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Abstract

T>A method of representing data-structures in the
form of a directed graph is described. Such a graph is
suitable for the data-base of belief systems in particular
and of large memory structures in general. / ) r\__



tion

There exists & class of problems in the behavioral sciences which
have been difficult toc manage satisfactorily with information processing
methods decause of a lack of a good computer representation for very
large memory structures. One example is the abstract representation
linguists term & "deep structure” into vhich natursl language is trans-
lated and to which & transformations)l grammar is applied in generating
patural langusge sentences. Another example consists of the lurge data-
bases required in computer simulation of human belief systems. It is
the purpose of this paper to describe a directed graph we are using for
the representation of the data-base of a :omputer model which simulates
the formation and processing of an actusl person's or an artificial
system's beliefs about interpersonal relations. Although we have written
& computer progrem in s special-purpose language (GRAFPLE) we designed
to process a directed graph of this kind, the present paper will be
concerned primarily with describing the graph and its relations to the
model. A future peper will discuss the details of our perticular
implementation,

Soncepts

A useful approach in building a model is to stipulate a unit or
basic component of the data-base. The unit in our model will be the
abstract entity, comcept. Exsmples of concepts are parents, fear of
women, old men, hating suthority, John, hatred.

KINDS OF COMCEPTS

1) Sets

2) Individuals

3) Propositions
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A telief in this model s an attitude towards a prcoposition about
acncepts. Examples of propositicns are men like women, John obeys his

father, fear of men leads to aveidance of men, 2tz. It is convenlent

to regard a propositicn as a special case of & 2oncept. A propesition
has cne of two functions -- to represent fact, cr impart a rule, thus,
all men are mortal is a fact, while if it is believed that x 1s & man,’
iy shall be pelieved that x is mortal is a rule. Note that these two

statements are logicaily equivalent, cut one 13 in a form amenable to

classification (& fact ), whi.e the other is in & form amenable to rea-
soning (& rui~). 8ince facts and ru.ies form pairs in the above meanner,
we will racugnrize the duasirty of rules and facts.

Concepts are fcrmed in various ways. In our mcdei, we restrict

concept formation to three methods:

ORIGIN CF CORCEPTS
1) Starting kncwiedge ‘& priori)

2) Observaticn (perception, nearsay, etc.)

3} Reasoning (identification or induction)

A pricri concepts mignt te self, and desire to observe. Obaserved
concepts wculd include I See my btrother, and my mother telis me sex is
tad. Some factual concepts that could be induced from the above cone-
cepts and previously formed rules are Sex is bad, my mcther is crazy,

1 am curicus atcut sex. A factual concept ottained vy identification

is, tnis person 1s & man. Other methcds, such as ‘deducticn’ apd
'anaiogy', are ali considered degenerate forms of identification and
induction in this model. Ore justification focr this will be given, An
analogy such as: ‘Cows, foar iegged animals, give milk, 8o horses, also
four legged animals, protetly g:ve milk’, really consists of the indue-
tion, 'Cows, four legged animals give milk, so: all four legged animsls
give milk’, and the identification, ‘horses are four legged animsls, all.
four legged animals give milk, 80: horses give milk'. AlL deddiioms - ".
are applications of formal rules f manipulation; therefore, they omm .
all be performed by ana.cgy tc & learned set of deductive patterms (for

example, modus ponendc ponens). Bince ordinary pecple can ot lookat .-

»
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two complex propositions and determine if they are equivalent without
involved and skillful analysis, there is no reason why our model should
be a super-logician,

Not all propositicns need be beliefs in the model. The degree to
which the model is willing to accept a proposition will be called the
credibility of the proposition, while the degree to which evidence sub-
stantiates a proposition will be called its foundation. Thus, 'There
is a man behind that wall' might have little foundation yet be credible.
Indeed, 'there iz not a man behind that wall' might have the same leck
of foundation and also be credible. On the other hand, ’'we all use ESP'
may be well founded yet incredible. Credibility and foundation are
important in a model of belief systems because they are useful criteria
for rejecting and accepting observed and induced propositions during
periods both of pathological and of normal thought. We will arbitrarily
assign values of O to 100 for these attributes; e.g., a credibility of
50 means as credible as not (50-50%). 'We all use ESF' could be said to
have a credibility of 30, but a foundetion of 80. 'l am alive' might
have a credibility of 100 and a foundation of 100. 'There iz a man
behind that wall' could have a credibility of 85, but a foundation of
10, as could 'there is not a man behind that wall'. If the credibility
and foundation of a proposition p are designated by cred (p) and found
(p), and the negation of a proposition p is p, we have, in normal sit-
uations:

0 < cred (p) < 100

0 < found (p) < 100

cred (p) + cred (p) > 100
found (p) + found (p) < 100

The credibility inequality arises from the peculiarity thet both a
proposition and its negation could be quite credible (cf. man behind
the wall), although they could not both be incredible, for if p is
incredible, there ie little choice but to sccept p. Similarly, both

& proposition and its negatica could be quite unfounded, (cf. man behind



the wall), but if p becomes well-founded, it tepds to detract from the
foundation of p*.

The rules of probatility, such as prot (p and q) = prob (p) x
prct (q), are not realistic predictors of humen beliefs. One of the
problems encountered in the simuiation of telief systems is how to as-
sign credibility and foundation values to propositions, whether entering
the system or being produced as a result of reasoning.

Without regard for their status as beliefs, two propositions can
still differ only in intensity, e.g., John is firm and John is obstinate,
or John strongly believes x and John weakly believes x. We will agree

by convention:

0 < intens (p) < 100
intens (p) = intens (p)

There are thus three values attributablie to & proposition; two

relate to its status as a belief, the other does not.

MEASURES OF PROPOSITIONS
1) Credibility (degree of acceptance)
2) Foundation (degree of substantiation®

3) 1Intensity (e.g., relative degree of assertion)

Different concepts {propositions, ideas, and tokens) in a model can

vary in thear importance to the train of thought, to decision making,

and to reasoning processes of a simulation, and agingle concept can vary
in its importance from time to time., The attribute measuring these
differences will be called charge. Thus, sex might be a permanently
charged concept to a model, while washing the dishes might be temporarily
charged. If ¢ is any concept,

0 < charge (c) < 100

#When found (p) + found (p) > 100 we call p & paradox; and when cred
(p) + cred (p) < 100 we call p & quandary. The above are abnormal sit-
uations and the model would try to resolve them if noticed.
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If ¢ happens to be a proposition p, there is no special restriction on
the relstion between charge (p) and charge (p). One could care less
whether or not ‘there is a wan behind that wall’ {charges both low), but
become extremely excited whenever someone expresses either agreement or
disagreement with 'capital punishment is necessary’ (both charges high).
Furthermore 'there were no tornadoes in Oregon todey’ might have low
charge while its negation could bte quite highly charged. Charge can be
resolved into two components, fixed charge and current charge. A tem-
porarily charged concept has a high current charge but not necessarily
& high fixed charge. When the current charge of a concept approaches
its fixed charge, the concept is said to bte active. 1If it is very much
below the fixed charge, it is said to be dormant.

Other quantitative distinctions could be made between concepts,
such as longevity (how long ago formed) and inhibition (tendency to be
avoided in communication and reamsoning). For example, a concept formed
long ago having few known properties is easily "forgotten". An irhib-
ited concept which is highly charged is of interest because it may
provide a clue to some previous trauma or to a neurotic conflict. These
attributes are not central to this paper, but will be included in the
following table for compieteness:

MEASURES OF CONCEPTS

1) Charge (importance to the belief system)

2) longevity (time since concept was formed)

3) Inhibition /tendency io avoid being considered)

A belief such as 'I was beaten by my mother' could te charged and
long lived, but aiso be very inhibited. Thus, the model would be ex-
pected to avoid reference tu it unless forced ty extenuating circum-
stances.

In addition to quantitative measures, concepts have qualitative ase
pects. The kind (set, individual, or proposition) and the origin (a
priori observed,or reasoned) are examples. However, most qualitative
information about a concept is suppiied by its relationship to other
concepts,
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Autosimulation

A belief system s iiszlf a model of the universe. Trus, a model
of a pbelief system iz & model of a model. The ability of people to
model a model is bolh unusual and important, especially when the target
model is the human wi:d. In fact, reasoning processes are ajded by
simulation of one's own mind, i.e., by autosimulation. For example, 'If
you show me a cat with two tails, I vill believe two tailed cats exist'
is a prediction of & changs of one's own mind in a certain situatiom., All
beliefs which are rules are models of the model itself (cf., 'if it is
believed that x is & man, then it will be believed that x is morzal’).

Context

During a dialogue, a person otserves words and sentences which
upon examination out of context are not subject to reliable interpreta-
tion. Thus, 'It is blue ocutside' could refer tn the color of the ex-
terior of a car, the loveliness of the weather (Llue as in blue sky),or
even the dismainess of the weather (blue as in Blue Monday). Out of
context, 'it' can not be interpreted. It may beva pronoun whose ante=-
cedent could be 'the car’, or it may be a part cf a figure of Bpeech:
'it 1s x' specifying a general outlook of condition, especially of the
weather.

A name is something uniquely associated with something, while an
appellation is what we happen to be using to refer to something. Even
. seemingly accurate word like John is reaily not a name, but an appel-
lation -- it can be used to refer to any of a number of people, depending
on the context. We will call this type of multivocality the 'context
problem’'. Its solution is crucial to those applications in which a
model must communicate by means of natursl language. Trn addition,solu-
tion of some non-linguistic problems, such as the determination of rel-
evance, may be expedited by regarding them as context problems.
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Representation of Bellefs

It has already been indicated that beliefs are attitudes towards
propositions, and tnat propositions are special kinds of concepts. This
reduces the problem mainly to one of representing concepts, their values,
and the relations between them.

All our examples of concepts so far have been expressed as English
phrases. Natural language has room for rich variability, but is un-
comfortably vague, ambiguous, multivocal, unspecific and difficult to
process usefully on a computer. Some problems of natural language can
be solved by adopting the notation of logic and set theory, but the
rich variability disappears. In addition, there is no provision in
conventional logic for meaningful processing of inconsistert propositions,
nor for representation of contextual dependencies. Computer processing
of logical and set notation can often be straightforward; however, when
we try to simulate human cognition and affect, the inability to cope
with conflicting propositions makes set theoretic notation inadequate,
Hence we require a different representation.

Several schemes have been proposed for such & representation. We
call them ‘'associastive languages', for they allow arbitrary, even in-
consistent associations to be specified between concepts in easily
processible form. Feldman's APL allovs relationships to be stated in
terms of triples (6, 12).

LEFT (CIKCLE) = SQUARE

LEFT {CIRCLE) = TRIANGLE

INSIDE (SQUARE) = TRIANGLE

OBJECT (D) = FATHER, where,

D = FEAR (SELF) (1 fear my father)

Basically A(B)=C is read, 'One thing which is A cf B is C'. APL allows
answering questions like:

LEFT (CIKCIE) = 2
INSIDE (2) - TRIANGLE

In which one or two elements of the triple are not specified. All
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triples in the system which are of that form are located. Since many
'answers' are possible to a question (e.g., both SQUARE and TRIANGLE
satisfy LEFT (CIRCLE) = ?), the answer to such a question is generally
a set of things.

One APL triple can be thought of as a subgraph of a directed graph
whose arcs associate together three nodes. The chiet advantage of this
outlook is that all nodes near a given node are readily accessible,
while in APL several association questions may have to be asked to deter-
mine 'nearness' to identify things related to another thing in a certain

way., Other advantages of this representation will emerge later,

A Directed Graph Model

Concepts are represented in the model M by nodes of a directed
graph. Simple relationships are represented by directed arcs between
pairs of nodes. Each arc is labelled e,s, or p, depending on the type
of relationship existing between the connected concepts. If an are
labeled r (where r = e, s, or p) is directed from node A to node B, we
say ArB. The types of arcs are distinguished by their formal properties,
but notions of their approximate meanings can be outlined:

AeB Individual A is a member of the set B.
AsB Set A is a subset of the set B, or
Proposition A is a ccnsequence of the proposition B.
BpA A has B, or A has property B, or
B belongs to A, or B is part of A, or
the idea of A suggests the idea of B, or
A does B
All three kinds of concepts are mentioned in the above outline: individ-
uals, sets, and propositions. By convention, individuals and sets are
collectively called tokens. The relationship e is between an individual
and a set, 8 is between two sets or between two propositions, and p is
between two tokens. The same node can be & token and a proposition in
different contexts, and the same token can be a set and an individual
in different contexts. When we say AeB and BeC, we are implying, in
the logical sense, that C is a family of sets like B. Although the
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terminology of families of sets can be used occasionally in discourse
for clarification, families and sets are not explicitly distinguished
in the graph.

The formal properties distinguishing the three types of arcs are
given by seven axioms for valid graph-enlargement.

Axioms:

Axdiom 1, AsA s is reflexive.

Axiom 2. AsB . BsC —» AsC s is transitive,

Axiom 3. AeB . BsC — AeC A member of a subset is a member of
the set.

Axiom 4. AsB . CpB —» CpA A property of a set 1s had by its
subsets.

Axiom 5. AeB . CpB -+ CpA A property of a set is had by its
members,

Axiom 6. BpA . BsC - CpA Having a specific property impiies
having the more general property.

Axiom 7. BpA . Be” - CpA Having a specific property implies

having the more general property.

For instance, axiom 2 astxtes that whenever an s arc is directed from A
to B, and another s arc .vom B to C, it is valid (after substitution and
detachment) to direct in addition an s arc frem A to C.  These axioms
and their contrapositives are the sc.e means of valid inference available
to the model. The axioms do not vary according to information in the
graph. They are considered to be automatically utilized in processes

of interpretation and rea.soning ty the model and no other laws of formal
logic are available as axioms to the model. For example, DeMorgan's
Laws (-(AB) -+ -A V -B; -(A VB) » -A ., -B] can not be applied as laws

of inference by the model to representations in the graph.

Examples:
All persons are persons. (Axiom 1)

If women are persons, and perscns are animals, then women are
apimals. {Axiom 2)

If p is a consequencerof q, and q is a consequence of r, then p is
a consequence of r. (Axiom 2)

If Sally is a peraon, and persons are animals, then Sally is an
animal. {Axiom 3)
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If persons are animals, and animals move, then persons move,
(Axiom L)

If Sally is a woman and women Speak, then Sally spesks. (Axiom 5)

If brunette is brown-haired and Sally is brunette then Sally is

brown-haired. (Axiom 7)

The graph in Figure 1 represents by circles the tokens PERSON
(1.e., the set of all persons), SALLY, WOMEN, ANIMAL, MOVE, SPEECH,
BROWN, COLOR, and BRUNETTE. The relationships (1) Sally is a person,
(2) Women are persons, (3) Persons are animals, (&) Animals move,

(5) Women speak, (6) Browns are colors, (7) Sally is brown-haired,
(8) Brunette is brown-haired, and (9) Sally is brunette are represented
by the arcs pointed to by the respectively numbered triengles,

Insert Figure 1 Here

Notice that the concept Sally is represented by the node SALLY, and the
concept Woman by the node WOMEN. Since the information that Bally is

a woman is contained in the graph, it is desirable to have & node rep-
resenting that entire concept. This is accomplished by the convention
that every arc has associated with 1t a single node called the circum-
stance of that arc, which is drawn as & triangle touching that arc, and
whose meaning is, roughly, "the idea that" that arc exists. For ex-
ample, the triangle 1 in figure 1 is really the circumstance node of the
arc SALLY e WOMEN, and it is interpreted, "The idea that Bally is a
woman". Triangular nodes are propositions; generally, they are prop-
ositions concerning the existence of certain relationships between
certain concepts. We reserve circular nodes for tokens. As waz noted
before, occasionally a node will be used as both e proposition and as

a token; in such a case it is written as a triangle and its kind is
determined by context.

Rules in the Model

To be able to reascn, the model obviously needs more than the
seven axioms stated earlier. Because human beings generally reason not
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by formal logicai deduction, but by "common sense™ reasoning, analogy,
induction, and plsusible inference, the conseguerce relationship denoted
by the 3 arc between propositions is not deductive implication; it is
called instead a “rule" tc suggest heuristic reasoning, as in "rule of
thumb". Rules are propositions in the graph like any orher, and are
subject to hypothetical formation and verification., They are the"back-
¥one” of the graph, for they provide the principal ability to reason
about the universe in a flexible mammer. Important characteristics of
rules are that each must be well-defined, but several rules may mutually
conflict. This allows tne model to be self-inconsistent, unlike a con-
ventional logical system, but much like a human being. While the seven
axioms and their corollar'ss are independent of the information in the
graph, rules are themselves part of the graph, and can be used and changed
during processes of hypothesis formation and verification. The model
can represent rules in its graph, and utilize them to enlarge the same
graph. Not every application of & rule is expected to draw a vaiid
conclusion, rather, rules should be useful heuristics for generating

and testing hypotheses.

Two new kinds of nodes mvst be introduced to 8ssist in substitution
and detachment. A formal node is one which is a variable in the ante-
cedent of a rule; it must be sutstituted for by a normal node, A
creative node is one which specifies graph-enlarging in the consequence
of & rule; it results in the creation of a new node during detachment.
In the graph, formal ncdes are denoted vy drawing a diameter inside the
circle or triangle, and creative nodes are denoted by writing a C inside.

Insert Figure 2 Here

In Figure 2, the circumstance 1 represents the fact that AeB is a
consequence of BpA for any A and B (heuristically).

Rules as Data and as Programs

It was stated in an earlier section that rules enable a model to
ponder about what it might think in a hypothetical situatian by fim-
<11-
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vlating itseif, ‘Hhen dcing tnis, the mcdel utilizes rules as data, that
is, eramination of the ruales direcis uine examinarion and processing of
other data, But ruies can &.s» tecome activated and autonomously create
new concepts or modify <id «res¢, i.e., they can re pregrams. Thus, the
same subgrapn can be bcta program and data. This ciservation suggests a
duality of program and duta. A progrem can te regarded a8 &8 prccessor

of date and of other programs, and a data str.~t.re as & retriever of
programs and of other data. Ine duality ©f progsam aad deim is reflected
in a related duwadiity oF prrecssiag @22 Ye.ri2vdl <

S:re advanrtages of .811@ The same roupresenranicd for programs and
data are that pracessing ang ritrievel fus ne tarried oul ir The seme
information base, programs ce: r- oveat:i, examinzd, and changed hy the
model, and tradecffs in tfors seween c2tor2.a0 and compuration can be
&ccompl ished py “ransfoymarions witnla a songee domein,

Ruies differ from (onvesiionas prvgrass -on “caars compaters in tnat
they are nct sequentias. - Jarvral way Lo o.sé roies wewad he to have
each ruie continualilv scar 'ne oraga £ ~ondivicons sarssfying its ante-
cedents, ard tren creare acw sepcepts a0 tording ve ins cunsequences;
hcwever, present.iy tnis s neitner pra “izar mor realistic. Althcugh

rales stuouid ve executed .n paral lei, Lt Seems 1ik-ly that any one rule

should only operate .n speria: situarisns. Sath slruations are. some
ruie nas Just been forar.sre1, and s to Y& ~ried <ut; an observatiom
is made, and tre mode. w3t zva,uat: it as a proposit.ong a fact s
higuly charged and enters rre prasesrn curnexn, lac m0e. enters & phase
of 'contemplatiiz?.

Rules all~w the m.de. .. muks “udgments rorn oI otserved evanvts amd
of its own curr:nt state, Just as ruies suca as "Wr3n Sam tells me a
story atout nis acoumplishmenns, *hay are un*rue” can oz invoked to
screen prtentia. neliefs, appropriate rules could »= used to notice and
resolve coaflicts, to mak- nypctreses ahwat interpretaticas of navurel
ianguage input. and tc cnucse among presenced hypeotheses cn the bvasis of
evidence derived frowm ralevant rmige: and facis,
*¥The dualiry cf facts and ruliss mentioned on page 2 is a linguistic one,
whiie that'of program/pro.essing and daca/ratrieval is a functional one.

w2
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The comsequence cf a rule can be a nevw rule. Thus, the model can
expand the repertoire of its rules as well as that of its beliefs,

ter sentation

The directed graph model can be evaluated best either by invest-
‘igating human behavior to see if it displays the characteristics of the
model, or by using the model in a simiation of human cognitive activity
to see 1f it displays the cheracteristics of a human. The present paper
will discuss the latter course, because it can be performed by the
reliable technique of interviewing a computer, while the former course
sequires dependence upon interviewers and subjects, with the associated
interference caused by interperscnal relationships and unreliable
responses.

One vay to represent a directed graph structure such as that used
in the model will be presented here. Each node in the graph, including
all circumstances of arcs, will correspond to & record . table) in a

reandom-access memory, The record for the node N will have the following
fields (attributes):

MODE (normal, formal, or creative).

TYPE (t if a token, e, 8, or p if a proposition).

CHARGE (0-100).

LONGEVITY (O-...)

INHIBITION (0-100)

OPERATORS (a 1ist of directed arcs touching K).

NRIGHBORS (@ list of the nodes attainable via OPERATORS).
For propositions only...

SIGN (:ffirmation or negation).

CREDIBILITY (0-100).

FOUNDATION {0-100).

INTENSITY (0-100).

The arcs need not be represented since their circumstance nodes are
represented,

There are two ways to look at a graph: locally, and globally.
Local exsmination implies that exsmination begins at scme node, and
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proceeds only by following the arcs (in either direction) that touch that
node, Global examination requires "stepping back” from the graph and
looking for patterns. Both kinds of examinations are useful, but most
functions can te performed satisfactorily by local examination, so this
method .s adopted in the present research.

Beginning at & node N, there are several possible connections that
can exist to arcs that touch it.

Insert F:gure 3 Here

An arc can be thought of as having three positions at which nodes can
touch it: the tail, the center, and the head. Thus the arc in figure 3
which means NeA has N at its tail, K at its center, and A at' its head,
If the three positions are numbered 1, 2, and 3, we can designate the
process of traversing the type e half-arc from N to K by an operator:

el?

In general, if r is one of the relations e, 8, or p, the possible oper-

ators to traverse half-arcs of type r are:

rl2 (tail to center) r2l (center to tail)
r25 (center to head) r32 (nead to center)

Operators can te strung out and applied successively tora node to reach
any other node. For example, one operator string to reach V from R in
figure 3 is

(p21;p32;512)
It is useful to define a multi-valued function g ("via") whose arguments
are a 1list of nodes and an operator string, and whose value is a list of
all nodes attainable from the argument nodes by application to each of
the successive operators. In figure 4,
Insert Figure 4 Here

(Fla(e32;e21)=(D), and (A,B,C)s(s12;823;e12;e23;p32;p21 = (L, M, C, J..

«lk=



Operator strings provide a -limited means of locking for patterns in
a graph without resorting to global exsmination. We cam conceive of
"ractoring” & graph into its structure and its conteni, Thus, the sub-
graph of Figure 4 which consists of the path appearing horizontal from
B to M has content BPGQM and structure {s32;s21;p32;p2l).

The nodes attainable by single operators from N will be cailed the
neighbtors of N. The list of neighbors of N is incinded as a field in
the computer‘'s record of N. Corresponding to this list is a list of the
respective operators via which the neighbors are attained. For example,
the operators and neighbors lists of G in figure L are:

(s12,p32,e12,e12,832)
( P H Q » R b U » v )

If G is in fact a normal token with average charge, age 20 units, and
inhibition 10, the complete record of G will appear;

MODE: normal

TYPE: t

CHARGE: 50

LONGEVITY: 20

INHIBITION: 210

OPERATORS: (812,p3c, el2,el2,832)
NEIGHPORS: (P, Q, KR, L , V)

Graph Searching

¥ow, suppose it 18 required to find a node x which bears a certain
relationship R to N. If R can Le expressed as a set of possible operator
strings Bl,«u,,Bm, then the solntion is theoreticaily ottainable by
computing (N)&Bl,u,.,(ﬂ)lsm in whose union U any node wili suffice as X,
U could be empty, in which case there is no solution X, or it could have
one element, in which case the solution is unique, or it could provide
multiple solutions, of which we coulid chocse any one.

The disedvantage of this theoretical sclution is that, on a
computer, when the operator strings become relatively long (say, ten or
twenty operators) the & function tegins tc become slow because many paths
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match the first few operators but fall out of cuntention later; although
they will not contribute to a solution, their paths must be followed out
until they "die". If the computer were capable of parallel processing (as
future computers will increasingly be), all paths radiating from N could
be traced simulteneocusly, and no time would be wasted. But with sequential
processing, methods must be found to minimize the search time if an
efficient simulation is to be possidle,

Three basic methods are available for graph searching cn a
sequential machine, The standard method of recursive tree-searching can
be adapted to graphs; this will be called "depth-before-breadth".

Consider a person lost in a fcrest stumbling upon an intersection
of two deserted roads, He thinks there is a town a few miles away, and
that there may not be another for hundreds of miles. Unfortunately, he
has no way to tell which road to follow, So he sets off on one road,
leav.r.g a mark in the ground at the intersection so he will remember
that e has already tried this route in case he is later forced to
backtrack, If he encounters other intersections, he again chooses a
route and leaves a wark., If his first choice gets him to the town by
sundown, all is well and good. However, if he walks several miles, he
might decide that he has chosen the wrong route, and will backtrack to
the nearest marked intersection. If there are any rcads from this inter-
section he has not yet tried, he will mark them and try them out. Other-
wise, he will again be forced to backtrack, etc, Eventuslly, either he
will have reached the town or will have tried every route out to a
certain radius from his starting point. In the example in Figure 5,

Insert Figure 5 Here

the walker started out the wrong way, and exploited many uselesa paths
before discovering the town, We call this "depth-before-breadth” because
r.e always searched az deeply down a path as he ever would before back-
tracking and broadening the search,

Fow in a computer tracing through a graph, it takes ome unit of
processor time (say, several milliseconds) to traverse a half-arc from
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one node to another in the forward searching direction, and a consistent
ssaller unit of time to backtrack from a dead end to the preceding node,
To simplify matters, suppose one forward step takes 10 ms and one back-
wards step takes 5 ms, Then the search analogous to figure 5 would
take 155 ms,

The second method of searching we call "breadth-before depth®,
This method involves examination «f all nodes one step away, then all
nodes two steps away, etc., until a sclution 48 found, or a certain
mumber of steps have been tried. This method 18 not avallable to our
lost traveller, which might explain why it 1s used less frequently in
graph and tree-searching than depth-before breadth. Figure 6 shows how
& atrong leapfrog might search for the town given the sane situation as
in Figure 5.

Insert Figure € Here

This method requires no backtracking and no recursion. In this particuler
case, ten steps are necessary; if they take 10 ms each, the search will
conclude in 100 ms, as compared to 155 for depth-before-breadth.

The examples in figures 5 and 6 are not proofs that breadth-before-
depth is a superior method to depth-before-breadth., It is often the
case, however, that breadth-before-depth is better when the node being
sought is relatively close to the starting point and is a unique sol-
ution, but worse when there are multiple solutions, all distant from
the starting point. In richly connected graphs, the situstion becomes
more complicated, because loops can exist and the same paths searched
repeatedly, which may or may not be dcsirable,

The third method of searching might be called the Monte Carlo
approach. Short segments of paths in the graph are chosen at random, and
an attempt is made to fit the segments into the operator stringy
several segments that are adjacent in the graph become adjacent when
compared to the operator string, they are preserved as highly likely
candidates; others are eventually discarded. Variaticns cn this method
Seem more reasonsble: one good one would be to search ramdomly for a

‘e .
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segment matching & substring near the middle of the operator string, and
then to search from the middle to both ends. The value of such techniques
has not been studied.

Graph Matching
It is often desirable in prccessing 8 graph to locate a subgraph

R which has the same structure as a given subgraph Q. For example, an
input proposition may be evaluated snd comprehended by finding relevant
beliefs in the graph of the model. This 15 the kind of problem that
seems best solved by global examination; however, the local examination
techniques presented here are sufficient.

One necessary step to take before tackling a matching problem is
to delineate the subgreph which is to be matched, One way to do this
on paper is to draw a "circle” enclosing just those nodes and arcs which
belong to the subgraph. In local examination, this is not a very good
approach, because there is no natural orientation that cun be given to
the subgraph so that it can be easily ccmpared with other subgraphs.
Also, computer representation of such boundaries is not conveniently
accomplished.

The presert method takes advantage of the fact that nodes in the
graph all represent, concepts for which it is desirable tc maintain a
method of expressing their meening in a natural linguistic menner. The
graph is constructed so that such an interpretation is aliways attached
t5> each node (see figs. 1 and 7). Furthermore, it takes advantage of
the fact that, in general, subgraphs that are to be matched express
concepts in a natural linguistic manner, and so the structure gusrantees
that there is a node in the subgraph that uniquely defines its boundnriel;
this node will be called the hook of the subgraph. The graph-searching
problem then reduces to cne of hook-matching, which has a simple local
examination solution because the subgraph becomes & tree with its hook.
the root, and arcs directed away from the hook the branches, e

In most cases, the graph-searching problem has restraints that
make it even easier. For example, in order to use a rule vhich includes
at least one normal node in the antecedent, a propositiun rust be under
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consideration that contains the normal ncde with the same role in the
structure of the propositicn that it has in the structure of the ante-
cedent. From the precedirg paragraph, 1t is detzrmined “hat the hook
of the proposition must likewise have the same roie in the structure of
the proposition as the hock of the antecedent ras ic its structure.
Thus, we have two sutgraphs with at least cne nade 1a ceamon, and the
problem is, starting at the nook of one, to find the hook of the other
(if any).

An example of this prebiem 1s shown in Figure 7
insert Figure 7 Here.

The sutgraph on the right has hock R I+ means, literally, JOHN is a
member of the set: (a memver of the family of TOWARDS, belonging to (a
member of the set of FEARS, belonging - SELF)); i ¢ , John is one of what
self’s fear is 'owards, cr, Self fears Joan., When a sentence can be
put in the form

P does/has Q R T
wherq P 1s the subject, Q the noun form of the vert, T a preposition,

and R its cbject, it usually can be represented as snown in Figure 8,
Insert Figure 8 Here.

Since English does not precede direct otjects of verts ty a preposition,
we can invent one cailed D.C so that sentences like JOHN HITS SAM can
be encoded from JO!N DOES HIT D.C SAM.

Returning to figure 7, the left side of the figure has a main suba
graph with hook at F which is a rule. The antecedent of the rule has
its hook at A, and it is read, v TARS Y, The eonsequence has its hogk
at D, and it is read, V AVOIDS Y. Thus, F is read, TF V FEARS Y THEN V
AVOIDS Y. Since the nook B on the right side says SELF FEARS JOHN, we
should be able to conciude bty autcsimalation thaet SELF AVOIDS JOHN
according to this ruie. SFEL* FEARS JUHN can easily pe matched with Vv
FEARS Y because of the symmetry of operator strings about the common
nodes FEARS and D O,



Summary

The representation described in this paper his many features in
common with recently developed question answering programs (Refs. 1-12).°.
We have attempted to generalize these approaches for use in belief
systems in the following ways., First, the logical inference system has
veen expanded to allow non-deductive inference, including analogy,
plausible inference, inductive inference, and mcdal 1oegic. Second,
the data base representation has been generalized from property lists,
trees, and triples to a more generzl directed graph with a compact
representation, extensive richn:ss, and a parsimony of forms. Third,
the ability to add new relations in a simple and consistent mammer has
been achieved; that is, the graph can build new relations between con-
cepts using only the three basic arcs, other previousliy formed concepts,
and simple tokens. Question answering programs have shown the value
and feasibility of inference programs, consclidation and generalization
of these 1deas provide an effective and general representation for
beliefs and makes possible the modeling of human mental processes,

We have descrited in detail a directed graph suitable for computer
representation of data characteristic of belief systems. This graph
constitutes a formal structure capabie of abstractly representing the
great variety of semantic reiationships found in human concept and
belief systems. We teiieve 1t 1s sufficiently general toc provide a

way of representing data-hases of very large memory structures.
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