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(il. Vector Spaces

We summarize some basic concepts from linear algebra. A

VECTOR SPACE 'K -&ER A FIELD K- - - - - - 0.1)

(denoted 1/K) is an abelian group of,+) --the zero element being

denoted by +$- or simply 0 --with K as a multiplier field; i.e.,

with a mapping K X 2/ -+Y (SCALAR .MuLTIPLIcA~IoN)  satisfying

bB E K; x,y E ‘k a(x+y) 7 a x + a y

(a + p)x = a x + p y

(a f9x = a(p x)

lx = x-s.

x e Y is called a

VECTOR. O-2)

a E K is called a

SCALAR. 0*3>

Examples:

(i) Let (If,+) be the additive part of a field K . Then vK

is a vector space over K with multiplication in K as a

scalar multiplication.

*(ii) Let 11 7 Kn be the n-fold direct product of K; i.e., the

set of all ordered n-tuples of elements of K . We may write

them columnwise.

: ai E K, i = 1, 2, . . . . n
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Define + over 11 componentwise in the sense of K:

Then (V,+) is an abelian group with the zero element +/P =

Let scalar multiplication be defined by components in the

sense of II:

Then YK is a vector space over K . It will be denoted

Kn . Its elements in the representation given above are

called COLUMN VECTORS .

(iii) Let C[O,l] be the set of all real-valued functions defined

and continuous on the closed interval [OJ] . For

fl' f2 E ao,11, define f = fl + f2 by

f(S) = fl(E) i f2(5') v 5 E[O,ll

Then C[O,l] is an abelian

$- (5) s 0 . For g E CW,l

group with zero element $ :

3 a-% define f = a g by

f(5) = a g (9 ‘d 5 W,ll

Then C[O,l] is a vector space over R .

[Note: The sum and multiples of continuous functions are continuous].
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Example (ii) and Example (iii) are special cases of vector spaces

obtained from a field K by forming ordered sets of elements,

ordered according to some index set (the set (1, 2, . . . . n) of

natural numbers and the set [O,l] of real numbers respectively).

In Example (iii) moreover, an additional property is postulated

(continuity) which is hereditary under the componentwise operations.

A subset 2(1 of a vector space 11
K

is called a

SUBSPACE OF YK
- -

if it is a vector space over K; i.e., if

-=. x,y E If1 > x + y E Y 1

or equivalently,

~a,+K: ⌧,y E If1  > a ⌧ j- f3 y E v1 l

ax+By is called a

LINEAR COMBINATION

of x and y .

(1.4)

0.5)

. A subset M of a vector space 11 is called a
K

K-BASIS OF 1/K or simply a BASIS OF '$ (1.6)
- - - -  -

if any x E 1/
K

is uniquely determined by some (finite!) linear

combination (x = 5x1 + +x2 f . . . + arnxrn) of elements of

M (xi E M) . For Example (ii), the axis vectors

3



f

are a basis for K
n

.

If 'VK has a

FINITE BASIS, 0.7 >

i.e., a basis formed by a finite number n of elements, then every

basis has n elements and these elements are K-linearly independent:--.

ai E K, TX, + . . . + anxn = 0 > 5 = c$ = 6.. = an = 0 .

n is called the

DIMENSION OF VK 0*8)
- -

(denoted dim(VK) ) and IfK is isomorphic to .KT . ..' '

. In Example (ii), the dimension of Kn is n . We call Kn an

n-DIMENSIONAL COORDINATE SPACE. (1.9)

In particular, we shall consider Rn and C", where R is the

real field and C the complex field.
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$2. Normed Vector Spaces

A set M is

ORDERED BY Am-

if there is a relation

the properties:

TRANSITIVITY: x

REFLEXIVITY: x

ANTISYMMETRY: x

RELATION Q or p-ORDERED (2.1)

P over M X M, an ORDERING of M, with

PYA y p z >x p z v x,y,z E M (2.2)

PX VxcM. (2.3)

PYA YPX,X =y Vx,yEM (2.4)

An abelian--.group  G = (M,+) is a

p-ORDERED GROUP (2.5)

if the ordering p of M is compatible with the group composition;

i.e., if

apb>a+x p b+x Va,b,xEM .

An element of G is

NON-NEGATIVE k-7)

if Opx. An ordering p of M is

LINEAR

(2.6)

(2.8)

if it has the property

XPY" ypx Vx,yEM .



If the ordering of an ordered group G is linear, then G is a

LINEARLY ORDERED GROUP . (2.10)

Examples:
. .

( 1i The family of all subsets of a given set is ordered, the

ordering being set inclusion C : XCY:#pEX.pEY.

It is not linearly ordered.

( >ii

(iii)

The set of natural numbers has a linear ordering, usually

denoted by < .C.

The additive parts of the ring'of integers Z, the rational

field P, and the real field R are linearly ordered

abelian groups for the ordering usually denoted by < .--_ -

( 1iv Let K be a field, the additive part of which has a

linear ordering C (e.g., P or R) . Then

XPY:E xiIyi, i=l, 2,...,  n ( 2.11)

defines an ordering p in Kn (COMPONENTWISE ORDERING);

The additive part of Kn is a p-ordered abelian group.

For n > 1, however, the ordering p is not linear.

Nevertheless, we shall use the conventional sign < to

denote this ordering; i.e.,

xiy:#c. xi 5 yi, i = 1, 2,..., n ; x,y E Kn (2.12)

In accordance with standard practice, we shall use < to

denote strict inequality; i.e.,

X<Y :# xi < yi, i = 1, 2,..., n ; x,y E Kn (2.13)

Note that x 5 y and x + y together is weaker than

x<y.



Furthermore, we shall denote by 1x1 the vector whose

components are the absolute values of the components of x :

I Ix := xEKn . (2.14)

A functional over a vector space Y with values from a p-ordered

abelian group G, i.e., a mapping v : 'V + G, is a

NORM (2.15)

if it is --,

SUEMDDITIVE: v(x+Y) P v(x) + v.(Y) V&Y E y (2.16)

NON-NEGATIVE: opv(x) VXEY (2.17)

DEFINITE: x = + 3s v(x)=0 . (2.18)

Examples:

(i) Let K be the primitive field of characteristic 2 with

elements 0 and 1 . Define a function v over Kn

with values in the < - ordered abelian group of integers-'
by:

x1

If x= x2

:I

has k components which are 1,...
X
n

then v(x) = k . (2 l 1-9)

Then v(x) is a norm, the "Hamming norm" of coding theory.



(ii) In Y = Rn or Cn, the

TSCHEBYSHEFF NORM. or MAXIMUM NORM, (2.20)

with values in R is defined by

v(x) := max \xJ .
l<i<n- -

(2.21)

(iii) In Y = C[O,l], the Tschebysheff norm with values in R

is defined by

v(f) := max(f(E): 0 ,z 6 5 11 l

--.
(iv) In 11 = Rn or Cn, a norm with values in the vector

n
space G = R , ordered componentwise (2.11), is defined by

v(x) := ‘xl . (2.22)

We will refer to this norm as the

MODULUS NORM ("BETRAGSNORM") (2.23)

n
of R or C

n
. For n = 1, it reduces to the simple

absolute value which is a norm over the vector spaces R

and C .

In a normed vector space with a real norm, a (unsmetric) distance

: is induced by

d(x,y) := v(x-y) . (2.24)

It has the properties:

TRIANGLE INEQUALITY: d(x,d 2. d(x,y) + ~(Y,z) (2.25)

NON-NEGATIVITY: - 0 2 d(x,Y) (2.26)
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DEFINITENESS: ax, Y> =o 3% x=y (2.27)

Proof: d(x,z) = v(x-z) = v( (X-Y) + (Y-4 1 5 4x-Y) + V(Y-4

= d(X,Y) + qY,z)

In particular, 'x # y > d(x,y) > 0 l If the norm is

SYMMETRIC: VW = v(x) (2.28)

then the distance is

SYMMETRIC: d (x, Y) = d(Y,X) 9 (2.29)

and, by means of the distance induced by the norm, the vector space Y--.
becomes a topological space, the topology being based upon E-

neighborhoods

u,(x) = CY: , ,d(x,y) < sl

Moreover, the distance is

TRANSLATION-INVARIANT: d(x+a, y+a) = d(x,y) . (2.30)

Conversely, a distance which is translation invariant induces a norm

by means of

v(x) = d(x, 9:) . (2.31)

Examples:

. (i) The usual distance in Euclidean geometry

variant under translation, furnishes the

and best-known example of a norm. The

EUCLIDEAN NORM,

which is in-

most important

(2.32)

given by the distance from the origin, is the natural

norm of the vector space of Euclidean geometry. In an

9



isomorphic coordinate space of dimension n it is given

v(x) = ( i xp x E R"
i=l . .

v(x) = ( f ‘xJ2$ XEC n ,
i=l

(ii) In Manhattan, the distance a car has to travel from one

place to another is the sum of the distances along the

streets and the avenues. In Rn or Cn, the MANHATTAN

DISTANCE is

dbby) := x1-yl I I+ x2-Y21  + l * *  +  lxn-Y,l (2.34)

The norm in Y = Rn or Cn induced by this translation

invariant distance, the

MANHATTAN NORM, or SUM NORM, (2.35)

is defined by

v(x) = E ‘Xi’ .
i=l

. A mapping qx VR X vR 4 R of a vector space vR over the real field

R isa

SCALAR PRODUCT b37)

if it is

SYMMIZTRIC:

BILINEAR:

DEFINITE:

cp(X,Y) = cp(Y,X) (2.38)

‘Pblxl + a2x29 Y> = yP(Xl,Y)  + cu,cp(X2,Y)  (2.39)

x # $> q(x,x) > 0 (definite on the diagonal)
( 2 . 4 0 )
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A scalar product defines a norm, the

SCALAR PRODUCT NORM, (2.41)

v(x) = [c&,x) ,* . (2.42)

The scalar product norm of a linear combination 0~ + By can be

expanded using (2.42) and (2.39) as

v2 b+BY) = a2v2(x) + 2m(x,y) + p2v2(y) > 0 . (2.43)

For a = v(y), p = -cp(x,y)/v(y) we obtain

--.
V2(X)V2(Y>  - cp2hY)  10 )

whence

SCHWARZ-BUNJAKOWSKI INEQUALITY: ldX,Y>  I 5. VbMY> (2.44)

The cosine of the ANGLE a, 0 < a < a, between x and y may there-- -
fore be defined by

since
I-*� I IL l

A scalar product norm has the additional property (see(2.43))

.
PARALLELOGRAM EQUALITY: v2(x+y) + v2(x-y) = 2v2(x) + 2v2(y)

(2.46)

The scalar product is reproduced from the norm by

9 bb Y) = $[v2(x+y) - v2(x) - v2(y)]

= 3[v2(x) + v2(y) - v2(x-y)] (2 947)

= $?(x+y) - v2(x-y)] .
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Moreover, any norm v for which the parallelogram equality holds

defines by (2.47) a function which is a scalar product (fxercise  1)

and therefore is a scalar product norm, v(x) = ~cp(x,x)  lZ l

A normed vector space with a scalar product norm and hence a scalar

product is a

HILBERT SPACE o (2.48)

In the vector space Rn, any scalar product cp(x,y), being a sym-

metric, bilinear, definite functional, can be written as a symmetric,

bilinear, definite form in the components of x and y, i.e.,

--. cp(xtY) = gTAy (2.49)

where xT is the transposed vector x and A is a symmetric,

positive definite matrix of order n . Consequently, any scalar

product norm v can be written

v(x) = (xTAx)” (2.50)

The Euclidean norm is a special case with A = I .

Exercise 1. Let g(x) be a real functional over vR such that
.

Show that

dx+Y) + /d-y) = 2g(x) + 2g(y) .

.i(g+$+z) - g(x+y) - g(y+z)
- dz+⌧)  + g(⌧)  + g(y)  + g(z) = 0 l

Let furthermore $(x+y) := &g(x+y) - g(x) - g(y)1 .

S h o w  t h a t
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§3* Homogeneous Norms

Very often, the range of a norm is not only an ordered abelian group,

but a field (such as the real field in some of the examples in $2) or

a vector space (as in Example (iv) of $2) with an ordered additive part

such that non-negativity is preserved under suitable multiplications.

By way of definition, a field Ko is a

LINEARLY po - ORDERED FIELD (3* 1)

if the additive part of & is a linearly po - ordered group and the

ordering po is compatible with non-negative multipliers:

V-a, p, y 6 Ko : Op,QrABPoY.CrBPocYY (3.2)

In particular,

Since we have a linear ord,ering and a po 0 > 0 po (-a)

VTaKo: 0 PO a � 0 po (-a) l

. Since (-c~)~ = cY2, squares are non-negative and, in particular,

1 = (1)2 .Op,l.

As a consequence, the characteristic of a linearly ordered field cannot

be finite:

Moreover,

-1op,aAa#o~op,a,  ; (3.4)

13



otherwise,

-1
Opoar\a fk0~lpo0,

a contradiction. -l. -1Furthermore, from Cr - /3 = Q-'&3 - Cu),

Op,aAcr#OAQo~>~
-1 -1

f&G’ . (3.5)

The rational field P, the real field

algebraic numbers are linearly ordered

< - ordering.

R, and the field of all real

fields with the conventional

Similarly, a vector space G over a linearly po - ordered field &

is a --.

P - ORDERED VECTOR SP.&C!E (3-6)

if the additive part of G is a p - ordered abelian group and multi-

plication by non-negative scalars is compatible with the ordering p :

v a e Ko, x,y E G: O~CYAX~~*CUP~Y- (397)

In particular,

.
VacKo,xsG: OwXA$px>$p~x. (3W

Examples:

1 (i) Rn is a p - ordered vector space over the linearly < - ordered

field R, p being the 5 - ordering of (2.12)

(ii) C[O,l] is a p - ordered vector space over the linearly 5 -

ordered field R, p being defined by:

f P G :# f(S) 5 G(E), V 5 c[O,l] .

14



If

P -

Ko

Yx
is a normed vector space and the range of the norm v isa

ordered vector space G over a linearly po - ordered field &,

a subfield of K, then it makes sense to define

HOMOGENEITY: v a 8 &I, ⌧ 8 If: �0 po cy * V(cY y) = a v(⌧) l

For homogeneous norms, (2.17) and (2.18) can be replaced by:

POSITIVE DEFINITE: V x e Y: x # 0 * 0 p v(x) A v(x) # 0

Proof:

From homogeneity with a = 0,

v(f)  = -Y(O l ⌧) = 0 l v(x) = 0 ; i.e., x = +> v(x) = 0 .

From positive definiteness,

In

v(x) =0*x= +-

giving (2.18). This and positive definiteness give (2.17).

Rn and Cn, the Tschebyscheff norm, the Euclidean norm and other

(30 9)

(3.10)

scalar product norms, the Manhattan norm, and the modulus norm are all

homogeneous. We shall assume homogeneity in succeeding paragraphs and.
shall speak simply of norms if G is a field (mainly the real field)

and of VECTORIAL NORMS if G is a vector space of dimension greater

I than 1 over some field (again mainly the real field).
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$4. Linear Mappings.

A

LINEAR MAPPING, (4J)

i.e., a mapping cp of a vector space 1/K
into a vector space VK is

called a VECTOR SPACE HOMOMORPHISM if

v a> p 8 K, x,y 8 uK: da X + p Y) = (x q(X) + @ q(y) ; (4 *a

is compatible with linear combinations. In particular,

The image cp(vK) c 1/E; is itself a vector space, a subspace of If; l

cp induces a SURJECTIVE (onto) linear mapping of YK onto cp(V,) .

However, since we frequently consider homomorphisms of a vector space

YK into itself (END~M~RPHIsMS), it would be impractical to restrict our

attention to surjective mappings only.

Let cp be a linear mapping of vK into VIK . The set

Ker cp := {x e YK: cp(x) = q}

is a subspace of UK the KERNEL of cp . [Note that $ c Ker cp;

O(x) = 9 A T(Y) = 4 + da x + p y) = CY v(x) + m(y) = $1 .

cp is INJECTIVE if

rp(⌧)  = dY> * ⌧ = y l

Equivalently, cp is injective 35 Ker cp = (@) . [Note that

cp(d = V(Y) # cpb-Y) = dd - T(Y) = tp ;
(cp(z) =+ z-= $1 # cx G uK:q(x) = $3 = (+) 1'
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cp is ONE-TO-ONE if it is both surjective (every element of '5 has at

least one preimage) and injective (every element of YK has at most one

preimage). Such a mapping cp is called a REGULAR mapping or'ISOMORPHISM.

If Ker cp = ($-}, then the induced linear mapping @:YK -Cp(vK) is an

isomorphism. The set of all linear mappings of a vector space YK into

a vector space '/E;' denoted

Horn cuK’ ‘I;> (4.3)

is itself a vector space over K with addition and scalar multiplication

defined by

= cry :s q(x) = a y(x) f VXG UK’ (4.5)

The zero element of Horn (V,, "I;) is the zero mapping 0 : O(x) ~9 .

If YK is just the field. K itself, the mapping cp is called a

LINEXR (K - VALUED)

and we write

The zero eleent of Yz is the ZERO FUNCTIONAL +D:+D(x) = 0 9

Example:

The dual vector space of

FUNCTIONAL OF vK
- -

the coordinate space Rn is the set of

all linear functionals

m

rp(x) = 1,⌧, + P2⌧2 + . . . + lnXn l PX,

where I T = (Ll' “‘,: ;* l ☺ In) is called a ROW VECTOR. In this

representation, CR > is again a coordinate space of dimension n

over R l

17



$5. Subadditive Functionals Generated by a Set of Linear Functionals

Linear mappings are trivially seen to be subadditive and homogeneous but

not definite. We shall use supremum constructions which preserve sub-
. .

additivity and homogeneity to generate functionals that are non-negative

and even definite. We first turn our attention to the case where K is

the real field R and G
Ko

coincides with K, i.e., the real field.

Thus, we discuss real-valued functionals and norms of a vector space 1/

over R .

In thelinear@ordered real field R, the supremum of a set of elements

is defined for bounded, nonempty  sets. To remove these restrictions,

we form the EXTENDED REAL FIELDa- - R* = [R, + a1 - a] and define

sup R = + ~0 ; sup $8 = - Q) (50.o
inf R = - ~0 ; inf pl = + 0)

where $ denotes the empty set. The < - ordering of R* is that of

R, supplemented by

Theorem: (5-2)

. Let S = P = Horn (1/, R) be a set of linear real-valued function-

als of a vector space U over R . Then

. Y&d := sup(cp(x): Q> 8 s] (5-3)

is a subadditive, homogeneous functional (sometimes called a GAUGE

FUNCTION) over 1/ with values from extended real field R* .

0 Note that m is not a field: (+ 4 + (- 4 is not defined.

18



Proof:

Ys(x+Y) = Ap(cp(x+y) : cp c

= SUP~rpbd + cp(Y) :

5 SUPhhd : cp E s

Sl

cp E a

1 + SUPkp

= Y,(x) + Ys(Y) --

. .l Y,(X)
is subadditive.

(Y> : cp c s>

Y,(arx) = sup(cp(ax): cp e S)

= supb cp(x) ". cp E sl

= a sup@(x): cp E S) for a>0

= a Y,(X)

' Y&l. . is homogeneous. Q.E.D.

To be a norm, y;(x) must also be non-negative, definite, and real-

valued (i.e., bounded). A sufficient condition for the first property

is given by:

Theorem: (5 04)

Proof: 0 =$"(x) 5 sup{q(x): cp E S} = y,(x) .

A mapping over Y with values from the extended real field R* is a

SEMINORM (5.5)

if it is subadditive, homogeneous, and non-negative. Obviously,

‘d cp E s, x E If: cp(x) 5 y,(x) .

Moreover, some linear combinations of elements of S are bounded by
D

ys l

Let cp,, cp2, l 9 �P, d and a
n

1,a2, . . ..aneR. Then

CONVEX COMBINATION OF cp,, cp,, o*at 'p, (5*7)

19



if O<a
- i

and EL
+ a2 + . . . + a = 1 .

n

Theorem: Let cp be a convex combination of cp,, cp,,

Then

Proof:

Theorem:

. . . ) qys l (5* 8)

v x 8 If: cp(x) f ys(x) .

5 grs(�> + Q!2Ysbd +  l  l  l  +  oI,Ys(⌧)

= (a1 + a2 + l . . + an) ys(⌧)

--. = Y&d l

(5* 10)

If $" can be represented as a convex combination of elements of

St then TV is non-negative and therefore a seminorm.

The converse is not true, e.g., Example (i)(d) below.

Examples:

(i) The following subadditive, homogeneous functionals  ys over

R2 are depicted by their contour maps in Figure 1.

(4 s1 = C(w),  (LO>) Y (x>=
sl

m=4xlj  x2)

b) s2 = CLl>, La, c&l), (22))

Y (xl=
s2

max[xl+x2, x1+2x2,

2x1+x2’ 2x1+2x23

(4 sj = C(+~,>: _ll > 0, P2 > 0, 1; + 1;_ = 1)

Y (4 = (X'L + x2)

1

2ii

Y3
X1’ -> 0, x2> 0

x1
x1- > 0, x2 c 0

x2 Xl- -< 0, x2> 0

max (xl, x2 1 Xl< 0, x2< 0

20
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(d) S4 = ( (ll,i2):  I1 > 0, 1; + 1; = 13

2
x1 29+ x2> x1 > 0

y

I
I

x2' x1 I O

( >ii: : The following seminorms 'ys over R
2

are generated by sets

S which contain +D or a subset, a convex combination of which is

$D (See Figure 2):

(4 s5 = CLO>, (WL (W>] Ys5(x)  = m&y x2> 0)

tb) s6 = ((5,$): 11> 0, L2 > 0, 1; + 1: = 11 u (0,o)j

Y (x
‘6

L

= max(Ysj  bw)

(iii) The following functionals  ys over

values.k All except (a) are seminorms.

R2 have + 03 among their

(See Figure 3):

b) 93 = [ (11’0): 11 > 01

cc>  s9 = C(r,,r,>: ll > 0, l2 > q d
Y

s9 !(4 = + oo

(d) slo = I(r,,O>: ll”R) f+a0
y x=
Rl

( >
0 0

Note that in all the examples, the set

x1 > 0

co
x1 -

x1 > 0

<o
x1 -

x1 5 0, x2 5 0

otherwise

x1 O#

x1 = 0

x1 = 0

otherwise

(5x1

is an intersection of a family of half-planes
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In fact

Theorem: K = n H
P vs CPY P

Proof:

--.
nx E cpcs Hip,p > x E Hql,P9 Vcpd

~cp(X)<_P, vcp ES

> p upper bound for ccp(x) : rp E: a

> P 5 Y,(x) = lub(cp(x) : cp E s>

.xeK
P

Q.E.D.

For p < 0, K
P

may be empty. In particular, K. is a

(5-Q)

CONE,

i.e., a subset of 'V such that

KO certainly contains +I and may degenerate to @I :

Theorem: A seminorm is definite 32 K. = ($1 .

If K. = (4, then

n H

(5.13)

(5 J4)

(5.15)
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i.e., S "surrounds the origin of P ."

A seminorm ys(x). is a norm if it is definite and also

BOUNDED: V x e 'V: -ys(x) < + 00 ~ (5s 16)

A sufficient condition for boundedness is:

Theorem: If S is a finite set, then yS is bounded. (5*17)

In 11 = Rn, ys is bounded if S is componentwise bounded. If ys is

both definite and bounded, we write the norm defined by S as

--. v,(⌧)  l (5.18)

In particular, we can now derive the Tschebyscheff, Euclidean, and

Manhattan norms in Rn from their generation sets. Let
th

e. :=
1 (0 0' ' '0" O,l,O, . . . . O)T e Rn where the 1 is in the i

place. The Tschebyscheff norm is defined by

S = U ☯eT,  -eT} ; V,(X) = ma⌧l⌧i I l

i i
(5-1-9)

The Euclidean norm is defined by

s = {(1,,  . . l � In) : 1; + l?; + . . . + l2 = 1) ;n
v,(⌧)  = (f ⌧2+

i=l i

(5.20)

Proof:

v,(x) = sup[PTx : lT1 = l]

< (xTx$ since by (2.49)

TFor 1 = xT/(xTx)*, lTx = (xTx$ and iT1 = 1 .

:. v,(x) = (x:x$ = ( f - x:,”
i=l
..:
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The Manhattan norm is defined by

S = I(? 1, 4 1, a**, + 111 ; v,(x) = ~ lXil (5.21)
i=l

Proof:

v cp E s: p(x) = f IXJ
i=l

For Ri =
1 Xi>0

{ -
-1 Xi< 0 ' dd = RTx = f IXJ .

i=l

We can now discuss real-valued norms of a vector space Y over the

complex field C . For the supremum construction, we can no longer

use linear functionals of V over C since they are complex-valued.

However, the real part of these functionals is still additive and--.
homogeneous:

Theorem: Let SC VD = Hom(V,C) be a set of complex-valued (5.22)
functionals on Yc . Then

Y,(x) = sup{Re(cp(x)):  cp c S> (5.23)

is a subadditive, homogeneous functional on 2/ with values from the

extended real field R* .

The theory develops further as in the real case. For the Tschebyscheff

norm, the Euclidean norm, and the Manhattan norm, the generating sets are

respectively,

S = u {UeT : ILo1 = 11 (5.24)
i

s = ((a,, a**, 1,): 1q2 + IP212 + . . . + /ln12 =l) (5*25)

S = ((y, cu2, . . . . CD ):
n

lyl = 1, i = 1, 2, . . . . n) . (5 -26)

Before going into a similar study of the case of vectorial norms, we shall

elaborate on the generation of norms somewhat further in order to investi-

gate fields of values and eigenvalue exclusion theorems.
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$6. Replete Generating Sets. Application: Fields of Values and

Eigenvalue Exclusion Theorems.

We shall call the set SC P that--generates ys(x) ( o r  V , ( x )  )

REPLETE 61)

<f I

V'XLV scpss: cpw = Y&4  l 62)

If S is replete, then

--.
Y&d = max v(x);

cpss
6.3)

i.e., the supremum is actually attained.

Not every set is replete; in $5, Example (i)(d),

⌧ = (;I  > d⌧> < Y&L v cp c s l

Whether a set SC? can be extended to a replete set S' such that

* Y&X) = Y& and whether

S' = (cp 8 P : cp(x> 5 Y&L v x 6 v)

.
is replete are subtle topological problems for which no general answers

exist. For finite dimensional spaces, however, the SUPPORT THEOREM- -

(Bonnesen - Fenchel) guarantees that every set S can be so extended.

Henceforth we shall consider only replete sets in generating norms in

Rn and C
n .

On the other hand, a replete set S need not consist of all linear

functionals cp satisfying cp(x) 5 ys(x) . The set
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S = U [eT) -e?J
i

of (5.19) generates the Tschebyscheff norm in R
n as does

Both sets are replete, but the additional elements in S' are convex

combinations of the elements of S and are in a sense superfluous. In

finite dimensional spaces, the set 's of EXTREME POINTS of any replete

extension S',

3 = {cp 8 s’ -: ql,, ‘p, c s’ A cp = (2 cp, + (1 - 4cp, A 0 L Q 5 1

.ql= v1 v cp = cp,lJ

contains no superfluous elements. We shall see in the following applica-

tion to fields of values and eigenvalue exclusion theorems that it is

important to choose the generating set S to be replete yet as small as

possible.

Let A be a linear mapping of a vector space 'V over the complex field

C into itself. The set of all such endomorphisms of Y, Hom(Y, V)

e ((4*3)), is itself a vector space over C and even a ring, multiplica-

tion being composition of mappings. If

Ax = Ax 64)

where x # 0, then h s C is called an

EIGENVALUE OF A--

and x 8 2/ the corresponding

(6.5)

EIGENVECTOR OF A _
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We define the

FIELD OF VALUES OF A- - - - (6. 7)

. .
with respect to the replete set S which generates the norm v,(x) to

be the set of complex numbers

Gsbl := (&4x) : cp E s, x E v, v,(x) = cp(x) = 1) . 6 8)

(+[A] has the property of COVARIANCE UNDER TRANSLATION:

Gs[A + 011 = Gs☯A] + (T = (a + o : Q E GS☯Al)  l (6. 9)

Proof:

V cp e S, x E Y such that v,(x) =.cp(x) = 1:

cp((A + 01)x) = cp(Ax) + q(x) = cp(Ax) + CT .

The field of values of A with respect to such a set S defines an

EXCLUSION DOMAIN for the eigenvalues of A:

Exclusion Theorem: No eigenvalue of A lies outside ($A]; (6 JO)

i.e., if h E C is an eigenvalue of A, then h E GS[A] .

Proof:

Let x f 0 be an eigenvector of A corresponding to the eigenvalue

A . Since S generates a norm, v,(x) > 0 and x' = x/v,(x) is

again an eigenvector with v,(x') = 1 . By repleteness, there exists

cp E S such that cp(x') = v,(x') = 1 . cp(Ax') = cp(kx') = kp(x') =

A l 1 = h whence h E GS[A] .

Q.E.D.

In Y = Cn, A can be represented by an n X n complex matrix, an

element of the matrix ring C
nXn

, and

29



&$I : Xdf, lHX = 1') l (6.11)

Using the generating set S of the.Tschebyscheff  norm ((5.24))'  we

obtain the

GERSCHGgRIN FIELD OF VALUES, (6.12)- -

a union of circular domains centered at the diagonal elements of A :

n
G&A] := u Ci[AI, (6.13)

i=l

tihere

C$A] = (z : Iz - aiil 5
4

lyp I3. l (6.14)
0

Proof:

G&A] = [rHAx : lH,S = u {UJeT : IWI = 1)' xcv, Y,(x) = LHx = 1)
i

= “u {u+x : Ial
i=l

= 1, XeJf, V,(X) = maxIXJ = iy Wzx = mi = 1)

= “u (UE~AX: IUJI = 1, xi=; and
i=l

lxp 1 5 1 for I-L # i]

= FJ (e$x : xi = 1 and
i=l

= t [ aii +
i=l 4Pi

aipXp  : (Xp 151 for pfi)

=
i=l

( aii + lj
4Pi

laip 1 : O 5 r\ I ‘3
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= iC (Z : IZ - &ii1 <-

$

lalCl I3*= P i

= "u Ci[A] . . .
i=l

Q.E.D

Corollary: Let x be an eigenvector of A with a DOMINANT (6.15)
i-TH COMPONENT:

Ix, I ( lxil , p = 1, 2, . . . . n .

Then the eigenvalue corresponding to x lies in Ci[A]  l
0

We also note that Ci[A] reduces to a single point,
T

Ci [AI = (aii)>
if and only if ei is a LEFT EIGENVECTOR of A : e:A = he:; i.e., the

i-th row of A is just Taiiei . Consequently, the Gerschgorin field of

values reduces to n points if and only if A is a diagonal matrix,

these n points being the eigenvalues of A . The following examples

show, however, that one or several of the disks C[A] may be arbitrarily

small without containing an eigenvalue:

Examples: 1 1 e-l
(i) A = I1 2 3E? with eigenvalues 1,4$fi (6.16)

c 3E:6 I _L.

C3b1 = (z : Iz - 61 < 4~) does not contain any eigenvalues

of A for e sufficiently small.

with eigenvalues 2, 2 + fi

Cl[Al = (z : Iz - 11 5 c) and C3[A] = (Z : IZ - 31 < e} do-

not contain any eigenvalues of A for e sufficiently small.

OThe classical elementary proof of Gerschgorin's Theorem goes along this
line. In practice, however, information of this kind is rarely avail-
able.
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Obviously, the set S generating the Tschebyscheff norm is distinguished

with respect to diagonal matrices in so far as all of its elements are

left eigenvectors of a diagonal matrix. Other generating sets may con-

tain more elements than there could be eigenvectors of a non-derogatory

matrix. In general, the field of values will reduce to a finite number

of points only if the matrix is a multiple of the identity matrix. This

is true in particular for the set (5.25) generating the Euclidean norm.

The corresponding field of values, the

TOEPLITZ FIELD OF VALUES, (6.18)-s

is given by

--. G&A] = (xHAx : xHx = 1) (6-19)

since by the Schwarz inequality ((2.44))'

lHf? = 1 A v,(x) = xHx = 1 A iHx
H H=1,1 = x .

A classic result by Toeplitz asserts that this field of values is convex

((9*20))  l
If A is NORMAL (unitarily similar to a diagonal matrix),

then the Toeplitz field of values of A is the convex hull (the set of

all convex combinations) of the eigenvalues of A :

w
GS[A] = (xHAx H = 1): xx

= (XHunuHX : xwx = xHx = 1) ,

= cyH diag@)y : yHy = 1)

= 1 ,:f ).Yi12hi : f Jyj = 1)
i=l i=l
n

= c c Pihi -: o'< pi 5 1, E pi = 1) .
i=l i=l

In this case, xHAx such that xHx = 1 is called a RAYLEIGH QUOTIENT

and we write
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G&d = H[hl, k2, . . . . hn] . (6.203

For a vector space 'V over the real field R, we may again define

G@ by 68), now giving a set of real numbers which contains all

real eigenvalues of A . For the generating set (5.19)' we obtain the

restriction of the Gerschgorin field of values to the real axis, thus

nothing new for real A . For the generating set (5.20)' we obtain the

restriction of the Toeplitz field of values to the real axis. If A is

real and symmetric, then A is normal with real eigenvalues and we again

obtain the convex hull of the two extreme eigenvalues which consists of

all Rayleigh  quotients.

In the real case, the set (5.21) generating the Manhattan norm gives the

field of values

GS[A] = u T&A] , s = ((2 1, -+, 1, . . . . +, 1)) (6.21)

RT&

where '

T&A]  = (IT&c  : v,(⌧)  = I⌧,1  + IX21 + l a. + 1X,1 = 1, lTX = 13

= (ITAx : x = (llpl, R2p2, . . . . R p )
n n

where 0 < p. < 1- 1-

and Zp. = 1)1

= (rTAD,p : 0 < p. < 1 and
- l- Cp i = 1) where

D1 = diag(ll, .*., In)

= CCpi(PTJJQi : 0 5 pi<,1 and Cpi = 1)

= H[ (ITml)l, . . ., (iTm,)nl

TR CA] = HkTDeADpel, . . . . eTDpADen] where e? = (1, 1, . . . . 1)

and eTD
T

R = I . (6.22)
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As in (6.15), we can gain some additional information as to the location

of eigenvalues by looking at the eigenvectors:

Theorem: Let x be a real eigenvector of a real matrix A (6.23)

and I
T

= (+ 1, + 1, . . . . + 1) bit' the SIGN DISTRIBUTION of x :

Then the eigenvalue corresponding to x lies in T&A] s

In contrast to the previous situation, some information concerning the

sign distribution of real eigenvectors of a matrix is often available

as is the case with so-called oscillation matrices We shall

later see that matrices with non-negative elements have at least one

eigenvector which has in suitable form non-negative components. The

corresponding eigenvalue (the Perron root) certainly lies in

T(l, ljP*.*, 1) l

Example: 9 3.6 2

A = 22.5 18 15

40.5 48.6 54

Tel, l+Al = H[72, 70.2, 711 =1, [7o-2, 721. , ~,

contains the eigenvalue 36 + m = 70.8568

Fete that this theorem gives good results only if the column sums of A

(or rather of DmADr> are not very different. Thus matrices are distin-

guished which are non-negative apart from a sign transformation and whose

column sums are nearly equal.

34



$7* Norm Transformations and Invariance Groups

Let S be a set of linear functionals and let

SB := 16: cpss} (7J)

denote the transformed set under the linear mapping BsHom(V, 'V) where

cpB is defined by

cpB(x) := cp(Bx) . (7.2)

SB is again a set of linear functionals and generates the functional

Y&4 :

Theorem: Y&d = Ye l (7.3)

Moreover,

Theorem:
ysB

is a norm if and only if y
3

is a norm and (7.4)

B is a regular mapping (isomorphism).

Proof:

B not regular > Bx = 0 for some x # 0

. * Y& = YS(Bx) = 0 for some X#O

> YsJj. is not a norm.

B regular A ys not a norm > ys(x) = 0 for some x # 0

* Y&Y) = Ys(BY) = 0 for some y = B-lx # 0

*YSB
is not a norm.

B regular A ys a norm > (y&x) = ys(Bx) = 0 > Bx = 0 + x = 0)

*Y SE3
is a norm.

Q.E.D.
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We shall call VB(x) := V(Bx) (in particular, (Vs)B = VsB ) a

LINEARLY TRANSFORMED NORM or a LINEAR TRANSFORMATION OF V l (79 5)- -

Let K
P

denote the set [x: v&4 ,< PI = The corresponding set for

%B is

Cx: %B bd < P} = b: VS(Bd 5 P] = (B-‘Y: V&Y) ,< P] = &CT .

Thus,

If S is replaced by SB, then K
P

is replaced by (74

B-lK
--.

P l

If B leaves the norm V invariant (in particular, SB = S ), then the

linear transformation B is called a

NORM INVARIANCE TRANSFORMATION. (7.7)

The set of all such transformations is clearly a group, the

INVARIANCE GROUP (7*8)

of V (or S ).

The invariance group of the Tschebyscheff and Manhattan norms in Rn is

the hyperoctahedral group of permutations and sign-changes of the n

objects
T T

el' "*' en '
The invariance group of the Euclidean norm in

Rn is somewhat larger; it is the orthogonal group, the group of all

orthogonal transformations in R
n

.

In Cn, the group of permutations and phase changes is the invariance

group of the Tschebyscheff and Manhattan norms and the group of unitary

transformations that of the-Euclidean norm.
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There are norms whose invariance group consists of the identity alone;

e.g., the norms in R
2

generated by the sets:
*i .

The application determines whether small or large invariance groups are

desirable. In most cases, however, norms have at least some invariance

properties.

A set S and'a norm V are

SYMMETRIC (70.9)

if -1 is an invariance transformation:

-s = S and V(x) = v

(see (2.28)). A set S and a norm V are

STRICTLY HOMOGENEOUS

(7-W

(7.11)

if the field K of the vector space vK
is the complex field or a

subfield thereof and {uI: UK, 1~1 = l} is a subgroup of the invariance

group:

UXK A 1~~1 = 1 * ~$3 = S A V(cux)  e V(x) .

As a consequence, for a strictly homogeneous norm V :

V 0 e K: v(ax) = Ial v(x)

(7* 12)

(7.13)
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since any aeK can be decomposed as 0 = 44 with I I0 > 0 and-

I Icu =l. The Euclidean, Tschebyscheff, and Manhattan norms in Cn and

Rn are strictly homogeneous.

If K is the real field R, the concepts of symmetry and strict homo-

geneity coincide. In Cn, the norms

v(x) = maxiIRe xii, :/Im xl) (7-1-4)

VW = C[IRe xii. + .IIm xi 11

are symmetric but not strictly homogeneous.

Finally, we may investigate how the field of values GS[A] is changed
--.

by a regular linear transformation of the generating set S .

Theorem: Gst,[AI = Gs[BAB+ o (7* 15)

Proof:

G&A] = (LHAx: PHeSB,  V,(x) = rHx = 1)

= {,?B-~(BAB-'~)Bx:  LHB%S, vS(Bx) = 1%-'Bx = 1)

= [~(BAB-')Y: 253, y,(Z) = Y%= 1) .

If A is normal (unitarily diagonalizable), then there exists a linear

transformation B (dependent on A! ) such that the field of values of

A: with respect to SB is just the field of values of the diagonal

matrix BAB-L with respect to S . For the Gerschgorin field of values,

we thus obtain the set of all eigenvalues; for the Toeplitz field of

values, the convex hull of this set.

The Gerschgorin field of values is frequently used to locate the eigen-

values of a normal matrix if an approximate eigenvector system is avail-

able. The success of this procedure is based upon the following theorem

also due to Gerschgorin:
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Theorem: If the union of k Gerschgorin disks is disjoint (70 16)

from the remaining disks, then this union contains exactly

k eigenvalues--multiplicities being counted as the multi-

plicities of the zeroes in the characteristic equation.
. .

The proof, usually using a continuity argument, seems to be outside of

norm-theoretic considerations, In particular, if one Gerschgorin disk

is ISOLATED from all the others, then it contains exactly one eigenvalue.

We can now obtain some information about the eigenvector corresponding

to this eigenvalue:

Lemma: If' Ci[Al f-l Ck[A] = $, then there is no eigenvector (7J7)

whose i-th and k-th components are dominant.
--.

Proof:

If the i-th and the k-th components of the eigenvector x are

dominant, then hcCi[A] and hcCk[A] whence hcCi[A] n Ck[A] # $,

a contradiction.

As a consequence,

Theorem: If the Gerschgorin disk Ci[A] is isolated, then (7J8)

if contains exactly one eigenvalue h with a correspon-

ding eigenvector x whose i-th component is STRICTLY

DOMINANT:

~ # i ’ lx~ I ’ Ixi I ’

Proof:

From the Lemma, if the component x.
1

is dominant, then it is

strictly dominant. If xi is not dominant, then 3~ # i such

that x is dominant and therefore

haCi[A;L  n Cp[AI # 0,
heCCI[Al . But hsCi[A] whence

a contradiction.

Q.E.D.
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Among linear transformations of the generating set S, diagonal trans-

formations or correspondingly SIMILARITY SCALING

-1 d.
A -,DAD ; a, -,I_ik % ik. .

(7.19)

with D = diag(dl, d
2' l **�

dn) and dll# 0 are of special practical

interest. For the Gerschgorin field of values, they leave the centers of

the Gerschgorin disks fixed and change only the radii. Assume that Ci[A]

is isolated and let x be an eigenvector corresponding tax hsCi[A].

Since xi is dominant, I Ixi > 0 and we may set

For

di
= 1 and

% 5 dp-l< 1, p # i, (7920)
--.

the diagonal transformation D = diag(dl,  d2, . . . . dn) will decrease

the radius of Ci unless it is already zero:

T 13, 1 = *- di' laiP I <
cLi d/v
7 4Pi

lair I

provided But eventually, isolation of the disk Ci

will be lost, at the latest when d
-1

=
CL 4-1

for some p since then the

transformed eigenvector Dx will have dominant i-th and p-th components
.
and therefore Ci[DAD-'1 n Cll[DAD-'] # 9 . Varga has recently discussed

this problem in detail.

Diagonal scaling is of particular importance in connection with the field

of values obtained from the generating set for the Manhattan norm in R
n

since diagonal scaling with positive elements leaves the sign distribu-

tion of an eigenvector invariant. Thus if Theorem (6.23) can be used to

prove that the eigenvalue h corresponding to the eigenvector x lies

in T&Al, then it can be used to prove that h lies in T,[DAD-lly

provided the scaling is positive. However, scaling can shrink the set

Tp enormously:
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Let pT = (P,' Pg' ".' p,) (p,, # 0) be a row vector with the
I L

sign distribution

P

PC1 = ~~1~~1 . Let D = diag(/pll,

I IP2 ' l **, P,I I)

T&DAD-'] = H[eTDIDADmlDlel'  -.. , eTDpDADBIDlen]

H[pTAel/pTel,  . ..' pTAen/pTenl=

1

T&DAD-Ll = H[P'#?~' . . . ) PAipn I

T
so that eTDID = aTD = p . Then

where

(7.21)

(P;, P;, . ..' P;) = pTA l
(7.22)

--.
Thus, we may reformulate (6.23):

Theorem: Any eigenvalue h corresponding to an eigenvector (7.23)

X with sign distribution lT is contained in

Tp[Al := H[P;/P~' P;/P~, .*.' P;/P,]

where pT = (Pl' P2' l **, P,) is any row vector with sign pattern

lT and nonzero components and (P;, P;, . ..' P;) = pTA l

. Note that the n quotients will coincide if and only if pT is a left

eigenvector of A with the prescribed sign pattern; the better pT

approximates such a left eigenvector, the smaller Tp[A] will be. Such

1 a left eigenvector does not exist if A has two right eigenvectors with

the sign pattern IT corresponding to different eigenvalues.

Example:
h 3= and x=

1
(11

A =
h 5=

For IT = (1,l) and pl> 0, p2 > 0:

Tp[A] contains-both eigenvalues but cannot shrink to a point

since no (Pl'P2)T is a left eigenvector.
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For iT = (1,-l) and pl> 0, p2 < 0:

Tp [Al
p2 pl

= H[l -4.-, 7 +2-] shrinks to (3) for p,/p, = -g
pl p2

and to (53 for P,/P, = -1 but does not contain an eigen-

value even if p,/p, approaches these values since there is

no right eigenvector with this sign distribution.

For non-negative matrices, Tp [Al with pV > 0 contains an eigenvalue

(the Perron root) with a corresponding non-negative right eigenvector.

For positive matrices, there is only one such eigenvector and therefore

only one eigenvalue in Tp[Al .

Example:

A = 1, 4 + JTjT = 7.87298,  4 - jT5 = 0.12702

PT = (1, 2.4, 4.4) Tp [Al = ~r7.8, 7.91, 7.861

PT = (3.9, -5.6, 2.2) Tp [Al = ~r0.128, 0.125, 0.1361

PT = (2' 1, -1) Tp [Al = H[l, 1, l]

PT = (-4, 1' 1) Tp[A] = H[Q. 5, 1, 51 no eigenvector
with this sign
distribution.
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48. Suprema and Infima in Ordered Vector Spaces.

We shall now return to the general case of vectorial norms, norms in a

vector space 'Y
.K

with values from a p-ordered vector space
G&

with

Ko a subfield of K . In order to-generate these norms by a supremum

construction, we first investigate suprema (and infima) in a p-ordered

vector space
GKo

over a N-ordered field & .
GKo

is characterized

by its POSITIVITY  (NON-NEGATIVITY) corn:

Theorem: The set G+ of all non-negative elements of G
Ko

G+ : =  {xcG

is a CONE:--.

V a e by xsG+ : 0 po a! > cr xsG+

which is

CONVEX: xcG+ A ysG+ > x+y c G+

Kw

(8.2)

(8.3)

(8.4)

POINTED AT+: +G+; xcG+ A (-x)eG+ * x = $ . (8.5)

Proof:
e That G+ is a cone follows from the compatibility of multiplication

by non-negative scalars with the ordering p ((3.8)).

xcG+ A ysG+ *.$~xA4Py
r+pxAxpx+y.

by compatability
of p with ._

. addition ((2.6)

> +- P x+Y by transitivity ((2.2))

* x+y c G +

l G+. . is convex.
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p reflexive ((2.3)) >f pt

* + a+

xcG+ A (-x)cG+  *f P x A + i (-X)

,+ p x-A x b+

,x= t by antisymmetry ((2.4)) .

' G+. . is pointed at t.

.Q.E.B

In fact, the come G+ completely characterizes the erdcring 1, :

Theorem: Let G+c GK. be a convex cone pointed at t .

Then the relation p defined by

(8.4)

--.
x p y :S y-x s G+ (8.7)

is an ordering which is compatible with vectsgr addition and multipli-

cation by non-negative scalars.

Proof:

G+ pointed at $ * x-x = $ c G+

,xpx (reflexivity).

x p y A y p x > (y-x)eG+ A -(y-x) = x - y  sG+

.x=y (antisymmetry).

x p y (i y p z N (y-x)sG+ A (z-y)sG+

> ( z - x )  =  ( z - y )  +  (y-z)sG+

*xpz (transitivity).

x p y * (y-x)cG+

> (y+a) - (x+a)cG
+

> x+a p y+a

x p y A 0 ~0 a + (y-x)eG+  A 0 po a!

* rr(y-x)eG+

(compatibility with
vector addition).

*crxpoy (compatibility with
scalar multiplication).

Q.E.D+
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An element x of a p-ordered set r/l is

P-MAXIMAL (~-MINIMAL)  0r simply MAxIML (MINIMCU;) (8. 8)
. .

if it has no upper (lower) bound other than itself:

xpy*y=x (YPxrY=x)* (8. 9)

Elements which are upper (lower) bounds for all elements of a subset

h of 331 are called UPPER (LOWER) BOUNDS of h :- -
--.

asp := (x 8 r/l : y p x, V y G h] (8.10)

Do(h) := (x e r/l :xpy,Vyeh]. (8.11)

Either set may, of course, be empty.

Example:

. For the ordering given by the Hasse diagram

a

b

"F

C

d e

f g

the set of all upper bounds of h = (d,e] is (a,b,c} and the set

of all lower bounds is empty.

45



Usually one is only interested in the best upper and lower bounds, best

in the sense that they cannot be replaced by other bounds. Thus we define

the set of MINIMAL UPPER BOUNDS of h C 311

Supo(h) := {ye Llbo(h) : y minimal in tlbp(h)] (8.12)

and the set of MAXIMAL LOWER BOUNDS of h

Infp h) := (ye .Xbo(h) : y maximal in $b (h)) .
P

(8.13)

In the preceding example, Sup((d,e]) = {b,c) and Inf((d,e)) = 9 l

In particular , we are interested in the case where all upper (lower)

bounds can be replaced by one least (greatest) bound. In this case we

define the

LEAST UPPER BOUND or SUPREMUM OF h-- -- (8.14)

a = supo(h) :# a c Ubp(h) A a p x, V x e W$h) . (8.15)

and the

GREATEST

b = info(h) :# b e BP(h) A x p b, Y x c BP(h) . (8.17)

LOWER BOUND or INFIMUM OF h-- -- (8.16)

Obviously, the supremum and infimum, if they exist, are uniquely deter-

mined. Moreover,

Theorem: (8.18)

a = sup&h) exists # 3a : Ubo(h) = (x : a p x)

b = info(h) exists # 3b : Do(h) = (x : x p b) .

In the p-ordered vector space
G&9

the set of all upper bounds of an

element c is the
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TRANSLATED CONE (8-19)

(y : c P Y) = { y : y-c e G+) = {c+z : z e G+) := c+G+ (8.20)

+
and the set of all lower bounds is likewise c-G l Therefore, the set

of all upper (1ower)bounds  of h c G
Ko

is an intersection of translated

positivity (negativity) cones:

Ubo(h) = f-l (c+G+) [Xbo(h) = f7 (c-G+)] .
ceh Cdl

As an immediate consequence of Theorem (8.18),

(8.21)

Theorem: (8.22)
--.

a = supo(h) exists Z 3asG
Ko

: n (c+G+) = a+G+ (8.23)
Cdl

b = info(h) exists # 3bsG : n (C-G+) = b-G+
K" cdl

(8.24)

Moreover, if supo(h) exists, then info(-h) and supQ(h+a) exist and

INVOLUTION: infp(-h) = -supo(h)

supo(+h) = -info(h)

(8.25)

TRANSLATION-COVARIANCE:
w supo('ll+a) = supo(h) + a (8.26)

info(h+a) = info(h) + a .

Theorem (8.22) shows that a rather heavy restriction is imposed on the

1 ordering of the vector space (to be precise, on the defining positivity

cone) if the supremum of even two elements should exist. In (R3,$

it is intuitively clear that circular and ellipsoidal cones fail to

meet this restriction (an intersection of such cones is not necessarily

a cone); in fact, suprema and infima will only exist in general in

(R3,z) if the positivity cone is triangular.
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If we require of an ordered set r/l that the supremum and infimum of any

two elements (and therefore of any finite number of elements) exist, then

311 is a

LATTICE-‘ (8.27)

and we write

a IA b := sup(a,b} ("a cup b")

a I-I b := inf{a,b) ("a cap b") .

(8.28)

(8.29)

A p-ordered vector space
G&

is a

--.
LATTICE-ORDERED VECTOR SPACE or simply a VECTOR LATTICE (8.30)

if it is a lattice with respect to the ordering p . By Theorem (8.22)
this is equivalent to

Q a, b s GKo 3 c, d c GK, : (a+G+) n (b+G+) = c+G+

(a-G+) fJ (b-G+) = d-G+
(8.31)

Moreover,

Theorem:
GK3

is a vector lattice if and only if
w

V a c GKo : a+ := sup{a,$)  ("positive part") exists.

Proof:

(8.32)

Involution and translation-covariance can be expressed in lattice

notation by

INVOLUTION: (-a) 1-l c-b) = -<al Jb.1 (8.33)
(-a) IA c-b) = -(allb)

TRANSLATION-COVARIANCE:* (a+c) IJ, (b+c) = (alJb)+c

(a+c) \l (b+c) = (allb)+c

(W+)
48



Therefore,

4-b = a+[(alJb) + (-a)]

= a+[$ 1 J (b-d]

= a + sup@, b-a)

aIJb =,a + (b-a)+ = b+(a-b)+ (8.35)

Similarly,

al-lb = a+[(anb) -a] ^

= a-[(-a)1 1 (-b) +a]-

= a-[$ I&+b)]

a\lb = a-(a-b)+ = b-(b-a)+ (8.36)

.'. The supremum and infimum of two elements can be expressed in terms

of the positive part of their difference and conversely.

Q.E.D.

As a consequence,

DEDEKIND'S PROPERTY: aIJb + al-lb = a+b . (8.37 1

The following result characterizes the vector lattice GKo in terms of

its positivity cone:

Theorem: In a vector lattice G
Ko'

every element is a (8.38)

difference of two non-negative elements: a = a+ - a-
+. where a- := ( >-a . That is,

GKo
= G+ - G+ .

Proof:

Taking b to be $ in Dedekind's property,

a = a+= al-I++ al-I+= aI&- (-a)lJ+= a+ - a -  .

Q.E.D.
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Moreover, a+ and a- are DISJOINT:

+-
a I I a- = blJ+9 rl (-d-l+)

= [a+bl_lj91 I7 <-d-l+)
= d-l+ + Gal-l+)
= al-I+ - al-l+

+
a rl a- = 4

Other properties of vector lattice operations are

IDEMPOTENCE: al-/ a = a
-

a a=aI I (8.39)

COMMITTATIVITY: au b = Lb arlb = bl-la (8.40)
--.

ABSORPTIVITY: 4-I (al-lb) = a al- I (al-lb) = a (8.41)

ASSOCIATIVITY: al-1 (d-It> = (al-b>l Ic- aI-1 bl-lc) = @rlb)l-lc .
(8.42)

Moreover, a vector lattice is

DISTRIBUTIVE: -1 brl C> = bllb) 1-i (d-b)

al-1 (d-14 = brb) l-1 (TIC) .

(8.43)

Proof:w
The proofs of idempotence, commutativity, absorptivity, and associa-

tivity are straight-forward applications of the definitions of

_ supremum and infimum. The proof of distributivity is more difficult:

a P (al-b) A a p (aI. I4 *- a P (al-b) I-1 (aI Ic)-
(brld p b * (d-b)  p C > (d-b)  P (al Ib A brlc) P (aI 1~)- -

> b/-lc) P <aI lb) i-I bl-lc>-
’ al I brlc) dddlb) I-I (d-I4. . -
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(al Jb) 11 (al,lc) = [a+@-a)?  1-I [a+&a>+1

= a+kb-a)+ 11 (c-a)‘]

aIJ(bl-lc) = a+[(bl-lc) -al+

= a+‘[(b-a) 11 (c-a)]'

Hence %o prove that (alAb) 11 (aI,Jc) p al J(bJ-Jc), it sufficies

to prove that f+llg+ P (flld' '

f+ 1-1 Is+ = <flJ$> l-l klJ$) + VI-I+) I1 kl1-H - (fllgll+)
= [(f 1 J+, + (f171+>1 11 c <f l-l+> + k I--b+> 1

1-j k(J)) + (fl-I+>l I-l [klJ$) + kll9)l
--y (f i-1 Q I-14)

P 4% - md IT+
= (fl-Id lJ+
= (q-Id+

l al Jbllc) = (al-lb) I-I bIJc>  l
. .

The proof of the second distributive law is analogous.

Q.E.D.

* Related to this is the cancellation law

x I-lYl = 41Y2 * xI-IYl = x(ly2 > Yl = Y2 l

which

tions

follows immediately from Dedekind's property (indeed, the assump-

give x+yl = x+y2) . Another useful result is

(8.44)
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Proof:

a I_lc  p (aI_jc)jJb  = (aIJb>lJc = blJc since al
A

Jb = b l

The remainder of the proof is analogous.

Examples:
. .

(i) The real field is a well-known though trivial example of a

vector lattice.

(ii) Rn is a vector lattice under the componentwise ordering < of

(2.11). The positivity cone is the set of all vectors with non-

negative components, the "full first orthant." It is intuitively

clear that the intersection of two translated orthants is again a

translated orthant. Indeed,

--.

+
a = sup{a, +) =

(may31~ "9

and every finite or infinite set of elements has a supremum.

(iii) Rn is not a vector lattice under the ordering p defined by

x p y :X (V i : xi < yi) V (V i : xi = yi) .

The positivity cone is the set of all vectors with positive
e components together with the origin $, the 'strict first orthant.'

However, the intersection of two translated cones is in general a

translated cone minus the point of that cone.

: (iv) Rn is a vector lattice under the ordering p defined by

x P Y :# (x1 < Y,) v (x1 = Yl A 5 < Y,>

v (x1 = Yl A 5 = y2 A x3 < y3) v l **

v (⌧1 = ylA ⌧2 = y2 A l ** A ⌧n = yn)

("lexicographic" or "telephone book" ordering).
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However, it has the property that there exist elements a and

b such that a is "incomparably smaller" than b (a << b) :

na p b, Vn > 1 .
. .

For example, (!I << ($ in (R2,  P> l

(4 CD,11 is a vector lattice with the ordering defined by

f p g :3X vxs[0,11:  f(x) 5 g(x) l

The positivity cone is the set of all non-negative continuous

functions on [O,l] .

Examples (ii&d (iv) are prototypes for all finite dimensional vector

lattices over the real field. Mannos (1942) has shown that any n-dimen-

sional vector lattice GR
is isomorphic to with an ordering built

up by direct union

k, h) P w, h’) :# (g Pg d> * (h Ph h’)

and lexicographic union

(63, h) P kc, h’) :# (63 Pg 63” * g # t!3’)  v k = g’ * h ph h’)

of the orderings of subspaces. If we require our ordered vector space

to satisfy

(v cy c Ko :a,apb),a=$

then lexicographic union is excluded in the construction of p and GR

is isomorphic to (Rn, <) of Example (ii), with some one-to-one affine

mapping of the full first orthant as its positivity cone.

More generally, we shall call any ordered vector space
GKo

which has

no incomparably small elements

53



ARCHIMEDEAN: (v a G Ko :aapb)%a=$. (8.45)

An even stronger property is

STRONGLY ARCHIMEDEAN ("integrally closed"): (8.46)

(v Q/ 6 Ko :Opocu,cuapb)>ap$:.

Indeed, every strongly Archimedean ordered vector space is Archimedean.

Proof:

Assume that V as Ko : aa ob . If OpoQ, then a a p b .

If 0 m&a), then a(-a) = (-cu)a p b 0 From the strong Archimedean

property, a p.$ and--. -a ~4) whence a = + .

Q.E.D.

The converse is not true in general. However,

Theorem: If GKo is a vector lattice, then G
Ko

is strongly (8.47)

Archimedean if and only if G
Ko

is Archimedean.

Proof:

Assume that G
Ko

is Archimedean. If 0 po a and a a p b,

then a a+ = (a a)+ p b+ . If CY po 0 and a a p b, then
a

aa+p$pb+. Thus V Q 8 Ko: a a+ p b+ l From the Archimedean

property, a+ = $ whence a f+

Q.E.D.

To continue the discussion for the finite dimensional case, every finite

dimensional Archimedean vector lattice over the real field is isomorphic

to (Rn, 51, the ordering being generated by the full first orthant. The

only cones which make Rn an Archimedean vector lattice are deformed

full orthants or SIMPLICIAL CONES. Such a cone is the set of all convex

combinations of n linearly independent vectors and non-negative multiples

thereof.
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Another difficulty with vector lattices is that there are always sets

of elements for which no supremum exists:

Theorem: The set of all multiples of a nonzero element x (8.48)
. .

9 :=  (ax :  as K o )

has no supremum.

Proof:

If the vector lattice is Archimedean, then not even upper bounds

exist. In general, however, if s = sup(F) exists, then 9 = x+3

and

--.

S = sup(S) = sup(x + 3) = x + sup(d) = x + s

whence x = 4, a contradiction.

Q.E.D.

Thus we can only ask for the existence of the supremum and infimum of a

set of elements if that set is BOUNDED, that is, has a lower bound and

an upper bound. Therefore we define a vector lattice to be

COMPLETE (8.49)

if every non-empty bounded set has a supremum (and by involution, an

infimum). As in the case of the real numbers, we can remove this restric-

tion by enlarging the vector lattice G
Ko

to the EXTENDED VECTOR LATTICE

G*
K-0

with two additional elements, - a and + 00 :

VxeG
%:

--pxp+- (8.50)

inf $3 := + 00 ; sup $3 := - 00 . (8.51)

Then every set h c G* has a supremum and infimum:
Ko -
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If h not bounded from below: inf(h) = .- QO

If h not bounded from above: sup(h) = + co .

Of course G*
Ko

is not a vector space since.:+@ + (- m) is not defined.
. .

Completeness will only be needed to assure the existence of suprema and

infima of infinite sets. As a consequence of completeness,

Theorem: A complete vector lattice is strongly Archimedean.

Proof:

Assume-that Vda&:Opo a,aapb. Then h= (a!a:

(8.52)

is bounded above whence c = sup(h) exists. But

--.

c + a = sup{(a + 1)a: 0 po cz ]

= sup{@ a: 1 PO 83

P sup@ a: 0 PO 83

= c

whence a. P+

Q.E.D.

The vector lattice (Rn, <) of Example (ii) is complete. Therefore it

is the only n-dimensional complete vector lattice over the real field up

to isomorphism.

Exercise: Prove that (a+b)+ p a+ + b+ .
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$g- Subadditive Mappings Generated by a Set of Linear Mappings.

As was the case with scalar norms ($5) , we can now generate norms in

VK
with values in a complete vector lattice

GK,
by supremum construc-

tions over sets of linear mappings:-

Theorem: Let S C Hom('VK, GK) be a set of linear mappings (94

of a vector space yK
into the vector space GK

and let

Re: GK --) G&
be an additive, &-homogeneous mapping of

GK
into the complete vector lattice

Gb
where & is

a subfield of K . Then

ys,p ⌧

( >

l

l = supp(Re q(x) : cp e S]
--.

is a subadditive, homogeneous mapping of VK into Gf&, the

extended vector lattice.

Remark: If S is finite, then completeness is not necessary since

GKo
Lemma:

Proof:

is a vector lattice.

Provided that the suprema exist,

hl= h2 > supp(hl) P supp(h2) .

(9-2)

Since supp(h2) is an upper bound for all elements of he, it is

an upper bound for all elements of the subset hl and therefore is

an upper bound of hl . But wp (hl > is the least upper bound of

h1 l

Q.E.D.

Lemma: Let h1 + h2 := (a+b : a e hl, b e h2) . Then

provided that the suprema exist,

(9*3)

supp(hl-  + h2) = supp(hl) + supp(h2) .
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Proof:

wp(nl  + “e> = supP[supP(a + h2) : a 8 hl)

= sup&a + supp(h2) : a 8 hl]

= mi$-y) ..+  wp(h2) l

Q.E.D.

Proof of Theorem:- -

Re cpw is an additive, &-homogeneous mapping of VK into GL .

Ys ,(x+Y)
9

= supp[Re  q(x) + Re q(y) : cp s S}

P su~$Re cp,(x) + Re V,(Y) : v,, 9, e S]

=-.supplRe q,(x) : 'Pl 6 S] + su?$[Re ‘P, (x> : cp, s S)

= Ys ,bd + Ys ,o9 >

Ys 9 JQ d = supp{Re cp(a/ x) : cp 6 S]

= supp(o! Re cp(x) : cp 8 S} VCYSS

= a/ . suppCRe cp(4 : cp 6 S] VCXCKO :opocY

= Q! Ystp x( >

.
l � ys,p

is a subadditive, &-homogeneous mapping of 'KK into

G* .
Ko

Q.E.D.

Examples:

(i) Let VK = GKo . Then Re: GK 4 GKo is the identity mapping.

For S = [I,O] where I is the identity and 0 the zero mapping

of VK into itself,

ys,P x( > = supp(x, +} = x+

is subadditive and &-homogeneous:
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‘.

, i

I

(a+b)' p a+ + b+

0 po a * (a a)+ = cy a+ .

(9* 4)

(90 5)

(ii) Let YK = G(, and let S = (I, -1) . Then

ys, P (x> = x I-1 (-x>
= (2x 1-1 $> - x
= 2x+ - (x+ - x->

+
=x +x-

--.
Ys ,(x) = 1x1 := x+ + x- .

I

Since
ys, P

is subadditive and &-homogeneous,

Ia+4 p I4 + Id

Icya(=cvyI&l  VCUC: Opocr.

Moreover,

la-b1 = (a-b)+ + (a-b)-

= [(a-b)+ + b] + [(b-a)+ - b]

la-b! = aIJb - al-lb

From Dedekind's property ((8.36))

a+b = aIJb +'a\-lb,

we now obtain

aIJb = *[a+b + la-b\] (90 10)

(9* 6)

(90 7)

(90 8)

(90 9)
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43 = *[a+b - la-b!] . (9*11>

In addition to being subadditive and homogeneous, 1x1 is non-

negative as a consequence of (9.6). Indeed, it is even positive

definite: . .

I Ia-b = 0 + (al-lb) - (a\-lb) = 0

* al-lb = &\-lb

>a=b

> a-b = +t

Thus,

--.

I IX is a norm. (9* 12)

(iii) Let VK = Rn and GKo =(Rn, <), the vector lattice generated

by the full first orthant. Then the norm xI I of Example (ii)

is just the modulus norm (Betragsnorm) in Rn (E-3))*

Most of the results of $5 carry over to the case of vectorial norms

generated by sets of linear mappings. In particular, Theorems (5*8)

and (5.10) now read:

*
Theorem: If A is a convex combination of elements of S. (9*13>

then

Re A(x) P Ys p,
>

v ⌧ s VK l (9* 14)

Proof:

Let A = Vl + a2q2 + l l l + ancpn where aie &, 'pit St 0 ~0 cyi)

and C cyi = 1 . Then
i

Re A(x) = 4 Re cP,bd + % Re O,(x) + l + an Re q,(x)

p [4 + ($4 . . . + anI supo(Re q(x): cp 6 S)

=YsclpX l( >

Q.E.D.
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Theorem: If the zero mapping 0 can be represented as a (9* 15)

convex combination of elements of S,
then ys,P x is( 1

non-negative and therefore a seminorm.

Example:
. .

(iv) Let VK = Cn and GKo = (Rn, <) as in Example (iii) and let

-S = (cr I: IcyI = 1) . Then

I IX := Y&l = sup(Re ((Y x) : IcyI = 1)

is subadditive and strictly homogeneous. By the preceding

theorem, it is non-negative [0 = &(I) + +(-I)]; positive

definiteness follows from its explicit representation. Thus

I IX is--a norm, the modulus norm in Cn .

As in $5, we may introduce the sets

K
P :=

(x 8 IfK : Ys ,(x) P PI>
9

PEG& l

K
+

= (x: Ys ,(4 P +I is again a cone and
9

Theorem: A seminorm
ys,P x( > is definite # K =

+
(41 . (9*17)

We can still represent K as an intersection of domains. P

1:
cp,p :=

(x e Y
K : Re cp(x> P P):

.

.Theorem: K = 0 1:
P cpcs CptP l

However, L
CPJP

is no longer a half-plane:

(9.16)

(% 18)

(90 19)

For cp=I, X
VtP = c x:

x p p) = p-G+ .

For cp= -1, I:
CptP = cx:

-x p p) = p+G+ .
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A set G is

CONVEX (9*W

I if

I ’
I r
J,I-

V a, b G G: pa + (l-p& s G, 0 po p, po 1 . (9*W

Theorem: 1:
%P

is convex. (9* 22)

Proof:

Let at b e 1:
cp>P

and Opo ~~,pol. Then Re da> P P * Re V(b) P P

and Re cp[p a + (l-p)b) = IJ, Re 9(a) + (l+)Re q(b)

P p P + (1-W) P

'P

since 0 po p and 0 po 1-p e Therefore p a + (l-p)b e JT
CPIP l

Q.E.D.

In general,

x
CptP = c x

: Re v(x) e p-G+) = (Re &(p-G+),

e
the preimage of the translated cone p-G+ . Letting 5 denote the

one-to-one mapping of VK/Ker(Re  cp) into Re cp(Y,> induced by Re cp,

Xv p/Ker(Re cp) = q-l(Re cp(Y,) n (p-G+)) .
9

If G
Ko

is a finite-dimensional, Archimedean vector lattice, we might

expect the domains 1:
CPIP

to be intersections of half-spaces rather than

half-spaces themselves. Indeed, if VK is a vector space over the real

or complex field and GK. = (Rm, I), then
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r,
cp9P = cx:

Re v(x) 5 PI

= C
T

x: ei Re q(x) 5 e: p, i = 1, 2, ...j m)

= ;t (x:
i=l

Re eT q(x) < eT p)
. .

and therefore

K = n e
P cpss ASP

\

(9.23)

(9*24)

This result is obviously a consequence of the fact that (R", <) is a

direct union o-f the linearly ordered real field, and we shall now like-

wise investigate this effect on the mapping ys(x) .

Let VK be a vector space over the real or complex field and let G =

(Rm, _<)  l

&I

Then it is easily seen that each component of a subadditive,

homogeneous mapping of YK into
GKo

is itself subadditive and homo-

geneous. If the mapping is a norm generated by a set S, then each

component is a bounded seminorm or even a norm; moreover

Theorem:

where

(g-25)

Si = (eT(p:  cp 8 S) C Ifi l

Proof:

(9-W

Y&d = sup(Re cp(x) : cp e S)

=

s
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sup Re e: q(x).
.

sup Rk ei T(X)

Y
s1

(4 --

.= ( ).

Ys’ (4
m

Q.E.D.

since e: sup (h) =

sup(eTh) in (Rm,l)

In the literature, only a special case of this result has been studied:

the case where

The i-th component of the norm V(X) is a norm on the (9.27 >

subspace ( >i
VK' = PiVK l

Examples:

(i) Let VK = R2 and GK, = (R2, <). Then the sets

give rise to the same sets Sl = {-$,O)) and S2 = (I) and

therefore generate the same norm. Note, however, that the second

set does not generate the first set by convex combination.

(ii) Let 'VK = Rn or Cn and GKo = (Rn, <) with V(X) the modulus

norm in 'K l

Then each component of V(X) is a norm on the sub-

space formed by all scalar multiples of a coordinate axis.

(iii) Let 'KK = R3 and GKo = (R2, <) with the norm
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V(x) is generated by

which gives rise to the sets

sl = co 0 01, C-1 0 0 >, (0 1 0))
s2 = {(o -1 o), (0 0 1), (0 0 -1))

In this example, neither y
sl

(x) nor y
s2

(x) is a norm though

both are bounded seminorms.

Theorem: Let y be a symmetric seminorm on YK . Then there--. (9*28)
exists a subspace

!K c-vK such that y restricted to
%

is definite.

Proof:

Since y is non-negative, the cone K+ = (x: Y(x) p4/+) is the domain

where Y(X) vanishes. By symmetry (y(-x) = y(x)), K+ contains with

every element x its negative -x . Therefore K

'/K l

If /K
-+

is a subspace of

Let UK =
K4

and let P be the projection of VK onto LIK .

If X8 UK and y(x) = -$ then x s K
-+

whence Px = 0 and x = 0

since Px = x V x 8
UK

. Thus y is definite on
UK

l

In conclusion, we note that the concept of linearly transformed norms

carries over unchanged from $7 to vectorial norms, and that relation
i(7.3) is valid for the transformed generating set.

Exercise: Prove that al-lb p x p aIJb > 1x1 p \a1 IJ \bl .
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$10. Additional Remarks.

We have seen how norms can be generated from sets of linear mappings.

The question may arise whether all norms are so generated. The following

theorem is suggestive:
. .

Theorem: Let y be a subadditive mapping of VK into G
Ko l

Define

s=[cp:cp is additive; v x 8 VK : cpwp Y(X)) 9

Then Y&d P Y(⌧) l

(10.1)

(10.2)

Proof:

Y&4 = sup(cp(x) : cp 8 s)
--.

= SU&~(X) : cp is additive; V 5 e 1(K : O(E) P Y(E))

p Y(X) l

Whether such a set S generates y(x), that is, whether the supremum

is indeed y(x) for all x, depends on the topological properties of

the space YK . In finite dimensional spaces over R and C, the

support theorem guarantees that ys(x) = y(x) .

A further remark concerns the basic triangular inequality (2.16):

.
v(⌧ + Y> p w + V(Y)  l

Replacing x by x + y and y by -y, we obtain

v(x) - d-Y> p 4x + YL

or, combining the two inequalities,

4 - Y )  p 4x + Y> -v(x) p V(Y) l

(10.3)

(10.4)

If V is symmetric bw = V(-x)), then
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Iv(x + Y) -v(x) l p v(y) l
00. 5)

Replacing y by -y in (10.3), we obtain

v(x)  -V(Y) p vex - Y> (lo. 6)

Again, if v is symmetric, then

Iv(⌧)  -V(Y)  1 p v(⌧ - Y) l (lo* 7)
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$11. Mappings of Normed Vector Spaces

Let YK and Yr; be normed vector spaces with norms Y : YK -+ (G&,p)

and V’ : Y'K 3 (G;g>p') l
Let A be a linear mapping of YK into

IfI; l Then a linear mapping B: G%"+ Gk is an

UPPER BOUND FOR A or LIPSCHITZ BOUND (11.1)- - -  -

if

v’(A-d p’ Bvbd, v x 8 vK .

The situation is illustrated by the following diagram:

--.

yK ’ (Qp)

A l 1B

(11.2)

(11-3)

A mapping \-I,, v : Hom(YK,l/I;) + Hom(GKo,G&) is an
f

UPPER BOUND MAPPING (11.4)--

if B= rv,vI I is an upper bound for
9

A for all A 8 Hom(vKJ$) .

Examples:

(i) Let YK = $ = Rn and GK, = G'%= (Rn,<) w i t h  V ( x )  =  V ’ ( x )  = lx\,

the modulus norm. Then A e Hom(R ,Rn) is an n Xn matrix (aij)

and an upper bound mapping is given by

1x1 = IAl := ((aijI) .

(ii) Let YK = Yr; = Rn and GKo = G& = (R,<) with V(x) = Vr(x) =

the Euclidean norm. Then
i'
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Ix .-.- max)aii\ + (
4

a2 )*ik
i i k

is an upper bound mapping. Another upper bound mapping is the

Frobenius norm ((16*17)) -.

Similarly, a linear mapping C : G&d G& is a

LOWER BOUND FOR Ap-e

if cv(x) f+'(b), v x 8 VK '

A mapping .I&$' : Hom(Z(Kj$)  --) Hom(G&j K.G' ) is a

LOWER BOUND MAPPING- -

(11.6)

(11-7)

if C= AvivlJ is a lower bound for A for all A 8 Hom(VKJ$) 0
9

(11.5)

Example:

Let YK = VI; = R2 and G = G' = (R2,z) with V(x) = V’(x) = x 9
Ko Ko

I I
the modulus norm. Then

A= 1
3 1

. 1 3

cv(x) = -; -;
1 I

has since

i

I
I
xll

x2l

I3x1 + 51

-i 1
< I 5 + 3x11 = AxI I = v’(Ax) .

C 3 0 is also a lower bound for A and IJv+ E 0 is a lower

bound mapping.



412. Least Upper and Greater Lower Bounds I.

We shall first investigate the case of scalar norms; that is,
GK, x0=

= G'

(b <> l For a given mapping A 8 the set of all upper

bounds for A has a least element, the LEAST UPPER BOUND:--P

lubvt @) := inf(S : V/&C) < p V(X),  v x 8 IQ .
>

Since V'(A$+) < p v(q) for all @,

lub /
v ?V (A) = inf[@ : V’(AX) 5 S V(x) A x # +)

= inf[S : v/(A

--. = inf@ : v’(Ax) 5 /3 A V(x) = 1 )

lub,, v(A) = sup(v’(Ax) : v(x) = 1)
t

lubv/ v(A> = sup(
?

lub,,, v is, of course, an upper bound mapping and
I

lubv/ v
7 (A) 5 lqv' v'3

V A e Hom(&$l$)

.
for all upper bound mappings l-Iv, v . Moreover,

J

Theorem: The mapping lubv, v : Hom(vK,l/i)  + R is subaddi-
9

tive, homogeneous, and positive definite.

Proof:

lubv/,v(Al + *2)

= sup(v'((Al + A2)x) : v(x) = 1)

< sup[v'(Alx) + v'(A2x) : V(x) = 1)

(12.1)

(12.2)

(=*3)

(12.4)

(12.5)

< sup(v'(Alxl) + v'(A2x2) : v(xl)= v(x,) = 1)

=i sup(v'(Alxl) : v(x,) = 1) + sup(v'(A2x2) r V(x,) = 1)
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.'. lubV/ v is subadditive; homogeneity and nonnegativity are like-
t

wise inherited from V� l

lub /v ,v(A) = 0 > v'(Ax) < 0, V x c YK

* v’(Axj-= 0, v x 8 I$ since V’ is
nonnegative

>AX=O, VxeY
x

since V’ is
a norm

:. lubv/ v is definite.
) Q.E.D.

Note that lub,,/ v may not be bounded and therefore may not be a norm.
>

Example:

Let Y, = cl[o,ll, the space of once continuously differentiable

functions on [OJ], and let Yk = C[O,l], the space of continuous

functions on [O,l] . Take

V(f) = V'(f) = max(jf(x)I : 0 5 x 5 13,.

Let A = & l Then &3:

max(f'(x)l  = v(Ax) 5 p v(x) = /3 l maxJf(x)J

for all f G C'[O,l] 0 Therefore, lubv, ,,(A) = + 00 .
9

Any mapping A c Hom(VKIVk) for which lubv, v(A) < + 03 is said to be

bounded. That the set of all such mappings i: a subspace of HdVKJ~)

follows trivially from the subadditivity and homogeneity of lub,, v .
>

Thus:

Theorem: lub,, v is a norm on the subspace of all bounded (12. 6)
9

mappings.
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In this case, lubV/ V is called the
t

LEAST UPPER BOUND NORM- - - -

. .
subordinate to the norms V' and V .

In finite dimensional spaces, every mapping is bounded, independent of

the norms V' and v used. This can be shown by a compactness argu-

ment or by Ostrowski's theorem that all norms over a finite dimensional

space are topologically equivalent; that is, given norms V1 and v2
over Y

K'
there exists a constant 7 such that

v ⌧ 8 VK : v,(⌧)  < 7 l v,(⌧)  l

--.

Thus, the proof is reduced to the case where v and V’ are the maxi-

mum norm over
5

and Y'K and follows by using the product topology.

For a given mapping V e Hom(VK,vK), the set of all lower bounds for

A has a greatest element, the GREATEST LOWER BOUND:- -

glb,,, v(A) := sup(r: yV(x)< v’(Ax), V x 6 YK) . (12. 8)
J

= inf(V'(Ax):

ww= inf(w:

glbv, v is, of course> a lower bound
>

I IA vI,v 5 gq)~JAL

for all lower bound mappings & v
9

+d = 1)

⌧#$l l

mapping and

02. PI

(12.10)

V A 8 Hom(YK,Y.K) (12.11)

. Thus, for all x e Y., with
v’ow.

IL
x f-b we may bound the MAPPING DISTORTION 'v(x)'

l-lA ,,I v < WV/ +>J - t



The mapping glb,,, v is homogeneous and nonnegative but neither subaddi-

tive nor definite.' Indeed, it is not even superadditive
\

(0,,!
9
$A$ + glb;c  ,,(A2) 2 glb

9 pJA1+A2)  1 as one might expect.

Theorem: If A is not injective (Key A # (+)), then (12.12)

glbv, v(A) = 0 .
J

Proof:

KerA=(xcY :Ax=$]#$*ax#$:Ax=$
k

r3x#+:,*= 0

+ glb,, v(A) = 0 .
>

If A is injective (but not necessarily surjective),  then a left inverse

A-l
--_

exists on AVK C 'VK and

glb,,, v(A) = inf(
J

: X"YK A x # $3

= inf( v'(Ax) -

v(A-'Ax)
: X"YK A x f $3

= i"fEY'(Yl

VWIYl
: YEAvK A Y # $1

= l/sup~~ : yEAYK A y # $3

v(ALy) lL l/suPCv l
yeY&  A  y  f $3

= l/lub, ,,/(AL)
t

where ALs Hom(VKJK) is any mapping which coincides with A
-1

on Alf.,

an extended LEFT*-INVERSE of A:
K

ALAx = x, v x c YK '

Theorem: If A is injective and AL is any left inverse (12.13)
of A, then glb,, v(A) > l/lub, vl(AL) .

> 9
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Moreover, if AL is a bounded mapping, then lubv ,,,(AL) < + ~0 and

(A) > l/lubv ,/(AL) > 0 9
9

glbv/ v -t J

In finite dimensional spaces, all linear mappings are bounded and any

injective mapping has at least one left inverse. Therefore A is injec-

tive if and only if glbv, v(A) > 0 .
>

Theorem: If A is regular (injective and surjective), then (12.14)

glbv/,v (A) = l/lubv v/(A-l'I lJ

Proof:

If A is regular, then

Thus, we may sharpen the

--_

gq)/ ,(A> =9

=

=

AVK = Vi and A
-1 is uniquely determined.

proof of Theorem (12.12)

inf( " (Y)

wly)
: Y&If; A Y # $3

l,sup{+$$ : y&i A y f 43

l/lubv ,/(A+ .
.,

Q.E.D.

If VK = 2/I;, then the mapping A : VK ---) 'Vi is an endomorphism and may

be injective yet not surjective. In finite dimensional spaces, a dimen-

sion argument shows that this situation cannot occur and we obtain ad
nonsingularity criterion:

_ Theorem: If A is an endomorphism of a finite dimensional (12.15)

vector space, then

g+,/ ,,(A> = Cl/lubv ,/(A+ if A nonsingular
o ?

t otherwise.

If VK = 'VL and v = v’, then the greatest lower bound and the least

upper bound of the identity endomorphism are given by:

g15, v9
(I) = lub,, v(I) = 1 .
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Although glbv/ v is not subadditive,
>

Theorem: 69v',v 1(A + A2> < glb,r &) + lub,/ ,&>
9 >

(12.16)

Proof: . .

,For any E > 0, there exists E&VK with V(E) = 1 such that

@b (A >v',v 1
= #(Al@ - E . Therefore,

glb v/ 9
$il + A21 < V’((Al + A&)

< v'(A$) + v'(A26)

= glbv/
>
v(Al> + e + v'(A2s)

< glb,,I > ,&> + lub,,' v(A2> + e)

Q.E.D.

From (12.5) and (12.16) we obtain a result analagous to that derived for

vector norms (see (10.4)):

lubv; yt
(A) - lubv,,v(-B) < lub,, V(A+B) 5 lub,/ v(A) + lubv, v(B)

9 >
i12.17)

ED,’ vJ
( A )  - lub,,, v

9
(-B) < glbv,.,(A+B) 5 glbv/ v(A) + lubv, v(B) .

9 >
e (12.18)
If v and/or V’ is symmetric, then these relations simplify to

1 lub,, v (A+B) - lubv, ,,(A)1 5 lub,, v(B) (12-19)
9 9 9

bb,’  v9
(A+B) - glbv, JA)I < lubv, @>

9 Y

as a consequence of the following

(12.20)

Theorem: if V and/or V’ is symmetric, then lub l

v;v lS

(12.21)

symmetric.
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Proof:

v(x) = v(-x) * lubv, v(-A) = sup(v'(-Ax)  : v(x) = 1)
J

= sup{v'(A(-x)) : v(-x) = 1)

= sup(v'(Ay) 1: v(y) = 1)

="lubv, v(A) .
t \ , *

v/(-x) = v'(x) > lubv, v(-A) = sup(v'(-Ax)  : v(x) = 1)
9

= sup{v'(Ax) .: v(x) = l]

= lubv/ $A>
J

Q.E.D.

Relations (12.19) and (12.20) may also be expressed as

--_
1 lubv/ v

t
(A) - lub,,, v(B)I 5 lubv' v(A-R)

t >

I glb v/ &I) - glbv/ ,,(@I < lubv’ ,,(A-@9 I 9 .,

from which it is easily seen that lub,, v and

mappings with respect to the topology generated by

The effect of norm transformations on lubv' v and glbv' v is given by:
> f

Theorem: Let V’ and vR
Q

be the transformed norms corre- (12.22)

sponding to the nonsingular linear transformations Q and R:

Then

v(p) = v'(Qx) and V,(x)  = V(Rx)  l

. lub,/ v (A) = lubv',v(QAR-l) (12.23)
Q' R

Proof:

gq/ v (A) = glb
Q’ R

lubv/ v (A) = sup{
v(p)

Q' R VRO
: x#+l

v’( QAR-lox)
= sup{

.
v (Rx)

: Rx f -+I

(12.24)
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= sup(v’((QAfl~~~ : Jr # 4))
V(Y)

= lubv, ,&&AR-') .
Y

A similar argument shows glb: (A-3 = gJb+, v&2AR-1) .
vpR- Y

Q.E.D.

Thus, if V’ is invariant under the group of norm transformations q

and v is invariant under the group 8, then lub,, v are invariant
Y

under the product group q X n : A -qAR .

Let A be an endomorphism of a normed vector space YC over the complex

field C and let --,V’ = V be strictly homogeneous. Then:

Theorem: If h is an eigenvalue of A, then

glbv' t, - -Y
(A) < lhl < lubv/ ,,(A> .

Y

Proof:

(12.25)

Let h be an eigenvalue of A and x the corresponding eigenvector.

Then Ax = hx and

glbv @> < vbd VW
Y - ‘TqYg = ~v(x> = IAl ‘qq - Yv(x) = jhl < lub, ,,(A>

Q.E.D.

The domain defined in (12.25) is an annulus in the complex plane. For

real, nonnegative eigenvalues, the assumption of strict homogeneity may

be dropped. it3In this case, if A = e 7, +T > 0, is an eigenvalue of A,

then 7 is a real, nonnegative eigenvalue of e
-i@

A and

q)' J"
-i6

A) < 7 < lubv/_ _ v(e-%) .
Y Y

The domain is still an annulus but the bounding curves no longer need be

concentric circles.
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If the norm V’ is generated by the set S'CV.'~  (V’ = Vs’), t h e n
K

and

v’(Ax) = sup(Re cp(Ax) : cp E: S')

lub,l v(A> = supCv'(Ax) :--v(x) = 1)
Y

= sup{sup(Re cp(Ax) : cp 8 S’) : V(x) = 1)

= supIRe cp(Ax) : cp e S’, V(X) = l}

= sup Re (&Ax) : cp e S', V(X) = 11,

the BILINEAR CHARACTERIZATION OF THE LEAST UPPER BOUND.B--P- (12.26)

This leads us to introduce the

BILINEAR FIELD OF VALUES OF A- - - - (12.27)

subordinate to
vS/

and v :

Since

P
S~JAl := h4w : cp 8 a', v(x) = 1) . (12.28)

l'~+ $A) = sup Re PS',v[Al, W29)Y

lubv' v (A) characterizes the position of a parallel to the imaginary
Y

axis supporting Ps' JA] from the right. In the special case of
* vLv=v

S'
comparing (12.28) with the more restrictive (6.8) gives:

G&Al = b&d 8 Ps v[Al : q(x) = V(X)) c ps v [A] . (12.30)
Y

’ s

Thus by Theorem (6.10)'

Exclusion Theorem: No eigenvalue of A lies outside (12.31)
Ps v [A]; that is, if X c C is an eigenvalue of A,

' s

then h c ps’vs ☯Al l
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Ps ; [Al is not only larger than
' s

G&A] in general but is also not

covariant under translation. Like G&A], however, it is INVARIANT

UNDER SCALAR MULTIPLICATION:

V I- E K : Ps,v,[.'"l=
L

7 P --
S,VSIA1 J

and, for nonsingular B,

PsB v iA1 = ps v [BAB? ,
'ia ' s

More generally, if B and B' are nonsingular, then

PS,B,  ,,$I = Ps,,vs~~‘~B-ll  0
--.

(12.32)

(12.33)

If either V& or V is strictly homogeneous, P
s,JA1 will have

rotational symmetry about the origin: If q E Ps, v[A] for some

choice of cp and x, then wqePS,v [A] for ail cu with !ol = 1

(consider the element of Ps/ JAI Qe;erated by either UJ cp and x

or cp and cox) . Thus, (12.;1) is a generalization of (12.25) without

the restriction of strictly homogeneous norms.
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013. Dual Norms

The order in which the suprema are taken in (12.26) may be reversed:

lubv t v (A)
Y

= sup sup[Re cpA(x) : v(x) = 1)
qxS' x

If we define the mapping vD on K = Hom(VK,K) byYD

vDw := sup{Re g(x) : v(x) = l] (13 l l)

=--. sup c : x f-+1 (13.2)

= inf($ : Re q(x) 5 p+(x), V x E '(IK], 03.3)

then

lub
v’yv (A) = sup[vD(rpA)  : qxs’}, (13.4)

the DUAL CHARACTERIZATION OF THE LEAST UPPER BOUND.----w

The supremum of (13.1) much resembles the supremum that led to the least
e

upper bound. In fact, since Re is additive and homogeneous, a proof

analogous to that of Theorem (12.5) shows that vD is subadditive and

homogeneous. However, since Re is neither non-negative nor definite,

. another argument is needed to show that vD is positive definite:

Proof:

Assume that vD($) 5 0 . Then V x E VK with x#4:Rw50e

But for such x, v(x) > 0, whence v x e VK : Re \Ir(x) 5 0 . In
. .

particular, V 8 E [0,2rr), x E YK : Re ei'$(x) = Re $(eiex) 5 0 .

Therefore 4(x) z 0 and $ =$D; that is,

* Q.E.D.
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If vD(9> is bounded, then v
D

is a norm; therefore,

Theorem: vDw is a norm on the subspace of bounded linear 03.5)

functionals of yK' the

DUAL NORM TO THE NORM v.- - - - - - (13.6)

In the finite dimensional case, every linear mapping is bounded and vD

is a norm on Y
D
K for every norm v .

Examples:

(i) Let YK = Rn (or Cn ) with v the Tschebyscheff norm. Then

the Manhattan norm on the dual space.

(ii) Let YK = Rn (or Cn ) with v the Manhattan norm. Then

vD(14 = max l!J Ii' 03.8)
l<i<n

the Tschebyscheff norm in the dual space.

(iii) Let VK be a H?lbert space with the scalar product norm

v (4 = kPhd>z  l
Then by the Riesz Representation Theorem,

'qE '; 'YE 'K: $ cx) = dx,Y) and

vDw = V(Y) l (13 .P>

(iv) Let YK = Rn and lzt A be Hermitian and positive definite so

that V(X) = (x~A~)~ is a norm. Then VyTe Vi = R,t

vD(yT) = (yTA-'y)' . 03.10)
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In particular, if A = I, then v is the Euclidean norm and

VD(YT) = (2 lYi121’Y
i=l

the Euclidean norm in the dual space.

If the set

dual norm

generates the norm vs, then the unit ball of the

. .

is closely related to S . In fact, since from (13.3)

--' v;(q) 5 1 # Vxc llK: Re If(x) 5 vs(dy

it follows that

= {IJrE vi: Re q(X) <, V,(X), v'xe 'K?

= X3
K

bk VD,: Re Jl(x) 5 v,(x))

where

.
I-l?XG := (q~ vg: Re q(x) < (r} (13.12)

is a half-space in vD
K' It is clear from (9.1) that Vxc VK: SW?

On the other hand, if S C Hx cy, then Vcp&: Re q(x) 5 CY whence
x,v&) o

v,(x) 5 CY and
Y

H
⌧,vs(⌧) c, H⌧ycr  l Therefore,

Theorem: 18 is the intersection of all half-spaces in VD
K (13.13)

containing S, the -
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BIPOLAR HULL OF s .Pm - (13.14)

As a consequence and, since the half-spaces H
x,a

are convex,

H[S] C K;, (13.15)

where H[S] denotes the CONVEX HULL OF 3 the intersection of all- -
convex sets containing S o In finite dimensional spaces,

8 - SH[S]
1-

where 3 denotes the topological closure operation.

Example: --.

Let YK = Rn and let

s = ((.e,, 0.0, an):

the open unit sphere. Then

Ky = ((.e,,  e.“, in):

et+ m;+ . ..+ +3,

p2L + 1; + . . . + 1; 5 13,

(13.16)

the closed unit sphere.

At this point it is interesting to note that the work of the preceding

paragraphs could have been done using 1 rather than S . However,8

the eigenvalue inclusion theorems gave better results for simple (minimal)

sets s 0 Also, it is nicer to generate norms without resorting to limit

processes and this can only be done for finite sets S .

If the norm V' is generated by a finite set S', then (13.4) reduces

lubvt,v(A) to a maximum over a finite set of dual norms:

lubv, v(A) = max (VD((pA)l e
Y 'PES'

(13*17)
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Examples:

(i) Let VK = VK = Cn and let v' be the Tschebyscheff norm with

generating set

S’ = u be;:-- Ial = l] .
i

Then

lubv 1 v(A) = max
Y .1, w =I I

If v is strictly homogeneous,

lubv, v(A) = max
Y i

the maximum of the dual norms of the rows of A . If v is the
n

Tschebyscheff norm, then vu is the Manhattan norm and

1
vD($A) .

then

(13 9 1%

vD(eiA), (13 JP)

the

the

the MATRIX TSCHEBYSCHEFF NORM.

(ii) Let yK
= Y;i = and let v' be the Manhattan norm with

lu$ v(A)Y = maxC IaikIY
i k

(13 l m

ROW SUM NORM.- - - If v is the Manhattan norm, then vD is

Tschebyscheff norm and

‘U’v’ v(A) = maX I’i ,I, 03 49 i,k Y

generating set

33 ie ie
S’ = ((e ', e 2, . .., e "3 .

Then

lubv, v(A) = max vD(iTA) .
I

lTES i
(13 l 22)
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If v is the Manhattan norm, then

norm and

luy) b (A) = max
9v

max

IT&' -* k

= max max

k lTeS1

lub
v',v (A) = max Cl a

k i ik

D
V is the Tschebyscheff

eTAek

lTAek

Y (13 023)

the COLUMN SUM NORM.- - If v is the Tschebyscheff norm, then

is the Manhattan norm and

lub
v’9v

(A) = max CI
RT,S k

lTAek

= maxc leTDIAek

Di! k

lub
v’9v

(4 = maX z I C (DQA) ik( Y
nk i

(see (6.22))

(13 -24)

the maximum of the sum of the absolute values of the column sums

of A under left-sided phase transformations. One might have

expected from the duality between the Manhattan and Tschebyscheff

norms that

lubvtpVO = C
i,k

Iai kI9

in this case. Indeed,

luy)t v

9

(A) <, C Jaik(j

i,k
(13 -25)

however, there is equality if and only if A is non-negative up

to a two-sided phase pattern transformation. Thus in general,

is merely an upper bound for A compatible with the Manhattan
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norm v' and the Tschebyscheff norm v .

(iii) Let YK = Yi = Cn and let v' and v be the Euclidean norm.

We introduce the
. .

BELTRAMI-JORDAN DECOMPOSITION OF A:- - 03 926)

A = .,u, cvH 03 l 27)

where U. . and V are unitary and C = diag(al, CT 2’ ‘9” _an) > 0 .

Since the Euclidean norm is invariant under unitary transformations,

lubvt v
Y

(A) = lubvt,,(',U, CVH)

= lub
v',v (a

9
1i

C 1°ixi12I .
= sup(q

i
< max ai .

i
f4 0.. = max cl.

This bound is achieved for x '
1

G < max 0 so that
c1, I-L i

lub
v’9v

00 = max 0 i' 03 *a\ i

the EUCLIDEAN BOUND NORM (~SFECTRAL" NORM). * The non-negative- -
scalars 0 i are the

SINGULAR VALUES OF A .- - 03 -29)

Since AHA = p.c2 VH is Hermitian positive definite, the (5.
1

are just the non-negative square roots of the eigenvalues of

AHA . If A is Hermitian or normal, then the oi are the

absolute values of the eigenvalues of A .
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$14. Least Upper and Greater Lower Bounds II.

We shall now consider least upper and greatest lower bounds in the general

case where
GKb

and
Gio

are not both one-dimensional. But first we
. .

must state what we mean by such bounds.

Let @A] C Hom(GCo, Gh) denote the set of all upper bounds for A

((11.1)) and let C[A] C Hom(G&, G&) be the set of all lower bounds

for A ((11.5)). To compare bounds within these sets we must introduce

an ordering "p in Hom(G&, G&) . Thus we define

v Jl, b2 c Hom(G%, GIL): al ^p J2 :* vx"G&' -+PX > md$x  pt J2x .

(14 .l)
--.

Theorem: ^p is transitive, reflexive, and antisymmetric. (14 2)

Proof:

Transitivity ((2.2)) and reflexivity ((2.3)) are inherited directly

from ^p but the proof of antisymmetry ((2.4)) is more difficult:

8; A xiii2 ^p d-k1 > vxcG+: B;x p t b2x A a2x p’ .B;x

> vxcG+  : Jlx = J2x

> VxeGto: Jlx = b2x since GKo
= G+ - G+

Q.E.D.

Thus ^p is an ordering of Hom(GC?, GIL), the

ORDERING INDUCED BY p AND p’ .-m

Moreover, it is

(14.3)

COMPATIBLE WITH o AND ok (14.4)
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x1 o x2 A %
; b2 > JIXl pt Jf2x2 . (14 l 5)

Example:

Let GK, = (Rk, <) and G& = (RI, <) . Then the ordering ^p induced- -
in Hom(Rk,RR) = Rkx'

. .
is given by

k^pH :* Vi,j: (4 ij -' (H)ijY (14.6)

an elementwise ordering which we shall again denote by 5 .

As might be expected, we can obtain weaker bounds from known bounds by

means of the ordering ^p:

Theorem: --. (14 -7)
Bl E n[A] A Bl ^p B2 > B2 E n[A]

cl E C[A] A C2 ; Cl > C2 E C[A] l

Proof:

Assume that Bl e @A] and Bl ^p B2 . Then v ' (Ax) p' Blv (x) p’ B2v (x)

since 0 p v(x) . Therefore B2 E @A] .

Q.E.D.

- Theorem: n[A] and C[A] are convex. (14.8)

Proof:

_ Let Bl, B2 E n[AJ and assume 0 po ~1 po 1 . Then

v’(Ax)  pt Blv(x) A v'(Ax) pt B2v(x)

> pv'(Ax) p' FBlv(x) A (l-&.'(Ax) P' (W)B2v(x)

>. v’(h)  p’ [cls Bl + b4B21v(x)

> kBl + (l+)B2 E n[A] .

Q.E.D.
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The zero element 0 of Hom(G%, G&) is always a lower bound:

0 E C[A] . (14. 9)

However, this does not imply that V ‘3 e n[A]: 6 "p & . Indeed

H E @[A] A & E n[A] > VxevK: RV(x) P’ A(X),

whereas

H ^p n& 32 VZEG;: Hz pt & .

Still,

Theorem: If v-(x) is SURJECTIVE E G&, that is, if v is (14.10)

a mapping of YK onto GL, then-

H E C[A] A d E @A] > H ^p b .

For now (V(x): xdfK) = (z: ZEG;).

In the case where = (Ko'Pd, the induced ordering ^p is an order-

ing of
D Gio

GIs = Hm(GKo,Ko), the

DUAL ORDERING (14.11)

(For GKb
= (I&pa) as well, ^p reduces to the ordering po of Ko ).

The DUAL CONE of the positivity cone G' is then given by- -

GD := D
+ C$ G50 : OD^P$]

D= (Jr GE &: 0 ww, v=G+)

(14.12)

an intersection of half-spaces. The question of whether B[A] C GL

has a least element and C[A] a greatest element was answered in §8:
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/?[A] has a least element ~0 3 W.AI - I% + Gf

@[A] has a greatest element yo # @[A] = yo - G? o

Examples: . . Iv \
(i) Let VK = R2 and GK, = (R2,<) with v[::) =-

the modulus norm. Let VI; = R and
. .

9 (14.13)

G;o = (R,I) with v'(x) = 1x1 . Then VA = (al,a2) E Hom(YK,~~),

n[Al = 1(Bl~B2):  Iall 5 B,:, \a,1 5 p2)

C[A] = C(YlYY2)' Yl L la119 Y2 5 b21’ YJyl + Y2\a21 L 0)

Since B[A] is a translated positivity cone, B[A] has a least

element f3 = (lally la211 e However, C[A] has no greatest element.

(ii) Let VK =

. Let 'lfi = R

v'(x) = Ix

R2 and
GK,

= (R2,L) with v

and Gk -= (R,<) with

2 2+x
12

=Y-r-2 2
x1+ x2

Then VA = (a /. l,a2) ' Hom(YK,Y& '

. (14.14)

B[A] =
C

(B1,B2):

@[A] = C(y1,y2): Yl+ Y2 L 03 o



B[A] has no least element and C[A] has no greatest element.

Moreover, since the values of v(x) lie on a single ray in GIs,
+

V is not surjective on
GKo

and Theorem (14.10) does not apply.

Indeed, -there do exist some lower and upper bounds which are

incomparable.

(iii) Let YK = R2 and GK, = (R2,<) with- 04 l 15)

vxl =(1 1
Ix,1 + lx,1

lx2 max(lxll, Ix,I)
I

Let VI; = R and GI;, = (R,<_) with V'(x) = 1x1 . Then

VA = (al,a2) E Horn cyKY '$,

ni[Al = 1 (Rl,@2) : 28, + f3, > Iall + la21y B, + 13, > max(lall, la,\)1- -

an intersection of half-spaces not yet a translated positivity
+

cone. Note that v is not surjective on GKo 9

Let G& = b,d and assume that V’ is generated by a set

of linear functionals. Then in a purely formal manner, we may extend

the concept of the least upper bound of A E Hom(Z/K,vi) with respect

to the norms V’ and V:
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lub
v'yv (4

:= inf(peGL: v' (k) PO @v(x), vxEyK}

= inf{@eGk: SUP Re PA PO BY(X), Txe'K)
CpCS'

= sup inf(peGU :
CpES'

Re cpA(x)  po @&)Y vxEyK)
Ko -.

= sup
$&'A

inf(SGi : Re $ (x) PO pv(x), vx'yK)

where the interchange of infimum and supremum is again purely formal.

S'AC V; is a set of linear functionals on Y
K'

Thus, provided all

the necessary infima and suprema exist, we have reduced the study of

upper bounds for homomorphisms A E Hom(YK,YK) to the study of upper

bounds for linear functionals (pNDK . It is well to remark at this

point that although GK, and = ObPo) are assumed to be vector

lattices, Hom(GK.,Gh) = Gk
Gio
is not necessarily a vector lattice.

Thus, the indicated infima may not exist.

Let E3[cp] denote the set of all upper bounds for (pevi:

n[cp] := {PEG;: Re q(x) PO @'(x), vxEvK)

= n &G;:Re cpw PO BVW
x &K

(14.16)

mpl = n
X&

Hx[lpl
K

where

H [cp] = (WGL:Re (p(x) po @v(x)) .
X

(14017)

Thus m[cp] is an intersection of half-spaces. By Theorem (8.22),

E?[(p] has a least element ~0 if and only if E?[(p] is the translated

cone ~0 + Gy . In this case we denote the least element f30 by

vD($):
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Theorem: If vDkP) exists for all 'pEY~, then vD is a

norm on the subspace  of bounded linear functionals on IfK'

DUAL NORM TO THE NORM v .- - - - -  -. .

(14.18)

the

(14 l lP>

Proof:

Let 9,' ‘p, Elf
D
K l

Then

Re kPl+V2)  (4 = Re cp,bd + Re cp,(x> PO (vD(,p,)  + vD~cp2))v(x) .

Therefore

vD (cp,) + vDkP2) E “[‘p1+‘p21

and

vD(cpl+q,)  i vDkP1)  + vDkP2) (subadditivity)

since vD(cpl+(p,) is the 1east element of B[cpl+~21 . Homogeneity

follows from the homogeneity of the mapping Re: VW& with 0 PO (2,

vD(a cp) = inf(@eGL: Re a v(x) p. By(x), VXdfK)

= inf(%GL: a Re cp(x) PO Bvbd, VXEYK)

=a l inf@eGL: Re dx) PO Bvbd, VXdfk3

= a vD(cp>  .

Assume that vD(cp) i OD . Then VxcYK: Re q(x) PO 0 . In particu-

lar, for each xevK,

V‘aK: Re a dx) =Recp(ax)  PO 0.

From this we conclude that q(x) E 0; that is, cp { OD > vD((p) > 0

(positive definiteness).
Q&D.
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Moreover, as in (13.4),

lub
v',v (4

= sup vDkPA) *
CpES'

(14.20)

Examples:

(i) Let YK = Rn and GKo = (Rn,<) with v the modulus norm.-

Let cp = (a,, a2, ..e9 an) E zig . Then

vD(d = lcpl := (Iall, la211 ...9 IanI) .

Then for cp, =(2,1,0) E Vi

(2,1,5) c v;:

V is surjective;  however, for some cp, n[cpl is not a translated

I I I I I

cone.

- As the preceding example indicates, surjectivity  of the norm v is

necessary but not sufficient to guarantee the existence of a least

upper bound for the linear functional cp . However, in the case of a

finite dimensional norm, we can prescribe a sufficient condition .

Henceforth we shall assume that v is a finite-dimensional norm,

v: YK --) (Rk,<) . By Theorems (9.25) and (9.28), each component v i
of v is a seminorm and, if v is symmetric, even a norm on some sub-

space  U i of YK' Proceeding along this line, we define the norm v

to be

REGULAR (14.21)
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if Y
K is a direct sum of subspaces

yK
= lAl 0 u2 0 . . . 0 Uk

and each component vi of v is a norm on the subspace ui'

be the decomposition of KUD as a direct sum of subspaces UD
i

to (14.22). Then

Theorem: If v is regular, then vD exists and (14.24)

--. vD($) = (vD,(t,), . ..) vD,($kll

where

Proof:

(14.22)

Let

(14.23)

corresponding

(14 -25)

Re $(X) =x Re qi(Xi) < xvq('ki)  Vi(Xi)-
i

Therefore vD($) is an upper bound. If (Bp .e.f pk) E nbk], then

vxic u i: pi <_ Bi Vi(X.)1

whence i' Therefore vD($) is the least upper bound.

Q.E.D.

Thus we have given a sufficient condition for the existence of vD .
+

Note that a regular norm is surjective on GIc, but that the converse

is not necessarily true.
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Example:

Let UK = Rn and
GKo -

= (Rn,<) with v the modulus norm. Then an

immediate consequence of Theorem (14.24) is that for cp = (cp,, . . . . cp )
D n

dfK'

vD(cp) = lpl = (lyl, l *-’ h,lL

the modulus norm in the dual space.

Having found a sufficient condition for the existence of least upper

bounds for linear functionals cpeVi, we now return to the study of

least upper bounds for homomorphisms A E Hom(uK,uK)  . Let v be a

regular norm and let

-w.

Hom (z/K’ ‘$ = “1. 0 x2 0 . . . 0 Lk (1-4 26)

be the decomposition of Hom(uK,uK) as a direct sum of subspaces

x
i
= Hom(Ui,u;C) (14 l 27)

corresponding to (14.22). Then analogous to Theorem (14.24)'

Theorem: lub
v',v

exists and (14.28)

lub ,,,,,,(A) = bbv,
JV1

CA& lubv'
,v2

(A& l *� lubv,,vk(Ak))

where

A = (~~1~~1 . . . 1 Ak) E HoduK, '$

and

We may now drop the assumption that v' is a scalar norm and require

instead that v' be a (finite-dimensional) regular norm. Let
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If'
K

= ui 0 U; 0 . . . ~ '; 04 029)

be the direct sum decomposition of ‘Vi such that each component vf

of vC is a norm on the subspace u!. Let
1.

Hom(vK,ui) = i@j kj
7

(14 -30)

where

s
ij = Hom(U&!)

is the decomposition of Hom(UK,Ui)  corresponding to (14.22) and (14.29).

Then analogous to Theorem (14.28)'

Theorem: ='y)' v exists and
7

lub

i

v;,vl(Al~)
lub

Vi’V2’A12’ ’ . l l

lubv;,vl(A21)
lub

lub (A) = v;,v2(A22) l l l l

v�v . .

\

.
.

lub
v;7v1 (AIl)

.

.
lub

v;,ve(A12)
. . . .

04 l 30

lub
Vi> VkcAlk)

lub
~;,v~(~2k) \

lub

04 032)

where

A =

Example:

Let U, = Rn and UG = Rm with v and V’

E Hom(UK,U$ and Aijc 1.. .(14.33)
1J

the modulus norms in
Lb.

Rn
m

and R respectively., Then for A E Hom(YK,ui) = RnXm:
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lub (A) z
v"v

la111

I 1a21.
..

I Iaml

I Ial2

la221
..
.

Iam2'

. . . .

. . . .

. . . .

As an immediate consequence of the norm properties

I 1
aln

a2n I
...

a Imn,,

. 04 034)

of lub
Vf'V.

:
J

Theorem: lukv t
'V

is a norm on the subspace of bounded homo- 04 035)

morphisms A E Hom(uK,ui) .

We now shift our attention to lower bounds for homomorphisms. We shall

find that, except for the case of scalar norms considered in $12, the

set @[A] of lower bounds for A has in general no greatest element.

This will follow &mediately from the existence of a maximal element

which is not comparable with all other lower bounds.

As before, we assume initially that v is a regular norm and that v'

is a scalar (real-valued) norm.

Theorem: Let (14 -36)

for A = (~~1~~1 . . . lAk),e Hom(UK,UI;) . Then y(i) = @), vii),
.

. a . , YLi)) E @[A] for i = 1, 2, . . . . n .

Proof:

: v'(h) = v'(Aixi +
pi"4

Ax)

1 v'(Aixi) -
4Pi

v ' ( -ApxF'

> glb (A 1.
v�vi  1

l �&Xi> -

4

lub
P i

vl�v (-A☺ l V~(X☺

t-l

= glbv,  v (Ai) l Vi(Xi) +

'i
4P i

☯-luQv (-$)I  l v,&)

IJJ
.

=y I-( 1 * v(x) -
Q.E.D.
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.
If Ai is singular, then glb (Ai) = O and the bound y '( 1v¶,v can be

replaced by the bound 0 by virtui of (14.9). On the other hand, if

Ai
is nonsingular, then glbvt’ (A.) > 0v. 1

and, following ROBERT,
1

. .
Theorem: Let

v’,v (Ai) ~=i.

'(A ).v"vi 1
l lubv.

i"p
(

(14 l 37)

-AilAti) CL # i

for A = (AJA,I . . . 1~~) E Hom(uK,u$ with A. nonsingular. Then1-
Hi
Y ( )

7 . . . . yLi') E @[A] .

Proof:

> glb (A 1.&Vi 1 l V&Xi +

4P i
A;$xV)

>-glbvtv i(A )

'i
l ☯Vi(Xi) -

4Pi
vi(+yp)  1

> glb- v',v (Ai) ' ['i(";) -
4

lub
i P i 'i7 '

($lA,)
IJJ'

l v,(x,) 1

= glbvl,v
i
(Ai>'Ji(xi) +

4Pi
[ -glbv t, v

i
(Ai) 'U'v

i"p
(_AI1%) 1~ (x,)

.
=yl( 1

l VW

Q.E.D.

Using the inequality

0vr,v (A.) l lubv

i 1 i7'cL
(-A?A ) < lubv,' (-A )

' IJ, -
% p

.
to be derived in $16, we find that the bound y '( 1 of (14.36) can be.
replaced by the bound v '( 1 of (14.37) provided Ai is nonsingular.

Thus the bounds of (14.36) are not necessarily maximal.
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Example:

Let UK = R3 and
GKo -

= (R2,<) with

Let ui = R2 and
G.b l -

= (R<) with v'

Let
,

A = (AJA,) =

Then

--_ lub

lub
v”v2

(A21 = J-E

glbv ?
'v2

(A21 = J-F

lub
v1'v2

(-A;~A~) = 9

and

(1)Y =(1,-m)

Y (2) = ( - 6 ,  fi )

41)Y = (1’ - G/3, l

,;i

(2) does not exist since
A2

is singular.

As previously noted, 7(1) is a better bound than y (1) , in this
case a far better bound. From the basic inequality
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vx =
i 1

x1 EU
x2 K:
x3

Y

2
with x = -1

0

Y = (Yl'Y2) E

l v(⌧)
= yL☺��L + Xg + Y21x31

<, v’(Ax) = (2x1+2x2+2x3) 2
+ (2x1+5x2+3x3)  2

we may infer that every lower bound

G[Al satisfies

Yl L 1; Y2 5 2J-5; fiyl+ 3Y, <, 0 .

Since 70).
-1

- fulfills the first and third conditions sharply, y ( )

is a maximal lower bound.

Analogous to (14.17)' it is immediate from the definition that

Theorem: C[A] is an intersection of half-spaces: (14 3)

C[A] = n
x&

Ex[Al

K

(14.39)

where

?$A] = {YEG;: Yv(x) <, v'(Ax)] .

Since @[A] C 'ir,[A] for each x, we can obtain restrictions on the set

. of lower bounds by choosing suitable x:

Theorem: V‘ye@[A]: yi<- glbv, v (Ai) l

' i

Proof:

VXE u.:
1

yivi(xi) = Yv(x) 5 v'(b) = v'(Aixi)

(14.40)

Thus yi is a lower bound for A
i and Yi L gl~, (A 1,v. i

1

Q.E.D.
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Theorem: If y&A] and yi > 0, then (14.41)

yP
r <-i -lubv i' 'p

(-AilA
P

P#i* (14.42)

. .

Moreover, if Ai is nonsingular, then the bound of (14.37) is maximal.

Proof:

Let X~EUp @J + i) and let
-1

x i = -Ai ApxI1 E Ui . Then for

X = x . + x
1 CL'

YV(X)  = yivi(xi)  + yc~‘~ (x,)

--.
<, v'-(Ax) = v'(Aixi + AWxp) = v’(4) = 0

Thus - 2 is an upper bound for -A?A whence
yi 1 CL

3 > lub
7-i - 'jlvP

(-"I'",,

Y
+ <

-

i
-lubv

i"p

.( )
_ Assume that Ai is nonsingular and that ay&[A] such that -l 57:y

-i( )
'i = glbvi _,,j CA-j-l< 7-i.

Ni( )
yP

= -glb vt,; (A hbi (-&) 5 yp (II,  f i) l

i 'i7' c1,

By Theorem (14.40)' yi <_ glQv (Ai) and therefore Yi = glbvI,,.
By the result just proved,'

i
>o e

(A 1i
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Y
+< -1ub-
i 'i"

IJJ
(-Ail",,

YIJ, ’ -Yi- ‘U’v
i'$

(-AI~AJ (P f i)

= -glb VI,t, (Ai)lubv
i i"p

.
Thus y = -glb

P
v,, CA )lubv i

i ' 'i7'CL
(-A& and y=y',( 1 whence

Robert's bound is maximal.

Q.E.D.

The full importance of this result will become evident in $15. For now,

we note that although 0 and Robert's bound are both lower bounds, they

are usually no-kcomparable. Thus there does not generally exist a greatest

lower bound for the homomorphism A E Hom(uK,u$ .

Since regular norms are surjective, Theorem (14.10) gives

YECCAI > Y 5 lu$ v(A) . (14.43)
7

As before, we may now drop the assumption that v' is a scalar norm

and require only that JJ and v' are regular norms. We can now con-

struct lower bounds from the "row-wise" bounds previously discussed.

.

Let A E Hom(uK,u$ and write

A =

Al

A20.
..

Aa

where

Aj E Hom(vK,Uj) .
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Then if y j is a lower bound for Aj(l <, j 5 1)

yl

Y
y2 .= .0..

yl

is a lower bound for A e

If k=R, then the row bounds may be taken to be the lower bounds of

(14.36) in such a manner that there is exactly one element of the form

glbvIJA. .) in each row and each column. With suitable reordering,

1 j
13

these elements wi&l appear on the diagonal and, if the dimensions of the

subspaces in the direct sum decompositions of UK
and uli

coincide, we

obtain the lower bound of FIEDLER:

HFiedl =

v;,vl(All) -1ubv;,v2(-A12)  l  l  l  .

$7 v1

( -A24 glbv; V2(A22) l 0 . .

7

. .

.

.

Vi� v1

(-Akl) -1ub ,:
vk'V2

(-Ak2>  l l � l

.

where

= D
Fiedl - 'Fiedl

DFiedl =
diag(glb

v;, vl(A1l)� � l l � glbvk,  vk(Akk))

GAIJ). .
OJ 1Fiedl ij =

Vi'V.
J

0

i#j

i=j

If the Aii are all nonsingular, then Fiedler's bound can be replaced

by the bound of Robert
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YRob = D
Fiedl(' - 'Rob) (.14 .45)

where

vi,v.
3
C-AI:A~~) if3

('Ro,)  ij = . (14.46)
0 i=j

Of course, if all subspaces are one-dimensional, then these bounds

coincide as do bounds (14.36) and (14.37).

Example:

Let UK=Ui=Rn andlet V=V’

VA = (aij)=s Hom(uK,ui) = Rnxn:

H
Rob

be the modulus norm. Then

s al2I

Ia22

I . . . - alnI I

I . . . \-la2nl .
.
.
.

la2n

.

.

.
. . . I la

nn i

(14.47)

Finally, we consider upper and lower bounds for a sum Al + A2 of two

homomorphisms Al A2 E Hom(uK$):

.
Theorem: Let hl and J2 be upper bounds for Al and A2 (14.48)

respectively. Then al + J2 is an upper bound for Al+ A2 .

* Proof:

v’ ( (Al+A2bd  P ’ v’(Alx) + v’(A2x)

P ’ =y (4 + J2v (4

= Pld2, v (4

Q.E.D.
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Theorem: Let Hl be a lower bound for Al and let b2 be (14 -49)

an upper bound for -A2 o Then Hl - k2 is a lower bound for

Al+ A2 .

Proof:
. .

(H1 - ~2h’(x> = H&x) - a2v(x)

p' v'(Alx) - v'(-A2x)

P ’ v’ ( (Al+A2)x)

Q.E.D.
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$15. Best Lower Bounds in the Sense of Robert; Applications: Nonsingularity

Criteria and Eigenvalue Exclusion Theorems.

Lower bounds for an endomorphism A,. of vK may be used to establish
-1

nonsingularity of the mapping A and to find upper bounds for A .

For the case of scalar norms v and v',

A singular > glbv,,p = 0 l

Equivalently,

mvl v (A) > 0 > A nonsingular .
7

--_
Moreover, since any left inverse for A is the unique two-sided inverse,

Theorem (X.15) gives

lub

an upper bound for A
-1

.

In the general case, the situation is similar yet in a weaker sense.

We shall assume that YK = UK, that the norms v and V’ are regular,

and that the finite-dimensional vector lattices (Gk,d and (G&P')

. have the same dimension. Thus A E Hom(uK,uK) is an endomorphism of

uK
and all bounds for A, subordinate to v' and v, are square

matrices. Furthermore, both mappings and bound mappings have the property

. that M is nonsingular 32 3 two-sided inverse M
-1

, where M is

either a mapping or a bound mapping.

A lower bound H E C[A] is said to have a

SEMIPOSITIVE INVERSE H
-1

(15*1)

if H is nonsingular andO; H
-1

, where p" is the ordering induced in
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Hom(G'&,G& by p' and p . For such a bound, H-l # 0 and

vxdf :
K v(x) p H%‘(Ax)  . (15.2)

Theorem: If H E C[A] has a semiposit&e inverse, then A (15.3)
is nonsingular.

Proof:

x#$ > v(x)#o

> H-lv'(Ax) # 0

> P(Ax) f 0

by (15.2)

since H-1

is nonsingular

> h#$
--.

Thus A is nonsingular.

Q.E.D.

Example:

Let G& = G;O = (Rn,<) e Then 6 coincides with i and is just
the elementwise ordering of matrices. Thus H is semipositive #*
it is componentwise non-negative.

Theorem: If H E C[A] has a semipositive inverse, then H-I ( 1 5 . 4 )
is an upper bound for A

-1
.

Proof:

By Theorem (15.3)' A is nonsingular and letting x = A-'y in

(15.2):

V‘YE  u;: v(Ay$ p H%'(Y) .

Q.E.D.

(15.5)

Although H
-1

is not necessarily the least upper bound for A
-1

and
may be a quite weak upper bound, it often does have the advantage of

s
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being more easily calculated. Moreover, it is of some importance in

connection with matrix problems which have a natural decomposition into

blocks; for example, finite difference approximations in multi-dimensional

problems.
. .

Example:

Let UK = 2 and let v = v' be the modulus norm. For

The lower bound of (14.47) is just

H has a semipositive inverse

0.5

H-l = 0.25(0.25

which is an upper bound for

(
0.4

A-l = -0.1

-0.1

The least upper bound for A
-1

is

-1

3

-1

0.25

0.5

0.25

-0.1

0.4

-0.1

1

1 7

3)

-1

-1 .

3)

-0.1

-0.1 .

0.41
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0.4 0.1 0.1

lubv ,,(A-1 ) =
7

0.1 0.1 0.4
. .

A mapping H E Hom(Gk,G&) is

MONOTONIC (15e 6)

if

VU’ VEG :
Ko

Hu p' Hv > u p v . (15. 71

Theorem: H is monotonic 32 H has a semipositive inverse. 05* 8)

Proof:

Assume that H has a semipositive inverse and that Hu p' Hv . Then

O;H
-1

A 0 p’ H(u-v) > 0 p (u-v)

whence u p  v . Therefore H is monotonic. Assume that H is

monotonic. Then

H singular > 3w f: 0: Hw = 0

> c OPW
WPO

05 l 7) with
05 l 7) with

> w = 0,

- a contradiction. Thus H is nonsingular. Moreover,

0 p’ w > H(0) p’ H(H-'w)

> 0 p H-l-w .

Thus 0 ; H
-1

and H has a semipositive inverse.

u=o,

u=w,
V=W

v=o

s Q.E.D.
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Apart from the question of whether monotonic lower bounds exist, we may

want to compare the inverses of monotonic lower bounds under the ordering

b l Let

?[A] := {H-l: HeC[A] has a semipositive inverse}, 05* 9)

the set of inverses of the monotonic lower bounds of A . Then

C-l[A] C B[A-l] (15.10)

and we may seek minimal or even least elements in C-l[A] .

Theorem: If Hl and H2
are monotonic, then

--.

Hl ^p H2 > H;' b Hi1 .

Proof:

Op'w > 0 ,H;'w

> H,H;lw p' w

> H;'w p H;'w

since Hl ; H2

05.11)

.
Therefore

-1
H2

;; H;' .

Q.E.D.

Thus inverses of monotonic bounds which can be replaced in the sense of

. b can be replaced in the sense of b . The converse is not true as the

following example indicates:

Example:

Let

Hl = (-; -;) ; H2 =(; -;) .
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Then

-1 2
Hl =

i
1

3

2
;

-1
H2

3

2 1

and Hl
and H are monotone. However,

-1 v -1

2
although H2 p Hl it is

not true that Hl ^p H2 . In fact, Hl and H2 are incomparable.

We could instead consider (15.5) from the point of view of obtaining an

error estimate by means of residuals. In this case we would desire H

to be such that the set

J~[H,vI := (ueG+: Hu p' v} (15.12)

is as small as possible for fixed v = V'(X) . For the size of

B[H,v'(x)] = (v(A-lx): Hv(A-lx) p' v'(x)}

reflects the size of the set

(A-lz: v’(z) = v’(x)},

the set of possible errors.

. Theorem: Hl ;; H2 > VVEG+: aQ[H2,v] = a[Hl,v] . (15.13)

Proof:

. w9[H2,v1 > UEG+ A H2u p' v

> wG+ A Hlu p' H2u p' v since Hl ^p H2

> ue8[Hl,v] l

Q.E.D.

Note that the preceding result does not require monotonicity, but the

class of monotonic bounds is again distinguished with respect to O[H,v]:
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Theorem: If H is monotonic, then +
VveG' : B[H,v] is

nonempty and bounded.

(15.14)

Proof:

Since H is monotonic,
. .

Hu p' v > u p H"v

and

B[H,v] C (u: 0 p u p H-'v)

Thus B[H,v] is bounded from above and below. Since

+
VEG'.--. > H%eG+,

H%J[H,v] and the set is nonempty.

Q.E.D.

Thus a monotonic lower bound gives a bounded set of norms of errors and

hence a bounded set of errors.

An equivalent characterization of the boundedness of O[H,v] VveG"

with respect to an Archimedean ordering is given by

.
Theorem: $[H,v] is bounded VveG'+ * (15 l 15)

(ucG+ A Hu p' 0 ' > u = 0) .

Proof:

Assume that VveG'+: B[H,v] is bounded. Let ueG+ with Hu p' 0 .

Then

(kG’+) (v cy E I6 : 0 & a): cy u E aQ[H,v] .

But the set (WI} is unbounded for u # 0 . Thus u = 0 . Assume

that 3veG'+:
*

&[H,v] is not bounded. Then since
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--

(wG+: 0 p' Hu o' v)

is bounded, its complement with respect to &[H,v]

(wG+ : Hu $ 0)

is unbounded and contains a nonzero element; that is,
+

3ueG : Hu p' 0

and u f 0 .

Q.E.D.

The full importance of Robert's bound (14.45) is indicated in the

following two Theorems:

Theorem: The set of all monotonic lower bounds with positive (1-5.16)
--.

diagonal and non-positive off-diagonal elements is non-empty if and

only if it contains H
Rob '

Proof:

Let H be a monotonic lower bound with positive diagonal and non-

positive off-diagonal elements. Then H = D(1 - U) where D is

diagonal with positive elements and U is off-diagonal with non-

negative elements.
-1

By Theorem (14.41)' U 2 URob. Since H is

monotonic, H is semipositive and

O<DAO<H- - -' = (I - U)-lD-' > 0 < (I - U)-' .-

Moreover, since 0 < U, vk > 0: 05(1-U)
-1 k
U . From- -

.
(I - u)+Jk = (I - U)'$I - (I - uk)]

= (I - u>-l - (I + u + u2 + . . . + uk-l,

we obtain

0 2 I + u + v2 + .a. + uk-l < (I - u)-I-

and the infinite sum being elementwise bounded and nondecreasing,
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1+u+u2+3+...

converges. Since 0 5 URob  <, U, the infinite sum

I + 'Rob + sob '
3Rob + ' l '

also converges. The limit is just (I - 'Rob)-' which is element-

wise non-negative:

’ <, (I - ‘Rob, -I

whence

o 5 (I - ‘Rob) -lD,:,,, = H;ib

--.

and %ob
is monotonic. The remainder of the theorem is immediately

evident since %ob
is a lower bound with positive diagonal and non-

positive off-diagonal elements.

Q.E.D.

Theorem: Among all monotonic lower bounds H which have (15.17)

positive diagonal and non-positive off-diagonal elements, the

bound HRob is least in the sense of inclusion of the domains

B[H,v]:

VveGI+: BIHRob,v] = a[H,v] l

. Proof:

Assume that the set of monotonic lower bounds with the prescribed

sign pattern is non-empty. Then by Theorem (15.16)’ sob is mono-

tonic and an element of this set. Thus
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Let H = D(1 - U) be any other such bound. By Theorems (14.40) and

(14.41)'

D L DFiedl’ ' > 'Rob '_-

Thus

(I - U)u < (I - URob)u <, D;tedlv 5 D-'v-

or Hu< v .- Therefore u&[H,v] .

Q.E.D.

The monotonic lower bounds which are the subject of Theorems (15.16)

and (15.17) are matrices with positive diagonal and non-positive off-

diagonal elements which have non-negative inverses. These M-matrices

(OSTROWSKI) have been studied in detail by OSTROWSKI, FAN, KOTELJANSKI,

and FIEDLER and FTAK. GASTINEL has proposed studying the class of
+

matrices H for which B[H,v] is bounded VveG' , and SCHNEIDER has

discussed a related class of matrices. It would be interesting to know

how HRob
is characterized within this class which is wider than

(Theorem (15el$))  the class of M-matrices.

We shall now apply our results on bound mappings to formulate several

nonsingularity criteria and eigenvalue exclusion theorems. Thus we.

assume that UK = Ui and G& = G'
Ko

and that the norms v = V’ are

regular.

The dual characterization of lubvI,v(A) ((14.20)) for scalar norms v'

lubv, v (A)
= sup (vD(qA): cp&'}

7 s

is also valid for regular norms v' . However, a bilinear characterization

and the corresponding bilinear field of values do not seem to exist. More-

over, the field of values defined in $6 does not seem to allow a useful

generalization.
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There is a natural connection between nonsingularity criteria for a

matrix A and exclusion theorems for the eigenvalues of A:

Theorem: Let 63[A] be a statement about an endomorphism. .
A E Hom(uK,uI;) . Then the nonsingularity criterion

6'[A] > A nonsingular

05.18)

05 l 19)

and the eigenvalue exclusion theorem

6=[A - KC] > h is not an eigenvalue of A 05 l 20)

are equivalent.
--.

Proof:

Assume that

$3[A] > A nonsingular

and let h be an eigenvalue of A . Then A - h1 is singular:

h is an eigenvalue of A > I p[A - AI] 05 l 21)

an equivalent formulation of (15.20). Assume that

.

63[A - hI] > h is not an eigenvalue of A .

Then

6=[A] > h = 0 is not an eigenvalue of A

> A is nonsingular.

Q.E.D.

Example:

Let

p[A] :=Vi : laii) >
4

lalJ'
. . l

j i
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Then Gerschgorin's Theorem may be stated as

hc(zd!: Xi.: Iz - a 1 <_ii
4

blJII. .
j i

(15.22)

= ZE :c c +=[A - zI]) ..

or

h is an eigenvalue of A > 163[A - ZI] .

The equivalent nonsingularity criterion

Vi : laiil > 1 /aijI > A nonsingular
j#i

(15.23)

was discovered by LEVY in the nineteenth century.

There is a direct proof of the preceding result ((15.23)) as a special

case (take. B to be the diagonal of A and consider the lub subordinate

to the Tschebyscheff norm) of the following nonsingularity criterion:

Theorem: If B is nonsingular and lub(1 - B-IA) < 1, then (15.24)

A is nonsingular.

Proof:

1 > lub(1 - B-IA)

2 lub(1) - glb(B-lA)

= l- glb(B-lA)

0 < glb(B-lA)

Thus B-'A is nonsingular as is A = B l B-lA e

Q.E.D.

The corresponding exclusion theorem is
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lub(1 - B-l(A - AI)) >, 1 > h is not an eigenvalue of A .(15.25)

B is usually chosen to be C - h1 provided C - 11 is nonsingular.

In this case, (15.25) becomes . .

lub((C - AI)-l(C - A)) 11 > h is not an eigenvalue of A .

(15.26)

Equivalently, the set

(zeC: (C - h1) is singular or lub((C - XI)-'(C - A)) < 1-1

(15.27)

contains all the eigenvalues of A . The preceding results are all

comparison theorems and their usefulness depends on the choice of B

or C .

The nonsingularity criterion of Theorem (15.13) leads immediately to

Theorem: Let H E C[A - XI] be a monotonic lower bound for (15.28)

A-AI. Then X is not an eigenvalue of A .

This result can be applied to KFiedl[A - AI] and HRob[A - AI] . In

the first case, it can be slightly modified.

a

Lemma: If Hl and H2 have positive diagonal and non- (15.29)

positive off-diagonal elements and Hl <, H2, then

Hl monotonic > H2 monotonic .

Proof: Compare the Neumann series for Hl and H2 .

Theorem: (Fiedler - Ptak) If h is an eigenvalue of A, (15.30)

then

he u (z: glb
i v;,vi

(Aii-zI)<c$
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provided cl, c2, . . . . ck are such that

d%dcl,  c2, 0 00, ‘k) - UFiedl[AI

is monotonic. . .

Proof:

Assume that cl, c2, ..o, ck are such that

Hc = diag(cl,  c27 l ... Ck) - UFiedl☯Al

is monotonic. Then by the preceding Lemma, if

--. glb v;,vi
(A..) > c.

11 - 1

Then HFiedl[lA - 111 is monotonic and h is not an eigenvalue of

A .

Q.E.D.

In the case of the modulus norm, we get a sharpened form of Gerschgorin's

Theorem due to KOTELJANSKII and FAN:

h E U [z: la
i

ii - ZI < Ci) . 05 l 31)
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$16. Submultiplicative Functionals on Half-categories and Semigroups;

Normed Categories and Rings

In preceding sections, we have consi.dered  mappings between a pair of vector

spaces UK and U'
K and, in some special cases, mappings of a vector space

.

uK
into itself. ( )If instead we have a family of vector spaces UK1 where

i ranges over some finite or infinite index set I, then we may consider

homomorphisms between any two members of this family. If the vector spaces

are normed, then these norms induce upper and lower bounds for the homo-

morphisms.

.
( 1 ( 1Let A: UK1 -) UK' and B:V CR) 4Um( )

.
vided the range U (J)

K K
be homomorphisms. Then, pro-

K
of A coincides with the domain U 0)

K of B,

the product yBA can be naturally defined as A composed with B . Since

composition of mappings is an associative operation, if A, B, C are

homomorphisms and A(BC) exists, then (AB) c also exists and (AB)c =

A(BC) . We may abstract this algebraic structure of homomorphisms and

define a

HALF-CATEGORY (16.1)

as a set ni, together with an associative partial composition:

a VA, B, C e m: A(BC) exists > (AB)C exists and (AB)C = A(BC) .

(16.2)

Example:.
The set of all finite matrices is a half-category with the usual

definition of matrix multiplication (if the number of columns of A

is not equal to the number of rows of B, then the product AB is

not defined). It is the half-category of homomorphisms corresponding

to the family of vector spaces
nQJ

(R )n 1 .=

A half-category in which composition is defined for every pair of elements

is a #
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SEMIGROUP. (16.3)

A functional N on a half-category r/l with values from a (j-ordered

half-category 3 is
. .

SUBMULTIPLICATIVE (16.4)

if for all A, B E r/l such that AB exists, N(A) N(B) also exists and

Exa-mple:

On the half-category of finite matrices, the mapping

A'AI I where A = (a..)
13

and IAI = (IaijI)

is a submultiplicative functional.

Theorem: ( )Let iuKi )i~I be a family of normed vector spaces (16.6). .
with regular norms v ( 1 ( )

A E Hom(u~i),u~)), d:fin:'

-+ (($), pci)) 0 For

lub(A) := lub
,O,,W (A) l

.( 1 .
(lubv(j),v(i)(A)  exists since v ' and v (J) are regular norms.)

Then lub is a sub-multiplicative functional on the half-category of

- homomorphisms

n = (A: %,jeI: A E Hom(uK ,UKW (j))j

with values from the i-ordered half-category

63 = (.&: 8i,jeI: & E Hom(G~),G~))],
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(i) (3
the ordering rj

.
( 1

.
(3)

being the ordering induced on Hom(GKo ,GK, ) by

P1 andp .

Proof:

If A, B E m and AB exists, then the domain of A coincides with

the range of B:

.( 1 .( 1 .
( 1 (a)B: UK1 4 YKJ ; A: UKJ 3 UK .

From the definition of lubvt v7
7

v(+t3x) p(l)
.

lubv(~),v(j)O l � ☺ (B⌧)

( 1

Therefore lub (m) (j)  (A) l �Ub

,(jl☺i)  (B)

is an upper bound for
V 'V

AB and

lubvmJ~) (AB) rj �Ub (m) (j)(A)  l ��b,(j) (i)(B) (‘6.7)
V ‘V ‘V

is the ordering induced by p 0) .
where rj and p1 .( 1 Equivalently,

lub(AB) 6 lub(A) lub(B) . (16.7) '

Q.E.D.

The inequality (16.7) may be weakened.

are upper bound mappings ((11.4))' then

and

lubv(l),v(i) (AB) i m

V

(1)

�V

( j )  l Iqv(j),Ji)

.lub(AB) rj mm .

123

(16.8)

(16.8) '



The proof of Theorem (16.6) depended upon the existence of a least upper

bound for AB with respect to v (0 ( 1iandv . Since the greatest

lower bound for a mapping does not exist in general in the case of non-

scalar norms, we cannot expect a corresponding result for glb . However,

if we restrict ourselves to scalar norms, then

Theorem: ( 1
Let c"Ki 'JiE1 be a family of normed vector spaces (16. 9)

with scalar norms v ( 1i
: UK(i) + (R,<) . For A e Hom(uK K ),(i),,(j)

-

define

glb (A) := g�bv(j),,(i) (A) l

Then glb is a SUPEXMULTIPLICATIVE functional on the half-category

of homomorphisms

[A: 3i,jeI: A E Hom(uK

with values from the < - ordered half-category R;-

glb (A@ >, @b(A)  glb (B) l

As before, inequality (16.10) may be weakened:

@(A@ > IAl j&I-.

where /J is any lower bound mapping ((11.7)).

Theorem:

Proof:

VE > 0 3y ++:

glb(AB) <_ lub(A) glb(B) .

lub( B) -&$$k

that is

(16.10)

(16.11)

(16.12)

lub(AB) > glb(A) lub(B)-

(16.13)
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Letting x = By,

glb (A) l [lub(B) - E] 5 ~$$$ . [lub(B) - ~1

2 * .--$$$

<, lub(AB)

Similarly, VE >03y#$:

glb(B)  -

Letting x = By,

lub(A)

Q.E.D.

Note that in the proof of the preceding theorem, it would not have been

possible to vary x first since there might not exist a y such that

BY =X 0 However,

Theorem: If B is surjective, then (16.14)

lub(AB) >, lub(A) glb(B)

glb(AB) < glb(A) lub(B) .

In the case where A and B are both endomorphisms, the last pair of

inequalities always hold: for if B is nonsingular, then B is surjec-

tive; and if B is singular, then AB is also singular and glb(B) =

glb(AB) = 0 .
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We may define a second partial composition, addition, between the elements

of a half-category of homomorphisms. The sum of two homomorphisms A and

B is just

(A+B) (x) := A(x)“+ B(x),

provided the domains and ranges of A and B coincide. The resulting

algebraic structure is called a CATEGORY. A subadditive, submultiplica-

tive, definite functional on a category is a MULTIPLICATIVE NORM on that

category. Restating several earlier results ((12.5)and  (16.6)):

Theorem: lub is a multiplicative norm on the category of (16.15)

homomorphisms corresponding to a family of vector spaces.

Examples:

(i) The set of all finite matrices is a category with the usual

definitions of addition and multiplication. The mapping

A'A
I I where A = (a..)

1J
and  IAl = (laijl)

(16.16)

is a lub subordinate to the modulus norm and therefore a multipli-

cative norm, the MODULUS NORM on the category of finite matrices.

(ii) On the category of finite matrices' the mapping.

2 f laPv12',
. i

A E Hom(Rn,Rm)
p=l v=l

(16.1-7)

is a multiplicative norm, the FROBENIUS NORM. This norm is not a

lub-NORM subordinate to two vector norms and indicates that not allm-

multiplicative norms are so generated.

( 1(iii) If the family of vector spaces {UKi )ieI consists of only one

vector space UK' then the corresponding set m of homomorphisms

is a set of endomorphisms. Thus addition and multiplication are

defined for any pair of elements of r/l . Considered as a half-
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category, n is a semigroup. Considered as a category, "171 is a

ring since multiplication distributes over addition .

Henceforth we shall restrict our attention to scalar (real-valued)

multiplicative norms Il***II -*over a ring n with identity. We define

rlA := II IIA (16.18)

if A has a right zero divisor

uA :=
AL

(16-w)
is a left inverse of A],

I otherwise

where we have assumed in addition that n satisfies

-a.

If A has no right zero divisors, then

A has at least one left inverse.
(16.20)

To further simplify matters, we also assume that

a (unique) two-sided inverse A
-1

for A exists (16.21)
32 A has no right zero divisors.

In this case, (16.19) becomes

LJA =
if A-l exists

7 if A has a right zero divisor.

* Theorem:

l-lA

(16.19)"

(16.22)

(16.23)

(l6.@+)

(16.25)
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Proof:

(i) (16.22) foilows from the subadditivity of Il...II and a systematic

change of variables (see (10.3)).

(ii) Assume that A
-1

and (A+B)-1 “exist. Then

A-~ = (A+B)-'(1 + BA-~)

= (A+@ -' + (A+B)-~BA-~

llA-lll  5 11 (A+@ -?I * (1 + bii lb-lli)

1) (A+@ -?I -I- <, llA-1ll-1 + IiBll

JA+B[ 5 jAJ + JBI .

Assume that =(A+B)
-1

exists and A
-1

does not exist. Then A

has a right zero divisor (3XfO: AX=O) and

x = (A+B)+A+B)X

= (A+B)-'BX

ilxll <, 11 (A+@ -?I iI Bli llxll

II (A+@ -71 -l <, II HI since x f 0 > llxll  # 0

IA+B[ 5 IAl + m since IAl = o .

Assume that (A+B>-1 does not exist. Then /A+BI = 0 and the

preceding inequality is again vaild. The left hand side of (16.23)

is obtained by a systematic change of variables (see(lO.3)).

(iii) The right hand side of (16.24) follows from the submultiplicativity

of 11 00.~) 0 Assume that B
-1

exists. Then
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A=AB.B
-1

�IAll  5 lb� l I�d

11 Ail l b-1l� -I- <, lb�l

17 l IB/ L- 1E-l  l

Assume that B
-1 does not exist. Then Bl-l = 0 and the preceding

inequality is still satisfied.

(iv) Assume that w
-1 exists. Then A

-1 also exists and

A-l = B(AB)-1

11 A-? <, 'I BII 'I (A@ -?I
--.

1�  (A@ -? -� 5 �id -� l �IB�

Assume that (AB)-1 does not exist. Then ABL-l = 0 and the pre-

Assume that A
-1 -1

ceding inequality again holds. and B exist.

Then (AB)
-1 = &A-l exists and

11 (A@ -l/l  5 b-1ll l �b-l�l

llA-l'l-l . llB-lll-l 5 11 (AB)-l'l-l

LlA 0 l.d<_lABI 0

-1
does not exist. Then (AB)

-1
Assume that A does not exist and

/iiJ = JAB] = 0, whence the preceding inequality is trivially satis-

A similar situation occurs when B
-1

fied. does not exist.

Q.E.D.

The following inequalities are proved in an analogous manner:

(16.26)
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Example:

Inequalities (16.22) - (16.26) are valid for any real-valued multipli-

cative norm on a finite matrix ring.

. .
The question naturally arises as to whether the functionals m and

IJ as defined by (16.18) and (16.19) are upper and lower bound mappings

respectively in the sense of (11.4) and (11.7); that is, whether there

exists a normed vector space UK
such that for every A E R, A is an

endomorphism of UK
and At-i and Al-l are an upper and lower bound for

the mapping distortion. For the case where 6% is a ring over some field

K (i.e., an algebra), the answer is given by

Theorem: Let R be a ring over the field K and let UK be (16.27)

6% (taken addi't;ively) or some proper left ideal of 6% . Define

anormon UK by v(X) = IIxII . Then

’ C, Hom(uK7uK)

v(NIAI L’v(x) 5 IAl 0 f 0) l

Proof:

The first assertion is an immediate consequence of the fact that
. multiplication on the left by an element of 6% is an endomorphism

of any left ideal of R (a is itself a left ideal of R) . From

vm = IIAXI 5 IIAil “XII = IA1 40

we obtain

provided v(X) # 0 (X # 0) . Assume that Am1 exists. Then
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Assume that A
-1

does not exist. Then AI I- = 0 and the preceding

inequality is trivial3.y  satisfied.

Q.E.D.

Henceforth we shall assume that 65 is a ring over the field K . For

any non-zero ideal 9 of 6% we may define VA e n:

--.

lub&(A) := sup (16.28)

glb&(A) := inf

Clearly,

Theorem:

kl < glbg(A) < lub&(A) < IAl .- - -

Moreover, as a consequence of Lemma (9.2),

. Theorem: If dlC 8
2

are left ideals of n, then

lubg (A) 5 lubg (A)
1 2

glbg (A) 5 glbg (A) l

2 1

Finally,

Theorem: lubR is a multiplicative norm on no

(16.29)

(16 030)

(16.31)

(16 032)



Proof:

Subadditivity and submultiplicativity are inherited from II. ..II ; the

proof is analogous to that of Theorems (12.5) and (16.6) and may be

carried out for lubg for any non-zero ideal & . Definiteness is

also inherited from 'I...~': --

II IIAx
lubR(A) = 0 > - = 0

II II
VXER, X#O

X

> /IAx((  = 0 Vx&

> A = O .

The last step is not in general valid for a proper nonzero ideal 4

so that although lubg is subadditive and submultiplicative, it is

not usually a multiplicative norm.

Q.E.D.

(16.33)Theorem: l/lub@(A-'),

{

if A-' exists.
q&N = 0

7 otherwise.

Proof:

If A
-1

. exists, then the proof is the same as that of Theorem (12.14).

Otherwise, A has a right zero divisor and the infimum is zero.

Q.E.D.

As a consequence of the preceding theorems, lubn and glbn satisfy

inequalities (16.22) - (16.26).
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Appendix: Historical and Bibliographical Notes

The concept of norms came up around the turn of the century in algebra

for a sum of squares (rather than the square root of it). In vector

spaces and functional spaces, 0. H'diher used it for the first time in a

wider sense--to include the Euclidean and the Tschebyscheff norm (which

had been used somewhat implicitly by Tschebyscheff.) These norms, among

others, have the property that lxil <, llxi17 and the Tschebyscheff norm

is the best among them in the sense that these inequalities are sharp

for at least one i . Later, abstract properties of norms have been

used to define them, mainly in connection with metric topologies

(Lindenbaum, Banach in the twenties). See

S. Banach. Theorie der Operations linearies. Warszawa 1932.
--.

For a modern treatment, in particular of the topological side, see

Kelly, Namioka.

A topology that has a special connection with norms, the weak topology,

has been introduced by Tychonoff. Norms were introduced into numerical

analysis by Faadeva and, more systematically, by Householder. In Banach

spaces, partial ordering has been studied by

L. Kantorovitch. in Mat. Sbornik N. S. 44 121 - 168 (1937).

Further details,in  particular about positivity cones, can be found in

M. G. Krein and M. A. Rutman. Linear operators leaving invariant a

cone in a banach space (1948). English translation in Amer. Math.

Sot. Transl. Series I, 10.

From a more algebraic side, partially ordered groups and vector spaces

have been studied by Freudenthal (1936)' inspired by Riesz. Stone,

Birkhoff and Lorenzen have developed the theory further. See chapters

XIV, xv of

G. Birkhoff, Lattice Theory. Revised ed. Providence 1961 (a new

edition is in preparation).

133



and

H. Gericke. Theorie der Verb&de. Mannheim 1963.

Questions of imbedding in direct products of linearly ordered lattice. .
groups have been studied by Mannos and Lorenzen. Rudimentary steps were

already taken by Dedekind in 1897,

A. Dedekind. Werke, Vol. 5 103 - 148.

Vectorial norms seemingly were first considered by Kantorovitch ("spaces

normal with the elements of a semi-ordered space"). See

L. Kantorovitch. The method of successive approximations for

functional equations. Acta Math. 71, 62 - 97 (1939)

The first published results on bounds are due to Fiedler and Ptak (1960):

More

M. Fiedler and V. Ptak. Generalized norms of matrices and the

location of the spectrum. Czech. Math. J. l-2, 558 - 571 (1962).

work on bounds has been done by Ostrowski (1960 Madison Report No. 138)

and by Robert (to appear in Num. Math.). M-matrices, which show up in this

connection, were studied by Fan, Kotelyanskii and in particular by Fiedler

and Ptak in 1960:

.
M. Fiedler and V. Ptak. On matrices with non-positive off-diagonal

elements and positive principal minors. Czech. Math. J. l2, 302 -

400 (1962).

A:wide class of matrices was introduced by Hans Schneider in 1964:

H. Schneider. Positive operators and an inertia theorem, Num. Math.

L 11 - 1-7 (1965).

Multiplicative norms have been studied by Gastinel, Focke and Stoer.

Stoer has in particular characterized matrix norms which are also lub

norms:
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J. Stoer. On the characterization of least upper bound norms in

matrix space. Numer. Math. 6, 302 - 314 (1964).

Further concepts in a comprehensive theory of norms would include:
. .

Condition numbers: based on norms. These have been introduced by

Householder and Bauer. Their relation to certain matrix transformations

has been investigated in

F. L. Bauer. Optimally scaled matrices. Numer. Math. 2, 73 - 87

(1963) l

Fields of values: Connected with the support tangents to a field of

values is a functional which turns out to be a directional derivation

of the lub . -See

F. L. Bauer. On the field of values subordinate to a norm. Numer.

Math. 4,, 103 - 113 (1962).

and

N. Nirschl and H. Schneider. The Bauer fields of values of a matrix.

Numer. Math. 5 355 - 365 (1964).

Composite norms: A variety of multiplicative norms, defined by some

composition, have been studied by

A. M. Ostrowski. her Normen von Matrizen. Math. 2. 63, 2 - 18

(1955).

More recently, Maitre (to appear in Numer. Math.) has obtained more

. results in this direction.

Unitarily invariant norms: Multiplicative norms which are invariant

under two-sided unitary transformations were studied by J. von Neumann.

Absolute norms: Absolute norms are norms which depend only on the abso-

lute values of the coordinates. See

F. L. Bauer, J. Stoe-r, C. Witzgall. Absolute and monotonic norms.

Numer. Math. 2 257 - 264 (1961).
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and more recently

D. Gries. iiber einige Klassen von Normen. Thesis. Munich, 1966.

who also discusses fields of values.

Most of the norms used in practice are absolute, and this has an important

consequence: the lub of a diagonal matrix is equal to the maximum of

the absolute values of the diagonal elements. For HGlder norms, which

are absolute, Stoer has given an abstract characterization:

J. Stoer. A characterization of H'dlder norms. J. Sot. Indust.

Appl. Math. 12, 634 - 648 (1964).

In the theory of partially ordered vector spaces, some recent developments

due to Birkhoff, -Hopf and Ostrowski have led to an interesting submultipli-

cative functional or non-negative mappings which is homogeneous of degree

zero. Connected with this is a bound for the oscillation of a vector.

This and other concepts playing a role in this connection deserve great

attention. See

F. L. Bauer. An elementary proof of the Hopf inequality for positive11
operators. Numer. Math. L 331 - 337 (1965).

Related to this theory is the generalization of the Perron-Frobenius

theorem to a large class of positivity cones (Krein-Rutman). See

.
H. Schneider. Positive operators and an inertia theorem. Numer.

Math. L 11 - 17 (1965).
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