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1, INTRODUCTION

A general automatic equation solver should be based
on a restriction-free mathematical algorithm. By this
we mean the algorithm should be suitable for all poly-
nomials and not depend on the properties of certain
classes of polynomials, In this paper we will describe
a restriction-free algorithm and discuss a program
which implements it.

The algorithm enjoys a basic simplicity and requires
few decisions. We devise procedures by which the com-
puter may automatically make the major decisions required,
We do not concern ourselves here with programs used in
an interactive environment. Routines to be used in such
an environment might have different characteristics,

We summarize a few of the desirable characteristics
of the algorithr. It is basically iterative with a pre-
processing stage which guarantees that the iteration will
converge. Often the most difficult problem associated with
an iterative method is the value of the initial iterate.
This is easy for us to handle because the mathematical
algorithm will converge for essentially all initial
approximations while our implementation of the algorithm
actually supplies us with a good initial approximation.
Multiple zeros require no special handling. Finally,
the 4importance of finding the zerosz in roughly in-

creasing order of magnitude to ensure stable deflation



" has been stressed by Wilkinson (11, p. 465) who cbserves
there seems no reliable method for eneuring this, Our
algorithm does find the zeros in roughly increasing
order of magnitude.

The last point merits some amplification., If the
geros are found in decreasing order of magnitude, then
the backward deflation is stable. What 1s really cruclal
is that at each stage of the deflation elther one of the

smallest or one of the largest zeros is calculated.
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The algorithm may be applied tc polynomials with real or complex
coefficients. Polynomials with complex coefficients are easier to
deal with for the following reason. Let k be the number of dic.inct
smallest zeros of equal magnitude. Although theoretically the kind
of method which we will describe could be extended to handle zero
distributions with any value of k, the simplicity of the implementa-
tion depends on k being small. In the case of a polynomial with
complex coefficients we can, after a complex translation, ensure
k=1 . For a polynomial with real coefficients, we are left with
the cases k =1 and k =2 1if we restrict ourselves to real
translations.

The algorithm to be introduced in this paper is a member of a
class of two-stage methods introduced by Traub. This type of method
wes first announced in [5). The calculation of the largest zero of
a polynomial was discussed in detail in [6]) and global convergence
was proven for a class of methods. For the largest zero the first
stage involves the generation of G polynomials. The proof of
global convergence of an algorithm for computing complex conjugate
zeros was announced in [7] while the calculation of the smallest zero
and of multiple zeros as well as the extension to analytic functions
appears in (B8).

The calculation of the amallest zero involves H polynomials.

G polynomials and H polynomials have a simple relation and any
result involving one can be translated into a result involving the
other. Calculating the smallest zero first makes translation more

effective. Hence, we shall be involved with H polynomials.
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Bibliographic remarks and rather extensive bibliographies may be
found {n Traub (6}, [8].

The papers cited above deal with t‘indi_ng one zero or a complex
conjugate pair and focus on mathematical properties. 1In this paper,
we focus on a particular algorithm out of a class of possible algo-
rithms and discuss its feasibility as the basls for a general auto-

matic polynomial equation solver.



2. THE MATHEMATICAL ALGORITHM

a8 $0

be a polynomial with ¢ distinci zeros Py of multiplicity m,

Stage Orz

We generate a sequence of polynomials ag follows. Let

HO,t) = P’ (t)

(2.1} H(O\#1,t) '%[H(l:t) - %?‘2 P(t)] s A =0,1,eeey, A .

Observe that the polynonials are of degree at most n - 1 .

Stage Two
Let k be the number of distinct zeros of smallest magnitude.

If k> 2, translate ‘he polynomial so that k=1 or 2 . Observe
that the distinction between k =1 and k = 2 1is of importance only
for the case of real coefficients.

We introduce the following notation to help us describe the
Stage Two iteration. Let h(t) be a polynomial of degree r. Then

h(t) is the polynomial h(t) divided by the coefficient of t' .

-4



Let to be the initial iterate. Then we generate a
sequence of iterates by t, . = ik(ti,f) where f 18 the
function whose zero we seek. (In this notation,
Newton-Raphson iteration is defined by ¥(t,f) = t - r/r'.)
We can now give the formulas of the iteration func-

tions for k = 1 and 2,

k=1
Let
B = Va(tys)
where
v (t,0) =t - g/,
and
£ = v(at) =P(t)MH(a,t) .
k =2
Let
Eip = Yo(ty.f)
where
2fr
v, (t,f) = ¢t -
C £+ ((£)F-br)+/*
and

e u(A’t) - P(t)ﬂ(!\:t) »
I(A,t) = 8(A-1)E(A,t)-6(A)H(A-1,t)



with 6(a) the coefficient cf t"~} in H(p,t). Let the
zero be labeled a. If k = 1, the polynomial P(t)/(t-a)
18 formed. If k = 2, the polynomial P(t)/[(t-a)(t-&)]

18 formed, We then return to Stage One with the new
polynomial,



3. PROPERTIES OF THE MATHEMATICAL ALGORITHM

Ve shall now state a number of results which exhibit the power
of the mathematical algorithm, Results analogous to results stated for
the case k = 1 may be found in Traub [6]. Proofs of results for the
casc k = 2 will appear elsewhere. The notation is the same as in
Section 2. We shall use ) as a running index and A as a fixed
integer.

Most of our results follow from the formula given in

THEONEM 1.

For all ),

£ A

HQO\,t) _ Z "iP4
P(t (=
1=1

The key property of H(3,t) is given in the following two

theorems.

THEOREM 2.

Let |p; I <lp |, 1>1. Then for all finite ¢,

lim V(p,t) = t - '

Ao



THEOREM 3.
Let |py | <[p | and [py ] <] p; | » 1> 2. Then for

all finite ¢,

lm W(x,t) = (t-p, )(t-py) -

A~

Note that the hypothesis of Theorem 3 includes the case k =2 .
Generalizations of these theorems nold for the case of k smallest
zeros in magnitude. The rate of convergence is of Bernoulli type.

Results concerning the zeros and poles of V(i,t) and W(\,t)
are given in the following group of theorems. Note that no restrictions
have been imposed on the multiplicities of the zeros of P . The
following theorem is a generalization of the statement that the
rational function P/P’ has only simple zeros. Observe that V(0,t)

is proportional to EF/P’ .

THEOREM 4.

For ail finite A, V(r,t) and W(\,t) have only simple zeros

and these are the zeros of P .

THEOREM 5.

Let | Py | < | Py | ,i>1. Let K, be the union of circles

with arbitrarily small fixed radii centered at the Py’ i>1.

Then for 3 sufficiently large, the poles of V(),t) are contained

in K

-8-



THEOREN 6.

Let lppl<loglslogl<lp |,1>2. Let K, be

Xhe union of circles with arbitrarily small fixed radil centered at

the Py 1>2. Then for )\ sufficiently large, the poles of

W(),t) are contained in K, -

We now state some theorems concerning the iteration functions
§) and §, - As usual we define the order of the iteration as follows.
Let ti - g . 1lhen if there exists a constant p and a nonzeroc con-

stant C such that

(t,, ,-a)
1im —i—+1_p_. = C
ti~a (ti-a)

then p is called the order and C the asymptotic error constant.

For our iteration functions, C = Ck(A) « We then have

THEOREM 7.

'l and *2 are second order iteration functions. Furthermore,

(3.2) lim C () =0, k=1,2.
A ®
We comment on this result. The iteration is done for & fixed
value of ) = A . Theorem 7 shows that if A is large, Ck(A)
will be small. Hence, although the iteration is of second order, the
error at each iteration will be the product of three small numbers
and hence will appear fasier than the usual guadratic convergence-

-g-



Additional discussion of C(A) may be found in Traudb
[6, Section 6] and (8, Section 7].

The speed of convergence 1s lllustrated by the
following simple example which we take from Traub (6],
In this example an earlier program i1s used which cal-
culates the biggest zero first and which does not
make declisions automatically.

Let

4

P(t) = t' - 4663 + 528t2 - 1000t + 2175.

The largest zero is 29, Take A = 16, Let

to = 100 000.
Then
t, = 28.99963
ty, = 28.,9999999999997
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We hope the following discussion will offer some insight into
the choice of ¢, and §, s&nd will clarify the reason why (3.2) holds.
Let v(t) = (t-pl), w(t) = (t'Pl)(t'pg)' Then Theorems 2 and 3

may be restated as

1im V(a,t) = v(t)

|

lim W0O,t) = w(t) .

A~

Now,

py = Ql[t:V(t)] ’
p1opo = Hpltsw(t)]

Thus if kX = 1 and we have taken ) to o, then starting with any
to, the iteration with '1 would have delivered the exact zero in
one iteration and analognusly for k = 2 and g2 .

We now state theorems on global convergence of the iterations

defined by " and “ -

THEOREM 8.

Let Ipll<|pil,i>1- Let ¢, be an arbitrary point

in the extended complex plane such that to /'pi, 1>1 and let

-10-



tia = wl(ti,v). Then for A sufficilently large but fixed,

the sequence t1 is defined for all 1 and ti =Py

THEOREM 9.
Let |pyl<lpgl slepl<lpgl, 1 >2. Let t,be
an arbitrary point in the extended complex plane such that

ty ~ py» 1> 2 and let t, ., = we(ti,W). Then for A
sufficiently large but fixed, the sequence ti 18 defined

for all 1 and t

1~ Py
These theorems require a few words of comment., The

formulas for wl and w2 as glven above make it appear as if
these functlons are not defined at = . However, v, and ¥,
may be rewritten so that they are defined at = , (Observe
that this 1s not a property shared by the Newton-Raphson
iteration function.)

The iteration wz 1s multivalued because of the ¢
sign. However, a strategy 1s available for making the
iteration converge to either Py OT pPse. A discussion of
this in a somewhat different setting 1s given by Traud
[8, Section 12],

A proof of Theorem 8 for the case where P has only
simple zeros 1s given by Traub [6, pp. 121-123). The
extenslon to multiple zeros 1s not difficult.

These theorems show that 1f we apply our two stage
algorithm to any polynomial, with perhaps a translation
to ensure k = 1 or 2, then provided A 1s sufficlently

- 11 -



large, the mathematical algorithm 1s guaranteed to con-
verge. For the remainder of this paper we discuss the
implementation of this algorithm on a digital computer,

- 1lla -



4, DECISIONS TO BE MADE IN THE PROGRAM

We enumerate the major decisions that have to be made automatically
by a program implementing this algorithm. A number of the decisions
are not crucial and are made on an ad hoc basis. Other decisions are
crucial and are made on the basis of certain calculations.

We summarize the major decisions tc be made in the calculatlion
of each zero or pair of zeros:

a) What is A, the value of ) for which we terminate Stage

One and switch to Stage Two?
b) Is k=1,2, or is k> 27
¢) If k> 2, by how m h should we translate?

d) What velue should be assigned to t the initial iterate

o’
for Stage Two?

e) What is the termination criterion for the Stage Two iteration?

Decisions &, b, and 4 are made as the result of the same calcu-
lation. Indeed, Stage One is terminated when k can be determined
as equal to 1 or 2. If such a determination cannot be made by the
time that ) has reached a certain value \f, a translation is
carried out.

Decision 4, which is often the most difficult declision to make,
is available here as & byproduct. However, Theorems 8 and 9 show
that the choice of to is not crucisl.

The methods for making decisions c and e are described in Sections

6 and 7, respectively.

-12-



9. _THE TERMINATION OF STAGE ONE

If there are k smallest zeros in magnitude, tnen for 3

sufficiently large

Hence H(\,t) , ... , H(Atk,t) will approximately satisfy the k-th

order recurrence
k

(5.1) T o (HO*,t) =0, cp=1,
1=0

where the ¢, are related to the zeros of F by

k

i -1
c tT = (t-p. )
i§0 k-1 1& i

We wish to test the hypothesis that the H(),t) satisfy a
recurrence of the form (5.1) with k=1 or 2 . For a fixed value
of )\ we test the hypothesis k = 1 and if that seems to be false
4e test k =2 ., If that is also false, we increase ) by a certain
amount and test again. This is continued until a preset upper limit

of ) 1is reached. At that point the polynomial is translated and

we start again.
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We describe the test for k =2 . The test for k=1 is the

appropriate simplification. Let
T
8(x) = m g
] i¥i

denote the leading coefficient of H()\,t) . Let EX denote the vector
of coefficients of the polynomial H(A,t) . We apply two tests, the
second being more expensive than the first and applied only if the
first is passed.

We first test for a second order scalar recurrence. If this
is passed, we test for a vector recurrence.

Let

Ia(x+2) s(A+1)

DOV = Jaae1) 800
D{x+l

R(A) = =3 -

If §(\) satisfies a second order scalar recurrence, R()) converges.

Hence the first test is

Ria+l) -
(5-2) L RK"'? <e¢ -

1f this test is passed, we test for the vector recursion as

follows.

-1k



Choose &1. &2 so that the quantity

(5.3) a.h +2.h

L ¥ S B L U~ W |

is minimized in the L? norm and test if

Iz 11,
(5.%) <t
LLENITR

That is we solve a n x 2 least squares problem. If (5.4) holds,

we calculate the zeros q and %, of t2 + &lt + 62 and use qil

or q;l as the value of the initial iterate t,

A similar least squares technique is used by Zurmiihl [12] whose

in the second stage-.

purpose it is to calculate approximations of equimodular eigenvalues
using vectors generated by the power method. Zurmiihl proves that he
obtains Rayleigh approximations in this way. He does not use this as
a criterion for termination.
We emphazise that the test tells us
a) When to switch from Stage One to Stage Two.
b) The value of k .

¢) The value of ¢t

(8]

=15~



6. THE TRANSLATION OF THE POLYNOMIAL

If the tests described in Section 5 have not been passed by &
certain value of ) = xf, we translate the polynomial. 8ince we wish
10 calculate the zeros in the order of increasing magnitude, we do not
went to shift by an amount wnich would place near the origin a zero with
a significantly larger modulus than the smallest zeros. To ensure
that this does not happen, we calculate a lower bound on the modull
of the zeros and use this quantity for a shift along the real axis.

The lower bound we vse, (Marden [4, p. 981}, is the unique positive

zero of
n=-1
(6.1) Qt) = - J);o | ay | e ta | .

The positive zero of (6.1) is easily found by Newton-Raphson iterationm.
It need not be found very accurately.

One may construct examples which show that the smallest zero of
the translated polynomial need not be the translated smallest zero
of the original polynomial. However, these examples are based on
near equimodular zero distributions and hence will not effect our
statement that we can ensure stable deflation. However, this shows
that the translated polynomial may have more than two equimodular
smallest zeros. In the program we try shifts in both directions. An

example of this may be seen in Example 3 of Section 8.
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We now show how we may perform the translation and still use the
original polynomial in the Stage Two iteration. This is clearly desir-
able numerically.

Let p(t) = P(t-s) be the translated polynomial. With s> 0,
this meens the zeros of P are shifted s units to the right. Let
{h(n,t)] be the "H polynomial sequence" for p{t) and let T, be
the smallest zero of p(t) . [We assume for simplicity of exposition
that p(t) has & smallest zero. This is not essential.] Let

¥ {A,t) = h(A,t+s) . Let

G(/\)t) = _M_

N(n,t)
Then we have

THEOREM 10.

Let p(t) have zeros 1T, with ['nl[<|‘l]i|,i>l.

Let t,,, = *1(ti"’) - Then t, =T, - s .

An analogous result holds if the translated polynomial has two
smallest zeros. After the zero has been calculated, the deflation is
carried out in the original polynomial. Although this scheme requires
two translations, it is not sensitive to roundoff error since the
iteration is done in the original polynomial and hence the translations

need not be done in higher precision than the rest of the calculation.

-17-



- SCALING

We turn first ic the scaling of the H polynomials. From (3.1),
we see that as ) increases the coeilicients of the H(a,t) grow or
diminish depending on whether | pL <1 or | 01 ] > 1. Thus the
coefficients must be periodically scaled. To minimize roundoff error
it is desirable to scale by a power of the radix ( a power of 8 on
the Burroughs B5500). This seems preferable to the scaling strategy
proposed by Traub [6, Section 9].

We scale the least squares problem by replacing the problem of

minimizing (5.3) with the problem of minimizing
.1 = & 8
(r-1) o Nl U o U Lo W - WS

vhere I is the diagonal matrix whose j-th diagonal element is the

average of the j-th compcnent of h 1 h, h + If this scaling

oy N T 5
is not done, the minimization of (5.3) may reflect only one very
large component which might satisfy a three-term recurrence whereas

the vector does not.

.18-



8. TERMINATION OF SECOND STAGE ITERATION

A protlem commcn to all iterative methods is when to terminate
the process. Generally, the decision to terminate has been based on
an ad hoc criterion such as | tiat [/1 t, | < € , with the parameter
¢ chosen a priori.

In our program we terminate iteration on the basis of a technique
due to Kahan. He derives an a posteriori bound on the roundoff error
in evaluating a real polynomial at a real point and suggests that
iteration be stopped when the computed value of the polynomial is less
than a small integer multiple of this bound. Kahan's technique
appears without explanation in Kahan and Farkas [3]. Adams (1] analyzes
the case of a real polynomial evaluated at a complex point and shows
that the bound is tight enough so that the iteration is not stopped
prematurely. Our experience with this leads us to the conclusion that

it is an excellent way in which to terminate the second stage-

-19-



9. NUMERICAL RESULTS

An ALGOL program has been written for the Burroughs B5500 to test
the algorithm described in this paper. The Stage One calculation is
done in single precision (13 octal digits) and the Stage Two iteration
is dene in double precision (26 octal digits).

The program makes good use of the recursive facility of ALGOL.
Flowcharts of the program may be found in the Appendix.

The procedures for automatically making the important decisions
listed in Section 4 have been described earlier. A number of other
parameters, whose values do not play a critical role, sre chosen on an
ad hoc basis. We_discuss the values assigned these parameters in our
program.

The switchover test is applied each time that ) has been
increaged by & . The maximum value of ) permitted in Stage One
is ) =200 . 1If the switchover test has not been passed by this
time, we translate.

The maximum number of iterations permiited in Stage Two is € .
This choice is baced on the assumption that there will be at least
1l <correct figure in the initial approximation and with quadratic
convergence 6 iterations will produce a double precision answer.
(Double precision on the Burroughs B5500 is 23 decimal digits.)

The number ¢ appearing in (5.2) and (5.4) is initially set at
.001. If the switchover test is passed and then iteration does not
converge we replace g by :/10 and restart the Stage One calcula-

tion.

-20-



If the switchover test is not passed for ) = 200 and iterations
following translation in both directions fail, then we increase the
upper limit on )\ and restart Stage One with ¢ replaced by 10 ¢ .

We turn to three rumerical examples. We tried the program on
some of the hardest problems we could find. Examples of how this
type of method does on simple problems may be found in Traub [6,
Appendix].

Wh=i are hard problems for zero finders? Multiple and near
multiple zeros cause difficulty for most methods. Wilkinson (9]
poirts out the difficulty in solving a polynomial whose zeros lie in
an arithmetic progression. Equimodular and near equimodular zeros
are difficult for methods involving zero separation such as Graeffe's
method and power methods. Since Stage One of our algorithm can be
interpreted as a power method, this presents us with our hardest

problem.

Example 1. This is the 20-th degree polynomial with zeros at

l, 2, ... , 20 discussed by Wilkinson. All the ze¢ros are found to
at least 10 decimal places of accuracy. Table I gives the zeros
in the order in which they were found. Note that the zeros were
calculated in strictly increasing order arnd that except for the zeros
at 17 and 18 the value of A required to pass the switchover
test increases as the ratio of the smallest to the next-to-smallest
zero increases. As this ratio increases, the initial approximations

become less accurate but

-21-



Table I

Zero A Estimate from Stage One Number of Iterations
1 12 1.0002 2
2 16 2.0014 2
3 16 3.00% >
4 20 4,011 3
5 20 5.026 3
6 2k £.025 3
7 2k 7.0L42 3
8 2k 8.064 3
9 28 9.055 3
10 28 10.075 3
11 28 11.097 3
12 28 12.12 3
13 28 13.15 4
1L 32 1k.12 4
15 32 15.15 4
16 32 16.17 i
17 28 17.25 4
18 4 18.14 5
19,2C Found Directly From the Final Quadratic Factor.
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in all cases are wi<hin 24 of the zero. Thus our automatic switch-
over criterion is working very well. Since k =1, " is used

throughout.

Example 2. This is the 19-th degree polynomial whose zeros are

.025 ¢ .035i, -.0k # .03i, .27 % .37i, -.4 & .3i, 2.9 & 3.9i, -4 & 3i,
10 + 2i, -20, 20, 30, 30, 30 . The first six pairs of complex ccn-
Jugate zeros were chosen to test how the algorithm benaves with complex
zeros of nearly equal modulus which are not clustered. The zeros at
20 and -20 test the algorithm on equal real roots with opposite
sign and the triple zero at 30 tests the behavior of multiple zeros.
Table IT gives the results in the order the zeros were found. The
zeros are found by the algorithm to eleven significant figures except
for the multiple zero at 30 for which the last two approximations
agree only to 7 significant figures. This is all one expects for

a triple zero. The results show that as the ratio of the smallest
modulus to the next-to-smallest modulus increases, the switchover
value of p 1increases. For the first two pairs of zeros the ratio

is .860 and A is 68 . For the next two pairs the ratio is .916
and A 1is 100 . For the last two pairs in this group of zeros the
ratio is .972 &and the test is not passed for any ) < 200 . In this
case the program automatically shifts the zeros by 2.93, the test is
now pu.ssed with A = 12, and the algorithm converges to the zero at

b+ 31,

-23.



Table 11

Estimate From Number of
Zero Modulus A Stage One Iterations
.025 +# .0351 .0430 | 68 .0250015 ¢ .0350012i 3
-.04% @ .03 . 0500 8 -.0%999988 + .0300002i 2
27 ¢ 371 458 [ 100 26997 + .369931
b e 34 . 500 8 -. hoooo2 +  .2999961 2
-, * 3.4 5. 00 12% | -4,0005 +  3.00031 3
2.9 + 3.9 4.86 12 2.9004 « 3.00009i 3
10. + 2.4 10.198 20 9.996 + 1.99%i 3
-20. 20 12 -20.0089 2
20. 20 i 20. 0000006 2
30. 30 b | 29.999999995 0
30,30 . Found Directly From the Quadratic

*Switchover test not satisfied at A = 200 . Shift the zeros by 2.95

and the test is passed with A = 12 .

<24



Example 3. This is the 36-th polynomial whose coefficients were chosen
randomly by Henrici and Watkins [2]}. All its zeros lie close to the
unit circle which make this example a difficult one for our algorithm.

The polynomial is P = -9265.5t56 + 6UBEL - u2.01>t3“ + 70,3117

32 23

+ 3072. 5492 + 2.953¢° % + 5.6163t790 + 870.73t57 - 7.9141t%° - 74110657

5 o ho8e* - 30,055t + 6.5810t%2 _ 6.8461621

6 15

- 22.96ut26 + 9.2252t2
- 7.8867t20

+

32,1519 - 34,6576 + 67.9161%7 - 300.57¢2° + 60.2u71

+ 265.7ue 1% | us3. 86470 - 7015.6412

. 99.59ht° - 20.77‘:'>t7 + h9.225t6 + 592&.5t5 - .085850th + 75.9h1t5

509.67t % - 2,0574t10 - 85,5817

+ o.oh9060t2 + B88,%12¢ - 99%.56

Many of the zeros reguired shifts befere they were found. The
column "number of shifts" in Table III has the iollowing meaning. If
the entry is 1 a shift of the zeros to the right has succeeded. If
2, then the first snift has failed tc¢ produce a polynomial wause
smallest root or pair of roots could be found, but a subseguent shift
of tne zeros to the left succeeded. If the entry is 2, then both
the shifts have failed and the original Stage One calculation has
been restarted. Note that one of the largest zeros has been calculated
first. Since ali the zeros are of comparable magnitude this does
not cause trouble during deflation. Purification in the original
polynomial produces nc change in the approximate zeros in the 10

significant figures which are quoted in Table III,

_25<



Tabie III

Number Number of
Zero Modulus of Shifts A  Tterations
-.982850829% & 11248013571 989 1 Lb 3
-.5871954694 « . LB1968ELOTL .760 1 L8 3
.2208328178 « .70000456711 LT54 0 60 3
.B127598823 + .061479746k41 .815 o} 9% 3
-.8845981101 + .30151966251 .935 1 108 L
-.B372852532 + 39629609161 . 926 1 72 3
-. 7466486856 ¢ 60412345111 . 960 1 144 4
6330847696 + .6931412366i .939 2 92 L
-.2004825011 # .89996162031 .k 0 152 3
-.5831113093 + .785224682k4i .978 1 184 L4
-.3772294487 + 8980728714 . 974 1 9% 4
-. 0725823577 + .99087572151 <99k 1 164 L
. 5788786350 « .77200999871 . 965 0 120 3
.3926236740 ¢ 92499864131  1.005 2+ 384 5
.1585296127 4 .1000%29%21i  1.013 1 68 4
8264593743 ¢ .57735001671  1.008 Q 188 5
. 9538469054 + 36071272241 1.020 0 9 i
1.055012577 # .0877037032i 1.057 Found Directly From the
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10. SUMMARY

OQur major conclusion is that the algorithm described here can
be used as the basis for a program which automatically calculates all
the zeros of a polynomial and finds them in roughly increasing order
of magnitude.

It is clear that our program could not compete in terms of
computer time with a program which simply always uses Muller or
Newton-Raphson iteration, when these iterations converge. Note,
however, that if a problem is easy, then the switchover from Stage
One to Stage Two is made early. Hence, easy problems are handlec
relatively cheaply. Time is spent on the hard zeros. One may view

the technigue &s one which involves a spectrun of iteration functions

with the appropriate iteration automatically selected.

Our program is designed to be a general polynomial solver. It
must be able to handle all polynomials. If one knows a priori that
one is dealing with a special polynomial, such as one with all
distinct real zeros, then Newton-Raphson or Laguerre iteration may
be used safely. Furthermore, a computer library should probably
contain special routines for handling quadratic, cubic, and perhaps
quartic equations. A general polynomial solver is needed to handle
the cases where special properties of the polynomial are not known
or if there is to be only one polynomial solver in the library.

The only difficult case for our algorithm is when there are
near equimodular zeros such that our translations don’'t break the

near equimodularity. We are studying methods for handling this
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problem either by a suitable modification of the algorithm or by
switching to azother method in case this difficulty occurs.

We mre considering the feasibility of using complex tranalations
even in the case of real polynomials. This would mean only the case
k = 1 need be considered. It would also offer greater flexibility
in translation.

Qur program is incomplete in that no attempt is made to give
a posteriori estimates of how good the calculated zeros are.

The numerical examples exhibitec here, as well as other examples
we have run, indicate that the switchover test works quite efficiently.
In slmost every case the test is not passed until ) 1is large
enough so that the Stage Two iteration converges. 71e value of
A at tae switchover point increases as the ratio of the magnitude
of the tmallest zerc to the magnitude of the next smallest zero
increases. Usually the approximation from Stage One .0 Stage Two
is good to between two to four figures which indicates the first
stage has not been carried too far.

Observe that very few iterations are required in Stage Two as
we would expect from the discussion of Section 3. OJur numerical
results confirm Wilkinson's conclusicn [10, pp. 65] tha there is
little to be gained by purification in the original polynomial pro-
vided that the zeros have been deflated in the proper order. We
have not found a single case where a zero is significantly improved
by purification. This also indicates that our procedure for ter-

minating Stage Two is working well.
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Flowcharts

These Flowcharts are intended only to give the general flow of the
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smallestroot P: Polynomial (array of
(P,a,8elf,c coefficients)

a; output of a zero
Self: Boolean variable which 1t

true if smallestroot calls
upperlimit ~ 400 iteelfl
limit ~ 200 ¢: output variable which is true
e =107 3% w0 i1f smallestroot has been
P successful,
Hio,t) « P (%)
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Flowchart 2 - Procedure smallestroot
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Flowchart 3 - Procedure smallestroot (continued)
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