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Least Squares, Singular Values

*
and Matrix Approximations

Gene H, Golub

0. Let A be a real, mXn matrix (for notational convenience we assume

that m >n ), it is well known (cf. [6]) that

{0.1) A= Uyt ’
where UUT =I , WT =1 and
m n
1.0
= O " o,
. O (m-n)xn .

The matrix U consists of the orthonormalized eigenvectors of AAT » and
the matrix V consists of the orthonormalized eigenvectors of ATA « The
diagonal elements of T are the non-negative square roots of the eigen-

values of ATA ; they are called the singular values or principal velues

ot A . Throughout this note, we assume

> .
012022 20,,_0

Thus if renk(A) = r ,

Q

el = Oppp = ++- = 0, = 0 . The decomposition (0.1)

is called the singular value decomposition.

* o be presented at the conference on "Basic Problems of Numerical Mathematics”
to be held in Libbje, Czechoslavakia, September 11, 1967 through September 15,
1967. This work was in part supported by NSF and ONR.



1. “The singular value decomposition plays an fmportant role in a number of
least squares problems, and we will illustrate this with some examples.

Throughout this discussion, we use the euclidean or Frobenius norm of =

astrix, viz. M) = (T 1oy |72
i,J

A) let un be the set of all nxn orthogonal matrices. For an

arbitrary nxn real matrix A , determine Qeun such that
la-all < lla-xj| for any Xell .
It has been shown by Fan angl Hoffman [2] that if A = ugv? , then Q = wt
B) An important generalization of problem A occurs in factor analysis.
For arbitrary nxn real matrices A and B , determine Qeun such that
la-Bal| < JlA-BX}|  for any Xeu .
It has been shown by Green [5] and by Schinemann [9] that if

BTA = UZV' , then Q = UV®

C) Let "ék,), be the set of all mxn matrices of rank k . Assume
2
(r) (k)
e Determine B%,n (k < r) such that
(A-B) < A4  for a1 Xem{¥)
= m,n *
It has been shown by Eckart and Young [1] that if
T T
(1.1) A=ULV' , then B=U YV

where



)
(1-2) gk = . . .
) o
Note that
(1.3) -l = 20l = (o, * -+ * 2y

D) An nXxm matrix X 1is said to be the pseudo-inverse of an

mxo matrix A if X satisfies the following four properties:

i) sxa=A

X

L}

1i) XAX
ii1) (Ax)T = AX
) )y =xa

We denote the pseudo-inverse by A+ . We wish to determine At numerically.
It can be shown [B8] that At cen always be determined and is unique.

It is easy to verify that

(1.4) At = vau

where

nX¥m



In recent years there have been a number of algorithms proposed for
computing the pseudo-inverse of g matrix. These algorithms usually
depend upon a knowledge of the rank of the matrix or upon some suitebly
chosen parameter. For exasmple in the latter case, if one uses (1.4) to
compute the pseudo-inverse, then after one has computed the singular
value decomposition numerically it i1s necessary to determine which of
the singular values are zero by testing ageinst some tolerance.

Alternatively, suppose we know that the given matrix A can be
represented as

A = B+B ,
where &B is a matrix of perturbations and

lloBll < .

-~

Now, we wish to construct a matrix B such that

la-Bll <
and

rank(B) = minimum .
This cen be accomplished with the aid of the solution to problem {C). let

B, = UQRVT as in equation (1.2).

Then using (1.3),

B=23B
P
if
2 2 2\1/2
(ap+l+°p+2+"'+on) <
and
2 2 2\1/2
(°p+ap-0-1+ +an) >1



Since renk(B) = p by construciion,

‘ T
B = wlvt .
p

o+ +
Thus, we take B as our approximation to A .,

E) let A bve a given matrix, and let b be a known vector.

Determine a vector x such that for

HE'Afug = min.
and ”5“2 = min.,
1/2

where "5"2 = [Eyfl for any vector y . It is easy to verify
that x = A+b .

A norm is said to be unitarily invariant if [|AU|l = (IVA]| = [l

* +*
when UU=1I and VV =1I. Fan and Hoffman [2) have shown that the
solution to problem (A) is the same for all unitarily invariant norms

and Mirsky (7] has proved a similar result for the solution to problem (C).

2. In [4] it was shown by Golub and Kshan that it is possible to
construct a sequence of orthogonal matrices {P(k)]i=l , {Q(k)}:;i

via Householder transformation so that

pln)p(n-1)  p(1),0(1)o(2) | o(p-1) . pTae . 5

and J is an mXn bi-diagonal matrix of the form

\n



a B 0 . 0
02 Be N 0]
RO
Bn-l
a
n
5 O _}(m-n)Xn.

The singular velues of J are the same as those of A ., Thus if the

singular value decomposition of

J = XgYt

then

A = PXEYIQL

so that U=PX , V=QY.

A number of algorithms were proposed in (4] for computing the
singular value decomposition of J . We now describe a new algorithm,
based on the QR slgorithm of Francis {3}, for computing the singuler

value decomposition of J .

Let

™ -
o

8 0 a

K - 1 2 .
a, . .
O ..«
n
a o

- n - 2nxen



It can be shown (4] that K is a symmetric, tri-diagonal matrix whose
eigenvalues are + singular values of J . One of the most effective
methods of computing the eigenvalues of a tri-diagonal matrix is the
QR algorithm of Francis, which proceeds as follows:

Begin with the given matrix K = I'{.o . Compute the factorization

K =MR
o oo

where MgMo =1 and R0 is &n upper triangular matrix, and then

multiply the matrices in reverse order so that

K = RM =Mk .
00 O 00

Now one treats K1 in the same fashion as the matrix Ko , and a

sequence of matrices is obtained by continuing ad infinitum. Thus

Ki = MiRi and
Kivg = RMy = MRy
s0 that
Kiar = MEKiMi
< MM L MIMM LM

The method has the advantage that Ki remains tri-diagonal throughout

the computation.

For suitably chosen shift parameters s, , we can acczlerate the

i
convergence of the QR method by computing

(xi-six) = MR,
(2.1)

R.M, + siI = Ki

i +1



Unfortunately, the shift parameter §; may destroy the zeroes on the
diegonal of K.
Since the eigenvalues of K always occur in pairs, it would seem

more appropriate to compute the QR decomposition of

(K

2
i-siI)(Ki+siI) = Kf-sil

so that

2
MR, = Kf-six .

It has been shown by Francis that it is not necessary to compute (2.1)

explicitly but it is possible to perform the shift implicitly. ILet
{Ni}k,l = [Mi}k,l K= 1,2,,.052n .

(i.e., the elements of the first column cf N are equal to the elements

of the first columm of M ) and

v -
NiNy =

I .
Then if
T
1) Ty = NEN

ii) Ty, 1is @ tri-disgonal matrix,

111) K, is non-singular,

iv) the sub-diagonal elements of Ti+l are positive,
it follows that Ti+ =K .

1 i+l
The calculation proceeds quite simply. Dropping the iteration

counter 1 , let



(p)

cos 6
P

sin @

(p+1)

0

0

Then cos 91 is chosen so that

{2, (1)}, | = 0

Then the matrix

2.K. = d

and

for
4y
1
%
. Ba
BE . .
[s ]

(p+2)

sin Op

-cos 8
p

(p)
(p*1)
(p+2)

(enxan) .

k=2,3,...,2n .




T = ZEn_a...ZlKZl.I..ZEH_2 ’
where ZE""’ZQn-Q are constructed so that T is tri-diagonal. The
product of all the orthogonal transformations which gives the singular

values yields the matrix of orthogonal eigenvectors of K . For ease of

notation let us write

72"]-1:(13 J = l,2,--.,n

723 J J = l,?,...,n-l .

Then explicitly, the calculation goes as follows: Dropping the iteration

counter i,
2 2
T0=7"% 1+ =N -
For J = 0,1,0.0,2“‘5 »
2 2,1/2
r, = +d
3 (73 j)

sin 93 = dj/rj , cOs Bj = 73/1-J ,

=T
[E R

V541 = 73+1 cos GJ + 7 542 sin Bj s
Ty = 7541 sin 9j - 7j+2 cos 63 s
2 = -y cos 8, ,

Je3 33 J
d sin 6 .

341 = 7343 3
In the actual computation, no additional storage is required for
{73 ) 73 ’ 73}

10



since they may overwrite {73} . Furthermore, only one element of
storage need be reserved for {dj] . When |72n_4 is sufficiently small,
|72n-l| is taken as a singular velue and n is replaced by n-1 .

Now let us define

(p) (p+1)
M
| N
| ‘l
1
.o i cos 9p sin Op Q(P)
|4 : sin 9p -cos 9p %(P*l)
| l i
| !
| ' '
| |
L )
nxn

where cos Gp is defined as sbove., It has been pointed out to the
author by J. H. Wilkinson that the above iteration is equivalent to
forming

~

T = Wy e MWW W

where J is again a bi-diagonal matrix. Thus,

X = ];[ (wgi)wii). ..wgzz)

Y= ];1 (w(li)wgi)...wgza) .

An ALGOL procedure embodying these techniques will soon be published
by Dr. Peter Businger and the author.

1l
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procedure singular values decomposition
(a, m, n, u desired, vt desired, eta) results: (sigma, u, vt)

value m, n, u desired, vt desired, eta ;

real array a, sigma, u, vt ;

integer m, n

boolean u desired, vt desired ;

real eta ;

comment Householder's and the QR method are used to find all singular
values sigma[t}, (i=1, 2, ..., n) of the given matrix a[izm, 1m],
{m®=n), The orthogonal matrices u[l sm, 1me and vt[lm, lm] which
effect the singular values decomposition a=u aigma vt are computed
individually depending on whether u desired or vt desired, The input
parameter eta 1s the relative machine precision }

begin
procedure Householder bidiagonalization

{(a, my n, u desired, vt desired) results; (alpha, beta, u, vt) ;

value m, n, u desired, vt desired ;
real array a, alpha, beta, u, vt ;
integer m, n ;
Boolean u desired, vt desired ;

comment Householder transformations applied in turn on the left lnd'

the right reduce the given matrix a[1im, 1:n], (™) to upper b1
dlagonal form J. The diagonal elements of J are returned as alphu[i].
(1=1, 2, +.e, n), the superdiagonal elements as bcta[}]. (1=1, 2,
vees n=1), beta[n]=0, The orthogonal matrices u{iin, 1im] and

vt[1 in, lsn] which effect the decomposition a=u J vt are computed
individually depending on whether u desired or vt desired i



2a

begin

real procedure inner product (i, m, n, a, b, o) j

value my, n, ¢ § real a, b, ¢ ; integer i, m, n 3}
begin
for 1 s= m step 1 until n do c=c+axd ; inner product=c
end inner product 3
real 8, b 3
'lnteger i, §, k 3
Af u desired then
for 11=1 step 1 until m do
begin
uf1,1] s=1.0 3
for js=1+1 step 1 until m do ufi,jk=u[),i]s=0.0
end 1 j
Af vt desired then
for 1:=1 step 1 until n do
begin
vt.[l.i]t-l.o H
for ji=1+41 step 1 until n do ¥t[1,3] 1=vt(3,1]1=0.0

end i 3
for ki=1 step 1 until n do
begin

s3=inner product(i, k, m, a.[i.k], a[i.,k], 0.0) 3

alpha[k]1=1f a[k,k]«0.0 then sqrt(s) slse -sqrt(s) ;

Af 8#0.0 then

begin comment transformation on the left ;
bi=s-a[k,k]*alphafk] 3



a[k,k]:=a[k.k]-a1pha[k] 3

for Ji=k+i step 1 until n do

begin
ss=inner product(i, k, m, a[i,k), ati.JJ. 0.0)/b 3
for 1s=k step 1 wntil m do

3[1,3J3=a[1,3]-a[1,k]xs
£ad 3¢
i{f u desired then

for 13=1 step 1 until m do

begtin
s:t=inner product(j, k, m, u[i,JJ, A[J,k]. 0,0)/v 3
for js=k step 1 until m do
uf1, 3] e=ul}, 3] -sxaly,iq
end 1
end transformation on the left 3
if k€n-2 then
begin
ss=inner product(j, k+i, n, a[k,.j], a(_k,:], 0.0) 3
veta (k] 1=1f afk,k+1]<0.0 then sqrt(s) elss -sqrt(s) ;
Af 8£0,0 then
begin comment transformation on the right
bs=s-afk,k+1)x vetalk] ;
a[ic,k+1] s=a(k,k+1] -beta[i] 3

for 1:=k+l step 1 until m do

begin
si=inner product(), k+i, n, a[k.JJ, a.[l..l]. 0.,0)/v ;
for ji=k+1 step 1 until n do
a[l,J]ssal'_i,j]-a[k..‘Dks

end 1 ;



T

if vt desired then

for Js=1 step 1 until n do

begin
s3=inner product(i, k+i, n, a(k.l]. vt[}.JJ. 0,0)/v 3
for 1:=k+1 step 1 until n do

ve[1, 1) e=ve(s, 3] -a(k,1]xs
end J
end transformation on the right
end k from 1 to n-2

e1se betafk]s=if k=n then 0.0 else a(k,n]
end k

end Householder bi.iiagonalization j;

procedure QR dlagonalization -
(gamma, m, n, u desired, vt desired, eta) result; (sigma)
transientss (u, vt) 3

value m, n, u desired, vt desired, eta ;

resl array gamma, sigma, u, vt 3

integer m, n 3

Boolean u desired, vt desired ;

comment The (R algorithm diagonallizes the glven symmetric tridiagonal
matrix T or order 2n by 2n whose diagonal elements are zero and
whose super- and subdiagonal elements are gammatﬁ], (1=1, 2, ...,
2n-1), gamma[p]=gamma[?d]=0. If u desired then the odd numbered
rotations of the QR algorithm are also applied to u[}xm, lxﬁ] from
the right. If vt desired then the even numbered rotations are also
applied to vt[}:n. 1:@] from the left, The input parameter eta is

the relative machine precision. The nonnegative eigenvalues of T



are returned as sigma[}], (1=1, 2, «eey n) 3}
begin
real kappa, d, r, sinphi, cosphi, g0, g1, &2, g3, epsilon, rho 3
integer 1, J, k, s, s0, t, tO, t2 ;
83=801=t0t=0 ; ti=2xn ;
kappaz=glx=abs(gamma[;]) 3
for 1:=2 step 1 until t do
begin comment find the infinity norm of the tridiagonsl matirix T j
g21=abs (gamma[1]) ; di=gl+s2 ; if d>kappa then kappa:=d ;
gli=g2
end 1 3
epsliloni=etaxkappa ;
inspect: .
comment scan for lower block limit t
gamma (s8] s=gamma (] 1=0.0 ;
for 1:=t-2 while abs(gamma [1] )4epsilon do
begin comment pick up computed value j;
t23=t22 ; sigma[tZ]:=abs(gamma[t-l]) 3
Af gemma(t-1}0.,0 A vt desired then
for 31=1 step 1 until n do vt{t2,3)i=-vt[t2,4] ;
ti=l ; samma[ﬁ}z=0.0 H
1f t=0 then go to return
end 3
si=t-4 ; comment scan for upper block limit s 3
for 1i1=g=2 while abs(gamma[h])>opsilon do si1=}

comment did block 1limits s, t change ;



-6

1f s#sOVt#t0 then
begin
zero shifts
gamna [s) 1=ganma [s+1] ; di=gamma(s+2] ; go_to QR sweep
end zero shift j
comment doss matrix break ;
1f abs(ganma [s+1]x ganma[s+2] )4epsilon then go to zero shift ;
for 13=s+1 step 2 until t-1 do
if abs(gamma (1] )€epsilon then go to zero shift
comment did bottom value settle down 3
Ar ahs(abs(samma[t-ﬂ )-rho)>0.1x abs (gemma[t-1} ) then
go_to zero shift ;
comment determine the origin shift kappa 3
g01=ganma [t-1}4 2+ganna [t-2)12+ganma [t-3)12 3
gl z-samma[t-llf 2xgamma [t-§142 3
g23=0, 5x(g0+sqrt (g0t2-4.0xg1)) ;
831=g1/g2
kappas=if abs(ganma [t-1}2-g2)<abs(gamua [t-1]2-g3) then &2 else &3
sam[s] s=gamma [3+1]fz-kappa H d:’Samma[sﬂJx gam[s+2] 3
QR sweep:
comment save previous block 1limits and bottom element ;
803=s ; tOi=t ; rhos=abs(gamma[t-1]) 3
for 11=s step 1 until t-3 do
begln
somment does matrix break j;

Af d=0.0 then go to inspect 3



g0s=gammafi) ; gli=gamma [1+41] ;
g21=gamma (1+2] ; g3:= gamma(1+3] ;
ri=sqrt(gotz+df2) ;
sinphit=d/r ; cosphis=g0/r ;
gamma[l]:=r H
gamma 1+1]s=51Xcosph1+52*slnph1 H
gamma[l+2] s=glxsinphl-g2xcosphl i
gamma[i+ﬂ:=-g3xoosph1 ;
ds=g3xsinphl ;
Af u desired V vt desired then
begin

ki=142 ;

if 1=2xk A vt desired then

for Ji=1 step 1 until n do

begin
31:=vt[k+1,3] 3 52$=Vt[k+2,:|] 3
vt[_k+1.ﬂ t=g1Xcosphi+g2Xsinphl ;
vt [k+2 ’ JJ s=glXsinphi ~1b'cosph1
end J 3
if 1#2xk /A u desired then
for Js=1 step 1 until m do
begin
gl1=u[J,k+1] ; g2e=u),k+2) 3
uU,k-l—l] s=glxcosphi+g2)sinphl }

u[.l ,k+2] 1=g1X sinphl-g2Xcosphi

end 3



B

end if u desired or vt desired

end 1 ;

go_to inspect ;
returns
end QR dlagonalizatlon 3
real srray alpha, beta[lin], 5amma[012an 3
integer i, J 3
Householder bidiagonalization

(a, m, n, u desired, vt desired, alpha, bets, u, vt)
for 11=1 step 1 until n do

in

:

ganma[2x1-1] 1=alpha[1] ; gamma[2x1] s=beta[1]
end 1 ;
gamma[o]:sgama[zln]wo.o $
QR diagonallzatlion
(zsamma, m, n, u desired, vt desired, eta, sigma, u, Vt)

3nd singular values decomposition



