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WOTATIONAL CONVENTIONS

The standard notational conventions of s=t theory as given by
Halmos [14]  for example, are acsumed throughout the text, Aside from
the notations introduced below, all others are introduced when they are
used,

8equcnces or n-tuples

A sequence of n items, i.e,, an n-tuple will be represented as

<X Xygeesy X 2 ¥ D < 1, and as simply x, for n=1,

Any liesv. set, 1equance or whatever, containing the items

Xos Xyseees X 5, 18 the null 1list, set, sequence or whatever if n =0,

The Natural Numbers

The set of natural numbers (O, 1, 2, ...} , as defined set theo-
retically by Halmor [14], is denoted by w . Since, according to this
definition, 48 well ordered by the "€" or set membership relationm,

the notation x < W will be used in lieu of x € W,

fhe set w - [L}, f.o., {1, 2, ...}, 1is denoted by W~

Then, x< W means 1< x< W

vii



CHAPTER 1

INTRODUCTION

The Need for a Theory

Computer programming is not yet a science, but rather still some-
what of an art, A great deal of ingenuity and heuristic methodology is
required when we attempt to debug a program; convince ourselves that a
camputation will terminate; show two programs are equivalent; or certify
that a compiler is correct. Although the "art" can never be fully
removed from many of these endeavors, if more "sclence” could be employed,
then at least our attack on these problems would ben‘etit fram the resultant
organization and sophistication, and perhaps in same cases even be made
susceptible to mechanized implementation, One way of injecting "“science"
into our approach would be to formulate a "theory of camputation®,
Ideally, what we want is a theory of computation rich enough to admit
interesting statements about programs, computations and compilers, and
powerful enough to admit proof of the correctness of these statements.

The theory we consider here falls short of this ideal in the sense that

we treat only one small area of concern, name.;, the equivalence of programs,

There is a parallel between computer programs and sentences in a formal
theory of mathematical logic, Programs take on meaning only when the
machine on which they are executed is specified; sentences in a formal
theory take on meaning only vwhen the mathematical system in which they are
interpreted is spacified, Thus, a formal theory of camputation would seem

to have intuitive appeal, and it 1s just such an approach that we take here,



A Th of Str ivalence

The sort of theory that cuncerns us here is one whose well-formed
formulas (wffs) expre.s the strons equivalence (i.e., equivalence for all
interpretations) of two programs from a certa.r restricte. class of programs,
The notion of such a forual thecry has been explured by Ianov [¥], but his
results ar: abstract in nuture and mirror only the ccarser fzatures of
programs as we know them. The theory developed here differs from Ianov's
in that the sort of programs we consider provide a far more detailed pre-
scription for computations and in fact are ALGOL-like in structure ana
behav! r :fi.e., consist of assignment statements and conditionel branches).
A suggeat.ve analogy is that ow theory is to Ianov's, a .~ - first order
predicate calculus is to the prc-w 2it. onal calculus., In fac, this
endeaavor constitutes a new and we believe necessary step in the formal-

ization and detection of the strong equiva.ence of ALGO:-1like programs.

Elemental Programs and Computing Structures

The literature abonds in different formal ‘epre:citations of ALGOL-
like progrmms in the context of theoretical analysc:. {[lLese varv from the
complicated efforts of Ianov (16, Ershov (9] and Narasimhan [34] to the more
succinct approaches of Luckham and Park [14], Paterson (34, Cooper (5] and
Gluahkov (1. Nevertheless, each of these suffers scme difficulty if we
take as our objective a representation that is sufficiently ALGOL-like and

vet amenable to formal treatment,

For our formal theory, we consider the class of elemental progrems,
These are multi-entrance, multi-exit flowcharts made up of (1) two-way

conditional branches on the truth-value of quantifier-free formulas (qffs)



of the first order predicate calulus with equality, and (7)) operators

called assignment schemata which assign the values of a set of terms to

a set of distinct variables. This representation as explicated fully in
Chapter 3 avoids the cumpersome complexity of definition given 'y Ershov
(9] and Narasimhan [34] for their s-hemes, and at the same time alleviates
the unnecessary deficiencies in exprecssion found in the other represen-
taticns mentioned above, In addition, by making usc of tae formal entities
of the predicate calculus, we gain access to the abundance of results

already known for this formalism,

Quite recently, and independently of this author, Engeler [8] and
Manna (33 have introduced representaticns of programs which are very
similar to the elemental programs considered here. However, both of
these authors study the teruination of program execution not the strong

equivalence of programs.

The semantics of an elemental program is defined with respect to e

mathematical system, called a computing structure, of the sort used to

provide interpretation for formulas of the predicate calculus. Im
Chapter 2, we define such structures precisely and indicate how various
bases of computation can be expressed as camputing structures. In
Chapter 3, we define just how camputing structures are utilized to give

the semantics of elemental programs.

Also introduced in Chapter 3 is the notion »f subscripted varisble.

There we define a new data structure called a hierarchial state and show

how such a structure can be accessed by a subscripted variable to produce

a value,



The Strong Equivalence Decision Problem

In Chapter b, we introduce the wffs of our thecry and defire the
concepts of equivalence and strorng ecuivalence in terms of the validity
and general validity of these wffs. Luckhax and Park [24], Kaluzhair 19],

and Paterson {36 define these notions similarly,

In Chapter 5, we examine in some detail the question of effe :tive
decidability of strong eguivalence. Very recently, and independently of
tnis author, Luckhem, Park and Paterson [R5 36] have corsidered this probien
in some detail for a sub-class of the class of elemental programs. Hcw-
ever, we obtair cur basic undecidability result in Chapter 5 by utilizing
a related result for partial recursive functions, whereas Luckham, Park
and Paterson utilize certain results for Turing machines and two-headed
automata. This ezppesl to recursive function theory makes our proof of

undecidability trief and easy tc follow.

As preface Lo these results, we prove the universality of elemental
programs, Ershov [9] shows in a roughly sketched form how to compute all
partial recursive functions In his fcrmalism, but he fails to explicate
the details. We give a nuw scheme which generates an elemental program
for evaluating eny partial recursive function at arbitrary arguments;
the generating scheme utilizes the variables to simulate a first-in-

last-out stack when the generated elemental program is executed.

In contrast to the pessimistic general undecidability results, certain
sub-cases of the decision problem are found in Chapter 5 to yield a favor-
able solution. We first show that strong equivalence is decideble for the
sub-class of elemental prcgrams in which nc function letters appear, The

same result it cbtained for the sub=cleass of elemental progrsms in which

N
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nu gffs appear. We alsc hicw that under condition: thu'. yirid lecidability
Jf the logical validity for Affz in che preogl.ate calculus, o obtain
decidabili%ty of strong equ:vzlence for three further subeclasses of
clemental programs: (i) the sub-claess whose algoritms have nc loops,
(1i) the sub-class whose elemental programs ~ontain no operators, and
(11i) the sub-class whose clemental programs always terminate, i,e,,
terminate in all computing structures. As mentioned above, Paterson (36
has considered similar guestions, but except for the case of always

terminating elementel programs, our results were obtained independently.

Syntactic and Semantic Propcrties

In Chapter € , we consider various syntactic and semantic preliminaries
to the introduction of an inferential system of axioms and rules of infer-

ence for the formal theory of strong equivalence,

First, we define the notion of forward substitution of assigmment

schemata into other assignment schemata and into qffs. These simple
syntactic operations, here examined in detail apparently for the first
time, reveal the basic semantic interaction bet:ean operators and between

operators and qffs,

To carry out derivations in the formal theory from hypotheses, we need
the notion of instantiation of wffs. Thus, fram a general statement of
equivalence given by some wff, we want to prodice when needed in a deri-
vation, any relevant instance of that equivaience as glven by some new
wff, We give a powerful theorem which prescribe: ¢ sullicient condition

for an instance of a wff to be valid when the wff itself is.



We then turn our attertion to the staidard matters of composition,
decomposition and replacement of elcmental programs. Here, we discuss
these operations with respect to the graph theoretic properties of

elemental progrems, as do Ershov [9,, Narasimnan (34 and Kaluzhnin [1g.

The Inferential Sysiem

The wffa of our formal theory having heen defined and studied, we
introduce in Chapter 7 the inferential system of the formal theory. We
discuss the usual notions of derivability, completeness and extended

completeness and ollow Feferman [10) and Mendelson [33 in these matters.

From the proof of undecidebility, we obtain the further result that
no axiomatic compleie theory o strong equivalence exists, However,
we proceed to specify an inferential system of fifteen axioms and five
rules of inference. The first seven axioms characterize the properties
of q*fs; the next four, the properties ¢f assignment schemata; and the
last four, some of the graph theoretic properties of elemental programs.
The first two rules characterize strong equivalence as an equivalence
relation in the ordinary sense; the third rule permits instantiation of
wffs; the fourth rule provides a oridge between strongly equivalent
assigmnment schemata and qff:c expressing the equality of terms; and the
fifth rule permits roformulation of an elemental progras ir "iterative"
form into "recursive" or "ciosed” form, but this rule s not effectively

applicable, s0 that the theory 1 :ot axiomatic,

This inferential system is apparently the fir:% such for deriving
statements of strong equivalence between programs as rich in structure as
the elemental progrems considered here. Earlier efforts include McCarthy's

axicmatizetion of the equivalence of conditional expressions [BO]; Ianov's



aiready discussed results (16); and this authcr's prcof of completeness [R1)
of an axiomatization of the "assign” and 'cuntents” fu.ctions fir . gi ea
b. McCarthy (28l; and to some extent, these efforts relate tc the current
endeavor. The inferential system is shown to be sound in the sense that
aull derivadble wffs are g-omeraily valid, i.e,, express the strong equivalence

of two elemental programs.

Ccmpleteness Results and Applicatiocns

The cvz2rall completeness properties of our non-axiomai.. «% cry o>
unknown. It is nevertheless camplete or even extended complete, as we
show .n Chapter 8, for tnose sets of wffs expressing the strong :quivalence
of ) & two way branch and the always true branch; (ii} two sequences of
assignment schemata, or further, any two elemental programs witkout qffs;
(iii) two elemental programs without loops; and (iv) two elemental programs

which always halt, 1.e., in all c:mputing structures.

We then conside. an axiometization of the properties of assigmmeant
schemata consisting of a sing e assignment of a term to a variahle, and

conjecture that this axiomatization is complete.

To illustrate the considerable derivational power >f the formal theory,
we consider in Chapter 8 several applications: (i) the reorganization of
a simple loop from FORTRAN form, where the body of the loop is executed at
least once, to ALGOL form, where the body of the loor may poss.bly not be
executed at all; (ii) the detection of an elemental prosram that always
fails to halt; (iii) loop reorganization to point up and isolate posaible
non-halting executions; (iv) tbe removal from a loop of a loop-independent

operation; (v) the traasi:- of & loop-transparent operation from before the



loop to after it; (vi) the detection of strongly eqvivalent always halting
tlemental programs; (vii) the decuction of the surcng equivalence of two
elementel programs {rom certa.n hypctheses on the slgebraic properties

of functious appearing in them, e.g., commutativity or identity.

Initia) (opditions and K-events

The essential motivaticn for this work is the study, detection and
derivation of the strorg equivalence of elemental programs. Because this
property is in general both undecidable and unaxiomatizable, we feel there
should be a basic commitment to sharpening our analytic tools as much as
posaible. The aim, then, is t. provide an or.a.l d ¢ aprehensive method
for the detectlon of strong equivalence, to whowver .. .emt such is obtain-

able.

To this end, we turn in Chapter ? to the notions of regulsr expressiona
and regular events, as defined by hLieene {23, and as furthe- studied by
Harrisor [19, Salomaa [38, McNaughton and Yamada [31], and many others.

We show how to map any elemental progran into & finite automaton, and thence
into a characterizing regular expression, Indep den.ly of this author,

Engeler [ 8] and Ito (18] use a simiiar regular expression representation,

We then develop through a series of theorems the notion of initial
condition. Thus, given ary wcrd in the regular event associated with an
elemental program, we J-:fine ar initial condition that holds with respect
to a given Interpretation (i.e., computing structure, if an ~uly if the
elemental program, when executed in inet camputing structure, gencrates
the given word, We then reca-t anew the definition of strong equivalence

in terms of a possibly infini-e propositional form involving the initial



conditior: - the words in the regular events associated with the clemental
programs involved. We give an interesting theorem which serves to verify

this recasting of the definition >f strong 2quivalence,

All of this leads to an operative tcol in the detection of strong
equivalence, We show that if twc elemental programs have the same
regular event associated with chem, then they are strongly equivalent.
Since the eq.ality of regular event: is decidabl: [cf. Salomaa [38), tkis

gives us an effective handle on strong equivalence,

To sharpen this technique somewhat, we in-rduce the notion of
r-gvent. This reformulatior of the semantics for the reguler expression
associated with an el mental program {now called a K-e)_(gress_lg) reflects
the pr:iiously ignored propositiornal structure of those letters ir the
alphabet for that elsmental program that are qffs, We firat prove that
1° “wo elemental programs have the same K-event associated with them, then
they are strongly equivalent. Equality of K-events, i.e., the K-equival "'ce
of K-expressions, 1s shown to be decidable concurrently with an examination
of a formal theory of K-equivaience and a proof that this theory is complete.
Since equality of regular events implies equality of K-eveuts but not vice-
versa, this result therefore gives us a stronger effective handle on strong

aquivalence.

This last result also gives us a “resh and pellucid reformulation of
the equivalence problem for sbstract program schemata as studied by Ianov [16]
and Rutledge [37. This follows since if we restrict ocur elemental programs
by permitting but a single distinct variable, we have the abstract case.

In this situation, K-equivalence and strong equivalence are identical



notions. As well, Ito [18 considers the equivalence problem for a class
of nondeterministic abstract program schemsta and his positive solutiom,
obtained independently of %his author, implies a positive salution to the
deterministic case. However, he does not consider K-events and
K-squivalence, as defined fere, nor the relation of these to the strong

equivalence of elemental programs.

To sharpen cur strong equivalence detection tools even further, we
introduce the notion of shift cet. This concept was first introduced
by Tanov [1§ and subsequently extended by Rutledge [37]. For each operator
occurring in an elemental program, we can effectively apecify wnich atomic
Qffs occurring in the algorithm can be affected, i.e., with regard to their
truth-value, ty the execution of the given opera‘or. This allows us to
refine our notion of K-equivalence and so therefore strengthen our ability

to detect strcug nquivalence,

Conclud Remarks

The contest. between strong equivalence and the theoretician is not
yet rcosolved. The opponert has gotten in some strong blows, viz,, un-
dec’dability and unaxiomatizability. But, we have countered with a
powerful formal theory and potent analytic tools. There are still a great
many potentially productive attacks to be considered; this endeavor, it
seems, has merely scratched the surface of the strong equivalence problem.
In the concluding remarks at the end of this work, we consider what some

of these as yet untried attacks might be,

10
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CHAPTW

COMPUTING ST JCTUKED

At firs+w thought it may seem <<mewnat ~nd - v nicussinge a
prime element of the semantics ¥ & vrogrammin. tarpuc;e before that
language itself is definea. Bul not .-, iven a probl-m to solve,

one natirally comes ir contact first with the promitives of the
~itur.ion: domain of the protlem s,ace, transfermat:ions to aid in
:ffecting a solution, and measurss . fuize and ssu.uste progress,

Once h2se fundamental eniz.izu, wi.-n .~ ca ! 2 gemantic baigls, are

estapiished, some algorithmic procer. <an be undertaken tc generate
the required solution, ané orly then wiil s<aemes for specifying such
algorithms be relevant, To specify a semwantic basis, we will use a

computing structure.

A computing structure is a mathematical structure comprised of a
on-empty set, called the domain, and finitely many rela:...1is, functions,

and desigruted individuals in the domain. The relations and functions

are to be “otal, i.e., defined for all arguments.

We classify computing structures according to their structural
similarity. To specify this classification we use a signature which is
of the form

s =< <n°,...,nk_l>, <mo,...,mt_1>, o>
where n ..., n 1, B ,..., 0, € Wk, ] p€wand where if

k=) or l'eO, the respective members of the triple s are simply O .,

11



By a computing structure -t signature s we mean a sequance

g:(D, RO,...,R F a >

k-1r Fooeoos Fpop Boreees 8

such that

(i) D 1is a non-empty possibly infinite set, the domain
ny
, €D fcr 1 < &, the relations

'

(11, R

(11i) F o D' 2D for i< £, tne functions

s
(1iv) a, €D for 1< p, the designated individuals

Note that the first element of sequence D . ‘e, 20 is the domain D.

In the sequel, when a computing structu e is not explicitly defined, we

will designate its domain in this {uchion., Assumed present in every

structure, regardless of signature, is the relation of equality over the

domain of that structu:.

Examples of Computing Structurce

As examples of computing structures for whick there i: some interest
in constructing programs, we can {irst mention some thet are algebraic
mathematical structures,

(1) The Boolean algebra {v, F}, A, v, T > with signature
<0, @,2,1>, @ serves as the s:mantic “asis for the iogical constructs
of several programming languages,

(11) The commutative ring of comple: numbers < C, +, x, 1> with
gigneture <0, <2,2>, 1> might serve s: tuc semantic basis for a ~omplex

arithmetic programming language.

As further examples, we can cite the folicwing non-algebraic systems,

(1) The computing structure <2°°, TZE, TMI, ADD, AL®> with
signature < <1,1> <2,1> & superficially mimics part of the order code
in the IBM 7090 computer, Here 220 cenctes the set of all 3¢ bit words

over {0,1}, and
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ADD : according ‘O some lonvenient rule
of binary addition which igrores cvert!ow, and

ALs : 20 5256 5o thar FLS(b by e e Bys) = B by bygO

Here, the mnemonics TZE, TMI, ADD and ALS serve only tc indicate the
contexts in which these relations and operations might be used. Thus,
the addition instruction on some ccomputer might use the ADD operation
together with varions data transmissio~s, overflow tests and soc on, tc
carry out 'ts action.

(i1) The computing structure <w, TZE, ADDl, SUBl, @ with

signature <1, <l,1>, 1> 15 used ‘ur compu.ing with the natural numbers.

Here,

TZE = {0}

ADI': : w = w 8o that ADDl(n) = r + 1

SUBl : w - w 50 ther vURI(n) =n - ) 3f n>0

=0 if n=2¢

This system serves as semantic basis for several c¢f the machines studied
in recursive function theory, e.g., the URM of Shepherdson and Sturgis [40)
or the register machines defined by Gandy [ 2 ].

(111) The computing structure <W, 'i°  TRAN® with signature
<2, 2, ® is the basis for coamputation ‘n l'ost tag systems (cf. Davis {7 ]).
Here, W = A* is the set of words over some finite alphabet A , and

TEST = {<x, y> : X €A and y = xz for some z € W }

TRANS : W x W -W sc that TRAN8(x, y) = y'x where y = uy’ for

some u € A,

13



Many Sorted Computing Structures

We should remark at this point that there are certain mathematical
systems which cannot be formulated in a ratural way as computing
structures in the sense used above (e.g., modules, of which vector
spaces are instances; cf. Feferman [10]). Since it would c.*-n be of
interest to construct programs for sucn systems, there is sume motivation
for extending the concept and definition of both signature and computing
structure to accamodate them, However, in the sequel, we concern ourselves
only with the sort of signatures and computing structures already intro-
duced, Therefore, the discussion of how these concepts can be extended

to generslized signatures and maeny-sorted computing structures is relegated

to Appendix I,

Remarks:

(1) As we shall see, a computing ttructure constitutes the bare
bones of a class of partial functions computable via programs interpreted
in that structure. This viewpoint seems tc be in sympathy with Scott's
feeling [ ] that functions computed by various machines are "more basic"
than the sets accepted by them,

(1i) The notion of semantic basis is also employed by McCarthy (30],
wnen he definzs a class of functions [ [A} computable in terms of a
base set F of functions, relations and copstants,

(111) It is conceivable that we could specify a computing structure,
undoubtedly & many-sorted cne, to mirror the true cmblcxlty of the
operations and tests in, say, the IBM 7030 camputer. However, our ability

to carry out thecretical analyses would then be hampered by cumbersome

14



notations and invclved formal procedures, The degree tc which the
formulation presentec here falls short of reality reflects the degree
of compromise required to achieve a tractable theoretical approach.

Of course, a possible alternative for the fut re is to design camputers
with elegant and eminently blemish free operational characteristics so
as to facilitate the theocretical analysis of their behavior. This is

obviously the theoretician, not the engineer, talking.
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CHAITER *

ELEMENT..., PROGRAMB: SYNTAX A. SEMANIICS

The motivation for formulating a set of rules for the prescription of
algorithms is that we want to have a convenient uniform method of specifying
calculations in some mathematical structure of interest. Usually, our attention
is focused on a specific structure, say S-expressions, real numbers, Turing
machine tapes, the natural numbers or whatever. Of course, oftun we may be
forced to do our calculaticas in a structure different from the one intended,
either knowingly (e.g., we decide tha. it is better to campute with pointer
linked machine words instead of symbolic S-expressions) or unkmowingly (e.g.,
we may think of doing real aritbrmetlic, but truncated floating point arithmetic

is substituted instesd),

As indicated in Chapter 1, we will define algorithms in terms of flow-
charts labelled with assigmment schemata and quantifier free formules of a
first order predicate calculus with equality (qffs). There are several reasons

for pursuing & theoretical analysis of algorithms specified in this way.

(1) We can easily apply the flowchart method of prescribing algorithms
to specify calculations in virtually all mathematical structures of interest,
Thie is important if we are tc study the strong equivalence problem which renges
over ali structures,

(ii) Utilizing assignment schemata and qffs in a flowchart scheme in
same sense provides us with maximali computing power. Thus, as we show later,

in the structure <w, +1, @ we can compute al)l pariial recursive functions,



(111) The flowchart method for prescribing camputational processes
has proved itself to be both natural and intuitive. The hope then is
that these properties will propogate into the fheoreticnl anslysis of
these processes as well,

(iv) If ths results cbtained here are to be useful, then tae programs
whose properties are analyzed shoculd be closely related in structure and
intent to actual computer programs, And in spite of their lincar string
representa’.ion, modern ALGOL~like programs are indeed basically flowcharts
of assigoments and branches. In fact, variations ina program caused by
squashing its flowchart into a linear string in different ways are not

really of interest.

We will define for ~ach aignature s , a formal languege, L' s of
elemental programs {cr E-programs as we shall usually term them) for
apecifying algorithms that utilize computing structures of that signature.
Strong equivalence, which we loosely said in Chapter 1 was "equivalence for
all interpretations”, will refer, for each signature s , to the equivalence

of E-programs in L‘ for all computing structures of that signature,

The Syntax of E-programs
For sach signature s , we daefine the formal language L‘ to be the

sst of all B-programs W = <X, I',X> where X 18 a finite non-empty set
of nodes; ' is a partial map over X such that for each x € X where
I' ie defined, I'x 1is either y or the ordered pair <y, £> for some

Y, s€X;and L:X-+ AUQUBUE is a consistent labelling of the

nodes in X with operatoras fram 4 , discriminators from &, initiators
from 8= {b,b,...}] and terminators fram & = {e , e,,...} . (Note: we
write [x] instead of L(x) for the label of node x € X ,) We define
X(4) = {x : x€X & [x) €A), t.e., X(#) 1is the sub-set of nodes labelled
with an operator. Similarly for Xx(@), X(8) and x(&) .
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™ labelling < of ar E-program ¥ = <X I, "> being consistent geans

(1) [x]€ £ wlxmy for some y € X .

(11) [x)e @ »I'x s <y, »» for some y, z ¢ X .

(111) [x) B> Ix ey for same y € X, and for all € X, X is not
reachable via ' from ¢z, 1i.e., i3 not in the transitive closure of T
(cf. Berge (1] for a discussion of reachability).

(iv) (x}eZ I is not defined at x .

(v) If X stipulates that = <J nodes are labelled with initiators and

n < & podes with tarminators, then these must be b ,b),..., and

b
»l
LI TITTTL SN respectivaly, In this case; & 15 called & type <a, >

algaritim,

Remarks:

(1) D the set B = {b,b,, ..}, b, , for exsmple, stands for itself,
i,e., for the letter "b" subscripted by a "2, Tms, B , ad £, { and
€ o well, are sets of formal constituents. However, we often make use of
the fact that subscripts are wall understood -designations for natural numbers;
80 we mAy often say “"tha i-th varieble" for vy or "h‘iun k<8 . ¥
confusion should result from this double usage.

(11) Here the terminclogy and methodology Are somewhat controversial,

Vhen we a5y L, is & formal language, by "formsl" we msan “purely symtactically
defined”, and this agrees with modern usage in most cases, One advantege of o
formal system 1i that manipulaticn of formulas and expressions of the system cen
be expressed in a precise finitistic vay involving only syntax; if the syntax 1is
arranged properly, the effectivensss of variocus notions concerning the systea
becomm self-evident. Carnap (3 ) gave formal metoocds, as such, a big boost



much to the consternation ¢ certair ~thor mathemati~al lopician:, Zurry [6]
vigorously remonstrates against Carnap’. innovations and he chide.. the "syntax
addicts" and others to "sign a declarstion of independence" fram purely
syntactical methods, In fact, purely formal methodology (see, e.g., Karp [22])
can easily lead to intractable situations. For this author, Curry's advice

is well-taken, and we adopt a somewhat middle covrse, making formal those part:
of the endeavor that will profit from formalizaticn (i.e., the sets -+, [,
and £) and P aving informal those parts that would suffer from it (i.e., the
organization of an E-program as a graph defined in a set theoretic manner),

In this 1ight, our designation of Ls as a "formal" language is, in part, a

misnomer (ome, nevertheless, we shall continue to apply).

To define the sets A and [, we first introduce a first order predicate
calculus with equality, FC . Note the dependence of this calculus on the
signature s, To see the connection between the definitions which follow and
the computing structures for which the algorithms in Ls are defined, recall

that a representative computing structure of signature

sm < qo’ooo’nk-l >. «o’ooo.ml-l >’ P >

is
E-Q, Ro,-uo’ Pk-l' ro,no., rl-l. ‘o,ooo, ap-1> .
The countably-many symbols of PC_ are: the variables VarViseees the

constants ko’ . "kp-l'

ro,.." rk-ll and the synbols u(n’ 'l)ll’ ".", "j" ".J' and n.u .

the function letters fo""’f[-l’ the relation letters

We now define the terms of PC s *

(1) The varisbles V sVyse.. are terms,
(11) The copstants k ,..., kp_l are terms.

(1i1) For any 1<, if 1 ,..., Ty .1 B¢ terms then

5 fi(To""’ 1m:-1)

is a term,
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(iv) An expression is a term only if it can te shown to be so through s
finite number of applications of (1), (ii) and (11i) above. (Note: hereafter,

this last provisc will be referred to only as the "extremal claunase",)

Then the guantifier-free formulas (qffs) of PC ¢ are defined as follows,

Of course, the set Q of discriminators is just the set of qffs of PC‘.
(1) For any i<k, 1if Toseees Tni-l are terms then
ri(‘lo,..., 1!11-1) is a qff,
(1) If t and ¢ are terms, then (t = ¢) is & qff,
(111) If p and q are qffs, then (~p) and (p D q) are qffs,
(iv) Extremal clause,
We can define other propositionel cc¢-u.2vtlves as follcows.
(1) (p Aq) will stand for ~{p D~ q)
(11) (p Vv q) will stand ror ((~p) D q)
(111) (p = q) will stend far ((p > q) A (a2 p))

The conjunction (1o - ao) A (':l = "l) Ao A (Tn-l - °n-l)' vhere t, and o, ,

1<n<w , are terms, will be abbreviated in the sequel as ('ri . °i)1 <"
As the operators in 4, we take assigmment schemats of the form

u:-1° & nlz-‘t &.. v twx

© 1 n-l n-1

where n <@, and vhere if n =1 we have simply u i =T . Here

Tgreoes Tpy oTe terms of PC' and Ugpeery B, , Ore distinct variables of

PC, . (The intent here {s that the terms 7 ,..., 5 . , are computed before

any assigmments are done,) We will abbreviate expressions of Lhe above form

as (u; := 1i)i<n and refer to the u, , i<n, as the assigned variables,



In Pigure 1 iz an example of an E-program shcwn in flowchart form., We
will call this form of an E-program its diagrammatic representation (ar).
Bacsuse the dr of an E-program is such a convenient representatiomn, we will
in the sequel define E-progrers in terms of their dr's rather than give the
actual set-thecretic definition. We define the dr of an E-program
He<X PZ> us follows.

() T™he dr of x € X(B) UX(E) 1s a circle enclosing [x]; of
x € X(4), & rectangle enclosing [x]; and of x € X(@), an oval enclosing [x].

(41) For all x € X such that Ix =y for some y € X, the dr of the
partial map ' acting on x consists of an arrow from the dr of x to the
dr of y. Porall x€ X such that 'k =<y, £ for same y, z € X, the
dr of the partial sap ' acting on x consists of two arrows fram the dr
of x, one to the dr of y 1labelled with the letter T and the other to the
dr of z lsbelled with the letter F ., When it is unsmbiguous, the T and F
labels will be dropped, and the convention adopted that the arrows from the dr
of x will puint down and the leftmost one will be the T arrow.

(111) Then the dr of 8= <X, I, ¥> consists of the drs of the nodes
in X, Joined by the dr of the partial map [' acting on the nodes in X .

To give some indication of the gnnerllity of L' , and to further
1llustrete the idea of a dlagrmmmatic representation for E-programs, we have
oonstructed the rather artificial exmmple of Figure 2.

Remarks:

(1) In spite of tis fact that we will not have occasion to define an
E-program in set-theoretic terms, but rather will always employ a dr of that
E-progrem, we nevertheless will retain the set-theoretic definition and will



Vo i= f(ve, V) B vy = L (vy, k)

€ @

Pigure 1

A type <2, 2> E-program in L, where s=<<, 2, 1>, <2, 2, 1>, >,
In this example f2, r, and kl s which are permissable, do not appear.




regard the A4ar merely as an aid t« understanding. We u: thir hocauce the
syntactic sanipulations required ic applying a formel theory arc much
easier to describe and effectively carry out in set-theoretic terms rather
than in terms of boxes, arrovs, ovals, etc,

(11) 1In Pigure 2, we see that the definition of E-program allows
totally isolated components and other components not reachable fram any
noas in X(8). As well, certain loops once entered can never be left.
Intuitively speaking, inclusion of theze constructs would usually be
classed as poor or improper programing. However, by admitting them here,
we are facing up to the fact that such constructs do appear with unfortu-
nate regularity in actual progrsms, and therefore should be subject to
analysis in any theory of camputation with pragmatic goals.

(ii1) The B-programs of L, can bave many entrances snd exits,
Thus, if we want to study or transform not a whole E-program, but only
some isolated fragment that may be entered and left in more than one way,
we can do 30 by extracting that fragment as an E-program with meany entrances
and exits,

The Semantics of E-
To effect & computation, we need & type <m, n> E-program,

§=<X rZ> in L , & natural number i < m, a computimg structure

D of signature s , and a state { : w-~ D . The E-program tells what
to do; the number 1 tells where to start (i.e., at which initiator); the
camputing structure supplies the primitives for doing it; and the state acts
first as input, then as "memcry” during execution, and finally as output.

Ve first give the semantics for PC. . It is assumed throughout this
section that the signature s iz s e < Dyeoes B 1>yWy.eey l‘_?,p
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FiEE s
A type <4, i E-program in Ls where 5 = <, 1, 1>,



and that ve are concerned with the fixed computing s' ructure of signature s

De<D, R,euey By 1o Fpooos {b-l’ Bore0es Bp” s
and the fixed atate § : WD,

The yalue of a term 7 with respect to D and ¢, denoted
7(D, t], 1is an element of the domain and is defined recursively as follows.

(1) I <t is a varisble vy o, | then (D, &) = 71[2’ t) = c(i, ¢),
wvhere c(i, ¢), read "the contents of location 1 1in ¢", 1is the notation for
t, or t(1) introduced by McCarthy (28].

(11) If t 1s a constant k,, then t[D,t]=k,/(D, t]=u, .

(111) 1r * 18 £,(7 ..., 'r-i_l), then 1(D, t] =

£ (T aeees '.1-1)[2: £]=r(v[D, ¢],..., 1_1_1(2, tl).

We will say that Qff p of rc. has a truth-value with respect to D

and § denoted by p[B,i], such that plg,g] iff p 13 satisfled by ¢ in
2 in the usual sense of the predicate calcuius. A recursive definition of
p[E’ ¢t] follows,

(1) I p is ’1('0’"" Tni-l)' then p(D,t] =
£ (T peees -rni_l) (D, ¢] =R (7 [D,t],..., Tni-l {n,t)).
(11) 1f p 1s (v =0), then p(D,t) « (1 = 0)(D,t)
- t[Q,l]- dl_l?, L], 1i.e., 1’(2,;] and c[‘]g)!] are the seme element of
the domain D .
(111) If p 1s (9>r), then piDt] @ (q>r) [D,t]
enot qlp,t) or rip,t].
(iv) I p is (~w), then p[D,k] @ (~q) [D,¢] wnot qiD,t] .
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An assigmment schema < = ("i t - applied to tke state §

*i<n
produces a new state f{D, {). Here, the values 1,[D, t), i , are
all first camputed and then sabstituted in the state { at the places

correspanding to the a:signed variables u,, i<n, 30 that we have for each

p L4
variable Vi K¥w, of K,
vJ[‘I_J) (D, ¢1] = vdlfg, t)=c(4, t) if u, ¢ v, for all i<n,

a vy, for some i<n ,

- ‘li[Q, t) it u, 5

Alternatively, we have
(Vik: - Tk)m[‘?) g] - ‘(1;\-1’ 1“"1[2’ gl’ ('i‘[: - ‘k)k(n-llp) g])
if 1<n< w
- a1, 7.(D, t], t)
if n=1,
wvhere a(i, k, {), read "the assignment of quamtity k to locatiom i in ¢",
is the notation introduced by McCarthy in {28 for the sequence obtained from ¢
by replacing its i-th element by k . We may also write this as
(vik: - tk)k<nltp" t]- lun—-].’ 'n-llg) tl, "iin-z’ 'nozlgﬂ tl, ol...
.(113 T_'L[Q) t]l .'(103 10[‘2’ t]; ‘))on'))) .

Now we explain the semantics of E-programs themselves, The type <a,
E-program 8 e« <X, I', x> applied to the state { starting at initiator bi' i<m,
produces

u(p, <, ©) =k, D, ¢, x)
where [x]) = b,, and where the partial execution function R 1s defined
as follows,

(1) 1r(x)e G, i.e., if [x] is an initiator, then

k%, b, ¢, x) = E(W, D, ¢, I'x) .
(11) 1f [x)e A , 1.e.,, if [x] 15 an assigoment schema f , then
KN, D, ¢, x) = B(W, B, £(R, t), Ix).
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(111) 1f (x) € Q, i.e., if [x) is a qff p, and if ¥ = <y, 2>
for some y, z € X , then
E(M, D, ¢, x) = E(M, D, &, y) ir p[D, &]
= E(M, D, §, z) otherwise.
(iv) If [x] €&, i.e., if [x] is a terminator ey , then

EM, D, &, x) = <§, .

Clearly, for certain ¥, D, & and i where [x)=b, , E(W, D, ¢, x)
does not terminate, and ¥(D, <, i>] 1s therefore indeterminate. If
termination is obtained, soc that I[R, <¢, Dl =<', P for some £':w =D
and j < n , we say that when E-program ¥ ' is executed in computing structur:
D with initial state § , starting at the i-th initiator, it halts at the

J-th terminator producing the final astate ¢' .

Remarks:

(1) The c(i, t) and a(i, k, ¢) notations, after first being
introduced by McCarthy, have subsequently been used by him along with
Painter [26, 35] and by this author, as well [20,21].

(11) The execution function E , on reaching a node labelled with a
qQff p , will take the arrow in the dr labelled T (i.e., the left arrow)
if p turns out true and the arrovw labelled F (i.e., the right arrow) if
p turna out false,

(1i1) As an alternative form of assignment schema, we could take
simple assignment schemata, i.e., those with only one assigned variable.
This form would be samevhat more ALGOL-like, though not quite as general.
In Chapter 8, ve will examine briefly some of the implications of such a
choice,

(iv) A modification in the definition of E-prpgrm that would make

them more ALGOL-like would be a provision for subscripted variasbles, :.e.,
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arrays. In Appendix II, we give the details of a scheme for introducing
subscripted variables, We redefine the syntax for terms, qffs and assign-
ment scbemata, and introduce & new data structure, the hierarchial stats,

which 1s used to store the arrays that are accessed by subscripted variables.
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CHAPTER &

WELL-FORMED FORMULAS: SYNTAX AND SEMANTICS

Our principal interest is in the strong equivalence of E-programs, and
so the well-formed formulas of the formal theory we develop in this and
suce ding chepters will simply express for two E-programs of the same type

that they are strongly equivalent,

'The Syntax of Well-Formed Formulas

For each signature s, we defin: a formal theory T = G','..,Jf

where Fwy 1s the set of well-formed formulas (wffs), and J' , a8

explained in Chapter 7, is an inferential system of axioms and rules of

inference, The set 3;»5 is simply the set of all expressions of the form
M 8% where U mnd B are E-programs of the same ‘ype in L‘ « Recall
that by "of the same type", we mean with like numbers of initiators and like

numbers cof terminators,

The Semantics of Well-Formed Formulas

We say that a wff ¥ =8, where ¥ and ® are type <m, > E-programs
is yulid in & camputing structure D and write ‘.D A=W (i.e., ¥ is
equivalent to 8 in 2) iff for all i <m, for AlI ¢ :w_'-?o s We have
that M[D, <¢, 1>] = ®D, <¢, i>] . The notation x & y means that either

x and y are both indelcrminate, or both are determinate and x =y ,

Notice that if both ¥ and # halt, producing <t', i'> and
<&") i"> respectively, then for equivalence we require that <t', 1> =
&', i"> , i.e., &' =¢€" and {' = {" ., Thus, not only must two E-programs
produce the same output state but they also must halt at the same terminator.
‘this is a natural condition if we are to have substitution of equivalent sub-

programs,

29



We say that a wff o T ® is generally valid anc write (=8 = 8

(i.e., ¥ 18 strongly equivalent to B ) iff for all camputing structures

D

D, ¥ =8 is valid in 2

For any set of wffs AC 3;,‘ (called either proper axicms or
hypotheses), we write O |= M ¥ ® iff for all computing structures D,
if the wifs in & are all valid in E,then H =8 is valid in 2.

In this case ve say that M = 8 is a semantic consequence of 4 .

Evidently, general valldity is just a special case of this latter concept

stnce PlUzBew|U>0, vhere § is the empty set.

Remarks:

(1) We may use the notion of semantic consequence to aid in the study
of equivalence far E-programs in particular computing structures. Thus,
if the proper axioms in 4 can be shrewdly specified so that they are all
valid only in the structure (or class of structures) of intereat, then a
wff 8 =B will be a semantic consequence of & Just in case ¥ = ® is
valid in that structure. When this is the case, we say we have axiomatized
the properties of that structure,

(11) It is not clear precisely what properties of structures can be
axiomatized by a set of wffs of the form M = 8 . It may be that more
complicated statements about strong equivalence should be permitted so as to
give us the axiamatizing power required to characterize certain structures,
like the integers, for example. Thus, propositional statements, like
HSBAE-DPDOE -, or quantificational statements, like (2x)(M(x) = ®)
may be desirable, We do not pt.u'mle this matter any further here.



CHAPTER -

CONCERNING THE DECIDABILITY OF STRONG EQUIVALENCE

As one might expect, because of the complexity of the situation under
study here, undecidability is iurking in every corner. There are two
approaches both to the strong equivalence problem and tc the axjomatiz-
ability problem which we discuz: in Chapter 8. On the one hand we can
examine these problems with respect tc the whole of 3'7.;3 for various
signatures s ; or opm the other hand we can consider various subsets of

j,’,,s for arbitrary fixed signatures & . One result obtains immediately,

Theorem 1: Strong equivalence is decidable for E-programs in which no

function letters or constants occur.

Thus, Tiel =~ 87 , where M = ® ¢ 5"5 , 13 decidable for any signature

s = < <n°,..., nk_1>, O, o .

Proof: In this case, since there are no functions, the assigmment schemata
are relegated to merely transferring around the initial data fram location

to location. Thus, Ls is not toc interesting or powerful a language.

Conaider the type <m, = algorithm & € Ls with K < w nodes
labelled with assignment schemeta and qffs, and in which there occur
N < w distinct variables. Suppose we execute @ 4in some computing
structure with some initial state & . Since elements in the state for
variables that do not occur in § are unchanged during execution, and
since there can be at most N distinct values stored in the initial state
¢ for the N distinct variables occurring in § , then there are at

most NN distinct statec that can arise during the execution of € .
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Thus, the at most N distinct initial values for the N diztinc. varistice

»
in § are shuffled around by the assignment schemata into at most R

coafigurations,

Now, suppose that this execution of & we are considering fails to
balt. Then there exists a node x of & such that execution passes
through x wmore than n‘“ times. Thic is so because an infinite number
of podes are encountered during the non-halting execution, of & , but
since € itself has only a finite number of nodes, at least one node must
be sncountered infinitely often., Thus, after at most l!’ +1 passes through
node x , the current state st that point must repeat itself, since there
are at most N distinct states, Of course, after a state repeats it-
Self at a node, execution is thereafter periodic in nature with same fixed
loop, which includes that node, e*ecuting repeatedly and generating a

periodic sequence of states,

Since there are K nodes in € lebelled with assignment achemata or
Qffs, an execution of € which has so far passed through at most K x llll
such nodes ia guaranteed to have generated a repeated state at one of them,
80 that execution never halts. 8inc~ there are but a finite number of
distinct paths through € consisting of less than K x N' nodes, the
pumber of distinct paths associated with halting executions, i.e., those

beginning with an initiator and ending with a terminator, is therefore finite.

The E-program of Figure 3(a), for example, has but four paths through
it that are associated with halting executions., Thus, we may execute the
loop zero, ome, two or three times and then halt, but if r(u, w, y, x) 1s

still false after three executions of the loop, them the E-program never



. r(u, w, ¥, x)

e 'L imwhkwisy&y: :=mubx:=2g

Here u, w, x, y, 2 are variables and r is a relation letter,

NMievEVY s

Here u, v, w are variables and r is a relation letter,

F

Here v and w are variables,



halts. This is because after this point, the contents of u, w, y and x
vary only periodically, and so ~{u, w, y, x) will be testing a state
altready encountered,

In Chapter 9, we show how to associate with the set of all paths
through € , that begin with an initistor and end with a terminator, a
set 'rt of triples <b1, f, ed> s where b1 and e, arean initiator
and terminator respectively, and where f is an assignment schema, called
an operation in this context. We say two triples are similar iff they
bave the same initiators and terminators and their operations, f sad g,
say, are strongly equivalent (i.e., f[P) t]l = g[g, t] for all computing
structures D and states ¢ : w-ol)o) . No two triples in the set T

4
of triples for € are similar, and furthermore, with each triple

<®,, f, r .1> we associate @ qff p , called its joint initial condition,
such that if € is executed in D with initiel state { , starting at

b, , it will halt at e, and produce the final state £[D, ¢] iff

p(D, ¢] . Then, we show (Theorem 25) that the two E-programs # and 9
are strongly equivalent iff first, for each pair of siwilar triples, ome
from T' and one from 'l" , the corresponding joint initial conditioma

are logically equivalent; and second, for any triple in T‘(cr T') for
which there is no similar triple in Ty @ Ty) , its joint initial condition
sust be identically false, i.e., a logical contradictiom.

It iz easy to show that the E-progrsm of Figure 3(b) has but one path
through it associated with a halting execution. The triple corresponding
to this path is <b°, vV i= w, 2> =snd the joint initial condition for this

triple is r{(u) A~ r(v) . Thie joint initial condition is just the



necessary and sufficient condition on the initial state for the E-program

of Figure 3(b) to halt, having executed v := w . Notice that the

E-program of Figure 3(c) also has a single path associated with halting
execution. The triple here is also <b_, u := v, e > , but its joint initial
condition is ldentically true, Thus, since the joint initial conditions

for the triple <b°, vV i=w, e°> are not logically equivalent, i.e,,

r(u) A ~r(w) is not identically true, the E-programs of Figures 3(a)

and 3(b) are not strongly equivalent,

We have already shown that there are only a finite number of paths
through # associated with halting execution, each with less than K x "
nodes; similarly for 8 . Thus, it suffices to consider only the set of
triples and joint initial conditions for paths of length out to the re-
spective maximums necessary for M and ¥, Since the sets 'l:. and
'1“ of triples are then finite, we can decide the strong equivalcuce of
¥ and ® using the procedure outlined above, provided that we can decide
the logical validity of qffs in PCB and the strong equivalence of operations,
But, as indicated by Church (4], since no function letters occur in the qffs
of PCa » their logical validity is decidable, and as indicated in Chapter 8
(Theorems 1%, 15 and 16), the strong equivalence of operations, i.e., assign-

ment schemata, is decidable. Thus, so is Tl = 97 . .

This decidability result can easily be extended to a far larger class
of E-programs, Thus, strong equivalence is decidable whenever the number
of paths associated with halting exscutions is finite, and the logical
validity of qffs in PC- is decidable. In Chapter 9, we return to these
matters and indicate in detail the role of joint initial conditions in

decision procedures for theae cases.
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There are twc obvi.us applications of this exlended decidability
result. Thus, we have thal strong equivalent: 1; de :cable for E-programs
without loops anc t.rr %-pr wrars tha* always helt (i.e., in 831 computing
structures, with Al initiel states. of, Pigure 4% for an example of this
case), provide., of course, the logical validity of qffs is decidable.

In Chapter ©, we 1ndicate now d-orosranms wrthort leoens war ce put into
s cancnical fere using the axiaoms snd rules of our forma: theory. The
result for eliways halting E-prograr: 18 merely quoted hers from the recent

work of Paterson [36].

A specializacion of the nu-iuups vesult, which does rot depend on

the decidability of logical valicity for qffs, is the following

Theorem 2: Strong equivalence for E-programs consisting solely of

assignment schemate, 1.e., without any branching, is decidable.

Ifwe ot T (4) « K5 1,T> 2 % @ X(Q) = #} , and define
Fm, ) - @B Fm, 1 ¥, BEL(4)], then Theorem 2 states that
tll = @t , vhere 8 W€ m (4) , is decidable for any arbitrary
signature 3 . (Incidentally, we define L_(Q) ame 7;-.3(&,‘ ina

similar fashion.) Pigure 4 1llustrates an E-program € € LB“) .

Proof: In Chapter 8, we give a detallec proof that there is er effectively
generable canonicel form for E-programs in Ls(4) (Thgorm 1k, 15 ad 16),
and this solves the deciszion problem for this case, We pcstpone this dis-
cussion, however, 3c that we can describe the generation of the canonical

form in terme of the axioms and rules of our formeal theory. '

The E-programs whose strong ~oquivalence decision problem vye have

considered s far have been somewhat reastrictive in the sensc that the sorts
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Fiears &

Tn: E-program § ¢ ?7'7!'(4) o Here f],..., flo are assignment schemata,

L

Fipure >

The E-program ¥ € :ﬁus(&) . Here pj,..., py are qffs,
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of computations they specify are not very complicated or interesting.
let us now consider the signature s« <1, 1, I> . Computing structures

with this signature are of the form <D, R, F

o a°> where the relation

lo and function F, are wonadic. If we further disr~gard the equality
relstion over the domain, then structures of thia sort i3present, in a
sense, the barest bones with wvhich we might want to carry out interesting
meaningful computations, Now, let us consider the strong equivalence

decizion problem for B-programs in L . that do not use equality. Ome
immediate result is

heorem 3: Strong equivalence is decidable for E-programs consisting solely

of qffs build up from s single monadic relaticn letter, s single momadic
function letter, s single constant, but without equality.

If we lot L.'-(IGL.: Do Qff of the form (T = d) occurs in O} ,
and define R, = M W€ F5 : M, BEL "}, then Theorem 3.
states that Ml S 87 , where W =B € T (), is decidadble for the
signature s =<1, 1, >,

Proof: 8ince E-programs here do not have sy assignment schemata, we can
argus, precisely as in the proof for Theorem 1, that there are but a
finite number of paths through an Z-program € associated with halting
axacutions of € ., Furthermore, decidability of logical walidity for
Qffs odbtains here, so that the Jjoint initial condition decision procedure
used in Thecrem 1 will suffice here as well,

To see how the joint initial comditions are obtained here, consider

the R-progrsm ¥ of Pigure 5. Here in this exsmple, it is cbvious that



there are but five paths through 8 associaten with halting executionms.

These give rise to the triples <b , v =V , 2>, by, Vo i Vg €2
and <b1, v0 =V, &>, where v, = v, is just a dummy identity

b
operation, The joint initial conditions associated with these triples

can be easily verified to be respectively
(py A~py ARg) VYV (~p; AR Apy ARy),
(B, APy A~ps Ang) V(~p, Aps Apg ARy)
(~p A Py A"P6) . n
Thus, for s = <1, 1, I> , E-programs in L~ have a solvable
strong equivalence decision problem when they consist solely of assign-

ment schemata (Theorem 2) or solely of qffs (Theorem 3). Nevertheless,

in general we still have the following unfortunate

Theorem 4: Strong equivalence is undecidable for E-progrems bullt up

from a single monadic function letter, a single monadic relation letter,

a single constant, but without equality.

Thus, ?|=8i = ®7 , where % =®€ T~ , is undecidatle for the
signature s =<1, 1, 1> , and therefore, for any signature s' such
that .?'»n.s' € Fm,, . 8o even without all the customary parsphernalia
available for expressing algorithms, we are still saddled with the fact
that in general the analysis of strong equivalence cannot be an effective

process,

To prove Theorem 4, we will take a somevhat roundabout path and
first show that in an appropriate computing structure we can compute
all partial recursive functions. This result will then lead us to the

proof we desire,
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(1) The prineipal point of concern here is that for schemes that are
of pragmatic interest, the strong -quivalence of E-programs is undecidable.

Of course, if a computing structure has a finite damain then equivalence

in that structure is decidable for the same reasons the wffs of Theorem 1
are decidable. 8o, we might be tempted tou say that, for example, equivalence
of IBM 7090 programs is decidable since the domain 236 is finite. There are
two reasans vhy this sort of reasoning is not productive. First, the sort
of exhaustive loop unwinding performed in the example of Figure 3(a) would
take years in a domain the size of 236, thus making impractical the obvious
decision procedure, Second, as suggested earlier, we may not even be aware
of what computing structure our program is being executed in, thus rendering
the concept of equivalence of programs scmewhat  mpotent. The sort of
l.tct-lt we would be more interested in is: "No matter what computer these
progrems are executed on, they give the same result”, i.e., & statement of
strong equivalence. But Luckhsm, Park and Paterson [25 ] show that for s
certain sub-class of programs, even squivalence in all computing structures
with finite domains is undecidable,

(11) Theorems 1, 2 and 3 discuss various decidability results, but
sctually, all of these results derive from the seme set of facts, If the
oumber of paths associated with halting execaticas is finite, and 1f we can
sffectively determine a bound on the length of such paths, then decidability
is cbtained in cases vhere the general wvalidity of qffs is decidable. This
is because in such situations, the sets of triples to be checked are finite
and determinable, the strong equivalence of operations is decidable (this is
alweys the case), and the logical equivalunce of joint initial conditions is
decidable,

(114) The triples notation, used nere merely for explanatory purposes,
- 4s not used in Chapter 9,

ko



(iv) Within the undecidebility limitation: impused by the structure of
the problem being studicd, we covelop irn iu.ceeaiag chuptevs certain viable

analytic tools for working or. the strong equivalence problem for E-progrems,

Partial Recursive Functions

We shall show that glven & suitable camputing structure, we can construct
E-programs to campute all partial recursive functions. The reasons for this
demonstration are twofold: first, te illustrate that E-programs as defined here
are adequate in the sense that thers 15 no function computable in a structure
that we cannot specify with a ruitable E-program; and second, to provide a

convenient method of proof for Theorem 4 above,

Consider the computing structure N = <&, F, a> with signature

s =<0, 1, 1>, where F_ 1is the successor function, a  is zerg and the

equality relation over « ic included in N. (Note: we will write x + 1

for Fo(x) ad 0 for & .) For the purposes of defining pertial recuraive

functions, we also comsider the projection functions Uin(x ) = x

or* o %pa1 1
foralln< @™, alli<n andall <x,.., X _,> €4 as initial or base

functions, The partial recursive functions are obtained from zeru, the successor
and projection functions us‘ng three methods of combinin;” functions. (This is
all given by Mendelson in [33].)
(1) Camposition: given the functions
B(xpeeey % 1)
ho(xo’"" xn-l)

By (xgeeees X )

By (Xgoeees % 4)

ki



whiee m< @, n< &, we say that the function aef.ned by
r(xo””’ xn-l) = 8(ho(‘o""’ xn-l)"“’ l’xm—l(xo"“’ (:\-1))
is obtained from the given functions by campositicn.

(i1) Primitive recursion: given the functions

g(xo,..., ’51-2)

h(!o’”" *n.2? *pa10 xn)

where l<n <&, we say the function defined by

t(xo,.-o’ ‘n.a. o) - g(xo,,,o, xn-z)

f(xo,..., Xn-20 xn-l*l) = h(xo""’ Yne2s *po1 f(xo""’ *n-2» ‘(n—~l))
i8 obtained from the given functions by primitive recursion.

(141) The unrestricted u-operator: given the function

B(xgseeey X 15 ¥)

where n <&, we say that the function defined by

t(xo,..o’ ‘n-l) - uz(s(xo'.oo, In-l’ z) = 0)
vhich we read as "the least z such that &(x,,..., X ,, z) = 0", is obtained
from the given fumction by the unrestricted u-cperator, Here, t(xo,..., x, l)

is Qefined for <xy..., X > € W' iff for some k< w, g(x_ ..., z) = C

n-1
and for all z<k, ¢(xo,...,

X,
n-L?

X 10 z) exists and is not zero; and when

such is the case, f(xo,..., xn_l) then has the value k .

We will now deacribe a scheme such that for any partial recursive function
and suitable arguments, we can construct an E-progrex in I.a which when executed
in § computes the value of that function at those arguments, Suppose that the
faniion f(x ..., x _,) 1s defined by & form ¥, as given by the initial

fanctions and (1), (11) ena (i11) sbove, and that d = <d,..., 4 >

L ¥



where d € w® is a set of arguments at which f(xo,..., xn-l) is to be
evaluated, Then the E-program R( & £ 2) , produced by the generating
function R using the form b £ and arguments 2 , When executed in E
with any initial state, camputes f(g). The z-program R( Et’ 2,) is
illustrated in Figure 6, Here, " is another E-program generating functiom;
the composition of E-programs, indicated schematically in Figure 6, is

discussed in Chapter 6,

The E-program W(p, é'f) is generated in a recursive fashion according
to the structure of é'f . The variables are utilized to simulate a stack
as Mp, Cf) proceeds, the first argument of T acting as a stack pointer
during construction of the E-program. When constructing W(p, Cr), p< W,

we assume that variables v will contain the arguments at

Vp+12o 2 Vpn
which f is to be evaluated, and we arrange for the value of f at these

aryuments to be returned in vp .

Consider first ﬁp, é'f) for the initial functions. These definitions
are given in Figure 7. Figures 8, 9 and 10 show constructions for composi-
tion, primitive recursion and the unrestricted u-operator. Also in the illus-
trations are representations of the run-}:ine stack showing how the variables
are assigned during E-program constructicn by Mp, £f) . On the basis of

these constructions, we have the following

Theorem S: For all partial recursive functions f(xo,.... xn-ll with form ét

and arguments d = <d ,..., d ,> , and then for all initial states

J

£ s W W, a(fr, d)[N, <t, &) is determinate and has a value <t' @ for

some €' tw— w iff f(do,..., dn-l) exists, Furthermore kK in case

£(d ,...q d ) existe, then f£(d ..., d ) =c(3, £').

4



Figure 6

Here the variables v,,..., v, ., are loaded with the arguments d,..., d -1
The variable var is vaed to Beéurn the final value, The reason t8;' not ®
v,

using v 20 2 will become apparent when we consider the proof of
Theorem 9‘ .

np, "x°+1") is v

onp, “0") 1s Y e ko

%p, "Uih(xo,..., x )" s v =V




o

: ! (anﬁ*i = 1'p+14»1) i<n
pimeen+2 1 @an' "ho(xoi"‘l xn_l)”)
arguments
for h ?
Vpens2 7 Vpineme2
pmin2 value of hy
pimintl Vpn+3 *° Vpeneme2
v
arguments
for ¢

l Wpnims2, "n(x ..., x@

i

Vptnimel = Vpeneme2

p+n
I @m»l, "g(xo,..., xn_l)"D
1

pén+l value of ¢

arguments
for
N 1 Vp T Vg
P
D value of e
Fipgure 8

On the right is the definition of Mp, "flx ,..., x_.)") where
o] n~1

’5"0-'"- ’5\-1) i=s given by composition as
E( (X geees Ko 2 )peeey B (X y0eey & 1)), Jn the left is the run-
time”stRck show!n?: the sto’aée L1ocatiln given by M. The arguments
for f , already prcient, are loaded as arguments for h., i -~ m . Then,
h, (X ,ee0ey x ), i<m, is camputed and the result loaded as the i-th

t for ’a, . Finally, g 1s computcd with these arguments and the
result returncd a3z the vedue of £ 1 v, .

LM



piane 1 | Cripesee ™ "po1er) 11
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On the right is the definition of Mp, "f(x,... 3

1)) vhere f(xo,..., n-l) is defined by primitive
recursion using g(x ,..., x ,) and n(x cery

)) On the left is the ro

,.-I’
time stack, The valSc of X yeeey X 1.5 .mﬂu@ed ﬂ‘om th8 maidenosv' n- hrs‘ the arguments for ¢
are loaded and g evaluated; ghon us v, a5 3 temporary counter, h 1s repe"xt«f‘l y =2valuated until the
required depth of recursivn is acmeved wuﬁ evaluating h , the 118" argument, .. V.., , is loadet

with the value of f at the previous level, i.e,, Then Y, Teceives tre £ aal’result,
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Vpan+l T ,
i+l "
™k,
pim| §
arguments
for f
arguments v -ko
for g

p+l AJ, Vo P= Vourey Vptner T f‘o(*"gd»ml)

P value for é \/

Figure 10
On the right is the definition of "Np, "f(xo,..., )") where f(x g1t Vs defined by tue
thalleft is the run®iime btaci The valne of

unreatricted ieoperator using g{x ,..., x ).

£(xX ,uue, ) 1is computed by siﬂply ccnﬁutxng (X yuuuy y Y=k for y = ) 1, ... until
y Ss tound sﬁch that k=10 . Ifno such y is foulld, the “ag putaticz fails to .alt, and *he valuc
of f(xo,.. ) is therefore undefined, The restriction on the wirestrictei ,-speratrr assures
us that for aJ.l i, if g(xyeeey X _;, h) 40 for y=1,2, ..., z-1, then glx s X 2)

is defined.



Proof: An inductive proof on the structure of R(¥y 1) can e given in some
detail. We vill assume that the definition of R(f,, d), che attendant

camments, and the stack diagrams make the proof wholly obvious. .

Bemarks:

(£) Ershov [ 9) indicates, for his scheme, how flowcharts can be given tc
campute partial recursive functions, but no details are given. There is reaily
1ittle or no ingenuity required in the comstruction of S(Er, g) s we have
sestt above; this bespeaks of the naturalness of a flowchart representation of
algoritims which utilizes assignment schemata mnd Qffs.

Now let us return to Thearem 4. We are to shov that Tj= W S B 1, where
$Z9€ Fu® for signature s - <, 1, 1>, is wdecidable. Recall that W
@i 8 contain no qff of the fam (T = o) .

Jyooft Let us sketoh & rough outline of the proof first befgre giving the
details. Ve will show how to sffectively comstruct, for any partial recursive
fwnction f£(x,..., X ;) end &y argments d=<d ,..., 4 ,>, & type
Q, D Pprogrem W(f,, d) €L, where s =<1, 1, 1> euch that if REL"
1s same type <, 1> E-progrem that never halts (i.¢., %[p, @, ) 1
indeterminate for all D with signature s =<1, 1, 1> andall g zu-o‘l‘)o)
thm,

(1) There exists a computing struciure X , with signature » , such that
AL s-(z,_g):' % lswvaltdin X, them f£(4,..., dn_l) does not exist

(11) for ey computing structure D, wvith signsbure s, if
*(f, &) 2 1enct valid in D, then £(d,..., ¢ ,) doss exiat,



Then, existence of a decision procedure for tj= % 8 1 in gemeral,
vhere M - B € Fm!- , would imply a decision procedure for

= R%(F,, 4)  R7 in particular, which, fram (1) and (ii) sbove, would imply
a decision procedure for the cxistence of f(do,..., dn-l) for an arbitrary

partial recursive function f and arguments 2 = <d°,..., > However,

j .

n-1

this last problem is trivially undecidable (cf, Mendelson (B3, p. 255]), so that
therefore a decisicn procedure for = W S ®? , where M B € Fa '~ , does

not exist,

From the foregoing discussion, we see that l*(e'r, g') is going to have to

behave as if it were attempting to campute t(do,..., d

n-l)’ as it were, in all

computing structures with signature s =<1, 1, 1>, To accamplish this we in-
troduce the concept of an image of a natural number, (cf, Luckhsm snd Park BRb)
where a method of "representations" 1s used in a similar context,) Consider

an arbitrary structure D = <D, R, F

o? ‘o> with signature s , We say that

X€D isanimage ofn€w iff R(FN(x)), k<n, andmov R (F(x)).
If ve suppose R’:D - {0, 1} such that R’(x) = 1 if R(x) and R’(x) = O
othervise, then x 1is an image of n 1iff the infinite sequence of 1'z and
o's (R/(F"(x))},c o bas an initial segment consisting of b 1's followed by
a O. Note that if R’(x) = O then x is an image of zero,

We will comstruct ®*(f,, d) €L, where 5=<, 1, 1>, from
R(E, 4) €L, , vhere s = <0, 1, 1>, by replacing individual comstructs in
a(er, d) with open subroutines in a*(ef, d) which have the required "in
all computing structures" flavor. From the definition of R(Ct, .‘.’) , WE
see that we will have to simulate, via open subroutines, the following

constructs:

(1) loading of the arguments da- <d°,..., dn-1>
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(11) the test for equality of the values of two varimbies or of the
value of a simgle vqrhble and O ,

(114) the sucoessor function +L applied to the value of & variable

(4v) initializing the value of a variable to O

(v) the assigoment of the value of a varisble to another performed by an
assigmment schema,
We will consider each of these in turn.

loading of the arguments is accamplished with the aid of the macro
showa in Pigure 11(a). Here, starting from &, s Wve search the damain D
by repested spplicstions of rc,.tucn-iepmmgtormmtxu-w
wihich indicates thet the current value of the variable x is an image of n EW.
IZ 1t 50 heppens that the computing structure <.‘D,R°,I°, s> is such that no
imsge of n cen be found, the routine will fail to balt. Figure 11(b) shows
in detail how the srgument losding section of !(Et,s) is simnlated by a
sequence of these macros in a-(er, d) . If this section of (2, 4)
halts in scme computing structure D , then the values of the variables

Virroos Vngy vill be images of the argments 4 ,..., d . .

Testing for equality of the waluss of two veriables is accamplished with
the aid of the macro shown in Figure 12(a). Hers, the working variables
v aud Ao are used to check that the values of the variables x and y are
images of the same natural pumber by searching ahead using repeated spplications
of ’o and checking for identity of the initial sogments gensrated at each stage.
By hypothesis, the values of x and y are both imeges of scme natural mmbers
ad 80 the couputation halts in any computing structure, at terminator <, ir
the values 0f x and y are iwages of the same natural opumber and at % ir

not,
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Figure ll‘b!

The upper E-program replaces the lower in forming !'(Et, 4.



Figure 12(a

Here, x and y ar- variables, The E-program on the left repluaces the
one on the right in ® (X, d) .

C D T

@ O @ O

Here x 1is a variable, Thc E-program on the left replaces the one on
the right in ®(X., d) .
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Testing for cquality between thr valve of a variable » and 2 is
accomplished with the aid of the m-ur  shuwi . Fgure 2(b). In
!(Er, d) , the qff (x = ko) is testing for ¢ as the current value of
variable x ; in WS, d) , the qff n-ro(x) is testing for an image of O

as the current value of variable x .

Applying the successcar function is accamplished with the aid of the
macY s showr n Figure 13. Here, the value of the working variable v2 is
started at L snd stepped up by repeated applications of !o . At each step,
& check is made using the working variables v _ and A4} to see if the current
value of vy iz an image of s natureal mmber greater by one than the number of
vhich the value of variabie x is an imege. If the cowputation balta, the new
value of varisble x will be an image of n+l vhere the old value of x was

an image of n ,

Initializing the valuec of a variable to O 1is accampliahad with the
macro of Figure 11(a) with o set to O, Here the value of the variable x 16
initiadized co .o and then !o 1s applied repeatedly until an imege of O
iz found, If the computation halts,the value of x 18 an image of O .

Assigning the value of one varisble to another is dome with precisely the
ssme construct in R, 4) as in !(Er d) , 1.e., sn assignment schema.
~ »

This completes the definition of the process for constructing the E-progrem
”(lf.g) in L.-, vhere s =<, 1, 1>, frm the X-progrmm S(Er,gin
L, were 1,1, >, Evidently, an inductive proof on the constructiom
of !'(Er,.«_l_) gives us that if for eny computing structure D , vith sigasture
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Here, x 1s a variable, The E-program on the left replaces the one on the right in !'(Er, d) .

An alvays indeterminate type <1, 1> E-prograa.



8 =<1, 1, 1> and input state - :w - v have 't*(,:., d) halts ir D,

o
then f(do,..., dn-l) must be ~r°ined, This 15 “ecau:- Aetemxnacy umpliec
that the required images were found at every stage, enc this implies that tne
execution of 'R*(Er, E_) therefore faithfully fullovwed the execution of
S(Et, 3) which therefore must have halted, thu: implying the existence of

t(do’-." dn.-:) .

On the -asis of this result, let us complete the proor of Theorem &
by introducing the type <1, 1> E-program €L~ , where s=<l, 1, >,
in Pigure 14, For topological reasons, WD, <¢, @] 1is indeterminate
for all computing structures 2 and input states ¢ : w= 20 let us consider
the wff (g, &) 5 x € Fm ", and note that if WM(E, d) S X is Dot
valid in e certain computing structure D , then the reason must be that
R%(E,, 4) balts in D, i.e., in light of the discussiou above, f(d,..., 4 ;)
sxists, Thus, if we have a decisicn procedure for general validity, and we
ppl: it to the vt R, d) = % and it says "not gensrally velid"”, then
theare must exist a computing structure D in which the wff in question 1s not

wvalid, vhich of eourse implies that t(do,..., dn-l) exists. In summary, thers

exist. awff 6, , € J"u" vhich if not gemerally valid then implies that
? -
f(do,.. . a‘n-l) exists.

We n.w demonstrate the other alternative, nmmely, if 91. a is
L~
geerally 7alid then f(d...., & ;) does not exist. To do this, ve introduce
the computing structure X « <X, 8, G, t> with signature <1, 1, 1> defined so

that the infinite sequence over {0, 1} givemn by [8'(0k(b))}h<w is just

0010010110010110111001011.021103.1110 ...



which in a very obvious way cor<ains images for the fcllowing sequenoe of
natural numbers:
0010120123012% ,,.

Since the arguments d are loaded by searching from b using

ortere Gy
applications of G, and since all searches for images therefore stav in the
sequence shown above, and since an image for every natural number occurs
infinitely often, then all cearches for images will succeed, This implies that
ir w (7, d) ¥ ® 1is valid in X, and s0 a*(ef, d) does not halt in X,
then it does 8o not because any image searches failed along the way, but because
%(€py 4) does not halt in N, i.e,, because f£(d,..., 4, ;) does not exist,
Thus, if we have a decision procedure for general validity, and we apply it to
the wff l*(er, 3) S M and it says "generally valid", then the wff in question
must be valid in X in particular, which of course implies that f£(d,..., 4.3)
is generally valid then f(d,..., dn-l)

does not exist. Thus, if 6,

» 3
does not exist.

In susmary, then, a decision procedure for general validity of wffs, &

f,4
in particular, would imply a decision procedure for the existence of
t(do,..., dn-l) for .rbitrary partial recursive functions snd arguments
4 =<d ,.e., d 1>, which 1s impossible. Tnerefore T M 8?7 , vimre
qA-vc J;"’s- for signature s =<l , 1, 1>, is undecidable, I

Remarks:

(1) This undecidability result is essentially that given by Paterson [36)
although our method of proof, ootained independently, differs considerably.
The foresrunncr of both these results is that given by Luckhsm and Park [24] for

schemes that compute with the natural numbers.
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CHAPTER €

In Chapter 4, we introduced the formal theory T, = <7fms,\xs» ,

vhere 'f‘m.s is the set of wfts of J'S =nad \“b is the inferential system of
U's . In Chapter 5, we examincd the yencral validity decision problem for

wifs in Tm,s , and in the present ana succeeding chapters, we will complete
our study of ‘Ts by developing the inferential system JS . Before we get

toc specify.ng the actual axioms anu rules oi’ inference of Js in Chepter 7,
we will lay the nececsary groundwork by «<an‘ning further syntactic and semantic
properties of E=-programs in this chapter., We will assume a fixed signature

8=<<n .00y By (2B, Wy (2P throughout,

Forward Substitution of Assignment Schemate

The first syntactic notions to be exumined are illustrated in Figure 15(a),
¥We want to know what assignment schema x andi qff r will make the wffs

pictured in Figure 15(a) generally valid,

To begin, let us consider the syntactic substitution of terms for variables.
If t is a term or qff, then we write (u1 sim oi)1<n t, vhere n<®w , to
denote the term or qff obtained from t by the syntuctic substitution

of the terms g,, 1 < n, for all occurrences in t of the dittinct veriables

1’
u, i <n. We can conveniently read (u::= o)t as "t with ¢ substituted
Yor u"; the "::=" notation is, of course, borrowed from Backus-Neur Form
where it also denotes substitution o strings. We define substitution rigorously

as follows.



Bas
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Figure 15(a

Here, f oand g are known assignment schema and p a known Qff; x 1is
an unknown azsignment schema and r an unknown qff,

Figure lﬂbz

Here, £ and g are assigoment schemata, p a gff, fg the forvard
substitution of £ into g, and fp the forvard substitution of ¢
inte p .
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(1) If t 4is a variable vj , then

(u:L $i= °1)i<nt' (\.1i 1o oi)Kan =y if uifv, for all i< n

'°i if u, = v for some i <mn.

i J?

then (ui t:= cri) t

(1) If ¢t is a constant k <n

j H]
(u1 tim 1.11)1'@):.j = kJ .

(141) If ¢t is f,j(To""’ T -1)’ then (1.11 tim g

i)i<nt

T

(u, 2= 0.), 0 rJ(TO,..., m‘-l) = 1‘.1((\1i 23m 0,) 0 Topeeny(uy tim °1)1<n‘-J-1)

(iv) Ir ¢t is rd('ro,...:, T, .1)» then (u ::= ai)i<nt
(uy 2tm 03)y ey (Tgseees tnj'l) = ry((ugsim 0g)ynTopenes (U 2= °1)1<n’n3'1)

(v) It t 1is ('rl = 12) , then (ui im0, )y T

- (ui 1= ai)1<n(11 - 12) = ((ui 11= ai)1<n11 - (“1 tim ui)xnta) .
(vi) If t is (p>gq), then (ui 1im ai)i<nt'

(ui 2 0, i<n(p Oq) = ((ui::= 01)i<n p> (ui tim °i)i<nQ) .

(vit) I t 13 (~p), then ('.1:l ti= qi)1<nt

(uit= 0y), o~ p) = (u, ::= 0,), p) .

We will write (ui T ai) t 1if only scme of the occurrences of the

i<n

variables ui are substituted for in t .

Next, let us define the syntactic operation on two assignment schemata

denoted by their juxtaposition. Thus, if f = (u1 = 11) and

i<n
g= (uJ = oy )jqn , then their juxteposition defines the assignment schema

fg = (w‘1 1= (uy o= T, i<n°J)3<m & (uik =T

i.k)k( y)

called the forward substitution of f into g , where {u ]k< ¢ is the largest

oY

subset of {u Thus, we substitute forward all

1}1<n disjoint from {wJ]an .

terms of f wherever the assigned variasbles of f occur in the terms of g,
and in addition carry forward those assigmments of f whose assigned variebles

do not conflict with those of g .,



As well, let us define the syntactic operation on an assigrment schema
and a term or qff, dencted by their juxtapositiorn. Thus, if
f= (“1 - 'I'_;)1<n and t 4is a term or qff, then their Juxtaposition defines
the nev temm or qff
ft = (\11 1= T )t
called the forward substitution of f into t .

The first step in the analysis of the forward substitution of assignment
schemata is the following

Theorem 6: For auy assigmment schema _1’_—(!11. 1= T, ), » Computing structure
2 of appropriate signaturg state ¢ : w-h_lgo and either term or qff ¢ ,
t(p, (D, £]) = tiD, t].

Thus, executing an assigmment schema f on the state { and then evaluating ¢
yields the same value or truth value as the forward substitution of £ intc ¢ »
evaluated using ¢ .

Proof: We use induction on the structure of t . First consider the case vhere
t is a term.
(1) If t dis the varieble vy ‘then

t(, (v, :=7,),, (D, ¢]]

- 73[2, (ni = Ti’i@ [2, tl]]

-vj[D, ¢l 1t v, gu, foralli<a, or 7,00, £ 1f vy =y
for scme 1 <n, by the definition of the semantics of assignment
schemata and terms

- (\11 1em Ti>1<n VJ[P’ t] by the definition of substitutiomn

= (u, 1= 11)1<~n ¢[D, £] as required,
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(11) If t 1is the ccnstant k;j , then

t(D, (g 1o T )0 (D, ¢l)
= k0B, (1= 1), (D, 8]
- kJ(E) £) by the definition of the semantics for terms

- (u1 ti= 11)1<n kJ[P) t] by the defirition of substitution

- (ui 1ie 11)i<n t[D, ¢] as required.

(111) I t is fj(‘o""’ Tmfl)’ then
t(D, (u, := 7.}, D, ¢}
= LT, ij-l) b, (w := 7). [D ¢l
= Fy(1 (D, (ui = Ty ) e (B 8),enn, 1md-l[2, (u, = 1), n (B, 81D By
the definition of semantics for terms,
R AU (CHLEL I I L N O (L PR IO TnJ-l [D, ¢]) by induction

hypothesis

= fd((ui it= 1 (ui CET )(D, ¢] by the

i< Toreees
definition of semantics for terms

1i%i<n Tm -1
J
= (u1 11m Ti)1<n fj(To"“’ “m _1)[2, t] by the definition of substitution

n (u1 1= T tiD, ] a8 required.

1i%i<n

Next, let us consider *he case where t is a qff,
(1) If t is rj(to,..., L .1) » ‘then the proof parallels exactly
the proof when t is 1J(T°,..., Ty -1) *
(11) 1I£ t is (p=q), then
t[D, (ui t= ti)Kn[Q, tl]
e ]

«not p[D, (u, :=7,) ID, £]] or qfD, (u, := 7,), (D, t]]

by the definition of semantics for gqffas



wnot (u ::= Ti)i<n plL, &1 or (u, ::= Ti)i<n

qlD, ] by
induction hypothesis

- ((\x1 iie T‘.)j.(,n = (u.‘_ ti= 'ri) Q){D, €] by the definition

i<n
of semantics for qff:
™ (ui e T )i (p> q)[E, t] by the definition of substitution

L (\l1 ti= ¥ t(D, &) as required,

17i<n
(1120 If t 1c¢ (~ p) , *nen the proof parallels exactly the proof
wvhen t 15 (pDq) .
(1 Ir + 18 (T « o) , then

tD, (¢, = 7,), (B, 1]

1'i<n

® (v = 0)ip, (u :=1,) [D, 1]

oD, (u =), [D, ¢})=olp, (u, := 1), [D, £]] by
the delinition of asemantics for qfts

" (“1 tim :i)Knt[E, t] - (“i tim Ti)imo[g, t] by induction
hypothes:s

- ((u1 tim ".1)1<n T = (ul 1= 11)i<no)[£)) ¢] by the
definition of the semantics of qffs

- (n1 sim ri)Kn(t = a)[D, ¢] by the definition of

substitution

- (u1 237 Ty tiD, ¢ as required.

‘‘he foregoing theorem immediately suggests the foiloving.

Theorem 7: For any assigmment schemata f = (v-i:_-__'l'1 g A4

g !vna e °,i)j<m computing suricture P_ot_nggmhte signature,
and state ¢ : ©w-D
—— [ ® aand

_&lp, fip, ¢1) = £lp, ¢) .

63



Thus, executing two assignment schemata f and g in sequence on a state
§ produces the same state as the forwara substitution of f into g executed

Proof: It is possible to give an inductive proof over the nmuiber of rssignments

in ejther f or g , but a drute force mcthod may, in fac?, prove more merciful.

ely, £1D, ¢1]

= (v
"

- (an 1= °,1)3<n[9: nl, where n = £[D, ¢]

= :.'an‘_l, °N-1[2) n), a(... a(nl, 01[2, nl, a(no, °o[P) n), 7))...)) by the

oy ) st €IB, t1]

defirition of semantics fcr sssignment schemata,
Now, for a1l )3 <n
03[2, 7]
= 03[2, (v"i t= 11)14([2! t]! since q = f[Q, ¢l
- (v-fL tim 1) cJ[E) £] by Temma 3,
- rad[g, £] by the definition of forward substitulion of assignment
schemata,
Sc that, continuing
8[2, flp, ¢}
= a(ny ,, foy,(D, t], a(...a(ny, fo,(D, t], aln, fo [D, E], m))...))
= a(ny ., fo, ,[D, t), a(...a(n,, fo,(D, ), a(n, fo (D, t],

almy, 15 Ty (D t], all..alm, 7,(D, £], a(m, 7, (D, t], £))...))))...))

The next step in the proof relies on certain axioms which characterize
expressicns involving a , the "assign" function, and ¢ , the "contents”
function. As mentioned above, these functions were introduced by McCarthy [28],

and there he also gives the axioms



(i} ali, k, a(j, £, €)= a(3, £, &z, . €)) if dip

- a(d, k, &) if 1=,

(11) a(4, c(1, 8), &) =t
(141) c(4, a(y, k, ¢)) = c(4i, &) if 1§00
= k if 1=

which, this author {21] bas shown <c be both >ound and adequste for aerivin,

equality of states.

The re_evance of there ~ompleteness results is that in the last expression

for 3[2) f‘l'?) t]) avove, if -, = Z for some J <N , 1 <M, then we can

prove .nat the assigmment ¢ m = can be amitied since the ome to n 4 will be

the only one to have effect. 1In fact the droof congists simply repeated
spplications of axiom (i) abcve., Let us suppose, without lack of senerality,

that {mo, n,..., nﬁ(-l} iz the largest subset of (m disjcint froam

1}144
[n:]}3<N » where K < M, Then, on the basis of the above discuss.om,
glp, i, ¢1]

e a(ny ., fo, ,(D, ¢], a(.. oln,, fo (D, £}, alm ,, t, ,[D, £). a(...

a(z,, 7, (D, &), a(m . <,iD, £], £))...))). )

- (vn1 ‘= faj)xl' & \v‘i
of the semantics for asiigurent schemats
-{v, = (-_i-'f
definition of forward substitution of assignment achemate

= 1‘__)1«[2) £] by the definitiom
’i<.‘4°j),1<!€ & (vni =T, i<:.((2) t] by the

- tg[E’ t] as required. .

Remaxks:
1) In {2, we =xplain in detail how the ex:oms for the a and
funct.:ions can d¢ used to :fTect the simplificetion required in the foregoing

tueorer. It is felt ihat restatement of all the results in [21] is not

warrancec nere,
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(ii) Theorems 6 and 7 lead to a certain parsimony in notation for the
diagrammatic representations of E-programs, and this will prove useful when
we carry out deduction: using the drs of various E-programs,

(111) We ncw know through its forwarc substitution the eatire effect
of an operator, whether on another cperator or on a discriminator. It is
precisely the lack of this complete information that distinguishes the schemes

of Tanov {16] and Glushkov [13] from that developed here,

Thecrems 6 and 7 seem to tell us that in Figure 15(a) the assigmment
schema x should be fg and the qff r should be fp for the wffs pictured

there to be generally valid. This, in fact, is the content of the following

Theorem 8: The wffs of Figure 15(b)(%) and 15(b)(ii) are generally valid.

Proof: (i) Consider executing the left-hand Eeprogram o = <X, I', X> say,

in an artitrary computing structure 2 , Oof the appropriate signature, with an

artitrary input state ¢ :w-oEo . Then,

up, <t, )

= E(M, ¢, w) where weX and [w] = b

LCJ

E(M, ¢, T'w) by the definition of the execution function E

L]

LU

4

E(M, ¢, x) where xe X and [x]=°¢

{.U

= E(M, D, £(D, ¢],1x) by the definition of E

"

LU

EQY, r(R, ¢], y) where yeX and (yl=g

= E(W, g(p, f[D, ¢]], fy) by the definition of E

L!:’

= E(W, D, &lp, £[D, t]], z) where zeX and [z] = e

{.U

= Q[Q,f[g) t]), 0> . the definition of E

= <fg[D, £), 0> by Thecrer 7.



Now, consider executing the right-hand E-program, B = <X, T, £> say,
same fashion. So

«(p, <¢, o}

«B(8, T, £, x) shere x€X and (x] = b,

= B(8, D, ¢, I'x) by the definition of E

=E(® D, & y) where yeX and [yl = fg

= E(®, D, fglD, t], Iy) Dby the definition of E
- B8, L, L, ¢], ) wvhere z€X and [z] = e,

lep, tl, ¢ > by the definition of T .
Thus, for erbitrary D and ¢, W[D, <¢, @] = 8D, <k, ®J,
f.¢., = U8 as required,

{41} Concicer executing t.e left-hand E-program, o = X, I, £>

sy,

in an arbitrary -omputing structure 2 s O+ the appropriate signature, with an

arbitrary .npat state ¢ =w—+2° . Then,

ulp, <, !
- 3(.’
= E(%,

¢, v where VEX and [v]) = b,

-

£, [v) by the definition of E

=

E(M,
E(M,
x(u,

t, v} wvhere wEX and (w]=r¢

LU

o
)

£ID, €], Iv) by the definition of B

£, 2i, x) where x€X and [x] = p

LU

EMW, L, fID, ¢), ¥) if pID, £iD, t]], or E(W, D, £{D, t],z)

othervise, where y, z€X and [yl e LI (2] = e, by the definition of &

E@W, T, D, ilLy) if fp(D, t], or x(W, D, £ID, t], £)

otherwise, by Theorem 6,
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= <f£fp, t], @ if fp(D, ¢} or <f(D, E], 1> otrerwise, definition of E.

Now, consider executing the right-hand E-progrem ® = <X, I, <> say, in the

same fashion, Sco

(D, <t, @

= E(®, R, ¢, u) where u€X and (u] = b

= E(8, D, §, Mu) by the definition of F

= E(®, D, §, v) where vEX and [v] = fp

= E(8, D, ¢, v) if fp[p, t] or E(8®, D, £, x) otherwise,
where w, x€X ad [w] = £, [x] = £, by the definition of E

- E(®, D, £[p, t], Iv) 1ir fp(p, &), or E(®, P, £(D, L], I'x) otherwise,
by the definition of E

= E(8, D, £(p, t], y) 1if fp(p, ¢], or E(®, D, fIp, L], z) othervise,
where y,2€X and (y] = s (2] = e

» (D, sJ, ® if pip, t1, or <f[p, ¢], 1> otherwise, by
the definition of E .

Thus, for arbitrary D and ¢ , M(D, <, ] = ®[D, <¢, @]
i.e,, {= % =0, as required.

Remarks:

(1) Though the proof of the faregoing theorem is samevhat tedious, it
nevertheless points up the raie of the execution function in sementically
oriented proofs of general validity for wffs., This sort of verification
of general validit) will certainly be required of all the axioms in the

inferential system introduced in the next chapter.



(11) ©F -ourse, the wfts of Figure 15(b) will be key axioms in *hat

inferent:al sy:tem

Instantiation of Well-Formec Formulas

We want to extend the ideas of the precedi-y section t¢ allcw substitution
¢f terms for variables whenever they occur in the E-programs of a ~ff.
The wif resulting from such e substitution Wwill be called an instance of the
originael one, We are alac interested in specifying the conditions under which
an instance of a wff is also a semantic consequence of it, This sart of
ayntactic process must be available if we are to carry out derivations from

a set of proper axioms or hypotheses,

First, let us extencd the notion of substitution to E-programs, and write

(uy z:m v M, vhere n <w , to denote the E-program obtained from M

1i7i<n

by the simultanecus symtactic substitution of the terms = i<n , for all

i
occurrences in ¥ of the distinct varisbles u, i<n . HNote that if some
Yy , i<n, occurs as an assigned varisble in an assignment schema of ¥,

amd T

is not a variable, then (u1 tim T % is not a permitted syntactic

i 1) i<n
operatior since the result, if the substitutions were performed as indicated,

would not be an Z-progranm.

To give a mcre precise definition, suppose that ¥ = <X, [, X> . Then

(wy =7 M=<X, I, Z> wvhere L’ 1is defined as followe, (Note: we

1'i<n
write [x])’ for X’(x) here,)
(1) Ir (x)« Y E, then [x]' = [x],

\ - f )’ ‘e
(11} 1£ [x'« W, then {x] -(\li :3 -ri)Kn[x] .



(ii:) If [x] « y cay, a- e ) , then

[ Jn
’ [~ w .o .= ’ 3 - M

Ded® = (g sem my) g v om0y mim t 9 Joy
Of course, as mentione:c above, if wu, = v, for some  i<n , j<m and Ty is
not a variable, then (u ::= 11)L<n 1 is not a defined uperaticn.

Then, an instance (u, ::- )., USSR of tne off 828 is simply
(u ::= 1) o >(u :i=1,), ®

i 17i<n i i'icn

To discover when an incter:e of & wlf is alsc a semantic conaequence thereof,

we need the ccncepts of scope and freedam, Comsider the E-program ¥ = <X, [,ZL> .

If the variable u cccurs as an "scigred variable in an assignment schema [x] R
where x € X , then we define the scope of that occurrence of u to be the set

of varisbles which have occurrences in the assignment schemata and 3ffs labelling
nodes reecheble via I' from x . The example in Figure 16 indicates the acopes

of the assigned variables ir a simple E-program.

Then, if (1) = {w : v 1is a variable and w occurs in the term 1t} ,
ve say that the term T 1is free for the variable u in M iff (i) and (ii)
below both hold,

(1) For each occurrence of a variabie w € J(7) az an assigned varisble
in M, u is not in the scope of that occurrence.

(11) If u occurs anywhere in ¥ as an assigned variable, then T is
simply a varisble w , and for =ach such occurrence of u as an assigned

varieble, «w 15 not in the scope of that occurrence.

In Figure 16, notice that u 1is free for v , and that vy 4s free for

u, f(u) and g(u, v).

We bring together the notions of substitution, acope and fresdom in
the following
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v := g(u, v) {u, v, w}

r(v, w)

{u, w) w = £(u) u := f(u) {u)

[ u = g(w, u)

Figure 16

Here, u, v, w are diatinct variables; f, g are function letters;
and p, r are relation letters. The set of variables associaied with
each assignment schema 's the scope of the assigned variasble.

11



Theorem 9: For any signature s, any wif 84 =B € -77115 , terms 1. and

4

in

distinct varisbles w,, i<n< W T

, if for all i<n , ¥, is free for u

¥ and ®, then

(1) for all computing structures D with signature s,

| B =>‘-R_(ui 3= 1) WEW,

or alternatively,

(11) (M <98} {= (ui 1= Ti)i<n‘l 8.

In this case, we say that (u1 = 'ri) =8 is a proper instantiation

i<n
of =8, Evidently, then, any proper instantiation of a wff is a semantic

consequence thereof,

Proof: The notion of freedom here is actuelly very simple, and the theorem
follows easily once the nature of an E-program ¥ in which a term T {is free
for a variable u 1is understood., We will employ an intuitive proof rather than
a highly technical one since the latter would only obscure the simplicity of the

situation. We will assume a fixed camputing structure Q_ .

Let us first consider the simple case of a term f(w) , 58y, vhere f is

s
a function letter and w is a variable, teing substituted for the variable

vg in the type <m, m> E-program 8 . In this case, only condition (1) for
freedom is relevant, and we require that L is not in the scope of any
occurrence of w as an assigned variable. That is, for any execution of §,
v will wot be evaluated once an assignment to w has been made, It follows,
then, that any evaluation of a substituted occurrence of f(w) during the
executior of (vx t:= £(w)M will simply utilize the value of w 4t had in the

input state, Thus, executing (vK ::= (W) with any input state 5 gives the

T2



same result o. -.ccuting 8 with input state a(K, f£(w)[D, nl], q) , :.e.,

(vx r2= (o MD, <n, D] & u(p, <a(k, f(w)[D, nl, n), i), for all i<m ,

Of conr: , the same sort of result holds for E-prcgram B, i.e.,

(v 3= £(02IMD, <, ©>] 5 (D, <a(k, £(v)[B, n), n), ], for all i<m,

.t f(w) i ‘ree for vy in ® . But, the hypotheses for Theorem 9 sive
us that =4 -8 i e, for all i<m, *or all & : w=-Ll , we have

i ~
wD, <¢, i <MD, €, i>] . But then the tramsitivity o7 & gives that

for all i<u ,

u[D, <a(k, £(w)ID, ql, 1), ] = ®D, <a(K, f(w)ID, 3], n), ]
since for ar; state n2 w"’f:(; , there is scme g:w—.g_o such that
¢ = a(K, £(v)D, 1], n) . Then, combining the results above, we have
(vx Iim f(w))ll[E, <, D= (1.'K
this is true for all m:w - , so that &-2 (v =2

1= £(w))®[D, <n, >}, for all i<m . But

f(w) = (vK 1im £(w))®

i.e., }-D(vK 1:= £(W))M = 8 , as required.

Extension of this result to terms with more than one distinct variable
occurring in it is straightforward. But, now consider the more complicated
case of a variuble Vg  being substituted for another variable vK ir the type

<@, n> E-program ¥ , where vg occurs in 8 as an assigued variable. Im this

case, both conditions (i) and (ii) for freedom are relevant, so that we require

that Yk is not in the scope of any occurrence of vp a3 an assigned variable

and vp isnot in the scope of any occurrence of vk

That is, for an; 2xecutiun of 8, v, will not be evaluated or be assigned a

as an assigned variable,

value once an an:ummest to vy, has been made, and vz  will nct be evaluated

or be assigned s new value cnce an assignment to K has been meac, For both

these conditions to be true simltaneously, either vy or vy mnever occurs in

3



M as an assigned variable, If it is v, that never occurs in M as an

assigned variable, then we have precisely the case already analyzed above.

If we have the case where vy does rot occur as an assigned variable in
¥ , then it foilows that any evaluaticn of a substituted occurrence of \72
during the executiom of (vx e Y B will simply utilize the value of vy
it had in the input state. Thus, except for the values of % and vy
in the output state (if such 1s determined), executing (vK 1= P with
any input state 1n gives the same result us rxecuting M with input state
a(k, (D, nl, 9), 1.e.,

(vg :2= Y MID, <y, ] = ( u}l[g <aK, (D, 9], q), ©] for all i<m .

VK »

The notation whereby the "=' symbol is subscripted :y & s2t of variables
was first used by McCarthy [26], and has also been used by this author [ 20].

Here, for W(L, <t, 1>} & {“o’-"-‘-‘n-i]up" <t, i>] to hold, either voth sides

are indeterminste, or both are determinate, producing <t', J'™> and <", ™
say, suck that J' = j" aud c(K, ¢') = c(K, ¢") for all
XK€ {m: vmc[uo,..., un-]_]} . Thus, §¢' and " may differ on in

locations corresponding to the variables Uggeoey Uy g o

In this instance, we can actiaily say what the relationship 1s between the

values of x and vp in the output state, if there is one, Suppose that

(1) ("1{ tim y‘)ll‘p) <n, ) = <a', >
(11) WD, <a(kx, vy[D, 0}, ), ] = <a", J*> .
Then evidently, c(.£, a') = c(X, @), c(K, a') = (X, w), e(l, o) = c(l W)

and <a', §™ = (v y <, 3>

g



Of course, the same sort of result holds for E-program ®, 1i.e.,
(vg ::= vp)®D, <, ©] & (ve va) 8D, <a(x, v (D, v}, n), D]
for all idm. Let us suppose here that

(1) (vg ::= )OID, <n, ©>] = <B', §™>

(11) ®(D, <a(x, v {D, n], 1), £] = <B", §™>
Here too, we have c(f, B') = c(K, 6"), (X, B') = c(K, 1),

c(2,8") = c(4,q) ana <B', I"™> = , I"™ .

(v, vl <&
Now from the hypotheses of Theorem 9, |=, 8 = ®, so that in particular,

<f'y, J©> =g, §">, f.e., 0" =B and ' = —.;“ . What ve are

now is that <a', §™ = <p', §"> . Well, we have J' = J" , so all that

remajns iz Q' = p' ., We proceed as follows:

<@ar, J™ -

<o’y §j'> =<g", J> = }<B', 3™ . Thus, vwe have only

[pr 2] Ve 2
to show that c(X, a') = c(K, ') and c(£, a') = c({, 8') . But

(K, @) = c(X, q) = c(X, 8') and c(/, a') = c(K, @) = c(K, B") = c(4, B') .
Thus, taken all together, these results give <a', J"™> = <B', "> . Bince this

ig true for all i<m and 8]l n: W=D , we have
|--‘13'(vK tim vl). e ("?: ti= v, e, ie., }-D('-'s 1= vy 5 8, as required,
This covers all the :cases. It is also easy to verify that the gubstitutions

(\;1 tis 11)1<n may *be done simultanecusly without demaging the results so far

proven for the single substitution case, .

Figure 17 illustrates :everal examples of proper instantiation, and in the
next chapter, this syntactic operation will be incorporated into ocur inferential

system as a rule of infereace,
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>
”
u = gfu) u = g(u)
0,—\.
i\ .
(v s3= 4,
~ > o~
u = K

Here, u
constant., <The right-hand E-programs result from the left-hand E-rro-rar: thrrough ta- prop-v n-
stantiztion indicated, Continued next page,

, ¥y X earc variables; f, g, are functlen letters; r is ~ reaistion lett-r, =nd «x 15 a



LL

G o W)
Yy i:= pA
x = £(g(y)) o xoi= e(ely) >

Here, x, y, 2, u are variables;

indicated,

I

y := £(g(h(2)))

R

y = g(£(k{z)))

Y

(u 3= g(x))
=3 (r(a(x)) A~ p(£(g(x))) ~

Q

Figure 17 (contd,)

©

r, p are relation letters; and f, g, h are function lecters.
The rightehand E-programs result from the left-hand E-programs through the proper instartiaticns




Remarks:

(1) The notions of " ccurrence" and of a variable or term “occurring”
in some formula has been left informal in this discussion. Thi:s 1s simply
because intuition alone is an excellent guide in these matters, not because the
formal definition is intractable. Feferman [10] treats a similar
matter for the predicate calculus.

(11) The roles of substitution, scope and freedom in this work seex
curiously similar to related matters in the vredicate calculus. For example,
see Mendelson (35, pp. 48 and 53], There is likely more in this thaa at first

meets the eye.

Camposition, Decomposition and Replacement of E-programs
Before consideriug transformations on E-programs which alter their

tcpoiogical structure, we must consider the syntactic operations of composition
and decomposition of E-programs, In Chapter 5 we iemned heavily oo an intuitive
understanding of how the graphs of E-programs could be combined to rorm the
graph of the camposition of these, but a few further details are in order to

make these ideas more formal,

Roughly spesking, a composition of two E-programs # end ® to form a
new E-program € 18 accampliished simply by pairing in a 1-1 fashion scme
terminators of ¥ with initiators of ¥ , and then joining W and ® together
at thes: points and simultaneously eliminating these terminator-initiator pairs,
To assur: that the result of this composition is in fact an E-program we require
there be m< w” initiators and n< w terminators remaining, and that these

be relab:lled b, by,...,b , and e, €,...,8 respectively, This rather

15



loose deccription can be made more precise in terms of the set theoretic
definiticn of E-prosrams, but no real benefit is .0 be gained by such an
endeavor. 1Instead, we use the example of compositicn in Figure i8 to

{llustrate the details.

Roughly speaking, a decamposition of an E-program §& into two
E-programs % and # is accomplished simply by interposing a number of
nev terminator-initiator pairs between nodes of § , and breaking @
apart of thece places. Of course, proper attention must be paid to the
labelling of the new initiators and terminator: to assure well-formedness
of M and 8. This rather loose description can also be made more
precise in terms of the set-theoretic definition of E-programs, but
rather than introducing such opacity, we will simply say that & can
be decomposed into M and W if there exists a composition of ¥ and

® to form € . PFigure 19 illustrates a simple c¢xample of decamposition.

If § can be decomposed into two E-programs, one of which is &,
we muy say that % 1is a sub-prcogram of & and write €(M) instead of
€ to indicate this, If ¥ ar: ® are E-programs of the ssme type,
then we say that the E-program §(®) arices from €(8) through
replaceument of sub-program ¥ oLy 8, provided that the composition that
forms (M) , anu the composition that forms €(®) , are identical,

Pigure 20 illurtra‘cs ¢ cimple exampl2 of replacament.,
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E-program §&

Figure 18

A composition of E-programs 8 and 8 to form E-program & . Here, f, g, x, ¥, 2 are
assignment schemata; and p, q, r are qffs,



Firure 14

Here, 1, g, h, x, y ere ascigmment schemui, wun¢ p is - qff, The
lower two B-programs result from the indicatcd . cuampositic.. of the
upperswst E-progras.

a1



L-proirws (W)

E-program ®

E-program &(8®)

Here, f, g, W, 2, ¥ are assigmment schemata, and p, q, r, s are
qffs, E-program €(B) arises from g(®) through replacement of sub-
progrem 8 by B,



We bring together the notions of composition, decomposition and replacement

in the following

Theorem 10¢: For any sigraturc s , E-programs 9 , ® &%) and G(®) in

L,_, where 8 and 8 are of the same type and §(®) arises from &(M) vy

rerlacement of sub-program B by W,

() for all computing structures D with signature s ,

[ KR =>J_-D G(¥) = §(B) , or alternatively

-~ ~

(11) W= b= &W) ~g(®) .

Proof: Since G(M) and G(®) sre formed using the same camposition,

1f during the execution of &(M), W is entered where b, was and left wher=

e.j was, thereby producing a certain result, then since PD 81 = 9 by hypothesis,
during the execution of &(®) , B will be entered where bi was and left
where e, was, and will thereby produce the same result. Thus, @(8) and

J

§(8) are equivalent in D whenever ¥ and ® are,

Remarks:

(1) Theorem 10 will serve as the basis for a replacement rule of inference
in the inferential system defined in the next chapter,

(i1) The substitutivity properties of equivalence and strong equivalence,
along with their obvious symmetry, characterize them as equivalence relations

in the ordinary sence,
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CHAPTER 7

THE INFERENTIAL S/STHM

lu Chapter 1, we invroduced several basic ideas regarding a formal
theory of strouZ equivalence and we will continue here tc develou along
those lines. In Chapter 4, we irtroduced the formal theory

T, =< J:ns,ds?) , and in Chapters 4, 5 and 6 the set .7-71.'5 of wffs has

beer studied. In this chapter, the inferentisl system r:fs = < o o>

is rresented and its soundness demonstrated.

The inferential system Js = <4z s’ X > consists of an effectively
decidable set //'r.s C Fwg of wifs called the axioms and a finite set R
of rules of inference. For any set 4&C Fm  , Wwe write & |- M T8 iff

the wff ¥ T ® is finite.y derivabie from & { ,41‘: using R . By this we

mean that there exists a finite sequence of wffe B: 6yy-nes en__, such that

for all : <, either 6,€ 5 Ufx  or 9, can be inferred frem 6 ,..., 6;

by some rule in R, and 6 . is W= W,

-1

The rules of inference in R will be prescribed independently of the
signature s . In the same spirit, we will define Ay ¢ by first defining

a finite set Ay of axiom schemata, also independent of s , and then

/‘s=[ll=5€fms:ll=’5 is a' instance of some axiom schema in 4% } .

If  C Fmg 18 & set of wffs such that for any wff M B € d
and any AC of we have A {=M =B ®»A |- U >89, then we say that the
inferential system o s is extended complete for J; if we have only
=¥ -8« | WZ®, then we say of , is complete for o . Notice that



extended completeness implies comp'.tcness. As to be ~xpected, whether or
not tfs is complete or «xtended complete for soame o = L depends

on the signature s , the set & and, of course, the sets .+ and /.
In sddition, we will say that the theory J =« ‘/""s’ tys> is complete

(or extended complete) if JS is complete {or extended compleie) for

Fin, .

Before we formulate nJ]s and study its properties, we should note that
there are definite limitations on the axiomatizability of strong equivelence,
i.e., on the existence of an inferential system complete for .7018 . We say
that the formal theory .Yé = <;-w%, t548> is axiomatic if its inferential
system d" = <,-‘/", R > iz effective, i.e., +#; s S '77"’3 is effectively
decidable and the rules in K are effectively applicable., This means that
we can always recognize when a wff is an instance of an axiom schema, and we

can always determinie if the proposed application >f a rule of inference is

legitmate,

In Chapter 5, we showed that the strong equivalence problem for wffs in
Fu T, where s =<1, 1, 1>, is unsolvable (Theorem k). But the minimal
language I.s' , Wwhere recall qffs of the form (1 = o) have been suppressed,
suffers from another unfortunate malaise which must serve as a basic
restriction in our attempts at formilating an axiomatic complete theory

of strong equivalence, Consider the following

Theorem 10: For the signature 8=<1, 1, 1> , there exists no effective

inferential system complete for Fi ~_.
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Thus, for any signature s = < <n°,..., n‘k-].)' W ey nl_1>, P,
if k>0, £> 0 and p> 0, any effective inferential system is of necessity
incomplete. This precludes, then, any sxiomatic complete formal theory of
strong equivalence for E-programs in systems with any appreciaile computing

pover.

Proof: In the proof of Theorem 4, we established an isomorphism between the
set AC ‘ﬁ." of generally valid wffs of the form  M*{(Z,, = a2,

where 2.@0,,,_, > and the set B of pairs <Ef,,i? such that

dn-l
f(do,..., dn-l) does not exist, Now, consider the set C of all pairs

<Ep & wnd the set D C Cof all pairs <[F, & such that £(4,..., 4 ;)
does exist. Now D is certainly effectively emmerable, for exemple, by
computing each f(do,... , dn-l) a little bit, infinitely often, and noting
when one produces a final value, But, recall that D 4a not effectively
decidable (i.s., the set mambership decision problem for D is unsolvable).
Then, certainly B= C - D 1is not effectively enumersble, since the effective
enumerability of both B and D vhere B UD = C, would imply an existance
decision procedure for any f(4,..., 4 ,), namely, perfarm the enumerations
of B and D until <, & comes up; if <F,, > €D, £(d,..., ¢ ,)
does not exist and if <¥, & €D then f(d,..., d ,) does exist. This
implies D 1is effectively decidable, s contradiction. BSo we have that B is
not effectively enumerable.

But then neither is A C 7&.- effectively emmerable, since A mnd
B are isomorphic. BSuppose that there exists an effective inferential systea
camplete for Fm.~ , 1.e., ve have |= ¥ S Bed|- U B for all
M>8€ Fn" . Then, since the inferential system is effective, we can



enumerate all thc theorems, which by completeness ylields an enumeration
of all the generally valid wffs in A C }‘ms' € Fm, , @ contradiction. Thus,

no effective inferential system ccmplete for Tas' exists. '

Remarks:

{1) 1In spite of the pessimism that this inccmpleteness result is likely to
engender, we can nevertheless take heart in the several areas for which Js
iz both effective and complete and even extended complete, We will take these
matters up in Chapter 8 after introducing the sets #r anda ¥ .

(1L) or course, if we accept Church's thesis, we can replace "effective"
with "recursive" in the above discussion. Then, < Epp & would be & "sequence
number” or "g&del number" generated in an appropriate manner from the form £ £

and sequence 3 = <@ ,:e0, dn-1> .

The Axioms and Rules of Inference

There are fifteen axiom schemata: x = {A1, A2,..., A15) , and five
rules of inference: K = (R, R2,..., RS},

First, we give the rules which characterize "=" as an equivalence relation

in the ordinary sense,

1 T8 =>8°N

I8 Iz

® =€) - €(B) wvhere €(B) arises fram €(M) through the

replacement of ¥ by ® .,

Then, to permit derivaticns from hypotheses, we have

32"""(“1“'71)1@."'

The axiom schemata Al, A2,..., A7 characterize the properties of qffs,
and are illustrated in Figure 21. Also in Figure 21 is a rule R3’ which is
Just a particularization of R), we mention it here because it reflects the
instantiation properties of qffs.



Axiom schemata that characterizes qffs. Here p, q are qffa. Continued next page,
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Figure 21 contd.

Axicm schemata and rule that characterize qffs,
and v, , i<n, are terms.

Here, p is a qff; u

i

, 1<n , are distinct variables;



The axiom schemata A_8, A9, Al10 and the rule & characterize the properties

of assignment schemata, and are illustrated in Figure 22.

Axiom schema All characterizes the effect of operators on discriminators,
and is illustrated in Figure 23(a). When this axiom schema is applied, we will

sometimer say that the operator f is "pushed through” the discriminator p .

The three axiom schemata, Al2, Al> and Alk, provide a characterization of
the graph-theoretic properties of E-programs. In what follows, # = <X, I,
is assumed to be a type <m, n> E-program. First, we have

A2 us .i(.)
where i <m and °1(') is called the i-th separation of ¥ . Roughly
apeaking, Oi(l) is formed as follows

(1) A copy 8, is made of the sub-program of M whose nodes are
reachable via [ from the node labelled with b1 .
(11) Then %, is composed with ¥ a0 that the node labelled with by
nov leads into '1 .

An instance of Al2 is shown in Figure 2i(a), and this should make matters
intuitively clear. However, a demonstration is given in Figure 2i(b),
which shows, albeit in schematic form, the deccmposition and composition under-
taken to obtain the instance of Al2 given in Pigure 2i(a). When this axiom

is applied, we will scmetimes say 01(.) is obtained by "separation".

Notice that separation gives rise to extranecus nodes in 01(I) vhich are
not reachable from any initiator node. Axiom schema Alj does away with such

nodes, We have,
AlS: ¥ s o) ’



The axiom schemata and rule that characterize assignment schemata, Here, { and g are assignment

schemata; u, , i<n , are distinct variables; T
onto permutation.

10 9% i<n , are terms; and 8 : n -n 1is any 1-1
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(1]
L. ]
la ]
[a ]

Y. 5

Fi e 23(a

The push through axiom schema., Here £ 1is an assigmment schema and
P & Qff,

iR

a 23(b

Hers p 1s a qff,
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) @ e e,
Figure 2i(a)

An instance of the separation axiom schema, Al2: ¥ = Oo(l) . Here f, g, h, x, y are assignment
schemata snd p, r. are qffs,



Schematic form of E-program
% . © denoctec an initiator,
| and O a terminator.

o

Continued next page.
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Figure 2:(b) contd,

The final composition
produces the O-th
separation of W ,

o () .



vhere O() = <’, I'’, L%, X’ = X(8) U X(€) U [x € X: x is reachable
via [ fromsme y € X(3)} , I’ is T restricted t¢ X', and <’

is X restricted to X’ . An inetance of Al3 is shown in Figurc 2k(c).

If a certain section of an E-program is a cul-de-sac, i.e,, has no
sxit to a terminator, then we shall went tc detect this at a graph-
theoretic level. We have,

FSUSER N )
wvhere i < m . Roughly speaking, ni(l) is formed as follows,

(i) A copy ¥, 1s made of the sub-program of W whose nodes are
reachable via I fram the node labelled with b, , as in the case of Al2
when forming Oi(l) .

(11) If at least ane of the terminator nodes of lli is reachable
from the initiator node of .i corresponding to that of ¥ labelled
with b, , then 0,(¥) =%, i.e., we make no changes.

(ii1) If none of the terminator nodes of ¥, is reachable from
the initiator node of W, corresponding to that of ¥ labelled b, ,
then a special always indeterminate E-program % of the same type as
.1 is camposed with ¥ so0 that the node labelled with bi now leads

into R®.

An instance of Alk is shown in Figure 2i(d), and this should make
matters intuitively clear; the special always indeterminate E-program
% is also illustrated there, However, a step by step demonstration is
given 1z Figure 2i(e) which shows, again in schemtic form, the decom-
position and compusition undertaken to obtain the instance of Alh
given in Pigure 2k (a),



Figure 24(c)

An instance of Al3. Here, g, x, y, z are assignment schemata, and p
is a Qff.

Pigure (d)

An instance of axiom schema Alk: 8 = Q (M) . Here, f, g, h, x are
assignment schemata, and p, r are qffs.



Schematic form of
E-program ¥ .
o]

¥ is decomposed into
a type <5, %
E-program and a type
<3, o "null"
E-proyran,

oyl

o]
o o

(o) Sube-program ¥
is a cul-de-us
as is that ut
right,

Figure 24(e) contd,

Continued next page.



The "null" E-program is
replaced with the special
always indeterminate
E-progranm.

The result is no(l) .

'o = 'oy

Figure 24 (f)

Simplification of the left-hand E-progrem of Figure 24(4) using AL3 end A,
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Of course, further simplification of the right-hand member of the
wff in Pigure 2h(e) can be made by applying Al4 to the appropriate sub-
program, and then applying Al3 to remove the isolated component.

Figure 24(f) shows the final result.

Another sort of cul-de-sac is detccted by axiom schema Alj. As
11lustrated in Pigure 25(b), we are dealing here with logical, as
opposed to topological indeterminacy, This sort of construct can be

used to define pseudo-qffs with "undefined" as an additional truth-value.

The last rule of inference is Rj and 1s called the recursiom rule,
Before giving the general statement of the recursion rule, we consider
a restricted instance thereof wnich illustrates, in a simple manner,
most of the salient points, Thias restricted instance, which we refer
to as R5’, and which is illustrated in Figure 25(a), allows us to infer
a recursive closed form for an E-program, which is initially defined
iteratively, i.e., not in clcsed form, As we shall see in Chapter 8,
even in this restricted form, the recursion rule is a powerful derivatiooAl
tool and is =ssential if certain derivations concerning E-programs with

loops are to be made,

The restricted rule RS’ is actually that vsed by McCarthy [28] when
discussing "recursion induction" for flowcharts. Thus, if two E-programs
%, and W, satisfy the "equation” in the premise of R5‘, then ¥ W, ,
since by Bj' both '.1 and ‘2 are strongly equivalent to the recursive,

or closed form, E-progrem inferred using 1_12'.



Ay

E-progrem ¥’ E-program ¥”

provided that in any camputing D in which the wffs of & and ¥ < ®‘ are valid, then for all
t t W=D it I'[D <¢, @] Tis indeterminate, then so is I[D <t, @) .

Figure 22!:!

The recursion rule, R5’. Here p is any qff and ¥, 8, € and type <1, 1> E-progrems,



i<n

~ i<n
where, for each i<n, %, R € [I v {the k distinct type <1, k> null
E-prosrlls}, €, B areany type <i 1> E-programs, and ®, 1s the i-th
closed form compcsition (defined in the text) of the E-programs in
!ﬁ] <n.’ provIdnE that in any cc.puf.ing structure 1 in which the proper

hs™in and the wffs in % are valid, then tor all

tre , and i<n , if st[n ig 0>)¥%s indeterminate, 10 is <t, ®),

¥, (D
or alterifitively, it &,[p, <t,">] is determinate, so is L XTI I

Fgggse 22‘0!

The recursion rule RY.
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¢!
E-prograa 3,
Figure 22‘1:!

Here n = 3, and the wffs {l}‘-"ﬁ]m are shows. As well, p, g, r, s, t

are qffs; and f, g, h, k, x, ignment schemata. This figure is
continued on the next page.
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Figure 25(c) contd,
An exsmple showing the 2nd closed form composition of P, B, T, and 1:3 .




The general form of the recursion rule R is illustrated in

Pigure 25(b). The ith closed form composition referred to in

Pigure 25(b) is formed frum the E-programs {531] ey D @ simple way.

For each 2)1, i<n , suppose that l)li is lmi and 'Ri is Ilni lor

some m, o <n, since recall W, R, may be members of (H

i i]1<n '
Then, we delete, in P, , the entrie: into Imi ana ﬂni , and in-
stead set up branches fram ti and 'i directly to the di.crimine
ators p and p respectively in the E-program: ¢ and 9

n, n, m, n,
We retain one set of k terminators, and for any 'Dli(or ®, ) that is
a null type <2, k> E-program, i.e., & single branch fram the nitiator
to one of the terminators, we set up & branch from &, (or Qi) to the
appreopriate terminator. Of the k initiators, we retain only b, , but

relabel it bo . The result of all these operations is the ith closed

An 2xemple of this con-

form composition of the E-programs {31] < *

struction is given in Figure 25(c).

The recursion rule R5 can be used to implement recursion induction,
in a generalized sense, for flowcnarts. Suppose that Hi =9, i<n
and |¥,'F® , 1<n, anathat the side conditions for application
of RS hold in each case. Then, &, =% and ., ’ *® ,i<n,
by RS, and them Hi = ..1.' , 1< n, by RlL and R2, Without referring
to Rj, we could use the terminology of recursion induction and say that

, " " " "
since [.1]1<n aad {I1 ]1<n both "satisfy" the "equatious
X, *® , 1<n, and since both %, and li' are "defined (i.e., halt)
for the same argments”, them, by recursiom induction |8, ¥, ', i<n.
The side condition "defined for all arguments” is, of course, equivalent to

the side condition for R5.
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It is straightforward to show that using separation (i.e., ;A.]ﬁ)
and push through (il.e., All), we can put any type <!, n> E-program
into a rorm directly expressable as the O-th closed form compousition
of a set {»ilid of E-programs,vhere ¥, ¥, , i <N, is a set
vwffs like that required for R), where N < « 1s the number of qffs
in the original E~-program, Thus, we can prove the strong equivaleuce
of any two type <l, n> E-programs using R5. Buvt, proving the strong
equivalence of any two type <m, m> E-programs can be achieved by
reducing the problem, via separation, to proving the strong equivalence
of m sets of pairs of type <1, n> E«programs, which we can do using
R2. Thus, proving any two E-programs strongly equivalent can be carried

out using recursion induction, 1i.,e,, using the recursion rule _132.

Of course, for certain signatures s , the question of whether the
side condition for the application of RS holds may, in general, be un-
decidable, However, the possible ineffectiveness of RS usually presents
ac problem when carrying out relatively simple derivations as the side
condition usually ca:! be resolved. In fact, "Qs being ineffective in
general leaves open the possibility that ~¥ s is complete for ‘7;"3 H
we will not pursue this possibility here, however,

Remarks:

(1) The axiom schemata A8, AQ and AiO, as we shall see, correspond
directly to the axioms mentioned in the foregoing chapter for the "assign"
functiu: « and "contents" function ¢ ,

(1i) fhe axiom schemata AL, A2 and A3 are similar to three axioms from

& Set of ten given by McCarthy [30) for conditional expreesions, The rest
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are obviated by the flowchart representation {as opposed to linear strings),
and by the presence of a rule of replacement in ocur inferential system.

(141) The inferential system Ja implies that given by Ianov [16],
i.e,, we can prove all of his axioms (and more, of course) in our system, More
oni this will appear in Chapter 9.

(iv) 1t is, of course, miidly unpleasant to have to use the assignment
schema v, 1= Yo in the special always-indeterminate E-program % . This is
akin to not having logical constants in the propositional calculus, and instead
employing pV ~p and p A~p for truth and falsity., Ianov, faced with the
sape unpleasantneas [ 16], used an identicaily false discriminator whose false
branch returned to itself, and whose true branch proceeded to the exit of the

prograx scheme,

Soundness of the Theory 7"

If the theory .T. is to be useful at all, we should require that the
theorems of 7; be generally valid, or at least semantic consequences of any

hypotheses used in their derivation.

Theorem 11: The theory J, _1is sound, i.e., for all &G and all
A=0C I , AU RO UTS,

Proof: It is sufficient to show that the axiam schemata in. A4z gemerate
axioms in - )‘z. that are all generally valid, and that the rules of inference
in R all preserve validity, i.e,, if a rule is ® 9 = 4’ 8 then we
require {8 -8} =8’ -8,

Rule Rl : partial equality, "&" , in the definition of validity i1

symmetric,
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Rule R2 : Theorea 10.

Rule R3 : Thecrem 9.

Axiom schema Al: first consider an instance of the left hand member of
AL (cf. Figure 21(a)), ™ = <X, [, Z> say. Assume that D is an arbitrary
computing structure of the appropriate signature, and that § :w - 20 is
an ardbitrary input state, Then,

s(p, <, o)

= E(M, D, ¢, u) where u€X and [u] = bo

= E(M, D, ¢, MNu) by the definition of E

=EM, D, ¢, v) where veEX, [vl=p and Iva=uw, D, v, 2€X

= E(N, D ¢, w) 1if p[R, t], or E(N, D, ¢, z) if not p[l)) t] , wvhere

(W]ep and [z]=e,, Iwa=<x, ¥, x, y €X, by the definition of E

E(M, D, ¢, x) 1if p[D, ¢] anda p[D, ¢], or
EM, D, ¢, ¥y) if p(D, ¢) and not p[D, £], or
E(M, D, ¢, z) if not p[2) t], where [x]= e (y] = e, , by the

definition of E

E(W, D, ¢, x) if p[D, ¢], or E(N, D, &, z) othervise

<¢, @ 1if p(D, t], or <¢, 2> otherwise, by the definition of E

Now, consider executing an instance of the right hand member of A,
Bu<X [, L> say.
®(p, <t, ®]
=E(®, D, §, v) where veX and [1r]-b°
= E(®, D, £, I'v) by the definiticn of E

=E®, D, ¢, v) vhere weEX, [Wl=p and Ivec<x, o, x, z€X
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= E(®, D, &, x) if plD, €], or E(8, D, &, z) otherwise, where

[x]) = e, and [z]) = e by the definition of E

2 1
=<¢, @ 1f p[D, 8], or <&, 2 otherwise, by the definition of E

Thus, for arbitrary D and % :w=— D , we have

¥[D, <t, &) = ®D, <t, ®], l.e., =¥ =W for any instance ¥ =@ of Al .

Axiom achemata A2, A3, Ak and A5: that all instances of these axiom
schemata are generally valid can be shown by arguments just as simple (and

as tedious too) as that given for Al.

Axicm scheme AS and AJ: these are the axiom schemata which characterize
"«" as the equality relatiom (cf, Mendelscn (% , p. 75]). Since (v = 1)[2) t)
for any term T , computing structure D and state £ : wq}_)c , then clearly

Aé generates only gZenerally valid wffs. Schema A7, however, requires samevhat

more comment,

Consider the assignment schema £ = (vik:- Tk)k<n » computing structure D

and any state & :w —D  such that (vfL Tk)k<n[2’ £] . Then, from the

K
semantics for gffs =nd terms, ve have that c(i, &) = 7,[D, ¢], k<n . Then,

for all j < w,

vylD, £ID, t]] = v (L, &1 = c(y, ¢)
1T 3 ¢ ik for all «xx
= 70D, £1 = clLy, &) = (3, &)
ir jzik for some k<n ,
t.e., £[D, ¢] = ¢ . Now, fram Theorem 6, fp(Z, t] = o[D, £{L, t]], which
from the above result gives rp[pJ ¢} = p{D, L), i.e.,
(v"x 2w 7.)p(B, €] - p[D, £1.

Then from the semantics for qffs, (p > (v1h 2w ‘rk)p)['lb t] . But, from the
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hypothesis on § , (vlk = 'x)Kn[P) ¢], so that, ((vik = 'rk)k<n > (p>
(vi'k stm Tk)p))[D, £] . If ve relax the substitution to only same of the

occurrences of the vik s

validity of the wffs generated by A7 is obtained

this resuit still holds, and the general

Axiom schema AS: Theorem 8. Recall that the proof of Thecrem 8 depended
on the axioms for the "assign” and "contents" function, especially,

a(i, k, a(1, £, 8)) = a(4, k, ¢) .

Axiom schema AQ: follows irmediately from the same axioms, especially
a(i, 2(4, &), &) =& |

applied to the semantics for assignment schemata

Axiom schema Al0: follows immediately from the same axioms, especially
a(i, k, a(J, £, ¢)) = a(3, {, a(4, k, £)) , where 14 J,

applied to the semantics for assignment schemata.

Rule R4: if the hypothesis is valid, then the values of the terms

assigned to each variable must be cqual. Hence, the rule preserves validity,

Axiom schema All: Theorem 8.

Axiom schema Al2: The separation 01(.) merely routes execution through

a copy of the sub-graph of M reachable from the node- labelled b 8ince

K
no other nodes are reachable, and since 'i is a copy of this sub-graph, the

execution of M and 6, (W) , starting at b, , wiil be identical,

Axiom schema Al3: Since none of the nodes deleted from ¥ to form
6(8) can be reached during exe~ution of 8 , their absence in O(¥) will

not cause &(K) to execute any differently than W .
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Axiom schema Al¥: Clearly replacing one cul-de-sac with enotuer will not

csuse Qi(.) to execute any differently than N .

Axiom schema Al5: If the gff is initially false it will remain so, thus

giving an indeterminate executionm.

Rule _!32’: Consider an arbitrary computing structure 2 in which the wifs
of & and ¥ S ¥’ are valid, and state ¢ :w - D, . Now, consider

A=¥[p, <4, ®] and B=U(D, <t, ®>] (cf, Figure 25(a) for M’ and &°).

Suppose that B halts; there are two possibilities,

(1) 1¢£ plp, ¢], and &[p, <¢, ®>] bhalts in ¥,
then in N’ the seme will occur, and A will halt producing the same output
state as B, i,6,, A=B .

(11) If bot p[D, ¢), and the loop is executed n times before & is
executed, then since Q-D % -¥°(M) , we can perform n replacements of
¥ bty ¥ togive & -t'(l‘(...(l)...)) . Then, A =%I[D, <t, ]
will behave just aa A does, and in light of the n executions of the loop
in @, A =B, vhence A=B.

Suppose that A halts. If B halts too, then we reason as above snd
obtain A« B. But, B camot fuil to halt, since by the side condition
on Rj, A fails to balt, a comtradiction,

Thus A halts iff B halts, and in case they do halt, A =B, B8ince the
state ¢ is arbitrary, fe, 8 ¥, wd then (= WU’ gives
|-DI='I',uroqu£M.

Rule R5: By an argument similar to that for R5’. |
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CHAPTER 8

SOME COMPLETENESS RESULTS AND APPLICATIONS

So far, ve have 4efined the formal theory ‘Ts = <}',,18, Js> , and
demonstrated its soundness. In this chapter we isolate same of the sub-cases
for which the inferential system &s is complete or extended complete. 1In
addition, various illustrative examples are given which demonstrate the

utility and derivational power of the theory ,7; .

Extended Campleteness for Single qffs
Let Fm, (@) S Fm, De the set of all wffs of the sort depicted in

Figure 26, where p is any qff. (Note: we denote the rather trivial algorithm

that serves as the right hand member for all wffs in fn' ‘@ s )

Theoreg )2: For any signature s , the inferential system gﬂ' - </¢1., H>
is extended complete for ﬁ!'ﬂ)_

Proof: Wehave 8 |- % 2! = A |m¥ T4, for oy 84S Fm, (D) wd
¥4 € Fm (B, from Theorem 11.

Therefore, we have only to show that A = W = ¢ = A U , snd we
do this by making use of the obviocus analogy between the , eneral validity of
wits in Fm _'(Q) and the logical validity of the qffs that occur in them.
(Wote: we dencte validity in D, in the sense of PC, , by {=* and logical
validity by |=* .) Thus, the wff ® 4  in Figure 26 is valid in D 1
p{D, ¢] for al) ¢ tw- D, vhich is equivalent to p being valid in P
in the sense of PC_, i.e., |-Dl=& ® |=* p . By extending this smalogy
with the predicate calculus, ws;nvethtt A‘:I:&-Db"-p, vhere &’

is the set of qffs occurring in the wffs of & .
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Now, consider the qffs
(1) p>(a>p)
(11) (p2(@2r))>((p2a) 2 (p>r))
(111) (> ~p) 2 ((Ma>p) > 4q),
which occur in the wffs of Figure 27, and the qffs
(av) (1 = 1)
() =)y ), P,
which occurs in axiom schemata A6 and A7 , together with the rules
(vi) modus ponena: p, pOq = q
(vii) particularization: p:(ui i1= Ti)icn P,

where (vil) is obtained from R3‘. The inferential system (i) through (vii)
(an adaptation of that given by Mendelson {33 ], is known to be extended
complete for the qffs of PC, . Thus, if we mean by & |-*r that the qff
r finitely derivable fram 4 using (i) through (vii) above, then

As*r wA |-%r for all such r and sets & of qffs.

In particular, we have that & |= 8 = ¢ 9 A'|mtp A’ |%p . Now, the
derivation of p from 4‘ using the inferential system (1) through (vii)
car be mimicked ‘n a one-to-one fashion by a derivation of WS¢ from A
using the wffs of Figure 27, the axioms given by A5 and A7, the rule R3’
and the rule corresponding to modus ponens shown in Figure 28. Thus, if the
wffs of Figure 27 and the rule in Figure 28 can be der.iveduni.ng d, , then
Alftp Al % T 4, 50 that finally, A== ¢al'|ep /|t paf U=,
A derivation of the wffs of Figure 27 using ), is given in Pigure 29, and &

derivation of the rule in Figure 28 is given in Pigure 30, .
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Figure 26

L &

A

(p:(q:r)):((p:q):(p@ M
é) é) QRQ)

E j
@.,) o ((~a> ”@ £
&  © ®

Yigure 27

Thres members of '(a) corresponding to axioms for the propositional
calculus. Here, p, r are any gffs.
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Derivation of the first wff of Figure 27,
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Figure 22‘!)2

Pirst part of the derivation of the second wff of Figure 2Z7. Continued next page.
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Figure 29(b) contd,
Completion of the derivation of the second wff of Figure 27.

A
(a>~p) > ((~>p)>q) ~ SED
Co ()
r e c

Pirst part of the derivation of the third wff of Figure 27. Continued next page.
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erivation of the third vwff of Pigure 27,

Completion of the 4
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Remarks:

(1} Notice that Ja is atill complete for st'(a) {out ro* extended
complete) a#ven if rule R3 is omitted.

(14) Also, with reference tc the argument above, if the s.gnature s 18
such that 14’'j=*p? for an arbitrary 4’ and p is decidable, then so 1s
1Al @ T 47 for an arbitrary 4C :g..'m) ad W€ Fa (D) .

(111) It is interesting that the usual axioms for propositional calculus
need not be given here, i,e., we can depend solely on the more basic character-
ization given by axiom schemata Al through A) tc provide an aaequate

axiometization,

Extended Completeness for Sequences of Aszignment schemata
Let .?il.'u) c :61. be the set of all wffs of the sori iepicted in

Pigure 31, where f,, 1< £<u | and €y J <A <w , are any cssignment

schemata,

Theorem 15: For any signature s , the inferential system JB = <,h',ﬂ> is
extended camplete for Fm_'Ul) .

Proof: We have Al M 8w ol ¥ 8, for myy AC 3',.‘.'(4) end

WZBe Fm (), from Thecvem 1.

Therefore, we have only tc show that A =M 9 A L U8, and
we do this by developing the rc.ion of ncrmal torm wifs ir fm"(,l.) . It
avwff € -9 ¢ T,.,.'(,d) has “he same form as the left-hand hypothesis for
B (cf. Pigure 22), and if = S =6’ and b DD, thenm § =D s
said to be a normal form of the ff & =P, Evidently, for sny computing
structure D, ve have |j= & :S)"*-D G’ D' . By applying this %o our
problem we get that & l-l~2 B-a20f ;I' S ® wnere &' is a set of

normel forms for the wffs in & and 8 -8’ s anormal formof M= 9,
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Since R+ preserves viiidity, we have that A’ U "8 A’ |le @ = 4
vhere T i€ h.'(ﬂ,‘. and is obtained from ' 5 ®° as indicated by
M, just as the wffs in &' C };,,.'(D) are cbtained from the wffs in &’ .
Since Theorem 12 gives that J. is extended complete for Iu.’(m , we have
that A°f= ¢ SA8A"f B > ¢, and by spplying Be "in reverse”, we obtain
A B i’ 4 8. This last step is accomplished as follows:
starting from &’ , use Rb repeatedly until 4" 1is obtained; then, since
LT T4 wecanderive B T ; next, ve apply B¢ and so obtain
' 9, as required. We =c far have reasoned that 4 e U S 8 =p
AR08 RU S0 S48 B Zins | D Zied U T
to furnish the last step, i.e., &'}’ ZB‘es |- K59, we have only to
demonstrate how to use J. to derive normal forms for wffs in h.'m .
For, then, we start from & and derive 4’ and so therefore ¥’ =9’ ;
if & derivation of %' S8’ from 8 S8 can be given, then it will, in

reverse order, serve as a derivation of 4 ® from &' =9 .

Thus, it remains for us to show hov sy desired normal form of s wff
WS8¢ Fm,'(X) can be derived using J. . Weuse Rl and R2 as required
and proceed as follows.

(1) Apply AS repeatedly to each of 8 end 8 until only a single
assignment schema remmins in each.

(11) Apply A9 followed by AB or vice versa as needed, in order to
nake the sets of sssigned variadbles in the two assigrment schemata identical
to the desired set.

(111) Apply AlO to arrsnge the assignments in both assigrment
schemata in the desired order, '



A mamber of Fiw' () . Here f,, 1<k< w , and 8y I < Ld<w
are assigment sihemata.

? ?

ue f(v) & vi=w u := g(t(v), w)
1 3
u 1= g(n, v) o v t= £(v)

2

v:=ubdvyisvy

®

3
I

u t= g(f(v), v) b v iaw v := £(w) & u := g(f(v), w)

}

visubhvisy

First step in the derivation of a normal fora for the upper vff, Here
u, v, ¥ are distinct variables and f, ¢ are function letters,
Continmed next page,

r (] .
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viswby:=mvwbu:sg(elv), v)

o ©

viewhvwisvhu = g(f(v), v)

@ o

viewhviswbu:=g(e(v), v)

@ O

A,

IR

MO

v = f(w) &u = g(r(v), w)

lo o

v i= f(w) & u = g(2(v), ¥)

O < b

visw by s f(vw) &u s g(2(v), v)

B

¢

O ©

s g(f(v), ) hvisvadvwiew | & luisg(f(v), ) by taf(v)bvisw
Yigure gm contd.

Completion of the derivation of a normal form of the first vIF of this figure.

?

v :=wahu = g(e{v), v) & x e x

G

?

v ie f(u) Qu 1= ¢(t(:)l v) b xtax

O

Yigure 32(b)

A seccnd normel form for the first wit of Pigurs %R2(a).

varisble distinct from u and v,

1zZ¢

Hare x 18 n




Notice that two normal forms for a wff U @€ ’*’ms’(,() may differ only
1a the order of the assigmnments in ¥ and 8 and in the number and sort of
]l sssigmments of the form U := u that occur in both ¥ and ® .

Pigere 32(s) {llustrates the derivation of a normwal form for a wff in
b Y . ‘(4) , evd Figure 32(b) illustrates how two normal forms may differ by

@iviang e second normal form for the same wff,

Lat Ll'u) € L, be the set of all E-programs that occur in the wffs of
ﬁ.'(‘) € Zm, » i.e., the set of all E-programs consisting of a single
sequence of assigmment schemata., The idea of normal forms for wffs in
&"u) can be extended to yield a canonical form for algorithms in L, ' .
¥ uae Rl and R2 and proceed as follows.

(1) Apply A8 repeatedly until a single assignment schema remains,

(11) Apply A8 followed by A9 to delete all vacuous assignments of
the form u :=u ,

(181) Apply AJO to arrange the assigned variables in arder by their

slscripts.

If this process applied to ¥ € L"(‘,) yields ¥’ € L, ‘(4) , then we
sey that ¥’ is the canonical form for M . Of course, we should say with

respect to what property this form is cancnical, and that is the content of the
following

Theorem W4; For any signeture s and 8 , ®€ L ‘(4) with canonical forms
§' and_®' respectively, |8 =® =8’ is identical to ®’ .

EXoof; First, we prove that ¥’ identical to 8'=pj= U =8 . Now,

POS6 S=U-U and -89 aj 88 by Theorem 11. Furthermore,
8’ i6entical to ®'>j= ¥’ =B’ , and since strong equivalence is transitive and
metric, U -8 >|U=0,
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To prove that |= & Z B w¥’ and B’ are identical, assume the contrary,
f.e., that | ¥ =8, but ¥’ wd B’ differ. Since ¥’ anc ®' each
consist of a single assigmment schema, they can differ in only twoc ways.

(1) A variable u occurs an assigned variable in ¥’ but not in B’
say, or

(11) Assignments u := T and u := ¢ , vhere T and o ware distinct

terms, occur iu ¥’ and ®' respectively,

Consider case (1). An assigmment u :« T occurs in ¥’ and T is
not u since ¥’ is canonical. Thus, a computing structure _]3 and state
¢ :w- D canbe found such that (D, t] ¢ u[D, ¢], and so therefore
' -9 isnot valid in D, i.e,, not |=¥T® ., But, |=UZU’,

=B -8 and =¥V, sothat |= ¥ =8, a contradiction.

Consider case (ii). Here a computing structure D and state
£ tw-D canbe found so that (D, t1gdD, ¢], thus giving the same
result as (1) above, Hence, |j= M =8>8’ and 8’ are identical, [

We have, therefore, an effective test for the strong equivalence of
E-prograns in L.'(A») , for any signature s . Of course, semsntic consequence
remainz an unvolvable problem here because of its direct connection with the

logical validity of qffs in PC' .

Using Theorem 1k, we can easily obtain a further result. In Chapter 5,
ve considered the set iy (§) © Foy, for arbitrary signatures s, and in
Theorem 2, we ;ut cff prcving until now that el 92 , for A B € I, W) ,
is decidable. Recall that the wffs of Fm _(4) contain anly E-programs from



L.“) , and chat no qffs occur in these E-programs (cf. Figure i(a) for an
e_le). We prove the decidability result of Theorem 2 during the proof
of the following

Theorem 15: For any signature s , the inferential system

of, =<4z, ,R> is camplete for Fm (f) .

Proof: Wehave |- W9 > |=NZ®, for ey WZ8€ F (4) from
Theorem 11,

Therefore, we have only to show that | M “ B |- M =B, aud ve do
this vaing methods similar to those used in the proof of Theorem 1k, First,
we develop the notion of a canonical form for E-programs in L.(,{) . We use
Rl and R2 and proceed as follows,

(1) Apply A12 at each initiator to separate out the various sequences
of assigmment schemata. (Figure 35(a) illustrates this step for the E-program
of Pigure 4(a). )

(11) Apply Al% at each initiator to detect which sequences never
terminate, and use Al3 to clear away all unreachable nodes. (Figure 33(b)
illustrates this step,)

(111) Apply A8, A9 and A0 to the remaining sub-programs, each
consisting of a sequence of assignment schemata, to put them into canonical

form, as ve have already described, (Figure 33(c) 1llustrates this step,)

If this process applied to M € L.(A) ylolds %' € L.(A) , then we say
¥’ 1s the canonical form for % . The decision procedure required for
Theorem 2 is then given by
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fu b ¢ 6 b 4 8 L q b 4 b 4
k)
o d
b ¢ f b g -— b ¢ fj f. f
4 L 3 fj fs I
6 B & & \C
O

Fizure %3(a)

E-progrem € ¢ Figure 4(8) i3 processed by :l2, the separc..cn axiom
schema.

fl t’t Vo = Vv o
J
~
-— fa f5
25 f

r a b

Further simplification of § arises from the application of Al3 and Alk.

N ¢

f} fh‘5t)

%,

The canonicel form of E-program € , vhere tlfzt and f, £ .f, are in their
respective canonical forms, 3 >3
13



Theorem 16: Por any signature s and any ¥ , B € L.(/!) with canonical forus

8’ and ®' respectively, |= 4 =8 ¥’ and ®' are identical,

Proof: If e, is reachable fram b, in %' but mot in ®°, then clearly

J
S and ® cemnot be strongly equivalent, i.e., not j= % = ® , which
contradicts the hypothesis for Theorem 16. Therefore, %’ and ® can be
snalyzed by comparing the sub-program of ®’ between b, ad e 3 and that
of 8’ between b, snd ey » using Theorem 1k, Evidently, then

=% =% %' and ®’ are identical; the converse is, &3 in Theorem 1b,

trivially true. I

To return to the proof of Theorem 15, we now cousider the problem of
showing that (=¥ “® |- M Z® . From Theorem 16, (=¥ "B ¥’ and ®
are identical, so that |-’ <®’ by Rl and R2 . Furthermore

a9 and |89 50 that, once again by Rl and R, |-l=l.l

Results for Other Fossible Assignment Schemata

In Chapter 3, we introduced simple assignment schemats, i.e., those
each consisting of a single assignment. Let A° be the set of all simple
assigrment schemata (relative to a given signature s , of eourle), and let
L.o be the formal language obtained wvhen /4 ° is the class of operators. If
"-’l.o is the set of wffa built up from L.o s then ve want to consider the new
theory T.o -< Jl'n.o, d '°> , Where J.o 1s 11ke of . eXcept that axiom
schemata Bl, B2, B3, B+ and rule 81, illustrated in Figure 34, replace AS,
A9, MO and B .

Certainly =% =# for %, 8cL°(f), te, U0 Fn (),
is decidable by applying the methods of the foregoing section. (Here the
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where v does .. % occur
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A
[

i
-~

in ¢

@+ i~

b=
R
mk

vhere u does rnut occur

v = 3 v = (u:

- a)_‘ . o

o
p
R

R
{
i

B: Jui=o e [vi=(uii=o)t

[
» e
A

0 @

Figure Sh

An inferential sub-system for simple assigmment schemata, Here,
u, v are distinct variables, and o, T are temms.
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E-programs of Lso'(/f) are all type <l, 1> , and consist of a single
sequence of simple assignment schemata,} Moreover, we conjecture the
following

Theorem 17: For any signature s, the inferential systes ° is
complete for 7'3»;'."'(,4? ).

Proof: In support of this conjecture, notice that essentially all we have to
show is that Bl, B2, B} and B¢ do not miss any of the derivational power
afforded by A8, A9 and AlQ for theorems ¥ = ®E€ ?m.o'(l.o) .

Constder ® € L.°'(4) , 1llustrated in Figure 35(s). We want to find
all E-programs 8¢ L.°/(4) such that | W =@, i.e., W B 1is derivadle
with AB, A9 and A0 .

(1) Under the hypotheses that u and v are distinct, o isnot u,

T {anot v, and u does not occur in g , the derivation in Pigure 35(b)
can be carried out.

(11) Under the hypotheses that u and v are distinct, o isnot u,
T isnot v, and v does not occur in o , the derivation in FPigure 35(c) can
be carried out.

(114) Under the hypothesis that neither ¢ nor T is u , the derivation
in Figure 35(d) can be carried out,

This clearly exhousts sll the possibilities for E-progrems 8 € 1.°'(f),
such thet 8 =8 1s derivable in <, . But we have simply derived B, B
o
and B} here; as well, Bh is the equivalent in J' of AJ. Thus, J:’

reflects all of the derivational power of J s with respect to theorems in

Fm 2U°) i
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Figure , (4

lerc, u, v are varisbles, and g, - v Lemns
usg Ab viz(u:i=g)rdku:=g
E faq

of
2

R

M@ O

Since u
does not
vi= (u = c)((1 3= 0)7) U = g :ccu.rin

O O

R

-

<
0
Cabn )

[

"

Q
A
Tl

s
Figure b
Here, «, v wre distine variables, ¢ is 2 termuot u, T 48 ¢ term
not v, and o dees not occur din o .
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AL, R2
~ ui=o0 &v:=(uzi= o)t
~ u e (v 23= (U :t= 0)T)o & v = (u 31:= o)1

&

8ince v does not occur in o,

5 Q@

~ v = (u i:= o)T

¥

Figure C
Here, u, v are distinct variables; o is a termnot u § T is a tem
not v; and ¥ does not occur in o,

@

‘ll:-a u = (u := d)‘l’]

e &
5 et

Here, u 1is a varisble and ¢ T are terms not u,
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In Chapter 3, we introducea subscripted variables as a poss ible
extensior. of our formal language L‘ . Let A—+ be vae set of 1}
ass:orment schemata with subscrintea variables permitten {re_at.ve ‘o
a given signature s , of course), and let L;‘(Af) be vhe set of
all type <1, 1> E-programs each consisting of a single sequence of

assignment schemata fram A4 .

We conjecture that for any signature s , 1|l = 8% ‘or
u 8cC L;'(i) is decidable, but here Co mot comsider ‘ne matter any

furthrer.

E-programs with no lLoops

It is straightforward to prove that Js is cumpiete for the sub-
set of I..' involving only E-programs with no locps. An E-program
¥ = <X, [,£> 4s said to have ®no loops” iff for &il x€ X, x 1is
not reachable fram x via I , i.e., not in the transitive closure of
I, E-prcgram M of Figure 36(a) 18 an examplu of an Z-program with

no loops.

Her<, we only indicate;, using an exemple, the derivational steps
required to put an E-program with no loops into a canonical form,
Figure 36(b) shows E~-program Il, the result after the scparation axiom
scheme A2 has been applied throughout to 8 . Figure 36(c) shows W, ,
the result after the push through axiom schema All and the forward sub-
stitution exiom schema AB have been applied throughout to M, . Each
assigmment ccrema 1s then put into canonical form, and axiom schemata

Al through i) ~vplied to compress the network of qffs. The result is
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Flgure a

An E-program with no loops. Here p, q, r, 8 are qffs; v, w, X, ¥, =
are assiggment schemata,

0 1
p z
x 8
q L
y y y
r r r
v v U] vilvy w v v v

Figure 26(b)

E-program ® after separation using Al2,
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Figure 36(c)

F-program % after pust through using All.

o) @

P AYyr 28 A zq A

<IEI>, LD
PA~YT V p AXQA~Xyr @

Lo SolF

@

Figure d

E-program ¥ after processing by Al,..., Aj. Here, we have assumed that
yvil, t] = xyviD, ¢] for all D,all §:w=D , sothat the comdition
ror yv is a disjunction of two canuncticns. ﬂgre the result just displays
the initial coanditions for each of the operations.
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I3 , shown in Figure 36(d). Note that since two of the assigmment
schemata have the amme canonical form, one occurrence is deleted and
the relevant qff is expressed as a disjunction. By specifying an
ordering and a canonical form for the qffs of H, , a canonical form

for E-programs with no loops is obtained,

We see that a canonical form for these E-programs merely displays
each of the finite number of operations (as discussed in the proof of

Theorem 1) and its attendant initial condition,

Remarks:

(1) The canonical form concept for E-programs without loops, can
be extended to may E-program in I‘s provided that infinite canonical
forms are permitted. Thus, all the loops are unwound, and the E-program
taxes on the loop-free property in infinitary form,

(11) The completenesas result for qffs as given in Theorem 12 can be
used to show Js is complete for the sub-set of S.. involving
E-programs which correspond to the "conditional expressions" discussed by
McCarthy (30). Type <1, 2> E-programs containing qffs only, but poaaibly
having loops, can be used to simulete predicates which are undefined for
certain arguments. It is conjectured that JB is complete for this case
as well.

(111) In Theorem 1, T|=lMl = 87 , where M =B € Fm, for signatures
8 =< <Wyeeey N P 0, @ , vwas shown to be decidable, We conjecture ihat-
J, is complete for 3;1' .

Some Applications of the Formal Theory ;T.

To give some indication of the derivational power of the inferential

system J. , We consider a few applications of the formal theory 7; .
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In Pigure 37, ve show hov a simple loop, organized as in FORTRAN
where the body 18 executed at least once, can be transformed into a loop
organized as in ALGOL where the body 18 possibly not executed at all.
The notations "gp"' and "gh" indicate the forward substitution of assign-

ment schema g into the qff p and assigmnment schema h , respectively.

In Figure 38(a), we use two hypotheses to deduce that the simple
loop considere¢ is aiways indeterminate. Of course, the hypotheses may
in fact be generally valid, i.e., the syntactic properties of £, g
and p , may permit proof of the wffs taken here as hypotheses.

Figure 38(b) illustratea just this possibility for the always indeter-
minate loop problem considered here. 1In all of the examples considered
here, where certain hypotheses are assumed, there i1s the parallel case

vhere the hypotheses themselves are derivable,

In Figure 39, we shov a simple loop can be reorganized to displey the
cases where execution is determinate and indeterminate, Simply put, we
bave here the case of the body of & loop baving no new effect after one
execui.lon sc that if nc exit is made after one circuit, no exit will be
made at all.

In Figure 4C, we illustrate the classic removal from a PORTRAN-1ike
loop of an operaticn which is loop-independent. The conditions expressed
by the hypotheses are sufficient to permit this reorganization, but not
necessary. For example, if the qff p were ro(vo) and the assigmment
achema X were V) 1= ta(V1: , and {f g ani h comeutec with
vy = fo(vl) then the ssme removal of ik , i.e., v, i= to(vl) , fram
the loop is warranted and is lerivable. Figure 41 illustrates this sort

of situation ir a simple loop.
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The problem illustrated in Figure 42 is elso classic, Here we
derive from a sufficient set of hypotheses that the assigmnment schema
£ may be executed before or after the loop in questicn, i.e., we prove

that the loop is "transparent" to f .

Figure &3 illustrates a derivable wff expressing the strong

equivalence of two always determinate E-programs.

Figure bi 1llustrates the sort of deduction concerning assigmment
schemato that can be carried out using hypotheses which express algebraic

properties of the furctions involved, e.g., commutativity or identity.
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Figure

Conversion of a PORTRAN-iike ioop to ALGOL-like form,
are assisnment schemata and p is a qoff,
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Detection of an always indeterminate E-program under certain hypotheses,
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Detection of an always indeterminate E-program. Here, u, v, w are variables; f is a function
Continued next page.

letter; and r 41s a relatiomn letter.
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Now, consider a derivation concernirg the -7
sub-program
r? ? |
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'l = [ L =
é) P
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Figure 30

Detecting the halting cases of an E-program, Here, f, g, h are assignment schemata; and p is
a gff. Continued next page.
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Detecting the halting cases of an E-program, Continued next page.
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Figure 40

Removal from a loop of a loop-independent operation. Here, [, g, h, k, x are assigrzen’
schemata and q is.a gff. Continuel next page.
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Continued next page,

Removal from a loop of a loop-independent operation.
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Detection of an indeterminate loop. (Continued next page,) Here, wu, v
are variables, f is a funcfion lctter, and r 1is a relation letter,
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The result of the derivation concerning the indicated sub-program then
replaces that sub-program.

Figure 42
An example of loop-transparency,
158



X

o r(u) v ~(£(02(v)))))
AN

Fijur- L3
Two strorg, v eguivalent always halting E-programs, Uhe left-nand F-propram
executes voro circuits of the lcop, and the right-hand b-program executes
up to thrc. circuits, Here, u, v, w . are variablesy £ Is a function letter;
and r ic a roie=ticn letter,

@ ¢ ? P

x = £(y) 1.3 x = g(y) x := h(g(y)) . ] x := g(h(y)) }

& & b ® |
?

u = h{r()) v := n(k) & u := g(g(k))
4 ¥
v := t{u) -~ v := h{u) & u = v
3 !
v - e(glv), 1(u)) v i= e(f(v), v) & u := g(u)
&
Fijur- 44

Two ascignment schemate, cquivalent provided f and g e Lhe same
functiou and g and h commte., Here, x, y, u, Vv are variables;
e, £, ¢, 4 are functicn letters; and k 1s a constant,
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CHAPTEPR 9
iNJ[IAL CONDITIONS AND K-EVENTS

Representing E-pr.-am.. as flowcharis is edvantageous in that it
voids a plethora ¢f cyntactic structure which might impede intuitive
understanding and confound meta-level analysis. However, as always,
there are two sides ¢ this coinm. In fact, the analysis of sowe
properties of E-programs would te made more tractable if a neater, mwore
orderly, syntactic representation were available {cf. the efforts of
Bohm ané Jacopini { 2 ] in this direction). Mauy researchers in switching
and autamata theory, have discovered that certain of their problems yield
soluticns more readily vwhen studied in terms of regular expressions in-
stead of state transition diagrams (cf, Harrison [15, p. 321]). 1In this
chapter, we will examine Row regular expressions and Ke-expressions, used
as an ulternative representation for E-progreams, alsc lcad to a more

prodiictive analysis,

Regular Expressions and Regular Events

Before proceeding, we will repeat here the basic definitions associated
with regular expressions and regular events. This material is also given
by Sal-mea [38], Harrison (15] and by many others; we include it here only
to avoid notational misunderstandings, First, we discuss the syntax of

regular exvressions,

Lot Lafx Ky, ‘k-ll » £ < W™, be an alphsbet; here, each
letter x, 1is assumed to be some formal expressiorn, i,¢., perhaps a

sequence of symbols on some other lower level alphabet, This possibility

will not concern us just now, however.
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We build up regular expressions from I using the additional symbols:

m(w, w)n, man mmwgn g gng m1v

(1) Xy Xppeees X gy 0, 1 are all regular expressions

(11) If a and £ are regular expressions, then (aVv g) , (a . B)
and Qa* are regular expressions

(111) Extremal clause,

In practice, ve omit "." from regular expressions of the form (a . 8) .
In addition, parentheses are often omitted with the understanding that "." is

performed before “V" , and "#" before either ".," or "V' . Thus,

avprs istobereadas (av(p. 7 )).

The semantics of a regular expression over the alphabet I yields a
certain sub-set of E* , which is the set of all finite words (or simply words
if there is no confusion) over I, i.e., the free semi-group with idenvity
generated by I where the operation is juxtaposition. The subset of Ew
associated with the regular expression a is denoted by |a| and is called
ar event.

(1) x| = {x;}

(11) |1| = {A, the empty word, i.e., the identity of ZI*}

(111) |0]| = # , the empty set

(tv) lavel = |a| ule|

(v) |o8| = {ab : a€ |a| & be 8|}

(vi) |o*| = the smallest set that contains the eapty word, and for sny
es€ |al] :nd b e |a*] contains the word ab , i.e.,

jo*l = 2] U Jof U |oo| U jam| v ...



E-programs as Regular Expressions
Threughout these discussiona, we assume some fixed arbitrary signature s

Each R-program ¥ = <X, I'. /> has associated with it the alphabet
5= {v: for some x € X,ix] =u} U {u: for same x € X(@), {x] = u} where
here, and in the sequel, we may vrite U instead of ~u for u € {. Thus,
Iy 18 u finite suoset of BuAURU £

We »ill define % s @& regular expression over F‘ “hat correspounds to
an E-;r craw 8, ty utilizing a finite automaton lh that accepts the set
|%| » ‘.€., given s word x as input, M, reaches the final state Iff

x € !%: . Let us define these ideaz .n more detail,

Gir:n the E-program M = <X, I, £ > , we define the finite automaton
L‘ =<, T, !‘f , where S 1is a finite set of automaton states (or simply
states if no confusion with states as sequences over » domain results), and
T: S Fu —+S 15 a transition function . The set £ of states is

£ N - x(8)) U (b, e, a}

where ‘t. ¢, a} NX =P , b is the start state, ¢ 1is the final state

and 4 is <he dead atate.

The S:ansition function is defined as follows.

(10 7 x€X(#) rmd I'x=sy, then T(x, {x]) =y and
T(x, u} - ¢ ror all u € B - {{x]}.

(1) If x€X(Q and Ix=<y, =, thm T(x, (x]) =y,
T(x, ~Mx]) =z and I(x, u) = d for a1l u € §y -{(x], ~x]} .

(114) 1f x€ X(E) , then T(x, [x])) = e and T(x, u) = 4 for all
uek - {txn .



(4v) T(v, [x)) =y for all z € X(B) where I x =y, and T(b, u) = d
for all u € }" - {bo,..., b-_l] vhere M ia type <m, n>, i,e., has =
initiators,

(v) T(e, u) =d for allu€fg,.

(vi) T(4, u) =d foralluc g .

These not altogetl.er pellucid definitions can be rendered more informative
by referring to Figure 45, Here the diagrammatic representation of an E-program

¥ and & partial transition diagram (pdt) for My are illustrated, The pdt is

partial in that the dead state has been omitted as have all transitions to it.
As we now see, the formation of My from M. is really a trivial operation.
Nevertheless, this characterization of ¥ as a finite automaton l‘ 2nables us
to apply many well understood powerful techniques to the analysis of tkhe strong

equivalence problem for E-progrems.

The behavior of the automaton l‘ is simply the set of words in r.' that
p& accepts, i.e., that cause l& to go from the start state to the final state

via the transition function. Let us define the acceptor function

T# 3 S x 2‘.*—98 as follows

(1) ™(x,A) = x

(11) T*(x, o w) = TH(T(x, o), W) for c€R ,vweE K.
Then the behavior of M, is By = fwe Bt T#(b, w) = ¢} . From the con-
struction of My, ve€ % will begin with an initiator and end with a
terminator. (Note: the semi-group operation of Juxtaposition does not further.
imply forward substitution as discussed in Chapter 6,)

Theorem 18: There exists an effective procedure, which for any finite sutomat.an

M_constructs a regular expression a such that |a] is the behavior of M .

Thus, the regular expression a , where |¢‘| = By , is effectively constructable,
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L-program 8

Partial Transition
Dhiagram for M\l

An E-program 8 ani th: partial trinsition dimyam for bh « Here,
r, p are ¢gffs; and £, hy k arc asslpament schemat -,

hren



Proof: This result is due to Kleene [23). See also Harrison [15). |

Remarks:

(1) The procedure of Theorem 18 is involved and complicated, and the
regular expression produced is usually inordinately large and liable to
drastic simplification. 1In the sequel, we will use heuristic methods for
writing down regular expressions in simple form. For example, the E-program
¥ of Pigure 45 yields

Oy = bre Vb oi-khel v blf(]-;k)*phol

(11) The inherent utility of the regular expression notation is now
evident, For, no matter how comvoluted and entangled the graph of an E-program
may be, its regular expression has a hierarchial structure where, so to speak,
all the loops are nested, Thus, while the dr of ¥ is easy to understand
(and easy to encode or program up), the regular expression Gy 1s easier to
snalyze,

(111) It would seem that there is really samething very primitive and
pervasive about the ideas involved with regular expressions and regular events,
They play a key role in many areas, have a potential role in several others,
e.g., pur~ graph theory or artificial langusges (cf. Tixier Ml]), and their
application to the snalysis of E-programs is quite natural and productive,

We now wvant to consider the relationship between executions of ¥ amnd
words in |:‘| . Clearly, we can associate a word in Io.l with every halting
execution of 8 , but the converae is not always true. That is, certain paths

through ¥ (i.e., certain words in Icil) starting at some initiator b, and

i
ending with some terminator °3 my not be executadble, In formulating the
initial conditions for Figure 5, we appealed to en intuitive notion of

unexecutable pathc, and now we will cunsider these matters in more detail,
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We define  W(M, b, &, «) to ve the {possibly inf{inite) word over ).“l

associated with the execution E(M, D, &, x) of E-program ¥ starting at

node x .

Eventually we shall want to show that W(l, D, €, x) € |gy]

when W(H, D, &, x) is finite and x €X(B) .

(i} If x € x(B), then

Wi, D, ¢, x) = [x] Wy, D, &, r'x)

(11) I1f x € X(4) , then

w(%, D, ¢, x) = [x] w(%, D, [x][D, ¢], Ix)

(111) If x € X(R) and I'x = <y, = , then

Wi, D, ¢, x) = [x] W(¥, D, &, y) if [x](D, &)

=~ [x] WM, D, &, z) otherwise

(iv) If x € X(&) , then

w(M, D, &, x) = [x] .

S0 the function W follows through ¥ , just as the execution function

would, except that here a word over & is built up as we proceed through the

E-program, Of course, W produces a finite word iff the execution given by

E halts, To study such finite words, we need the following.

Theorem 19: For any E-program § - <X, [, X> , computing structure D, state

§:w- D and x€X(B), if WM, D, ¢, x) is finite, then

T*(bn w(.n 2; ez X)) - & ,

Proof':

First we do an induction on the word W(M, D, &, x) to show that for

any x €X - X(B) , ™(x, Ww(¥, D, &, x)) =¢,

(1) The primitive basis of induction is the case x € X(¥), where we

have
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T™(x, W(W, D, ¢, x))
= ™(x, [x]) by the definition of W
= ™(T(x, (x]) ,/\) by the definition of T*
= T#(e, /A\) by the definition of T
= ¢ by the definition of T* .
(41) If x . X(4) , then
T™*(x, W(¥, D, &, x))
e T™(x, (x] w(, D, [x][D, ¢], I'x)) by the definition of W
= ™(T(x, (x]), W(X, D, [x])[D, ¢], 'x)) by the definition of T#
= T#(I'x, W(N, D, [x)[p, t], I'x)) by the definition of T
= e by induction hypothesis .
(111) If x € X(9) and Ix =<y, z» , then

™(x, wW(¥, D, &, x))
= ™(x, [x]) w(¥, D, &, ¥)) ir [x][D, &) or

T#(x, ~{x] W(¥, D, §, z)) otherwise, by the definition of W
= T™(T(x, [x]), W, D, &, y)) ir [x][D, &) or

T™(T(x, ~{x]), W(¥, D, £, 2)) otherwise, by the definition of T*
= T¥(y, W, D, ¢, y)) if [x][D, ¢] or

T™*(z, W(X, D, &, z)) otherwise, by the definition of T
=e if [x])[D, £] or e otherwise, by induction hypothesis
-e

and this completes the induction,

Now consider W(N, D, &, x) where x € X(B) .
(b, W(W, D, ¢, x))
= (b, [x] W(N, D, ¢, I'x)) by the definition of W
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= T™#(T(b, (x]),%(W, D, &, Ix)) by the definition of T*
= T*(rx, w(%, D, &, Ix:) by the definition of T
= ¢ from the result obtained above, since [I'x £ X(&)

by the cefinition of E-programs, '

Since T#(b, W(M, D, ¢, x)) = ¢ =» W, D, ¢, x) € By » and since
By = |%| by Theorem 18, then an immediate corollary to Theorem 19 is that

if x € X(B) and W(K, D, &, x) 1is finite, ther W(¥, D, ¢, x) € |qf .

Tc illustrate the connection between W(¥, D, ¢, x) and E(N, D, ¢, x),
we introduce a function E* which "executes" the word W(M, D, ¢, x) .
(1) If o€ QU B and w€ R*, then
E*(D, &, ov) = E*(D, &, w)
(11) If o € 4 and ueru*, then
E*(D, &, ov) = E¥(D, o[D, £], W)

(111) It o 1s e, € &, then

3
E*(D, &, o) = E*(D, ¢, eJ) =<t, >

The function E* simply applies each assignment schema encountered to the
current state and bypasses the initiator and all qffs., The relationship between

the execution functions E and E* ;| and the function W ia then given by the

following

Theorem 20: For any E-program M = <X, [, X>, computing structure D , state

£ : W= and x € X ,

D
~0

E(W, D, £, x) & E*(D, ¢, W(M, D, &, x)) .
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Proof: MNotice first that W(N, D, ¢, x) is finite, i.e., E¥(D, ¢, W(8, D, £, x))
is determinate, iff E(M, D, ¢, x) is determinate. We give an inductive proof
for the case of halting executiom,

(1) The primitive basis of induction is the case x € X(¥) where

[x] = e Then, the left-hand side is

E(w, ;_),Jg, x) = <¢, 3> by the definition of E ,
and the right-hand side is
e*(D, ¢, W(W, D, ¢, x))
=ExD, £, e J) by the definition of W
= <§, J> by the definition of E*¥ , which is identical to the left-hand side.
(11) If x € X(4) , then the left-hand side is
EW, D, ¢, x)
= E(M, D, [x](D, ¢), I'x) by the definition of E
= E%(D, [x](D, ¢], w(W, D, [x)(D, ¢], Ix)) by induction hypothesis,
and the right-hand side is
E*(D, &, w(M, D, ¢, x))
= E%(D, ¢, [x) w(w, p, [x){p, ¢), I'x)) by the definition of W
= E#(D, (x])(p, ¢), wW(¥, D, [x][D, t], I'x)) by the definition of E* ,
which is jdentical to the left-hand side,
(118) If x € X(§) , where Ix = <y, £ , then the left-hand side is
E(N, D, ¢, x)
=E(W, D, & y) i [x]Ip, t] or
E(M, D, ¢, z) otherwise, by the definition of E
= ¥%(D, &, WX, D, &, y)) if [x](p, &) or
E*(D, ¢, W(%, D, ¢, z)) otherwise, by induction hypothesis,
and the right-hand side is



E%(D, &, W(Y, D, &, x))
= E*(D, &, {x] w(u, 5, &, y)) if ([x][p, &) or
E*(D, &, ~{x! W(¥, D, &, z)) otherwise, by the definition of W
= E¥(D, &, W(¥, D, &, y)) if [x]{p, ¢] or
E*(D, ¢, W(M, D, &, z)) othervise, by the definition of E* ,
which is identical to the left-hand side.
(iv) It x € X(B) , then the left-hand side is
E(Y, D, &, x)
= E(Y, D, &, I'x) by the definition of E
= E*(D, ¢, W(M, D, &, 'x)) by induction hypothesis,
and the left-hand side is
E*(D, &, w(¥, D, ¢, x))
= E*(D, ¢, [x] W(W, D, ¢, Ix)) by definition of W
= E*(D, &, W(M, D, ¢, I'x)) by definition of E* , which is identical to

the left-hand side, and this completes the induction, l

We see then that executions of an E-program ¥ give rise to words in
|%|| that can themselves be "executed" producing the same result, Intuitively,
the qffs encountered during the execution of an E-program ¥ specify the
condition on the input state for that executiony the qffs in the corresponding
vord in |oy| play the same role with regard to the execution of that word. In
Chapter 5, we called this the initial condition; we now develop this notion in

detail,

We first define a function & :]{i +Iy* , where g =
{ue o -{A] : there exists w¢€ Iy* such that wu € |c‘|] . Notice that

logl S Wy - Applying x to & word, is termed applying "push through";
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we will see how this ties in with the notion of push through associated with
axiom schema All of .fx . In Chapter 6, we denoted the forward substitution
of an assignment schema into either another assignment schema or a qff by
Juxtaposition. To avoid conflict with the juxtaposition of letters in I‘
to form words in l"* , We will denote the forward substitution of an assignment
schema f into t by (f ot), vhere t€ AU I . In addition, we adopt
that the convention that — assoclates to the left, so that
(f -g =h =p) denotes (((f +g) =h)sp) . Now, ve are ready to define
the function x ., (Note: for convenience, the parentheses arcund the argument
of x are dropped.)

| bi' - biﬂ

afgy = x(f -g)v

fpw = (2 - p)atw

AP = pxv
™y "%
te, = fe,

wvhere 2, g€ 4, p€E @ ed w € Ij* . This definition clearly covers all the

cases of mu for “GW".

To illustrate the effect of the push through function =, we consider
a fev exsmples,

(1) Suppose b xpyaqree, € |%| , vhere x, vy, 5, £ € A4 and
W TreE l- Then,
o, XpyEqree,
- b,_:xwzqrrod
= b, (x -°p)wzqrfoa

m



b.l(x —p)nlx — y)z.qrfej

= bi(x —+p)r(x +y - z)grfe,
J

bi(x +p)(x =y =+ 2z 2q)n(x =y —»2)rfe,

-

= bi(x +p)(x 2y 2z 2q)(x oy =2z +r)n(x »y —=2)fe

[

bi(x sp)(x 2y 22 2g)(x 2y =z =r)a(x -y »2 -of)ej

by(x »p)(x 2y »z2 2Q)(x 2y +z 2r)(x 2y +2 =+ f)e,

(11) Consider once again the E-program # of Figure 3(b), that was used
in the proof of Theorem 1 (Chapter 5). Here,

Gy = bV = wi~r(u)u := v & v 1= u)*r(u)(~ ~ r(w) ) r(v)eo ,
where u, v, v are varisbles and r is a relation letter. Consider the path
through ¥ that executes each loop zero times, The word in |<‘| corresponding
to that path is

x, =bv e wr(u)~ r(w)eo
and applying the push through function, we have
!
= b xv := wr(u)~ r(u)eo
- bo(v e W r(u))av im W r(v)eo
- bor(u)(v i= W+~ r(W))av = ve
- bor(u)~ r(v)y := e
Now consider the path that executes the upper loop once and the lower loop
zero times. The word in |q,| corresponding to that path is

x, = bov = wr(u)u te v & v = ur(ul~ r(u)ec

and applying the push through function, we have

o2

= b AV 1= we r(u)u := v & ¥ := ur{u)~ r(w)eo

= bo(v tmw 2~r(u))xv ;= vu := v & v := ur(u)~ r(i)co
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- bor(u)x(v t=w U tavgvieulr(up x-(u)t.-°

- bor(u)au = W & Vv i= ur(u)~ x-(m)ec>

- bor(u)(u taw kv iau-r(u))m e w vV = u~ :'(\w)eo
- bor(u)r(v)(u =Wk YV imu+~r(v))m = vhkvieue

= b r(u)r(v)~ r(v)u := v & ¥ 1= ue,

From sxx , ve can abstract the qff r(u) A r(w) A~r(w) . In the proof
of Theorem 1, these Qffs were called the initiml conditions for the paths (i.e.,
words) in question, Specifically, we define the functions I : Wy = R,
A \(.-04 s M |%| -+ @ ad Y, : yf.-ow , 88 follows;., First notice
that for any v € Wy, ™ is of the form Bp Pyy.-.) 1:'_,1_1?%l where
PEBUN ,p €Q, k<n<w,and P ecAUA . Then, I(W) = (v =v
i.e,, I(w) 1is identically true, if n=0, or I(w) = P, APy AlAD

)

o]

othervise. Also, A(w) = v, =V, le, A(w) 1s the identity operator, if
¥=A, or Alv) = ? othervise. Finally, Y (v) =), and for any v € [ql
vhers v a bu for some uew.,!b(u)-=i. We say that A(w) is the
operation of w , and that I(v) 1s the initial condition of that operation
or of the word w itself,

Intuitively, the scundness of the push through axiom schema All (given by
Theorem 8) means that the push through Ninction x gives us the right qff for
the initial condition of a word, Purthermore, the soundness of the forward
substitution axiom schema AS (given by Theorem §) means that x gives us the
right assigment schema for the operatiom of a word. This latter notiom fia
explicated in the fallowing

Theorem 2 For sny B-progrem ¥ = <X, I, X> , camputing structure D , state
§ t w-D and vord v€|ﬁ|_._

BD, L w) = <MD, §L Y (wD .
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Proof: We given ai inductive proof of an even stronger result. In fact,
we prove the statement of the theorem for all vew. s and since
|°i| € Wy » this includes the case w € |°i| .
(1) The first case in the primitive basis of induction is = e
Then, the left-hand side is
E*(D, 8, ¢;) = <t, P> by the definiticn of B*,
and the right-hand side is
<A(e,)Ip, t], Y (e >
= ¢v° H vols t], » Uy the definitions of A and Y‘
= <, > by the definition of semantics for assigmment schemats, vhich is
identical to the left-hand side.
(1i) The second cass in the primitive basis of induction is w = red ’
where f € A . Then the left-hand side is
E+(D, ¢, “3)
= E%(D, (D, t], ¢;) by the definition of E*
= <f{D, t], > by the definition of E* ,
and the right-hand side is
<A(fe,)(D, t], Y (fe P>
= <fp, t), J> by the definitions of A and Y , which is identical to the
left-hand side.
(111) If wepu, vhere p € R, then the left-hand side is
(D, ¢, pu)
= 2%(D, ¢, u) by the definition of E*
= <A(u)(p, t], Y.(u)> by induction hypothesis,
and the right-hand side is
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<A(p)lD, €], Y (D
= <A(u)(D, t), Y (u> Dy the definitions of A and Y .,

which is identical to the left-hand side.

(iv) If wefpu, vhere £ € 4 and p€ W, then the left-hand

side 1s
(D, ¢, fpu)
= E%(D, f(D, t], pu) by the definition of E*
= B%(D, £[D, t), u) by the definition of E*

= <A(u){D, £{D, 1], Y (u}> by intuction hypotheais

Before proceeding with the right-hand side, we need the result that forward

substitution of assigmment schemata is associative, Tms, if f, g, he 4,

we have for mny computing structure D and atate ¢ : w -ogo .

((£ -+g) »n)(p, ¢)

= n[p, {f +g)[D, t]] by Thecrem 7

= n[p, g(p, #[D, t]]] by Thearem 7

= (g »h)[D, £{D, t]) by Theorem 7

= (¢t +(g »1)) by Thecrem 7

Then, the right-hand side is

<A(fpu)(D, t], Y (fpu)

= <(t -OA(pu))[b L], Y‘(ub by the associativity of forward substitution
and the definitiom of T,

= <(f ~A(w))IR ¢, l’.(ub by the definition of A

= <A(u)(D, £(], ¢]), Y (u)> by Theorem 7, which is identical to the left-hand
side.

(v) If wetgu , where f, g € A, then the left-hand side is
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E%(D, ¢, feu)

L‘*(Q, £(D, &], gu) by the definition of E¥*

E*(D, g(D, f[D, ¢]], 1) by the definition of E*

Ex(D, (f »g)(D, ¢], u) by Theorem 7

[}

<a(u)(p, (£ -g)p, tl], Ye(u):- by induction hypothesis,

and the right-hand side is

<A(fgu)[D, ¢], Y (fgup

= <((f »g) —»A())D, t], Ye(u)> by the associativity of forward substitution
and the definition of Y, .

= <A(u)(D, {f +g)(p, t]], Y _(ul> by Theorem 7, which is identical to the

left-hana side.

(vi) If w = b,u, then the left-hand side is

i
E*(D, &, bu)

= E#(D, £, u) by the definition of E*

= <A(u)(D, €], Ye(“)> by induction hypothesis,

and the right-hand side is

<A(biu)[2, £l Ye(biu)>

= <A(u)[D, t], Y, (u)> by the definitions of A and Y , which is identical

to the left-hand side, and this completes the inductiom, '

From Theorem 19 we found that if W(M, D, ¢, x) , vhere x € X(8) and
{x) = b, , is finite, then W(N, D, &, x) € |q| . Also, from the semmhtics
of E-programs and Theorem 20, we have that (D, <t, ] S E(M, D, ¢, x) &
E*(D, ¢, WX, D, ¢, x)) . These results, together with Thearem 21, give us that
ir w(M, D, ¢, x) 1is finite, then M(D, <t, ©] = <A(¥(N, D, &, x))(p, ¢],
Y (¥W(¥, D, ¢, x)> . Thus, for halting executioms, the set |ogl completely
characterizes the ouvtput of ¥ . We continue along these lines by examining the

role of the initial condition I(W(M, D, ¢, x)) when W(W, D, £, x) 1s finite.
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Theorem 22: For any E-program ¥ = <X, [, X>, computing structure D , state

ttw-D ad x€X, if W(d, D, ¢, x) 1is finite, then

10, B, 8. 2D, 1.

80 the initial comdition of a word, produced Ly a halting execution, must hold.

Froof: We give an inductive proof.
(1) If x € X(&) and [x]-eJ , then
1(w(w, D, ¢, x))(D, ¢)
® I(e,)(D, £] by the definitiom of W
) (vo - vo)tg, t) by the definition of x and I, and (vo - "o)[-Pa ¢)
by the definition of semantics for qffs.
(41) It xe€ 4) and [x]) =, then
I(w(w, D, ¢, x))(D, ¢)
» I(rw(M, D, £[D, t], I'x))[D, ¢] by the definition of W

Notice that for any v € W' , I(v) = I(aw), snd suppose that
#i(%, D, €, x) is of the form
PPy Pl ((...((¢ ~g,) ~+8)... -’gl_l))e;I
were p €Q,i<k<w,ad g €4, 1<L<w. The,
I(w(u, p, ¢, x))(p, t]
» Ip, Py.o- By ((..((f28) ~g) ... "‘:-1”'.1)[91 t)
® ey Pyees By (= (. ((8, 2 8)) = 85)...)))e,)ID, E] by the
associativity of focrward substitution
“I((pg APy AucAR ) )(f = (..))e )(D, €] by the definttion of I
(e = (g, Ay AAg ) ))E = (...))e)(D, €] by the definition of
u , vhere 91"(""1) s 1<Kk
- I(t(o’ Ag A..A %_1)(...)03)[2, t] by the definition of x .
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8o (q, Aq A...Ag y) is just I(W(X, D, f[D, ¢], I'x)) . If ve take

I(w(d, T

B, £ID, &), Ix))(p, £{R, ¢]] as the induction hypothesis, then we have

simply (q A q, A..Agq (D, £[D, t}] . But,

(a, nq A...r g ,)ID, 2D, E]]

of ﬂ(qo A A LA qk-l)[E) t] by Theorem 6

- (po ARy AA pk-l)[E’ t] by the definition of q , 1< k

But, (p, APy A..A D ) is Just I(W(W, D, &, x)) , so that finally,
I(w(w, D, &, x))[p, !l as required,
(111) 1f xe€ X(Q , M'x =<y, = and (x] = p, then
I(w(d, D, €, x))(R, &)
e I(pW(W, D, &, ¥))(D, ¢] if p[p, &) or
I(~ pW(W, D, &, 2z))[D, &) 4f ~ p[p, €], by the definition of W
o (p A I(WW, D, &, ¥)))D, £] 1f p[D, ¢] or
(~p AXI(wW(l, D, &, 2)))(D, t) 1f ~p[p, ¢], by the definitions of r and I.
e plD, ¢, A I(w(X, D, & ¥))P, t] if plp, ¢) or
~plD, ¢] A I(W(M, D, ¢, £))[D, ¢] 1if ~p(D, t], by the definition
of semantics for qffs
« I(W(d, D, &, y))ID, ¢] ir plp, &) or
1(w(x, D, &, z))[D, ¢] otherwise, by the definit:on of semantics for
qffs, and this holds by induction hypothesis.
(1v) 1 x € X(B), then
I(w(w, D, &, x))[D, ¢]
« I([x]w(u, D, &, Ix))[D, £) by the definition of W
» I(w(%, D, ¢, rx))[g, £] by the definitions of x and I , and this holds
by induction hypothesis, and the induction is therefore complete. .
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8o, we have shown that if we execute U and so generate & word
v € |oq | , then the initial condition of w must hcld. But, what of the

converset Suppose we are given D, ¢t and w¢€ 'C‘I! , and we find that

I(w)(D, &) . Can we infer that w = W(%, D, &, x), where [x] =D, and

!b(v) = 1 7 The answer is yes, and this is the content of the following

Theorem 23; For any E-program W = <X, I', X> , computing structure D ,

state ¢ :w—+D _and word € |o"|J_ if 1(w)[D, €] , then

v =W D, &, x) where [x]=0D i= Yb(v) .

i

Proof: Roughly speaking, we show that I(w)[D, ¢] implies thet all the qffs
in w, or alternatively in the path desined by w , have truth-values such that
execution, and hence W too, will follow that path. 1Ir the proof, we imagine
that the acceptor function T* is used to step letter by letter through w ,
causing the automaton H' to undergo transitions from state to state, At the
smme time, W 1s used to step through the E-program $§ , from node to node,
generating a word letter by letter, At each step in the process, we verify
that the node of ¥ corresponds to the state of My , and that the letters
of W and w are identicel., We use an inductive proof, but of a strange
variety., Induction hypothesés are made about the situation on either side of
the current position of the word in question, s0 that a primitive basis case
occurs at euch end of the word, one for each induction,

(1) Consider the initial case. Suppose w = byu . Then,
T™*(b, w)
= T#{T(b, bi), v) by the definition of T#

= T#(I'x, u) since [x] = b, and by the definition of T,

i
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and,

W, D, ¢, 7)

= (xW(¥, [, ¢, 7x) by the definition of W
= bW(¥, D, ¢, I'x)

Thus, the next atcte and node coincide, i.e., are Ix .

Furthermore, note that I(w)[D, ¢] == I(u)(p, &] , by the definition of I .
Then by induction hypothesis, I(u)(D, ¢] => u = W(¥, D, ¢, I'x) , so that
¥ e bu=DbWW D ¢, x) = W, D, ¢, x), as required.

(11) Consider an intermediate case. Ry induction hypothesis assume
that My 1s in state s € X(4) , and that W is st node s with state 7 .
Also assume that v = ou, aet., is the word remaining, and that
I(v)[D, ] . Then,
T*(s, V)

= T#(T(s, o), u) by the definition of T*

Ifwe |xy| , then T(s, v) = ¢ , and therefore it mst be the case that
o= [s], othervise transition to the dead stute ¢ would occur, and e
would not be reached. BSo,

T™*(s, v)

= ™*(T(s,[s]), u)

= T#(l'a, u) by the definition of T*,

As well,

w(a, D, s)

« (slu(%, D, (s](D, n], I's) by the definition of W.

Thus, the next state and uode coincide, i.e., are Is .



Furthermore, note that I(v)[D, n]1=>1(u)(p, [s)(p, 91!,
a8 indicated in the proof of Theorem 22, Then, by inductiom hypothesis,
I(u)(D, (s}(D, 4)] = u = W(W, D, [s)(p, n), I's) , so, that
velsh«(aN@, D, [s](D, n), I's) = W(, D, v, s), as required,

(111) Consider the other intermediate case. By induction hypothesis,
assume that M, 1is in state s €X(Q), and that W 1s at node s with
atate n . Also assume that v = ou, 0o € Iy, is the vord remaining, and
that I(v)ID, 4) . Then,

T*(s, v)

= T#(T(s, 0), u) by the definition of T* .,

If we |ag|, then T*(s, v) = ¢, and therefore it must be the case that
o € {[s],~ (8]} , othervise transition to the dead state 4 would occur, and
e would not be reached., 8o,
™(s, v)
= T#(T™(s, o), u) where o € {[s], ~[s]}
= ™(t, u) where s =<y, > and te€f{y, z}.
As well,
W, D, v, 8)
= (s, D, v, y) if [s](p, n] or
~[shi(8, p, n, 5) if ~{s)(D, n], by the definition of W,

Now, suppose that, in fact, o= [s]. Taen

I(v)ip, nl

*I(ou)(D, 4]

+1([sh)ID, 4]

*(s){D, n] A I(u){D, 1] es indicated in the proof of Theoram 22,
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Then, WY, D, 1, s) = (aW(¥, D, %, ¥) . If, in fact, =~ =~1[s], theu
we get that W(M, D, 0, 8) = ~ [sW(¥, D, n, 2) . Thus, th- next state and node

coincide, i.e., are y or z , as the case may be, where s =< 2 .

Purthermore, note that I(v)[D, n)#I(u){D, 7] , as indicated above. Then,
by induction hypothesis, I(u)[D, nleu = W(M, D, n, t) , t € {y, 2} , s0 that
veoua= oWli, D, olD, 1], t) = W(K, B, n, 8) , as required.

(iv] rConsider the final case. By induction hypothesis, assume that l&
is in state 8 € X(E) , and that W 13 at node s with state 3 . Also assume

~that v - ou, 0 € R, 1s the word remaining, and that I(v)I[D, n] . Then,
T™*(s, v)

= T#(T(s, ¢), u) by the definition of T#

If we |gl . then T#(s, v) = e, and therefore it must be the casé that

o= (8], otherwise transition to the dead state 4 would occur, and e would

not be reached. Of course, then us=A. 8o,

T*(s, v)

= ™(T(s, o), A} by the definition of T#
= T*(e, A) by the definition of T
=e by the definition of T#

As vell, W(W, -, v, 5) = [s], by the definition of W . Thus,

vaou-='c]-= w(ll, Dy ony 5) , as required. This compleves the inductiom. l

Together, Theorems 19, 20, 2] and 23 give us the following useful

Theorem 24: For any E-program ¥ = <X, I, X> , computing structure D,
state !;w—ono and word I€|%|_‘_
I(w)(p, t] =up, <¢t, Y, (v>] = <A(v)[D, E], Y (vD

Proof: Consider the = case first,
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& E(M, D, ¢, x) by the definition of semantics for E-progrems where
(x] = b, and Yb(v) =1,

& B%(D, ¢, W(¥, D, &, x)) by Theorem 20
= <A(W(N, D, &, x))[D, ¢], Ye(u)> since by Theorem 23,

I(w)(D, t)»w = W(W, D, &, x) , i,e, W(N, D, &, x) is finite. Then,
from Theorem 19 ve get that W(W, D, ¢, x) € || , and this allows
application of Theorem 21,

- <A(v)[2, t], Ye('» ouce again, by Theorem 23.

Now, consider the <= case. We know

up, <¢, Y (vp]

= <A(v)(D, t], Y.(UP from the hypotheses of the theorem.

Thus, E(N, D, {, x) must be determinate, and so therefore is W(¥, D, ¢, x) .
In this case, from Thearcm 19 we get again that W(W, D, &, x) € |q| . 8o

applying Theorems 20 and 2] as in the first case,
WD, <t, Y, (v)>]
- 0('(.’ b " X))[z ‘l. Y.("(‘. B !p ‘))>

vhence, w = W(W, D, ¢, x) . But since W(M, D, {, x) is finite, then
I(v(W, D, ¢, x))(R, t], by Thearem 22, L.0., I(w)[D, t) . |

Using Theorem 2% as & starting point, we can recast the definition of strong
equivalence in a form which naturally sheds light on the decidable sub-cases.

To start, let us define the binary relation <= between words of |q ] ,
such that for any u,ve|%|,vccq' u . similar to v and write

uesv , iff
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(1) ,(w) = Ty (¥)

(11) Y (u. = ¥ (v)

(141) for all D, for all ¢ : w—D_ , A(u)[D, &) &« A(VID, t], 1e.,
A(u) and A(v) are strongly equivalent. This we write ar A(w) = A(v) .

Now, consider a partitiom C. of |o'| into similarity equivalence

classes such that
(1) U2 = Iyl
(14) rw‘z -9,
and such that for any u € |C‘| , the equivalence class of u with respect

to == 18 {VE |a.| : Uaev] .

Let us extend the notion of similarity to similarity equivalence classes
themselvea., If U € C. and V € Ca are similarity equivalence classes,
then we say U ia similer to V , and write U«sV , iff for some U €U

ad YEV, umy .

With each U € Cy , we aszociate & joint initial comdition J(U) (mo
confusion will reiult from the duplicate "initial condition"™ nomenclature), where
J(U) « Vp€ Q: p= I(u) for some u € U},
Here we write V8, where 8 1is a set of formal objects, for the disjunction
formed wvith "v" of the objects in 8 1in any order, If B8 1s infinite, then
VB 1is an infinite disjunction. Intuitively, J(U) 1is tbe initial condition
for any of the words in U , all of vhich have strongly equivalent operations

Three further notational matters: we use A8 to denote the conjunction
formed with "A" of the objects in 8 ; we denote (p>q) A (g>p) as
P ®q; and we extend logical validity, denoted |=* , to infinitely long
qffs in the natural way (cf. Karp [22) for a detailed treatmeut).
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With the notions of similarity and joint initial condition defined,

we can give the following

Theorem 25: Yor any two E-programs of the same type,

& =0 fm* A {J(U) = J(V) : VE Cy b VE t' & UerVl A

Af~JU) : UEe Cu & for all V€ t',u+v}A
A{~J(V) : VE Co &forn.llUE:C.,U-/-V]

In very rough terms, Theorem 25 states that ¥ and B are atroogly
equivalent iff they have the same class of potential outputs, and the
conditions for ¥ and ® to produce ~ach such output are logically

equivalent,

Proof: Consider the «= case first., Consider any camputing atructure
D, state £ : w D , and {<m, where 8 and ® are both of type
<, © , say. We write A for I[B, <¢, 1>] and B for '[E, <t, ]
in vhat follows. We will show that the logical validity of the qff,
Q say, in the statement of this theorem implies that A & B, There are
five cases to consider,
(1) A and B are both indeterminate, Thus, A& B,
(11) A and B are both determinatc and A= B, Thus, A& B.
(111) A 1is determinate and produces a word u in U € C. ,
but B 1is indeterminate, From Theorem 24 we nave I(u)[(D, t] , so that
by the definition of joint initial condition, J(U)[E, t) . But then,
notice that for no V € Lg , such that UeeV, do we have J(p, ¢] .
This is because if there were such a V , we would have
J(u) = J(V)(D, €] , and further, since J(U)(D, ¢] , therefore
J(V)[D, t] . But then by Theorem 24, B must be determinate and procuce

185



some V € V., Since tnis contradicts the hypothesis of this case,
there is, therefore, no such V € CB , such that U«sV ., But, then
the second conjunct of g gives that —-J(U)[P) ¢] , which alsc contradicts
the hypothesis of this case. Thererore, thic ‘ase cannot ar.se,

(iv) B is determinate and produces a word v in V¢ C' , but
A 1is indeterminate. The arqument proceeds here as in case (ii) above,
except that we make use of the third conjunct of Q to show that this
case cannot arise,

(v) A and B are both determinate and produce words u and Vv
in UeCy and VE Ty, respectively, but Ag¢ B. From Theorem 24
ve have I(u)(D, ¢) ana I(v)[D, t] , so that by the definition of Joint
initial condition, J(U)D, ¢] and J(V)[D, ¢) . However, since A¢ B,
therefore UefeV . Suppose that for some W€ Co , UssW . Then, the
first conjunct of Q gives that J(U) = J(W)(D, ¢] , and since
J(u){D, ¢] , therefore J(W)(D, £] . Mow, since W and V are distinct
(they must be since U<+/~V and U«W) , and since not both J(W)[D, ¢)
and J(v)[g) ¢) (otherwise, by Theorem 2k, one execution would give two
different outputs), and since J(W)[D, £] therefore not J(V)(D, t].
But, this is a contradiction so that for no W€ Ce do we have UeeW ,
But, then, the second conjunct of Q gives that ~J(U)[D, £] which is
also s contradiction, so that therefore this case does not arise either.

Since only cases (1) and (ii) can arise, and since they give

ASDB for any such D, ¢ and 1, we therefore have |l = B .

Now, comsider the =P case. We will assume the comjunation Q is

not logically valid, and then show that & and § are therefore not
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strongly equivalent., Since the conjunction Q is not logically valid, ome
(at lemst) of the conjuncts is not logically valid. Suopose that ~J(U) ,
wvhere U € C. wd for all V€ Tg, U9V, is not logically valid. Then,
for some computing structure D , state & , mot ~J(U)(D, &], t.e.,
J(U)[_l!, t]) . Then by the definition of joint initial condition, for scme
wev, I(u)[g, £ , so that by Theorem 24, (D, <t, Yb(u)>] =

<A(u)(p, t], Y (u)> . Then, since for all V€ C,, UsfoV, therefore
®D, <t, Y, (up] either is indeterminate, is determinate with execution
not halting at e 3 where J = Ye(u) » Or is determinate with execution
halting at e g0 but having executed a word in some other similarity
equivalence class different from U ., If either of the first two cases
occur, then we are done, since then clearly not (=8 = ® . The last case

must be considered at length,

However, let us first consider the second alternative for making Q
not logically valid, Suppose that J(U) = J(V) , where UE€ C' , Ve C‘
and UesV | is not logically valid. Thus, for same camputing structure
D and state ¢, not J(U) = J(V)[D, ¢] , i.e., for exsmple, J(U)(D, ¢)
but not J(V)[D, t] . But, since for all WE C‘ different from V we

bave Ve/oW , this case is therefore precisely like that considered above,

80, we are concerned with the case where I(n)[_lz, tl, uey, Ve C.
and I(w)(D, t],vewW, 6 We t'.. As vell, U<foW , but Y, (u) = ¥, (v)
and Y'(u) - Ye(u) . It may be, for this D and § , that
A(u)(D, €] # A(w)(D, ¢], so that not {=8 = ® , in which case we are dome.
But, suppose A(u)(D, £} = A(v)[D, £] . We vant now to show the existence of
a special computing structure B* and special initial state (% :e) — 20' »

such that I(u)(D*, ¢*) and I(w)(D*, ¢*], but where

A(u)(D*, £*] ¢ A(w)[D®, t*] , 80 that not |l = 8 .
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Consider the computing structure D¥* , with signature
8=<<B,yoeey Ny 17 W sy By 17 P> , with domain

o= ({v_, vi5e.rs vt-l} U {ko,..., kp-l} v {fo,..., tl-ll VNG QR LR DL
vhere W, ®€ L ; [vo, Viseses vt-l} contains all the variables occurring in
¥ and ®; and (...)* once again denotes the free semi-group with identity
generated by (...) . Here, then, the domain comsists of finite strings made up

of sume of the symbols that appear in % and ® .,

Now, we define the other constituents of

Dr = <p*, Ro""’ Rx-l ’ Fo""' F.l-l , B yeeny up_1>

The designated individuals s ,..., .p-l are just the symbols

Koy ooy xp_l € D* . The functions F,, 1 <., are defined by

Fi(xo,..., xmi'l) = fi(xo,..., xmi-l) , where X peees 1-1_1 € D* ., Here,

", (", "), "," , and the x ,..., x_ ) are juxtaposed as shown to give
- 1

£ (x,..., xmj-l) € D¥ . We define R, 1 <k, by referring bact to D and

¢ , namely, Ri(xo’”" xni-l) - r(xo,..., xni-l)[g, tl.

The: iet the input state &% : w —»D* be defined so that c(i, t¥) = v,

vhere of course vy < D%,

This exotic comruting structure and initial state permit us to show that
not =8l 58 . First, notice that I{u)(D, ¢] = I(u)(p*, t*) and
I(w)[p) £]-®I(w)[D*, °*]) , since this relationship holds for qffs in general.
(For example, suppose r2(v6)[n, t] : then R, 1s defined so that 52('6) .
But then re(v6)[£*, tx) @ 3, (c(6, t*)) = “2('6) s vhich holds, Thus,
rp(vg)(D, 1 => r,(v,)ID*, £*].) Therefore, we can examine A(u)(p*, t*] end
A(v)[D¥, %),
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Because of the way tnue F, and R1 are defined, thesc executions follow

i
exactly the computations given by A(u)(B, ¢] and A(w)[D, ¢], except now the
computation is being carried out in symbolic form, the current state reflecting
all past computations. Since U </W, then ue/ew , and since

Yh(u) - Yb(v) and !.(u) - Ye(v) , we must have A(u) # A(w) . Now if
A(u)[D*, £*]) = A(w)[D®, ¢*] then certainly A(u) = A(w) , so that

A(u)(p*, t*] § A(W)[R®, £*] musc be ihe case. Thus, M(p*, <t+, Y (uP] ¢
o(p*, <+, !b(v)>] , &nd hence not (= ¥ = 3 '

Remarks:
(1) The ideas of initial condition, I\v) , and operation, A(w) , are
closely related to McCarthy's method [29] for prescribing conditicas

.td for entering ¥ at b, and leaving at LI and operators s,, ‘telling

p 8

what function is computed entering at b, and leaving at ej . m:ddiffcrmce
lies in the fact that MNcCarthy concerns himself with schemes of recursive
oguations for defining the g0 the solution to which are not considered.
Essentially, the cutcome here is that for simple flowcharts, as characterize
algoritims hare, regular expressions provide a co.venient way of expressing the
solution of such schemes of equations. Ito [17], considers these matters in
soms detail.

(11) If finite sub-sets of |q,| and [ay| can be 1solated that we
know contain all words produced by halting executions of ¥ and ®
respectively, then the partiticns Co and Ly are finite, as is, therefors,
the qff in the statement of Theorem 25, Then, since the strong equivalence of
operstions is decidible (Theorem 16), the stromg equivalence of E-progrems
l1iks ¥ and § is therefore decidsble under those circumstance for which

the logical walidity of qffs 1is decidable.
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K-events and the DLeciuisility of Keequivalence

At a pragmatic level K the cecidability of certain exotic and computationally
uninteresting sub-cases -f the strong ~quivalence problem does little to help us
analyze the more compiex, 4nd herce m.re useful, general case. Our interest,
then, is in finding a suffiziently rich subsel of 'T”k , for arbitrary signatures
s , for wrach Js is compie%e. Iin this chapter, we attack this problem in-
directly by defining the notion of X-equivalence between E-prcrrams, shoving
that K-equivalence is decidable and that Js implies a second inferential system
)  adequate for deriving K-equivalence, The further result that the
K-equivaience of two E-programs impiies their strong equivalence, means that a
handle on strong equivalence for a large and interesting subset of xu' is

therefore availsble,

Before we proceed with the definitions of K-equivalence and K-events,
and to foreshadow what is tc come, let us use the results of the preceding

section concerning initial conditions to derive the following useful

Tneorem 26: For any E-progrems M and ®. of the same type,

lgl = lggl > -u=»

Pruof: Since '%' = la'l , ther the partitions T end Cy are

identical, i.e., Ty = Cf . Thus in

AIU) =J(V) : VE Ty & VE Cy & UswV)
UeV and Ty = Cgq imply U=V . Thus, jrI(u) = 3(V) for all such
conjuncts, making the entire conjunctiom logically valid. Hence, by Theorsm 25,

uce, ]

Now, the equality of regular sets is decidable (cf. Salomes [38]) sc that
Theorem 26 gives us a tool, however meager, for investigating strong eguivalence.
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Thus, ¢lven & A T B “hether ¥ a B are strongly equivalent,
we can generat: N and % , ffective proce.c, and then test for

‘Oﬁl = |0'| , at.. = offectir  » cess, 1f |’7u| = ‘O‘I then % <®,

but if |a.| ¥ |0‘| , w¢ ¢&l dri. no cenclusions ine way or the other,

Consider the wfl' 8 & ® .1 Figure %, which is generally valid since
|%| = |%| . We see that th - ' st for strong ~quivalence can detect thie
property in a fairly large sut <.t of .",::s . However, this method fails on even
8o simple & wff us A3 (cf, ti ure 21), where for the method Lo work, we would
bave to show |p v p| = |1] which is clearly not true, It is just this sort of

problem that the irtroduction of - -events and K-equivalence will alleviate,

Syntax end Semant.ics of K-expres:ions

K-expressioc:. arc defined cver an alphabet I = ./°w ) {0, 1} U <

vhere /.. and are disjoint finite non-empty sets of atomic formulas and

operators respectively. For this discussion, we will write
A - {pou Pyscevy VE,J’ B <w , and - "eo’ 31."'! Zn-l]’ n<w ’
where the p,, i <m, and g, i <n, merely stand Jor the actual letters of

,“I/,n- md .‘ .

‘e

First, we define the set .~ of propositicas

(1) Ay [0, 1) c ¥

(11) If p, q€ P, then (~p)€ - and (p>q)e V.
(1i1) Extremal clause,

Then, we define the set X of K-expressions,
(1) ~2u v < i
(44) 1If o, B€ A, then (x. B), (xvB),are K

{111) Extremal clmuse,
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4
P P
g
E-prograz ¥ e E-progrem ®
G = bf(Pa)*pe, v b hi*rg(pe)*pe
O = b 2(p Vv Ea(Pa)*p)e v b hrr(ap)*epe;
Figure 46
An example cf |-| = [l 8, Of course, 1:40'
given above u.re 1: the regulu' expreuionu benenbu

and ® ., Here, p, r are qffs, and f, g, h arec assigonment schemata,
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He use the¢ same conventions as for regular expressions vhen &ropping parcntheses

ad he "." from (x-B) .

The Cemantics of a K-expression I is a set called & X-event deroted
by .afj . In the definition of [lofj , ve make use of the set J called
truth, defined as

Jo= s, 8, ... 8 18 =p or s = (~p1) ,i<m]}
which ls just the set of disjuncts of the full disjunctive normal form for a

tautology in /., Then,

gl = {2, &) ... sg € U: o8 =p) p; € Atm
el = (rea:pa€T} g €L
il - &

lloll = ¢

el - 7 - lloll pe

e > all = IFell U llall paacP

floe v Bll = flodl U flel

flowll = fixh u liodl u floodl C looxd] v ... aBe X

llogll = ‘xpy : xpe ljodl & pye {8}l & per}

Notice that for any F-program ¥ , we can take Atu. to be tae set of
all distinct qffs of the form rJ(‘to,..., T -l) or (1 = a) occurring
in ¥ (or simply the aet {(v, = vo)} 1f there are no qffs occurring in W) ,
and JI. to be the set of all initiators, terminators and distinct assignment
schemata occurring in % . Then evidently, % , the regular expression over

!" corresponding to %, is also a K-expression over /k»‘ sna In

.
generul, we concentrate our attention on K-expressions that come from E-programs
even though some of the theorems we prove in the sequel hold for all

X-expreszions in general.
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let us ¢ "+ come exumples of Ee:voprams and their respective

K-expressiocus crrespondine  ¥Y-events, v Z-program ¥ of Figure 1&7,
we caL write
= L ~ P ( * \( 4-3 ~ { ‘=
% LA <‘(_ r2(v(’)v6 . ‘vc)) rz(vb, -"J("s) 5V r?'vé)VG koel)

cr, in a more compact aboroviated orm
= ree v T \
% bok( 4 1-(peO bke, )

where k stanis for vy, 1= ko , and 5o on. Then,
l%' a [bokr:.eo, bokrﬁkel, bckf'frpe.o, bokf‘frﬁkel,...}
and since 4.“/"‘" = fr (v}, !‘9("6)} = ir, p} , then
T = {rp, Tp, rp, P}
and
llggll = (rpb rpkrpe rp, rpb rpkrpe rp, rpb rpkrpe rp,
rpborpkx'peof'ﬁ, rpboi'pkrpeorp, rpbof'pkrpeof'p,.. o
Pf)bof'fykrpeox'i,.. g
Each word of "Ci" is an alternating sequence of words of truth amd
operators, the first and last operators being an initiator and a terminator
respectively. Each word of truth, in some sense, depicts the statc of affairs
at that point in the execution of ¥ . Thus, as ¥ 1is executed, ocefore and
after each operator (i.e., assignment achema) 1s encountered, the atomic formulaes
in /wm,‘ have certain truth values with respect to the current state, and these
are mirrared in the words of truth prec-ding and following the operator in
v € [ioyl
Fpb Fokrpe rp € [layl

. Consider, for example,

This word corresponds to an execution of ¥ , which starts at initiator L
and halts at terminator e ; and if ¥ is executed in D with input state

§ , then this word tells us that ~r Ap [D, t] and r Ap(p, X(p, t]].
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Ve X,
rp(ve
e E- am
T (vg ve 5= 25(vg) program M
v6 :7=- ko
K

The upper f!gure shovs E-provram 8 in full detail, ‘'hc lower figure is
an abdrevistod form wherce k stands for the assignment achema Vg = k° N
and 30 om,

Fijure 48

Here, P 1. a qff. m K-expl‘e‘usim !0! thls E-prm- 1‘ b‘p.w .
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In genern!, as with certaln words of ]O.l , many words of ||%” do
not correc;ond o+ any execut .o of 8 siwkprly because the proposed sequence of
words of truth ad operators .s not possible. An obvious example is
Fob_rokrpe o € figyl
since Do certainly does not zffeet the Laput state and sc could not reverse the
truth-value of - . As another example, .opsider a word containing the sequence
2(vir(u)v 1= f{v)p{vir(u) . This suggests that for same D, ana 3,
p(v) Ar(u)(D, ¢] and p(v) A ~c(u)(D, w:= £(v)(D, t]], L.e.,
(v := £{v) »p(v) A~r(u))(D, ¢], by Theorem 6, i.e., D(f(v)) A ~c(u)(p, t].
Taken together, these would give p(v) A r{u) A p(f(v)) Ae(n)[E’ t] , vhich

is clearly impossible since r(u) A ~r(u) is a logical contrediction.

To see how the concept of K-event will be more powerful ia detecting strong
cquivalence, consider once again the wff of A3 (ef, Pigure 21). BRarlier, we
~userved that |r v | = [p, P} # (1} = |1| , so that the reguler eet approach

to declding strong equivalence is no help, But cbserve that

Y E\n
= el ullp |
= ol u (7= llelf )

lix,

We we :iall see shortly, equality of K-events doas in general AEplY etrong

equiva: nce,

To ser som .f the implications of the semantics of K-expressioms, comaidsr

the follow.rng ‘:xiig cS.
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(1) ip*ll = izl u llell v llepll U ... for p€ P
Now, lippll = [xs € llell & sve |ipl| & s€ 7}

« {5 : o€ |lpll & s |lpll &se7}

= ilpll

80, ol = talt u liell u flell U llell U ...
= 7 U (ol
= J

Thus, for the algorithm of Figure 48 with K-expression b op*ie o » W have

ool = (s : s€ |lp*|| & o€ ||Bll & s€ 7}
={s:sc7e sl & s€7)
=70 [lpl
= ligl

so, o p*pe |l = o Pe |l , since ®." is associative,

(11) fodl = {py : el &« pyeflofl & P}, ae X
= {py : ;€ 7 &pyE |l & peT)
1]
(111) il =7 ol = 7-7 =8 = |lo]
IS = 7- loli = 7- $ == ||l

From these examples, w. see that K-events have many useful and interesting
properties; the "1" 1s :. en to behave both as a symbol for truth and us an
"identity" opcrator; the tuct that the loop in the E-program of Figure 48 once
entered is never left is reflected in the semantics for p*p ; "O" amd "1"

are seen to behave comnsistently as symbcls for truth and falsity.
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Remarks:

{1) As pointed out carlier, the represeutation of an k-program (1.e.,
flowchart) as a regular expression is & natural adaptation of the state
disgram methods cf automata theory. ‘oth Ite [18] and Engeler [8] nave
independently used syntaciic representations clcsely related to that used by this
author. However, the forr of K-event and the description of K-expression
semantics, a8 given here ha:s not appeared elsewhere.

(11) This author feels that the notion of K-event and the scheme for
attaching semantics to K-expressions represent a significant step forward in
the description and representation of algorithms, As we indicate in the sequel,
these ideas link in with, and bring cohesion to the work of Ianov f6) and
Rutledge (7], and ir addition, provide a starting point for even more productive

investigations,

K-equivalence
Two K-expressions « and { are said to be K-equivalent iff |a| - IBI .

VWe introduce o = £ as & well-formed formula expressing the K-equivalence
of ¢ and B, and write = . =B Just in case [af = [8] . We write I
for the set of all such wffs, K-equivalencc can be a useful tool in the

analysis of strong equivelence, as we see in the following

Theorem 27: For any E-programs ¥ and B of the same type,
b= G = O => =uce,

This theorem is the counterpart of Theorem 24, btut provides a much more

powerful test fcr strong equivalence., If ¥ and B are strongly equivalemt
because | % = Oy, then we say ¥ end B are K-equivalent as well.
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Proof: Actually what is properly called for here is a development similar to
that given in the first part of this chapter. Them a proof for this theorem
wouid follow as naturally as did the one for Theorem 26. However, here we give

& less sophisticated proof, au this suffices for our present purposes,

With every halting execution of ¥ , we can associate a word from
||%|| » and similerly for ® and |logf| . Suppose, in fact, that for the
computing structure D , state ¢ : w-—D, and initiator b, , D, <t, ]
is determinate and produces the word

v RN B
vhere vella.“, n<Ww, €T, k<2, x =b, x = ¢ x€A4, 0<k<n and,
of course, QY= and 4G " Y - Since the hypothesis of the theorem gives
that “cill = ||a.]: » then w € [lagl as well; we will show that ®[D, <¢, L]
is also determinate and, in fact, produces this very word w . This, of course,
gives (D, <t, D) = WD, <¢, ], for any D, ¢ and i such that
8D, <¢, D] is determinate. A similar result obtains when we assume that

8D, <t, D] 1is determinate, and both together give |= ¥ = 8,

80 we must show that ﬂ;b <t, £>]) produces the word w assuming that
®(p, <t, ] does, We do not assume that WD, <t, ©>] is determinate, but
show that the first 2n+3 1letters of u , the (possibly infinite) word produced
by WD, <t, ], are those of w , and since o=, this implies that ®
does in fact halt, and that it produces just w ., We proceed Ly discussing the

various vays that u can differ from w .

Suppose that u ard w differ firs. at some 9 - This cannot be 9

however, since % and B are each started with # and the atomic formulas
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4211 have 1ike truti-valuss ir each cac.. Since g, =g, , l.e., by, has
nc effect, then the first place u ar® w could differ is at g, . Let
us asmume they differ first at ¢, < r <n + 1, 50 that

U T GXody Fytp et Xp B ooee

vhere p ¢ q, ; alsc recall that
VXN e GG Gy
Since W[D, <¢, 1>) produced <, we have that
qz,[,l?, (...((xl -+ %) -'1-5)—0...«»:!__1)[2, 1l
But p and g are both words from J°, and fram the definition of 7,
s{D, t) @ t[D, ], for 8, t€ T s 1is t, i.e, only cme of the disjuncts
in the full disjunctive normal form of a tautology can be true for any given

truth assigmment., Thus p = q,r .

Suppose that u and w differ first at some X - This cannot be X,
however, since ¥ and B are each started at initiator b, . Let us assume
they differ first at x_ , 0 <r < ntl, so that

U QXX % e X Y -
vhere y € A UE, v ¢ x. ; also recall that

WX BN s X X ees Xy -
Since w € [joyll and ||%|| - ||a‘|| , then w € ||a’|| . 8o there is a path through
4 and proceeding to one labelled xr-l .
Since IP) <t, ] produces u , we can consider another path through ®

8 , starting at the node labelled b

starting at the node labelled by and proceeding to one labelled x. e

-1 °
want to show that these two paths must, in fact, be the asme path, The only
wa) the paths could differ is if at some discriminator p , say, one path

takes the true branch and the other the false branch, But this would imply
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that w And u muct differ at somwe q , 1< k<r+ L, ong tnis [s net
80 since we arc assuming u and w are iagentical up to 9 - Thus the
assigmment schemata y and X, must be reachable Irur the same wode, i.e,,

one labelled x .
r-1

If 8=<x, I, >, and x € X is the node such that [x] 1is the
assignment schess x _, , and if Ix € X(4) U X(E), then bcth u and w
must have [Ix] as the next letter after q_ , i.e., u and w dc not
differ at x . So the case left to consider is where there are discriminators
intervening between x!__1 and y 1in the path corresponding to u , and between
xr.l and X, in the path corresponding to w ., This situation is illustrated
in Figure 49. Since w € |lagfl , the definition of the semantics for "." tells
us that q € litll where t is the qff specifying the condition for reaching
x. 5 1in Pigure 49, we have q € |[f) A tyl| . But one of the conjuncts in t
must be negated in the condition t' for reaching y ; in Figure 49, we have
t' = t, Aty . Therefore it nfit]l = # , and so q, ¢ {lt']l , which means
the path to y cannot be executed, Simply put, the topology of the situation
establishes a certain gff which if true implies we get y next, and if false
implies we get x_  next. Then since w € ||0”|| , this eliminates the former

possibility, and so we must get x as the next letter,

From the preceding arguments,
bR e By cees
but since x = e this means WD, <¢, i>] terminates at this point, and so

G " qn is the last letter of u .

So, we concluue that u=w, i.e,, if W¥[D, <¢, ] is determinate and
produces w , then 3[2’ <t, ©>] 1is determinate and produces w . Since the
sequences of assigmment schemats encountered are therefore ldentical, then
l['lb <¢, ) = 8D, <¢, ] . An argument similur to the foregoing yields that
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here (D, ¢], vhere ¢
' is the Murrent state

?
X
|
|
«v

lere p, q are qffs; X,,..., X are assignment schemata and esch of
y and x wbeeithe}mua' t schema or tue terminator ..



ir ®(p, <t, i>] is determinate anl produce: w , then WD, <§, £>] is
determinate and produces w . Again, we obtain M[D, <¢, i-] = ®D, <¢, L],
Together, these results give M[D, <t, i>] 5 ®[D, <¢t, ©) for any D, € and
1. ™T™us j=N-WO,

Remarks:

(1) Certainly, the proof of Theorem 27 can be given in a far more precise
form, for exsmple, in the context of a supporting set of theorems like that
given for Theorem 26,

(11) Theorem 27 is useful only if rl-a = Bt 13 deciiable for arbitrary

K-expressions a and B ., It is to this problem that we now turn our attention.

An_Inferential System for K-equivalence

We investigate the decidability of K-equivalence by studying the properties
of w1, an inferential system for deriving wffs in Jm. Together, 7m and
o} constitute the formal theory of X-equivalence, .7;( = <Pm > , Later,
we show that «f (s complete for Fm, and that tj= a = B! is decidable for
arbitrary a« 8 € M .

Here, and in subsequent discussions concerning the campleteness of o, we
deal with some fixed set X of K-expressions defined over some fixed alphabets
Atm and &, For these discussions, 1t will not concern us what the actual
constituents of these alphabets are, or whence they came. The point is :imply
that cne application of l(;expreasions can involve the study of strong,
equivaelence for E-programs, In that case, the alphabets arc defined as
Atw, = ,#n' u Mu. ad b= b. u b. , where the strong equivalence
of E-programs W and ® 1is the point in question, This is why the signature
8 plays no direct role here, i.,e., the set X of K-expressions is determined
solely by the ssts Am and & .,
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ke inferential system J =< 47'!(’ RK> specifies a finite set fe K
0! ax‘. schemata, the instances of which constitute a subset of 7,;:, and a
finite set RK of rules cof inference. If a =B € J’C it f.riteLy derivable

using f , then we say (@ = 3 is a thecrem and write |fw = 3 .

The axi m schemata and rules »f o8 come from two sources:

(1) n enalysie of the axiom schemata and rules of «f_ to determine
what properties of K-expressicns they imply, and

{i1) an analysies of the inerential system given by Salomaa (38] for

deriving wffs of the form Q= £ where a and £ are regular expressions.

We star: by analyzing axiom schemata Al through A7 of h . From axiom
schema Al in | .gure 21, we ocbtain the following wff of JFm:
boppec v boppel v boPeZ = t’o“"eO v bope2

which suggervs the following axiom schemata for /hx

CL: pp=p
) p is any proposition in P
£2: pp=0

From axiom schema A2, we obtain
b_pge. V bopael v bnx'we2 = b_qpe_ Vv bc.-ape] v bo(qi v &S)ez
vwhich sugges3:ts the follcv npg axiom schema for A'lx
€ x=ap ¢ P
From axiom < 1ema A2, we otaln
bo(p v ;)eo m 1
which suggestc the following axiom schema for Az
oh: pviel pfP

K

From axiom schama &, we obtain

b (p>ale vVb~po>q)e =b (pVopae Vb pie
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which suggests the foullowing axiom schemata for hl(

H ] t]-)Vq
S:pa ¢ } b a€ P
C6: ~po4q)=p

From axios schema A5, we obtain
hcieoqubel-boﬁeovbopel

wvhich suggest. the foliowing axiom schema for A
q:%=p peP

X

The remainder of the axiom schemata in hl[ are taken directly from (38]

where Salomaa uses them to characterize the equality of regular expressions.

8l: av(pvy)=(avp)vy 86: ava=a
82: opy) = (B) Sl: al=a
83: avp=pva S8: a0=0
S: afvy)=BvVa 89: ZVO=a«
85: (avehr = vey

810: oa*=1v oo

Bl: o* = (1va)

This completes the definition of Az, = (CL,..., O, 8L,..., 811} . The set
'R‘ = (1, T2, T3] 1s defined as follows.

Tl: Q: f ap f=ax

2: axp =» 7(a) =7(p)

In E, one or more occurrences of the K-expression a in 7(a) is replaced

by # to give 7(B) . The rules TL and T2 correspond to Rl and R2 of R and

serve tc charucterize %=" as un equality relation,
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10 A= Vi o= X= g%y provided T €]l .

Sourdsc .. of the Theory .fK
cnee egain, 1€ the theory ‘TK is to be useful in t! derivation
of K-equivalence, then we should require that the theoremr a=p of T

be valid, i.e., pwa =8 .

Theorem 28: The theory J, is sound, i.e., for all o - £ € X,

bbao=p=>a=8.

Proo’: 1I% is sufficient t: show that the axiom schemata in the sei 'h'x
generi.e valid wifs, and that th: rules of inference in Rl( all preserve

valid:iy,

Axiom scuema . :

ippl = fxiy o xs € flpil ¢ sy ¢ |lpfl & s €7)

3

fs sclple s€efpii & seT}

il

"

This follows frow the obvious result that for all p € P, {lpli € T

Axiom schenma C2:

fippll = ‘xsy + s ¢ fipll & sy € fipll & s €T
ic e ipll e s€ T -flpjj& s €T}
=9

[

= |lo

Axiom schema _C_l:
llpall = {xsy : xs € flp]} & sy €lal & s € 7}

= {s:8¢€lpl& s€ldl & se 7}



= el N flail
= lldl 2 |l
={s:s¢€llql& selpll& scT)

= |lapll

Axiom schema Oi:
e v 3l = lell v Izl
= el v (T - el
=T
= [l

Axiom schema C5:

fie = all = lIpl u lldl
=lpvadl

Axiom schema (6:
M > )l = 7 - llp > 4l
7 - U=l v llall)
T - (T - el v llalD
T-0T-lol) v (T - (7- ldD))
T- (T - dipll 0 (T - fald))
- el 0 (T - llalD
= floil ~ Hall
={s:5 lpl&sel| &s€7)
ol 1

L}

Axiom schuma C7:
Bl = 7 - izl
=7 - (7- Il
= boll



Axion schemata S1,... S6: by the properties of set union and set
intersection, The "v" operatiun directly corresponds to set unionm,
and the "," operation correspcids to set intersection directly for
K-expressicns which are propositions in P and indirectly for K-expressions

in gcneral, To see this latter point, notice that if

g = (8 €T: for came x, xs € ||ai}
g = {e€ T: for sme y, sy € |ll}
fy={x: for some s €7, xs¢ i}

Xg = {y : for sme s €, syc€|g|}
then

i el

i

[xay:xcxa L s€s5,N8 tkyex}.

e P

Axiom schema S7:
lloall = {xsy : xs € jlofl & sy € |l & s €7
= {x8: xs € |jdl «s € T)
= {jodl

Axiom schems £8:
lloolj = {xay : xs € |icfl & sy € flof & s €T}
= {xsy : xs€|ofl sy e p&seT)
-f
= lloil

Axiom schema 89:
flx v ol = Jiadl u ol
= fol U g
= |l



Axiom schema S510:
i v oo
= litll U Jlac|l
= Il U {xsy : «o € |lol & sy € Jlox]} & s € T)
= [l U {xsy : x5 € Jiaij & sy € il v flod} U floof| U... & s €T}
= [l v fxsy 2 xs € Jiof} & sy € |fall}
U {xsy ¢ xs € [Ixf] & sy € [joif}

U {xsy : xs € [af| & sy € [lad]|}

= il v licdl U ool U Jleced| u ...

ol

Axiom schema S11.
(@ v o)«
=iffviivadufiGvaavaljull GQva@va)yv a)ju...
= il v (g u llef)
Ul u fledf u flood)
U U lled U fleedl U floond])

< Jall U el U oo u floomd) u ...

= {lo|

Rules T1, T2: these rules reflect the symmetry and substitut!vity

properties of set equality.

Rule T7: Firat we shuw that @ = g%  satisfies the equation

@=7vVpex, Substituting for « , we have
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by v 8(=7 )|

= I(x v Be*)7|l S5, and since [|17|| = ||7lf
= lp*r|| 810

Now we show that the solution « = B%r 1is unique iff T ¢ |8l .
Suprose that J £ ||8li., but that there exists another solution Y , i.e.,
¥l = lly ve 2|l . Then from

ller=ll = |ty v Bo*7|| , end

il = fir v oY
we obtain
liexrll - il

= |ly v %l - | v oYl

= (ll2ll v lise%ll) - Clixll u liexlD

= flee*r|l - llexll

= {xpy : xp € |||l & py € [|B*||} ~{uqv : uq € |Ipl & qve |i¥|}}
= {xpy : xp € |l|| & pv € [jBwr]l - |I¥l}}

sc that

(lewrll - livl)) - fxey : xp € [Iol] & oy € Cllo*r]| - |¥lD} = ¢
toe ,[xpy : xp € (T - ligll) & oy € (llewl| - D) = ¢ .
But this means that either J - [B]l = ¢ or [e*| - |IY|l = # . 8ince
T ¢ |Bll , ve cannot have T - |ig|l = § , so therefore we mst have
llesrlf - el = ¢ , s.e, llowfl = fvll . Tms, 7 ¢ [Bf| = the solution
a = f% is unique. This argument could dbe simplified scmewhat if ™"
were introduced as part cf the formal definition of X-exyressions, i.e.,

1f we defined |jx - 8l = |lof| - |le}| .

210



To see that the solution @ = B¥ is no longer unique if T c {8} ,
first observe that 7 C ||f1! impjies that for some K-expressions u , V
either (1) P is 1, or (11) pis uvv and either T C )| or
T elvll, or (141) p 48 wv  and TC |ull and T cvll, or (iv) B 18 u*.
Then a simple inductive argument on the structure of £ gives us that

T = lell>lell = [lL v 8]l for some K-expression & .

Then, assuming J C [|8|| and so |js]| = |}1 v B]}] , we can show that
a = p% v p¥X, for any K-expression X, is also a solution cf Q=7 v B .
Substituting for a , we have

llx v 8(8%r v pex)||

lrv@ve)(ave)y v (1ve)x)|

=y v (1 va)(en v oxx) su
= ly v 8% v 8% v 55*r v se*x|l o
= fI(1 v 88*)y v 87 V(¥ v 8% )x]| 85
= Jla*r v 827 v (1 v B5* Vv 86%)¥| Si0
=l oy v (1 v ee*)x| 26
= | &*r v x|l 810
= || Qve)yrv (v s1
= || %y v pex|| as required,
als completes the proof of soundness of T, . .

One immediate and very useful result of this soundness of TK
arises from the identity of 8l,..., 811, T1, T2, TJ with Salcsma's axioms
and rules [38]. Evidently, the set X of K-expressions over the alphabets
y. and Mm is identical to the set of regular expressions over the alphabet
C=4U(P-{0,1}). Movw, if a and A are two such regular expressions
and |af = |B] , then @ =p 1s derivable from Sl through 88 using T1, T2
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and T3. "hus, any cf the standard derivebility resultis concerning regular
express. .n¢ can te wppl.ed tc X-expressions if we take the alphebet as I .
In fact +his if true Tor any sub-set o7 X that can be regarded as

regular cover same aiphabet. Amcng k2 results we ofter use are

‘v 3R p(per)e

](Ba)’ = ((ﬁf Hoxd

R
g

In cerivations, we wil’ wuse Pl ..., A to denote these standard derivations.

{1} The K-expressions derived from E-programs have certain character-
jstic feactures. Tor example, we can write any such K-expression in a
“crm where V' and "*" appear only in the constructs (pu v pv) and
{pu)*p respectively. Here 31 &and v are any K-expressions and p 1is
a qff serving as a discriminetor in the E-program in question. Apparently,
gngeler [ 8] hes pinned .-e form of such K-expressions down precisely.

Ito 28} discusses what sort of objects could give rise to K-expressions not
derived {rom schemes like E-programs, namely certain non-deterministic
programs.,

{i1) By making use of this knowledge of the form of K-expressions
derived from E-programs, one can show that for such K-expressions, the
condition on rule 12, namely that "J' & |[B| " can be reduced to J§ ||| .

(111) Also, it is possible to give interpretation of Salomsa's

axioms S1,..., S5 in terms of the structurai properties of E-programs. The
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point is that properties that can remain unformalized in the graph
representation of E-programs, must submit to axiomatization when the
linear representation of K-expressions is adopted,

(1v) As well, the rule T3 in R, 1is a direct counterpart of BSS
the recursion rule, in !9. . The connection hetveen these two warrants
further investigation, especially the relationship of the side conditioms
for the application of each.

(v) With a complete knowledge of the relationship between E-progrems
and the structure of K-expressions derived from them, we can see how to
extend the result of Theorem 27. Thus, if |= gy =Gy then |=U=®,
but in addition, we can derive ou = % using the axicmes and rules of \’ .
Then this derivation could be used Lo indicate a derivation using J.
of the wff ¥ = 8, so that not only would strong equivalence be detected,

it would be derived as well., We leave these matters in their present in-

complete state,

Megquacy of the Theory II(
The theory TK being adequate means that if |= a = 8 where

a,p €X then |- a« B ; thus, we can derive all instsnces of K-equivalence.
The first step in obtalning this result is to prove propoaitional adeguacy,
mid this is the content of the following

Theorem 29: jwp = q = |-p = q for arbitrary propositions p, ¢ € P,

This theorem in fact assures us that the axicms Cl,,.., C] are complete
in the sense of the propositional calculus.



Proof: “The #iv.i < N T S oty o wffs of Lt
p =1 (where « P oovrecnonds v . regarcel ac 4 statement of
the proics tiop " A O e wogy. For ary v P owe
develop trt no%icn: of riun & n.uwraler and truti-value unle: suck a
truth auss:-imens TUowe _.renoent L regard & word -0 truth,
ie, ve T, truct sso. cmirn % the atomis formalas i

= {r . . [ T Ll LSSiymment o VoVy vl W
m ir 3 ’ pL’“_- - SS1Yx ’O ‘1 -1
acts 8§ 4 uyy e v o v, o whien S oany propositicn in P
genariate BR L IR

(; A

ol N . 5 & AN i

LA SR s . Py D -

bp, a € P
-0 ovhierw. s
vip. - iTov, L.
\Py i
= L it v, [
- J
v(C) = o]
viis z

Since we +re T _Lowing the nctions of propositional calculus, we say

p € P is tautciogy, and write

Ade tie together “he unctions o’ X

those propositions bei.: tuutolio

Theorem 30: For any proposition

="p, iff for all ve 7, v(p) = 1.
-events of propositions being truth,and

gies, in the following

pe P bp=l°f-+p,i.e., the

K-event for p :ir “ruth just in case p 1is a tautology.
Proof: Evidently, we must show u € |lp|| for all u € J wu(p) =1 for all
214
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u€ J. It is sufficient Lthew to oshow thot v ']p“ evip) 2
for an arbitrary v ¢ 7. W use w o.nductive uraof on the structure

of p.

gyt

(1) It p is 1, then |p| M e 7 and so ue |l for ail
s i i

h

u€ 7. Mereover, u(p) = u(l) =1 for all v ¢ J. Thus
vellpll »vip) =1, sinecev ¢ T

(11) 1 p is O, then [ip!| - |jo! = ¢ and so u ¢ |pl!l  for

(k]

all u € J. Morecver, u(p) = w0) =G, i.e., ulp) #21, for all

ued., Thus v € lplevip) =1, since v T

(131) Ir p is py € Atm, then [ipl! = ||)1[| = {s_ 8, v. 8 €T

8, = p }. Tus, ve Hpill ®v, =p; . Moreover, v(p) = v(pi) =1

it v, = Py 4 SO that together we have v ¢ |l @ v(p) =

i
(43v) If p isfgq>r), g, r€ P, then |pfl =|lgox =
lrall U llell o hus, v Bl @ v e fall U lisll, tee., v E ol or

v € |r|| . Moreover, v(p) = v(gor)=1 iff V(~q) =1 or v(r) =1,

(=

f.e., v(q) §1 or v(r) =1 . By induction hypothesis, v € |r| =
v(r) =1 and v€|qf ®#v(a) =1, 1.e., v¢llq] #v(q) §1. Then,
taken together these results give v € |p|| « v(p) =1 .
(v) 1f p 15 (~), a €P, then |jp|l = |lall = T~ llai .
Twus, ve€|pleveT-|a, it.e., v§lqll. Moreover, v(p) = v(~q) =1
ift v(q) = 0, 1,e,, v(q) #1 . By induction hypothesis,
ve |lq| e v(q) =1, t.e., v ¢ g ®v(q) £ 1. Then taken together these

results give v € |p/l ® v(p) =1 . This completes the induction and proof. l

Because the classical propositional. .»>22ulus does not allow the
constanls O and ) , we will have cause to utilize the mapping

R: P P defined as follows
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R(0) = ~p, 2 B’

R(1} = (p, 2 p,)

R(p 2 q) = R(p) > Rlg) N g, qf P
R(~p) = ~R(p) J
R(pi) = P

Thus, for any » € P, R(p) contains nc 0 or 1 but for all v CJ,
v(p) = v(R(p)) . This result follows from a simple inductive proof on
the structure of p utilizine the fact that v(p 2 po) =1, since

either Vo = P, O V. = p._ .

Congider the fcllowing three axiom schemata and rule of inference,
(1) p=2(gop)
(i1) (2 (@ ((p2q) D (r o))
p, aEF
(1i1) (~ 2 q) D ({~ >~q) D p)

(iv) p, » D q =» ¢ nodus ponens

This infererntial system i3 given by Mendelson [33] for the propositional
calcuius, If a proposit:»n p € P is derivable in this system, then we
write |='p o denote this. Since this system is known to be both sound

and adequate, we have that for all pe g , f'p » |-'p .
>

Let us now outline the stepe in prcving Theorem 29. First, for any

p € P, we have

Er=1e ﬁ-:p by Theorem 30
> }-+R(p) property of the mapping R
= |-*r(p) sompleteness of the inferential

system for propositiomnal calculus
# |-R(p) = 1 this we must sho:-
o =12 this we must show
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Then this will allow us to finally show that |=} = : =}p =q, for

any propositions p, g € . So the first step is to show that

|-+R(p) 2 R(p) = 1, i.e., we have to show now to mimic a derivation

of R(p) wusing the inferentiml system given above for the propositicnal
calculus, so that a derivation of R{p) = 1 using the inferential system

«f is produced,

In Appendix I1XII, we show how to construct the folloring derivations:

(1) B (p>(>2p)) =1

(11) L ((po(@or) =z ((p2a)2(p>r))) =1

(114) | (( 2q) > ((w>~q) 2p)) =1

(v) b poa=1, pp=lslg=12.
Then, given any derivation |-+p , we can construct the required derivation
fp = 1 by mimicking each step of the former with the appropriate derivatiom

given in Appendix III.

The next step 1s to show that | R(p) = L= |~p = 1 . The appropriate
occurrences of --(po > po) and (po o po) in R(p) can be replaced by

O and 1 using the following derivations:

(1) ~p,2p,) =p, ~p, [e]
= 0 2
(11) (p, @ py) =~ V p, [}
- pOV'!po Ez
-1 o

Thus, 80 far we have shown that for sny p€P, |ep= 1l pjpmw 1.

Bov, to show |wp = q ®|-p = q, note that |mpe qpfmp~qVvpg=1.
Ve can easily verify this as follows.
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f~p ~afl U lipail

Uil 0 lall) o Clell 0 flalh

(- el n (7~ flalD) v Clell v llall)

(7= lldh » (7= llal) u Clall v llall) s1nce fipll = Jlal
(7 - lldl) u liali

=7

il

fl ~p~av ey

h

]

f

Then, fr=c¢c 3k ~p~qVpg=1l=}- ~p~qVvpq=21 using the

derivability results already obtained, Now consider the following two

derivations

pPg = pq Vv O 52
=0V pq 83
= ~p0 Vv 1q s8
: ~p~dyV paq €1 and G2
(~p~avpaq 85
=14q since }-~p~qqu-l
- q B

Py pgVve 89
=0V opq B3
< ~qO0V pq s8
= ~Qq~Ppp Vv pap €1, 2 and C§
= (~p~qV o 85 and 3
= 1p since | ~pmqVpgewl
=p Bl

Then, since |-pq = pq by Il and T2, we use T2 again to substitute

bpa=p and |pg=gq and so obtain |~p = q. Thus, l—p-q#l-p-hl
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Before we discuss the adequacy of U'K in general, ve need two further
results (Theorems 31 and 52). Recall that VS denotes tne conjunction

formed with "V"' of the formal objects in the set §, and VP =0 .

Theorem 31: For any proposition r € P, fr = viz| .

This corresponds to an existence theorem for the full disjunctive normal

form of the propositional calculus.

Proof: First let us extend the result of Theorem 29 and show that
’-p =q -’}-p = q for arbitrary K-expressions p, q € P+ where
(1) Pc p*
(44) 12 a, B8€ P’ then (avB)e P* and (8) € P
(111) extremal clause.

Thus, we vant to extend the adequacy statement of Theorem 29 to the closure
of P over ™" and "." . The entities of P’ are still propositional

in nature since "V" behaves as digjunction and "," as conjunctick,

Consider the following derivations:

rSsr~~sg a 9
=~ (r>~5) [s.:3

» r,s€e P

rvasmwm~rvas

g
=(~7r>3s) s

Using these derivations, we can convert any ¢ € f' into a proposition
t’ € P, such that |=t = t’ . This follows from a simple inductive

argument over the structure of t € P* . Then far p, q€ ¥,
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p=q=f=p’'=q’ by the above argument
%> bp’ = g’ Theorem 29

Plp=g by the above derivations,

Then, tc show |=r = V|rll as required in the statement of Theorem 31,
we first show |er = vir|| and then apply the extended adequacy result just
cbtained, Notice that for a word of truth v = v_ v ... Voo
Il = v ¥y v Yy

< gy vyl

L LI {8, 8 -..8p , 7 T8 = V‘.}
= {Vo Vl ves V-.l]
- {V} .

Then to show |er = V ||r|| , we bave

‘:V""" ” = Uv € "r“ livll
=% e eV

= |i=ll as required.

Finally, {=r = v ||| % |-r = v |iz|| from the extended adequacy result
obtalued above.

In the proof of adequacy for TK , We make use of the notion of
standard K-expressions. A K-ex;-ession @ € ¥ is said to be standard
iff it is of the farm

Po VeV Py VBXE V...V 'z-lxl-lt’l-l

wvhere p.,..., Py_ys 8 Cooe-es 8.1, 1 €T Xgpeewn Xy q € X,
améd K A< W, k+L < W , Ve denote by X~ the set of all standard
K-expressions in X .
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We shall make use of the syntactic operaiion 31+ x ¥ =3,
which allows ue tc "multiply cut" twe standard K-cxpressions, If
Q=VA Bw=VB and @8 € ) , then

C®P=V{xpy : xp€E A& pye€B& pC ).

As an illustrative exampie we have

(ll Ve,V slxse) ® (81 Vos,ys, v slzsl) = (51 V 826, V s,¥8. V slxsaysj)

vhere &, s, Sy € J and x,¥,2 € { . Concerning the idea of standard

K-expression and the & operator, we have the follnowing

Treorem 32: For any standard K-expressions & and B, |-oB=a@8.

Proof: First notice that for any distinet u , v ¢ 7,
fluvll = {8 : s € ulj &s € vl « = € T}
s {s8:85€fu)esc{vlie s€ T}
-
and
vl » {8 : sefvil & s e |v]| &se 7}

Il

Thus, |}~ uv= 0 and |=vv = v . This result together with repeated

spplication of S4,by which "," 1is seen to distribute over V" and
g’by vhich any extraneous C is dropped, yieldsthe desired derivation
of U®p . l

Also used in the proof of adequacy for 3,'( is the notion of normal
form K-expressions. For any 7 € X, the K-expression N(7) 4is said to be

a normal form of > iff N{») 18 a regular expression over the alphabet

b T ema |pli= 8O- NG .
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Since the strvcture of normal form K-expressions plays a key role in
the scquel, let us ~onsider some examples which make thic structure clear.
Suppose that At = {p) qJ and b= [x] ; then T = {rq, P‘-l. f’qs 571] B

Below i8 & list of X-expressions and a possible normal form for eech.

K-expression & A Normal Form N(a)
(pav paVpaVvpa) x (pqg Vv pa v paVv py;
(p=a) PAV PAV P4
~P PQ Vv Pq
~(p = ~q)x pax(pa vV pQ V P V D)
(~(p > ~q)x)* (pax)*(pq vV Pq v Pa V Pq)

We are now ready to discuss the overall adequacy of .7;( , and we

state the main result in tke following

Theorem 33: For eay K-expressions &, BEX, jsx = p =» l.a -p.

Proof: Lct us first give a sketch of the proof.

We first prove a Normal Form Thecrem (Theorem 34) which states that

j= 7 = N{(») for any K-expression 7 and some normal form K(7) .

Adequacy follows immediately: |j=ct = B >|all = [|B] =»
[In(a)|| = IIN(B)|| =® |N(ax)| = |N(B)| , and since Salomaa's system is
adequate, - |[N(a)| = |¥(8)| ® |-N(a) = N(B) . The normal form theorem
then gives |-N(a) = N(B) & |-a = 8 , so that altcgether we have

j=a « B »|-a e B as required.

The first step, then, is the following

Theorem 34: (Normal Form Theorem): For any K-expression &, la = N(a) »

where N{x) is u normal form of « .
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Proof: The proof is inductive over the structure of =, We define ~

R +
simple K-expressicn as one in which no "*" occurs, and et ¢ T s be the

set of all simple K-ex;ressions. Thus ¥* is the closure cf

P USb over "Vv' mxd "," . We prove the result first for a € }{,+

(egain by induction on the structure of @) an¢ ther for o - 3%

where | B = N(B) is ow induction hypothesis,

Suppose @ ia simple; there are four cases tc consider.
(1) a is an operator g € 4 . Then we take
Na) = N(g,) = vipg,a: p, a€ T} = vigj .

We have |- g = N(Bi) as follows:

6 =& 5, r
'1311 ST, B
=-vT . g VT Theorem 31

- vimga:p a€T) B, 85
= N(g,)
(11) a is a proposition p € P . Then we take
¥(a) = N(p) = Vip|
and |- p - N(p) by Theorem 31.
(111) @ 18 B8V 7 . Then we take
Na) = N(BVv?) = N(B) vV K(?) .
By induction hypothesis, |- 8 « N(8) and |7

l=evy =NPpV?) as required.

= N(r) , so that

(iv) a 1s B> . Then we take
N(x) = N(B7) = N(B) ® H(?) .
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The "@"' is permissible since evidently the normal forms we generate for
simple K-expressions are themseives standard K-expressions., By induction
hypothesis, |- B8 = N(B) and |~r = N(7), so that |-py = N(B) N(»)

by R2. Then Theorem 32 gives |-N(B) N(y) = N(B) ® N(B) , so that
finally, f{= By = N(By) . This campletes the induction for the case of

simple o« .

So far we have shown that |—a = N(@) where a 1s simple, but to
verify that N(a) 1s indeed a normal form of Q , we must alsc show that
IN(@)|| = |N(a)| , where the regular event |[N(Q){ 1is evaluated considering
N(a) as a regular expression over the alphabet & U J. It is straight-
forward to show from the definitions in (i) through (iv) above that
N(a) 1s in fact a regular expression over 4 U J . We now prove,
again by induction over the structure of a, that [N(a)|| = |N(a)| .
There are four cases to consider,

(1) a 1s an operator 8, € Y and Ka) = V[pgiq tp, Q€ T .
Then,
= || virg,a : », a € T
=Yy g e glreyal
- up’ q€7[u :repla rxeﬂgiqjl & TET)

-y qe:r[u :refp) arxefut : ut €llgflatella ater))
-y <l€7[x'x: repgrx€fut: ut € {mg,n : m, n € T} &t € {q}}}
U qe:r["‘l”‘ €fut : ut € {mgn:m n€T] &taq))

- qGTtw: px € fug: uq € {mg.n : m, n € 7}}}

- qe 2P 1 px € (mgq :m, c 7]
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- Up, q€ - (re,d]

'[pgiqu’ qsﬂ H
and,

|#(a) |
= |vi{pga : p, 9 €7}

U
- Py |P85'QI

QET
.Up, q(_:J[uv :ue lpl & ve |giq|}
-Up’qe_J[uv:uG{p}& vej{xy:xelgil&Y:’;lc_”}

'Up, {uv:u-p&vC{xy:x€{gi}&y€vlqn]

Q€Y
"V geAPVE I x=g &y =al)

= Uy qeqlpv:ve leall

-y, qefipv : v = ga}}

=V, qerived

- {pga:p a€ 7},

w0 that |Ma)f| = |B(W)| 1n case a 15 g € Y.

(11) a s a proposition p € P and N(x) = Vv|p]| . Then,

lecadll = [ivilell |

- ||p|| by Theorem 31,

Inta) = |viipll |

" U e ot
™ Ur € up“{l" since r € 7_

= liell ,
so that [[N(a)|l = |M(a)| 1in case o 1s pe P .
(111) a is pv 7y ant N(a) = N(B) v N(7) . Then,
liwta)}i = [ix(e) v ()l
=[x u i)Y
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= |x(B)| up(r)| by induction hypothesis
= |x(8) v N(»)|
= |x(a)| as required,
(iv) a is 87 and N(a) = N(B) @ N(7) . Then,
in(al| = lix(e) @ n(r)|
e |VM(xpy : xp €B& py €CapeT},
vhere N(B) = VB and N(y) = VC . By induction hypctheais,
Iim(8)l] = |m(e)|, 1.e., |jv8ll = |vB| , and from this we can easily
shov that |ixp|| = |xp| for a2l xp € B. Similarly, from the in-
duction hypothesis |[|N(7)]| = |X(7)| , we obtain |pyll = |py| for an2
py € C, Using the semantics of ".” , this last result can be restated as
{pe: pe €|fl} = {px : 2 € |y|} , so that for any v,
pv € |ly]l ® ve€ |y| . To complete the evaluation of N(@) started
above, notice that
fixpyll = {upv s up € jixp|| & pv € |lvi)
= {upy : up € |xp| & v € |y|}, ebove results
- |xp.y| .
Then,
5ol = IVixpy : sp eBapyeC ap e T
-y

m:xpG!&wéClp(-:?'"m“
"Upy s xp€Bbpy€Cape |, above result
e« |vixpy : ;pEB & py€EC D€ T

= |na)| ,

as required. This compietes the induction.

Thus, 80 far, we have shown that for any simpls K-sxpression
a€ X', la=¥o) vhere W(a) is & normal (end standard) form
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of a . Now, let us complete the proof of Theorem 34, by showing

that |-B% « N(B*) where by induction hypothesis, e = n(g) .

Since |- = N(B) , then |=p* = N(3)* , and since N(B) 1is a
standard K-expression of the form 8, v 8, V...V B, D < w , then
n(B)* 18 of the form (ao Vo Vo am_l)* . Now, if 6 is &%

and 6 18 (lnaoel ... 8 0O<n<m, then

ho1)®
- xe)* =606, ... 6, -
This follows simply if we recall that 6 is regular over 4 U 7 and
then apply P1: (a v B)* = o*(Ba*)* repeatedly. To see the form of
9091 6._1 , consider the following example of the above result:

= (a VbVecvad) = ar (bax)*(car(bax)*)*(da*(ba*)*(ca*(bak)¥))
Here, M =4 and,

Ne)* = (avbvcvadH

6 1is a*

8, is (bas)*

6, is (ca*(baw)*)+

i

(da*(ba®)*(ca*(bar)*)*)* ,

Since |- f* = N(B)* and |- N(B)* = 0,6y «+- 6, » we then have

- p* = 6,8) --+ 6, using T2. Now, for the moment, let us assume that
we can show

ke, = M8,), |- 8, = N(8,),..., o, , =N, ;).
Then, using T2 again, we have |-6+ = N(6_)N(6,) ... N(e,_;) - Theorem 31
then yields |-g* = N(6 ) ® N(6,) ®...8 N(6, ;) . By an argument precisely
like that given for the case of simple @ of the form Py , we have that

||l(6°) ® N(e,) &...8 N(o_ )|l = In(e,) @ Ne,) ®...® N(e"_l)|



end furthermore, since TK is sound, we have

liee|l = lin(s,) ® n(s,) ®...® K(o__, )}
Thus, by the definition of normal form, we can take N(8*) to be
N(e,) ® 3(91) ®...8® n(o._l) . What remains for us to show %s that

o, = ¥(6,), ko, = W(8,),..., b6, = N6, ,) .

We will show inductivedy how to carry out these derivations. First we
show |-9° = N(9,) , and then assuming that ve have }-ea - N(ec)""’
}-en-l = !(Gn_l) , we show }-an =N ), n<m.

Since 6  1is & where N() - (s va v...va ,), there
are three possibilities to consider in light of the fact that
(o, v & V...V %-l) iz a standmd K-expressionm.

(1) 2, is sxs

(11) s, is sxt for sme s, t € T

(141) s is s

We consider derivations P5, F6 and F] for each case in turn

B5: (sxs)® = 1 v axs(sxs)* 810

=1V sx(ssx)¥s »

= 1V sx(sx)*s [

= VIV sx(sx)%s Theorea 31
B (sxt)e = 1V ext(sxt)®

1V axt(l v sxt(sxt)*)

810
810
1V ext 1V sxtaxt(sxt)* 8
e 1V sxt v sxOxt(axt)* Theorem 32

=1V axt 88, 89
= VTV axt Theorem 31



P[: Pirst we shov |- 1= 1%,

l=1VDO 59
=1vO0l ST
= 0% by
= 0% st
= (1v0)* 810
= (O Vv 1)+ 5
= O*(10%)* n
= O®(O*)* B
=1 1% Since |=1 = O%
- 1% B
Then we have,
% o (1Lv 8) su
s (VT v s)» Thecrem 31
- (VI)e s6
= 1w Theorem 31
-l Since |-1 = 1%
=T Theorem 31

It is a straightforvard matter to show that because (no Ve V..y "n-l)

1s & normal form then so is &, 1i.s., |la |l = |a | , where o 1s

regular over & U 7 . PFrom this vwe can easily obtain that

VI v sx(sx)*s , v V sxt , or VJ, as the case may be, is a normal form for
o, 1.8, for 6 . Furthermore, this normal form, which ve may now

write as u(oo) is also & standard form, as is required of all normal

forms used in the proof of this theorem.

To complete the construction, we show how from

o, = ¥(6.), |6, = N(s,),..., |6, , = H(e _,), n<m , ve have
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: N 3 » S ez
8, = N(¢ ) . Recall that 6, 's (a,60, ...8. )", the

Fo, - (a,8.6) .. 8, ,)°
by TL and 72 . Since the normal forms N(6_),..., N(6 _,) have
been assumed derivable, we have

e, - (a N(6)N(6)) ... K{g _,))* .
Then, applying Theorem 32,

o - (s ®N(6 ) ®N(6,) &..@N(© _,))* .
Because & is a single disjunct of the form sxs , sxt or s , for
some s, t . T, then a ®No6 ) @N(6) &..®N(6, _;) must be of
the form

sV sx 5§ V...V "'k-ls v syoto V...V sy‘_lt‘_l
where the leading s € 7 may be absent, and where
Koseoos X g9 Yopeeey Yy € A, 4 <w, toreres Y 5 € T,
4 < @, snd are distinct fron s . If all the disjuncts are absent,
we have simply l-en = O* , and we can take N(On) as V7 . In any
case, we can easily generate a norsal form here by making use of the
fact that the leftmost words of truth in the disjuncts of the

expression are the same, namely s .

First, let us show that |=(s v 2)* = a* for any s € T and

ae )

(sva)={1vsva) 811
= (v’ vsva* Theorem 51
= (vF v a)+ 56
= (1vay Theorem 31
- a* su
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Thus, it suffices to consider finding a normal form for

8Xs V syt V...V sy, b, ,, where X= VI T o 0 BeEl, we
may ignore the lerading s even if it is precent. Ic adi further
brevity, we rewrite this as 3Xs Vv v{syini} e d Now, consider
the following derivation.

(sXs v v{syiti]Kl)*

- (‘xs)*(vi‘yiti)i<l (sXs)*)* _P;

- (l)(s)*(v{ayiti}iq(l v sX{sX)¥*s))* P

- (le)*(v{syiti)Kl v V[syiti]i<tsx(sx)*s)* S

= (sXs)*(V{syiti)K‘V o) Theorem 3¢

- (.x.)'(v['yitili<l)' §2

= (sxs)*(sy t )*(v{sy t,}, , ,)* Pi, P5, S4, Theorem 32, 59
= (axs)*(sy t )*(sy;t))* ... (sy, ,t, ;)% Pl, PS, Si, Thearem 32, S9
= (1 v sX(sX)*s)(1 v syoto) e (v syl-ltl-l) B, r_q;_

vTr v V{syiti]Klv aX(sX)*s v v{sx(sx)*syiti]i(t Theorems 31, 32

This last K-expression is both normal and standard and will serve as the

required N(Bn) .

We conclude, therefore, that |-6 = N(6 ), {8, = N(9,),...,
|-o-_1 = N(6__;) . Then, as we have already shcwn, N(B*¥) can b- taken
as N(e ) @..@N(o ), and furtnermore, |-6% = N(p¥) . '

The normal fcrm theorem |Theorem %4} we have just proven, immediately

leads to a proof of Theorem 33, which expresses the adequeecy of 7;(



The hypothestis cf Theorem 33 is that {d=x = B for arbiirary K-expres: fons

2,8 € Inhen,
j=a - B8 = jjaf| = |I8l| by definitiocr,
= [[N(a)l] = {lu(p)]l waere N{@) anc N(#) are the noamal
forms provided py Theorem 5%,
= |N(a)| = |N{(B.| property cf normml forms,
= |-N(a) = N(B) using only Salomaa . systen
which i. adequate,

Then, since |-a = N(a) and |- = N(B) by the normal form theorem,

we have finally, |a=p . Thus, |j=¥ =5 3> }-a =B, as required. I

Remarks:

(1) The imbedding of X = V{xi}i<k in the construction of N(en)
implies that an artitrary K-expression « cannot in general be expressed
in a purely disjunctive normal form, i.e., one where no "V" appears inalde
of "( )",

{11) Since the proof of Theorem 33 is constructive, Zjma = B? for
an arbitrary wff a = B € Fm 1s therefore effectively decidable, Thus,
for any two K-expressicas a and f , we can say whether or not they are
K-equivalent, and if they are, then we can produce a proof in Tx of
this fact,

{111) Theorem 27 tells us that for any two E-programs M and 8 of
the same type, |y = Oy => % =® . since timgy = ! 18 decidable,
this means we have a test for strong equivalence which in part answers the
question il = ®7 . Thus, by testing Oy and qy for K-equivalence, we
either obtain "yes" or "maybe" to the question: is ¥ strongly
equivalent to 8,
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(iv) Even though the K-evert formulation and proof of completeness

given here (Theorems 2B and 33) are new and independently obtained, the comp-
leteness result is not new. In fact, despite the K-event formulatiocn, this
result actually includes that of Ianov [16] and Rutledge (37), and is appa.cntly
equivealent to that of Ito [18]. The completeness results of Iamov, Rutledge
and Ito, and the work by Ito in the recasting of regular expression semantics,
are among fhe factors that motiveted this author's quest for the here presented
elegant formalism and concise campleteness proof, which together constitute

a measurable improvement over those earlier works,

K-events and lanov's Results

We shall not embroil ourselves here in a dissectioa of Ianov's work.
Rather, we shall define for any signature s =<<n,..., n__;>, W, eey By 1>
P> sub-cleass A‘ c L‘ of abstract E-programs such that the properties of
stroug equivalence and K-equivalence are identical. This in the sense that
for any bstract E-programs N, 8 € A, , |l B« |may =y . It will then
be evident that abstract E-programs are like Ianov's program schemata, except
that we allow more thar one entrance and exit, anc repeated occurrences of

operators, i.e.,, assignment schemata.

An E-program ¥ 1is said to be abstract iff

(1) v, is the only variable occurring in ¥ (we will write

simply "v"),
(11) no constants occur in ¥ .
(111) no function letters occur in any qff occwring in W,
(iv) all assignment schemats occurring ir ¥ are of the form

Vv i= fJ(-ro,..., 1-3_1) vhere j < £, and esch ome of T ,..., ‘-J-l
is Just the varisble v .,

233



Abstr ot E-nrugrun

v t= f(v)

Abstract E-proprun

Fiﬂrt- 2

Two ctrougly eguivalvni abstract EBe-projraws, Here, f, g, b we tunct: v
letturs; p, r are »-lution letters; v .. ihe variable v, -
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Figure 50 «llustrate: . b ) A i

evidently |=R = ¥ .

Theorem 35: For any tw. .Ut . I . PR

P - by - o

Proof: The case b=(7‘| HEONER LU S oootunte v from tnecs w27

For the other case, we noe’ L © : N

(1) For any computiny stre .0 1. b oncture o, state & g
1i<m (wherz % and ® .ur: Lo Ly, it uio, o .
ané sc also 5[‘1:‘) <%, =] o . o Sy ee i woards ou - ]'1‘]1.\ UL

w £ “Q‘H respectively, the.

(1i) For any abstract »-:; ... I 7 fooel type cmy, on> o, if
L {sbis'xteét' 3 nas\f oL L T& « ¢ & t=1t‘), then
for any u ¢ WG , there exiczn: = - -pon e structure X of signature s
state n and K.< m such tran & ..+ <> s Jeterminate and produces
the word u . .

(111) Wy = W =l =l

From these results (which w - in . uiow), the desired result follows
immediately. Consider any Wy . . [1i7), WX, <n, K] generates u :
and by (1) WX, <n, &>} alsc generutn u, so that u € WD as well.
Thus, Hu c W‘ - A similar arviment gives Wy C Wy s SO that finally
Wy = Wy . Then, (111) gives !"%" iw‘p{' , i.el, l-ou = 3y, 86 required.

To cotain result (i) abeve, #c necl not pive e detailed proof like that
given for Theorem 27. Let us simply note that twe sequences of assignment

schemata cf the sort found in avstract L-prcograms are not strongly equivalent

[§%]
e
N

Reproduced from
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unless they are .ynta tically identical. Thus, in tho words oo JM;
and w € ||rz'l| , the operator letters that are assiy-ment schemat: in

each are equinume:ous, identical, and appear in the same ord.r. since
the atomic formulas in two words of truth cannot all be true .1 eviluated
in a state, the words of truth following each operator letter in u and
v must therefore be identical. This, because the states ar . rvrespondin

points in the execution of M and B are identical as a »-vuj* .

identical sequences of ass.gnment schemata Lhaving been executc ' on ldentical

initial states, Furthermore Y and W start at the same initistor ani
halt at the amme terminator (since they are strongly equivalent), o. thut
the initial and final operator letters in u and w are al.o identlcul.

Thus, u = w .

To obtain result (ii) above, we actually show for any .urd u « WG

how to specify the required computing structure X = <X, L ,..., Rk-l’

F a

o* " r‘-l’ PCERRS] .p-l> »
be the set of all terms in which no constants and oniy the variatle

state n and K< m . Let the domuin X

-

v occur. For the functions, we let Fj(cc,.,., ey 1) = Tsleg,ovny cp )

v C
J
J< l, vhere Core+es Sp.1 €X, l.e., are terms. The constante

8grer 8,y can be chosen arbitrarily, of course., The relations wili ve
apecified below by exemining the word u € HC to determine what the
branching through & must be during execution so that u is generated.

For the initial state v , we simply specify that c{0, ) = v so

that V[L n) = v initially. Suppose that u € W, 1is of the form

S
sbisxopoxl xu_2p'_2xn_ltejt

where 8, t, p,..., Py o € T, v,¢®B, e, € € ad x,..., X, € 4.

Choogse K = ] so that we atart at the correct initiator. In specifying the
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relations, we need only concern ourselves with the term: slored ir -+ at

each stage of the computation. We use the word of truth at each stagc *c

set the truth-values of the relations for th- current value of v . I‘hus,

for example, if after executing assignment schemata x , X;,..., X2 ¥ 20,
1 = ~

the term ¢ is stored in v , then the word of truth P17 LY ¢ Sya

(vhere A‘ﬁu‘ has M members) tells us how to specifv the relations. If

qJ, J <M is ;'i('zo,..., 'tni_l) , where each of Tpenes Tni-l ic the
varisble v , tne:n Ri(co"“-‘ cn.-l) , where each one of c ,..., ¢ _; is
o , the current contents of v . 1I!‘ 1 J<M, 18 ~ri(1o,..., Tn.-l) ,
then not R,(c,,..., cni-l) . We are guaranteed that the specificat;on of

the relations can be achieved without conflict since after each assignment
schema ) 1 <N, is executed, we know that v will contain a new term

that has not previously arisen earlier in the execution of § .

Thus, when G 1s executed in X with the initial state vy starting

at initiator b, , 1t balts and generates the word u ¢ L

To obtain result (iii) , simply notice that for any E-program § ,
lﬂ" '.u'bi,xtedt ¢ uc fsbis'xtejt' : s', t' e TJ)

Thus, thc words in H. and H‘ represent the generable words, and associated
with each such word is a set of words which are ot generable because operator
letters that are initiators or terminators cannot affect the truth values of
the atomic formulas, Since all of ""h” and al) of ||| are obtained tnis

vay, and since like words from Wy and H' give rise to like sets of non-

genersble words, Wy = Wy > Il = ligy)l . l
Remarks:

(1) Bince ﬂ"‘\( = 0”1 s for arbitrary abstract E-progrems M, ® € As

>
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is decidable (Theorem *3‘, the strong equivaience of arctract E-vpre zrams is
therefore decidable by Th: orem 35,

(1i) Abstract E-prorrams correspond tc lanov's orogram :~hemes brcause,
a8 we have seen, only syntactically identica. cequences of ruermtcy | Lol
assignment schemata, are strongly equivalent, and the truth value of each
atomic formula may ve affected by each of the operators. These are the
properties that churacterize Ianov's schemes.

(111) Since Lhe notions of strong equivalence for sbstract E-programs
and K-equivalence tor K-expressions are identical, the notions of K-expression
and K-event therefore constitute a reformulation of Ianov's results. As weil,
tc say any two E-programs are K-eaguivalent is to say they are equivalent in
the sense of Tanov's definition of equivalence,

(iv) One notion we have not yet explored is that of "shift distribution"”
as defined by Ianov [16 and extended by Rutledge (37]. This we do in the

next section.

Shift Sets and Shift K-events

Ianov [16] uses his "shift distribution” to indicate for each operator
in a program schema what atomic formulas could be affected by the execution
of that operator. Rutledge [37] extends this by indicating for each operator
and each possible set of truth-values for the atomic formulas (i.e., for
each word of truth in our scheme) the possible sets of truth-values after
execution of the operator. Rutledge's method for specifying relationships
between the operators and atamic formulas is more extensive than lanov's

ahift distribution, and in fact includes it as a sub-concept.
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For our acheme of K-expressions and K-eventa, the implementation of
these notions is straightforward and natural. We will first define the
notions of shift set and shift K-evemt with respect to the set A of
K-expressions defined over the alphabets 4 = {g_,..., & _,] and
A, = {po,..., p-_ll , snd then subsequently indicate how these concepts

strengthen our ability to detect strong equivalence of E-programs.

Shift X-events are simply a generalization of K-events. In fact, the
shift K-event [jofl associated with the K-expression « is evaluated in
precisely the same maruer as the K-event |[jof| , except for the case of
operator letters in 4 . BShift K-events are defined with respect to a
shift set 8= {8, Bj,..., B, ]}, vhere §, C gl » £ <m . (Intuitively,
aword sgt €8, , vhere s, t € 7, indicates a "permissable event”, i.e,,
the vords of truth s and t give truth-values for the atomic formulas that
are campatible vith the properties of the operator letter g, .) The
definition of shift K-event with respect to a shift set 8 1s then,

kellg = Iiell PE p

hellg = 8, g € &

e v ellg = lloflg U llell,

Ma - “1"3 v |HI3 U ||°°‘||3 U 'Mg u...

oelg = (xov : xp € Jjodl; &pyeelly spe 7).

Two K-expressions @, # € ) are said to be K-equivalent with respect
to a snift set 8 irr |ofg = ollg , tee., 4ff aap.

For any shift set 8, let a}(s) be the formal theory ocbtained from
% by.djoini.n.tohx the axiom schema
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CB: g = Vv5, , i=9 L,..., n-l.
If as=p is derivable in Ul'{(s) , #c write g ac b .

Theorem 36: For any K-expressions a, 8 € J and any shift set 8,
Fs as= B - |-ia =8 .

Thus, the theory 7;(8) is complete, i.e., both sound and adequate,

for K-equivalence with respect to the shift set 5§ .

Proof: Tirst, let us show soundness, i.e., }-Ba “f D a=p. It

is obvious from the definition of shift K-event, that

= = B""s"' B. Bince |-x =B =» jmax =« f by Theorem 28, then

fa=p Pma=p. Inaddition, for axiom achema C8, |lg,llg = 8, = |v 5,ll ,

so that =g, =V 8, . Thus, |- a=p > |=a=p, as required.

Now, let us consider adequacy, l.e., | @ =P |- a=B . We proceed
precisely as in Theorems 33 and 34, except that now the normal fcrm for
g € b 1s obtalned directly using CB. Tmus N(g,) = vljg,lig = v 8,
(instesd of XN(g,) = vilg,ll , as before), and CB gives |-g, = X(g,) , as

required. '

Our goal is to detect the strong equivalence of two E-programs W
and 8 by testing for the K-equivalence, with respect to a shift set, of
the K-expressions %N and Oy derived from those E-programs. To facilitate
this testing, we develop the notiom of consistent shift set, Intuitively,
a shift set is consiastent iff for any E-program ¥ , no word in
foggll - llggllg 15 genersble by an execution of W in same computing structure.
Thus, by cutting down a K-event for an E-program to some shift K-svent, we
have not dsleted any words which could be produced by some execution of that
E-program,
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There are several possibilities for the construction of consistent
shift sets, one of which we now examine. Consider the word

Uus 8 8. ...

o1l K

5p-1 85 tot'l  mel

tto...

wvhere s s ot € T, i.e., are words of truth, and

cl °*° sl—l ’ t'm-l ’

8 is an assignment schema. If for some j <m, 8;] f t and yet none of

J >

the assigned variasbles in 31 occur in s then the word u could never

j 2
arise during the execution of an E-program. That is, words camnot arise
during execution that indicate changes in truth-values of atomic formulas
wvhen those atomic formulas do not contain an occurrence of cne of the
assigned variables of the intervening assignment schema, Thus, Si is
defined to be the set of all words u € ||g || such that for all j<m,

ir . $ td then an assigned variable in g, occurs in SJ .

Consider the following example. Suppose
Alm= {r(v), p(u, £(v))}
Y = {u:=f(u), v:=g(v), w:=nh(w)] .
Then, abbreviating A¥m as (r, p} , we have
J = {rp, rp, Tp, TP}
Using the criterion discussed above for forming a consistent shift set,
and abbreviating U as (g, g, &) , ve have,
8, = lls,l
8, = (rpe,rp, rpe,rp, rPe,rP, rogrr
fpe,fp, Tre,Fp, ¥pe, P, T, Ip)
8, = {rpe,rp, rigzri, szfp, ;ﬁgzii] .
Thus, for exemple, rpglx"p ¢ 8, since v :- g(v) cannot affect the
truth-value of r(u) .
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Theorem 37: '+ any F-programs Y and ®, of the same type, with

associated K- «oreusion O, Ot A, and then for any ¢onsistent shift
set S deffuc. +''h ro.pect v N,
= = e,
Lo Tlle Sl
Proof: This tancorsm Lo the counteypmrt Theorem &7, and i proved in
& similar manucr, «ithough with far Lleso Jetall,

With every tulting execution of W ;| we can associate a word in
"%"S . This is co becausc $ being « .usistent assurcs us that only
" impossible” word: have been deleted froum ”0.“ to yield "ol"S .
Suppose M[D, <t, 1] 1is determinate and produces the werd w € "o'llb .
Since the hypothesis of the theorem gives that ||<J.||s = ||Q‘||S , then
v E "a‘“S as well, Using precisely the same argument given in the prouf
of Thecrem 27, we obtain that ﬂg’ <¢, ] also is determinate, and in

fact produces this same word w .

This, of course, gives W¥[D, <t, i>] = ®{D, ¢, £>]} , for any D
¢ and 1 such that WM(D, <t, £>] is determinate. A similar result
obtains when we assume that ®(D, <t, i>] is determinate, and both

together give |= W =8, l

Once again, we have been able to strengthen our abllity to detect
strong equivalence of E-programs, Given two E-prcgram: we would construct
their associated K-expressions, and the shift set S , based on the method
described above, Since the proof of Theorem 36 is constructive, then

=g = B? , for arbitrary a, § € X and shift set S, is decidable,
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In fact, if '-8% =0y, then a proof of this in ,’I'x(s) is produced,

and we conclude |- = ® .,

T see that this technique constitutes an improvement in our ability
to detrct strong equivalence, consider the example in Figure 51. For the
E-prcyram 8 , we have

G - bo(ar(u)v 1= f(u))*'z'(u)eo

2 b(rf)#re , if we abbreviate.
For E-program ¥ , we have
Oy = bo(-%'(ll))'r(u)eo

= b(r)*r e , if we abbreviate.

Notice that |k‘|| # llogl . 1f ve conatruct s consistent shift set 8,
where [rfr, rfr) € 8 is the member for the operator letter f (reflecting
the fact that w :a= f(w) carnot affect the truth value of r(u)) , then
7l(8) yields the following derivation,

b(rf)%re = b(r(rfr v rfr))ere

IR

= b(rrfr v rrfr)¥re

= b(Ofr v IfT)¥re

I8
(¥

= b(0 v Ifr)*re

= b(rer)ere

13

= b(1 vV TEF(TIr)*)re

= b{(1 v Ff(FEL)*r)re

BREFREBRIEI® @B

= bre Vv brf(rrf)*rre 85
= bre V brf(rrf)*0e <
= bre V O ) )
= blre ﬂ. J-sd
= b(r)ere Theorem 31, FT
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E-prograx E-program 8
) 4 e 51
Two strongly equivalent E-programs for which ordinary K-event snalysis

will not suffice. Here, r is a relation letter; f iz a function
letter; and u, w arc variables,

N uev
o)
E-program o E-program ®

Figure 52

Two strongly equivalent F-progrems for which ordinary shift K-event
analysis fails. Here, I 1is a relation letter; f is a function
letter; and u, v, v arc varisbles,



Thus, |-sb(f't‘)*re = b(r)tre , i.e., |-SO,, = Oy , 50 that Theorem 36
gives ‘:S% = & . Then, finally, Theorcm 37 gives M @ . So,
vsing shift K-events, we ~an detect strong equivalience in cases where

ordinary Ke-events fail,

There are many other possibilities for the conctruction of consistent
shift sets, In Figure 52 we see two E-programs ¥ and B whick are
strongly equivalent, but comparison of shift K-events, for a consistent
shift set constructed as above, fails to detect this fact. Here we would
want the shift set to reflect the fact that after certain operators, certain

atomic formulas are constiajined to have identical truth values.

For E-program § , w2 have
Oy = bou := v{~{r(u) o r(v)))*(r(u) o r(v))eo
= bf(~{p > r))*(p D r)e , if we abbreviate.
For E-program ® , we have
% =b o U = Ve,
= ble , if we abbreviate,
Rotice that if we take the member of the shift set 8 for operator ¢ to
be
{prfpr, prfpr, pifpr, pEfpr, prepe, prfpr, PEfpr, Prfer)
as we would using the earlier method for ccnstructing consistent shift sets,
then |lalls £ lloy)l . However, let us take the member of 8 for f to be
(prtpr, pFfFF, pripr, FFeEF) ,
which reflects in addition the fact that after executing u :s v , r(u)
add 1(¥v) must have the ssme truth-value., Then J"(S) yields the
following Aerivation,



bf(~{p > 1))*(p > r)e

= bf(pr)*(p D r)e Theorem 3}

= bfi(p Dr)e Theorex 31, ¥/

= bf(p or)e Exd

= bf(pr v pr v prle Theorem 31

= b(prfpr v prepr v prfpr v pripr)(pr v pr v pr)e ct
= b(prfpr v prepr v prfpr v prfpr)e Theorem 32

= bfe _(@

Thus, |-80. = Gy, and s0 |-au = @ . Then, theorem 37 g'ves e,
Remarks:

(1) From the simple nature of the procf for Theorem 36, we Ssee that
our ability to detect strornyg equivalence will be improved by any device,
technique or heuristic that serves to delete words fram “aII" {kal' o
cculd never produce in execution, Among several possibilities, is the
identification of identity operators. Thur u := u oeccurring in ® would
not be included in 4 but converted to 1 directly when (ﬁl was formed.

(ii) The K-expressicn representation for algorithms finds application
in another area besides the detection of strong equivalence. This author
has devised another formulation of K-expression semantics that permits us
to write down for any nade in the graph of an E-program a possibly infinite
qff which tells what is truec at that node, At present, this work, which
bears closely on the problems discussed by Floyd [D.], is incomplete and so

will not be discussed here any further,
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CHAPTER 10

CONCLUDING REMARKS

In this work, the principal goai has beea to ‘nvestigate the strong
equivalerce of elemental prcgrams (i.e., E-programs). We have sought to
provide a formal theoretic framewcrx within which proofs of strong equi-
vaience can be generated, Thus, any svquence of transformations performed
an an elemental program using the axioms generates a proof that the final
program is strongly aquivalent to the initial one. Furthermore, avail-
ability of a formal theory of equivalence is easential should we want to
mechanize proof generation or proof checking, This because such automated
systems would treat these matters fror the point of view of syntax not

semantics.

The elemental programs and computing structures considered here
together only barely meet the cxiteriin of being ALGOL-like, Thus, while
many-entrance, many-exit flowcharts of assignment schemata (possibly with:
subscripted variables included) and conditional branches can be termed ALGOL-
like, there is still a wealth of structure in ALGOL not programmable in or
reducable to this sort of formalism. Clearly FOR-loops, conditional
arithmetic expressions, etc., are reducable to elemartal programs, but
block structure, recursive procedures and the like escape such reduction,
In addition, we have concentrated on single-sorted computire structures,
This even though, as we indicate in Appendix I, we likely would have to
resort Lo many-sorted computing structures to bring into the scope of

the theory those bases of computation of topical interest.
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The theory of strong equivalence we introduce, while possibly
incomplete, i3 nevertheless powerful enough to serve in many applications.
In addition, the theory is complete, snd even extended complete, for certain
sub-cases of interest., However, thecre are many unanswered questions in this
area, Precisely vhat are the limits on the derivational power of the theory?
Can this power be increased? Is the theory complete for certain decidable
strong equivalence sub-problems studied recently by Paterson [%]? These

Questions beg to be answered, but are beyond the scope of this work.

Taking another approach to the strong equivalence problem, we have
introduced a hierarchy of mnalytic tools for discovering strong equivalence.
These tools or methods rely on the notions of X-expression representation
for elmmental programs and on K-event interpretation of these expressions.
In this area too, there are many paths of investigation that seem promising.
For example, can we further refine our ability to detect strong egquivalence
by finding even more unexecutable words that can be cast out of the K-event
corresponding to an elemental program? If so, vhat are the limits on this
capability to detect unexecutable paths in an elementa) program?

There are other aspects of the strong equivalence problem we have
barely touched on in this work. One iz our ability to characterite the
properties of a camputing structure by providing a set of proper axioms.
In fact, what sort of properties of computing structures can be expressed
by a set of equivalences given by proper axioms? In general, vhat formal
techniques are required to at least partially characterize such domains as
the integers? Should the theory be extended to allow propositional or
guantificational statements sbout strong equivalence so that useful

domain characterisations can be made?
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In some sense, atrong equivalence is too strong a property. That is,
tvo stromgly equivalent elemental programs share this property for reascns
that are not very camplicated. This of course must be so since all infor-
mation regarding any computing structure is suppressed when making this
statement of strong equivalence, That being the case, we are still a
long way from a theory of equivalence which is widely applicable to
strictly ALGOL-like programs, This is so because a great many of the
transformations we would like to make will depend on various properties
of a specific computing structure and so will not be included in our
theory of strong equivalence, This makes the characterization of computing
structures through proper axioms a very relevant issue, since thic is the
route we would take to arrive at a theory which could derive statements

of equivalence of the sort we are interested in.

Another potentially useful extension of the theory presented here
would be to make it "bilingual™. Thus, we would define two languages for
specifying algorithms, one a high level source language and the other a
machine-like ocbject language. For each language, an inferential system for
deriving strong equivalence of its programs would be specified, We also
would specify an additional axiom embodying a campiling transformation from
the source language into the object langusge. To prove such a theory sound,
we would have to verify that the compiler axiom was scond, i.e,, that the
compiling transformation wes "correct”. McCarthy, Painter [26,28,35) and
this author [20] have all studied the problem of proving compiler trans-
formations "correct”, Such a bilingual theory would find applicatiom in
systems where both pre- and post-campilation optimizations and transformations
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are performed on a prograr., The soundness of the theory would guarantee
that the final object program was in some sense strongly equivalent to
the initial source program. The basic inadequacy of a mechanized version
of such a theory, however, precludes a system which will always fully
optimize or simplify a given source program.

We see that the road to a viable useful theory of equivalence for
ALGOL~1like programs is strewn with many obstacles. Our hope is that this
work, to some extent, has removed same of those obstacles and 80 moved us
further along that roed,



APPENDIX I

MANY-SORTED COMPUTING STRUCTURES

Single-sorted camputing structures arec often inadequate for
characterizing semantic bases of topical interest, The principal
difficulty lies in the restriction tv a vingle domain, since in many
programming langusges and computers we have more than one "data type".
Here we extend the notions of signature and computing structure to

indicate how this deficlency might be remedied.

A generalized sigmatur¢ is a 7-tuple of ,he form

8 =<I, J,, Jl’ doy 0, B, p>
where,

(1) I is « non-empty possibly infinite index set telling how
many domains there are.

(14) ¢ o 15 a possaibly infinite index set for the relations and
n is a function on Jo such that for j € J0 )
n(J) =<d yeeey 1,>, 1 €I, r< 3y @ .

(111} J. is a possibly infinite index set for the functions and

1
m 1is a function on 9 such that for J € Ji s
B(J) = <4 ,..., 1‘3'i'°3*1>’ e, rtp< .

(iv) J, 4s a possibly infinite index set for the designated indi-

viduals and p is a function on J, such that for J€Jd, , p{J) €I,

By a many-sorted camputing structure of generalized signature s »

mean & b-tuple, D =< D>, Rp sear Fsea “Aser, 7

where,

(1) 2y 1s a non-empty possibly intinite sct for i € 1

a

(11) By €Dy xooux D, for Je



(181) P, : D, Xesex D ) for J€J
J i, i, 1y 4 1

J J

(1v) a, € Dp( for ) &d, .

3 3)

We can easily find systems that are either naturally or of neceasity
defined as many aorted.

(L) Consider the system

< <A D, 5, <atom,eq>, <car, cdr, conz>, <NIL> >
with generali.ed signature

< <0,1,2», <0,>, <0,1,2, 0, n, m, P

vhere,
p(0) = 2 n(0) = 1,2 p(0) = 0
ol) = 9, x(l) = <,

n(2) = 2,2, 1>

This system 1s like that given by NcCarthy [ 27) where he defines the LISP
programming lengusge. The many-sorted camputing structure defined above provides
e basis for computation with either s-expressions or with lists, Definitions for
the various canstituents of the system follow below,

A the sst of atoms

D the set of dotted pairs

8= AUD the aet of s-exprassions

atam = A

= [<x,» : x,y €EA and x =y}

car { D 8 =0 that car( (x.y)) = x

odr : D +8 so that cdr( (x.y)) =y

oms : & -8 o0 that cons(x,y) = (~.y)

NIL € A
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{(11) Consider the many-sorted computing structure
< @ 2%, <rzE,™MI,TDO, <ADD,ALS, SXA>, O
with generalized signature

< <0, 1>, <0,1,2, <0,1,2, 0, m, n, &

where,
n(0) = 0 m(0) = <0,0,0>
n(l) =0 m(l) = <0,0>
n(2) « <1,1> m(2) = <0,1,0>

This system is an extension of the IBM 7090 exmmple used in the text to
demcustrate the single-sorted case, Here, 242 denotes the set of all
15 bit words over {0,1}, which is just the range of poasible values
for index registers in the IBM 7090. Then, in addition to the definitions
given in the previous example, we have
TIX » {<x,> : X,y € 2“1'S and taken as binary representations of
natural numbers, x > y}

SXA:236x215 »2}6 80 that

m(bo'°jb20b2 ...b”, co‘”clh) =B eeaDyCoendCyy

Most of the results obtained in thic work for single-sorted computing
structures would seem to have straightforward extension to the many-sorted
case. It is because of the somewhat cumbersome notational framework
required for many-sorted computing structures that we concern ourselves
mainly with the simpler single-sorted case,

253



BLANK PAGE



APPENDIX 1T

SUBSCRIPTED VARIABLES

To introduce subscriptec variables, we first must modify the
definition for terms by mmendiug clause (i) tu read

(1) 1 = K < @, are terms and v, 1s a variable,

ottty Tkl

then v, (7 ,...,

i
) it a werm, called a subscripted variable, and

T .
k-1

Tyreers Ty 8FE callea subscripts, 1f Xk = U , we have simply vy -

The concept of the value of a term must also be revised, Now, the

value of & term is definea with respect to a cumputing structure E_ R

an indexing function f : _130 = w , which conztitutes a partition of 20
into countably-many eq:ivalence classes called indices and a hierarchial
state ¢ of Q_ « A h.erarchial state, or simply h-state, of 2 is an
ordered pair <t, 6~ where £ : w - D, 1is a state in the ordinary
sense and 8’ :w -~ &, where @ 15 the set of al> h-states of D .
Thus, an h-state of D it a state together with a sequence of further

h-states,

Roughly speaking, the values of the subscripts of a subscripted variable
give rise to indices which ure used to filter down through the hierarchial
structure of an h-state to “inally produce a value. To accomplish this, we
must first define two auxilliary functions dealing with h-stateas; here

Uyeeny 4, € F, <t 05 c0maaeD

8 (<tyeeny 44, <1, 65)
- G(<1°,..., 1, 7 ot ), 0") 1If 1<k<w
- c(io, t) if k=1
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G(<1°_...., s 9, <, 140)
=<, wliy g, Bty 1, 2y 4 ol g, 00), 8P it 1<k<w

-<UI"),’ 4, g), 65 if k=1

-hen, the value of a term T -with respect to D

Jimd e is

deu.ted tv 1{2, 1, 6] and is defined as follows.

(<7 It 1 is a constant k then (D, I, 8] = ki[D, 1, 8] = &

i i°

(1) 1¢ 7 18 f£.(7,..., -rmi_l) , then
(D, 1, 9]
=f (i, 1:‘1_1)[13, 1, 6]
=r(G 0D L - ..., rni_llg, L 9.
(111) 1f < 45 w7 ,..., 7y 1), K < @, then
*(p, 1, 6]
- Vi(‘lo,.... 1k_l,fp, I, 6]

= 8<1, Mt D, I, D,..., I (D, I, 61>, 6) .
We smend the uafiniticu of qffs to permit terms as redefined above.

Now let us amend the definition of assignment schemata s0 that in
(“J 1= OJ)J@’ Ggse-ey O, ) 8re terms as redefined sbove and the
Upeeey W, are subscr.pted variables. The well-formedness condition
here is that for all i« w , for all k< w, v, cen occur but once

as an assigned variable vith k subscripts in’ (u, = Thus,

1)1«\ ‘
we allow two different "arrays" to have the same "name"” provided they
have a different number of subscripts, and the well-formedness condit‘oa
for assigmment schemata simply says that the Usesey “n-l mist access
or refer to distinct "arrays". This is a necessary condition, since for
same D, I and 6 we might try to make simultaneous assigmments to the

same element of some "array".
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An assiggment schema f = (uJ i= c:td)J<n applied to an h-state 6
produces a new state t[g, 1, 6] defined ac follows.
(\.1‘j 1= OJ)JQ[P’ 1, 6]
- <1, 1(x (D, I, 8)),..., I(5, ,ID, 1, 61>,
e

A~

%D b & () 5= o))y 1B, 3, 0)
1f 1<n<w ad u eV (f .0, 7 ), k<w

- 84, 17 [D, I, 6D),..., X(s, (D, L, 6P, o [D, L, 6], 6)

if n=1 wnd u =V (7,00, T 1), K<

Notice that the case of no subscripted variables is just a special
case of the extension introduced above., In that situation, only the

"first" element of sach "array"” is accessed,

Notice also that the functions & and & act together like a
"storage mapping function" in the sense this term 1is usually used when
subscripted variables in a source language are implemented in som. object
langusge, usually machine code,
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APPRIDIY 1aa

1 iVALIUNS FOL L hI PROPOUI L UNAL AXIUMS

() e 2{ )=
»2(@>p)=~, « (a=p) e
=~ " (~avp) [
=~ v (B V~gq) 87
e{~.vp)Vv~qg 33
={y ~p)Ve~y 33
=1Vve~qg o}
=(qv~q)Vv~q o
=qV (~qVv=~q) 81
=qVa~gq Cl
-1 o
(i1) k(p>2(@aor))>((p2q) =(p>r))) =12
(p>(a>or))>({p>q) >(por))
=~{p2(aor))v((roq)d>(p>r)) <y
=p~(aor)v-~(p24q)vipor) Co, €6
=pQFV PRV PV T £, %
= pgf Vv pql v pli v lir ST, B
=pgr vpg(rvr)yv
Mlava){rvr)v (pvilav Qr [
= par v (par v par) v
(par v pQr Vv pgr v pqr) v
(par v par v por par) &, 8
=vy ;“;
-l Theorem 31
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(1i1) F((~pz @) > {((~p=~q)2p)) =1

(pod 2((~p>~4q) op)

=d~p>q) v ((~p>~q)>p)

=paV~{~pO~q)Vyp
=PRVPVrE
=pRVpRVep
=plava)vyp
=plvp

=pVvop

=pVDp

=1

(v1) F(poq)=1, fp=1mpj-qm1l

qQ=0vq
=11vgq
=Ivg
R AK!
=(p>q)
-l
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