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Least Squares, Singular Values 

and Matrix Approximations 

Gene H. Golub 

O. Let A be a real, mXn matrix (for notational convenience we assume 

that m > n). It is well known (cf. (6}) that 

( 0.1) A ~ U~T , 

.,here UU
T 

'" I VVT 
= I and 

m n 

a
1 0 

:r = 0 a n ............. J 0 (m-n)xn 

'l'he matrix U consists of the orthonormalized eigenVectors of AAT , and 

tll~ matrix V consists of the orthono~alized eigenVectors of ATA. The 

uiagonal elements of t are the non-negative square roots of the eigen­

vaJues of ATA j tbey are called the SingUlar values or Qrincipal !!Llues 

of A. Throughout this note, we a.ssume 

'l'hus if rank(A);; r, ar +!" 11r+2 " ••• '" on = O. The decomposition (0.1) 

is called the singular ~ gecomposition. 

* To be presented at the conference on "Basic Problems of Numerical Mathelllltics" 
to be held in Libbie, Czechoslavakia, September 11, 1967 through September 15, 
i967. This work was in part supported by NSF and ONR. 



1. \~ The 8insular value decomposition plays an important role in .• number of 
". " ' 

least squares proble.s~ and we will illustrate this with some examples. 

Throughout this discussion, we use the euclidean or Frobenius norm of a 

matrix, m. I\AI\ = ( L 18
i ,11 2 )1/2 • 

i,,1 
A) Let Un be the set ot all nlCn orthogonal matrices. For an 

arbitrary nxn real matrix A, determine QEU such that 
n 

for any X£U • 
n 

It has been shown by Fan and Hottman [2] that it A., U'[)IT , then Q = TJVT • 

B) An important generalization of problem A occurs in factor analysis. 

For arbitrary nxn real matrices A and B, detel'mine 

for any XeU • n 

It has been shown by Green [5] and by Schanemann [9] that if 

such that 

c) 

M'1Il(r) • 
-·'m,n 

Ll!t 'III(k) 
·· .. ,n 

Determine 

be th£ set of all mxn matrices of rank k. Assume 

B~(k) (k ~ r) such that 
--bl,n 

for an Xdll( k) 
""m,n 

It has been shown by Eckart and Young [1) that if 

(1.1) 

..mere 

2. 



(1. 2) 

Note that 

D) 

g = 
k o 

An nXm matrix X 

o 

is said to be the pseudO-inverse of an 

mxn matrix A if X satisfies the following four properties: 

i) AXA -= A 

11) XAX "" X 

iii) (AX)T = AX 

iV) (XA)T = XA 

+ + We denote the pseudo-inverse by A • We wish to determine A numerically. 

+ It can be shown [8] that A can always be determined and is unique. 

It is easy to verify that 

(1.4) 

where 

o 

o 
o 



In recent years there have been a number of algorithms proposed for 

computing the pseudo-inverse of a matrix. These algorithms usually 

depend upon a knowledge of the rank of the matrix or upon some suitably 

chosen parameter. For example in the latter case, if one uses (1.4) to 

compute the pseudo-inverse, then after one has computed the Singular 

value decomposition numerically it is necessary to determine which of 

the singular values are zero by testing against some tolerance. 

Alternatively, suppose we know that the given matrix A can be 

represented as 

A = B+6B 

where 6B is a matrix of perturbations and 

Now, we wish to construct a matrix B such that 

and .. 
rank(B) = minimum 

This can be accomplished with the aid of the solution to problem (C). Let 

Bk = UGkV
T 

as in equation (1.2). 

Then using (1.3), 

if 

and 

B = B 
P 

2 2 
(ap+l + °p+2 + 
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Since rank(B) = p by construe cion, 

A + + 
Thus 1 we take B a6 our approximation to A • 

E) Let A be a given matrix, and let b be a known vector. 

Determine a vector x such that for 

min. 

min., 

where IIrll2 = [Ey~Jl/2 for any vector y. It is easy to verify 

that Y. = A+b 

A norm is said to be unitarily invariant if I/Aui/"' I/VAI! "' I!AII 
* * when U U ~ I and V V = I. Fan and Hoffman [2] have shown that the 

solution to problem (A) is the same for all unitarily invariant norms 

and MUsky [1] has proved a similar result for the solution to problem (C). 

2. In [4] it was s~own by Golub and Kahan that it is possible to 

construct a sequence of orthogonal matrices (p(k)ln fQ(k)ln-l k=l ,- k .. l 

via Htmseholder transformation so that 

and J is an mXn bi-diagonal matrix of the form 

C' 

'" 



(ll I!l 

(l2 

J .. 0 

0 

"2 

0 

o 

o 

I3
n

_
1 

(X 
n 

] (m-n)Xn • 

The singular values of J are the same as those of A. Thus if the 

singular value decomposition of 

then 

so that u = PX, V = QY . 

A number of algorithms were proposed in [4] for computing the 

singular value decomposition of J. We now describe a new algorithm, 

based on the QR algorithm of Francis [~], for computing the singular 

value decomposition of J • 

Let 

0 ell 

(Xl 0 

K ,; 
131 

0 

1\ 
0 (X2 

(l2 

6 

o 

a 
n 

Cl 
n 

a 
2nX2n 



It can be shown [4) that K is a symmetric, tri-diagonal matrix whose 

eigenvalues are + singular values Df J. One of the most effective 

methods of computing the eigenvalues of a tri-diagonal matrix is the 

QR algorithm of Francis, which proceeds as follows: 

Begin with the given matrix K = Ko' Compute the factorization 

K = M R o 0 0 

T where M M = I a~d R is an upper triangular matrix, and then o 0 0 

multiply the matrices in reverse order so that 

T IC=RM =MKM 
--1 0 0 0 0 0 

Now one treats 11. in the same fashion as the matrix Ko' and a 

sequence of matrices is obtained by continuing ad infinitum. Thus 

so that 

The method has the advantage that Ki remains tri-diagonal throughout 

the computation. 

For suitably chosen !h1!l parameters si' we can accalerate the 

convergence of the QR method by computing 

\ 
(Ki-siI) = MiRi 

(2.1) 
RiMi + siI = Ki +l 

7 



Unfortunately, the shift parameter si may destroy the zeroes on the 

diagonal of K. 

Since the eigenvalues of K always occur in pairs, it would seeffi 

more appropriate to compute the QR decomposition of 

so that 

It has been shown by Francis that it is not necessary to compute (2.1) 

explicitly but it is possible to perform the shift implicitly. Let 

k = 1,2, ••• ,2n • 

(i.e., the elements of the first column of N are equal to the elements 

of the first column of M ) and 

Then if 

11) Ti +l is a tri-diagonal matrix, 

lil) Ki is non-singular, 

iV) the sub-diagonal elements of Ti +l are positive, 

it follows that Ti +l = Ki +l 

The calculation proceeds quite simply_ Dropping the iteration 

counter i, let 

8 



(p) (p+l) (p+2) 

1 

1 

cos e 0 sin 9p p 

Z .. 0 1 0 p 

sin e 0 -cos e 
p P 

1 

Then cos 91 is chosen so that 

Then the matrix 

0 a' 
1 

a' 1 0 

0 ~' 
1 

ZlKZ1 = d
1 

0 
and 

0 d
1 

~' 1 

a' 
2 

a' 
:2 

~:2 

~2 

for 

o 
ex 

n 

9 

k = 2,3, ••• ,2n • 

a 
n 

(p) 

(pH) 

(p+2) 

1 



where Z2, ••• ,Z2n_2 are constructed so that T is tri-diagonal. The 

product of all the orthogonal transformations which gives the singular 

values yields the matrix of orthogonal eigenvectors of K. For ease of 

notation let us write 

j 1,2, ••• ,n 

j = 1,2, ••• ,n-1 

Then explicitly, the calculation goes as follows: Dro?ping the iteration 

counter i, 

For j O,l, ••• ,2n-~ , 

= ( 2+d2 )1/2 rj 7 j j 

sin 6 j = dj/r j , cos 9 j 1j/rj 

7 j = rj 

7j+l '" 7j +l COs ej + 7. 2 J+ 

7j +2 " 7j +l sin 9 j -
. 
7 j +2 

1j+, = -7 j +, cos Bj 

dj +1 = 7 j+3 sin Bj 

sin 9. 
J 

cos 6
j 

, 

In the actual computation, no additional storage is required for 
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since they may overwrite {7
j
l. Furthermore, only one element of 

storage need be reserved for {djl • When 172n_~ is sufficiently small, 

172n- l l is taken as a singular value and n is replaced by n-l. 

Now let us define 

w '" p 

I 
I 

I 

l o 

(p) (p+l) 

1 

cos (} sin e 
p p 

sin (} -cos (} 
p p 

o 
1 

I 
I 

I , , 
• 1 ' 

J 
nXn 

where cos (} is defined as above. It has been painted out to the 
p 

author by J. H. Wilkinson that the above iteration is equivalent to 

forming 

where J is again a bi-diagonal matrix. Thus, 

An AWOL procedure embodying these techniques will soon be published 

by Dr. Peter Buainger and the author. 
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procedure singular values decomposition 

(a, m. n, u desired. vt desired, eta) resultsa (sigma, u, .t) , 

~ m, n. u desired, vt desired, eta ; 

!!!! array a, slgma. u, vt ; 

integer m. n ; 

boolean u desired, vt desired 

!!!! eta ; 

comment Householder's and the QR method are used to find all slngular 

values sigma[l], (i=l, 2, ••• , n) of the given matrix .[1IJI, lin], 

(m~). The orthogonal matrices u [11m, 1 am] and vt(len, lin] whiCh 

effect the s1ngular values decomposition a=u sigma vt are ooaputed 

lndlviduall, depend1ng on whether u des1red or vt desired. The input 

parameter eta 1s the relative machlne precision J 

begin 

procedure Householder bldlagonal1zatlon 

(a, m, n, u desired, vt desired) resultsl (alpha, beta, u, vt) I 

~ m. n, u deslred, vt desired ; 

!!!.! array a, alpha, beta, u. vt ; 

integer m, n ; 

Ioolean u desired, vt des1red ; 

comment Householder transformations appl1ed 1n turn on the lett and 

the right reduce the glvtn matrix a[llm. Ian]. (.~, to upper b1-

diagonal fol'll J. The diagonal elements ot J are retumed .. alpha [11. 
(1-1. 2, •••• n). the superdlagonal elements .S beta[tl, (1-1, 2, 

••• , n-l), beta[nJ-O. The orthogonal matr1ces U(lI., leal and 

vt[lln, 1 an] whlch eftect the deooJlposi tion aau J vt are ooapute4 

individually depending on whether u desired or vt desired I 
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begin 

£!!! procedure inner product (i, 11, n, a. b, 0) I 

value 11, n, c ; !:!!! a, b, c integer 1, 11, n ; 

begin 

!2.t 1 1- 11 step 1 until n i!,2 oac+turb ; 1nner product-c 

!!!!! inner product I 

~ s. b; 

1nteger 1, j, k ; 

1f u des1red then - -
!2!: 11-1 step 1 unt11 III. ~ 

begin 

U[1,1] ,-1.0 I 

!!!£ j,-1+1 step 1 until III. ~ u(1,J)-u[J,g,-o.O 

~ 1 I 

!t vt deslred !h!a 

!2!: 1,-1 step 1 until n ~ 

begln 

vt [1 .1] .-1.0 ; 

!2!: j ,-1+1 step 1 until n ~ vt[l, J] ,..,.10(3.1] .-0.0 

!!l! 1 I 

!2!: k .-1 .tep 1 unt1l n ~ 

begin 

8,-lnner product(1, k, _, a[1.k]. a[1,k]. 0.0) ; 

alpha[k] I-!!, a[k,kJo&o.O ~ sqrt(8) !!!!. -8qrt(s) ; 

it .-'0.0 then - -
begin comment transtormat1on on the lett I 

ba-.-a[k,k}ralpha[k] ; 



-)-

!2!: J ,=k+l ste.2, 1 !!!.ll! n ~ 

beg1n 

s.=inner product(i, k, m, a[1,k], a(1,j], O.O)/b I 

ill 1.::k s te p 1 l!!!.lli ID ~ 

a[ 1, J] ,=8.[1, j]-a(1 ,k]JCS 

!1!S. J 

11 u desired ~ 

ill 1.::1 step 1 until m ~ 

begin 

sa:1nner product(J, k, Ill, U[1,j], a[j,ll]. O.O)/b I 

ill J .=k step 1 until m ~ 

u(1, j] • =U ~1, j] -s"a [j ,k] 

end 1 -
~ transformation on the lett I 

!!. k4n-2 !h!!l 
beg1n 

ss-1nner product(J, k+l, n, a[k,j], a(k,~f]. 0.0) I 

beta[k] .=ll a[k,k+~<O.O ~ sqrt(s) !!!:! -8Clrte.) I 

!!. s#O.O 1b!!! 
begin comment transformation on the right I 

bl,",s-a[k,k+i)x beta[kJ , 

a lk,k+1J .:a[k.k+l] -beta[k) 

!2!: 1,-k+1 step 1 ~ m ~ 

begin 

sI-1nner product(j, k+l, n, a[k.l). a[l.J]. O.O)/b I 

!2!: ja=k+l step 1 untll n ~ 

a (1. j] .-au., lJ-a[k t J) Irs 

!!!! 1 ; 
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1£ vt desired ~ 

!2£ 31=1 step 1 until n ~ 

beg1n 

s.=1nner product(i, k+1, n, a[k,i], vt(},lJ, O.O)/b I 

!2.!: 1.=k+1 step 1 until n ~ 

vt [1,l] a::vt(i, l] -a[k, 1])1 S 

!!l2. J 

~ transformation on the right 

~ k from 1 to n-2 

else beta(k] I=!! ken El!n 0.0 !!!!. a[t,n] 

!!l!! t 

!W! Householder b1·l1agonal1zat1on ; 

procedure •• dlagonallzatlon 

(gamma, m, n, u desired, vt des1red, eta) resuit. (s1gma) 

transients. (u, vt) 

value m, n, U des1red, vt desired, eta 

!:!!! array gamma, 81 ~, u, vt ; 

lnteger m, n I 

Sbolean u desired, vt desired ; 

comment The C!R algorithm diap;onallzes the glven symmetric tridiagonal 

matrix T or order 2n by 2n whose diagonal elements are zero and 

Whose super- and subdlagonal elements are gammaLl], (1=1, 2, •••• 

2n-1), gamma[o},galDlD8(zn]=o. If u des1red then the odd nU!Dbered 

rotat10ns of the QR algorithm are also applied to uGam, 1.m] from 

the right. If vt desired then the even numbered rotations are also 

applied to vt[1.n, lan] from the left. The input parameter eta is 

the relat1ve machine prec1s1on. The nonnegat1ve e1genvalues of T 
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are returned as S1gma[1] , (1=1,2, ••• , n) 

begin 

~ kappa, d, r, s1nph1, cosph1, gO, gl, g2, g), eps11on, rho I 

integer 1, J, k, s, sO, t, to, t2 

SI=SOI=tOI=O ; tl=2~n ; 

kappal=gll=abs (gamma (1]) ; 

.!.2!: il=2 step 1 ~ t ~ 

begin comment find the infinity norm of the tr1dlagOD&1· .. t~lx T I 

g2 1 =a bs (8'111J1La [1] ) 

g11=g2 

~ 1 ; 

eps1lon 1 =eta)t}{appa 

1nspectl 

d l=g1+g2 ; II d~kappa !!l!!! kappal-d ; 

comment scan for lower block 11mit t I 

garrma [s] .=gamma(t] 1=0.0 ; 

!.2!: i.=t-2 while abs (gamma (1] )"epsilon ~ 

beg1n comment pick up computed value ; 

t21=tt2 ; s1gma [t2J l=abs (gamma Ct-1]) I 

!! gamma[t-1Jco.O 1\ vt des1red !h!!1 

!.2!: .11=1 step 1 until n !!2. vt(t2,J].--vt[t2,l] I 

t.=1 ; gamma[t] 1=0.0 ; 

!! taO ~ ~ return 

!.!2!! ; 
sl=t-4 ; comment scan for upper block 11mit 8 ; 

.!2£ 1.-s-2 !!!:!!!! abs (gamma[s J »epsllon !!2. 8.-1 I 

comment did block lim1ts s, t change ; 



II s,lsoVt~tO l!'Wl 

besin 

zero sh1ftl 

gamma [.] I=gamma [S+1] 

!!!!!. zero sh1ft I 

-6-

dl=gamma[s+2] ; go to .a sweep 

comment does matrix break ; 

!!. abs(gamma[s+I])tgamma[s+2])4repsllon!h!!l go to zero shift I 

1:2£ ll-s+1 step 2 untU t-l ~ 

1t aba (ga!IUIA (1) )~epsllon !!l!!! go to zero sh1ft I 

~~~ d1d bottom value settle down I 

II aba(abs(gamma(t-l] )-rho»0.Ueab8(gf1llllll[t-1) !!!!.n 
go to zero sh1tt ; 

comment determine the orlg1n sh1ft kappa I 

aO.-gamma[t-U+ 2+gammaU-2]f2+gamma(t-))'2 t 

gl.-gamma [ t-iJ , 2. gallllll& (t-:D of 2 I 

g21-0.Sx(go+sqrt(aOt2-4.0~g1) I 

a)l-gl/a2 I 

kappa I-ll abe (gallUl& [t-~2-g2 ).(aba (aaa- U-1}t 2-g) !!l!.! 82 !!!!. g) 

gamma[s) I '"'gamma (S+1)t2-kappa J dl.g8.JDllUl(8+~X ga1lll&[8+2] I 

QR sweepi 

comment save previous blook li21ts and bottom element ; 

sOa-. I tOast ; rhoa=e.bs(gamma [t-l] ) I 

!:2!:. la=s step 1 until t-) !!.2. 
beg1n 

~omment does matrix break ; 

!! d-O.O ~ go to inspeot I 
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gOs=gemma.(1) ; gtl=gamma [1+1] ; 

g21=gamma 0.+2] ; gJ 1= gamma [1+3J 

rl=sqrt(got2+df2) ; 

slnpblr=d/r ; Cosph1s=gO/r ; 

gamma(l]a=r 

gamma [1+tJ l=gl~cospbl+g2lCslnpbl ; 

gamma[1+2]s=glvslnphl-g2.coSPbl 

gamma [1 +:j}a =-gJlf cos ph1 

dl=g)Xsinphl ; 

if u des1red Vvt desired then - -
k.=lf2 

!!. 1-2)(k A vt desired ~ 

ill j 1=1 step 1 until n ~ 

begln 

gl,=vt[k+l.~] ; g21=vt(k+2,j] I 

vt[k+l. ill=gt)(cospbl+g2.kslnphl 

vt[k+2,j]l=glX81nphl~OBPhl 

!!1! ~ ; 
!!. 1~2)(k 1\ u desired ~ 

!2!. j 1=1 steR 1 until m ~ 

begin 

gla=U[j,k+l] ; g2.-uQ.k+2] I 

U\J,k+l] s=glxcosphl+g211s1nphl 

u[j,k+2JI.gl~slnphl-g2.COSPhl 

!Jl!!. j 
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~ 1f u des1red or vt des1red 

!!!1 1 ; 

go to 1nspeot 

return. 

~ QB diagonalizat1on ; 

~ array alpha, beta[l'n], gamma[o.2JCn] ; 

1nteser i, j ; 

Householder bidiagonalizatlon 

(at mt n, u desired, vt deSired, alpha, beta, u, vt) ; 

!2!:. 1.=1 step 1 unt1l n !!2. 
begin 

gamma[2X1-1] .-alpha(l] J gamma(2)C1] •• beta[l) 

!!l! 1 ; 

gamma[o] •• gamma[z.n] •• O.o 
QB dlagonallzatlon 

(gamma, m, n. u desired, vt deSired, eta, sigma, u, vt) 

~ singular values decomposition 


