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Abstrac~ 

'-, 
AA .etbod ot representing data •• tructure. in the 

tom ot a d.irected. srapb i. d.e.cribecl. Such a p'apb 1 • 

• uitable tor the data-ba.e of beliet ..,at ... 1ft particular 

and of large "'17 .tructu.re. in leneral. I ) 1\ 

• 
.L 



'!tIIue al.t. a clall o~ problerA8 111 the bebavloral aeienc •• ¥bLeb 

IIIIw He d1ttieult to ..... latl.taetol'1l¥ with iDt'Ol'M.t1oD proclf"1!lI 
.bach Mcaue ot a 1&ek o~ a ,004 eOllplt..r repre •• ntaUOIl tor VfJ'q 

l.aI'p .-017 atructure.. ODe UIIIIple i. the abltraet repre.entaUon 

l.iJWI1.ta tera a "deep .tructure" into wbich natural. 1ansuap 1. tnu­

lat ... ucl to vb1ch a tnutOrw&tiOllal sr~ i. applied in geDfJrat1Dc 

Datval J.aa:aauep MDtenee.. Another exaple ecm.i.tl ot the lv,. data­

bu.a ~re4 1D cc.put.r .iIIulation ot huMD bellet .;rateaa. It la 

the purpoa. ot thll paper to 4e.erib. a directed sraph we are uaiDI tor 

tbe repre.entatiOD ot the data-bale ot a ~a.puter .adal Wbich .t.ulat •• 
the tozwation eel procel'iDI ot an actuel person'. or an artiticial. 

.tea" bellef. about interperaOftal. relation.. Altbau&b we have written 

• cOllJlQter FOCI'- 10 a .pedal-purpose l~ (aRAPJIU) we de'i8D14 

to pI'OCell a cl1recte4 II'Ipb ot tbi. ltln1, the preaeat paper will be 

CClDCeme4 pn..ar~ with 4e.cr1biDI the sraph and ita r.1&tiODl to tbII 

,...1. A future paper will 41.CUI' the detail. ot our perticular 

tllP' _ntation. 

Copcqt. 
A ueetu! approach in bUildins a model 1s to stipulate a unit or 

bule ccaponent of the data-ba... The unit 1n our lROClel will be the 

ab.tract entity, ~eept. BDIq)lel ot eoncept. a1'e J!lU'ents. !!!!: g! 

~. S1:l:!..o. batiDI autborl!;J, ~, hatred. 

DJID8 OF CXIICif'l'8 

1) Sets 

a) Ind1 v1d!all 

, ) Pl'opo.ltiODI 
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A ~ in this model '.s an attitude towards 8 preposition about 

-:!oncepts. Examples of prop;)si:: 1cns are IDP.D likE' women, John obeys his 

~, fear of men leads to 1iV(,1dan('e o~~, :ot:. 11; is convenient 

to regard a propositicn as a speual case r.f a ~cnc(>pt. A proposition 

has one of two functl.ons -- to represent!!£.1, or impart a ~. '.I.'hus, 

all men are mortal is a fact, while if it i~ believed that x 1. a !!D,' 
it shall be beheved that x is mc)rtal is a rule. N,jt~ that the.e two 

statements are logica~ly equivalent, cut one is in a form amenable to 

~l9.Ssif1cation \a fact), ",hi.e the ot~.er is in a form 8IIIenable to rea­

soning (n ruJr-). Since facts and r 1)J.es f"rlD pairs in the above lPDDer, 

we wi!.l r~.:'.Jg:>1Ze the dua ... l ty cf rules and fact.s. 

Concepts are fermed 1 n vario\:.s ways, rn OUJ mcde.i.., we restrict 

~oncept for~ation to thre~ method~: 

ORIGIN OF CONCEPTS 

1) Starting ~~cwledge :a priuri) 

21 Ot-servatien (perception, hearsa:y, et,e.) 

}) Reasonina iidentification or induction) 

A priori concepts might t-e~, and deB1re to observe. Ob .. ~ 

concepts wculd include 1 s~e !Y ~rother, aDd.~ .other tella ..... 'a 

~. Some factual I.!Ollcepts tbat c.~.d be induced frOil the above 0CIIl­

cepts and previo~sly formed rule. are sex is bad, !Y !ptber 1a era". 

1 8111 C'UIicl~s ar'C'ut sex. A f'lct'.lal, concept ot.tawed by ideat1f1eet101l 

is, tllis person 111 a lIIan. Other lIetbcda, such as 'deductiCD' eD4 

'analogy', are all considered degenerate torma of identification &ad 
induction in this model. One jIlBt1f'1.::aUon fer tb1s will be given. AD 

analogy such a&: 'Cows, f'o.lr .i.e.eel ani_la, give 1II:1l.k., 80 bara.a, &1ao 

fcur lesged anillll1lS, prl)te.tly glve III1lk', really coosi.8ta at tbe 1 ...... 

tiOD, 'Cows, four legged anill81. live .U.k, so: all taur .lege4 "-1.8 
live lIilk', and the identificatl.oD, 'ho.t'ua are tour leg_enS_lI, au 
tour le.ed an~ls give 1I11k, so: borse. &1ve llilk'. All ...,'. ' 

are appl1caUcms ot fo~l !'\U.s ,~t MDlpu.let.1oo; tber.toft,' tbq _ .. "1 

all be perto1'llle:i by ana..l.;j@y tc a learned .. t ot 4ecIu!:tive ,.ttena' (_ .. ~ 

uuple, lKXlua pen.ncle pope!!!). linee ol'll1naJ7 people CtIIIa '~""".~.;' . 

Reproduced from 
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two cClllplu propodtioa. aad detel'lline it they are equivalent witbout 

1IIYolyed mel .ldlltul aaalyai., there i. no reaaon why our model should 

be a .uper-10Sician. 

lot all propoa1t101l11 need tle beliefs in the model. The degree to 

which the .odel 1. w1lliD8 to accept a proposition will be called the 

credib1lity of the propo.ition, while the degree to which evidence sub­

Itatiate. a proposition will be called its foundation. Thus, 'There 

1. a .. n behind that wall' a1.iht bave little foundation yet be credible. 

Iadee4, 'there 1. not a man behind tbat wall' might have the same lack 

at foundation and also be credible. On the other hand, 'we all use ISP' 
.., be well tounded yet incredible. Credibility and foundation are 

important in a model of belief systema because they are useful criteria 

for reJecting and accepting observed and induced propositions during 

periods both of patholcsical and of noral thought. We will arbitrarily 

a •• ian values of ° to 100 for these attributes; e.g., a credibility ot 
50 _ans a. credible a8 not ~50-50? 'We all use ESP' could be sald to 

bave a credibility of ,0, but a foundation of 80. 'I am alive' might 

bave a credibility of 100 aDd a foundation ot 100. 'There is a man 

behind that wall' could have a credibility ot 85, but a foundation of 

la, as could 'there 1s not a ... n behind that wall'. It the credibility 

aDd foundation or a proposition R are designated by ~ (p) and ~ 

(p), and the negation of a proposition R is i, we have, in normal sit­

uations: 

o 5 cred (p) 5 100 

° ~ found (p) ~ 100 
cred (p) + cred (p) ~ 100 

found (p) + found <p) S 100 

The credib1l1ty inequality arises !rca the peculiarity that both a 

prapesitiou and its D.ation could be quite credible (cf. _D behind 

the ~all), although they could not both be incredible, for it R is 

iacred1ble, there is little choice but to accept i. Slad1arly, both 

a proposition and its Delation could be quite Wlf'ounded, left MIl behind. 



the wall), but. if ~ becomes well-founded, it tends to detract from the 

foundation of ~ •• 

The rules of probability, such as prot (p and q) = prob (p) x 

prcb (q), are not realistic predictors of human beliefs. One of the 

problems encountered in the simulation of bE:lief systems is bow to as­

sign credibility and foundation values to propositions, whether entering 

the system or being prod~~ed.8s a result of reasoning. 

Without regard for their status as beliefs, two propositions can 

still differ only ~n intensity, e.g., John is firm and John is obstinate, 

or John strongtl oelieves x and John weakly believes x. We will agree 

by convention: 

a < intens (p) ~ 100 

intens (p) ~ in~ens (p) 

Tnere are th~s three values attributable to a proposition; two 

relate to its status as a belief, the oth~r does not. 

MEASURES OF JIROPOSITIONS 

1) Credibility (degree of acceptance) 

2) Foundation (degree of substantiation) 

3) IntenSity (e.g., relative degree of assertion) 

Different concepts (propos~tions, ideas, and tokens) in a model can 

vary in thelr importance to the train of thought, t.o deciSion making. 

aDd to reasoning processes of a simulation.andaaingle concept can vary 

in its importance from time to time. The attribute measuring these 

dift'erencps will be called charge. Thus, ~ might be a peJ'lD8nently 

charged concept to a model. vhile washins; tlle dishes might 'oe tellllorarily 

charged. If £ is a~ concept, 

o 5 charge (c) ~ 100 

*When found (p) + found (i) > 100 we call p a paraclox; and when cred 

(p) + cred. (i> < 100 we call p 11 quan4arx. The above are atmOlWB.1. dt­

uatiOD' and the model would try to resolve them it noticed. 
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It e happens to be a proposition p, there is no special restriction on 

the relation between charge (p) and charge (P), One could care less 

whether or Dot 'there is a II8.n behind that wall' (charges both low), but 

became extremeiy excited whenever someone expresses either agreement or 

41sll&J'eement with 'capital puniShment. is necessary' (both charges high). 

Purthermore 'there were no tornadoes in Oregon today' might have low 

charge while its negation could be quite highly charged. Charge can be 

resolved into two components, fixed charge and current charge. A tem­

porarily charged con~ept has a bigh current charge but. not !lecessarily 

a high fixed charse. ~en the current charge of a concept approaches 

its fixed charse, t.he concept is said to be~. If it is very mu::h 

belov the fixed charge, it is said to be dormant. 

other quantitative distinctions could be made between concepts, 

such as lOngevity (how long ago formed) and inhib~tion (tendency to be 

avoided in communication and reasoning). For example, a concept formed 

lons ago having few known properties is easily "forgotten ll
• An i~hib­

Ited concept which is highly charged is of interest because it may 

provide a elue to some previotis Trauma or to a neurotic conflict. These 

attributes are not central to this paper, but will be included in the 

followins table for completeness: 

MEASURES OF CONCEPTS 

1) Charge (importance to the bellef system) 

2) Longevity (time sin.:'e ~oncept was formed) 

3) Inhibition <tendency to avoid being conSidered) 

A bellef sueb as 'I was beaten by rrry mot.her I could ce charged and 

long lived, but also ~e very inhibited. Thus, the model would be ex­

pected to avoid reference tQ it unless forced ty extenuating circum­

stances. 

In addition to quantitative measures, concepts have qualitative as­

peets. The ~ (set, individual, or proposition) a:1d the origin (a 

priori observed,OT reasoned) are examples. Howe¥er: MOst q~l1tatlve 

information about a concept is supplied by its relationship to other 

coneepts. 
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Autos1mul.at1on 

A belief system ~9 its~lf a model of the universe. Thus, a model 

of a belief system is a ~odel of a model. The ability of people to 

mcdel a ItNt!l is bot.h unusual and important, especially w.'len the target 

model is the human ILbd. In fact, reasoning processes are ajded by 

simulation of one's own mind, i.e., by autosimulation. For example, 'If 

yO\l show me a cat. with two tails, I \Till believe twu uiled cats exist' 

1s a prediction of a change of one's own mi~d 1n a certain situatioa. All 

beliefs wbicb are rules are models of the model itself (cf., 'if it is 

believed that x is a man, then it will be believed that x is mor~al'). 

Context 

During a dialogu~, a person observes words and sentences which 

upon examination out of context are not subject to reliable interpreta­

tion. Thus, 'It i~ blue outside' could refer t~ the color of the ex­

terior of a car, the la/eliness of the weather (blue as in blue sky),or 

even the dismalness of the weather (blue as in Blue Monday). OUt ~f 

context, tit' ean not be interpreted. It may be a pronoun whose ante­

cedent co~d be 'the car', or it may be a part cf a f.igure of speech: 

'it is x' speCifYing a general outlook of condition, especially of the 

weather. 

A Jl!e! is somethins uniq,uely associated with something, while an 

appellatbn is what we happen to be using to refer to sOlllething. B,·en 

'. seemingly accurate word like John is really not a name, but an appel­

lation -- it can be used to refer to any of a number of people, depending 

on the context. We will call this type ot multivocality the 'context; 

problem'. Its solution is crucial to those applications in which a 

model must communicate by means of naturel language. In addition,soln­

tion of some nOD-linguistic prOblema, s~cb as the determination of rel­

evance, may ce expedited by regarc1ing tbem as context problema. 
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Representation of Beliefs 

It has already been indicated that beliefs are attitudes towards 

proposi~ions, and that propositions are special kinds of concepts. This 

reduces the problem mainly to one of representing concepts, their values, 

and the relations between them. 

All our examples of concepts so far have been expressed as English 

phrases. Natural language has room for rich variability, but is un­

comfortably vague, ambiguous, multivocal, unapecific and difficult to 

process usefully on a computer. S~e problems of natural language can 

be solved by adopting the notation of logic and set theory, but the 

rich variability disappears. In addition, there is no p~ovision in 

conventional logic for meaningful processing of inconsister.~ proposjtions, 

nor for representation of contextual depend~ncies. Computer processing 

of logical and set notation can o~ten be straightforward; however, when 

we try to simulate human cogni~ion and affect, the inability to cope 

with conflicting propositi<)ns makes set theoretic noLation inadequate. 

Hence we ~equire a different representation. 

Several schemes have been proposed for such a representation. We 

call them 'associative languages', for they allow arbitrary, even in­

consistent associations to be specified between concepts in easily 

processible form. Feldman's APL allOl/s relationships to be stated in 

terms of triples (6, 12). 

LEFT (CI};CLE) SQUARE 

LEFT (CIRCLE) TRIANGLE 

INSIDE (SQUARE) ~ TRIANGLE 

OBJECT (D) = FATHER, where, 

D = FEAl1 (SELF) (I fear my father) 

BaSically A(B)=C is read, 'One thing which is A of B is C'. APt allows 

answering questions like: 

LEFT (CIRCLE) ; t 

INSIDE (7) = TRIANGLE 

In which one or two elements of the triple are not speCified. All 
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triples in the system ~hich are of that form are located. Since many 

'answers' are possible to a question (e.g., both SQUARE and TRIANGLE 

satisfy LEFT (CIRCLE) = 7), the answer to such a question is generally 

a set of things. 

One APL triple can be thought of as a subgraph of a directed graph 

whose arcs associate together three nodes. T'oe chief' advantage of this 

outlook is that all nodes near a given node are readily accessible, 

while in APL several association questions may have to be asked to deter­

mine 'nearness' to identify things related to another thing in a certain 

way. Other advantages of this representation will emerge later. 

A Directed Graph Model 

Concepts are represented in the model M by nodes of a directed 

graph. Simple relationships are represented by directed arcs between 

pairs of nodes. Each arc is labelled e,s, or p, depending on the type 

of relationship existing between the connected concepts. If an arc 

labeled r (where r = e, s, or p) is directed from node A to node B, we 

say ArB. The types of arcs are distinguished by their formal properties, 

but notions of their approximate meanings can be outlined: 

AeB Individual A is a member of the set B. 

AsB Set A is a subset of the set B, or 

Proposition A is a consequence of the proposition B. 

BpA A has B, or A has property B, or 
B belongs to A, or B is part of A, or 
the idea of A suggests the idea of B, or 
A does B 

All three kinds of concepts are mentioned in the above outline: individ­

uals, sets, and propositions. By convention, individuals and seta are 

collectively called tokens. The relationship e is between an indiVidual 

and a set, s is between two sets or bet~een two propoSitions, and p is 

between two tokens. The same node can be a token and a proposition in 

different contexts, and the same token ~an be a set and an indiVidual 

in different contexts. When we say AeB and SeC, we are illlplyiDg, in 

the logical sense, that C is a family of &ets llke B. Although the 
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terminology of families of sets can be used occaDional~v in discourse 

for clarification, families and sets are not explicitly riistinguished 

in the graph. 

Tbe formal properties distinguiShing the three types of arcs are 

liven by seven axioms for valid graph-enlargement. 

Axioms: 

Axiom 1. 

Axiom 2. 

Axiom 3. 

Axiom 4. 

Axiom 5. 

Axiom 6. 

Axiom 7. 

AsA s is reflexive. 

AsB BsC ~AsC s is transitive. 

AeB BsC ~AeC A member of a subset is a member of 
the set. 

AsB. CpB ~CpA A property of a set IS had by Its 
subsets. 

AeB CpB ... CpA A property of a set is had by its 
members. 

BpA • BsC ... CpA Having a specific property im~~ies 
having the more general property. 

BpA • Be~ ... CpA Having a specific property implies 
having the more general property. 

Por instance, axiom 2 S .. ,~tC8 thBt whenever an s arc 1s directed from A 

to B~ and another s arc ~,'O~ B to C, it is valid (after substitution and 

detachment) to direct in addition an s arc from A to C. These axioms 

and their contrapositives are the sc~e means of valid inference available 

to the model. The axioms do not vary according to information in the 

sraph. They are considered to be automatically utilized in processes 

of interpretation and reasoning by the model and no other laws of formal 

logic are available as axioms to the model. For example, DeMorgan's 

Lawa (-(AB) ~ -A V -B; -(A V B) ~ -A • -B) can nClt be applied as laws 

of inference by the model to representations in the graph. 

Examples: 

All persons are persons. (Ax1Qm 1) 

If women are persons, and persons are animals, then women are 
animals. (Axiom 2) 

If P is a c~nsequence of q, and q is a consequence of r, then p is 
a consequence of r. (Axiom 2) 

If Sally is a per.on, and persons are animals, then Sally is an 
anilllfll. (Axiom 3) 
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If persons are animals, and animals move, then persons moVE. 
(Axiom 4) 

If Sally is a woman and women speak, then Sally speaks. (Axiom 5) 

It brunette is brown-haired and Sally is brunette then Sally is 
brown-haired. (Axiom 7) 

The graph in Figure 1 represents by circles the tokens P.ERSON 

(i.e., the set of all persons), SALLY, WOMEN, ANIMAL, MOVE, SPEICH, 
BROWN, COLOR, and BRUNE'l"l'E. The relationships (1) Sally is a person, 

(2) Women are persons, (3) Persons are animals, (4) Animals move, 

(5) Women speak, (6) Browns are colors, (7) Sally is brown-haired, 

(8) Brunette is brown-haired, and (9) Sally is brunette are represented 

by the arcs pointed to by the respectively numbered triangles. 

Insert Figure 1 Here 

Notice that the concept Sally is represented by the node SALLY, and tbe 

concept Woman by the node WOMEN. Since the information that Bally is 

a woman is contained in the graph, it is desirable to have a node rep­

resenting that entire concept. This is accomplished by the convention 

that every arc has associated with it a single node called the circ~ 

stance of that arc, which is drawn as a triangle touching that are, aDd 

whose meaning is, roughly, "the idea that" that arc exists. For ex­

ample, the triangle 1 in figure 1 is really the circumstance node of the 

arc SALLY e WOMEN, and it is interpreted, "The idea that Bally is a 

woman". Triangular nodes are propositions; generally, tbey are prop­

ositions concerning the existence of certain relationships between 

certain concepts. We reserve circular nodes for tokens. As waa noted 

befare, occasionally a node w.ill be used as both a proposition and as 

a taken; in such a case it i8 written as a triangle and its kind is 

determined b1 context. 

Rules in the Model 

To be able to reaac,n, the model obviousl1 needs IIlOre thaD ·the 

seven axiOlis stated earlier. Because human beings generally reasoa DOt 
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~ r~l loglca~ deduction, but by ·common sense- reasoning, analogy, 

iDduction, and plausible inference, the consequer.ce relationship denoted 

~7 the 8 arc between propositions is not deductive implication; it i8 

called instead a "rule" to suggest heur1Btic reasoning, as in "rul.e of 

ttu.b-. Rules are propositions l!'l the graph like any other, and are 

aubJect to hypothetical formation and verification. They are the "back­

Ib08- of the araph, for they provide the prine.ipal ability to reason 

about tbe universe in a flexible manner. Important char.cteristics of 

rules are that each must be well.-defined, but several rules may mutually 

conflict. This allows the model to be self-inconsistent, unlike a con­

ventional 108ical system, b~t much like a human being. While the seven 

axiCIIII and their coro::ar~.as are independent of the information in the 

sraph, rules are themselves part of the graph, and can be used and changed 

durina processes of hypotheSiS formation and verification. The model 

can represent rules in its graph, end utjlize them to enlarge the same 

graph. Rot every application of a rule is expected to draw a valid 

conclusion, rather, rules ~hou.l.d be useful heuristics fnr generating 

and testing hypotheses. 

Two new kinds of nodes must be introduced to assist in substitution 

and detachment. A ~ node is one which is a variable in the ante­

cedent of a rule; it must be sutstituted for by a normal node. A 

creative node is one which specifies graph-enlarging in the consequence 

of a rule; it results in the creation of a new node during detachment. 

In the graph~ formal nodes are denoted ~y drawing a diameter inSide the 

circle or triangle, and creative n~es are denoted by writing a C inside. 

Insert f'igure 2 Here 

In FiSUre 2, the circumstance 1 represents the fact that AeB is a 

consequence of BpA for any A and B (heuristically). 

Rule. as Data and as Programs 

It was stated in an earlier section that rules enable a model to 

poDder about what it might think 1n a hypothetical 'ituatiQD b~ rim­
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u1ating itseif. When d~lng t01S, the m~ie1 uti~lzes rules al ~, that 

ii, e7.<!nnatlon oJ! the r:.lles d:i.l'ect,l; tne eX8l11inat"hln and processing of 

other data. But rules can a~s.) t.ecome activated and autonomously create 

new concepts or modIfy c:J.d ;;r:.e<;, l.e., they caD toE: pr(·grall!!~ Thus, the 

same 8ubgraph can be b::.'~n program and 1uta, '1':-.15 c::':Jservation suggests 8 

duality of program and duta A program can t e l'E'garded as a prccessor 

of data and of other pl'q~rarr::;. and a dat·a .i.t r c'" _ :.~ a. a retrIever of 

prccrams and of othH Qat-a. :rle d: ... a:t.it,y cf ;>!"'.i,J am a:1(i data is renected 

ill 8 rela";ed d'ug :~i 't:,y ,:-!~ pro' \. f. S S .,.~g 8 .. 10. !' t- I, f : ': \: d... .. 

s~ ne advan-!:age5 .:··f '"51 'If!. en€' ~a'llf r~pr~S~~'1ra'·.: :·:1 fel programs an4 

data are t'1at pft';:ess:'nl? a.-"] .r:-t"'~I'"\Ia_ :r ',e :a~'ll"d '')'...t ir. T·he sae 

informatlcm base, prr.'p'aml:! ('e.:· ,~ "'·f8·;.C], i::"'/{"-;n:n,,,d, and ::nanged l:Jy 1:he 

m-)d·:·l, and T.radE',~,Ffs i;J ·!t!':·[· ·ti·· .. ':'·~r, (·:'."~./L and ·:Qmput.at.ic"l can be 

accOIIpJ ish~d oy ',ranSff~!'Illa' L:.us wi '.'1 •. 1 a 'eng: • .:- ::l<lmaH!. 

Ru:"el! dUf",r Irem .n;',{,;-c.i'.';'1a ... pr,~!"a~15 ':n ""::i&{S comp.1ters in tilAt 

they are nc~ &eq,..tent:JlI:' •.. ~;":" "'Ja'v!a~ wa~ '". ~bc : .. ':'':6 W(;.~d '~Je to han 

eBen r.L..E' cl)n':jn::a.~:!.V .;;':ar. 'r,E: ':'10;.:1 f····'~n1iT ;:.'.1;; sal: sf'ying its ante­

cedent s, ar,d ',"'if:'n .. rea'·~ .'.e ti '-C!''::?P~ i; 9" :',rdi.'li .... 11;8 ~'G!lseq1..E'nces; 

hcw>!'ver, present..L:'i l.'l~S ~-; ;,f::irr,,,,r pra ~i':a:':" 11cr rt:3.J.ist.ic. Althc'.lIh 

r..tl.es 6"j1)"..ud tJe execl.~.ed,~l pa:r,,:: ".:.., ~J se-o::,ns ~ 1k~~y "bat any Olle rule 

should t.mly :Jpera~E J.~' ~pe:i"i :;'.t.Jar:l'~:,\s • ., .. :n fiJ,uat,~onl:l arE~ .a.e 
ruie r.as just been fcr,T1:). a' Co 1. 9..1d .:.. s ~ (. '-.i" -.( ied ,; n; an observatioa 

is made, and t·r..e Jr.0de:. 1l.~dt ~va ..... ::Il2 ~.'. as a Plo~~'siLv.n; a fact is 

hi'll~v ':har,ed a.(ld ent·ers rre }.Ir.:'s~:·" "(:~'.-:'X'.; (r,,,, m"ol"' .. eni;ers a phase 

of 'ct.:lntemplath:'. 

Rules all.,'w '~he m •. cI< v' mlik·:, ~\ldg!DE'nT..<i r·cc·!j Lf' ::-(servEd evant. ud 

of its om curr"llt state. J'..Isr as ru:'.e:s such as "Wr.>/l Sam te~s me a 

screen pr;tentia:.. 'Jel~~fs. app.rop.!'.iat.e I"LJl.es ::":;\.Ij d "J" ' .. sed to Mtice aD4 

resolve c')llfl:: -:'t,s, tG mall,-; :1;VPC ("esF"s ar.'J.:..t. interpr~~ati C.1B c,t n."'ll'al 

lllnC'..Iage inpu.t, a.nd tr:: cr,l'('s," al1l·~n@ pro:.se:'lr.ed hypC".!leees en t,he ba.i. ot 
eviden.;;", d~rivE:!d fr.)m r:O.lt>.,ar'''· r:~.e;. aud facts. 

*The cJ:u. •• Jhy c. f fa;: t; s cl1ld r ~~.·;s men -:;i(;ut:d en page ~ is a ling .. 1iatic <me, 
While that'cf prQtlI'am/pr,:.:!;l>S.l:lf! 1C1d da,s/nt.neve is a functional aM. 
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!be calequeace of a Nle can be a Dft rule. 'l'bus, the IIOClel CaD 

...... tile repertoire at ita rul.es as well .. that or its bellets. 

hI' aepreseataUon 

TIle directed cra:ph lI04el can be evaluated Hst ei tber ~ inveat. 

il&ttac ~ behavior to aee it it diSpl~s the characteristics of tbe 

.a.l, or _ usiDi the aodel in a siln1l.ation of huan cognitive activit)' 

to lee it it diSpla¥s the ebaracteristics ot a buMaD. rbe present pa,.r 

w1ll di.eua. the latter eour.e, becau •• it can be performed by the 

rel1 .. 1e technique ot interviewing a computer, while the former coura. 

~e. dependence upon interviewers and subject., with the aSSOCiated 

1Dterterence cau.sed tty interpersonal. relationships and unreliable 

:re8pCDaea. 

ODe w~ to represent a directed Iraph .tructure such as that used 

1D the IIOdel will be preaented here. Each node in the graph, incl1&diJII 

all eireuastanees ot arc., will correapoDd to • record . table) in a 

raadQa.aecea. memory. The record tor the node N will have the tollowiDl 

ti.~ (attributes): 

Il2Ol (DOra&l, tolWll., or creative). 

nPI (t it a token, e, a, or p if a proposition). 

CINGE (0-100). 

LOIaIVITY (0-••• ) 

lIHIBITIOlI (0-100) 

OPIRATORS (a list of directed arcs touch!na R). 

DICHD!IORS (Il list ot the nodes att.inable via OPERATORS). 

FOr propo.itions ~ ••• 

SlaB ({ffirm~tion or nelation). 

CltEDIBILITY «()"100). 

POOlIDATIOB (0-100). 

IBTmISITY (0-100). 

Tbe ares need not be repre'ented .inee their eircuastance node. are 

represented. 

There are two ~. to look at a p'aplJ: locall¥, and ,lobal.ly. 

LocU eDII1natiClll iI9l1ea that e~t1on beiliu at acae node, &DIll 
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proceeds on.l¥ by followinc the ares (ift eitb8r direetion) that tOllch that 

node. Global examination requires "stepping back" f'rom the sraph and 

looking for patterns. Both kinds of examinations are usetul, but .ost 

functions can be performed satisfactorilY by local examination, so this 

method ~a adopted in ~he present research. 

Beginning at a node N, there are several possib~e connectiona that 

can exist to arcs ~hat touch it. 

Insert F~ gure , Here 

An arc can be thought of u having three positions at which nodes can 

touch it: the tail, the center, and the head. Thus the arc in ficure , 

which means NeA has N at its tail, K at its center, and A at' its head. 

If the three positions are numbered 1, 2, anc " we can designate the 

process of traversine the type e half-arc from N to K by an operator: 

e12 

In general, if r is one of the re~ations e, 8, or p, the possible oper­

ators to traverse half-arcs of type rare; 

r12 (tail to center) r2l (center to tail) 

r23 (center to head) r,2 (bead to center) 

Operators can te strung out and applied successivelY to.'. node to reach 

any other node_ For example, one operator strine to reach V from R in 

figure, is 

(p21;p32 ;512) 

It is useful to define a multi-valued function. ("via") wbose argument. 

are a list of nodes and an operator strial, and whose value is a lilt or 
all nodes attainable from the arcument nodel by appl~c.tion to .ach ot 
the successive operators. In filUre 4, 

Insert Ftcure 4. Here 
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Operator strings proVide a limited means of looAiQg tor patterns in 

a crapb without resort1nC t;o s10bal examination. We cQ.!:onceive of 

"tactortas" a graph into 1ts structure and its content. Thus, the sub­

graPB ot r~lUre 4 which consists of the path a~aring horizontal from 

B to M bae content BPGQK and structure (s32,s21;p32;p2l). 

The nodes attainable by single operators from N will be called the 

neiahborl of N, The list of neighbors of N is inclllded as a field 1ft 

the computer's record of N. Corresponding to this list is a list of the 

re.pective operator. via which the neighbors are attained. For example, 

the operators and neighbors lists of G 1ft figure 4 are: 

(112,p32,e12,e12,s~2) 

( P , Q , R , U , V ) 

It G i- in fact a normal token with average charge, age 20 units, and 

inhibition 10, the complete record of G will appear: 

J«)DE : normal 

TYPE: t 

CHARGE: 50 

LONGEVITY: 20 

INHIBITION: 10 

OPERATORS: (-12,p3£:, e12, e12, s32) 

NEIGHBORS; (p, Q , R , t: .. V ) 

Graph Searching 

Bow, suppose it 18 required ti') find a node x which bears a certain 

relationship R to R. If R can te expressed as a set. of passitle operator 

.trines B1, .. "., Bm' then the 801m: ion is theoreticaily obta.ina.ble by 

caaput1n& (Bl&:B1, .... , (N)r.Bm in whose 1JDion U any node w111 suffice as X. 

U could be empty, in which case there is no solution X, or it could have 

one element, in which case tl".e solut ion is unique, or it cO".J.ld provide 

multiple solutions, of which we c:)IJid choose anyone. 

The dlsadvantage of this th~o~etical solution is that, on a 

cOIDplter, when th~ "?pc:rator strings become :relatively 10Di (say, ten or 

twenty operators) ttle l. funct ion tEcgins to become slow be"auBe many path. 
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match the first few operators but fall out of contention later; although 

th~ will not contribute to a solution, their paths must be folluwed out 

until they "die". If the computer were capable ot parallel processiD£ (as 

future computers will increasiDgly be), all paths radiating frOll1 N could 

be traced si1DUltaneousl.y, and no time would be wasted. But with seCluential. 

processing, methods must be found to minimize the search time if an 

efficient Simulation is to be possible. 

Three basic methods are available for graph searching on a 

seCluential machine. The standard method of recursive tree-s~arehins can 

be adapted to graphs; this w111 be called II depth-before-breadt.h" • 

ConSider a person lust in a ferest stumbling upon an intersection 

of two deserted roads. He thinks there is a town a few miles away, and 

that there may not be another for hundreds of miles. Unfortunately, he 

has no way to tell ·,.,l':ieh road to follow. So he sets off on one road, 

lea~.,.g a mark in the ground at the intersection so he will remember 

that ;le has already tried this route in case he is later forced to 

backtrack. If he encounters other intersections, he again chooses a 

route and leaves a mark. If his first choice gets him to the town b:y 

sundown, all is well and good. However, if he walks several miles, be 

might decide that he has chosen the wrong route, and w111 backtrack to 

the nearest marked intersection. If there are &Qy reads from th1& inter­

section he has not :yet tried, he will mark them and try them out. Other­

wise, he will asain be forced to backtrack, etc. Eventually, either be 

will have reached the town or w11l have tried every route out to a 

certain radius from his starting point. In the example 1n F1sure 5, 

Insert Figure 5 Here 

the walker started out the wrona way, and exploited muy uule .. patba 

before dilcoveriD& the tmm. We call thil "depth-before-breadth" becauae 

t;e always searched as deeply down a path as he ever would before back­

trackins and broadening the search. 

low in a cOIIlp1ter traciD£ through a graph, it takes OIIe unit ot 

processor time (say, several 1II1.11isecooda) to traver •• a halt-arc frca 



OM DQde to aaother 1D the forward aearchiDI direction, cd a cOJ»latct 

_ller ait ot time to backtrack tran a dead end to the preced1Da node. 

'ro .1apl1ty atter., suppo&e one forward .tep takea 10 1118 and one back­

varela atep taus 5 ... 1'ben the search anUasous to figure 5 VCNld 

tab 155 ... 
. ~ HCca4 .thod ot aearchin& we ('all "breadth-before depth~. 

'fbi. _tbad 1Dvolvea examination r..f all node. one step awq, then all. 

1IDC1e. two .tepa av~, etc., until a solution is found, or a certain 

~ of It..,. bave been tried. ThiB method is not avaUable to our 

lo.t traYel.l.er, which ~ht explain why it is used less frequently 1D 

~apb ADd tree-Iearching than depth-before breadth. Figure 6 shows haw 

a .tro. leapfros might search for the town given the saue Situation a. 

iD Fipre 5. 

IDaert Figure 6 Here 

'lh1' method requirel DO backtrackiDC and no recursion. In thi. particular 

cue, ten .tepI are neee.I&!7; it they- take 10 1118 each, the aearch will 

cODClu4e in 100 u, a. caapared to 155 tor depth-betore-breadth. 

'l'be euaple. 1.D t1.p.rea 5 and 6 are DOt proof. that breadth-betore­

depth 11 a auperior method to depth-betore-breadth. It is otten the 

c .. e, boveYer. tbat breadth-before-depth i. better when the DOde beiDs 

IOUtIht i. rel.t1vel¥ cloae to the startilll po1Dt and. i8 a unique 101-

utiOJl, but vor.e when there are multiple solutions, all distant trca 
the ItartiDC point. III richly caanected grapha, the a1tuation becQIIIe. 

IIOl'e cCllplicated, McaUie loopa can exist and. the lame paths searched 

repeatedly, which ~ or ~ not be d~airab1e. 

The th1rd IICthod ot aearchiDc misht be called the Ibnte Carlo 

approach. Sbart ..... nt. ot paths in the ~aph are chosen at randga, ad. 

~ atte.pt i • .-de to tit the .esaent. into the ~rator stri~ 

.everal 'eplent. that are adJacent in the graph beCaDe adJacent-when 

c~ed to the operator atrillg, they' are pre.erved .. highly l1kel¥ 

eand.1dat"j others U~ eventually diacarded. V.n,at10111 on this _tbod 

... JDOre reaaoa&ltle: ODe Iood ooe would be to aearcll r .... ~ tor & 
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se,.ent matching a substring near the middle of the operator string, and 

then to search from the middle to both ends. The value of such techniques 

has not been studied. 

Graph Matching 

It i9 often desirable in precessing a graph t.:) locate a sub graph 

R which has the same structure as a given s~bgraph Q. For example, an 

input proposition may be evaluau;d and comprehended by finding relevant 

beliefs in the graph of the model. 'fhlS 1S the kind of problem that 

seems beat solved by global examination; hO'<lever, the local examination 

techniques presented here are sufficient. 

One necessary step to take before tackling a matching problem is 

to delineate the subgreph whi;::h is to be matched. One way to do H,is 

on paper 1s to dra'<l a "cirCle" enclosing just those nodes and arcs which 

bp.long to the subgraph. In local examination, this is not a very good 

approach, because there is no natural orientation that c~n be given to 

the subgraph so that it can pe ~asily compared with other subgraphs. 

Also, computer representation of such boundar:t.es is not conveniently 

accomplished. 

The present method takes adv'1n1:age of the fact that nodes in the 

graph all represent concei'ts f()r '<Ihich it is desirable to maintain a 

method of eXI>resslng their mee.m.ng in a natural linguistic manner. The 

graph is constructed so that such an interpretation is always attach~ 

t,) each node (see figs. land 7). Furthermore, it takes advant.age of 

the fact that, in general, subgraphs that are to be matched expresa 

concepts in a natural linguistlC manner, and so the structure guarantee. 

that there is a node in the subgraph that uniq~ely defines its boundaries; 

thil node will be called the ~ of the subgraph. The graph-IearebiDS 

problem then reduces to (.ne of hook-matching, which has a Simple local 

examination solution because the subgraph becomes a tree with ita book. 

the roo~ and arcs directed away from the hook the branches. 

In most cases, the graph-searching problem ba& restraint. that 

make it even easier. For example. in order to use a rule whieh inelude. 

at leaat one normal node in the antecedent, a propo.1 tl",n "lust be UJ'l4er 
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conSideration that contains ~ne normal ncde with the same role in the 

structure 'Jf the proposlt lGn that it has in the Et ructL:re of the ante­

cedent, From the precedir,g paragrA.ph, 1 tis det"'l'lJIined ~hat ~he hook 

of the propositlon must l:.kewise have the same l'Ole in the structure of 

the prOpositIon as the ho,~k of the ancecedent naB ie' "ts structure. 

Thus, we have two sutgraphs wlt.h al. least one nodE 1:1 c:)'JIllon, and the 

problem is, startlng at thE; I;:)ok of one, t.o fini the, !D.>k of the other 

~if any) 

An example of rhI;; prct·.1em J s shC'wn 1n Flg~:~e 7 

insert. Flgure 7 Here .. 

The slltgraph on tne nght has hook B l~ means, 1 i'.erally, JOHN' is a 

member of the set: (a member of the family of TOWARDS, belonging to (a 

Plember of the set of FEARS, belongj ng 1::: SELF»); ie, John is one of wbat 

self's fear is ! owards, cr, Self fears J:)lm. When a sp.ntence can be 

put in the form 

P does/has Q R T 

where P IS the SUbject. Q the nO'.Ul form of tne vert', T a preposition, 

and R its ()bject, it usually can be represented as sn.-,wn in Figure 8. 

In3ert Figure 8 Here 

Since English does net prec~de dIrect otjects of ver~s ty a preposition, 

we can invent one called D.O 1;',) that sentences .Like ~~OtiN HlrS SAM can 

be encoded from JO!rN DOES HIT D C SAM. 

Ret.urning to figure 7, the h·ft side of the f1b'.lre tlas a main .. ub­

graph with hook at F which is a rule. The anteced<;!nt vf ttle r1).le has 

its hook at A, and it 1S read,. '~AFS Y. ThE consequE:'nce has its hook 

at D, and l.t 1S read, V AVOIDS Y. Tbus, F is read, IF V FEARS Y THEN V 

AVOIDS Y Since the nook B on the right side says SELF FEARS JOHN, we 

should be able to c0nc.i.llde toy autcslmlllat.ivn that SELF' AVOIDS JOHN 

according to this rule. SEl" FEABS ,.TOHN can easily tie matched with V 

FEARS Y because of the symmetry of operator strings about the common 

nodes FEARS and 0 O. 
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Su!mary 
The representation described in th~s paper has roany features in 

common with recently developed que3tion answering programs (Refs. 1-12).:. 

We have attempted to generallZe these approaches for use in belief 

systems in t.he following ways. First) the logical inference system has 

been expanded to allow non-dedu.ctive inference, including analogy, 

plausible inference, L1J.uct!ve lnference, and medal L)~ic. Second, 

the data base represent.ation has been generalized from property lists, 

trees, and triples to a more ge.ner~l directed graph with a compact 

representation, extensive r.l<..hn~ssJ and a parsimony of forms. Third, 

the ability to add new relations in a Simple and consistent manner hall 

been achieved, that is, the graph can build new relations between con­

cepts USing only t.he t.hree baSic arcs, other previously formed concepts, 

and simple tokens. ~estion answer.lng programs have shown the vaJ.ue 

and feaSibility of inf~rence programs, consolidation and generalization 

of these Ideas provide an effer:-tlve and general representation for 

beliefs and makeS possible the modeling of h~an mental processes. 

We have de seT it,ed in d~tail a directed graph sui table for computer 

representation of da'!.a charact.enstic of belief systems. This graph 

constlt.utes a formal structure capao:"e of abstractly representing the 

great variety of semanTic rej,ationshlps found in human concept and 

belief systems. We telleve 1t IS sufficiently general to proVide a 

way of representing data-bases of very large memory structures. 
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