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1. INTRODUC'l'lON 

A general automatic equation solver Bhould be ba.ed 

on a restrlct10n-free mathematical algorithm. By thl. 

we mean the algorithm should be suitable for all poly­

nomials and not depend on the properties of certain 

claedes of polynomials. In this paper we will de.cribe 

a restrl"tion-free algorithm and (USQUS8 a program 

which implements it. 

The algorithm enjoys a basic simplicity and reqUire. 

few decisions. We devise procedures by ~hich the com­

puter may automatically make the major deoisiona required. 

We do not concern ourselves here w1th programs u.ed 1n 

an interactive environment. Routines to be used in such 

an envlronn,ent m1ght have difterent characteristlos. 

We summarize a few of the desirable character1stics 

of the algorlthw. It 1s basically iterative with a pre­

proceSSing stage whioh guarantees that the iteration will 

converge. Often the most difficult problem assoclated with 

an 1terative method is the value of the initial iterate. 

This i8 easy tor us to handle because the mathematical 

algorithm will converge for essentially all initial 

approximations While our Implementation ot the alsorlthm 

actually supplies us with a good initial approximation. 

Multiple zeros require no special handling. Finally, 

the Importance of finding the zeros in roughly In-

creaSing order of magnitude to ensure stable deflation 



ha. been .tre.sed by Wilkinson (11. p. 465) who observes 

there seeme no re11able method for ensuring this. Our 

alsorithm does find the zeros 1n roughly 1ncreasing 

order or masnitude. 

The last p01nt mer1ts some amplificat10n. If the 

.erol are round in decreasing order of magn1tude, then 

the backward deflation is stable. What is really crucial 

11 that at each stage of the deflation either one of the 

amallelt or one of the largest zeros is caloulated. 
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The algorithm may be applied to polynomials with real or ca.plez 

coefficients. Polynomials with complex coeff~cients are easier to 

deal with for the following reason. Let k be the number of 41~~lDCt 

smallest zeros of equal magnitude. Although theoretically the kind 

of method which we will describe could be extended to bandle zero 

distributions with any value of k, the simplicity of the ~leaenta­

tion depends on k being small. In the case of a polynomial witb 

complex coefficients we can, after a complex translation, ensure 

k - l. For a polynomial with real coefficients, we are lett with 

the cases k 1 and k = 2 if we restrict ourselves to real 

translations. 

The algorithm to be introduced in this paper is a member of a 

class of two-stage methods introduced by Traub. This type of method 

was first announced in [5). The calculation of the largest zero ot 

a polynomial was discussed in detail in [61 and global convergence 

was proven for a class of methods. For the largest zero the tirst 

stage involves the generation of G polynomials. The proof ot 

global convergence of an algorithm for computing complex cOnjugate 

zeros was announced in [7] while tbe calculation of the ..alle.t zero 

and of multiple zeros as well as the extension to analytic function. 

appears in [8]. 

The calculation of the smallest zero involve. H polyno.ial •• 

G polynomials and H polynomials bave a simple relation and anr 

result involving one can be translated ~to a result involv1ng the 

other. calculating the ..allest zero first makes translation .ore 

effective. Hence, we shall be involved with H polynomials. 
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Bibliographic reaarka and rather extensive bibliographies may be 

round in Traub (6), (8). 

The papers cited above deal with finding one %~ro or B complex 

conjusate pair and toeus on mathematical properties. In this paper, 

we focus on a particular algorithm out of a ~lass of possible algo­

rithms and discuss its teasibility as the basis for a general auto­

&&tic polynomial equation solver. 
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2. l'HE Ke.THEMA.TlCAL ALGORITHM 

Let 

n n-j 
pet) = r a} , 

j=O 
a ~ 0 n 

be a polynomial with distind, zeros Pi of multiplicity 1111 • 

Stage Or:! 

We generate a sequence of polynomials as follows. Let 

H(O,t) - p'(t) 

(2.l} H(X+l,t). ~ [H(X,t) - H~tb» P(t)] x .. 0,1, ... , ." 

Observe that the polynon~lals are of degree at most n - 1 • 

Stage Two 

Let k be the number of distinct zeros of smallest magnitude. 

If k > 2, translate ~he polynomial 80 that k - 1 or 2. Observe 

tha.t the d1stillction between k = 1 and k .. 2 is of importance only 

for the case of real coefficier.ts. 

We intt'od.lce the followirl8 notation to help us describe the 

Stage Two iteration. Let h(t) be a polynomial of degree r. Then 

h(t) is the polynomial h(t) divided by the coefficient of tr. 

-4-



Let to be the 1n1tial 1terate. Then we generate a 

.equence ot 1terates by t 1+1 - t k(t1,r) where r 18 the 

tunct10n Whose zero we seek. (In th1s notat1on, 
, 

Newton-RaphBon 1teration 1s defined by t(t,f) • t - f/f .) 

We can n ow give the formulas of the iterat10n func­

tions for k - 1 and 2. 

Let 

where 

and 

Let 

where 

and 

f R V(A,t) - p(t)!lI(A,t) • 

f • W(A,t) - P(t)!tCA,t) , 

I(A,t) - e(A-l)H(A,t)-e(A)H(A-l,t) 

- 5 -



with 6(A) the coeff1cient cf t n- 1 1n H(A,t). Let the 

zero be labeled a. If k • 1, ttie pnl711om1al pet )/(t-a) 

is formed. If k - 2, the p·)lynoIl1al p(t)/[(t-a)(t-a») 

1s formed. We then retum to Stap One w1th the new 

polynom1al. 
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3. PROPERTIES OF THE M.\'rIIDfA.TlCAL AIDORITHM 

We .ball now state a number of results which exhibit the power 

ot the matbematieal algorithm. Results analogous to results stated for 

the eaae k. 1 may be found in Traub [6). Proofs of results for the 

eaa~ k. 2 will appear elsewhere. The notation is the same as in 

Section 2. We shall use ~ as a running index and A as a fixed 

integer. 

MOat of our results follow from the formula given in 

For all ~, 

The key property of H(AJt) is given in the following two 

theorems. 

THEOREM 2. 

~ j PI I < I Pi I J i > I. Then for all finite t, 

lim V(~/t);:; 
~ .... 

-7-



THEOREM 3. 

Let Pl I < I Pi I ~ I P2 I < I Pi I , i > 2. Then tor 

all finite t, 

lim W(X,t) 
X .... 

Note that the h~~othesis of Theorem 3 includes the case k. 2 • 

Generalizations of these theorems hold for the case of k smallest 

zeros in magnitude. The rate of convergence is of Bernoulli type. 

Results concerning the zeros and poles ~f V(X,t) and W(X,t) 

are given in the following group of th~orems. Note that no restrictions 

have been imposed on the multiplicities of the zeros of P. The 

following theorem is a generalization of the statement that the 

ratiorlal function p/p' has only simple zeros. Observe that V(O,t) 

is proportional ~o F/P' 

THEOREM 4. 

For all fini~ X, V(X,t) and W(X,t) have only si!ple zer0S 

and these are the zeros of P. 

THEOREM 5. 

Let I Pl I < I Pi I , i > l. Let K1 be the union of circles 

with arbitrari!y small fixed radii centered at the Pi' i > 1 • 

Then for >.. sufficient!y large, the poles of V(>",t) are contained 

-8-



m!ClmK 6. 

~ I Pl I < I Pi I , I P2 I < I Pi I , i > 2. ~ ~ ~ 

tbe union ot circles with arbitrarily small fixed radii centered at 

!!!! Pi' 1 > 2. Then for ). sufficiently large, thE' poles of 

V(A,t) are contained in K2' 

We now state some theorems concerning the iteration functions 

'1 and '2' As 1lsua1 we define the order of the iteration as follows. 

:I.hen if there exists a constant p and a nonzero con-

stant C such that 

c 

then p is called the order and C the asymptotic error constant. 

FOr our iteration functions, C = C
k
(,,). We then have 

THEOPDI 7. 

'1 ~ '2 are second ord.er iteration functions. Furthermore, 

lim ckeA) 0, k = 1,2 • 
A -+. 

We comment on this result. The iteration is done for a fixed 

.va1ue of A - 1\ Theorem 7 shows that if 1\ is large, ek(l\) 

will be small. Hence, although the iteration is of second order, the 

error at each iteration will be the product of three small numbers 

and hence will appear faster than the usual quadratic convergence. 

-9-



Additional discussion of C(h) may be found in Traub 

[6. Section 6J and (8. Section 7]. 

The speed of convergence 111 "illustrated by the 

following simple example which we take from Traub (6). 

In this example an earlier program is used which cal­

culates the biggest zero first and which does not 

make decisions automatically. 

Let 

pet) - t
4 - 46t3 + 528t2 - l090t + 2175. 

The largest zero is 29. Take!\ - 16. Let 

to - 100 000. 

Then 

tl - 28.99963 

t2 - 28.9999999999997 
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We hope the following discussion will o~~er some insight into 

the choice of .1 and.2 and will claz!.fy the reason why (3.2) holds. 

Let vet) - (t-Pl)' wet) • (t-Pl)(t-P2)' Then Theorems 2 and 3 

-.y be reBtated as 

Now, 

lim V(X,t) = vet) 
X ..... • 

lim W(X,t) = wet) 
k ...... 

Thus if k - 1 and we have taken A to ., then starting with any 

to' the iteration with .1 would have delivered the exact zero in 

one iteration and analogously for k = 2 and t2 . 

We now state theorems on global convergence of the iterations 

defined by .1 and .2 . 

THEOREM 8. 

Let I Pi I < I Pi I , i > 1. ~ to be an arbi trag point 

in the extended complex plane such that to I Pi' i > 1 and let 

-10-



t i +l = ~l(ti'V)" Then for A sufficiently large but fixed, 

the sequence ti 1s def1ned for all 1 and t1 ~ Pl " 

THEOREM 9. 

Let I f'l I < I Pi I , I P2 I < I Pi I , i > 2" Let to be 

an arbitrary point in the extended complex plane such that 

to ~ Pi' i > 2 and let ti+l - ~2{ti'W)" Then for A 

sufficiently large but fixed, the sequence ti is defined 

for all i ~ ti ..... PI" 

These theorems require a few words of comment. The 

formulas for ~l and t2 as g1ven above make it appear as it 

these functions are not defined at ~" However, tl and Y2 

may be rewritten so that they are defined at ~. (Observe 

that this is not a property shared by the Newton-Raphson 

iteration function.) 

The iteration W2 is multivalued because of the ± 

sign. However, a strategy is available for making the 

iteration converge to either PI or P2. A discussion of 

this in a somewhat different setting is given by Trau"., 

[8, Section 12). 

~ proof of Theorem 8 for the case where P has only 

s1mple zeros 1s g1ven by Traub [6. pp. 121-123). The 

extension to mult1ple zeros 1s not difficult. 

These theorems show that if we apply our two stage 

algorithm to any polynomial. with perhaps A translation 

to ensure k z 1 or 2, then provided A is sufficiently 
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large, the mathemat1cal algorithm 1s guaranteed to eon­

verse. Por the remainder or this paper we discuss the 

lmple .. ntat1on ot th1s algor1thm on a digital computer. 
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4. DECISIONS TO BE Mt\DE IN THE PROGRAM 

We enUlllerate the major decisions that have to be made &utOll&tlca1ly 

by a program implementing this algorithm. A number or the decisions 

are not crucial and are made on an ad hoc basls. Other decisions are 

crucial and are made on the basis of certain calculations. 

We summarize the major decisions to be made in the calc'~at1on 

of each zero or p~ir of zeros: 

a) What is A, the value of k for which we terminate Stage 

One and switch to Stage Two? 

b) Is k = 1, 2, or is k > 27 

c) If k > 2, by how m~ h should we translate? 

d) What value should be assigned to to' the initial iterate 

for Stage Two? 

e) What is the termination criterion for the Staae Two iteration? 

Decisions a, b, and d are mad~ as the result of the same calcu-

lation. Indeed, stage One is terminated when k can be determined 

as equal to 1 or 2. If such a determination cannot be made by the 

time that k has reached a certain value ~f' a translation is 

carried out. 

Decision d, which is often the most difficult decision to make, 

is available here as a byproduct. However, Theorems 8 and 9 show 

that the choice of is not crucial. 

The methods for making decisions c and e are described in Sections 

6 and 7, respectively. 
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5. THE TERMIBATION OF SrAGE ORE 

It there are k smaLlest zt:ros in n:agnitude, tnen for A 

.utticient~ large 

Hence H(A,t), ••. ,H(X+k,t) will approximately ~atisfy the k-th 

order recurrence 

wher~ the c i are related to the zeros of P by 

k i L c
k

_
i 

t 
i=O 

We wish to test the hypothesis that the H(k,t) satisfy a 

recurrence of the form (5.1) with k ~ 1 or 2. For a fixed value 

of A we test the hypothesis k = 1 and if that see~ to be false 

"Ae test k z 2. If that is also false, we ~ncrease X by a certain 

amount and test again. This is continued until a preset upper limit 

of A is reached. At that point the polynomial is translated and 

we start again. 

-13-



We describe the test for k = 2. The test for k. 1 ja the 

appropriate simplification. Let 

denote the leading coefficient of H(~,t). Let ~ denote the vector 

of coefficients of the polynomial H(~,t). We apply two teats, the 

second being more expensive than the first and applied on~ it th~ 

first is passed. 

We first test for a second order scalar recurrence. If thia 

is passed, we tP.Gt for a vector recurrence. 

Let 

~ 
""""D"W 

If 6(A) satisfies a second order scalar recurrenceJ R(~) converge •• 

Hence the first test is 

< , 

If this test is passed, we test for the vector recursion as 

follows. 

-14. 



CbOOae ~l. ~2 ao that the quantity 

1s minimized ln the ~ norm and test ir 

(5.4) < I 

That i8 we solve a n )( 2 least squares problem. If (5.4) holds, 

calculate the ql and CL.? of t
2 

+ clt + C2 and use -1 we zeros ql 
-1 as the value of the initial iterate to in the second stage. or ~ 

A similar least squares technique is used by Zurmlihl [12] whose 

purpose it is to calculate approximntions of equimodular eigenvalues 

using vectors generated by the power method. ZurmUhl proves that he 

obtains R~leigh approximations in this way. He does not use this as 

a crit~rion for termination. 

We emphazise that the test tells us 

a) When to switch from Stage One to Stage Two. 

b) The value of k. 

c) The value of to' 

-15-



6. THE TRAfLSIATIClf OF THE POLlIQ(IAL 

If the tests described in Section 5 have not been paued Dr' a 

certain value of X. Xf , we translate th£ polynomial. Since we wiab 

~o calculate the zeros in the order of increasing magnitude, we do not 

w~nt to shift by an amount wnich would place near the origin a zero with 

a significantly larger modulus than the smallest zeros. To ensure 

that this does not happen, we calculate a lower bound on the aoduli 

of the zeros and use this quantity for a shift along the real axi •• 

The lower bound we t· se, (Marden (4, p. 9i3]), is the unique pod t1 ve 

zero of 

(6.1) 

The positive zero Or (6.1) is easily found by Nevton-Raphson iteration. 

It need not be found very accurately. 

One may construct examples which show that the smallest zero ot 

the translated polynomial need not be the translated smallest zero 

of the original polynomial. However, these examples are based on 

near equimodu1ar zero distributions and hence vl11 not effect our 

statement that ve can ensure stable deflation. However, this .bow. 
that the translated polynomial may ha\'e more than two equilllodular 

smallest zeros. In the program we try shifts in both directions. AD 

example of this may be seen in Example ~ of Section 8. 

-16. 



We now show how we may perform the translation and still use the 

original polynomial in the Stage Two iteration. This is clearly desir-

able numerically. 

Let p(t) .. p(t-s) be the translated polynomial. With s > OJ 

this means the zeros of P are shifted s units to the right. Let 

(h().,t)} be the "H polynomial sequence" for p(t) and let 1\1 be 

the smallest zero of p(t) [We assume for simplicity of exposition 

that p(t) has a smallest zero. This is not essential.] Let 

Then we have 

THEOREM 10. 

~ p(t) have zeros 1\i !!.ill 1"1 I < I Tli I , i > 1 . 

Then t i -+ Tll - S • 

An analogous result holds if the translated polynomial has two 

smallest zeros. After the zero has been calculated, the deflation is 

carried out jn the original polynomial. Although thin scheme requires 

two translations, it is not sensitive to roundoff error ~ince the 

iteration is done in the original polynomial and hence the translations 

need not be done in higher precision than the rest of the calculation. 

-17-



7· SCALING 

We turn fil:.s..t.. to thc~c.allng 0f_1h~Ii pi>lynolJlials. From ('.1), 

we see that as ~ increases the coel:icients of the H(A,t) grow or 

diminish depending on whether I Pl I < 1 or I Pl I > 1. Thua the 

coefficients must be periodically scaled. To minimize roundoff error 

it is desirable to scale by a power of the radix ( a power of 8 on 

the Burroughs B5500). This seems preferable to the scaling strategy 

proposed by Trauh [6, Section 9). 

We scale the least squares proOlcrn by replacing the problem ~t 

minimizing (5.3) with the problem of minimizing 

\o'here l' is the diagonal Matrix wt'lOse j-th diagonal element is the 

average of the j-th component of h'_l' h , h +1' If this scaling 
-/\ -l-l 

is n")t done, the minimization of (5.3) may reflect only one very 

large component which might satisfy a three-term rect~rence whereas 

the vector does not. 

-18-



8. TERMINATION OF SECOND STAGE ITERATION 

A problem common to all iterative methods is when to terminate 

the process. Generally, the decision to terminate has been based on 

an ad hoc criterion such as I ti+l-t i II I ti I < £, with the parameter 

c chosen a priori. 

In our program we terminate iteration on the basis of a technique 

due to Kahan. He derives an a posteriori bound on the roundoff error 

in evaluating a real polynomial at a ~eal point and suggests that 

iteration be stopped when the computed value of the polynomial is less 

than a small integer multiple of this bound. Kahan's technique 

appears without explanation in Kahan and Farkas (3). Adams [1] analyzes 

the case of a real polynomial evaluated at a complex point and shows 

that the bound is tight enough so that the iteration is not stopped 

prematurely. Our experience with this leads us to the conclusion that 

it is an excellent way in which to terminate the second btage. 

-19-



9. NUMERICAL RESULTS 

An ALGOL program has been written for the Burroughs B5500 to test 

the algorithm described in this paper. The stage One =alculation is 

done in single precision (13 octal digits) and the stage Two iteration 

is done in double precision (26 octal digits). 

The program makes good use of the re.::ursive facility of AlDOL. 

Flowcharts of the program may be found in the Appendix. 

'I'Me procedures fol' automatically making the important decisions 

li~ted in Section 4 have Lecn described earlier. A number of other 

parameters, ~~ose values do not play a critical role, are ~hosen on an 

ad hoc basis. We discuss the values assigned these parameters in our 

program. 

The switchover test is applied each time that ). has been 

incrf'ased by 4. The maximum value of ). permitted in Stage One 

is ). = 200. If the switchover test has not been passed by this 

time, we translate. 

The maximum n~ber of iterations permi~ted in Stage Two is 6 

This choice is baced on the assumptioll that there will be at least 

1 ~orrect figure in the initial approximation and with quadratic 

convergence 6 iterations will produce a double precision answer. 

(Double precision on the Burroughs B5500 is 23 decimal digits.) 

The number E appearing in (5.2) and (5.4) is initially set at 

.001. If the switchover t~sl is passed and then iteration does not 

converge we replace E by £/10 and restart the Stage One calcula­

tion. 

-20-



If the switchover test is not passed for ~ = 200 and iterations 

tollowina translation in both directions fail, then we increase the 

upper limit on ~ and restart Stage One with £ replaced by 10 t 

We turn to three rumerical examples. We tried the program on 

aome of the hardest problems we could find. Exampleb of how this 

type of method does on simple problems may be found in Traub [6, 

Appendix). 

Wh~t are hard problems for zero finders? Multiple and near 

multiple zeros cause difficulty for most methods. Wilkinson (9] 

poir.ts out the difficulty in solving a polynomial whose zeros lie in 

an arithmetic progression. Equimodular and near equimodular zeros 

are difficult for methods involving zero separation such as Graeffe's 

method and power methods. Since Stage One of our algorithm can be 

interpreted as a power method, this presents us with our hardest 

problem. 

Example 1. This is the 20-th degree polynomial with zeros at 

1, 2, ... , 20 discussed by Wilkinson. All the Ztros are found to 

at least 10 decimal places of accuracy. Table I gives the zeros 

in the order in which they ~ere found. Note that the zeros were 

calculated in strictly increasing order and that except for the zeros 

at 17 and 18 the value of A required to pass the switchover 

test increases as the ratio of the smallest to the next-to-smallest 

zero increases. As this ratio increases, the initial approximations 

become less accurate but 

-21-



Table I 

Zero A Estimate from Stage One Number of Iterations 

1 12 1.0002 2 

2 16 2.0014 2 

3 16 ).0095 3 

4 20 4.011 3 

5 20 5.026 3 

6 24 6.025 ) 

7 24 7·042 :3 

8 24 8.064 :3 

9 28 9·055 3 

10 28 10·075 :3 

11 28 11.0C]7 :3 

12 28 12.12 3 

13 28 13·15 4 

14 32 14.12 4 

15 32 15·15 4 

16 32 16.17 4 

17 28 17·25 4 

18 4 18.14 5 

19,20 Found Directly From t.he Final Q.uadratic Factor. 

-22-



in all cases are wi'~l"in 2'f, of the zero. Thufl our al.ltomatic switch­

over criterion is working very well. Since k = 1, tl is used 

throughout. 

Example 2. This is the 19-th degre~ polynomial whose zeros ~re 

.025 •• 035i, -.04 •. 03i, .27 •. 37i, -.4 •. 3i, 2.9 • 3.9i, -4 • 3i, 

10 • 2i, -20, 20, 30, 30, 30. The first six pairs of complex C0n­

juga.te zeros were chosE'n to test how the algorithm behaves with complex 

zeros of nearly equal modulus which are not clustered. The zeros at 

20 and -20 test the algorithm on equal real roots with opposite 

sign and the triple zero at 30 tests the behavior of multiple ZEros· 

Table II gives the results in the orc.er the zeros were found. The 

zeros are found by the algorithm to eleven significant figures except 

for the multiple zero at 30 for which the la~t two approximations 

agree only to 7 significant figures. This is all one expects for 

a triple zero. The results show that as the ratio of the smallest 

modulus to the next-to-smallest modulus increases, the switchover 

value of A increases. For the first two pairs of zeros the ratio 

is .860 and A is 68 For the next two pairs the ratio is .916 

and A is 100 For the last two pairs in this group of zeros the 

ratio is .972 and the test is not passed for any \ ~ 200. In this 

case the program automatically shifts the zeros by 2.93, the test is 

now p':..ssed with 1'1. = 12, and the algorithm converges to the zero at 

-4 + 3i • 

-23-



Table II 

Estimate From Number of 
Zero Modulus " Stage One Iterations 

.025 • .0351 .0430 68 .0250015 ... .03500121 3 

-.04 .. .03i .0500 8 -.0399998B ... .03OOOO2i 2 

.27 ... ·371 .458 100 .2690/7 ... .369931 3 

-.4 .. ·3i ·500 8 -.400002 ... . 299996i 2 

-4. ... 3·1 5·00 12*' -4.0005 • ;.0003i 3 

2·9 .. 3·9i 4.86 12 2·9004 ... 3·90009i 3 

10. ... 2.i 10.198 20 9·c:d> • 1·996i 3 

-20. 20 12 -20.0089 2 

20. 20 4 20.0000006 2 

30. 30 4 29·999999995 0 

30,30 Found Directly From the Quadratic 

*S~itchover test not satisfied at X = 200 Shift the zeros by 2.9} 

and the test is passed with A - 12 . 



Example 3. This is the 36-th polynomial whose coefficients were chosen 

randomly by Henrici and Watkins (2). All its zeros lie close to the 

unit circle which make this example a difficu:;'t one fcr our algorithm. 

The polynomial is p; _9265.5t36 + 6468t35 - 42.01)t34 + 70.311t33 

+ 3072.4t32 + 2.953t~1 + 5.6163t30 + 870.73t29 - 7.9141t28 - 74.110t27 

_ 22.964t26 + 9.225:2t25 _ 2.4987t24 _ 3Si.iJ03t23 + 6. 5810t22 _ 6.8461t21 

_ 7.8867t20 _ 32.15lt19 - 34.637t18 + 67.916t17 _ 390. 57t16 
+ 60.247t15 

+ 265.74t14 _ 453.e6t~3 - 7015.6t12 - 309.67t.ll - 2.0574tlO - 85.5i:llt9 

3921 ,- 5 + C''';it 

Many of the zeros required shifts btfcre they were found. The 

column "number of shifts" in Table III has the following meaning. If 

the entry is 1 a shift of the zeros to the right has succeeded. If 

2, then the first shift has failed tc produce a pOlynomial wnu~~ 

smallest root or pair of roots could be found, bJt a subsequent shift 

of the zeros to the left succeeded. If the entry is 2+, then both 

the shifts have failed and the original stage One calculation has 

been restarted. Note that one of the largest zeros has been calculated 

first. Since ali the zeros are of comparable magnitude thjs does 

not cause trouble during deflation. Purification in the original 

polynomial produces no change in the approximate zeros in the 10 

significant figures which are quoted in Tahle III. 
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Table III 

Number Number of 
Zero Modulus of Sh.ifts " Iterations 

-.9828508293 •. i~24801357i ·989 1 44 ~ 

-. 5871954694 • . 4819/586407i .760 1 48 ~ 

.2208328178 .. .700004467li ·734 0 60 ~ 

.8127598823 •. 06147974641 .815 0 96 3 

-.8845981101 .. ·301519/56251 ·935 1 108 4 

-.8372852532 .. ·3962<)609161 .926 1 72 3 

- . 7466486856 .. .60412345111 .<)60 1 144 4 

.6330847696 .. • 69314123661 ·939 2 92 4 

-.2094825011 .. • 8999616203i .924 0 152 3 

-.5831113093 ... .78522468241 ·978 1 184 4 

-.3772294487 ... . 8980128714i ·974 1 96 4 

-·0125823577 .. . 9908757215i ·994 1 164 4 

.5788786350 .. ·77200999871 ·965 0 120 3 

.3926236740 ... 92499864131 1.005 2+ 384 ~ 

.1585296127 ... 10003293211 1.013 1 68 4 

.8264593743 ... 5773500167i 1.008 0 188 5 

·9538469054 .. .36071272241 1.020 0 92 4 

1.053012577 .. .0877037032i 1.057 Fuw~~ Directly From the 
Quadrat:.c 
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10. StHota.RY 

OUr major conclusion is that the algorithm described here ~an 

be used as the basis for a program which automatically calculates all 

the zeros of a polynomial and finds them in roughly increasing order 

of magnitude. 

It is clear that our program could not compete in terms of 

computer time with a program which simply always uses ~~ller or 

Newton-Raphson iteration, when these iterdtions converge. Note, 

however, that if a problem is easy, then the swi~chover from Stage 

One to Stage Two is made early. Hence, easy problems are hand leo 

relatively cheaply. Time is spent on the hard zeros. One may view 

the technique as one which involves a spectrwn of iteration functions 

with the appropriate iteration automatically selected. 

OUr program is designed to be a general polynomial solver. It 

must be able to handle all polynomi~ls. If one knows a priori t~at 

one is dealing with a special polynom.;.'l.l, such as one with all 

distinct real zeros, then Newton-Raphson or Laguerre iteration may 

be used safely. Furthermore, a computer library should p~obably 

contain special routines for handling quadratic, cubic, and perhaps 

quartic equations. A general polynomial solver is needed to ha~dle 

the cases where special properties of the pulynomial are not known 

or if there is to be only one polynomial solver in the library. 

The only difficult case for our algorithm is when there are 

near equimodular zeros such that our translations don't break the 

near equimodularity. We are studying methods for handling this 



problem either by a suitable modification of the algorithm or by 

switch:ng to a~other method in case this difficulty occurs. 

We are considering the feasibility of using complex translations 

even in the case of real polynomials. This would ~ean only the case 

k = 1 need be considered. It would also offer greater flexibility 

in translation. 

Our program is incomplete in that no attempt is made to give 

a posteriori estimates of how good t~e calculated zeros are. 

The numerical examples exhibiteC here, as well as other examples 

we have run, indicate that the 5witchover test works quite efficiently. 

In almost every case the test is not passed until ~ is large 

enough so that the stage Two iteration converges. ~1e value of 

X at tIle switchover point increases as the ratio of the magnitude 

of the tmallest zero to the magnitude of the next sma:_lest zero 

increases. Usually the approx~mation from Stage One 1;0 Stage Two 

is goon to between two to four figures which indicate:; the first 

stage has not been carried too far. 

Observe that very few iterations are required in stage Two as 

we would expect from the discussion of Section 3. Our numerical 

results confirm Wilkins'Jn's conclusio~ (10, pp. 65) that there is 

little to be gained by purification in the original polynomial pro­

vided that the zeros h!&ve been deflated in the proper order. We 

have not found a single case where a zero is significantly improved 

by purification. This also indicates that our procedure for ter­

minating St~ Two is working well. 

-28-



11. ACKNCMLEDGMENTS 

It is a pleasure to express our appreciation to Professor W. Kahan 

of the University of Toronto who m3.de many valuable comments alld 

suggestions on the work reported in this paper. One of his contri­

butions was to suggt:'>t the method of "double translation". Much of 

the research rOJ' this paper wat: done .hile one of us (JFT) was 

enjoyi n", th" hos!,i te.lity uf Prcf-2<;l'or G. E. Forsythe I s Computer Science 

Depai"tment at Stan1'urd Uni versi ty. The a.;thors '<Iould like to thank 

the Natior:al Science Foundat:'JD and the Office of Naval Research for 

partial sUPPoJ-t of this researcll. 

-29-



BIBLlOORAPHY 

(1] Adams, D., A Stopping Criter~on for Polynomial Root Finding. 

To apI)ear C()mm. ACM, 1967. Also available as Technical 

Report 55, computer Science. Department, Stanford University. 

f2] Iienrici, f~. and Watkins, Bruce 0., Finding Zeros of a Poly­

:v)mial tJy tile Q.-D Algorithm. Comm. ACM ~ (1965), pp. 572-573. 

See also Thomas: Richard F. Jr., Corrections to Numerical Data 

on Q-D Algorithm Comm. ACM 9 (1966), p. )22. 

l51 Kahar., W. and Farkas,!., Algorithm lfti and Algorithm 169. 

Comm .. 4CM 6 (1963), p. 165. 

[4) Marden, M., The Geo~etry of the Zeros of a Polynomial in a 

Complex '/ariable. Amer. Math. Soc., Providence, Rhode Island, 

1949· 

r)l Traub, J. ~'., A Class of Globally Convergent Iteration Functions 

for the Solution of Polynomial Equations. Proc. IFIP Congress 

65, Vol. 2, pp. 483-484. Spartan Books, Washington, D.C. 

(6: Traub, J. f'., A Class of Globally Convergent Iteration Functio~s 

for the Solution of Polynomial Equations. Math. Compo 20 

(1966), pp. 113-138. 

[7] Trat:b, J. F., Proof of (Jlobal Convergence of an Iterative 

Method ~or Calc~lating Clmvlex Zeros of a Polynomial, Notices 

Amer. M3th. Soc 13 (1966), p. 117. 

-30-



(8) Traub. J. F., The Calculation of Zeros of Polynomials and 

Analytic Functions. To appear in Proceedings of a Symposium 

on Mathematical Aspects of Computer SCience, Amer. Math. Soc., 

Providence, Rhode Island, 1967. Also available as Technical 

Report 36, Computer Science Department, Stanford University. 

(9) Wilkinson, J. H., The evaluation of the Zeros of 111-

Conditioned Polynomials. Part I. Num. Math. 1 (1959), 

pp. 150-166. 

[10) Wilkinson, J. H., Rounding Errors in Algebraic Processes. 

Prentice-Hall, 1963. 

[11) Wilkinson, J. H., The Algebraic Eigenvalue Problem. Clarendon 

Press, 1965. 

[12] ZurmUhl, R., Rayleigh-Naherungen fur Simultan-Iteration an 

betragsgleichen Eigenwerten einer Matrix. ZAMM 42 (1962), 

pp. 210-213· 

-31-



Flowcharts 

These flowcharts are intended only to give the general flow ot the 

program. 

H~&'L1 d .... _V ree 
i::trld ('Uf;' I t i<:it"nts I):. } 

N· !JEI; 

Call smallestroot (p.a.ralae.c) 

P (t) ~ _-=-P..I...:( t:,L)_ 
(t-e)(t..a) 

N .... N-2 

Yea 

Calculate last root 

ProceduM 
has falled 

pet) .... ~ 

N ~ 8-1 

or pair of roots directly 

Flowchart 1 

Ma In Program 



upperlimit ~ 400 
limit +- 200 

a ~ 10-3 ;). ~ 0 

H(O,t) ~ pi (t) 

P: Polynomial (array of 
cae tric ien t8 ) 

G: output of 8 zero 
Self: Boolean variable which i~ 

true if amallestroot calls 
itself 

c: output variable which i8 true 
1t amalleetroot has been 
succes8ful. 

1 

Por 1 ... A, •••• " + 3 

B(1+1.t} ... €[H(i,t) -~. pet) I 

I. ecalar recurrence satisfied ~ ____ ~H~o~ __________ ~ ______ ~~ 
with reB1dual < a? \!:::) 

~..::.----
Yea 

Ie leaat aquaree satiafled~ ______ ~H~o __________ --M 
with ree1cSual < £1 

Iterate with 
t1(t,V) 

G .... rlnel Iterate 

iterate with 
"2 (t,W) 

o .... true it Iteration converged 

Plo.chart 2 - Procedure .... Ue.troot 
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__ ..... ----')----I1lL--1-~ Scale H(} •• t) ~ 

Yea 

No 

Pl(t) ~ P(t-I) 
call ... ll.atroot (PI.~.true.c) 

pet) ~ P(t+e) 
call ... ll •• troot (Pl.~.true,c) 

.a 

Plowchart 3 - Procedure ... ll •• troot (cont1nued) 
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