DOt occur in fJ.

"...-

...., U 11 a varillble aDd a T are tel'llll DOt U.

1,0



In ~h"pter 3, we Ultroducea subscripted variables aa III po sr i ·~I.

extensior. ot our tozwal laasuage Ls • l.et A-+ be '\;,1t ."et uf" 1 ~

aas::'~TJllen-:; sebelll&ta with subscri'Jtea varia.bles permittef', (re.:.fJ.~"'It;' '.0

T +'(i+'a g::.ven 'igDature Ii, ~t course), and let ~s ~ J ~t ~tr J~t of

all typt <1, 1> E-prosr.ma each coos1st1Dg of a single se quence ,.!

...+ •aaaigIIIII~nt schsata trcs ..,.

We conJecture that for any signature s, t~ ~.~ ~or

., • ( 1 +'(~) 18 decidable. but bere ~o Dot cons::.der ~ne matter any
s

turtr.er.

E-progtamB with no Loops

It is atraigbtforwar1 to prove that ~ s 16 c<.AIlplete for the sub­

set ot Jill. involying only E-prograa with no loops. AzJ. E-progr_
8

•• <.X, 1.6.> is 8aid t.o have -no loops" itt for &.il. x E: X, x is

not. reachable tree x via r, i.e., not in the transitive closure of

r. E-rrcgrem.
o

of Figure 36(a) 18 lID euapllol of aD E-progr_ with

no loops.

Bel'': .• "<Ie only indicate, uaiDI lID euaple, the derjvatlona.l. steps

requireo. ~o :t>ut an E-prosr- with no loops 1nto & canonical form.

Figure 36{b) shon E-progr_ .1' the reault &t'ter the separation axice

8cheea~ has been applied tbroupout to .0' Figure 3l)(c) sbaws ~ t

the result &tter tbe pub through axicw sch... !!! aDd the forward sub­

st1tutior. eTian 8cb_ JJ3 bave be'?n applied thrOOSbout to ~. Eacb

aaaigmaent f cr.emIi. is then put into caDCI1ical tora, and axiom sch_ta

AI. through A:; ~1;pl1ed to canpresa th~ network of q~a. The result 1a

l,-r



Flgure 36(a)

!-pra£- •

AD I-pl'OCl'_ with DO loops. Here p, q. r,. are qtta; 'Y, w, x, 7, •
are ...~t acblu.ta.

'igure ~(b)

I-pI'OCI'_ • atter aeparation ua1D8 ~.



!1"Je ~(e)

f~-progr_ • after pull!:' 1Obroush U8ing ~.

E-pro~ • atter proceasiDs by ,!;6.... &. Here, we haYe ..8l8ed that
yvl£., ~) - x;yY(D l) tor &ll D, &1l e : ~ .... D , 80 that the c:cm1t1ca
ror yv ia a ~J\IIlction or tWO CeaJ\IIlCtlon8. Dire, the result jU8t d18pl.".
the initial cCQd1t1ClD8 tor -.ch or the operations.

1'9



., ' sbown in Figure }6(d). Note that since two of the assigmoent

Icb_ta have the ... canonical tOnD, OIle occurrence is deJ.eted and

the relevlUlt qtt is expressed as a disjunction. By specifying an

orderiDa _d a c8IlOIlical tOl'la tor the 'lffs of ., t 8. canonic8.1 tOI'll

tor E-progr.. vith no loops is obtained.

We see that a canonical fOnD for these E-programs merely displ~s

each ot tbe t1Dite nu.ber ot operatioos (a8 discussed in the proot of

'!'hear. 1) aDd it. attendant initial conditioo.

(i) 'lbe canClllical fora concept tor E-programs without loop., can

be extended to ~ E-progr.. in La provided tbat infinite canooical

tOl'lU are perIl1tt.ed. 'thus, all the loops are unwound, and the E-progr..

tUtu on the loop-floee property in intinitary tOnD.

(11) The ecapletenesa result tor qtts as given in Theor_ 12 can be

used to .how d. is ccaplete tor the sub-set ot hr. involving

E-progr.. which correspood to the "conditional expressions" diaCWIsed by

1IcCartb,y DO]. Type <1, ~ E-progr.. CClllt&inins qUs caJ.y, but posaibJ.¥

baY1ng loops, can be used to .Jaulate predicates which are undefined tor

certain arguMDtl. It is coaJectured that cfs is CQIplete for this cue

u well.

(11i) In Thear_ 1, T~ =8T t where • =8 € ~ tor lipatures

I • < <D~ ••• , ~-r' 0, C> , vu Ihown to be decidable. We cemJecture i:ohat·

ds ia cc.pl.ete tor 3iJL••

IaIe ApplicatiOOI ot the FonIal Theory 1;.

To give .c.e indication of the derivational power ot the 1Dterent1al

qat_ .gs ' ve ,..:ooaider a fev applicati0ll8 ot the to~ tbeOl7 1;.

140



In Figure '7, we .bow Ilcv a .1aple loop, oqUlized u in FORTRAN

where the body ~. executed at leaat anee, ean be traD.to~ed into ~ loop

organized &.II in AUiOL where the body is possibly not executed at a:::..

The notation. "sp" and "Ib" indicate the torwud s'.lbstitution of assign­

aent sen... g into the qtt p and ..s1gDlDent schelll& h, respectively.

In Figure 38(a), we uae two hypotheles to deduce that the simple

loop considerec 1s alw-,y. indeterminate. or course, the hypotheses ma,y

in tact be Seberally valid, L, e., the IJ)'Dtactic properties of t, g

and p, IMlY permit proot ot the wtts tllken here as hypotheses.

Figure }8(b) illustrates just this possibUity tor the alw~s indeter­

mnate loop problem cODaidered here. In all ot the enmples considered

here, where certain hypotheses are uS\lled, there is the parallel case

where the bJpothe.es th..elves are deriVable.

In Figure '9, "e .how a s1aple loop CaD be reorganized to displ~' the

cases ¥bere executiOll is detel'W.1.Date aDd indeteraiDate. S1.IIlply put, we

bave here the case ot the body ot .. loop baviDg no new effect. after one

execui-ion so that if DC exit 18 JUde after one circuit, no exit will be

ude at all.

In Figure "0, we illu.tr..te the elusic r.aval freD a PORTRAB-lilte

loop at Ul operation which is loop-independent. The ~onditions expresaed

by the hypotheses are autticient to perait this reorganization, but not

necessary, For exaple, if the rttt p were r':l (v0) aDd the &8sigmaent

schelll& lI. were vl : - fo(v1; , IADd it g and h ca.u.ted. with

Vl :- fo(-'J) then tbe SlIme removal ot lr., 1.e., v
l

:- to(v
l

) , !rca

the loop is warranted &Del Ls 1t:l"ivable. Fisure 41 illustrates this liart

at 8ituation in a 81aple loop.
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!be preble. 1llustrateJ in Figure 42 is elso classic. Here we

derlve traa a .utticient set ot hypotheseb that the assignment schema

t ~ be executed betore or after the loop in questicn, i.e., ~e prove

tbat tbe loop 18 "trlU18parent" to t.

11&vre .., illustrates a derivable wtf eXf'ressing the strong

equ1valace ot two alv8¥s determ:t.nate E-programs.

l'lpre " illustrates the sort ot deduction concernWg aasigDDent

a~ta tbat C~ be carried out using hypotheses which express algebraic

propertiea ot the tu~ctions involved. e.g., commutativity or identity.



ta
,.."-

All-

~-- AS-

Figure '7
Conver-s f on of !l FORTRAN-lUte l'JOp to AIJ3OL-liltt· rom. Here, f, 11;, !.
are as81~ent scb..tll. e.nd p is a qff.
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Detection of an always indeterminate E-progr__ under certain hypotheses. Coutinwed next page.
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Figure }8{a) cor..td.

Detection rd 1111 alvqa 1ndeteftl1nate E-prosr_ under certain hypotheses.
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Detectlaa of .. &Iv.,. 1J.uletem1llate B-prosr-. Here, u, v, w are variables; t is a function
1etter; Dd r 1. a rel,aUaa lett.... CaatiDued Dext pap.
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Figure ,s(b) ccmtd.

DeteCtiClll ot m alVa¥8 iDdeteJw1Date E-progr_.
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See firat taar
atepa of rig. ~7--
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I'.e 39

!E-- ~

Detect~ tile halting cue. ot aD E-prosr_. Here. t. g. b are us1gnment scbeaa.tai and p is
• qtt. CoDt1Jmed Ilat ~e.
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FigUre '9 contd.

AS-

This last E-progrUl can replace
the indicated sub-program above.

"]

:JetectiDp; the hAlting cues ot an E-program. Continued next pqe.
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De\ec\1a8 tile balt1Dc c.... of an I-prosr-.
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FiFe 40

ReIlOval trem a loop of a loop-independent operation. Here. r. g. h. It. x are us1gr~en4;

sch.-ta and q is," qff. Contlnuel next page.
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Now,

Figure ~O contd.

See first four
8teps of Fig. '7
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R~al frOlll a loop of a Loop-Lndependenf operation. Continued next page.
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:nis !:.-r-r~'I~rMl

car. repla.ce t,h~

indicat",d sub­
program above.

~",,--.... ,
",

\
\ ......,
I
I,

I
I

,/,
, ... _.-.,'

&

~

R2

£!

.;.,..1

c::

So,

(1i:6 !E, ~ ~ j

~

~

t;
VI

Pilve 40 cootd.

Removal tram a loop ot ~ loop-independent operation. Continued next page.
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I

Al2

I
\ • u........ IL.__~~.)

...... "-r---'N:J\!, consLde.r a derintion conccrn Ing the sub-progr~

Al2

nrcection of IU1 indetel"llinate loop. (Continued nen page.) Here, u. v
ar~ variable~. t is a fUDctlQP l~tter, 8Dd r 11 a relation letter.

l~.,



The re.ult ot the derivation concerning the indicated sUb-progr~ then
replace8 that aub-prograa.

1

-..., ...
R2 " ~
~ \ ~,,

I

Figure 41 contd.

Detection ot an 1Ddeterainate loop.

e

Figure ~2

AD eX""Ipl. of loop-tranapUenq.
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~,

'!'wO stroll/,' .... "qulvalent always hal tint': E-pr,')~rams. '~'ll" lC.ft-";a.nd F-pr0~r:.ll:'

execut'.!s '(.,'1'0 c1.rcuits of the loop, and the rlght-hlUJd t:-pro~r!:lZll executes
up to t~IZ'(;" c t rcut t e , Here, u, v. w are var:!.abJesJ r is a !"unction letter;
and T' i [. :t ~c'': ctioo letter.

t

v := h{k) • u .- g{~(k»

v := e{t(v), v) • u :~ g(u)

Two I4sl:1~J.nJllunt ;,;chemtl.t~, "quivuent pruv1de:..:. 1" ant g ....rt; tl.<: SfUlle

f'uncttO.1 and g w'I'i 'I c~tc. Here, x. '1" u, v are variables;
e, r, g,:l are tUllcticn lettersJ and 1t is a constBnt.
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CHAPrEF 9

L~;[,IAL CONDITIONS AND K-EVENTS

Representing E-rr";::'B.'Il,, ':l.~ f10wchar;;3 1~ 8.dvantageou:; ill that it

avo i ds a. plethora o~ c~Dh.ctic structure llIhich might ilIl.p~de intuitive

wlderstandJng and confound meta-level lWa.l.ysis. However, as aJ way~',

th'!!reo are two sides ';.~ tbiti coin. lD :'actJ the a..mLlysis of soee

properties of E-progr~ ~ould be -.de more tract~ble if a neater. more

orderly, ~tactic representation were available (cr. th~ e~crts of

Bola and Jacopini [2 ) ~ this direction). f.ll\:iY researcher;; in switching

and automata theory, have discovered that certain of their problema yield

solutions more readily wilen studied in tel'llS ot rp.gular '!!xpressions in­

stead of state transition diagr.. (er, Harrison [15, p. }2ll). In this

chapter, we will examine how regular expressions and K-expr~sslr~, used

&8 an fLlternative representation tor E-progr.., also lcarl to II. IaOre

prQ(i'\ct!ve analysis.

RegulBl" Expressions and Regular Events

SPofore proceeding, we will repeat bere the baaic definition. &asociated

with regular expressions and regular events. This IIl8.tcrial i~ also given

by fJa.l r..tll8.o. [.56]. Harrison [15) and by many others t we includE' it here 0D.1y

to avo ..d notational misunderstandingl. !'irat, llIe 1iscus6 the syntax ot

regular expressions.

!,(~t ,: '" !xc' ~l' •.• ' ~-1) J k < w- , be an alphabet; here, each

letter x, 11 a.q8Wll~d t.o be lcae tonDal expressior., i.e., perhapa a

aequen,~t; or 3yabol~ on a~ other lower leve~ alphabet. This poasibility

will not coneera ua judo nov, however.



we build up regular e:ltpreasiona fie. E using the additional :>ymbols:

"(., ")", "••, ",", "'1", "0", aDd "1".

(1) x, xl' .•. ' X 1'~' 1 are all regular expressionso D-

(11) If a aDd 15 are resular expressions, then (0 v \3) , (0 . \3)

aDd Q* are regular expreillona

(lii) Extr..-l clauae.

ID practice, we ca1t ";." fica regular expreaaionl ot the tOni (0. a) •

ID lldcl1tlO1l, parenthesel are otten c:.1tted with the understanding that .'." 15

pert~ betore "V" , aDd "." betore either"." or "V". ThUI,

a V~. 11 to be read.. (a v (15. 7*».

'l'be 1~t1CI ot • regular eJq»'uaion over the &1pbabet E yields a

cert&1D aub-aet ot E*, which il t.he aet ot all~~ (or 11JIIply~

it there 11 DO CClGfUaiOll) over E, 1. e., the tree a-.i-group with iden'iiity

generated by t vbere the operatioo 11 JWttapoaitiOl1. The aubaet ot t*

..aociated wlth th. regular expre.dOll a 1. denoted b7 lal aDd 11 called

a r!lUl!r eveat.

(1) Ix11 • {Xi}

(ii) III • {A, the .-pty word, i.e., the identlty ot E*}

(11i) 101• - , the -.pty .et

(iT) lav ~I • lal U I~I

(T) I~I • lab : a E lal • b E I~ll

(Ti) la-I • th. -ueat .et tbat coataiu the dpty word, aDd tor eT

aE 101 cd b E la-I CClIltaiu the word at» , i ••• ,

I(litI • III u 101 u leal U ICDlI u •••



I-WOI!'lIIU u BEU' £!pre••l00.

'rbr<'U8hout these d18cu..loos, lie UlrJlH sc.e fixed arbitrary signature s.

Each I-progr- ... <x, r..1'> ~II u80ciated with it the &ll)babet

~ .. {~: for.c.e x € X,ixl = u} U {u tor acme x (0 X(Q), [xl. u} vbere

bere, and in the sequel, we alI¥ ..'rite u inatead ot ... u tor u € l1. '!'bua,

~ is Ii finite subset of ~ U " u Q u ~

We ..111 deriDe C\, a regula.!" expreuion over 'lI ':.hat correspouu to

an B-rr :::r_ .) by utilizing a finite autc.aton I\i that accepta the aet

I~I . ·.e., given a vord x u input, ... reaches the final state jtt

x € I~:. Let us define tbue idea. _n JDDI'e detail.

Gj'~n the E-progrll& •• <x, r, s:» I we deriDe the tinite autcaaton

.... cs., 'l', ". ,where S 18 a tinite set ot au~tQll statea (or d..ply

~ if no ccmtuaion with states u aequac.a over a dca&1Il resU1ta), aDd

T : S ... 'll ..... S 1i a trm.itiOD tuDction. Tbe aet e ot atates 18

: (~- x(&» U {b, e, d}

wher~ 't. ", d} n X • _ , b is the~ Itate, e 18 the~ state

and diE ':he~ stat••

(1~ ,r X € xU) "-.Dd rx. y , then 'l(X, (xJ) K' Y ID4

T(x, u ) ~ d rcr all u € ~ - {[xl}.

(11) It x E 1(1) u4 fx. <¥, P , tIMa T(x, [x)) • ~ •

T(x. --4x» • z .... T(z. u) • 4 tor all u € ~ -([z], ....(xl) •

(111) It x E I(E) t theft T(z, [xl) • e ~d T(x, u) • d tor all

u E 111 - {[xl}



(lv) T(b, [xl) ., tor all z € x(e) where rx.,. and T(b. u) • d

tor all. u € ~ - (bo'"'' ba-l) vhere • 18 type Q, n> , i.e., h&a •

1Dltlatora.

(v) T(e. u) • d tor all u € ~ •

(Ti) T(4. u) .. d tor &ll u f ~ •

Theae not altoset~~ pel1ucld det1nltloaa can be rendered more intormatiYt

b7 reterriDa to ripre 45. Here the diasr__tlc repreaentation ot an E-program

• md a Pll!'tial trmaition diW. (pdt) tor ,.. are illustrated. The pdt is

partial in that the dead state bas been aDitted as have all transitions to it.

As ve now see, the tomatlon ot I\i !raD •. is re&l.l.y a trivial operation.

Meverthe1eas. th18 characterization ot • .. a tini te autcaaton ... mablea ua

to apply many well understood powerful techniques to the analyais ot the strong

equivalence problem ror E-prosrems.

The behavior ot the auta.aton ... 11 ablply the set ot vorda in ~* that

... accepts. 1. e•• that cauae ... too So trc:a the atart atate to the tinal. atate

via the transition tunction. Let us detiDe the acceptor f\mction

T* : S x 111* .... S &8 tollovs

(i) T*(x,J\) .. x

*(11) T*(x. a v) • T*(T(x, a), w)tor f1 € ~ ' v € ~ •

'lben the behavior ot ~ ia l\i" (v € 111* : T*(b, w) • e). hc:a the coo­

atructioo ot I\i' w € PwI will begin vith m 1D1tiator md end with a

terminator. (Note: the s.m.-group operation ot Juxto.positioa doe. not fUrther.

imply forward substitutioo as diacussed in Chapter 6.)

Tbeorea 18: There exiata an effective procedure, which tor !Ill ftDite autc.aa~

II CClUltructs a regW.ar expression a such that lal is tbe behan-or of II ,

'l'hua, the regular upre..ion ~. where 1'\11. l\i • 1a ettectlft11' CClIlBtructable.
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~~tlal Transition
JJiagJ'8IIl for ~

B-progr&lll II

An E-progr~ " and th, partial tr;Jlsition diatl'tII!l f ....r ~~. Here,
r, p 'U'C lIff;,;; and f, h, k ar: :';;--iolJDeut scillmlat.'-,.



~: 'l'bia remlt 18 llue to neene [2,1. See al.o Harrison [15]. I

a-u-a:

(1) 'lb. procedure of 'l'beor. 18 is involved find caaplicated. and the

nculU' expreaa10n produced 1. uwally inordinately large and liable to

dl'Utlc .1IIpllt1cat1on. In the .equel. we will use beuriatic _tbodl tor

wrltinl .so. resular ellpre..ion. in a1Jlple tora. For egap1e, the E-progrUl

• ot Fipre ~5 )'ielela

~ • boreo V borkbel V blf(Pt)*Pbel

(11) The imlerent utUUy ot the recular expre..ion notation 1& now

ev14ent. For, DO Motter how COIlvoluted lID:! entangled tbe graph ot an E-prosr_

1lIIY be, it. reSUlar expre••1on bas a bierarchial structure where, so to .pe_,

all the loope are ne.ted. Thus, vblle the dr ot • 1s easy to understand

(~ easy to encode or prop'_ up), the resu1&r expression 'W i. easier to

~&e.

(111) It would Ie. that there 1. really .caetb1ns very priait!ve md

pervasive about the id.eas invoJ:ved with regular expre.sion. and regular event••

Tbey plq a key role in~ areaa, blVe a potential role in several otber.,

e.s., pur" graph tbeary or artit1cial ansuase. (ct. T1xier pun, and their

applicatlon to the ~a1. ot E-prosr.. 11 quite natural and productive.

We I10Il want to ccmalder the relationab1p between execution. ot • and.

vorda in I~I. Clearly, we caD as.ociate a word in I~I with every halt1ns

execution at ., but the coover.e i. not alwq. tn.. 'l'hat 11, certain paths

tbI'ouP • (i.e., certain vorela in I~I> .t&rtiDs at .cae initiator bi and

end1Da with ac:.e tU'ldnator e j M¥ DOt be executable. In t~at1Ds the

1n1tial coaditiooa tor J'1gure 5, we appealed to .. intuitlTe notion of

waexecutable pattul, and DOW we will cunlider these Motters in .are cleta1l.
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We derill~ W(I, E.t E, x) tCJ De Lhe (possilily Lnf'Iu Lt e ] word -:>vcr ~

"loe1ated v1t.h the executIon E(II. £, ~, x) of E-pr oeram II start ing at

node x. F.ventually we sball want to show that W(U, £, ~, x) E loal
when W(II, ~ ~J x) is finite and x EX(B) .

(i) It x € x(6). then

W(I. ~ t. x) '"' [x] W{II, ~ ~, rx)

(11) It x € x(.4.) , then

W(I,.!?J t. x). (xl W{I, ~ (x](.E, tl. rx)

(11i) It x € X{Q) and rx .. <s, P , then

W(I. J2, t. x) • [xl W{I, .E, ~,y) it [x)[E, tl

• - [xl W(I, E) t. z) otherwise

(iv) It x € X(e) J then

W(I. .E" t J x) • [x l .

So the tunetion W tollowl through I, just as the executioo tlmction I

would, except tbat here a word over rw is built up as we proceed through the

E-progrlllll. ot course, W produces a f'inite word if't the execution given by

E balta, Tu ItU~ such finite varda, we need the fol.loving.

Theorem 19: For IUlY E-progr8111. I.. <x, r,;t. > I cOII{IUtiDs Itructure Eo. Itate

t : c.> ..... ~ and x € X(lll , it W(I, £, t, x) is finite, then

T*(b, W(I, £, t, xl) • e •

Proof: First we do an induction on the word W(I, £, t, x) to show that tor

an:r x E X - X(b) • T*(x, W(I, ~ t, x» ~ e •

(i) '!be primitive baail ot induction is the cue x € X(f), where we

have
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'1'*Cx, VCI, !!, t, x»

• rCX, [x» by the detlnltloo ot W

• T*CorCx, [x]) ,A) by the detinition ot T*

• T*(8,!\) by the detinltl00 ot T

• e by tbe detinitloo ot 'l'*.

(il) It x .; xU) , then

~(:It, V{I, E" t, x»
• ~(:It, [x l v(I, EJ [x)[~ t l, rx» by the detinition ot V

• T*CT{x, [x», W(I, E" [x)[~ t l, rx» by the detinition ot 'l'*

• T*{rx, W(I, £, [x)[~ t J, rx» by tbe detinitl"D ot T

• e by induction hypothesis •

(iil) It x E: x(~) aDd rx· <r, 1> , then

'r*{x, WCI, ~ t, x»

• T*{x, [x) W{I, !!, t, y» it [x Up, t J or

'l'*{x, -(xl V{I, P.. t, z» otherwise, by the detinition ot V

• T*{T{x, [x)), V{I, ~ l, r) if' [x)[!!, e] or

T*{T(z, -( x)), W{I, £, l, z» otherwise, by the det1nlt1on ot T*

• T*(y, W(I, E" t, y» it [z)[~ t] or

T*(z, W{I, £, t, z» otherwise, by the detinltloo ot T

•• it [x][£., t J or e otherwise, by inductloo hn»othesis

• e

Mel this cc:apletes the induction,.

Now coosider W{I, J!, t,:It) wbere It E X{&) •

T*(b, VCI, E" e, x»

• '1'*(b, (x] VCI, .e, e. r:lt» ~ tbe CSetin1tloa ot V
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c T*{T{b, [x]),W(_, ~ ~, fX» by the definition of T*

• T*{fx, W{I, J2, ~, fx:) by the definition of T

• e trom the result obtained above, since rx t X(b)

by the t'etinition at E-prognms. I

Since T*{b, W(_, £, ~, x» • e .. W{I, E, ~, x) E I\i' and since

I\i • 1'\11 by Theora 18, then an 1llIIIediate zorollary to Theorem 19 18 that

it x E xC'S) and w(e, ~ ~,x) is finite, then W(I, E" e, x) E I~I .

Te illustrate lOhe connection between W(II,.£, t, x) and E(I, £, ~, x) ,

we introduce a ~ction E* which "executes" the word W(_, £, t, x) •

(i) If 0 E ~ u '6 and .., E ~* , then

E*(E" ~, ow) • E*(£, t, w)

(11) If a € A and w c ~. , then

I*(£, t, eN) • E*(£, a[,E, e], w)

(111) If C1 is ej E ~, tben

E*(£, ~, a) • E*(£, ~, e j ) • <~, S>

The tunction E* amply applies each lUlaisn-nt schema encountered to the

current state and byplUlaea the initiator and all qf£a. The re1at1C1lsbip between

the execution functions E and E*, md the t'Unctlon W 18 then given by the

following

Theor. 20: For any E-prosram e. <x, riot>, ccaput1ng structure £. I state

e
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~I lot1ce fir.t that W(., ~ I, x) 18 finite, i.e., r(~ I, w(S, .E. I, x»

18 det.elW1Date, itt B(., ~ I, x) 1. detenaiDate. we glve 11I1 inductive proot

for tbe cue ot balting executiC'll.

(1) The pr1a1tive b..l. ot induction 18 tbe cue x e x(E) where

[x] • e
j

Thea, the lett-band .ide i8

1(" ,2, I, x) • <I, J> b7 the detinit1C'1l ot E,

aDd the rlBbt-band dde i •

• (,2, I, w(a, £, I, x»
• I"(~ I, e j ) by the definition or W

• <I, j> oJ" the detiJlitiClD of E*, which 18 identical to the lett-bud aide.

(11) It x e xU) , then the lett-bud .ide i.

1(., £- I, x)

• I(a, J?, [xll£, I J, rx) b7 tbe definition ot I

• E*(J?, [x)[~ u, W(S, ~ [x)[~ I J, rx» bJ" iIlductiC'll b1Potheai.,

eel tbe right-bUld lide 18

Ett(£, l, w(II, .e. I, x»
• £*(,2, l, [xl W(., R.. [x)[Rt I l, rx» by the detiJlition of W

• p(R, [xllRt t l, W(S, l?. [x)[j2. I J, rx» by the detinitiC'll at E*,

which 18 identical to the lett-bud .ide.

(i11) It x € x(~, where rx. <J", ~ , tbeP the lett-bud aide 18

1(" ~ t, x)

• E(., ~ l, J") it [x)[]!, I J or

E(., £, I, z) otberviae, by the defiJlltlC'1l ot E

• p(,2, l, W(" .e, I, T» if [x][]!, I l or

Ett(R., I, W(S, R.. I, z» othervl.e, by iJlcluctiC'll bJpotbeli.,

11I14 tbe r1&bt-baad dde 11



E*(.E" ~, W(II, P., ~, x)

= E*(~ ~, [x) W(II, .J2, ~, s) H [x)[Q. ~ ) or

E*(~ ~, -{ x} W(II, ..p... ~, z)) otherwise, by the 1efinihon of W

• E*(~ ~, W(I, Q, ~, y» if [ x)[.£, ~ ) or

E*(£, t, W(I, ~ t, z») otherwise, by the definition of E*,

which is identical to the left-hand side.

(Lv) It I € X(6) , then the left-hand side is

E(II, £, e, I)

- E(Il, £, ~, rx) by the definition of E

• E*(£., t, W(I, P., ~, rI» by induction hypothesis,

and the left-baud side is

E*(£, ~, W(Il, ~, t, x»
• E*(J?, ~, [x] W(Il, ~ t, rx» by definition ot W

• E*{D, l, W(I, D, t, rx» by definition ot E*, which is identical to

the left-hand side, anti this ccapletea the inducticn. I

We Bee then that executions of aD E-proi',X'- I Sive rifle to verda in

lau l that can ~hemselves be "execut-ed" p:-oducing the salLe result. Intuitively,

the qfts encountered during the execut1cn of All E-program I specifY the

condltlon on the input atate tor that executioa; the qtts in the corrupond.1.Dg

word in I'WI play the .... role with regard to the execution ot tbat ward. III

Chapter 5, we called this the initial coodlt1ou; we now' develop thi. DotiOD 1D

detail.

we tirst detine a tunctiOll i*: ltl. ... ,* ,where "..

{u E 111* -fI\l: tbere exiat. w €,* such that yU E ICWI}. Botice that

1'\1' =Y•. Applying 1( to a word, 18 termed applyiDI "puSh through"j
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• ••Ul ••e bow tbi. ti•• 1D vltb til. DOtlCl1l ot pub tbroush ...oclateel vitb

In O1apter 6, we denoted the forward IUb.tltutlO1l

of m ua1gnaent .ebe.a into e1tber another uaignaeot seb.. or a qrt by

Janapoalt101l. To avoid coDtllct witb the juxtapoaition ot letters in ~

to tolW word. 1D 211*, we "111 cleDOte the torward lubltltution ot an "Iignment

.em- t iDto t b7 (t ~ t) , where t E.: A- u Q In addition, we adopt

tbat the cOIlnntlOil tbat ~ ...ociate. to the lett, 10 that

(t ~ 8 ~ h ~ p) 4eDote. «(t ~ I) ~ b~ p). Bow, we are ready to deriDe

tile tuDctlClll If. (Rote: tor CODveDleace, the pareDtbe.e. around the arguaent

ot I( are dropped.)

II bl w • b i -

I(tp • .(t ~ .)"

ICtpw • (t ~ p).tv

d.1 ••.1

d." • fe.1

where e, I E,4, P E 'll a4 "E'·. !bl. 4et1DitiClll dearly cover. all the

c.... ot IN tor u E V. .

'fa lllutrate tile .rtect ot the pWl thrOUlb tuDctiOil ., we coaal4er

• t.., ex.pl•••

(i) 811,,0'. bl Jl111Pql"t • .1 £ 1'\11 , viler. X, 7, a, t E ;#. .ad

P. II. rEt. ~

lib1JEIlPClI"f• .1

• bl~t'J

• b1(x ~ p)apqrt'J
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- b. (x ; p)l'l'(x ; Y)l.qrfe
1 j

.. b
i

(X -+ p)lf(X -+ Y -+ Z)qrf'::j

.. bi(x -+p)(X y Z q)I'l'(X .... Y ..... Z)rfe~

- bi(x ..... p)(X y Z q)(X y Z -+r)l{(x ~y -+Z)fe~

... b
i

(X -+ p)(X -+ Y Z q)(X Y Z r )1l(X 04Y Z 04 f)e
j

... bi(X ..... p)(X ... y Z q}(X 04y Z r)(x ..... y z ..... t)e
j

(11) Consider once again the E-program • of Figure '(b), that waa used

in the proof ot Theorem 1 (Chapter 5). Here,

OL•• b v :- v(- r(u)u :- v. v :- u)*r(u)(-- r(v»~ r(v)e •
-11 0 0

vbere u, v, w are variables and r 18 a relation letter. CoD8.1der the path

through • that executes eacb loop zero t1Jle1. The word in 1,,-1 correapondiDI

to that path is

~ ... boY :- ¥r(u)- r(v).o

and applyinS the push thraueb f'unction, ve have

~

- co'"' :- wr(u)- I'(lf)eo

• c (v :- v ... r(u» ... :- ..... r(v)eo 0

• bor(u)(v :- w ...- r(v» ... :- weo

• b r(u).- t'(w)v :- veo 0

Bow cooaidor the patb that executea the upper loop once ID4 tbe lower loop

nro t1Jllea. The word in Ic:w I correspol1diDI to that path 1.

x.. - b v :- ..... r(u)u :- v • v :- ur(u)- r(v)ecoo

and applyiDI the pIlah thrOllgb f'unctlcm, we haTe

- bo" :- w- r(u)u :- v • v:_ ur(u)- r(v).o

• b (v :- v ... - r(u»" :- va :- v • v :- ur(u)- r(v)_o 0
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• b l'(u).(y :- v .. u :- v • v :- u)r(u)- r(v)eo 0

_ b r(u)c :- v • v :- ur(u)- r(v)e
o 0

_ b r(u)(u :- v • Y :- u "'I'(u»w :- V • v :- u- r(v).o 0

- bor(u)r(v)(u :- v • V I- U ... - r(v)hu :- v • v :- ueo

- bor(u)r(v)- r(v)u :- v • Y .- ueo

rrca Jot, we caD ebetract tbe q,tt r(u) 1\ rev) 1\- r(v). In the proof

of'Daeol'_ 1, tbe.e q,tt. weft e&lle4 the initial coad1tlO1l8 tor the paths (i.e.,

VOI'da) 1D cpe.t1Cl1l. 8pecittcal1¥, we detine the function. I: )('.... 12 ,

A : "'....A- , fb: 1,.1 .. (AI and Ye: W"." w , u tollow... Firat notice

that tor.,. v E w-., ... i. ot the t~ ~PoPl"'" Pn_1¥e j vbere

~ E • U CI\l , 1\ E " k < n < CM, _d ,,€ A U [1\). '1'ben, I(v) - (Yo - vol

i ••• , I(v) 1a icleDtical1¥ true, 1t n - 0, or I(v) - P 1\ PI 1\••• 1\ P 1o n-
otbvwi... Alao, A(v) - y :- v , 1.e., A(v) i.:h. ldeDtit;y operator, ito 0

.-1\, or A(v) - , otMrwl.e. P1Dal1,)<, I.(v) - j , _d tor MIJ v E lewl
vb..n v. biu tor laM u E '1('. ' I b(,,' .. 1. we •..,. tbat A(v) i. the

OI!!ratiClll of ", 8D4 tbat I(v) 11 tIM initial CClDd1t1Cl1l ot tbat opezoatiClll

or ot the word v it.elt.

IDtuitivel:r, tbe .0UDdII••• ot the pulb tbrouab axlca .~!!:! (pven b:r

'l'beona 8) __a tbat tile IJUIh throuP .;'UnetlCl1l _ lift. us the rilbt q,tt tor

tIM 1D1t1al CCJDdit101l ot a word. PUl'tbeJWOre, the lOUDdn... ot th. torward

"atltutlCl1l uica ....~ (pftD b;y '1'beorea 8) .... tbat _ live. us the

rl&bt ue~t -=- tor tile operatiOll of a vozod. 'l'Id. latter DOUma la

explicated lD the tol.1cNial

!bear_ 211 lor.. I-proq_. - <X, r I ole> I CCl!pItillf .tnctun R., .tate

I I "'''Eo ud veri v E I~I...I.

!!(£, I, ,,) • <A(")[~ I l, T.(,,» •



Proot: we liveD aD 1Dducthe proot ot aD even Itroaser r ••ult. III tact,

we prove the .tat.eDt at the tbeoraa tor all v € 'W".. uul .iDce

loal = lr., thia 1Dclu4e. the cue v £ 1<JeII •
(i) Tbe t1rlt cue 1D the pr1ll1t1ft bu1a of 1D4ucUoo 1. f. e

j
.

'1'beD, the lett-baD4 .i48 1a

r(p" I. e.1) • <i, 3> b7 the lletiD1tiOll at 1*.

Uld the risht-haD4 11lle 11

<A(eJ)[p" el, Y.(ej »
• <Yo :- vol,!, t l, 3> b7 the det1D1t1caa ot A UIIll Ye

• <I. 3> by the llet1D1tlCl1l ot I ..tlci tor UI~t I~t., wh1ch ia

ldent1cal to the lert-huul 11de.

(11) fte .ecClD4 cue in the prJait1ft bu1. ot iIlduet101l 11 v. te
j

•

.mere t € A-. '!'beD the lett-bud aide 11

1*<.2, I, te
j )

• P(~ tiRo. t J, e j ) b7 tIM c1et1Jl1t1oa ot lit

• <t(P,. e], 3> by the detiDltloa ot 1*.

-.4 the r1tbt-bUld 11de 11

<A(teJ)[~ t]. Ye(te.1~

• <t(R, I]• .1> b7 the dat1Dlt1C11l1 ot A u4 Te , W1eh 11 ldentical to the

lett-bud 11de.

(111) It ". pu • vbu'e P € ., tbe tIM lett-bUld .i4. 11

P(R, I, pa)

• 1It~ I. u) b7 the det1D1t1ca ot ..

• <A(1l)(p" II. T.(U):> bF 1Ddaet1oa JvpotbeIIl,

..s the r1tbt-bU4 a1de 11



A IIDd Y •
e'

<A(pa)£~, I I, Ye(PUP

• <A(u)[~ eJ, I.(UP by the definition. of

vblob 18 14entlc":' to the lett-hand aide.

(1.) It v. tpu ,1lbere f e A IIDd P € ll, then the lett-hllDd

P(,!., I, tpa)

• ..c.e, t'[J!, t I, pi) by the definition ot E*

• "<'l?, tlJ!, I I, uJ by the det1nitiClll ot lit

• <A(u)[~ tlJ!, eJl, I.(UP by induction bJpotheai.

Betore proceed~ vith the right-band .1de, we Deed th- reault that torward

8Ub.t.ltutl00 ot u.1paeDt .ch_ta 1....oclatin. Thu', it t, I, h E: .4 ,

we bave tor ~ CClIIpUt1D8 .tructure D Uld .tatel: W ... D ,
- ""0

«t ..g) .. b)[J!, C]

• hlp, (f .. s)[R, e] J by '1'beor_ 7

• b[£, g[R, t£.e, I]] J br '!'bear. 7

• (I h)[~ t[R, I]) br 'l'heor_ 7

• (t CI ... 1'.» by '!.'bear. 7

<ACtpu)[~ t 1. I.(tpap

• «t ... A(pu) Hi, t J, IeCup by the aI.oclatint)- ot forward 'aub.titutiClD

Uld the defiDltlCl1l or Ye

• «t ... A(u»LQ. I I, I.(\l):> by the detinltlCl1l of A

• <A(u)l», 1l,8, I lJ. '.(u):> by 'l'heor_ 7, wb1cb 1. identical to tbe lett.bt6d

I1de.

(.) It w. tp ..... t, I € .4, ...... the lett-a-ad. aide h
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E*(,E, t, fgu)

= F.:*(~ f(E" t J, gu) by the detinition ot E*

_ E*(E" g(E" f[.£, ~ 1J, u) by the definition of E*

.. E*(£, (f .... g)(E" t J, u) by Theorem 7

= <A{u)(,R, (f .... g)[~, t 1J, Ye (u)» by induction hypothe8is.

and the right-hand 8idf'! is

<A(fgu)(~ t J, Ye(tgu»

z <((t .... g) ... A(u»)(,P., eJ, Ye(u}> by the &88ociativity of forward aubat1tut1Cl11

and the definition of Ye •

= <A(u)[D, (f .... g)[,B, el l, Ye (u» by Theorem 7, which 18 idctical to the

lett-han(O 8ide.

(vi) It' ..,. b i u , then the lett-hand 8ide 18

E*('p" e, b
i
u)

;; E*('p" t, u) by the definition ot E*

'"' <A(U)[Q, t J, "fe(u» by induction h1Potheaia,

and the right-hand 8ide 1!J

<A(biU)[E, t), Ye(biU»

• <A(u)[~ e); Ye(U» by tbe definitions of A aDd Y., vldch 18 identical

to the left-hand aide, and tbll cCQlpletea the 1nlluctiCll1. I

hall Theor_ 19 we found that it w(a, £, e, x) , wbere x E Ice) m4

(x) • 0i ' 18 finite, theP W(a, R, I, a) e: 1'\11. Abo, trc. thtI • __tIlca

of E-progr... and Tbeore 20, we have that .[~ <I, i>] • Be., £, e, x) •

p(R, I, w(., R, t, x». Thele reaulta, tosether with 'l'hear_ 2l, lift ua tbat

it Wea,.e, I, x) ia finite, then a[B, <e, e- - «ewe., E, I, x»(R" I I,

Te(We., £, I, x»>. 'l'bua, tor b&ltillg executtou, til•••, lOci ~telr

characterizes the output ot •. we eOl'1t1nue &1oas tbea. line. __ UIat.D.~ tIM

role of the initial ccDditlcm I(W(a,.e. e, x» vben wC.,.e. t, x) 1. t1alte.
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!Mona 221 Pur!l!l E-progr__ • <x, r, b, cCl!pUtiDs _tructure .e, .tate

I ~ w ..Eo Dd z EI, it We-,.e. C, x) 1_ t1Dlte, then

I(V(,. !I I. Z»[E,..1.l.

80 the lAitlal cClll41tlm ot a word, p~oduc.d 1;,y a baltiDs executim, ...t bold•

.!E!2!: VI give ... 1Dductift proot.

(1) It x E xCl) aDd [z]. e
J

' theD

ICV(., 1>., I, x»[R, C)

• I(e.1)[R, I J by the det1Dltlcm ot W

- (.0 • ·o)[~ e) b;r the det1n1t1m ot I( ...d I, cd (.0· .o)[~ C]

_ tile det1Ditim ot .....tic. tor qU•.

(11) It x € W aDd [x). e , thea

I(V(_, R, t, x»)[£, C)

- I(tv(1l, ,2, t'{R, C), rx»)(J!, I) by the det1Dltica ot' W

llatlee that tor 8IQ" w E Jr. ' I(w) • I(ft), Dd auppo•• that

tIf(1l, !" E, z) 1. ot' the tona

PaPl···~-l « ... «t' ".0) "81) .• , "8.1-1»·.1

'lIMn Pi EO, 1 < It < W , ead 81 € 4-, 1 < 1.< WI • 'rhea,

I(v(W, R. I, x»(R., I J

-1(Po 1\.•. pt.l « ...«t "80 ) .. ~) ••• "&'.l»e,,)[R, IJ

- I(po ~••• pt.l(t "'«·'·«.0 ".1) "12)···»).,,)[R, f) by the

uaociativi t7 ot tC1'VU"d aub.tituUca

- I«po It. ~ A. •• " ~_I)~t .. ( ••• ».j)[.~ I] by the det1Dit1ca ot I

- I«t' .. (\, " '1 It... ""~_I»(t ... ( ••• ».,,)(!t I J ~ tM d.t'1Ditlca ot'

....... Pi· (t .. ts.) , 1 < It

- I(t(... It. 'J. A. •• " 't_l)( ••• )e
j
)[J?, I] b;r tile det1Ditloa of' 1(.
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So (~" ql 11.••• 11. ~.-l) 18 jUlt I{W(.J £, if£, U, rx». If' ve tak~

I{W{., J?, t[J2., ~ J, r7.»[~ t[R. t]J u the induction ~T:(Ithes1sJ then we have

s1lllply (~II ql 11.... 1\ ~-lHE.. t(E,. t Il . ButJ

(110 f\ ql A... " ~-l)[£' t(£, ~]J

.. t -t (~ 1\ ~ /\... 11. ~-1.)[£' t] by Theorem 6

.. (po 1\ PI 1\••• /\ P
It

- 1 )[£, t] by the det'initic:m ot qi' i < k

But, (po 1\ P1 t\.... 1\ P
It

-
1)

is Just I(W(., EJ !J x» , 10 that tina] 1.yJ

I{W{.J £, e, x) H.e, t) , u required,

(11i) If x € X(t> , rx • <7, %> and (xl. p , then

I{W(., £., t, x»fR., e)

.. I(pW(., J2., ~J y»)[~ tJ it p(R., tJ or

I(- pW(.J ~ t, z»[J2., e) it .... p(R., el, by the detlDition ot W

.. (p 1\ I(W(.J £, t, y»)[J2., e] if' p[.e, e) or

(- P 1\ I(W(I, J2., eJ z»)[~ eJ 11" - p{R" elJ by the detinitionl ot rt and I •

.. p[R" t j A I(W{.J .E, e, Y»[R" eJ it p[R" el or

... p(.£, t J " I(V(IJ £, t, z»)[.£, e] it .... PIE" eJ, by the detinltlOD

ot ~emantlcs tor qttl

.. I(W(.J £, t, Y»[Jb e] it p{R., e] or

I(W(.J J2., eJ z»[.e, t] Otherwll., by the 4et1n1t:on of I ..tlci tor

qttl J cd thil boJ.da by induction hypothea1l.

(Iv) It x € X(8)J then

I(W(I, .£, e, x»[R, II

.. I ([ x )wei, .£, e, rx»{R, lJ by the det1Dltloo ot V

.. I (Wei, !b t J fX) H2, t J 1IIY the det1Ditloo. ot J( Uld r , aad th1. hol.d8

by 1DduCt1CD hypothella, cd the 1nductlO1l 11 theretore caplete.
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So, we have shown that if we execute • and so generate 8. word

w € IC\I , then the inltilLl condition of 'W !DUst held. But, what of the

CODftraeT SUppose we ve given £, t and '" E I~I . and we find that

I(w)[R, tJ. Can we inter that w .. W(Il, il, ~, x), iihere (xl .. bi and

tb(w) • 1 T The answer is yes, and this is the content of the tollowing

Jbeor. 2'; For any E-progr8lll II .. <XI r I X> , cClllput1n~ structure E. L

atate t : w ~D
--_:-.._~ -e:l

W • W(_, E" t , x)

aDd word 'wi _~I'\lI...a....2.~_- I(~l[£,.-!l..L-tben

where [xl· bi Ii .. Yb~

Proof: ROQ8hly speaking, we show that I(w)[ D, ~) iJIlplies that all the qfts

in w, or alternatively in the path dt:fined by w, have truth-vIL1ues sucb that

execution, and hence W too, will follow that path. Ir. tbe proof', we iJIIa8ine

that the acceptor function T* is used to 8t~p letter by letter throulb v,

c&ains the IWtc.aton ... to undergo transitioll:> trail state to state. At the

._ tille, W 1s used to step through the E-program II , trail node to node,

leDeratins a VOI'd letter by letter. At each step in the proceaa, we verity

that the node ot _ corresponds to the state of' ~, and that the letter.

of' W and w are identical. We use an inductive proof, but of a strange

variet)". Induction bypothes~s are made about the situation on either side of'

the current positiQll ot the word in questiOD, so that ll. pr1Jll1tive buis cue

occura at eu.ch eDll ot the word, one f'or each induction.

(1) CODs1der tbe initilLl case. Suppose v .. biu. Then,

ortt(b, w)

• T*(T(b, bi)'~) b)" the definition of' T*

• T*(rz, u) lince [xl. h
l

M4 by the denA1t1on or T.
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&D4,

w(., ~ t. 7}

• [X)V(•• .Ii. I. ;Ox) b7 the det1DltlO1l ot W

• b1W(•• R, I. rx)

DNa. the next .ute aDd node COincide. i. e.. are rx

Furthemore. note that I(w)[£, I l ~ I(u)[R, I J • by the detinition ot I.

Then by induction blPOtbe.1.. I(u)[J2., t l :$ u • W(•• .e, I. rx) • 80 that

w • biu • b1W(•• ~ t. rx) • W(•• .e, t, x) , u required.

(11) COI181der an 1DtenIe41ate ~ue. B.r inductioa bnJotbeai. UBWM

that ... 1. in atate a E XU,) • Del that V 18 at nod. • nth atate 11.

Alao uau. tbat v - CN, a E ~ , b the word r-m1D&, md that

I (v )[ J2., ,.). 'Dlen,

T*(a. v)

• 'fIt('1'( •• a), u) b7 the 4et1D1t1CID ot 'fit

It w E la.1 , then T*(., Y) • e , ..... tbentan it .at be the cue that

a. [.1, othervl.e truaU1cxa to tile 4ead atate Ii would oceur••4 e

woul4 not be reached.. So,

'l'*(a, v)

• 'fIt('1'(.,[aJ). u)

• 'fIt(r., u) br the det1Dlt1ClD ~ 'fit.

As well,

W(., R, 'I, a)

• [.IV(., R, [.)[2, ,.l, r.) b;r u. det1DS.t1CID ot W.

'rIma, tile next .tate -.4 Q04e co1Jlc1de, 1.e. , lIN ra.
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u 1D41catecl 1D the proot ot 'lbeor_ 22. 'l'hen, by 1Dduct1cm brPotbeala,

I(u)[!, [aUE, 'I)) • u • W(_, R" [aJ(p., "I). r.) , 80, that

YO. [.ju • [a)W(" PI [aHE. 'Il, ra) • W(_. p.. 'I, a). u required.

(111) Ccmaidv the otber intemed1ate cue. B:r 1Dttuet1011 b,ypotbeaia,

u_ that ... 18 1D atate a € X(1l) , aDd that W ia at node a with

atate 'I. Al80 u.,.. that v. ft, a € 111 ' 18 the word ~1D8, mel

tbat I(T)[D, q]. ~,

'I'*(a, T)

• "'('1'(., a), u) bJ the 4et1Dit1oa ot '1'*.

It ,,€ l~l , tbeD T*(a, v) • e , u4 therefore it mat be the CUe that

IJ € Ua),- [aJ) , otberw1a. trua1t1oa to the deed atat. d VOIl1d occur. mel

• 1fOQld not be reacbe4. So.

'I'*(a, T)

• ,..(t'(a, a). u) wbere a € ([ a], - [a J)

• "'(t. u) vbere ra. q, r> Ul4 t € (7. s) •

Aa well.

W(_, R, 'It a)

• [a )w(-, R.. "I, 7) it [ a)[R, "I1 or

- [a ]w(_, .e, q, s) it ....( a Up.. "I) , by tbe d.t1Dlt1cm of V.

low. auppoa. that, in rut. tJ. [aJ. '1't.len

I(T)l,P., 'Il

.l(au)[£, q]

+1([a}u)[2, q]

.[a)[R" 'Ill " I(u)[.e, 'I] u 1DdJ.cate4 1D the proot of!beorta 22.
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Then, W(II, 2.. 'l}, s ) '" [I )w(-, £, 1'1, ;y). If, ill tact, '"" = - [s ) , tbeu

ve get that W(_, £, TI, .) " - [.)w(-, ~ 1), z). Thus, th.. next state aDd node

coincide, i. e., are y or 2., u the cue ~ be, vbet'e I's .. <, 2Z>.

Furthermore, note that I(v)[E, 'll.I{u)[£., nl I as indicatecl above. Then,

b)' induction hypothelil, I(U)[R.. 'l}].u c: W(II, ~ 'l}, t) , t € (y, z) , 10 that

v • eN .. eW(ll, £., a[R" 1)1, t) • we_, Po, 'l}, I) , &8 required.

(iv) '::onaider the tinal cue. B,y induction hypothelis, assume that ...

il in stab • € X(t) , Uld. that W 1a at node • with state 1). Allo U~

. that v - (1I.l , a € r-. ' 11 the worcl r-.1Ding, and that I(V)[E" tal. Thea,

T*(a, v)

• T*(T( it (1), u) by the detinitiCll at T*

If v E I~I , then T*(., v) • e , Uld theretore it .ust be the cu. that

a. [s 1 , oth'!rviae trllDlit10n to the dead Itate d voul.d oec:ur, aDd e would

not be reached. Ot courae, then u. A. So,

T*(s, v )

.. T*(T( f>, (1) , '\~ by the detiDitica ot T*

• T*( e, A) b)' the det1Jlltion ot T

• e b)' tbe detinition of 'l'*

AI vell, w(_,;;." 'l, I) • [a J,b)' tbe 4etinlt1oll ot W. 'l'bu,

v .. eu .~ r::] = 'We_, ;,;., ta, I) , u required. 'l'hla cc.pl..... the 1D4uct1ca. I

Togeth~r, TheoreM 19, 20, 21 Uld. 23 11Ye us the tollow1D& 118.tul

'l'heana 24: For 'SY E-p!'OIl'__ • <X, r,.:c.> , CCl!p! t 1ai atzouctwe R.~

nate I: W ... Ro _ .04 word w € I~I...L

I(_)[Re t] • -[R. <t, Yb(wb 1 • <A(w)[R, I J, l.(_»

!!22!:. CaDdde::, the ... cu. tlrat.
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S(~ <t, Yb(wP]

=.~, )1, t ~ x) by tbe detinition of leaantici tor E-progrB11L8 wbere

[xl. bi and Yb(w). i .

iJ Ett(R, I, W(I, J!, I. x» by Theorem 20

• <A(V(., n, I, X»(D. Il. Y (v» since by Theorem 2'.... e

I(V)[J2, I J.v • W(I. R" I. x) , l,p, W(I, R, I. x) 18 tinite. '!ben,

trca 'l'beor_ 19 ve set that W(I,'p. t. x) € 1"11• .ad thll allowa

application ot Theorea 21•

• <A(v)[.E, I). Y
L
(v» ODee lI8aln. by Theorem 2,.

Now. COIlaider the <=: cue. We know

.~ <I, Yb(vp)

• <A(v)[£, 11, Ye(vJ> trc. t.be luPotheles of tbe theor_.

'l'bua. E(•• .e, I. x) .at be 4etera1nate. aDd ao therefore 11 W(I,.p" I, x) •

In thia cu., trca 'l'be<lll"Ca 19 we let 1I8&1n that W(I, R, I. x) E: lewl. So

~ Tbeo..- 20 _d 21 u in the tirat cue•

• £, <~, ~(v» )

• <A(vCW, R, I, x»[R.. u, Y.(V(" R., I. x»>
__c., v. V(" .e, I, x). JUt aince we-, J?, I, x) 11 finit., tba

I(V(W, R" I, x»lR" II , .,. '1'b~ 22, i ••• , I(v)[R.. C) • •

UalDc ttaeor.. a .. a aurt1Dl point, we cu recut the deflnitloo or atraD8

~ft1-.:. in a tont 1dl1cb natura11¥ Ihecla llIbt OIl tIM decidable 8Ub-cu•••

to aurt, l.et us det1De tIM b1nar7 re1&t1CID - ~ VOI'4a or I~I ,
MIcb tbat tor 8D'¥ 11, v £ I~I • we UIl' U _ ••1JI1l.ar to v .ad write

\a-V, 1tt
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(i) Yb(U). Yb(V)

(11) Ye(U~. Ye(V)

(1ii) tor all E.. tar all t : W~£O. A(u)[£, t) ... A(vHE, IJ I 1.e.,

A(u) and A(v) U"e BtroDgly equivalent. This we wr1te &E A(\l) =A(v) •

!low. conl1der a part1t1on e. of I~I into BiJailU"ity equ1valence

clunB such that

(1) UzE.~z • ICWI
(li) ~z. _ •

and such tbat tor 8DY u € ICWI J th.. equivalence cluB of u with reapect

to _lB {VE ICW I : u_v}.

Let UB extend the notiClll of .1a11arity to B1ailarlt7 equivalence clua••

tbeu.lvea. It U E. C. ad V E. em are aia1lU"lt7 equivalence cluB.a,

then we B~ U 18 B1ailar to V, aDd write U _V , itt tar BC8I U E U

With each U E e. ' we a..ociate • joint. in1tial cClDllitlOD J(U) (no

cODtullOD will ret!.alt tr<a tbe dupl.1cate "in1tial cClDd1t1OD" _e1.&taft), vbere

J(U) • v(p E Q.: p • I(u) tor acee U E u) •

Here we wr1te va, .ere S 1a. Bet ot tClCMl ob~ecta,1br tile 41.~_ct1ClD

toned vitia "'v" ot tbe obJects 1n 8 in ey order. It 8 l.a 1Jlt1D1te, tba

VB 1. aD 1ntin1te 41~UDctlOD. IJatu1t1ft~, J(U) 1a tiM in1tial CCD41t1ClD

tar 8117 ot tbe vorela in U J &l1 ot wbicb Uft atroacl7 equ1val_t opvaUClDB

'rbree further notatiODal _ttera: .. use fIB to deDote tile caa.1UDctlCl1l

tamed wlth ""," ot the ob~ecta in 8; ... ct.Dote (p ~ q) '" (q ~ p) as

p • It ; and we extend 1cls1cal T&1.1cUt7, deDote4 1-*, to 1Df'1Il1te.1¥ lCllll

qttl in t.be natural wq (ct. Iarp [22] tor • ct.tallec1 v-.__s),



With the notions of s1Jrllarity md joint initial condition defined,

we can sin the following

!Mana 25% For !Ill tvo E-progrua ot the same type,

.... =•• i=* " (J(U) • J(V) : V € C. • V E: t e • U-V} "

" (- J(U) : U € C. • tor all V e: ~, U+V} "

" (- J(V) V E: ~ • tor &l.l U € C. LU+V}

In '¥U7 rough tenaa, 'l'beor_ 25 states that • and I are strOl18l¥

equ1~ent itt they have the Salle clus ot potential outputs, and the

CClDditions tar • and e to produc~ 'Hl.ch such output are IOSically

~: CaDai.1er the <= case first. Coosider any ccaput1D& structure

!. .tatel: IJ" Eo • and i < ., where • mel • are both ot tJP4l

<JII, 11> , s~. WP. vritc A tor Ie~ <.~, 1» and B tor 1(.E.t <I, 1>]

ill -.at tollows. We will show that tile logical Validity ot the qtt,

Q sq, 1D the s~t__t or this theorem implies that A. B. There ue

n" cues 1;0 CQIlsider.

(1) A and H are both .indeterminate. Thus, A. B •

(11) A aad B are both detenlinat.: and A. B. Thus, A. B •

(i11) A is detenlinate and Pl'()dUCC-L; a word u in U E C. '

but. B is 1D4etelWiDate. Frc:a 'l'heorm. 24 we have I(U)(EI I] , so that

117 the det'inUicm ot Joint. initial condition, J(U)(,E, t). But then,

DOUce that tor no V E: C. ' such that 1J -V • do llle ban J(V)(£, t] •

'Ib1I 1. beaIue it there vere sucb a V, we would have

"'(U) • J(V)[!t t] , and turther, siDet;; J(U)[~ t] , theretore

"'(V)(R, I]. aat thea by 'ftMorta a, B .at be detem1Date _d proOlce
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se-e v € V. Since toil contradicts the hypothesis ot this case,

there 11, th~e:rore, no such VEe8' such that u-v. But, then

the second conjunct of ~ gives that -J(U)[~ ~J , which also cnntradicts

the !VPothesia at thia cue. Tberet"ore, this;iJ,1't cannot. ar i se ,

(iT) B i. determinate and produces a word v .ill V f Ce , but

A is indetenU.nate. '!'be 6.l'gwlent proceeds here as in case (11) above,

except that we uke use at the third cooJunct ot Q to show that this

cue cawwt arise.

(v) A aDd B ve both detel'llinate and produce words u and v

1.0 U € c::. and V € C:e : respectively, but A ~ B. hca 'l'beorem e:4

ve bave I(U)[~ ~ J and I(V)[E" I] , 80 that by the detinitloa ot Joint

l.nitia.l. coadit1on, J(U)[!?" eJ and J(V)[~ l J. Bowevv, 811:1.ce A ~ B ,

theretore U+V. Suppose that tor Se.! W€ C:.' U-W. 'l'ben, the

tirst conjunct at Q givea that J(U). J(W)[~ ~] , aDd lince

J(U)[p, t] , therefore J(V)[E, I]. ltov, a1.nce W md V v. distinct

(tbq ..at b'!l al.nce U+V Uld U-W), m! s'nee DOt both J(V)[f, I]

md J(V)(.e, t] (otherwise, br 'l'heor_~, OIle exec:utlaa 1«1Uld 11ve two

ditterent OIltput.), md aince J(V)[~ I] theretore DOt J(V)(~ t J •

But, this 18 a caatradlctlaa so that tor DO V € C. do we haft U-V.

But, then, the ae.::0D4 eaaJUDct ot Q siYea that -.J(U)[!t I] .1cb 1.

&l.o a coatradlction, 10 that theretore tbls cue does not ari.. eitller.

SiDee CD1y cues (i) Uld (11) c. viae, ID4 since thq Dft

A ;: B tor Ul7 ncb E.t I UId r , we theretore haft ~ ~ • •

II0II, caaai4er the ~ cue. we v1ll ...,.. tile ca..1uoatlaa Q 18

D01; ~ccie~ valid, and 10heD ahov that • ud • &l'e th.eton DOt
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atraa&l¥ equiYalent. Since the couJW1ction Q is not logically valid, ooe

(at leut) at the conjUllcu is not logically valld. SUDpose that -f(V) ,

vbere VEt'. .-cl tor all V E tt8' U"'V , is not logically valid. Then,

r~ ac.e cc.puting structure £., state ~,not -r(U)[£, t] , t, e.,

J(U)[!- I]. Then by the definition of joint initial cooditioo, for Se&e

u € V , I(u)[£, e) , so that by Theorem 24, .lD, <I, Yb(u») •

<A(u)[£, t] , Ye(U». Then, since for all V € C. ' U+V , therefore

flPJ <t, Yb (up] either is indeterainate, is detenrlnate vitb executLoo

Dot balting at e
J

vhere j. Ye(u) , or is deterainate vith execution

balting at e
J

, but having executed a word in acae otber s1aUazoity

equivalence clus different tre. U. It either ('It the tint two cues

occur, then we are done, since tben cleazoly not ... =II. The last case

maat be cooa1dered at length.

Ho1oIever, let ua first consider the second alternative tor aak1ng Q

DOt logically valid. SUppose that J(V). J(V) , where VEe., V € ell
and U- V , 18 not 1ogit:ally valid. Thus, for scae ccaputiDg structure

,e and state e , not J(V). J(V)[,!?, I] , i. e. , for e~le, J(U)[,!?, I)

but not J(V)[£, I). But, since for all WEe II ditferent trca V ve

bav. V.;.W, this .:ue 18 therefore precisely lUte that cooa1dered above.

So, we are coocerned. vith the cue where I(U)[~ I], u E U, U E e.
and l(v)[£, I] , v e: W , W€ til' As vell, U4/+w, but ~(u). ~(v)

aDd Y.(u). Ye(v). It..,. be, for this .2. and t, that

A(u)[.P" I] ~ A(")[~ I] , ao that not +-- =" , in which cue we azoe doDe.

But, nppoae A(u)[£, I) • A(v)[£, er . We vant nov to abow the exiatence of

a apecial ccaputiDg atructure !!: and special initial atate t* :w ... Eo* ,
ncb that l(u)[D*, 1*) and I(v)[D*, 1*] , but vbere- -
A(U)(E;*, t*] ~ A(v)[,e*, 1*] , so that not ~ =••
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Consider the ecmput1ng Itructure E:, with stpature

s - < < no" .,., ~_?, <mo" · · ' • .J. -r' it> , with dcaa.in

D*- «(v o' vI'···' vt_1} U {ko' · · · ' kp _1} U {to"'" ~-1} U ["(", ")", .","»-
where ., II E La; l v0' vl' ... , vt-l} .:ontll1na all the variables oecurrfng in

• and II; and ( ••• ). once again denotes the free .ei-group with ldentlt,.

generated by ( ••• ). Here, then, the dcaain eOllsiat. ot tillite atring. Mde up

ot ! ODIe of the spbols that appear in • and II.

Now, we det'ine t.he other constituenta ot

'!'be designated wdtviduals ao' ••• , ap-1 ~ ju.t the .JIIbol.a

kO' ••• , kp-l E D*. l'be functions Fl' i <:.t , are defined by

'i(Xo' . ' . ' x. -1) • t'i(X , ••• , x .), where x , ••• , x 1 E D*. Bere,1 0 1Il1- .L 0 -1-

"t~", "(tt, ")", "," , U1d the xo'.'.' \i -1 are juxtapoaed .. IbcNn to 11"
1

t 1 (xo'···' XIII -1) € D*. We detine Rl' 1 < It , by reterr1Dl bac!"' to ! u4
j

~ ,nUlely, R1( Xo' · · · ' xn -1) • r(xoJ"" zn -l)(~ t] •
i 1

'l'ha.let the input state t*: w -.0* be detined so that e(l, t*) ••1 '

where ot' ~our.e Vi ~ D* •

'1'his ~xot1c ccmq;uting atructure U1d inltlal .tate pemU us to ... that

net +-e;; II. First, notice that I(u)[£., t] .I(u)(l*, t*) _d

I(w)[E" ~] ·"I(wH.!2.*, ... ] • a Lnce tbia relatioash1p holds tar qtta 1D pIleZ'&l.

(For eXlIJIPle, suppose r2(v6)[~ t] ; then ~ 1. detiDed so that ~("6)'

aat then r 2(v6)[£,*, ~ ... ) • ~(e(6, t*» .. ~(.6) , llbich bolda. 'ftma,

r 2 (v6)[E" t] ~? r 2 (v6 )[)2,*, ~*].) Tberetore, we CUl a&ile A(U)[r, t*] ..

A(v)[D*, tit] •-
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Because of the w~ the Fi and R
i

&II! defined, these executrcns tollu....

exactly the c:caputationa given by A(U)[£, t] and. A(W)[£, ~] , except nov the

~tatiQD 18 beiDa carried ::Nt in IYJlboUe fora, the eurrent state reflecting

.u put ~tatiaaa. SiDee U +W, then u+V, end since

Yb(U) • Yb(w) and. Y.(U). Ye(w) , we IIllBt haft A(U) I A(v). Nov it

A(U)[~, t*) • A(.)[~, t*) then cert&1DlJ A(u): A(v) , .0 that

A(U)[!*, t+] ~ A(.)[R;-, t*) .at be Uie cue. ThUI, .[~, <~., Yb(U):>] .,

.cr, <&*, Yb(W») , mel heDCe Dot ~. =:3 I
a-fta:

(1) '%'be 111eu of 1n1t1&l CClIlelltioD, I\w) , and. operatilXl, A(w), are

~e1¥ nlated to Kceartbr'". _thocl [29] to!' preBcribiq couditiOilB

..~ t« -ta'1DC • at b1 aDd 1.aY1.Dl at e j , u4 operatora .1.1 t.Uias

...t tactlcc 1a CClIIPIteci eDter1DC at bi mel 1eariDg at .j' '!'be 4ifference

11.. ill ua. hct tbat~ CCIlcerDB hiJlaelf with .~a ot reeur.lft

~1caa far~ the .1J' tbe .olut1cc to wbieb are DOt CClIlBldereci•

.....t1a11l', tile c.toc8I ba'e 18 tbat for ample n.owch&rt., u ebalw:tvl.e

~u.. ....,~ .....a1aaa prov14e a ec:....lent • ..., ot ......lac tbe

8Ol1atlcc of 8Uch ..... of equtlC1lB. Ito [17], CCIlBldlll'a the.e _tter8 ill

... cIetaU.

(11) It t1Ja1t. nb-..t. of 1C\r I md 1a,.1 cu be isolated that we

Dow caat&1D au vorda pI'OdIlceci b7 h&lt1ac executiaaa ot • and. •

....pectlftl¥, tbeD tIM part1tlC1l8 C. and. E:w. are t1Il1te, u 1., uaentOl'4l,

tIM q,tt 111 tbe .tat.ellt of 'l'beor_ 25. 1'ba, aillee tbe .trclaI equ1w.1eDCe of

.-aU.. 18 Mclda:'.Ue (~ 16), the at.raas equ1ftleDc. ot K-pI'OCI'''

l1U • .. • 18 tba'etan dec1411bl.e UD4er tboBe c1rcautclc. for e1ch



X-events and the utc:it.. ...dli ty of K-equl valence

At 8. pr&glll8.tic LeveL. t}w (lee ida'Ji 11 ty of :;,~rt8.in exotic and ccmputatiODally

uninteresting sub-cases ~f tr,e l>\-ro:l/O ,:qu:valence problem does little to help us

analyze the Ilor~ cCIlIp.J.ex., 'i.!Hi. her-ce :U'.:r" useful, general 28.Se. ow- interest,

then. is in flnding Ii suf~: ':1 ~t:y nd: subset of .ft"" . for oU'bitrary signaturea

s • for wr.l.ch J i. 5 COIDr,':'ete.
s

In ::his c'lapter, we attack this probl_ in-

the partition. «=. .ad e- are

Thu. in

ve: eM • u-v}

• V 'lbu8, ~J(U) • J(V) tor all _ell

directly by definine tht: r.ct i on of :,-equivalence between E-prc~rams, sho\'~ns

that X-eq',lvalence is dec i dab.Le and ~nat.,t 1JIIp11es a aecood interefttial a~at_
s

tJ adequate for derivir:g K-equ:valence. The turtber reault that the

X-equivalence of two ~-pruhramb Unplier their strong equiYaleDce, "aDa tbat •

handle on strong equivalence for a large and interesting subset of h.-. 11

therefore a.vailable.

Before we proceed with the definitions of K-e~lvaleDce and ~-.T8Dta,

and to foreshadow what is to ~OIle, let us uae the re.ulta ot the prece41Ql

.ection concerniag initial conditions to deri~ the tollow1D& u..tul

T'Deor_ 26: For lWl E-progrlllll.S • and m. of the a_ tTPe,

1<)I I • I~I => I- • :: M

Prvof: Since 1'\11 '" 1~1 , then

identical, s, e., e.. ~~

I\{J(U) !Ii J(V) : U E 1:. •

u-v and C. r. ~ ~ blpl¥ U

cODJuncta, ..ing the entire conJunctiet1 1astcallT qJ,1d. 1IeIlce •. b7 'IbeclI'_ 25,

~.=~. I

Bow, the equality ot regular seta ia addable (cr. sua.. eel) 80 tMt

'lheor_ 26 gives ua a tool, however meeser, tor lAftat1aatiDI atrclal ...,.~.
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...... • 'tIl I ._ '

we can gener-at ''t! ano ~, ffcctIv': J.iJ"oc,"~' 8!:~ then ttost for

I~I L I'\!I ,a', ai. "ffec't1::' ".~cs::;. If I~I =0 I~I tllcn ~.:.,

but if 1'\11 f 10.1 , wt' ('ari rJ}", , n. ccnciuatons 'Ilt' w~ Or t he ott·.-:r.

Consider th~ wff 1(;; M ,1 r igure 46. whieil is generally valid since

We set: that til '. st for strong f-quivalence can 1ptect thi£

property in a fa.1l'1y larg" sul .t. o.;f ,r.:: •
S

Hm.lt-ver. this method tails 011 even

10 11Ilple & ...ff It:: ~ (ef. r l."lll·~ 21). where for the lllethud La vcrk, 'ole vould

have to abow Ip v pi ~ III ..,hjch is c1e&rly not true. It h just thia aart of

problea that th€ irtr'-'duetion uf --events and K.equivalence will &!leviate.

SlUtax md Sel_uti ~f' of K·expres<.: ;'ons

X:-expressiO:l: nr-e detined OVE.'r an alphabet l: - .;1 'II' U 10, 1) U -<t

were J·.II and are disJoint finite non-empty seta or at{lBic t~.. and

and (p::> q) E 1) •

gperatora relpecliv~ly. For thi. discus'ion, we wl~ write

/'/:., - (po' PI''''' PIt_,l, • < w- , lind - l~o' gl' .. •• £0-1)' D < w·

wbere the Pp 1 <: • , and 81' i <: n , acl''''ly st811d 4'or the actual letters ot

,-I'd. .ad

Fint, we define the aet ','- of prOpoait1011s

(1) ""{I ... u CO, 1) ~ ,.)

(11) It P, q € ;J, then (- p) €

(111) Extreu.l elauae.

'l'beD, we detiDe tIM a.t JL of K-expreaa1011a.

(1)

(11)

(iii)

") U (! C "-I .•. _ -'\

It a, e € .\. , then (a • ~)t (a" e) , CJlI' € )(
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E-progr.. •

CL • b t(pq)·pe v b1hi*rg(pq)*pe
.00 0

91 • bot(p v ~q(pq)*P)eO V b1hr*r(gp)*BP8o

Figure 46

All eXllllple C'f Iq.j. la-I .. ~ =•• ot eourse, til. q. .ad ~
liven above are n~t the &1J..y replar expr...icml Gener~J..e!rca •
anel •• Here, P, r goe qUI, and t, &, b are u.~t Iem-t&.
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we use tlw same cooventions llB tor regular expressions when 4roppiog parell~se.

IKId o;he ";." frC1ll (ex • 6) .

Tlir' .1.JD311tics,t 11 K-expressiol' :) is a set ca.lLed a ~~ der.ot.ed

by !:a\i. In the detillition ot licell, we aake use of the Bet J called

~, <itfined lUI

.r • {so sl .•. 8
111_1 : 8 1 • Pi or 1 1 • (.... Pi) , i < III }

"hleb 1. Just the let of disjuncts ot the tull disjuncti ve nonaal tOnD for a

tautolvgy in ''J.. Then,

llpl11 • {so Ill'" 1._1 C :r: si· Pi}

IIg111 • {PS1Q : P,ll c :J }

11111 • :T

11011 • fJ

/HlII • '}" - lIpll

lip ~ qJl • I!--PII u IIqJl
110 V ~II • llall u II~II

I~II • 11111 u Ilotl u IICD\\ c IIC1X1\I u •••

II~II .. rxpy : Kp€ IIotl. py€ 1I~1I • p en

P E !J

p,q € 'fJ

} ~~ x

Notice tbat for e;ny F.-progr_ ., we can take ~ to be be set ot

all diatlnct qtts ot the tOl'lD rJ{'t , ••• , 't 1) or (T. (1') occurrq
o nJ-

in • (or 8iaply the set {(v • .,)} if there are no qtrs occurr1Dg in .) ,o 0

m4 h. to be the .et ot all initiators, tendnatora and distinct ua1sr-ent

~ta OCCWT1n£ in •• '1'beD evident1¥, C:W, the regulv expres.ion over

~ corrcapclll4ing to ., 18 &lao a le-expreaalOil anI' ,It,.. md ..!t.. In

aenerhl, we COIlcentrate our attentloo on Ie-expre••ion. that cc.e tl"ca E-progr..

nu tbou&b .~ ot tbe theo,... w prove in the .equel hold tor all

X-exprea.1ona in gener&l.



Le t us ( '" ~001~ exaznp1,."s uf E-: rocrams and their respect1ve

K-exjJressiull5 ., 'rrespOf;rlim' ":-evl:'r.ts. :·;.,r ,:;:.j.rJgrarn • of Figure 47,

cr, in a more ~'wpact akiDrev:l1tej ;"Jr!D

vbere It stan,1S for v
b

: = Ito ' anc so on, Then,

ICLI .. [b kr oe , b ItrPke., b krfr>.'. , b ut'rP&e
1

, ••• }
.000 ~c 00

and since A~ 0= ~r;,{v6)' r
9(v6)} = {r, p} , then

J : [rp, rp, rp, rp}

and

IICLI! = (rpb rpkrpe rp, rpb rpkrpe lop, rpb rpkrpe rp-,
• 0 0 0 0 00

rpl:' rpkrpe ;P, rpb rpkrpe rp, rpborpupeorp•••••o a 0 0

rpL rpkrpe rp•... J •o 0

Each word ot II~U 1s an alternatiDC aequen~e ot vorda ot truth -.4

operators, the f1rst and 1aat operator. beiDC an 1oitiator .ad a ter-1nator

respec~ve ly • Each word. ot truth, 10 laM aenae. dep1ct. tbe .ta~.e ot attaIu

at that point in the executiCll1 ot •• TINa, u • 1. eDCQtecl, oer~ -.4

&tter each operator (1. e., aaa1gDMDt I ell_> 18 eDCOUDtencl, tIM atca1c fmrwuJ u

10~ have certa1D tnath va1.uea -.ith respect to tbe ~t atate. -.4 tile..

are airrared in the vords ot truth prec"diDc IID4 tol1ov~ the operatcI' III

v € II~II. Conaider, tor ea.p1e,

~bipkJ'peorp € lIewll

'l'hia word correspoacla to m eucutiClD ot ., 1Ib1cb .tart. at .1A1t1Ucll' "0

IID4 balts at teraiDator e ; aDd it • 18 eDC1Itecl:lJl D 1dtb 1Dpat .-..o _

I , then tb1a word tells us that ~ '" P [£, I) .ad r 1\ p(R, k(R., l)] •
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Figure 47

'l'be upper ttg'lJ"e abows E-prar:raa • in tul1 detail. ')1<> JoveI' tigure 18
m abbren&ac1 tom where k r, tmda tor the ..aa~t a~ Y6 :. ko •
md ao em.

Here, II 1a. qCt'. The K-exprecsl<ll1 tor this E-F~_ i8 b.,P*Pe
o

'
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In go.tcr·i!, Ii:; ... ith ce r t a i n ...ords vi' I'll I , many 'Words or 11'\111 do

nct, cor-reejcnd i .• any exe cu" .,». of • s1mt'l~' because the proposed aequence or

WGrds of truth ~ld operator~ ~s not po~sible. An Obvious example Is

s:nce b o certai~ly does not ~ffeet the ~~t state ~d 80 couln not reverse the

truth-value of Aa aaother eDllp1.«-. L«lsider • word canta1Ll:18 the a.queDe.

;/v)r(u)v :", f{v)p(v)-r{u). '!'his auguta t.b&t for aC8a .£, lUlU ;,

f(V) "r(u)(£, eJ and ptv)!' -c'(u)[£, .:- f(.)(D, I)), 1••••

(v:_ r(v) ~p(v) ,\--«,(u»)[£, el , by~6. I.••• , p(f(~») " ...... (u)[£, u .
~aken together, these would give p(v) " r(u) A ~(r(y) ~~.)[~ I) , ~lcb

is clearly 1JBp<1ssible aince r(u) " ....(u) is a l~ca1 ecetNd1n100.

To see how the coo.cept ot Ie-event 11111 lM IIOI'e pcNaN. ta tMect1l:l& -tzooa&

(-ql:.~V&lence, cons tde.r once -saiD the vtt at ~ (~. ~ 21). "'11v, we

userved that [r V ~ I - {p, p} ~ (l} - III , .0 tbat tIM "~ ..t approach

',CO decid~ng stront equivalence 18 DO help. But obaeJ'ft UlfIt

, -n;: V ?

'i~)1i u II p II
• ;'!J!: u ('T- IIpll )
•

We we ,., I &:1 see Ihortl1, equal1t7 r4 )C-eftDt_ a_ ill ....-al~ etJloac

equ1VL ' nee.

To :;t'f 80m' .. f the impl1cation. of the __\lea of X-.......-s.-. ocaa1d.-



(1) IIp*lI., 11111 u IIplI u IIpplI u •.• tor p E 'P

Row, IIpplI .. [x. € Ib:1I It ayE IIplI & aE 7)

'" [s : 8€ IIplI ".E IIpll It a€:n
• IIpli

ao, I\p*1I .. 1b.11 u IIplI u IIplI u IIpll u ...

.. :r u IIpli

.. J

Thua, tor the a.lgorithID of Figure 48 witb K-expre..ioa baP*Peo' we have

80,

IIp*p1I • [s : sE IIp*11 & a€ IIpli & a€;r)

• fa : s€ T 8r. s€ IIPI!' :oE.7}

• J" n 1Ii>1I
= IIpli

lib P*Pe II ., lib Pe II ,since -." is ..aociative.a a 0 0

(11) 1l1a11 = [py : P€ 11111 Ie pyE 1Ia1I' p€ 7} , a € X

'"' {py : p€"7 Ie Py€ 11011' P€T}

~ IIa\I
(11i) lIill .. T- 11111 .. 7- J • ; .. 11011

11011 .. :T - Iioll .. T - ~. 7 .. 11111

Frca tbeae eX8IIPles, 'Ill. see that K-e'ftllt. bave~ useful _4 iDtereatiDs

properties: the "1" is:· en to behave botb as a aJilbol tor truth Ml4 .... lII1

"identity" op!..ratorj the filet tbat the loop in tbe E-prosr- ot rigure 48 ClIlce

entered i. never lett is refiected in tbe 8ellADtics tor P*P;"O" _d "1"

are aeen to behave ccaaiatent1¥ as symbcls for trutb aDd tallltl.

1~



Remarks:

(i) A:; pointed out. "ar.l.ler, t1,(; r epz-eser.t.at Ion of an .f:-program (i.e.,

fiowchart) as a regular e xpre saaon i:.; a :1atuxl11 adaptation ot the .tate

diagram methods cf autClllat.a theory. ,,)th It,~ r18) and Engeler (8) have

independently used syntac~lC represent,at ions closely related to that used by this

CAthor. However, the f8IT. of K-event and the description or K-expressioa

semantics,as given here,has not appeared elsewhere.

(11) This author teels that the notion or K-event and the scheme tor

attachins semantics to K-expressions represent a signiticant step torward in

the description and representation of algorithms. AI we indicate in the .equel.,

these ideas link ill with, and bring cohesion to the work ot lanov p.6) aDd

Rutledge B"7J, and ir. lidditioll, provide a starting point tor even IIOrC produetlYe

investigations.

K-egulvalence

Two K-expresaions a and ~ are said to be K-equ!Yalent itt lal. I~I .
We iDtroduce a .. 6 as a well-tonDed t01'1llU1a exp,reaa1na the It-equivalence

ot a and 13, and write j.. "';'" 13 just in cue lal. 1131. We writ. 3fhI.

tor the set of all. such ...fts. K-equiv&l.encc CaD be a useful tool 1n the

analysis ::>f strong equiva.lence, as we see in the tol.lDvlDl

Theorem 2'7: For 8lll E-programs • aDd • ot the ... t¥Pe,

t'=:l=>~·=e.

This theor~ is the counterpllrt ot '!'heor_ 26.. but providee a _ch ....

powel"f'ul test fer s t rong ~qu1v&l.eDce. It • aDd • are 1trcla&lT eqg1~t

because ~ ~ '"' ~ , then we sa.y • aDd B are I-equlval.eDt .. well.
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!!:!!2!: Actually what 18 properly called tor here is a develo~t lliailar to

that g1'Ye1l in the tirst part ot this chapter. Then a proot for this theores

would tollOll .. Daturally .. did tbe one tor Theorem 26. However, here ve g1ve

.. le•• lopbhtlcated proot, a:l tbia luttices tor our present purposes.

Witb eYeI'7 haltiDs execution of ., we can ..sociate a word frem

IIot.II • Mel a1Jl1J.arly tor 8 Md 1I<¥e11. Suppose, in tact, that for the

CQIIpIt1n8 structure .Eo, state e : fA.) ... Eo md initiator bi, II[E, <~, 1> )

18 detenainate aDd produce. tbe word

" • ~XoCl1~CIe··· ClnXn~+l

wbere W€II~II, n < w, ~E:l', k < ~, Xo • bp l), • ej , ~€'" 0 < k < n lIIld,

ot CClUrle, ~ • Cll and ~. ~"'l. Sin..:e the bypothesis ot the theores gives

that lloe.ll• "aw: , then ,,€ 1I<¥e11 u "ell; we "ill show that 'H~ q, 1>J

18 alao detUllinate Md, in tact, produces tblll very vord v. This, ot cour.e,

&1ft. .[~ <&, I> ) • I(!, <e, 1> ) , tor any ,2, t and 1 such that

II(~ <t, 1>] 11 deteniDate. A siailar re.w.t obtains when we ...,.. that

.,e, <t, 1>] 11 4eteminate, aDd both together give ~.;: ••

80 we atilt ahov that 11[,2, <t, 1>] produce. the word w ..aua1Dg that

11(& <t, 1>] don. We do not ua-.e that tlR, <e, 1>] il deteraiDate, but

abow that the tlr.t 211.., letter. ot u, tbe (pollibly 1ntinite) word prod~ced

b7 II(£, <I, 1>] , uoe tbole ot ", mel lince Xn" eJ ' thlll Wpl1e. that 8

doe. in tact halt, Ul4 that 1t procluee. jUit ". We proceed \J)r dlacu••1ng the

".r1ou. "8¥1 that u can ditter trca v.

S\lPpole that u arJ. v dIffer nrll'~ at sClDe ~. Th1a cannot be \:

'lowever, liDee • md • uoe each started wi th
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.:.::..2. have lille trut"-liP.lu"s i:-. A'lch ~t'."'., Since ~ oz ql ,i.e., b i haa

no etfect, then tL~ first plac~ ~ wr~ ~ could differ is at ~. Let

UI uauae they ditfer t1r!:t at q,." ;,.<' r <n + 1 , 80 that

u- \,xoql)(l~··· xr_1P - •.

where p ~ ~ ; allO recall that

" - ~Xoqlxl~ ,'. xr_l~ ~xn~+l'

Since Ie£, <e, 1> J pro4uced '1 "ole have that

~[~ (... ((~ -+~, -+~h .. -txr_1HE, ~])

But p and ~ are b Clth words fran 3", and trc:a the detinition ot 3'",

I[~ I) • t[E" ~] t for 8 t t E T,.. 8 1s t, 1. e., only ODe ot the d11.1U1lctl

fA tile tull dhJunctive nonsal fona ot a tautology CaD be tne tar -.Y given

truth ulignment. Thus p = \- .

SUppose that u and 'W d1frer first at Ic.e ~. Tb11 cannot be Xo

howeYer, dnce • and " are ea~ started at in1tb.tor b1• Let u....,..

thq differ first at x ,0 < r < n+1 , 10 tbat
r

U • Clcxoql~~ ... xr_1Y' - •.

where y E ,f. u E., y ~ x ; also recall that
r

Since "E 1I'\r1l and 1l~1l.. 11<;.11 , then ,,£ 11aW1. 80 there 11 a path tbrou&b

II , Itarting at the node labelled b i aDd proceed1n& to /Xle la!>elled 1£r-1.

Since -e}b <t, 1>] produces u t ve CaD caal1der cotber path~ •

startinC at the node labelled bi and proceed1D8 to OM labelled 1£
r_1• We

VL'1 t to show that these two paths mit, in tact, be tb.. ._ patb.. !be~

v6) the path. could differ is it at aae dllcr1ld.Dator P, I., aM path

takes tbe true branch and the other the talle bruch. a&t WI vou14 1IIpJ¥
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tbat .., 'l.IIu U DIU:.. ~ di ffer at scm,' qk' 1..: k .:: T ~ ~ , .?.n-l t n i s .5 uc.t

ao .!nee we arc assUllling u and .., are iaenti cal 1.l1' tu ~. Thus th.e

u.~nt scheJDat. y and

ODe labelled x 1r-

It ".<X.r,J.>

x must be r eachub 1" fr,At the Sal!le node, i . e. ,
r

and x (X is the node .iuch that [x) is the

udglDent sch~ xl' and if rx f. xC4J u X(C) , then beth u and wr-

.uat have [rxl as the next letter after ~,i.e., u and w de not

diNer at xr
So the case left to consider is where there are discriminators

intervening between x 1 and y in the path correspondiLg to u, and between
r-

x 1 and x in the path corresponding to wr- r
This situation is illustrated

Since w € II~I • the definition of the semantics for " " tells

u. that ~ E. IItl! where t is the qff specifyir.g the condition for reachinB

Xr in Figure '4,9, we have 'lr € IItl " t311. But one of tbe conJuncts in t

-.a.t be negated in the condition t' for reaching y; in Figure 49, we have

t' • t l 1\ t 2 • Therefort! IIt'lI n IItli .. fJ , and so CIz. t IIt'lI, which means

the path to y c8I1DOt be executed. Simply put, the topology ot the B1tuat1on

••tabl1shes a certain qtt which if true implies we get y next, and it false

_11e. we get xr next. Then since 'II € lIawll • this eliminates the romer

po••ibility, and ao we .uat get xr as the next letter.

rr~ the preceding &zogwDents,

'" • "xoql~~ ••• ~Xn ... ,

but alnee ~. e j , th1s means M(.E.t <~, 1> 1 terminates at tbis point, and so

~+l • CIza 1. the last letter of u .

So, Ife conc.luce t.hat u."', 1. e . , if .[E, q, 1>] is detel'lllinate and

produces If, then I)(E, <~ t 1>] is determinate and produces '01. Since the

sequence. ot aaaisn-ent achemata encountered are therefore identical, then

-.e, <~, 1>] • 11(2. q, 1>]. An argument s:1milltr to the foregoing yields that
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Here P, q are qtta, xl' • • •• Xr •1 are uaigDaeDt ac-...ata aDd eada at
y and X

r
IIq be eithel" an UI1gIaent Ictae.a or tue tem1Da_ e

J
•
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it .~ <t, t> J 1a determinate rw j pr-oduce.' ',/. then \II £, q, 1> J is

4etaa1Date and produces ". Asdn, wt: obtain I[E.. <~, b) '" .~ <t, 1>]

rc.etber, tbue results give I[Q. q. 1>] ;; M(Q, <e, 1>J for~' ~ ~ and

1. '!'bU- ~. =• .

(1) Certainly. the proof ot Theorem 27 can be given 1.n a far IIlOre precise

ronl, tor ex.-ple, in the context ot a supporting set of theorems like that

81nD tor Theor_ 26.

(11) Theorea 27 i. usetul only if !~ • M i 3 decUable tor arbitrary

I-expreulaoa a Md ~. It is to this problsa that we now turn O..u' attentiClft.

AD lDterentlal &rst.. tor K-e~ivalence

we 1ftveatlph the dec1dabil1ty ot K-equivalence by studyins the propertiea

ot -R. an iDtereDtial qatlS tor deriv1Jlg wtt. in h. Together. ~ and

~ e<lIl.t1tute tbe tomal theory ot lC-equ1valence, ~ • <fl;,.., tJ> • Later,

ve abcN that ~i 1. cc:.plete tor :F.... aDd tbat T~ a • M 18 decidable tor

arbitrary t%. ~ € ~ •

Here, aDd in subaequent discussions concerning the ccapleteness ot J, we

deal with ac.e fixed set X of K-expreBGlons defined avl';C .scae fixed alphabets

... and h. roc theae diacuaaiOl1s. 1t will not coacern us what the actual.

COIlstltuent. at these alpbabets are, or whence they cae. The point i8 ::iaply

tbat one 6.ppl1catioD at It-expreaalO1ls em involve the study at strODE:

equivalence tor E-progr... In that case, the aJ.p'labet.s art; defined u

MiJIC. • ,ft... u At.-. al.d .b • .b. u c. ' when the strong equivalence

ot I-Prot!reaa • and 1\ 15 the po1ftt in questiQll. This is why the :;ignature

• ~~s nc dire.:-t role here, 1. e., the set J(. ot X-expressiOOs is deterained

solely by the s,ts Atna. and .b •



;'t·· inferent1aJ system J =' < ;h.K' Ri" $pecitlea a finite set (. K

o" IV', schf!lllata. th~ instances of which eonst:tute a subsl!t of .'1;,:, and 8

finite set. R. K ot rule[, of inference. If Q '"' f.' E X if f:r'ite.t.Y derivable

using ~,then we 8Il;Y a. ~ is It. theorem lUld write I-a"" P .

The axi .. s~hemat.. and rules ,If J c~e tre. t"o sources:

(i) an analyslE of the axial! schemata and rules ot .,J 5 to detenaine

"bat properties ot K-expreaaionl they taply, and

til) an analysis of tbe in~·erentlal systea given by Salanaa(,8] for

deriving "ttl of the tOnD ex. C where a and ~ are regular ~xpreuiona.

We staJ' ~ by analyzing uian schemata ,g tbraugh !1. of Ax . Free ax1ca

schema £ Ln 1 _gure .:'1, ..,e~bta1D the following wtr of Jl1'\-:

b ppe v b :f.~e v b Pe2 • b De. v' b De...o ( 0 ... o 0'" -0 o~ -~

.bleh 5uggcr~B the followinS axiaa .~hemata for ~K

Cl

C2

pp • p

pp • 0
} p ill any propoaltlor., in P

lrca axiOllJ schema~ we obtain

b pqe. v b pqe1 v b,pe2 = b qpe v b qpe
j

V bo{qp v qp)e2o '- 0 " 0 0 r. ,

wbieh sugg- vts the fOlIc'" '1~ CiJUCI:! schema fCf k K

p, , ~ -P.

Fran axiom '-jeDa £. we otain

b (p 'V :J)e .. 1
0-0

Frca uiaa sch.-.~ we obtain

b (p ::l q)e V b ...(p ::J q)e
1

"' b <p V pq)e V b oOe
lo c 0 0 C~-



wblcb lUtlSutl the t,)llow1D8 axica .chell&ta tor h.x
~ : p -~. q .. p V q

~ : -(fJ J s) • pq } p, q € -p

Pre. alas s{'beIIa &, we obtain

b~o v b~~l • b~o v b~l

tdI1cb l1IIIe.t.: tbt! tollowing ax1c:a .ebeIIa tor -b-K

g:p.p p€"'P

!be r--.1n4er ot the axica acha&ta in h.
K

are taken directly tree r,,6J

.ere 8&lca&& u... til. to chU'acter1ze the equal1t)' of regu1ar ezpr...iODI.

!!: ex V (IS v 7) • (a v ~) v r ~: ava·a

£~ a(~) • (~)7 g: al.a

!J.: a V -IS • IS V a S8: ao·O

~: a<, v 7) • ~ V aT ~: :.:;VO.a

~: (a v IS)., • QI v ~

~l a*.lVQD!t

.!!:!: at'" ;. (1 v 0)*

'l'bla CCIIplet•• tIM 4etinitioa ot AJ JC • {£!, ... , £L, !!t ... , ,all}. 'l'be .et

"RE • (!k :E" W 11 4.tlDe4 u tallow••

!!: a. P • 7(a). 7(~)

III Et one 01' more occ:u.rrace. ot tbe K-exprulliOO a in .,(a) 18 replaced.

br es to give , (~). 'l'be rulea :!l aDd ~ correapood to !! ud. ~ ot 'R. aDd

.ern to <:barll.(,'t,t:ri-=e tI." .. IilI equ&lit)' relation.
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Sow.dJ,,, ' .. of th., Theory .rK

,',Ill" 118a.in, if the lheory J
K

is to be useful in t!·, derivation

of K-f''}1.'i'lalencc, then WE: ..hould require that the theore~~ Q;c t' of J K

be yalic, i.e., ~"' 13

Theorem 28: The theory :Tr.. ~sound, i.e., tor all ex .. ~ E: X •
~a.p.J-a.B.

Proo~'~ I'; is sufficient t., show tha.t the axiaD Icheaata in the a.i; As.K
gener""e v ..; 1.d »ts», and tJlat tho.> rules of inference in ilK tJ.l preserve

valid ' :,,'1 •

AxiCCl s<;bema ,,':

lin'" "' I.~;;01 : X'J € IIPll 'f sy, lIpli &. s € n
{Ii S E I!pll &. :3 f IIpi! & s E. 7}

I!pl!
This follow~ trlJt' the obvious result that tor all p € 'P, IIpll =7.

Axio:n sch..aa C2:

(Ippil· [xsy,.s c I!pll &. sy c lip:l. s € jJ

;" s il :> 11 & s € J -Bpi! It s en
,., 0

• 110"

Ax:;'CIIl sChema..Q:

IIpqll ., {x.y : xs E lIpll. ay E lIedl &. s E :r}

"' {s : 8 E lIpll" s E IIq.ll. a t: .7")
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• IIpll n IIqil
• Ilqll rl IIpl!
• {3 : a E IIl11l" s € IIpll. sen

• IIqpll

lip V Pli .% IIplI U IIpll

• .PIt u (J - IIpll>
·7
• 11111

Axica aeb_ E1 ~

Hp ::> edl • IIplI u IIqjl
• Up V lIIj

il---<p J q)1I .. 7" - lip ::> Clli

• :r - OlplI u Iltll>
.. T - « j - lipiD u lIedl>
• T - « 7" - IIpU) u ( '7 - (7' - 11'111»)
= J - (T - (lIpll n (J - IIll1l»)
- IIpll n (7" - lIedl)
.. IIpjl r IFill
• fa : b . IIpll. a E IIQJI .. 8 € J"l

• 11""

Axlca acblotll& £1.:

&I .. ::r - !Ipll
• :r - ( T - Upll)

• IlPIi



Axiur~ schemata Sl,. " 56: by the properties of set wUoo _4 let

intersection. The "v" operll.t. lIm directly corre.ponds to let unlCD,

and the "." operation c}rrespclId:; to let intersection directlr tor

K-expressiolls which are propositions in P and indirectly tor It-expreal1CDs

in fl'wer&1.. To see this latter point. notice that it

;;a· (I € 7: tor: ClDe x • xs E 11al1)

'13 • {II € 7: tor scae y , sy E II~II}

"a .. (l( : tor IIC1De s € 7; xs E IIaIIJ
x.

13
• {y : tor seae s E '{, Iy € 1I1'1I}

then

AxiCID scb... ~:

IIalIi '" {xsy : XB E: i1alJ &0 q E 11111 ... € n
• {XI : XI E ltall &0 • € j}

• l!all

Axioa sch... ~:

IICX)II • (x'Y XI E Iloll ...Y € 11011 ... E T)

• {xay XI E 11011 • IY f fJ &0 lET)

• ¢

Axica .~~:

l!a V 011 • 11011 u 11011

&0. \\all U fJ

• 1Ia11
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Ax10m schema ..:ll2:

III V c:n--II
• lilll u I/<n*1/
• 11111 u {xsy : v: ( !la/I & sy € 1Ia*1I & sEn
= 11111 u {xsy : xs E Iiall & sy € 11111 u lIall U 110011 U••• .i sE.7')

= lill1 u Ixsy ~ )(5 E liall &: sy E 1I1ll)
U {Xtiy : xs C 1I~1I &. »s E Ila/IJ
U {xsy :xs ( jiall & sy E lIcull)

• 11111 u lIall u Iknll U 1Ia:n1l U •••

• llall

Axiaa schema ,!!g;

11(1 V a)· II

• /1111 U III V all u 11(1 V a)(1 V a)!1 U II (1 V a)(l V a)(l V a)1I u ...

.. 11111 u (11111 u IIall)
Li(11111 u lIall Ij llooll)
U(11111 u 1Ia11 u lleall u II~I)

• 11111 u IIall u 110011 u IIcxnjl u ..•

- IIa-II

Rules !!.~: these rules refiect the s~etry and 8uDstltuti·..-ity

properties of set equality.

Rule~: First we shu~ that a = ~*1 satisfies t~e equation

(] = 7 V ~. Substituting fu," a. we have
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!Il v 13(13*" )11

e- 11(1 V ~*hll

• !1~*111

Now we show that the solution a .. ~*1 1.a unique 1f! J ~ \I~II .
SuPf0/,;e that J t: II~II., but that there exiats another solution Y, i. e.,

IIYII ; II,. v ~ -:\1. Then fran

1I~1*\I • 117 v ~*111 • and

IIYII • \17 V ~Yll

we obtain

1113*111 - IIYII
,. 117 v ~*111 - 117 V ~Y\l

.. (\17\1 u 1I~*711) - (117\1 u \I~YII)

.. \I~*111 - II~YII

'" {xpy ; xp € II~II & T!Y € \I~*7\1) -{uqv : uq € II~II • err E IIYII}
.. {xpy : xp € II~II & P1 € 1I~*7\1 - IIYII)

IkJ that

(1I~*711 - IiY!1) - {xpy : xp € II~II • P1 € (1I~*711 - IIYII» .. _
1. e , {xpy : xp € ('7 - II~II) • P1 € (1I~*7\1 - IIYII)) .. t/J •

But thia meana that either ::r- 1I~1l .. fJ or 1I~*711 - IIYII • _. SiDce

T ~ II~II • we cannot have J - I~II .. t/J , ao theretore we .at baTe

1I~*711 - nYIl .. ~ , i.e., 1I~*7I1" llyn. 'l'bu., :r E II~II ... the .oJ.utiOD

ex .. ~*7 is unique. This azoguaent could be 81J11plitie4 .~t it "_It

were introduced .. part ~! the formal definition ot ~-e..~e••l0D8. 1.e••

it we defined IItx - ~Il .. Iiail - \I~II .
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To see that the 8olution a .. ~*7 is no longer unique it J ~ II~II ,
first ob.ene that J ~ lI~d 1mp~ies that tor r:;a!le K-expresslon3 1£, v

e1tber (i) l! is 1, or (11) ~ is 1£ V v anel either '7 ~ II~II or

'7 ~ 1"'11 , or (i11) ~ 11 I£v md rS; II~II and 7" ~ IIvll ,or (iv) ~ is ~••

'!'bell a 81J1ple inductive ar~ent on the structure ot ~ gives us tha.t

T .:: II~II => II~II • III V 011 tor 8cae K-expresslon 6.

'nlsn, usua1D8 J~ II~II and so 1I~1I. III V I'll! , we can .how that

CIl • t'*1 V t'*X, tor aD¥ It-expre8a1on X, is also a solution of a. 7 v l3a •

8Db.t;ituting tor a, we have

lla V fl(fl*7 v fl*x)1I

• 117 V (1 V (,)«1 V 0)*7 V (1 V 5)*x)1I

• 117 V (1 II 0)(8*7 V t*X) II
"" 117 'V 0*1 v &*X V 65*7 V 55*xll

• 11(1 V ~*)r V &*7 V(6* V 80*)xll

• 11&*7 V l'l*? V (1 V eo* V 80*)xll

• II &*1 V (1 V ~* )XII

.. II 0·] V 511-xll

• II (1 V 0)*7 V (1 v~*xll

• II ~*1 V ~*xll

n l n COIIpl.etea the proof of .oundDe•• ot T
K

•

811

S10

as required.

I
One i-.ediatE and very u8etul re8ui t of thl. soundness ot J

it

arises trca the identity ot !!. ... , 811, n. ~ 1'2 with S&l~'. axlcaa

_d. rules!'81. EY14ent1¥, the set X ot lC-exprelli0l18 over the alphabet.

b aD4..+t..1I identical to tbe .et ot regular expre..ion8 over the alphabet

t - h u (P - (0, 1). l'Iov, it a and ~ are two such regular expreuiona

and lal. Il!l , then a. ~ is derivable trca ~ through sa uaing n. ~
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and~. "hus, any ~! the s~ar.dard der~vability results concerning regular

expres s . 'jm' car: be "-ppL.ed tc<. -expr e s s i ons If we take tbe &lpha~et as

In fact r.lrt s ~" t.rue for any sub- SEc?~ X that can be regarded as

Pl: :ex v ~,* " t"'(~~..... )..

P2~ :::((jCl) 1 (~ia*

£'3: <Xl'
,_.
"

~: lex ;0 a

"... .

In dt-riva:ior.s. ve \oIi:'·~sp. P:, ... , :u t o denote these standard derivations.

Remarks:

{i) ?he K-expressions derived from E-programs have certain character-

j stic feactures. "or eXWll:)le, we Call wri';e any such K-E:xpression in •

!'crm ..,here "v" a.r.d U*U appear only in the constnlcts (pu V py) and

Cpu)";; resr,ectively. Here 'J and v are any K-express1ons and p 11

a qff serving as a discrimmator ln the E-program in llUe8tlon. Apparently,

lmgeln.r [1.3] has pinned '.-e form of such K-express1ons down precisely.

Ito ~:;'f)J d i scusse s wha:' sort of objects coula give rise to K-expre..lonl not

derived from scneme3 like E-programs, namely ~ertain Doc-deterministic

progr8IIlS •

(it) By making use of this knowledge of the form of K-express1ona

derived from E-programs, one can show that for such E-expre581ons, the

condition on rule.:Q, namely tbat "T't: 1If3!i ,. can be reduced to '7~ lIesll •

(lli) Also t it is possihle to give interpretation ot 3ala.aa'a

axians g,.... S5 1n terms of the structural properties of E-prosr.... Tbe
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po1Jlt is that properties that can remain unformalized in the graph

repreleutatloo ot E-programa, mst submit to axlanatizatioo when the

l1Dear reprelentation ot K-expressions is adopted.

(Iv) ,.. well, the rule ~ In llK is a direct counterpart ot~

tile recur.leo rule, in t9.. Tbe connection bet~'een these two warrants

further investigation, especially the relationship of the side conditions

tor ;he application ot each.

(v) With a canplete Imowledge of the relationship between E-prosr"

cd the .tructure or K-expressions derived from them, we can see how to

extend t.he result of 'l'heorem 27. Thus, if ~ '\i .. '1l then ~ II =e ,
but in addition, we can derive '\i. ~ using the mana and rules ot J.

!beD thi. derivation could be U8€U to indicate a derivation using ~.

ot the wtt • =e , so that not only would at.rong equivalence be detected,

it vou1.d be derived as well. We leave these matters in their preseDt in-

eaIIp1ete Itate.

Mecpacl of the '!'beory 7
K

fte theory J K being .-!equate means that if t- ex .. ~ where

a,~ € ~ then ~ a • ~ ; tbu, we can rlerive all instlll1ces ot K-equivalence.

The tirst Itep in obta1DiDg thla result is to prove propositional adequacy,

~UI thia 18 the content ot tbe following

'!'bear.. 29: j=P. q .. t P • q for arbitrary proposition. P, q E 'P •

'l'hi. tbeor.. 10 f&Ct ..sure. u that the axicaa .sa. ..., !!L are CCIIIp1ete

1D the .enae ot the proposi tiODal. calculu••
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p "" 1 (whpTl

the pr-» ('s t: r,r

develop t'Y !lO:) ( :;

.rut.h,

Le.,v', J. ....rut." -..so:.:. . ...-. r

'J fJn::.:1, DJ L..

, .... .J

v(o)

~ f \/,
)

it v,

o
j

Vi. ,,-'-.

Since \lie ','tc :, _~l·win,., tr.e nc t i ons o f propos':' tional calculus, we 1Ia,y

P E. 'f il" tau~Oi()g'y, ann vri t e
.<-

1= p , iff for all v € ;r, v(p) • 1 .

,(e tie tordhe· ".he :l<.t~.>l.:, 0' ,<-('-vents of propositions being truth,and

tnose propos i.t l o-.s bei."j' t;.JUtoJ.n~iC's, ~r. the !'ollowing

i.e., theTheorem 30: Fe:- My pr('!,(-,.~ition p E. "P, r=p"" 1- J-+p-'------"--
K-event for p .. '.roth ,lust ir. caSE t' is a tautology.

~: Evidently, we must shov 1,;. (Ilpli for all u € 7' • u(p) .. 1 tor all

214

Reproduced from
best available copy



tor an arbitrllry v (7. VI,: 'l~,' :1.:' .nJ;.;,·t -, !Jr;'l~f on the structure

ot p.

(1) If p is 1 J then IIpl; =- jll:: • -7 -"~d S0 \.l c II}.>!! for all

u €::r. Mareover. u( p) = u( 1) = 1 fer all U t 7; Thus

v € lIpll .. yep) .. 1 , atncc v ( T.

(il) It P il' O. thr-n lip;:: Ilo;~ . r, an-I so '1 f IiIlI! for

all u €;r. Mor~cver, u(p) u(O) = 0 ,i.e., u(p) ~ 1 • for all

u €:r. Thus v € Ilpll Q v(p) = 1 • s i nee -- ( 7.

(111) It p 1s Pi ~ At.., then lip I! :~ IIi' ·11 = f S B, s 1 € 7:
1 c... m·

'1 • Pl }. Thus. v E: IIp i li C;> vi = Pi Moreover. yep) =- v(P i ) =- 1

itt vi" Pl • so that together we have v E: ii~li cot v(p) ~ 1 •

Uv) If' p is (q ~ r ) , q, rEP, then IIpll:: Ilq :::> rll =

IMII u Urll. Thus. v ~ Ilpl! =v E II-qll u Ilrl! ,i.e.. v t. IIqll or
V € IIrll. Moreover. v(p) = v(q :::> r) :: 1 iff v(-q):: 1 or v(r). 1 •

i.e., v( q) ~ 1 or v(r) = 1. By induct ion hypothesis, v € IIrll ..

vCr) • 1 and y € IIqll .. y(q) = 1 • 1.e., v; Ilqll • v(q) " 1. Ttlen.

tuen together these results give v E IIpll .. yep) '"' 1 •

(v) It p is (...qJ. q E P, then Ilpll:: Ikll .. '7. IIqJ, •
Thus, v E IIpli ... v € 7- IIqll , i.e.. y ~ IIqll. Moreover, yep) - v(-q) .. 1

itt y(q) .. 0 , i.e., v(q) 1 1. By inducti·~ hypothesis,

v E IIqll .. y(q) '" 1 ,1.e.. v; IIqll e:t v(q) ~ 1. Then taken together these

results give v E IIplI .. yep) .. 1. This com:pletes the induction and proof. I

Because the classical proposition&:.. t. '::'~lus does not allow the

eon.tent.s 0 end ) • we will have cause t.o utilize the mapping

R : 1' ... »: defined as follows
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R(O) .. -(p ~ p ,
o c

ft(l) • (PO ~ PO)

R(p ~ q) • R(p) ~ R(q)

R(-p) • -R(p)

RePi) .. P:

} P, q (" (-J

Thus, tor any p ( ,0, R(?) conta1ns no 0 or 1 but tor all v C J;

v(p) • v(R(p» Th1s r eau.lt follo....s from a simple inductive proof OIl

the structure of p atilizln~ the fact th&t v(p ~ p ) .. 1 , sinceo 0

Consider the fc'lloWinf three axiom schemata and rule at interence.

(1) P ~ (q ~ PI

(it) (p.:::l (q ~ r»):; ((p :::> q) ~ (p .:::l r»)

(iii) (-p ~ q) ::J U...... .:::l-q} ~ p )

(iv) P, p ~ q +<; ~odus ponens

P, q E tJ'

•

This inferential system i s given by Mendelson 3'1 tor the proposit1OG&l

cal.eu.ius , I~ a propos tt i-m p €,r is derivable ill th1. Q'at., then we

+
write ~ p ~u de~ute thlS. Since this ~ystem is known to be botb sound

and adequate, ...e have that for all p E ~ , 1-+P • 1-+P •

Let us now outline the steps in preYing Tbeor_ 29. rust, tor ~

p ('P, we have

I-p .. 1 • ~+p

~ ~+R(p)

~I-+P(p)

.~R(p) '" J..

.~P -= ::.

by Theorem }O

property of the mappinS R

completeness of the inferential

system for proposltlmal calculus

th1s we IIlUst sbo;··

this we must show
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Then this will a11o'ol us t.J finally show that 1=-] z; : -=';> I-p '" q , f()r

all,)' propositions P, q (-P. So the f:'..rsc step ic t.o ~L~"" that

~+R(p) • ~R(p) '" 1 , i. e , , we have to show now t ; dmh: a der Lvat i o.

ot R(p) using the inferential system given above for Lhe pr-opos i t.LcneI

calculus, 80 t.hat a derivation of R(p) ~ 1 using the lnff'rellt l.a: system

d is produced.

In Appendix III, we show how tv construct the f'o l.Lo« lilt! cer tvat l ons:

(1)

(11)

(11i)

(iv)

~ (p::> (q ::> p» ., 1

~ «p ~ (q::> r» ::. «p ~ qJ ~ (p :» r»)

~ «~ :J q) ::> {(""i> ::>-q) :J p» • 1

~ P ::J q • 1, r-P. 1 • ~q = 1 .

1

~ given lID)' derivation ~+p , we can construct the required derivatiOl1

"p . 1 by .~eklng each step ot tbe tormer with the appropriate derivatioo

li.-D 1D Appen1ix III.

!be next .tep i. to show that ~ R(p) • 1 .:I-p • 1. 'l"he appropriate

OCCUITeDce. or -(Po::J po) and (po::J po) in R{p) caa be replaced by

o .ad 1 u.ing the tollowing derivations:

(1) -(Po::> po) • Po ....Po c6

• 0 C'2

(11) (po:') P(l) • '"'Po V Po C5

• Po V ""110 ~

• 1 ~

'!'but .0 tv we have abo1m that tor my P € t', ~p. 1 • ~P • 1 .

low, to ue. I-P. q • ~p • q, Dote that ~p. q • ~ -q v pq • 1 •

lie c_ ...u" verlt,r thh .. tollow••
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II -- p ~ q v Nil Co Ii--- p - qll u IIpq:l

(lk>il n Ikll) u (i1pll n IIqjl)
«(T- Ilpll) n (7- Ilqj!» u (llpli u IIqJ,>

'- «(:T- IIqll) f1 ('T- IIqID) u (/lqJl u IIQ./I> .iDae lipI! • IIq/l
(-::T - Ilqll) u Ilqli

""7

'" illil

Then, ~r = q ~ 1= - p - q v pq = 1 ~~. - p -- q V pq • 1 u.1ng the

derivabi11ty results already obtained. Now conaider the following two

derivations

pq '" pq v o ~

= 0 v pq ~

=~ V Pq sa
• - p - aq V pqq .£! and ~

(- p - q v pq)q ~

= 1 q .iD,::e ~-p-qVpq.l

: q p4

p~ pq V o !2
= 0 V pq ~

.r .... q 0 v pq sa
,,~q-pl' V P<Il' £b ~ and~

= (- p - q v pq)p !2 and 2
"" lp .ace \--p-qVpq-l

'" P p4

'lb_, .inee I-pq"" pq by !! and.!£, we u.e ~ -S&1D to nb.t1tute

I-pq • p and I-pq. q and so obtain ~p. q. Tbu., t-P. II ~"'p • q • I
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Betore we discuss the adequacy of J
K

in general, we need two furtber

results (Theorems ~l and ')2). Recall that VS denotes tne conjunction

fozwed with "v" ot the formal objects in the set S, and v1J = \) •

'l"beorea '1: For my pr01losition rEP, tr. vllrll

Thls eorresponds to an existence theorem tor the full disjunct! ve normal

tom nt the propoll1tional calculus.

l!:22!: First l.et us extend the result ot Theorem 29 and show that

~p • q • ~p • q tor arbitrary K-expreesions P, q E -p+ where

(i) 'P s p+
+ + +

(11) it a, e € P then (ex V 13) € P and (oe) € tJ

(111) eztr~ clause.

'ftad, we Wlftt to extend the adequacy statement ot Theortllll 29 to the closure

ot l' oYU' "\1ft .nd ".... The entitle. ot 1>+ are stIll propoaitloaal

iD nature .iDee 'V1f behaves as di.junction and

COnaI4er the tollowins derivat1oaa :

It ..

• .. ccaj\mcticro•

r •• I' - - •

rvs---rv.

- (- r ~ .)

r, • E l'

U.1III tile•• 4el'h'at1oo., we em eoavert UI7 t €.,t uto a propoait1orl

t' E ", such tbat ~t. t'. Thls follow. trca a .1IIpJ.e 1DclueM.w

.,+ +.....t oYU' the .tructure of t € • 'l'ben far P, q € l' ,
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+-p • q ~ ~p' • q'
~ ~p' .. q'

~ '-p • q

by the above argument

Theorem 29

by the above derlvation~.

'!'hen, to IIhov ~r .. \Jllrll ..6 required in the statement. of Theo:'eD1 31,

we tirat abow ~r .. "llrll and then apply the ext ende d adequacy result just

obtained. lotiee that tor a word :Jf truth v .. Vo vI .•• v
lll

_
1'

IIvll .. IIvo Vl ••• vIII_Ill

• ni<ID IIvill

• nb {ao s1 .•• slll_1 ;c j: !Ii .. vJ

• {v v1 ••• V 1)o a-
• {v) •

~eD to show ~r." 111'11 J we have

l:vllrll II • Uv f 111'11 IIvll

• ~ f IIrll{v)

• 111'11 &6 required.

P'1Jl&1..Q', +-1'. v 111'11 .. ~r • v 1:1'11 trca the extended adequacy relUlt

obtained above.

In the proot at lIdequaq for TK , we uke use of the DOtion at

.tudard K-expreaaions. A K-e:ltl ~eB81011 a E X 1s said to be standard

1tt it 18 at th. tCll'a

I

Po v•••V 11&-1 V .ozoto v ••• \I a.(_lx{_1t

'_
1

were Po"'" 11&-1' '0. to"'" at _l, t.t_l E 7, XO" ••• X.l_1 E )(,.

and Jr.. J.< "'. Jr. +.L < w-. We denote by X - the set ot all standard.

1C-upr•••1Cl1l8 1D oX •
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We shall. ma.k.e use of the synt.act ic oper at.i on 31:', - " ~.;- ....}.~-

which all.ovs us tc "multiply out." tvc s t ar.uar-d K-l"xpre~si:lll;·. If

a - VA, ~. VB and a,B E J{, the!':

ex~ ~ • v(xpy : xp E A & py (. B & P ( J) .

Ita foil illuBtrat:l ve eXllIllp..Le \Ie have

(a1 V s2 V 3 1XS2 ) ~ (81 V s2ys3 V SlZSl) (Sl V Slzsl V s2YS~ V slxs~s3)

wbere sl' 82 , S, E '7 and x,y, z E. ){. Concerning the idea. of standard

K-expres8ion and the ~ operator, we ha~e the foll~wing

'1'l'eorem $: For 8AY standard K-expressions a and f'3, b~" ex ~ i3 •

!!22!: Firat notice that for ar~ distinct u, v E ~,

lIuvll • (s s € Ilull & s E Ilvll & [; E j}

.. (a s € {u} & s E (v) & .. E j)

. ~

IIvvll • {a : 8 E IIvll & s E IIvll 80 5 E :I }

~ IIvll

Thul, ~ uv • 0 and ~vv .. v. This result together with repeated

~le..tlon ot ~by wbicb "," 18 aeen to distribute over 'V n , and

.!2,by which any extrfolleous 0 is dropped, yielclsthe desired derivation

of \J~~. I

Also used in the proof of adequacy for.1K if. the notion of~

!e lC-expreuions. For any ., EX, the K-expression H(7) i8 8ald to be

• DClJW&l tora of J iff N('Y) is Il regular expression over the alpbabet

h U J and !l711· IIN(7)11- IN(7)\ •
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Since th~ s~cture of normal form K-expressions plays a key role in

the sequel, let u. ~ODsider some examples wh1ch make th1~ struc~ure clear.

Suppost' that ~ = {p, q) and 11 .. [x} ; ther.

Below 1S ~ list ot K-~xpressions and a possible normal form for e~ch,

K-expreu1on 0

(p ::l q)

-(p ::J ~)x

(-(p ::J ~)x)*

A Normal Form N(O)

(pq V pq V pq V pq) x (pq V pQ. '/ pq V pq)

- --pqVpqvpq

pqvpq

pqx(pq V pq V pq V pq)

(pqx)*(pq V pQ. V pq V pq)

We are now ready to discul8 the over&l~ adequacy of .7K, and we

Itate the ma1n result j n the following

'J'beore:ll '3: For any K-expr~ss1OD8 a, ~ € X, r-a & ~ • ~ • " •

E!:22!: root us first give a sketch ot the proof.

We first prove a Nomal Form Theorem (Theorem }4.) which It.tes th.t

~ ., = N('l') tor any K-expressj.on ., and scme normal. form Ib') •

Adequacy tolloWI ~diately: ~. ~ ~ 1Ia11 • """ ..

IIN{a)1! = IIN(~)II.llf(a)1 • IN(~)I • and since Sa.lalWLtl syst.1.

adequate, 'I I(a) I • 11(") I~ ~I(a) • 1(,,). The nonaal. fon theorem

then giveil I-I(a). 1(") • ~ • ~ , so that altogether we baYe

I-a • ~ .I-a ." &8 required.

!be first step, then, 1s the following

'!'hear. ,..: (Nol'll&1. Fona Theorem): For any K-express1on Q, eo. N(a) .~

where 11(a) is!l nOl'll&l. form ot Q.
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~: The proof is inductive over the ztructure of r), We defiJlt''1

11!ple lC-expresu.cD &~ one in which no "*" ol'curs, ar.1 l,·t
+

.'t ~.',

I.t of ~ 11ap1e K-exfreasions. Thus y.... is the cLosure cf

F u h over "v" &r.d ".... We prove the result first for 0: E: 1(+

<..a1D by iDduction on the ~tructure of 0:) and t.her: feT j -, 03* ,

whe... t- ft • R(~) it.:>w induction hypothesis.

Suppole a 11 lunple; there are :four cases tc consider.

(1) a 18 an operator Si E h. Then we take

R{a) • N(gj) C v (pgiq : P, q E .TJ = VI!gl 11

we have t- 81 • N{gi) as follows:

11 • gi ~E

• 1&i1 !L~

·\17 . 8i • \17 Theorem '1

• \I hwiq : P, q E j) !±.. 85

• I(Si)

(11) a 11. propoaitiOD p E 1'. Then we take

I(a) • R(p). V IIpli
ad ~ p • R(p) by Theorem 3l.

(111) a 11 e v 1 . Then we take

I{a) • R(lS '111) .. N(lS) \I 1(1) •

... induction bJpotbeail, I- lS • R(ft) and 1-" .. 1f(7), 10 that

I- IS v 7 • I(ft v 1) &I required.

(h) a 11 ft7. Tben we take



The "fl' is pera1aslhle since evidently the normal tOI'lU we generate for

limple K-expres.lonl ftre th~elvee standard K-expresslons. B,y induction

hypothesis, I- I' a R(I') and ~l' ,., H(7), 80 that ~~ - 1(1') 1'(,)

by~. Then Theorem ~ gives ~N(t3) H(r) ... H(I') ~ ft(I') , 80 that

tinall,y, ~",. H(",). This canplete 8 the induction for tbe cue of

staple a.

So tar we bave shown tbat I-a., N(a) where a ia simple, but to

ver:! r.v that I(a) is indeed a normal form ot ex, we must also show that

III(a)1I & II(a) I , where tbe regular event II(a) i is evaluated considering

I(a) as a regular expression over the alphabet buT. It is straigbt­

tOMf&Z'd to show trc. tbe definitions 1n (1) through (iv) .tIove that

I(a) 18 in tact a regular expre..lon over b u :r. We DOlI prove,

-Cain by 1n4UCtiCll1 O'rtIr tbe structure ot a, that III1(a)lI. II(a) I .
T.ber. are tour c.... to consider.

(1) ex 1& an operator gi E ).j and I(a) - V bliq : P, q E 11 .

• II V(PS1q : P, q E J111

• Up, q € ~IPllqjl
• Up, q € 7(rx : r € IIPII • rXElI8 i qjl " r E 11
- Up, q € ,.£rx : r € (p) • rxE Cut : ut € 111111 " t € llea1l • t € T))

• Up, q € ,.£rx : r - p • rx€fut: ut € bl11D : ., DE T) • t € (q)))

• Up, q € ,.tpx : px € (ut : ut E (-Sin : ., D € 11 • t • q)}

• Up, q €,.£px : px E (uq: uq E fll81D : ., D € J'1))

• ~, q € :r!PX : px E (lIIi q : III, c. F 31)
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• Up, q € ;r{pgiq)

• (PS1q : P. q E j)

II(a) I
• Iv{PS1Q : P, q E T)I

• Up, q € 71psIQl

• Up, q E.7(UV : u E Ipl & v C 18i Qll
• Up, q €7(uv : U E {p} & v ( fxy : x E Igil & Y ~ I~I}J

• Up, q E 7{uv : U • P .. v C (xy : x E [gil &y E fq}}}

• Up, q E ~PV : v E ~xy ; x .. gi .. Y .. q}}

• Up, q € :r!pv : v E {8i q] }

• Up, q € ~pv : v • ii qJ1

• up, q € ,.{PS i q}

• {PS1Q : P, q € ~} ,

ao that 111(0)11. IR(U) I in cue a is 8
1

€ b.

(ii) a 11 a proposition p E "P and N(a). vllpll. Tben,

1Ii-(o>!1 • Ilvllpll II
• IIpll by Tbeorelll '1,

II{a~1 • Ivllpll I

• Ur € lIpll lr l
• Ur E Upll{r) since r E .,-

• IIpll ,
ao tbat lIx(o)lI. IK(a)l in cue' Q 18 P E "P •

(111) a 1. ~ v 7 an~ I(a). R(B) v 1(7). Then,

III(a)1I • II.(~) v '-(7)1I

• II.~)II U 111(7)\1
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• II(~) I u ,.()') I

• II(~) v B(r) I
• II(a) I

by induction hypothesis

&8 required.

(lv) a 1. D7 aDd R(a). N(e) ~ N(r). Then,

III(a)\I • \I1'(es) ••(7)1\

• IIv(xpy : xp € B II py € C • P € 1J 1\ ,

where If(es). VB U1d R(7) - vt: , By induction b¥Pothel1s,

IIJ(es)1\ • I'(~>I, 1.e., 11vP1I· IVBI , and trOlD ttll. we can euily

IhQIW that IIzpll. lzpl tor all xp € B. 61mllar17, trca the in­

ductlcm bnlotM.1a IIlb)l\. l1'b>l , we obt..1n IIwll· Iwl tor au

py £ C. U.~ the _-.antic. ot ".'f, thll lut relUlt Call be r ••tated u

{pr.: pc E 11711) • {pr. : r. € b'll , 10 that tor any v t

pv E 11111 • y E 11'1. To cc.plet. the evuuatioa ot lI(a) .tarte4

above, notice that

IIxp 071 • (up\" I up E lIxpll • pv E 11711)
• {upY : up E Ixpl • v € 11'Il, above reault.

• Ixp-,.I .
nUUl,

IlB<aJl. 11v{. : xp E B • PJ E C • P E :T}I\

• Uxpy : xp € B • PJ' E C • P E.,.lIxprll
• Uxpr : JEll E 8 • py E C • II E ,4zwl, .tKml raault

• Ivr. : xp E B • PI £ C • P ~ T) I
• '.(a)1 ,

!ilia., 80 hl't "a ban Uotc that tor ~ .UIp1AI I ......laa

ex EX:, ~. I(a) ..... I(a) 11. 1IOl'Ml (.a4 atMdar4) tora



ot a. How, let us complete the proof of Theorem }4, by show1nl

that ~es*. N(~.) where by induction hypothesis, ~t: '" N(t3)

Since I-~ ~ N(a) , then ~~* '" N(B)· ) and Slnce N(a) is a

Itan4ard It-expre881on ot the form ao 1/ a1 V••• V am_1 ' m < w then

I(es)· 11 of the fora (ao v ~ v..•v &m-l)*. Now, if eo is ao*

and en 11 (anBoBI 8n_1 )* , 0 < n < m, then

~ I(~)* ~ 6
061 Bm_1 .

This tollow. simply it we recall that e is regular over b u :r and

then apply!!: (a II ~)* e a*(~)* repeatedly. To see the form ot

9
061 .•• 6._1 ' consider the folloving eXBDlple of the above result:

~ (a V b V C v d)* - a* (ba*)*~ca*(ba*)*)*{da*{ba*)*(aa*(ba*)*)*)* •

HIre, M.4 and,

.(~)* - (a v b v c V d)*

6
0

11 a*

81
1. (ba*)*

82 18 (,.*(ba*)*)*

8, 11 (da*(b.*)*(ca*(ba*)*)*)* •

SiDce ~ es* • I(es)* and ~ S{es)* .. °061 ••• 9m_l ' Ve then have

~ ~* • 9
091 ••• 9.1 us1nc~. Now, tor the _ent, let us asllae that

we can abow

~60 • 1(60 ) , 1- 81 • N(91),···, 1-9• 1 " N(9._1) •

'1'beD, a.iDs ~ -Cain, we have I-~*. N(6
0)H(91) ••• N(em_I). Tbeoreaa'l

tbeD yle1dJ1 H~*. N(8
0

) 8 N(91) 8•..8 N(9...1 ) . By an argument prec1aely

~1k. tbat given tor the case ot a1llple a of the form ~7, we bave that

111 (8
0

) tiD 1(91 ) e...8 N(8m_1 )11 • 11'1(9
0

) • N(61) 8 ...~ N(6Ii-l)1



l'.nd f'UrtbelWOZ'e. aiDee 7' 'K. ia aound, we have

11"*" • 11..(90 ) .11(91) •••.• 11(6._1 >11

ThUll, by 10M definition ot nol'll&1. t01'lll, we can take N(/3it) to be

N(Oo) .1(6
1

) ••••• 1(9..1 ) 0 What raa1na tor ua to abow is tbat

1-60 • 1('0>' 1-91 • 1(91 ), . 00' ~9..1· N(9._1) •

WP. wW eo. inductl,-bDv to cUT7 out then derivation.. F1rat we

llh010l 1-90. 11(80 ) , and thea ulna1.DC that we ha'Ye r-80 '" N(Ele), .•• ,

~en.1 '" 1I(Bn_1) , we ahow 1-90. lIceo) , 0 < •.

Since '0 1. .0 where .(~) .. C·o v ~ v...v ".-1)' there

are three poallbUittea to condder in light ot the tact that

C.o v a,. v...v ....1) ia ••tandm.'d 'K.-expre..lcm.

(1) .0 11 au }

(11).0 1. axt tor Ic:.e I, t E: J

(111) a 1a •
o

We CODI14G' 4er1n.tlC1ls !2" ~ m4 !l. tor eacb cue in tlll'll

n: (au)*. 1 v axa (eo)* !!Q

• 1 v ex(ux)·. !!.
• 1 v ax(aa)*1 £!
• V1' v IZ(IX).' 'l'heor_ :51

~: (axt)* • 1 V ext(axt)* .!!2
• 1 V azt(l V Ixt(axt)*) .!!2
• 1 V ext 1 V .xtaxt(axt)* ..-
• 1 V ut V lsOzt(axt). 'fbecr_ ~

.1 v ut ~§

• VT V ext 2'beor.- :51



!L: Firat we ahow ~ 1 • 1* .

1 • 1 v 0 ~

• 1 v 01 si

• 0*1 T"
~

.0* g

• (1 V 0). S10

• (0 v 1)* ~

• 0*(10*)* !1
• 0*(0*)* ~

• 1 1* Since 1-1 e 0*

• 1* ~

!beD .. han,

a* • (1 va). !!!
• (vT v a)* 'rheor_ '1

• (vJ")* s6

• 1- Theora '1
.1 Since 1-1 • 1*

.v7 'l.'heor-. '1
It i. a .tra1lbttOl'Vard _tter to show that becmn (.0 v ~ v•••v all-I)

18 a DCIlm&1. tom tbeD .0 18 .0' 1. e, , 11.
0

11 . 1.
0
I ,where .0 18

nplar over ~ U 7". rrca thia we can eaa1l7 obtain that

\IT V u(.x)*. , vrT v .n , or v r , u the eue~ be, is • DO~ tom tor

.0* , 1.e., tor 90 , P\arthuwore, th1. n01'll&l rona, wbicb we~ nov

w1.te u K('o) 1. al.o ••tmdal'd tom, u 11 required of all nOl'll&l

rom. u.e4 1D the proof ot tb1. tbeor_.

'fa cc.plete the coa.truction, .. abow how tr<a

~o • K('o)' 1-61 • K(91),···, 1-en_1 • K(en_1), n <. , we b.ve
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-9
n

"' N{( .. !. R~call that () ~8 (Il. 8 "i .. , (J .)*. ';'. tl'e~
I. n J" I' r..-~

~9n - (an9061 •.. 9n_l)"

by !! and :l... Since the norma.l forms N(6o) •••.• N(9n_1 ) !H~V"

been assumed derivable, we bave

~9n ~ (anN(90)N(8l) ••. N(9n_l »*
Then. applying 'l'beorea ~,

~9n '- (an 8 N(Bo) 8 N(91) " .. 8 N(Bn_ l »'" .
Because a is a .ingle disjunct of the form axa. ext or :, for

11

SOM I,

the torm

t _ tr , then a 8 N(9 } 8 N(Bl) " .. 8 N(9 l}n 0 D-
must be of

s V aXes 1/ ••• \1 s~_ls" sY..,to 1/••• \1 syl_1t'_1

where the leading a E:: 7 --.y be abaent, and where

xo' ••.• ~-l' Yo'"'' Y.L-l E Jt., Il,..t < W , to... ·• t.l_1 E T,

~ < c.J • and are distinct tro;n 8 It all the disjuncts are absent,

ve have s1aply ~8n. 0* , and we CIID take .(8n) as v'7. In aD1

case, we CaD eas1ly generate a nora&! torm here by aakiAg use of the

tact that the lett.o.t worda ot truth in the disjunct. of tbe

expreadoo are the a.... n.-el,y a.

Firat, let us sbow that ~(I V o)•• att tor ItDY 1fT and

(l e J(,

(s va). - (1 v a V a)*

• (v7 v s v a) *

'" (\IT "a).

• (1 V e).

-(rIt

s6

Theorea'l



Thus. 1t suff1ces to consider r'md ing il normal form f'c.r

IXS V syoto \1••• \1 SY..t_ltl _1, where X ~ vlxi}i-.:.k.' i.{:., Wl.

~ 1s;nore the l"ading s even if it is pr""ellt. rc ad t ~1Jrther

brev1ty, we rewrite th~s as

the to11ow1ng derivation.

3XS V v(syt.}. 1
. 1 1 1<

Now, con si de.r

(aXI \/ v{ay 1t 1)1<1)*

(axs)*(v{aY1ti)1<~ (sXs)·)*

• (aXs)*(v{ay 1t i } 1<t(1 v sX(sX)*s))*

• (IXS}*(V{IY1ti)i<.l V \/(sviti)i<tSX(sX}*s) •

.. (sXS)*(V{SY1t1}i<lV a)·

• (IXI)*(V{ly1t i } 1<L)*

• (lxa)*(IYoto}*(V{8Yitili<l -I)*

• (IXI)*(IYoto)*(sYlt~)· .,. (sYl_ I t1_ 1 )"*

• (1 V IX(_X)*_)(1 V 8Y t ) ... (1 v sy. ,t
l l

'o ~ 4-~ -

• v7 V vCIy1t1}1<t V IX(SX)*5 v lI{sX(sx)*syiti)i<t

Theorem 5,'

~

~ !1, ~ Theorem )2, ~

E.b ~ s4 Theorem ,2, 89:::::;..I

~ r06
-r

Th.aorems '1, '2

This 1ut K-expreaaion 1s both normal and standard and will serve as the

We conclude, therefore, that ~90" N(90), t-9l · N(91), ••. ,

~6a-1 .. H(9._1) , Then, as we have already shewn, H(~*) can b·· t/.>.Ken

.. 1(60) GIl•.• GIl N(9..1 ) , and furtll~rmore, ~6* e- N(~*) . I

The normal ferm theorem (Theor~m 34) we bav~ Just proven, Unreediately

1•• to & proof of !beer_ '" which expreues the adequacy Q! TIC'
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~ r- ~ ~ !Iall • II~II

~ !IN(a:)!1 '" llN(~)11

~ IN(a:)1 • IN(~: I
~ ~N(Q:) ,. N(t')

'by defin:' tim:,

'<jnen, N(a) am:. NHi I 'U"'c i:.tiL ~';:"IlI.eJ

~roperty of norm~ forms,

which ::., adequate.

Then, alnce ~a c N(a) and ~t'. N(t') by the normal form theorem,

we have tinally, \-Q: .. ~. 'l'bus, ~ '" ~ =::- t-C1 .. 8 , as required. I
Rearka:

(1) Tbe imbedding ot x .. "'{Xi) 1<k in the construction ot N(en )

~pliea that an arLitrary K-expres81on u cannot in general be expressed

11: a purely disjunctive normal torm, 1. e., one where no rv" appears inside

at tiC )*".

(11) Since tbe proot or Theora ~, i8 constructive, t ~. tJr tor

an arbitrary wa Q: .. t:' € Jf"~ is therefore eftectively decidable. Thus,

tor any two K-expressi:;;ns c.z and ~, we can se;y whether or not they are

K-eq'livalent, and it they are, then we can produce 8. proof in T
K

of

this tact.

(i11) Theora ~'7 tells us that tor any two E-pl'Og1'llIl8 • end ~ of

the _•• type, ~ .. '\ ~ ~ =•. SiDce 'l~" '\' 1a decidable,

this means we bave a teat tor Btroog equivalence which in part anaven the

queation ' ... z 18T. Thus, by testing " and ~ tor K-equivalence, w.
either obtaiD "7••" or ..~be" to the queation: 1s • strongly

equivalent to ••



( iv' Even though the K-ever. t formulation and proof of ccmpleteness

liven here (Theormu 28 and 33' are new and independently obtained, the COOlp­

leteness result is not new. In fact, despite the K-event formulation. this

result actu&lly includes that of lanov 116J and Rutledge B"'n, and is appa, "ntly

equivalent to that ot Ito 0.8]. The completeness results of lanov, Rutledge

and Ito, &ad the work by Ito 1n the recasting of regular expression semantics,

are .-cns the tactors that motivated this a~thor's quest for the here presented

elegant formalism and concise completeness proof, which together constitute

a .&surable 1IIlpravement over those earlier works.

I-events and Ianov's ReBwlts

we .hall not embroil ourselves here in a dissectio~ ot Ianov'£ work.

Rather, we shall define for any signature s "<<0
0

, ,, , , ~-i", <JDo' " ' ' ~_?,

p» aub-cl..s A cLot abstract E-progrsms such that the properties ot
s - s

stroog equivalence and K-equiV&lence are identical. Thia in the sense that

t~ &Il¥ abstract E-programa .,. E A. ' ~ =~ It~ - ~. It will then

be evident that abatract E-programa are like lanoY' a prcsr- scheaa.ta, except

that we allow IIOre thac one entrance anI! exit, anc. repeated occurrences of

operatora, i ••• , ..aisa-ent schemata.

AD E-progr_ • is aaid to be abatract i:N

(i) Yo is the cmly variable occurring ill • (we will write

a1aply "v"),

(11) no ccmstaaia occur in ••

(11i) no functicm letters occur in &Il¥ qtt occurring in .,

(h) all ..a1sa-mt scb_ta occurring in • are ot the toni

v :- tJ{T , ... , l' 1) where j < l , Mel each cme of
o _j-

1. Juat the variable v.
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'l'wo ,'trullL.l,'t .~q'),ivlLl\'I.l f,ustract ~-pl',jin.\lr.:;;. Hure. r. t;. b UJ.",: tW1Ct: r.
lett.:l's; P, r are !···c ,.tton letter.;; .. r , dl~ vario.ble v0



FipJre 50 .11u5trat~,

evidently ~ - " ,

Tbe(.)rem 35: For an,,Y' t'.1 ,•.• ,

~ :: 1\ .,. ~C1J ~ '\I

Proof: The case I=~ '9< -:> • '<J

For the other ,,:a5~, -.. \:: 11f3~'. 1.,;;\

(i) For any computinF .i t.: '.

1 < In (wher," II and t\ :.1. r ..

ane sc also "'[S <t , i>] ,"

w € \I~II r e spect.Ively, t h»:

( 1i) For any abstr an ~-:;

~., {sbis'xte~t' '0. II,\-'~ :

tor any u E W~ • there exi~~'

state 'I and K < m such V, 'it .;:

tbe word u

From thes~ rf-'sults (;;1; ,,::, ,';'

iJIIDedlately. Con"i-lf,r any

-y from :_-n{~(,~'" r,1 ','-f
~

! ~I '. t:..J!"_ , s t a t» ~ ':;JU

-r '.... ), i ~
l[1 ,-

'<r', :':'-~7l;J

, .. ~ ~ ~ ':' ; " '1'.:l " '..I
i! ~ j:

''\I.I:I: ",I

& t = til, then

~>; ,~Jeterminate and produces

I]: ""0"'), the desired result follows

:' : ), uf~ <fl, Ie» generates 1,.1

Thus, Wm ~ WII• A siJll11ar ar"Jroent ~ives

"'II • WI" Then, (11i) gives I'~ 11,\.:',

w. ~ ~ , so that finally

i , ('., I-'ll = ~ , as required.

To wtaln result (1) above , N': ncr- , not '-,ne a detailed proof like that

given tor Theorem 27. Let us s in.pIy not e that t vc sequences of aslltsnment

Icbe.at. ot the sort found in abstract ~·programs are not strongly equiValent

Reproduced from
best available copy



unless they are .',:,'nt'l·tically identical. Thus. i.r: th·' ·...c.rd~. .;, ':'\1:

and w E II~I , t.he operator letters that are ass.i~:~er.t bci"l'::nat: '- in

each are equinumel'OUIl, identical. and appear in the same or,J·,I'. ·::'::nce

the ataaic formulas in t'110 words ot truth cannot, all be t r ue . l' ev.d.uat.ed

in a state, the words of truth following each operator let'Cel' in \,; and

v .uat therefore b~ identical. This, because the ~tate3 nt

point. in the execution ot II and m are identico.: 8.5 a·,;'

identical .equences of ass .~ent schemata Laving been execute 'In Iden t ~ L:al

initial atates. FurtheI1DOre II and m start at the 8111l1€ !nitlator ani!

halt at the Sale terminator (since they are strongly equiva.I'·Il:), c. tL:~t

the initlal and final operator letters in u and .... are al.x' ~denticu:.

Thua, u. v .

To obtain result (11) above, we actually show for an.y .Jrd U t: w~

bOlo' to IIpecity the required ccmputlng structure ! e <X, \."'" 1\-1'
F , •••• '1. l' a , ••. , a r>' state ~ and K < m. Let th~ dom~in Xo - 0 p-

be the set or all te!'IIB in wbich no constants and Ofl'.V th" va:·ial.l",

v oc~. For the tunctiona, we let Fj{Cc"'" C
mj_l) : fj(cc.···, CmJ-1J ,

J < l, where co" •• , c. -1 € X , Le., are teras. The conatrant.s
J

ao" •• , &p-1 can be cholen arbitrarily, of course. The r»: IRt Lone will IJf'

lpecified belcnr by exla1D1Dg the word I.l € WeE to detenalue What tbe

branching through C !DUst be during execution so that U as generated.

For tbe initial state '1, we limply specify that c(O, TJ} = v so

that V[!I "J • v initially. SUppose tha.t u E: W~ is vf the form

sb tugPox1 ••• ~_~_2~_ltejt

where I, t. po, •••• Pu-2 € 7, b i E '6 • e j € C and xo'"'' ~-l E ~f .
Choose It '" j ao that we start at the correct initiator. In specifying tlJe



relations, ve need only concern ourselves with the term: slored ir. at

each atase ot the comput~tion. We use the ~ord of truth at each stage ~2

.et the truth-values ot tbe relations for tt. r cur-rent value of v. ''1):.4;''

tor ex-.ple, 1f !I.tter executing assignment &chemata xo' xl"'" xr_.l' r -; N

the term a is stored in v. then the word of tru~h Pr - l = a ql q
• -0 ;·1-1

is

If

"0'· ... 'n,-1 a e thp
1

Co"'" Cn_ l
i

qj' j < M , 1S -1'1(1 0, 00 ., Tn._I) ,
1

guaranteed that the specification ofWe are

has Mmembers) tells us how to specify the relations.

~.(l , .•• , ~ ,), where each of
1 0 ni-~

tner. Ri ( Ct. • •• c 1)' where each one ofo . n.-
1

G , the current contents of v. If

thea not Ri(Co"'" cn -1)
i

the relations can be achieved without conflict since after each assignment

(where ~C

qJ' J < M id

variable v.

ach... xi ' i < N , is execo.1ted, we know th!l.t " will contain a new tem

that bas not previously arisen earlier 1n the execut10n of C.

!hus, vben ~ is executed in X with the init1al state ~ starting

at initiator bK, it halts and generates the won! u t:. We •

To obtain result (iii) , simply notice that for any E-p~ogram ;.

t' ( :T]
,

s ,Ilnr ll .. 'u rsbis I xt e . t I :
~ sb sxte t € W_ • Ji j -~

Thus, the vords in ~ and Wm represent the generable words, and &ssociated

vith each such word is ••et ot words which are aot generable because operator

letter. tb!l.t are initiators 01' terminators cannot affect tbe truth values of

the atca1c foraul... SiDce all of 1I<;a11 and aU of II~I are obtained this

vq, and since like words tre::a ~ and Wm give rise to like seta of non-

••erable words, Ww· We • 11<\.11 - II~II • I
R~Jta:

(1) Since T~. ~T , for arbitr&r)' ab.tract E-progr..., m€ As '

231



is decidable (Theorem 35'. th,: stron~ t'qul'la.i-,.nC'€ of 'tC':"tract 1-:-1":'1"' :i:r/llll:; is

theret'ore dec t.dab.Le by 'l'11. or-em ~,.

(ii) Abstract E-pror.rams correspond to Lanov's :Jroi;raro ~"h~nc'3 br>r:i'l:'C(',

&8 we have se~n, only syntartlc:fL1.l).' Ldent.i ca, zequen cr-s of ',~,enl'rr, ,t.,

ua1gnJDent schemata, are strongly equivalent, and the truth value of each

atca1c formula may u'? affected by each of the operators. Phe se are +,np

properties that charact.er-Lze lanov's schemes.

(i11) Since the notions of strong equivalence for abstract E-programs

an~ K-equivalenc(' 1'01' K-expressions are identical, the notions of K-expression

and K-event therefore cO.lstitute a reformulation of lanov's results. hS ~ell,

tG sll¥ any two E-pr<Jgrams are K-eouivalent is to sa;y tt.~y are equivalent in

the sense of lanov's definition of equivalence.

(iv) One notion we have not yet explored is that of "shift distribution"

as defined by Janov [la IU1d extended by Rutledge 137]. This we do in the

next section.

Shift sets and Shift K-events

lanov D6l uses his "shift distribution" to indicate for each operator

in a progrsm schema what atomic formulas could be affected by the execution

ot that operator. Rutledge £37] extends this by indicating tor each operatur

and each poasible set of truth-values for the atOlllic f'ol'lllU1u (1. e., for

each word ot truth in our scheme) the possible seta of' truth-Values after

execution ot the operator. Rutledge's method for specifYing relationships

between the operators and atomic fOl'lllUlas is IIlOre extensive than lanov' a

&bitt dhtrlbutlon, and in fact includes it as a sub-concept.

2}8



For our ach_ ot It·expreaa100a Uld It·event., the iaplaentation ot

u.•• DotlClOa 18 atr&1lbttorvlU'4 lUll! natural. We will tir.t detine the

DOtiCID. ot abitt aet UI4 abitt It-event with re.pect to the .et Jl. ot

I-apnadona detined over the alpbabeta b • (Ie"'" In.l) _d

..... (p , ••• , p 1) , IlDd tbeD subaequently indicate bow then cODeepta
o a-

.traetben our abU1tT to detect atrong equivalence ot E-progr...

8b1tt It-.venta -,re .1aply a leDerali&ation ot I-event.. In tact, the

ahitt I-event llalis ..aociated with the It·expre..ioo ex 1a evaluated in

J,lI"ec1a.1¥ th. a......u.r .. the I-.vent 1IolI, except tor the cue ot

operator lettera in b. Shitt It·eventa are detined w1th reapect to a

ahitt ••t 8. (80' 81" 0 0' SD_l) , wbere 8i S 118111 , 1 < Xl. (Intuitively,

a 1IOI'd ~t E S1 ' where ., t € 7, indlcat. a "pend.aable event", i.e.,

U. 1ftII'48 of truth a Uld t live truth-values tor the atc.1c to~.. that

.... cc.patible with the propertiea ot the operator l.tter It.) The

cIeftD1t1oD or ahitt I-mat with reapect to a ahitt .et S 18 then,

bH. • IIPI!
1It1l. ~ S1

10 V ~lls • llalis u 1I~1I8

..u. · II1l1su IIalls U I~s u Ilc-Dfts u •••
nc-I. • (xw : xp E IlaIls • p¥ E 11~lIs • p E .7) •

'l'IIO I .......icma a. ~ E X are aa1d to be I-equlYaleDt with re.pect

to a abltt ..t S itt IlaIls • 11~ls ' i. e., itt ~lP. p •

lor aa.r _itt ..t 8, let 3'i(S) be the torMl tbeorJ obta1D.d troa

'i b7 e4.101A1al to.fx.K the uica .~



c8: gl '" VS~ • i • 0, 1, •..• n-:l. •- .
It a,. Ii is derivable in ~(S) ,#iC- write ~s u =- p •

Tbeor_ ;,6: For !IV K-expressions a. 6 € :x and any shift set 8

~8 a • ~ • J-sa • Ii •

Tbus, tbe tb8Ol'1 ~(8) 1s cCIIlplete, i.e., both sound and adequate,

tor K-equlvalence w1th reapect to tbe sh1tt set s.

!£22!: J'irat, let ua lbow soundness, s , e., l-sa. 13 • ~8 a • ~. It

il olwioul trc:a the detinition ot shitt It-event, that

~ • ~ ·I-rz • ~ .
~. ~ ·~Sa. ~ .

10 that ~s8i· V 81

Bince ~. ~ ~ I-a • ~ by Tbeors 28, then

In edditlOD, tor axle:. IIcb..~ 118i lls • 8i • IIv sill,
• '1'hus, J-sa. ~ ~ I-sa • 13 , as required.

I

JJov, 1et UI CQUlder adequacy, 1. e. , I-~. ~ ~hf • 13. we proceed

preciae1¥ &II in 'l'bear.. " and 34, except that nov the noraal tel'll tor

&t E.b ia obt&1!led directly us1Dg ce. 'l'm1a .(8i ) · vIIs111s• V 81

(iDlte-.i ot .(81). vI18111 , &8 be tore ), aDd C8 glve8 l-11 • .(Ii ) , &II

required.

Our goal 1& to detect the strong equivalence ot two E-prosr" •

aDd • b)' telt1q tor t.be J[-equ1v&1ence, with reapect to • ahift aet, ot

tbe 1.......101l1 CIa aDd ~ derived tr'e:. thoae E-progr... 'fa tacUitate

tbia teat1Dl. we develop the notloo ot COIlaiatent abitt aet. IAtult1'Yell,

a abitt let is cODal.tent 1tt tor any E.progrta •• no word 1D

IIot.U - 11<\a1l8 18 senerable b)' all executloo ot • in acae calpUt1D8 Itructure.

'!buI. b)' eutt1ag clovD a (-event tor aD I-prop'_ to aa.e lIbi tt I.-....t. we

bave DOt ltd.eted ..., VClI'da eich could be produced b)' ac.e execution ot that

~o



Tbere are several possibilities tor the construction or consistent

mitt letl, ClO~ ot which we now examine. Conaider the word

u - S081 ••• S._l gi tot1 ••. t._1

vbere .0Sl ••• 8._1 ' tot1 ... t._l € :r, i.e. J are words of truth, and

11 18 an aaalgruaent achema. It for seae j < ., Sj ~ t
j

, and yet none of

the ..si8Ded variables in gl occur in Sj' then the word u could never

ariae during the execution of an E-progrUl. That la, words cannot, arlse

during executlon that indicate changes in truth-values of atomic formulas

vben those ata.ic ror.ulas do not contain an occurrence of one of the

".isned variables of the intervening assignment schema. ThUS, 5i is

detiDed to be the set or all words u € l18'i ll such that tor all j < • ,

It 'J;' t
J

theu aD assigned variable in gi occurs 1n SJ.

Cccdder the tollov1Dg euaple. SUppose

At.. (r(u), p(u, t(v»}

J1 • (u :- t(u), v :- g(v), w :- h(w)] •

!bell, abbreviating ""- as (r, p], we have

~ • {rp, rii, rp, rii]

u.1ng the criterion dl.cuased above tor tora1ng a coasi.tent Ihitt let,

aDd abbreviating h as (8
0

, 81' ~] , we have,

8 • Ilsoll0

~. (rpg1r p, - - -rps1rp, rps1rp, rpslrp

rpglrp, - -- -- --
~rp)~rp, r~rp,

~. {l1l&.2rp, . - - - r~rii} .r~p, ~rp,

'!bu, tor ~le, rPStrp t 81 .1nce v:- ICy) caamot anect tIM

trutb-Yalue or r{u) •

211.1



Theorca "(: F'0' ~L!~yroer~~_Jl~',1 ~Jf the same 1'J' pt'. \II i 1.11

associated K-·,,'I""~';.~2r~:....'\a' ~ (~.J._~ld then for lJny "~~~~~ 3hin

setS define ,', . ~!l r~"l'l'ct '.co JL

Proof: This tlll·'~I·.'11I ~~, t ne counte.ru-o I r Theorem 27, and .' proved ill

"'lith ever~ 1"41 t,inj', executLor. of' U , lie can asaoc Lat.e a word in

This is :'0 be~~u~c being , ,'u:.;istent as sur-e s us that only

"UIpoaa1ble" 'tIord~~ have been deleted frem 11'\111 to yield 1I~lIs.

SUppoae .(E" <t, 1.>] is determinate and produces the 'Wurd 'W E 1I~lIs

Since tbe bypothesls ot the theorem gives that lI'l1l1s" 1I~lls ' then

'tI € 1\aWls as well. Using precisely the sQIIle argument given in the prout

ot '!'beor. 27, 'tie obtain tbat Il(~ <t, 1» also is determinate, and in

tact produces this SUlie word w.

'l'hia, ot cOW'ae, giVes .[~ «, 1>] • II( E" <~, 1» , tor &DY lJ

t aDd i such that .[£, «, Do) 1s determinatl!. A s1a11ar result

obtaiDs when 'tie US\ae that II(£, <I, 1» 1s determinate, ad both

tosether glve 1-.::.. I
Once -saln, we bave been able to strengthen our abllit~ to detect

ItI'oa8 equivalence ot E-prosr--. Given two E-prc,{'ru.8 we would coD8truct

their "Iociated Jt-expreasioos, and the abitt Bet S, baaed CD tbe aethod

dellCrlbed above. Since the proof of 'l'beor_ }6 is oonstrucUYe, then

'''IP· ~t , tor arbitrary a. ~ Eo X aDd ab1tt se t, S. is decidable.
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&n

lD ract, it I-sC\i - a. ' then a proot of this in J'K(S) is produced,

uel we coacluele ...::..

T', see that this technique constitutes an ~rov..ent in our ability

to det.·ct .troaa equivalence, conlider tbe exuple in Figure 51. Por the

I-prot'raa ., ve bave

~ - b (-r(u)w :~ f(v»*r(u)e
~. 0 0

~ b(rt)*re , if we abbreviate.

rIJr E-progr_ ., we have

~ - bo(-r(u»*r(u)eo

• b(~)*r e , it we abbreviate.

IIotlce that 11at.11 ~ I~I. It ve con.truct a consistent ahift .et S,

where (rtr, rtr) £ S 11 the .-ber tor tbe operator letter f (renectlns

the tact that v:_ t(v) carnot Artect the truth value ot r(u» , theD

j 1(8) 71e148 the tollov1ng 4eriYat1oa.

b(rt)*re • b(r(rtr V rtr»*re

• b(rrtr v ntr)*re

• b(01'I' v rtr)*re

• b(O V rtr)*re

• b(rti)4fre

• bel V rtr(rtr)·)re

• bel V rt(rrt)-r)re

• tin V bit(nt)-rre

• bre V bit(nt)tIOe

• blze

• b(r)....



E-progr_ •

'ee 51
Two atroa8J¥ equivalent E-prosrIU tor which ord1Jlary K-eveut ualyala
will DOt auttice. Here, r ia a relation letter; f 1:: a fur.etlan
letter; and u," arc varleblea.

e

I-prap'_ •

'lEe 52

1'wo atroasl¥ equiftleDt f:-progr.. tor vb1ch crd1Jlar)' abU't It-eftAt
aaal¥.ia tau.. 1M". r 18. nlatlClD letter; t 1•• fUDct1ClD
l.etter; -.4 u, v, w an varlllble••



gives I=s'\r - ~. Then, filially, Theorem )1 gives r-- =II • So,
,~&Lng shirt K-evcnts, we ~an detect strong equivaience in cases where

ordinary K-eventa fail.

There are .any other possibilities tor the cun~truction at consistent

abitt aets. In Figure 52 we see two E-programs • and ~ whl~h are

atrOQlly equivalent, but compari~on of shift K-eventl, tor a consistent

&bitt aet constructed as above, tails to det~ct this tact. Here we would

want the shitt aet to reflect the tact that after certain operatora, certain

atca1c tonulu are c.onstJ.'&1ned to ha.ve identical truth valuea.

For E-progr_ • , ~~ have

Oi - boU :- v(-{r(u) ~ r(v»)*(r(u) ~ r(v».o

• bt(-{p ~ r»*(p ~ r)e , it we abbreviate.

For I-progr_ e, we have

CL • b u:- 'Ie
• 0 0

= b..•• J it we abbreviate.

Iotice that it we tlke tbe aelllber ot the shitt set 8 for operator . t to

be

..... VCNld uA1Dg tbe earlier _tbod tor constructing cca.sistent .bift a.ta,

then ~lIs ~ 11c\.I1. However, let us take the __81' ot 8 tor t to be

(prtpr, FtPr, Prtpr, prtpr) J

wbicb rea.cta 10 &dd.ltion the tact that after enc:utiDB U I- v , r(u)

IId4 r(.. ) .at ba..e the a_ truth-value. !b8D 3"'1(8) ~lelda the

to1lowiD8 derlvatica..



bt(....(p J r »*(p J r)e

e bf(pr)*(p ~ r)e

z btl(p ::> r)e

bf(p :;:) r)e

Theorem )]

Theorest 31, r(~

Theorem ~l

b(prL'pr V prfpr \I prfpr V prfpr) (pr v j'ir V pr)e c8

• b(prtpr V prfpr V prfpr V prfpr)e Theorem 3"

• bfe c8

Thus, I-s~· ~ • and so ~ .. ~. Then, '..'hearem .,.1 gl-les ~ =IL

Remarks;

( t) hca the limple nat.ure ot the proof for Theorem ~6. we see that

our ability to detect stro~g equivalence will b~ uaproved by any device,

technique or heuristic that serves to delete words frOlll IIcl&II
~' .. - .
tq.at •

cculd never produce in execution. Among several possibilitie6, is the

identification of identity operators. Thu~- u;= U oct"urrinf!. in • would

not be included in ~ but converted to 1 directly wben ~ was toraed.

(ti) The K-expressicn representation for algorit~ finds application

in another area besides the detection of str01lg equivalence. This author

has devised another formulation of K-expression semantics that pex-itl us

to write down tor MY node in the graph ot an E-progrlUll a poSl:Iihly infinite

qtt which tells what is true at that node. At present, this work, ¥bieb

beart! closely on the pr-obl ems discussed by Floyd (llJ, is inee:-plete and 80

will not be discus.ed here lUl,Y further.
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CHAPI'Ji.:R 10

CONCLUDl!«i RDWUCS

In this work. the principal goal has beea to ·nvestisate the strong

equlv&.lence of elemental prcgr8llll8 ~ 5. e., E-progr8llll8). We have sought to

provl de a. romal theoretic rrlDeWC,r1l. .... i t.hin which proofs ot litrong equi­

'14ence CaD be senerated. Thus. !;lny sequence of transfomatioos pertonaed

Ai an el...ental prcsram using the axic:aa generates a proof that tbe tinal

progr_ 18 strongly ~quivalent to tht> initial one. Furtbermore, avail­

ability ot a fonu.l tbeory of equivalence 1.S essential sbould we want to

aechan1ze proof" seneration or proof checJt.ing. This because such autcaa.ted

ayste.a would treat these aatters tram t~e point ot view ot syntax not

s-.ntics.

Tbe el.-eotal progr__ and ccaputing structures ccaa1dered here

together caly barely aeet the C%lt.eri~n of being ALGOL-like. 'l'bua, while

many-entrance. aany-exit fiowcharts of assigrllleDt s~t& (possibly with

subscripted variables included) and conditional brBDchea CaD be t~d ALGOL­

like. there is still & wealth ot structure tn AIl'.oL not progr-.ble in or

r~ducable M this sort of tonlLU._. Clearly P'OR-loops, cCl1d1tioaal

arltt.eUc expressiona, etc., are reducable to el-ntal procr", but

bloclt structure, recursive procedurel aDd the lilte .scape such reductlcm.

10 addition, we bave concentrated on liDgle-sorted cc.putifl- Itructures.

This evell tIwusb, .. ve indicate in Appendix I, we lilteJ.y would haft! to

rel101't to aany-sorted ccaput1n& structures tv bring into the scope of

the tbeol')' tbos. baa.s ot cc.patatioa ot topical interelt.



'lbe theory ot stroog equivalence we introduce, while p<;:>sibly

inca.plete, il nevertheless powerful enough to serv~ in many applications.

III ed41tioo, the theory 18 cc.plete, end even exten:led c,)IIlplete, for certain

.Rb-ca.el of intere.t. HOwever, there are many unanswered questions in this

....... Precisely what are the limits on the derivational power of the theory?

c.a thi. paver be increased! Is the theory complete for certain decidable

.traaa eqgiy&leoce .ub-probl... 9tudie~ recently by Paterson C6)7 These

ClQe.tiOll. be8 to be mnered, but are beyond the scope of this work.

'f*1DS ~ther approach to the stroog equivalence probl_, we have

introduced a hierarchy ot malytic tool. tor discovering stroog equiyalence.

'l'b... tool. or _thodl rely on thO!'! notions ot K-expreaaion representatioo

tor e~tal prcsrBU md on K-evdDt interpretatiro of these expre••iOll••

III this area too, there are II&DY paths ot inve.t1aation that .e. pr<la1.1q.

I'or .-.ple, CD "e fUrther refine our abUity to detect at1'ClD8 equivalence

br t1D41Ds eftn ~e \U1executable word. that CD be cast out ot the I:-tmmt

CClIIT.8pClD41q to D el_ntal progr.t U so, what are the l1a1tl OIl tbi.

capIlbUit7 to detect \U1uecutable patbs in D el..nt&l prosr.?

ft... are other aspects ot the .troog eqg1 valence prabl_ we have

bvel¥ touched QIl in th1a work. One is our abUit7 to characterUe the

pI'Opertle. ot a cc.pu.t1Dl Itructure by pravidin8 a .et ot proper axicaa.

III tact, what IOrt ot propertiea ot ccapating structure. CD be expre••ed

_ a ••t ot equiYalence. 81yen by proper axicaat III leneral, what tamal

tecIa1.... are reqgired to at least partlall,y characterise such dcweinl AI

tile lA-....., 8bould the th80Z7 be exteDcled t.o allow p.-opoa1tica.al. or

...-t1t'1catlCllal .tate.ent. about .troas equivalence .0 that ....tul

*-aiD cbaracteriaatlca. cm be lllldel



In lmae lenle, strong equiv&lence is too strong a property. That is,

tvo It~ equivalent element&l programs share this property for reuona

that ve DOt very caapl.icated. This of course must be so since all intor­

_tion resU"ding any ccaputing structure is suppressed when l118king this

.tateMDt at strong equiValence. That being the case, we are still a

10138 way trca 8. theory of equiValence which is widely applicable to

Itrictly ALOOL-11ke progrUl8. This is so beclLUse & great man.v ot the

tranltonlationl we would 11ke to make will depend on various propertiel

ot & lpecitic ~t1ng structure and so will Dot be included in our

theory ot strong equivalence. This ukes the characterization ot ccaputing

Itructurea through proper WCIlI8 & very relevant iSBue, lince tbil.: is the

route we would take to arrive at a theory which could derive stateaents

of equivalence ot the sort ve are interested in.

Another potent1&lly usetw. extension ot the theory presented here

would be to llalte it "b111nBUal". Thus, ve would detine two luJiuages tor

speclt;yiDs al80ritbas, one a high level source lansuage and the other a

..cb1Jle-l1ke object language. For each lU'l8U&8e~ an interential qat_ tor

cler1V1Dg .trcag equiv&lence ot i.ts prosr.. vollld be apeciried. we al80

would lpecit;y lID add1tional ax1~ Mbodying a cc.plling trllDltOlW&t1on !rca

the lource 1ilD8U8e into the object larlguage. To prove auch a theory sound,

ve wau.ld haft to ftrit;y that the caapUer axi~ vas lIC':Dd, i.e., that the

cc.pUiDI trllDatOlW&tion Val "correct". McCartb1, Painter [26,26,'5] aDd.

this autbor [20] bave all studied the Fobl_ ot proving ec:.pUer u.s­

tonatiou "eorreet". Such a bU1Dgu&l theory vou14 t1n4 appUcaUCIIl ill

IYlteas where both pre- md po,"-cc::.pllat1oD opt1ll1zationa mel tr...foa.-tlCllls

~9



.. perf'~ OIl a progr_. The soundneslI ot the theory would guarmtee

tbat tbe t1Aal object~_ "a. 10 lIc:.e lIenlle IItrongly equivalent to

tbe 1Il1t1&l aource ~.. The buic inadequacy or & aechanhed verdon

of auch a tibeory, bowenr, preclude. & IIYllt. "hich will &1""11 tull,y

aptillbe 01" liIIplifr a 11yen .00000ce prosr_.

We '" tbat the road to & riable uaef'Ul theory at equivalence tor

AUJOL-llke pI'ClP''' 1••tre1m, "ith May ob.tacle.. 0Iar hope i. that tbia

..-k, to 8C8I ateDt, baa~ .e.. at thoa. ob.taclea md .0 a:wed UII

~ &1.oDI tbat reed.



APPENDIX I

MANY-SORTED CCJo!I'UTING STRUCTURES

Single-sorted cCIlIputing st.ruc tuees are often inadequate tor

characterizing semantic bases of topical tnter-est., The prinCipal

difficulty lies in the restr ictivn tv a dnr.1e demain, since in many

progrlllllaing languages IUld cemputers 'We have more thtill one "data type".

Here we extend the notions of signa.turl; and ccmput.ing structure to

indicate how this deficiency might be remedied.

A generalized sign&tur~ is 8. 7-tuple of .he form

s • <I, J o' Jl' J 2, n, Ill, p>

where,

(1) I is a non-elllpty possibly infinite index set telling how

aany dcaa1ns tbere are.

(li) Jo ls a posSibly infinite index set tor the relations and

n 1s & tunctlon an J o such that for j € I n ,

n(J) - <i , ••• , I s >, 1 E I, r < Sj <. w.) •
a j r

(ili) J
l

is & po.sibly infinite ind~x set for the tunction. and

m 1s a fUnctlon on J 1 such tbat for j ~ J
1

'

a(J) - <10"'" itj,itj+i>' i r E 1, r ~ tJ+l <

(i.,.) Ja is a possibly int'inite index set for the designated 1nd1-

.,.idual. and P i8 a f\mctiao on J2 such that for J € J2 , p(J) £ I •

&.y a !!Dl-sorted C<!IRuting structure of generalized signature I. we

Man & 4-tuple, £. < <Di>iEI' <R?JEJ ' <Fj>JEJ ' <a >JE.J >
o 1.1 2

'Where,

(1) ili is lI. non-EApty possi\'l,y int'illitt set ~01 i E 1

(11) HJ S IJI x ••• X Di for j t .T..

o S J ;2,1



(111) F
j

: D
1

X···X [Ii ~D1 tor j € J}
o t j tJ+l

(Iv) &J € Dp(j) tor j ~ J2 •

We CaD eu117 tad systems that are eitber n&tur~ or ot neceadty

uflDed u ~ aorted.

(1) Conalder the ayat.

< <A,D, S>, <ate.,eq>, <car, cdr, CQIl.S>, <III;> >

wltla PDU"&ll.l.ed aJ.tpature

D(O) • 2 _(0) • <l,b p(o) • 0

11(1) • <Sl,Cl> _(1) • <l,b

_(2) • <2,2,1>

!lit. qatta 1a like that. 11ftIl b7 NcC~ (27] 1Ibere he 4etsA.a tile LISP

....-.1DI1....... '1'be ~.80rted ccwplt1DC .tnact1u'e det1Dec1 aboft proYidea

• '-d. tor cc.pataUOD with either .·expr•••lcu or vith It.na. Def1D1t1C11l1 tor

.. ftriaU CClDn1tueDta ot the ayatea tollov below.

A tiM Nt of ..taM

•• A U D tIM aet of a.expra..icu

.'-- A

... {<x,p : Kty £ A ud x. y}

OR I D ~8 lID tbat car( (X.7» • x

.. : D .. 8 80 tbat c4r( (X.7» • y

... : 1f ... 1 80~ CCID8(X,,.). (--.,.)

IlL E A



(11) Consider the many-sorted computing structure

<~, ~5:>, <TZE,'l'MI,TDC>, <ADD,ALB, SXA>, 0>

with generlLlized dgnature

< <0, 1>, <0,1,2>, <0,1,2>, 0, iii, n, a>

where,

0(0) • 0

0(1) • 0

n(2) • <l,D

.. (0) • <O,O,a>

..(1) • <0,0>

1D(2) • <O,l,a>

Th18 .y.t_ 18 an extension ot the IBM 7090 eump1e us.d in the text to

d-.oo.1ltl'atf. tile 8i.Dgl.e-sorted case. Here, ~5 denotes the set or all.

15 bit words onr (0,1), which 18 just the range ot polSible value.

tor 1bdex resl.tus in the IBM 7090. Then, in addition to the detin1t1oa.

given in the previous ex.pl.e, we have

TIX • (<x,r> : x,'1 E ~5 and taken &8 b1Dary repres'!Qtatioa.. ot

natural m.ber., x > y)

SXA : ~ x 215 ...~ 80 that

Moat ot tbe renlt. obtained in th1& work tor .1JlIle-.orted ccapatUW

.tnactuzou would .e- to have straighttorward extensiClll to tbe ~-.crted

c.... It 1. beca.e of t.~e sCllleVbat CWlbel'sc.e not.ticoal f'r.-evork

required tor aaD¥-.orted c<lapUting structures that we ceecera our.al.,..

M1AlT with the .1JIplar .ingle-Borted cue.
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APPENDlX II

SUBSCRIPl'ED VARIABLES

To introduce subscripted variables, we first must modify the

detinitioa tor teras by tIDItllldi"18 cla.use (i) t.e. read

(i) It TO' ••• ' Tk._l' it c w, are t.erns and Vi is a variable,

then Yi(lo' ••• ' ~k-l) it a ~enD, called a sUbscripted variable, and

'to' ••• ' T
k

_
l

are cal.Lee ~iptS. If it" 0 , we have simply Vi •

The ccaeept ot the value of a term IIlUllt also be revised. llIov, the

v&lue ot a tel1ll 18 deI'Lneu with respect to a c..puting structure .E..
an index1J1l tunction .f.: ~ ... W , ",hieh con:;t1tutes a partition ot .Eo
into COUDtably-aapy el.pJ::'valenee classE;s called indices and a hierarchi&l

~ 9 at D •- A h.erarch1al state, or s1lllply b-state, ot £. is U1

ordered pair <t, e'-:-- where t: ""' .... .Eo is a state in the ordiD&rJ

aenae ucl 9': w .... &. where e is the set ot al: h-.tatea of D.-

it k. 1

it l<k<CAJ

Thua. u b-atate of D 1E a state together with a .equeDce ot turther

h-statea.

ROUSblY speak1.Da, the values of the subscripts of a subscripted Yarlllble

liYe riae to indices which lire used to fnter down t1)rough tbe hierarcb1&l

atructure ot an b-atate to ~inally produce a value. To accaaplish tbia. we

aat t1zat detine two auxilliary tlmctions deali:lg with h-atatea; here

<10' •••• ~-r € r.J'-. -a, e~ € e and ~ € Eo

~ «io' •••• ~-l' <I. eol;>)

• ~(<10, •••• ~-i". c(~_l' 9'»

- e(lo' I)



~«io""" ~_?, e, q. I',»~

• <e, l~(ik._l' ~«iO'" " lj<_Z' s, c(ik._l' a'», ti'»
- <t,;', , a, t) , a '>

it 1<k.<"'"

Uk .. l

ben, the value of a term 't' ...ith respect to 2J I and e Ls

dIw~ted t" 'll~ b EI] and is defined as follows,

~~l 11 1 1s a constant it 1 , then 1[~ b eJ • k1[D, I, 9] • &1 '

(ii) It 1 1s fi(~o"'" Tm -1) , then
i

'l[EJ b aj

• ribo' " " 'i'i-1 )[£' .b 0]

• r 1( To[E, b '. , '", 1m -l[~ L e)) ,
1

(ii1) It , 1s V1(TO"'" ~It-l)' k < QJ, tb~

T[E" L 6]

- V1(To'" 'J 'lk_l/E" L 9]

- ~«1, !(To[~ b 1))",., I('[k_l[~ b 8]», 8) ,

We .-end the u.~t1nit:lr,u or qft'. to pel'll1t tent.ll as redetined above.

Bow let us emend the detinition or ".1sn-ent .eb_ta so that ill

(UJ :- OJ)J<n' ao' 0'" an_l u-e tent.ll as redetined above IIld the

U ". OJ u 1 are subscr.pted nrlable.. The vell-tOJWedne•• cead1tiCXlo n-

bere is that tor all i" W , tor all It < W J 'Yi CD occur but 0IlC8

Y ell ....1gIled variable \o:ith It .ub.cripts in' (Ui :- T i )1<11 ' 'lbUs,

we allow two ditterent "8rr~8" to haft the s_ "n..... pron.de4 \bel'

bave a ditterent n..-ber of' sub.cript., end the vell-tOl.'MdDe•• CClD41t.l.U.Q

tor ..sigmlellt .<:b..ta .1mply .q. that the uo' ••• , un_1
lUSt .cce••

or reter to di.tillct "arrq." , 'l'bis is a nece••&17 CCXl41t1CXl, .iDce tor

.... el.ent ot s~ "arrq".
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AD ua~t scb.. f. (Uj :- 0j)j<n applied to aD b-.tate 6

producea a nev atate t(!?, L 6 J defiDed as tollows.

(U.1 :- CJj)j<D[£' b 8)

• Q(<.t, .!('fo[~ ben, ...• .!("t-l(.E1 b 6)> •

aD_l(~ be). (uj :- 0J)j<n_l(.E1 b e))
it 1 <. D < w· and un_l• Vi(T

O
••••• Tt _l ) • t <. ~

• ~(<1. !(TO(J?, b 9])•••• , .!('ft_l[}b b 9)> • ao[E, b 9], 9)

it n. 1 .ad UD_1 • Vi('f o' •.. ' 'ft _l), t <. ~I

Iotiee tbat the cue ot DO subscripted variable. 18 Just a apeCial

case ot the utenaiOll iDtroduced above. In that aituatioa., oal7 the

"t1rst" el.-.nt ot each "array" 1s aceened.

Notice &lao tbat the t\u1ctions ~ _d ~ act toeethel' l1ke a

".torase UPP1Ds t'I.IDetlO11" 10 the seaae thi. tel'll 18 uauall,y used wIs_

IUbacripted VU'i~le8 in a source lllDlUase are 1JIpl-.nted in~ ob~ect

JADcuase. wnaaUy aactl1ne code.
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i,h'ul:;lX i ... ~

» ...
~ ~ (q ~ p) : -, ' (q ~ p)

(- q v p ]

• (1-' Y - q)

(- " \I p) V _ q

-r- (J - p ) v - 4

- (q V ~ q) V - q

• q v (- q v - q)

_qv_q

- 1

(11) I-((p :::l (q :J r» =:l «P =:l q) -:-, (p :J r») .. .l

(p :J (q :::> r» :::> «p =:l q) =:l (p :J r ))

., ~ (p :J (q :J r) j V « P :::l q) :J [p =:l r»)

- p - (q =:l r) V ~ (P::l q) V (P:J r)

'" pqr v Pill V pll V Ilr

: pqr V Pil(r V r) V

p{q V qJ(r v r) V (p 1/ r)(q V q)r

'" pqr V (pqr V pqr) V

(pqr V pqr V pqr V pqr) v

(pqr V Piir V pqr w)
• V]"

• 1

257

3l

51

Cl

C"~



(iii) \-«- p:': q) ~ «- p :':'- q) :J p» ~ 1

(.... P ~ q) ~ «~ p :;) .... q) ':J p)

~ r-{_ p:;) q) ., «_ p:;) ... q) :::l p)

'" pq v -(- p ::> ... q) 'v P

-- -.-pqvpqvp

-pqvpqvp

• p(q V q) V P

• P1 v P

- P \I P

- p V P

- 1

- 11 v q

.1 v q

.pvq
• (p;:) q)

• 1
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