
CS 58

RECURS lYE FUNCTIONS OF REGULAR EXPRESS IONS
INLANGUAGE ANALYS IS

BY

VINCENT TIXIER

TECHN ICAlREPORT NO. 58
MARCH 20, 1967

COMPUTER SC I ENCE DEPARTMENT
School ofHumanities and Sciences

STANFORD UNIVERSITY

Reproduced by the
CLEARINGHOUse

101 F......, Scientific & Technical
Informetion Springfoeld V•. 22151

RECURSIVE FUNCTIONS OF RmUUR EXPRESSIONS

IN LANGUAGE ANALYSIS

bY'

Vincent Tixier

March 20, 1967

- .- . ----------_...__.- ..-'.

8LANK~PAGE
~ . .

ACKNCWLEOODoIENTS

My thanks go to Professors Friedman, Wirth, Arbib, Gries and

McKeeman for their efforts in reading this paper and for much

helpful advice during preparation of the manuscript. I am particularly

indebted to my main advisor, Professor Joyce Friedman, for giving her

time, science and humor unsparingly; steadily prodding me and exercising

patience beyond all normal expectations. I want also to thank

Professor Michael Arbib for his highly critical and constructive

reading of an earlier draft.

This work was made possible by a scholarship from the

Del~gation G~nerale l la Recherche Scientifique et Technique,

Comit6 Calculateurs; I am most grateful toward my two correrJpondents

to the Comite, Professo~s Carteron and Arsac, and also to

Professor P~legrin for their constant support and encourag~ment.

The typing and editing of this paper as a departmental report

was supported by an Air Force contract under the direction of

Professor Friedman.

I want to express my sincere appreciation to Mrs. Phyllis Winkler

for her outstanding typing.

I dedicate this work to my wife.

V. T.

iii

TABLE OF' CONTENTS .

Section

INTRODUCTION

1. '" NO'XATIONS AND CONVENTIONS'

~

1

8

~. !flRIlCS . 10

~. ~t11-'R EXPRESSlOOS. 12

.) Formal Definition and Interpretation 12
b) AXiom System for Regular Expressions 15
c) SRL Systelll8. Equational Characterization. 18
d) Main Property Z7
e) SimplifiCiitlons and Minimization 30

4.). ANALYSIS OF RmULAR SETS'

.) The General Problem of Analysis
b) Analysis of Regular Sets

(i) Top-down Analysis
(ii) Bottom-up Analysis

Am..ICATION TO PROORAMMIm IANGUAGES

.) Preliminaries
b) Regular Structures in Programming Langueges
c) RCF Langueges. Characterizations.
d) Relation to Other Classes of LanguegE: S

e) Negative Properti~s of RCF Languages
f) AXiomatic of Context-free Grammars
g) Cancellation, Regularity and Equality
h) Applications of RCF Langueges

36

36
41
41
43

47
47
47
49
63
70
78
80
88

EXTENSIONS OF R.QF IARJUAGES.

a) Direction of Extension, Syntax and Semantic6
b) Boolean Closurp of Re.:ursive Classes of

Languages

6.

c)
d)

e)
f)

g)

Conditiona1 Regul.ar Expressions
Foundations of the Algebra of Conditional

Regular Expressions
Recursive Functions of Regular Expressions
Use of Recursive Functions of Regular

Expressions
Hints Toward Further Research

iv

91
91

95
99

101
106

108
110

*APPaWIX 1: Axiom System and Rules of Inference for T ll}

APPENDIX 2: A Context-free Grammar for R 120

APPENDIX 3: Some Relations Derivable from <RE;R1,RZ> 121

APPENDIX 4: Euler System 128

APPENDIX 5: computation of n l}}

APPENDIX 6: Two Conjectures on the Boolean Closure of
Context-free Languages 1}7

REFERENCES

v

139

IHDEX OF IMPORTANT DEFINITIONS AND NOTATIONS

refinemant rule 10

regular expression 12

regular form system 49

rest 11

root 19

semantie 40

separability 49

SRL ~

standard-form 53

ambiguity 31
analysis 31
bottom-up analysis 40

cancellation rule 10

canonieal SRL system ~ 33

card 9
eonditional regular expression 101

dependency graph 9

equational characterization 19
first 11

left derivative 49

JDetavariable 8

null string 8

parse 37

pre-standard ~orm 58

RCF language 49

recursive function of
regular expressions 106

s-grallllll8.r
s-langusge

s-aachint·

s'-grallllllir

s'-machine

s'-2-~rallllll&r

terminal symbol

top-down analysis

vocabulary

weak eqUivalence

strong equivalence

structural tree

subsystem

100, 101

31
31

vi

*T , T , e

'"
I

>
>* , f
o
1- , 1=
lal
~,ef1

R

+ , "
BE

(Rl),(R2)
6(X)

*a.~, a-/3

~A

n(A,B)

8

erR}

*

63
63

63

54

61

58

8
40

8

100, 101

8

8

8

8

9

9

9

11

12

12

12

15
16

18

36

49

49

99
100

INTRODUCTION

We discuss first the origins of our work, then we describe its

organization in some detail; after that we try to make clear some of

the basic ideas which guided us; eventually we shall ,~ketch the

background of this paper. In this introduction we do r.ot give

referen~es since it will be elaborated ~pon in the rest of the paper.

Let us examine the origins of this study.

a) One of the central problem~ of syntax ana~sis is how to go from

a grammar to a recognizer, i.e., from a declarative definition of a

language to an analytic one, from extension to comp·ehension. W1Jen

the process can be precisely described, it is possible to specify it

to a computer and devise what is called a compiler compiler or meta­

compiler. The problem is complicated by the further requirement that

the analyzers generated by a meta-compiler be comparable in speed and

economy to those written by hand, using heuristics.

In this respect, the class of context-free gram~ars has appeared

to be an unsatisfactory meta linguistic tool because it is both too

wide and too narrow: wide enough to define extremely baroque sets, so

that its mathematical properties are complex and its handling inefficient;

too narrow to permit the expression of many important well-formedness

conditions in actual programming languages. Furthermore, the meta­

syntactical language it offers is somewhat poor; this being a matter

of convenience, rather than power.

Not waiting for the theory to catch up with the needs, programmers

have deve~oped a few highly successful compiler compilers from more or

1

less preciselY defined restrictions of context-free languages.

In the study of these, in particular at a seminar organized by
.,:
Dana Scott, we becUie convinced that Kleene I s regular expressions

played a significant role in that field, both because they were used

implicitlY and because some constructs causing difficulties could be

des~ribed by regular expressions.

At the same seminar we noticed how little is known about the

ele..ntary transformations of context-free grammars which leave a

language invariant. This is iltportant beca'<1se most p8l'sir Jg algorithms

can work only when the srammar has a given form or given properties.

Unfortunately, we have been able to show that no complete axiom system

for the equality of context-free grammars can be constructed. This came

as a serious blow to our initial hopes that the field of syntax could be

open to the axiomatic method, as the desire had been expressed by Cburch

in hia Introduction to Mathematical Logic (Section 08). But we may

after all remark that the situation is no more comfortable in the case

of arithmetic.

Note the following technicality: we often wanted to use substitution

of equals for equals without taking each time all sorts of precautions;

a basic decision was then to introduce a set union symbol, for which

the + of regular expressions was adopted rather than the of BNF,

and replace grammars by systems of equations where one equation

A = Ql+••• +an corresponds to the n rules of the grammar having A

on the left side: A -'Ql,···,A -+Qn This may seem a minor technicality,

but it forced us to revise a number of notions of syntax analysis.

2

One of the fastest and simplest analysis methods used by compiler.

compilers is the one character look ahead top-down scheme of Schorre I 8

Meta series; hardly any theoretical results were known about its scope

and power; it makes use of regular expressions, more or less explicitly,

with the result that its notation is very convenf.errt ,

A last observation we made was that symbOlS lor complementation

and intersection are ~uite convenient to describe regular sets for

circuit design and there is no theoretical reason why they could not

be used in defining artificial languages.

Let US now give a summary of our paper.

b) After specifying the notations and recalling the baSic notions

of the algebra of strings, we start in Section 3 with the study of

regular expressions using all the Boolean connectives. Continuing

Salomaa's and Aanderaa's work, we give an axiom system for these

p.xpressions and prove its completeness. This proof is centered around

systems of equations of precisely a form we are interested in; its

by-products are a simple theorem on the equality of regular expressions

and new constructive proofs of some old theorems on finite state automata.

In Section 4 we study the analysis problem, in particular for

regular sets and we show that the difficulties encountered in applying

certain analysis methods correspond to a known automaton-theoretic

notion.

Considering now the most natural method for analyzing redUlar sets,

i.e., by finite state functions, we ask (Section 5) whether they can be

used recursively to analyze without backtracking some ~ontext-free

3

languag~s. We note that a generalization of Algol 60, EUler, is in the

scope of this extremely fast method as far as its context-free syntax is

concerned. We define the notion of separability of two sets of strings

and, by app~ng it together with the tools developed in Section ~, we

formalize this approach to syntax analysis and define a class of

rJntext-free languages Which we call regular context-free (ReF). We

give alternate characterizations of this class, one of which is automaton-

theoretic, and we relate them to other recently defined classes, the

s-languages and the languages defined by fr.r grammars. We study some of the

usual unsolvability and closure questions and some unusual cancellation

properties linked with the notion of separability. In pa.ticular, we

examine a semi-decision procedu~e by which we can show that no complete
I,

axiom system for the equality of contp.xt-free grammars can exist.

Examining in Section 6 how this model fits programming languages,

we conclude that it is necessary to extend it in a direction going

outside the class of context-free languages. We briefly study the

problems linked to the introduction of symbols for intersection and

complementation in the metasyntactical language; then we introduce

conditional r"ular expressions and lay axiomatic foundations for their

algebra; we sutmit that to use recursive functions of regular expressions,

just as recursive regular expressions are used in ReF languages, will

essentially be to do in a formal and well understood fashion what is

~lready done more or less formally in varioue ways, in particular when

people confuse syntax and semantics. We conclude by remarking that the

scope of sJOtactical analysis is presently underestimated and by

indicating some avenues for further studies.

4

In the appendices, we have put some material which we felt was not

in the main stream of our development, although a large proportion of it

is new.

c) Permeating our work are some basic attitudes toward programming

theory and practice. Let us try to ma~e them clear in order to open

them more readily to discussion.

i) We would rather nowadays see a programming language defined by

its recognizer written in Algol 60 or Lisp than by metasyntactical

constructs from Which nobody knows how to get a recognizer; if the

metasyntactic~l language is furthermore unreadable, the whole exercise

makes little sense to us. In other words we think that the justifications

for metasyntactical descriptions are not just rigour and formality,

but, as important, readability and tranSlatability into a recognition

algorithm. In fact, we want to see a metasyntactical description as

specifying both the syntax and the recognizer,.i.e., the component

sets of strings and the relations between their characteristic functions;

so that the declarative definition of the language is analytic at th~

same time.

This idea is as old as metasyntactical defi~j.tion, but the early

~ifficultles with the use of unrestricted context-free grammars have

made it fall largely into oblivion.

Ii) A computer being universal, automaton-theoretic characterizations

of sets of strings are to be understood as measures of their computational

complexity and not as programming strategies. This has always been

5

clear to most theore~icians; &ome programmers have been misled and it has

cost them a high price in loss of efficiency, chiefly when non-deterministic

aut~~ta and backtracking algorithms were involved.

i1i) The basic language and notations are a very essential part in

a research field. But naturally it is very hard to choose them because

a priori we d~ not know where we shall go, gropingly, building and

testing models with them; we must have recourse to our intuition of the

nature of tbe' field. This paramount role cf notations and language is

most apparent when one thinks about those many famous combinatorial

problems, sometimes quite puzzling, which have appeared as solvable by

trivial computations when expressed in graph theory. Our intuition is

that the terminology of computational linguistics should adopt a number

of well-established graph theoretical notions, that the notion of

derivative of a set of stri.ngs with respect to a set of strings provi.des

a natural link between computational linguistics and automata theory and

should likely be made central to the former, that conditional forms are

a natural tool of computer science and should be used systematically

in this discipline.

d) The background of our work is naturally that part of computer

science which deals with the more theoretical aspects of programming

and in particular of compilation. We make use of the basic terminology

and notions of such closely jnterrelated disciplines as computational

linguistics, automata theory, recursive function theory and symbolic

logic; as we have seen, a large part of this paper is relevant to the

theories of regular sets of strings (or regular events) and of context-

6

,~

free languages. We also use some very elementary terminology of graph

theory and Algol 60.

Last, we may emphasize that this is not merely a theoretical paper

but that constant attention is paid to the practical aspects of

implementation, as can be expected from a work in computer science.

7

T

*T

SECTION 1

HO'rATIONS AND CONVENTIONS

The alphabet or vocabulary. A finite set of symbols called

terminal symbols or letters~ ~~noted by a,b, ••• ,a1,bl, ••••

The free monoid with cancellation generated by T. The

non-commutative operation called concatenation is denoted

*by juxtaposition. The elements of T , denoted by

a,~, ... ,al'~l'••• ' are finite stringS of letters; the unit,

called~ string is denoted by ~.

8 *, the set of all subset~ of T Its elements are

=

denoted by A,B,••• ,Al,El, ••• ; the empty set is denoted by ¢.
*9 is a Boolean ring with unit T and zero ~.

The equality sign will be considered as part of the syntax

language and substitution will not be mentioned as a rule of

inference. In subalgebras of e we will consider

s systems S of equations, always of the form Xi

i = l, ••• ,n I where Xi is a variable.

f. (Xl" •• IX)
~ n

Is = (Xiii = l"",n} I set of variables of S, called also

metavariable s or intermediate sYl'lbols (I when S is

understood). The following relati?Ds are Cefined in Is

if X
j

appears in f i (Read: "depends directly on");

8

card

for the transitive closure of > (Read: "depends

on"), >* is a relation of order;

• Xi >* X
j

and Xj >It Xi (Read: "depends

recursively on"), f is an equivalence relation.

The dependencY graph of S is the finite directed

graph <Is; > > , where the arc (xi,Xj) is oriented

from Xi to Xj if Xi > X
j • S can be represented

as e labeled graph, Gs' obtained by labeling each

arc (Xi,X j) of <Is; > > by f i• We shall speak

of S as of Gs' without making the distinction.

We shall use the basic terminology of graph theory

as defined in Berge [1958/1962).

Set of positive integers and zero.

car~~) where X is a set, denotes its cardinality.

if••• then••• else ••• We shall freely make use of conditional expressions

formed with this ternary operator. For a formal

introduction see McCarthy (l96~].

The words "set" and "language" will be used

indifferently for sets of strings.

1-

1=

"It is provable (in some understood logical system)

that".

"It is true (in some understood interpretation) that".

9

(i)

(11)

SECTION :2

STRIM3S

*The properties of T are well-known; an axiomatic definition:

closely resembling Peano's axiom system for integers is given in

Appendix 1.

Two impc..rtant r~lations are

the refinement rule: 013 .. r6 • (]~)[~ = ., V ~ = Ii]

the left cancellation rule: alii = ar ~ !3 = r •

In what follows we shall always assume that strings are un:;'quely

readable, because we do not want any "coding problem" at this level and

because we are interested in models of situations where this is the case.

In the Linear Lisp fashion (McCarthy [1960]) two unary operations

*are defined in T

first(a) yielding the first lettrr of a from left to right,

first(>.) is undefined.

rest(a) yielding what ~~mains of a when first(a) has been

deleted. rest(>.) is undefined. rest(a) ~.

A more formal definition is given in Appendix 1.

first and rest are extended to sets of strings:

first(A)

rest(A)

lairEA A first(r) = a}

[a\rEA A rester) = aJ

The length of a string a, denoted by \al, is defined by:

la\ = if a = >. then 0 else I + \rest(a) I

10

The reverse of a string 0, denoted ~, is defined by:

OR _ if 0 = A then A else (re~t(a»Rfirst(a)

The n-fold concatenation of a string with itself, denoted aP ,

is defined by:

or - if n - 0 then A else aP-la.

As shown in Appendix 1:

Note that, as proved by McCarthy (unpublished), any computable

function on strings is representable by a system of recursive functions

of conditional expressions formed with the two operators first and rest.

(The proof' is by showing the equivalence to the Turing machine formalism.

A notational difference is that the equality does not belong to the

syntax but corresponds to a predicate eq[a,~).)

11

SECTION 3

RmULAR EXPRESSIONS

a) !2!!!l Definition and Interpretation

The set R of regular expressions is defined as follows (Kleene

[1951]):

Any symbol denoting an element of T is in It.

(ii) if P € Q and Q e R then

(p) € It, P + Q e R, p. Q € R

P&Q€R

pI € R

*P € ~

(iii) Extremal clause: P € R only if P can be formed by a finite

number of applications of rules (i) and (ii).

~ is context-free (Appendix 2), thus recursive.

The dot in p. Q is customarily omitted.

To interpret regular expressions, the structure of the Boolean

ring 8 is enriched as follows:

(1) a monoid structure is introduced by

P • Q." f~l:a £ p) " (13 £ Q))

12

Note that

P • f~] :{~] • P = P

P (J=¢·P=!fJ

P • (Q • R) :; (p • Q) • R

but we do not have cancellatioD or refinement.

This operation is called concatenation or generalized product. We

define fl by

pn : if n = 0 then ~~] n-1else p. P .

(2) To a set P € e we associate the free monoid generated by

its elements:

* (0 1 n)P = lim PUP U... U p
n-- III

*Note that this notation is coherent with the definition of T

from T in Section 1.

This operation is called !i!t or closure and sometimes denoted

cl(P). It can be defined externally by

*P : n (X\(~ E X) " (p • X ~ X»
XEe

Regular ~xpressions are interpreted recursively as sets of strings

called regular sets, according to the following mapping:

value: R -- 9

such that

Regular expression R value(R)

IJ the empty set

A rA}

a,b, ••• ra1,Ib', •••

(p) value(P)

P+~ value(P) U value(Q)

P'~ value(P) n value(Q)

pI complement(value(P»

PQ value(P) • value(Q)

* *P (value(P»

Conflicts of interpretation are resolved by evaluating +,'
and * in that order of increasing priority, parentheses being used

as usual.

Regular expressions denoting a unit set are usually called by the

name of the element of that set.

When the symbols • and

regular expressions.

are not used, we talk of restricted

Equality: PER , Q E a

P = Q • va1ue(P) = va1ue(Q)

The problem of recognizing the equality of regular expressions was

first solved in Friedman [1957], and Moore [1956]. To devise in~ightful

and computationally efficient algorithms for this recognition is one of

the main topics of the theory of regular sets (see McIfaugto:1 [1965]).

It is not an academic problem:

14

Regular sets are those sets of strings which can be recQgnized

without memory, or, equivalently, with a bounded amount of memory, i.e.,

by a finite state automaton (Kleene [1951]). Using tbe black box approach

and the definition of states by the Nerode equivalence relation, a simple

argument (Moore [1956]) shows that any SOlution to the equality problp.m

yields a solution to the practically important minimization problem.

A number of important constructs in high-level programming languages

correspond to regular sets, we will discuss this in detail in Section 5.

b) ~ System .f£!. Regular Expressions

Axiom systems have been constructed for restricted regular expressions

by Aanderaa [1965] and Salomaa [1966].

We submit the system of schemata RE, for unrestricted regular

expressions, and 2 rules of inference.

RE.

(bl)

(b3)

~b5)

(b7)

1- A + B =- B + A

I-A + B &C = (A+B) & (A+c)

\- A + ¢ = A

*1- AI- A' = (T)

(b2)

(b4)

(b6)

(b8)

1- A It B = B It A

1- A It (B+C) = A Be B + A It C

1- A It (T)* = A

1- A & A' = ¢

(gl) \- A(BC) = (AB)C

(g2) 1- A.,.. = A

(g~) 1- A~ = ¢

(61) 1- A
... *e, >.+AA

(E'::) 1- A
jI. *= (MA)

15

(11) \-A(E6C) = AB &AC

(ia) 1- (:aa.c)A a BA • CA

(i}) \- ~ • xA = ~

Rules of inference:

(RI) \- ~ • B a; 1- A = BA + C

*1- A = B C

1- X f Y

1- xA &: yB = ~
"

Remarks: (i) Rules (bl) to (b8) define a Boolean algebra; in effect they

a~e the Whitehead system as modified by Huntington (Section 1 in

Huntington [1904]). For a discussion of it and others see Rudeanu [1963].

We shall not specify the derivation of usual Boolean relations, the

derivations of associativity of + and • and of a few useful relations

are given in Appendix 3.

(ii) The notation adopted is ~learly redundant: as proved in Appendix 3

'*~ = ¢ , A &: B = (A' + B')' ; we are not interested in minimality.

(iii) None of these rules refers specifically to regular sets, except

the non-written ones: the "zero axioms" which are the formal definition

of regular expressions. The RE systen. specifies the operators +, &,

and * in e; note that when defining them in a), we did not

suppose that they were applied to regular sets. We can free~ use these

rules to transform systp.ms of equations in e into other systems having

the same solution and of a more desirable form.

16

(iv) At least one rule of inference is needed besides substitution of

equals for equa13 which we consider here as a syntactic rule (Redko (1964]).

Note that (Rl) corresponds to the external definition of star.

(v) (Rl) contains a right-recursive rule; the system obtained with 8

left·recursive one and corresponding modifications in rules (R2), (g2),

(g3), (al), and (1) is equivalent. We shall use right r~cursion because

it corresponds to left.to-right string synthesis. The reSUlts and proofs

can be reformulated in terms of left-recursion.

(vi) It is interesting to compare RE to the set of formUlas in McNaughton

and Yamada [1960], Ghiron [1962] and the axiom systems in Aanderaa [1965]

and Salomaa [1966]. All are interested in restricted regular expressions.

McNaughton and Yamada have all of Salomaa' s rules except the ones Which

deal with *, although they could derive (s2); they do not have the

rule of inference (Rl) and the Boolean relation A + A = A cannot be

obtained from what they have. Ghiron introduces rules for *, including

R1, which had been introduced independently by Arden [19611; (sl) and

(s2) are derivable from his rules. Aanderaa and Salomaa's works are

not qui.te independent and both contain complete systems. Salomaa gives

tvo systems, Fland F2; F2 corresponds to a different lIpproach;

F1 is essentially the same as Aanderaa's, but simplified; the rules of

inference are Rl and a rule of substitution of equals for equals; the

Boolean algebra part is restricted to 4 rules necessary to define +.

The intrOduction of • and essentially forces a complete bet of

Boolean relations, rule (i,) and rule of inference (R2).

17

An earlier paper by Salomaa is discussed in Aanderaa's paper.

It contained what waE proved by Aanderaa to be a complete system.

Theorem ,.1: The axiom system RE with rules of inference RI and R2

is sound with respect to the given interpretation.

All axioms are valid and Rl and R2 preserve validity. I

We nov want to prove the completeness of the system. The proof will

follow the lines of Salomaa's proof; its by-products will be as important

and useful as the final result itself. First we consider a particular

type of system of equations in the Kleene algebra

<8;+,','J·,*;REJR1,R2> •

c) SRL Systems. Equational Characterization.

Definition ,.2: 6(X) - ~ &X •

Note that since value(~ &: X) = {q n value(X) ,

6(X) if ~ £ value(X) then ~ else ¢.

Definition '.3: (i) An equation is standard right~ (SRL)

when it is of the form A '"LxAx + 6(X). Where the A 's are
y.tT x

variables.

(ii) A system of equations is SRL when all of its equations are

3RL and it has one equation per variable.

Note that in ~ xAx J all the x 's in T do occur. (Compare
~

18

L(F4) in Chomsky and Miller [1958]). Naturally some Ax's can be

equal to ¢.

Note also that in an SRL equation 6(X) stands for the value of

6(X), h or ~, and not for the function 6(X). (See example

further.)

Definition 3.4: (i) The root Al of a system is a distinguished

variable.

(ii) To~ a system is to express Al as an expression in the

algebra of its cQeffic~ents and constant terms, such that the equations

are satisfied.

Definition 3.5: A regular expression R is equationally characterized

when there is an SEL system which has a solution equal to R.

Note that the graph of an SRL system can be considered as the

transition graph of a deterministic fin~te state automaton and

conversely. (These graphs are introduced and studied in McNaughton

and Yamada [1960) and Brzozowski and McCluskey [1963]).

Example: Let T ~ {O,l}. Consider the regular set R of all

strings in T which contain two consecutive 0 'a and are not terminated

by a 1:

* * *R = (T OCT) & (T 1)'

It can be proved, using techniques we are going to develop in this

paragraph, that R = Al where Al is definc1 by the fOllowing SRL

system corresponding to the following graph:

19

1

Al '" 0A2 + lAl

A2 = OA, + lAl

A, '" ~ + lA4 + },.

A4 '"~ + lA4

1

Here we have as usual labelled the arrows a or 1 rather than

by the full function 0A2 + lAl for instance.

The following lemma is due to Salomaa (Lemma 2, page 161) and is

proved by induction, using (Rl):

i=l, ... ,n and

n
LFi Bj + R.
j~: J ~

i = l, ••• ,n Ri j some regular

expression

where 6(Ri j) '" ~ for all (i,j) then

\- A. = B.
~ ~

i = 1, ... ,0

Lemma 3.7: Any SRL system has a uniq,ue solution.

Proof: Any SRL system has a solution: when an equation is not r-scuz-s Lve

one can substitute for the variables the quantities which define them;

20

when an equation is recursive, rule (i3) proves that rule (Rl) can be

applied. Note that the result will be a restricted regular expression.

The solution is unique: Let us reduce the general case to a form

where Lemma 3.6 can be applied. We have a s~:stem of n equations

i 1, ••. ,n

In L xAi x we can group the terms corresponding to a given A
jx€T

into a term where Aj is factored out: Pi~j (rule (il), modified by

de Morgan's law into a rule A(B+C) .. AB+AC .); if in the sum of PilJr
terms which we obtain, a variable A of the system does not occur,

p

(in Appendix 3 we show how by (~~), (b5), andwe ~an add a term ¢A
p

(R2) ¢A .. ~, by (b5) A+0 .. A).p

We nr v have a system of the fOnT:

i l, ••• ,n

and 6(P i j)" ¢ by (i3) or the Boolean rule ~&¢ .. ~. By Lemma 3.6

the solution is unique.

This proves the lemma. Note that furthermore we can assert that

if two systems have exactly the same form but the variables having

different na~~s, then not onLy are the roots equal, but also all the

variables are equal two by two. I

This lemma is a direct proof in the particular case of SRL systems

of a lattice-theoretical fixpoint theorem of Tarski, which can be

applied to context-free grammu.. as shown by Ginsburg and Rice [1962)

(a simpler but similar proof for context-free grammars is given in

21

Letichevskii (1965). The constructive proof we can give in this simple

case is not a particular case of t~eir proof.

Corollary ,.8: (Cancellation of strings)

\- etA = CXB .. 1- A = B

The proof is by induction on the length of a J since as we have

seen at the end of the proof of Lellllla '.7,

1- xA = xB • 1- A = B

!:!!!!!!! '.9: Every regular expression is equationally characterized.
•

This is Salomaa' s LeDllla 4, but regular expressions are unrestricted

here. Let us briefly recall his proof and complete it for the & and

operators.

The proof follow~ the recursive definition of regular expressions.

(i) I- ¢' = N where N = r xN by Lemma '.7, (g3) and (b5).
x€T

1- ",. B where B = r xN + A.
x€T

N = r xN
x€T

(the above, (b5».

22

1- 8 = A wh\!re A = 1: xN + aB
x€T
#a

B= LxN+A
x€T

(the above, (b5»

(11) Suppose A and B are equationally characterized by SRt

systems SA and SB' i.e.,

\-B=I\ where Bj=I:XB'x+6(Bj)
x£T J

i = 1, ••• ,n •

j = 1, ••• ,m •

*Let us prove that A+B, A&B, A' r AB and A are equationally

characterized.

(a) A+B is equationally characterized.

Let the system

k = 1, ••• ,n

I '" 1, ••• ,m

be obtained as follows:

«11) modified by de Morgan's law, plus Boolean relations.)

Set D
11"

Al + Bl and generally D1d = Ak .. BI (or think of Dkl

a. representing the symbol "Ak .. Bi"); we have here

1- A .. B .. D11

where

since

We may have here a number of Di j different from D1l; repeat

the procesa with them as was done for D11 untn no new Di j appears.

Note that the method is well adapted to computer implementation,

using an III by n array to keep track of the appearance of new Dkl 'so

(b) A &. B is equationally characterized.

The proof is quite similar to the one for A .. B ,

Al &. Bl == r xA
lx

&. yBly + 1: xAlx &: a(Bl) ..
x€T XET
yET

,

r a(Al) & xB
lx

+ a(A1) &. 6(Bl)
x€T

(by Boolean properties.)

By (R2), (u), (i~) and some Boolean properties:

Al &. B1 == ~X(Alx. B
lx

) .. &(Al &. Bl)
x~

24

The proof terminates as for A+B.

Note a simplification: if Ai or Bj = N = ~, 0ij = N , it is

not necessary to develop spurious equations having ¢ as solution.

(c) A' is equa+.ionall¥ characterized.

Consider the :;ys~em Di ee 1: xD
ix

+ 6(ili) i = i, ... ,n obtained
xeT

from SA by replacing Ai by Di throughout and replacing &(Ai)

by ¢ if II(A.) '" ~ and by A. if II(A.) = e . This system SD has
1 1

a solution D '" Dl •

We form A+D and ABeD as just described.

ABeD is equationally characterized by an SRL system in Which no

equation contains A. as its last term; A+D by an SRL system where

all equations do contuin A..

¢ is clearly a solution of the system characterizing ABeD and

*T a solution of the system characterizing A+D.

By Lemma '.7 these solutions are unique.

Thus 1- A' = D , pince it is provable that in a Boolean algebra

the inverse is unique (see Appendix ,).

Note that \- (A) I - Di - i' i = l, ••• ,n
.. ,.

Constructs quite similar to the one for A' can be found in

Chomsky and Miller [1958) and for A&B and A' in McNaughton and

Yamada [1960]; these constructs are developed on the correspondins

labeled graphs.

25

(d) AD 18 equationally characterized.

We proceed in the same way by proyj.ng that

where

1- AB '" D1<1,0, ••• ,0>

D~k '" ABj + E A
01 ./ p€k P

j = 1, ••• ,n

and Where D
1
<l 0 0> is the solution of an SRL system.

, , ••• J

Let us form A1Bl to show that D is the solut ion1<1,0, ••• ,0>

of an SRL system:

Tvo cases:
..

if &(Al) = ~ we see that &(A1B1) = ¢ (definition of 6 and

(i3» and

1) = 1: xD + ~ (D)1<1,0, ••. ,0> xET 1x<l,O, ••• ,o> 1<1,0, ••• ,0>

D1<1,0, ••• ,0>
1: xD . + 6(D)

T 1x<l,O, ••• ,lx, ••• ,o> 1<1,0, .•• ~~
X€

where 6(D'<1 0 0» = 6(Bl) , hereby•
.1 I , ••• I

As for. A+B and A&B we can keep generating Dj k 's until no

new term appears.

In machine implementation it is convenient to represent the

subscript k by a binary number between 0 and ~-l.

*(e) A is equationally characterized.

*DO = A by convention.

By (s2) or (b5) and (sl)

and

Let k be defined as above. *1- A '" D. 0 where

1- D ~ r xD + 6(D)o T <O,•.• ,lx,O, .•• ,O> 0
XE

since by (sl), (i3), and the Boolean relation h~ = ~

And we can proceed forming Dk terms until no new term is

necessary. •

Corollary 3.10: Any unrestricted regular expression is equal to a

restricted one.

Proof: We have seen in the proof of Lemma 3.7 that an SRL system call

always be solved and that the solution is then expressed by a restricted

regular expression.

d) M!!.E. Property •
•

Let E be the class of SRL systems, what we have done in the

proof of Lemma ;.9 is to associate to each regular expression an

element of t, to each operation in R a corresponding operation

in E ; let us denote these operations in E by +, & , I and *

as are denoted the operations in R they correspond to. Let us define

equality in t by:

Definition 3.11: SA SB if and only if A '" B •

With these conventions, if ql is the mapI,ing of R into I:

we have defined, then the two following diagram~ commute:

where 0 stands for

or *

, I , + , & , or • and ~ stands for

Let the symbol .. der.·t,; it. I: the identity of SRL systems up

to renaming of variables.

The interest of I: as a representation of regular sets stems

from the following exceptional property:

Hypothesis:

By 3.11:

SA is Ai = Ex}.. + 6(A.)
x€T 1.X 1.

SB is Bj = r xBj x + 6(B j)
x€T

i= l, .•. ,n

j L, ... ,m •

1= A = B1 1

28

Furthermore, it is not possible that A
lx

I ¢ while B
lx

= ¢ since

* *1= Al = Bl • 1= Al &: xT = B1 &: xT • We see that if Dk! = Ak + Bl

and Cpq = A
p

&: B
q

, the two systems with roots Dl l and ell are going

to develop in parallel, each equa~ion having the same 6 term and all

variables with equal subscripts corresponding two by two:

1= Al = Bl • \= D:i.l = Cn • 1= Dk 1 = Ck 1 ~ 1= Ak = Bl for all

Dk1 and Ck1 connected to Dl l and ell'

(ii) 1- SA + SB '" SA &: SB • 1= SA = SB since obviously

1- SA + SB :; SA &: SB '" 1- SA + BB = S" &: SB •

1- A + B = A &: B .. I= A = B • 1= SA = SB
I

As a corollary we get our end result concerning the completeness

of the axiom system:

Corollary, .13 : The axiom system RE with rules of inference Rl

and R2 is complete.

We have

1- A = B

Theorem ,.12 calls for some remarks.

•
(i) The proof is essentially the proof of Theorem 2 in Salomaa's

29

I

paper. In a aenae SalOllllLa makes a hidden use of •• This becomes

particularly clear a. we compare his proof to the proof of the equational

characterization for + and ••

(ii) The proof is constructive and yields an algorithm to decide the

equality of relUlU' exprel>Slons. This algorithm is fast and economical

and well adapted to the computer handling of large expressions on large

alphabets.

(11i) In an actual verification of SA + SB == SA. SB it is not

necessary to actually form SA + SB and SA. SB ' it is sufficient

to take all pairs of variables Ai and B
j

which would appear in

these, starting with Al and B1 and verify that 6(Ai) = 6(B
j

)

and, although it is not necessary, that we do not have Ai = ¢ and

B
j

, ~)/

Hext we want to study the SRL systems in more detail, apply

Theorem '.12 to the minimization of finite state automata, consider

the recognition of regular sets and see how all this can be applied

to context-free languages and hi~~J-.ievel programming languages.

e) Simplifications~ Minimization

Let us now recall the graph we have associated in Section 1 to

systems of equations such as in particular SRL systems:

lIEssentially the same algorithm has been independently studied by
A. Ginzburg; his findings were presented at the September 1966
Asilomar conference OIl the algebraic theory of machines, languages
and sem!groups.

Definition 3.14: The substystem SA ass~ciateo with the variable Ai
i

in a system SA is the system of equations associated ~ith the

subgraph of root Ai.

Given an SRL system, a few simplifications (reduction of the number

of variables) can often be easily p~~formed:

(i) connection: A variable not connected to the root may have its

equation discarded.

(ii) =-redundancy: If there are 2 variables Ai and A
j

such that

SA. =SA. ' one can be eliminated. This is frequent and not alWays
1 J

obvtoua,

(iii) ¢ -redundancy: An SRL system SA where there is no variabl~ Ai

such that 6(A.) ~ ~ has ¢ for solution. Let us call it a closed
1

system. All closed subsystems can be eliminated, replaced by

N ~ r xN and their va..'iables are to be replaced by N.
x~T

(iv) T -redundancy: In quite a similar way it is always possible to

*simplifY redundant representations of Tl, Tl ~ T , which are not

;: -redundant; precisely, they correspond to subsystems where all the

variables Ai are such that 6(Ai):;; ~ and where the coefficients

of N = ¢ are the same in all the equations.

Example: T:;; {a,b,c}

31

Al • aA2 +~ + eN + ~

A2 • aA2 + 'hAl + eN + x

", '" aAl + bA, + eN + ~

N-aR+bH+cH

simplifies into

u

*A -A -A-=T1 - 2 , 1

Whenever one of these simplification rules is applied it may

trigger the applicability of any of the four. They are well adapted to

a fast machine implementation. However it is not difficult to find

examples of SRL systelllS where two variables are equal and which cannot

be simplified with these four simple rules.

It is a classical result of automata theory that among all finite

state automata which accept the same regular set, there is",one and only

one up to isomorphism which has a minimum number of states (Moore [19561,

Theorems 4 and ;) and thus can be taken a8 a canonical representation

of this set.

We are going to prove this result directly in our formalism and

give an algorithm to obtain this canonical representation.

The idea is that when SA = S:s ' if we form Se = SA & S:s as

in Lellllll& '.9, Be has necessarily no more variables than the smallest

of SA and SB. Thus the closure of this operatiro amOng all SRL

systems equal to SA is bound to yield a minimal one.

Consider two distinct SRL systems SA and SB such that SA = Sa

suppose that they are connected, that SA has n variables and Sa

has m variables.

Form

Consider the process by which, starting with Cl l = Al & Bl = Al = al '

the variables in Sc are formed.

Clearly Sc cannot have more than (if n ~ m then n elee m

variables, and will have less if there are two Ci j with equal first

or second subscript, since (Vk)[C
i J

= Ckj] and (Vk)[C
i J

= Cik] •

We see also that if n = m then Sc has n variables if and

only if SA =SB •

We have proven:

Theorem '.15: Given a regular set A there is one and roly roe SRL

system §.&. which has A as its solution and which baa a minimum

number of variables. This canoni::al system is tbe only system SA in

which no two variables are equal.

This yields an algorithm to obtain ~

Given a regular expression A we have shown how to get an SRL

system SA and seen how to simplify it in some cases. We have also an

algoritblll to check the equality of two SRL systems.

We now can take all pairs of subsystems in SA and check them

two by two for equality.

The algoritbm can be speeded up in two ways:

(i) When an equality is recognized, simplification should be done and

we should check for the four elementary simplifications. This may seem

to slow the algorithm since we must then start all over again, but in

fact dra.tic simplifications usuallY occur.

(11) Given SA and lA' consider lA/I, the quotient of IA by the

equivalence relation I which we have defined in Section 1.

~ '.16: The graph <rill;> > has one and only one basis.

Proof:

one: Any finite graph is inductive, any bductive graph has a basis.

Thus, there is no circuit in <rAil;> >. Clearly a graph can

have more tban one basis only if it contains a circuit.

In fact, <lA/I;> > exbibits tbe upper lattice property. I

We start by putting the subsystems of the basis in canonical form.

Then we eliminate any ;: -redundancy, move up one step and put in

canonical form tbe subsystems corresponding to equivalence classes

which have only for descendant classes of the basis, etc••••

This algorithm, without the last strategy, has been implemented in

B5500 Algol. It is well adapted to computer handling of regular

expressions on a large alphabet. The last refinement may in general be

questiono:.ole 'because of its computational complication, but it should

'be a good strategy for dealing with very large systems separable into

many sme.ller .3ubsystem.s.

35

SEC'l'ION 4

ANALYSIS OF RmULAR SETS

a) !!!! General Problem E! Analysis

Let us describe the problem of analysis briefly and rigorously,

since we are now often going to refer to it.

A production system is a generative algorithm defining a set A

of strings in extension.

It is defined by a finite set T of terminal symbols, by a finite

set I of variables, among which is the symbol A designating !,

* *and by a finite set of pairs from (T + r) x (T + I) , called production

rules, and which must be interpreted as rules permitting us to write

in any string the second element of the pair in place of an occurrence of

the first element.

In particular, in a context-free grammar GA the production rules

* *are frl'llll I x (T + r) and are written X ex, ex ~ (T + r) • Clearly

we can associate to GA a system SA of equations of the form

Xi = fi(Xl,···,Xn), i = l, ••• ,n , with A = Xl where for any i,

fi(Xl, ••• ,Xn) is. form in the algebra of 8 with the operators +

and • , i.e., a restricted regular form without any *
*Consider the following relation: ex - ~ with ex,~ ~ (T + I)

it means that ~ is directly derivable from ex by application to ex

*of one production rule in GA' The closure - of ~ is obviously

a relation of order (derivability), thus ~ defines an infinite

*directed graph «T + I) ;- >. An interesting sUbgraph of this

~6

graph is the one which contains A and all the paths starting at A

(graph of all strings derivable from A). We can label each arc

(a,~) in those graphs with the name of the production rule by which

a ~ ~ , with some conventional notation for specifying where in a

the rule is applied in case there may be ambiguity. (See example.)

Naturally, the set of strings or context-free language ! is

* *the set (ala e T "A. a) •

To analyze a string a is to find all the parses of a, that is

*all the paths in «T + I) ;- > joining A to a, each one defining

a derivation from A to a by GA. In a derivation of a certain

phases may lead to some disjoint parts of a and usually such phases

are then considered to be independent. Two derivations which differ

only by the order of independent phases are equivalent; a convenient

representation of an equivalence class of derivations of a is a tree,

the well-known structural tree of a, in which independent phases are

shown as developing as independent branches; another often used

representation is by one of the elements of the class, a path called

canonical parse which corresponds to a rule of selection in

*«T + I) ;- > .

If more than one structural tree or canonical parse can be associated

to a string a, a is said ambiguous. A context-free language is

ambiguous when some of its strings are; this notion is relative to the

grammar. A context-free language 1s inherently ambiguous when it is

ambiguous for all its context-free grammars; this notion is relative

to the class of context-free grammars.

Example: T = {i, [,]} I = (A,B) •

37

GA containa five producticm ru1es:

1. A i

2. A [A]

,. A AA

4. A B

5. B iii

SA containa two equations: A .. i + [A] + AA + B

B = iii

*Let ua drav a part of «T + I) ;0$ > •

1]A~] [A] --=-_..][i)

i

A~ • [AI ~

~M
B

~i1i
There are 16 paths from A to [iii] , they correspond to the two

following equivalence classes (represented by their structural trees):

A A

/l~ /l~

£/\ 1 [A]

rI'.
A A

A A

1\ !1 1\ A A ii A A

1 11 ~
i i i i

[iii] is ambiguous.

We see that to analyze a string a is to solve constructively

a combinatorial problem and thus to extract some information from a.

This information is used for instance to direct a computer (interpreter)~

to generate some code (compiler), sometimes even to alter a at the

same time it is analyzed (macro generation). These actions can be

specified by factorization into elementary steps each of Which is

associated to one production rule, so that to a given path corresponds

a succession of elementary steps driven by the analyzer (see for instance~

Wirth and Weber [19(5)). This association of analysis and action i8

mathematically a valuation; in Riguet [1962] it is shown bow it corresponds

to the algebraic notion of diagram defined on a directed graph with

value in II category.

~t us only observe here that the notion of equivalence of two

derivations and the notion of ambiguity of a string are both dependent

upon valuation. For inBtance~ the equivalence of two derivations has

no operational value when valuation alters the stril1t;s as they are

39

analyzed; for instance also, the ambiguity of a string is unimportant

if analysis is merely intended to decide whether the string belongs to

the set A or not, or, more important, if analysis bypasses the ambiguity

because of' some systematic convention. We shall give an example of the

latter in Section 5d.

The value of a string is often called its semantic; the valuation

mapping together with the class of values of all strings in a language

being then c,:)nsidered as a model of the language.

Basically, there are two ways of analyzing a string 0:; we may

start from A and try to reach 0:, following the arrows, or start

from 0: and try to reach A , going against the direction of the

arrows. The first method is called top-down ~nalysis, the second one

bottom-up. Although it is never done, there is no theoretical reason

for not devising analyzers using a mixture of both.

If we have described the problem of analySis in general terms,

it is because we believe that it is more general than the problem

of compiling or interpreting programming languages. We will cane back

to this in Section 6g. Let us recall the following points we have

made: there is a difference between analysis and valuation; the structural

tree of a string 0: is not an inherent property of a, it describes a

successful analysis, showing the relations and subordinations of the

different phases.

40

b) Analysis 2f Regular~

(i) Top down analysis.

In the case of regular sets there are various ways to show that top-

down analysis of the strings of a ~'egular set is simply done by building

a corresponding finite state automaton and feeding strings into it (see

for instance, Brzozowski [19(4). The automaton can always be made

deterministic (Rabin and Scott [1959), Theorem 11) and analysis proceeds

from left to right in a time proportional to the number of symbols read.

In our formalism: Let T = {xjlJ = l, ••• ,r} •
r

Let SA be an SRL system, Ai '" r xli j + 6(Ai) i '" 1, ••• ,n •
j"'l

We associate to each Ai a predicate Ini, such as

Ini(a) = [a E Ail, as follows:

Ini(a) = if a = A then 6(Ai) = ~ else Nexti(first(a),rest(a»

Nexti(x,~) = if x = Xl then Inil(~) else •••

••• if x'" x 1 then In i 1(~) else In i (~)r- r- r

Since In i may appear for instance as some Ini j in Next. ,
1.

these predicates appear as recursive. However it is clear that this

recursion is computationally equivalent to an iteration: in the

implementation of procedures corresponding to these predicates it is

not necessary to use a pushdown store because control will only enter

these procedures at their beginnir~.

In practice we will use an n by r arra~ representing the

transition graph; for instance, to the system given as an example

following 3.5,

41

Al - 0112 + lAl

A2 .. O~ + lAl

A, .. 011, + lA4 + A

A4 .. OA, + lA4

It
corresponds the array:

o

1

We go from state to state as we read characters one by one.

The minimal SRL system corresponds to the smallest array. The

algorithm can be speeded up by grouping characters into strings

corresponding to clvs~d paths, i.e., redefining T.

Because of the s~eed and simplicity of this algorithm to analyze

regular sets, it would be reasonable to use it systematically for

analyzing regular structures in programming languages; even if the

general analysis algorithm used does not reduce to this one in the

particular case of regular sets. The fact that it is not recursively

decidable whether a context-free language is regular (Bar Hillel,

Perles and Shamir [1961), Theorem 6.,) does not cause any difficulty,

one defines a grammar for a language one has in mind, not the contrary.

Note the role of the end of string marker,)" to prevent

ambiguities (see Chomsky and Miller [1958)).

.,,'

[t962))•

42'
~

• f

Note also that we have here a case of Predictive analysts in its

~ \simplest :form (K'\1I10 and Oettinger

(11) Bottom-up analysis.

Suppose a regular set is defined by an SRL or SLL (standard lef't

linear) system and we are trying to find the (unique) path corresponding

to the derivation of a string a.

Example: Block structure in EUler.

* *<block> = begin (<declaration>;) «statement>;) <statement>~

Because it is desirable to scan a block from left to right in

order to build its declaration table first, we must consider an

associated SLL system, rather than SRL: (elements equal to ~ not

written).

1. <block> = B2 2

2. B2 = B
3<statement>

3. B
3

= B4; + B
5

begin

4. B4 = ~ <statement> + B6 <declaration.>

5. B
5

=)"

6. B6 = a,; + B
5

begin

7. B7 = B6 <declaration>

corresponding to the graph: (Labelled as traditional)

<block> end B2 <statement> B,
IN~.------....... • ----........

<statement>

<declaration>

Consider the string:

begin <declaration> ; <statement> <statement> end

It has only one parse:

<block>

• 1
B2~

• 2
B, <statement>~·,

B4 ; <statement>~

• 4
B, <atatment> ; <statement>~

• 3B4 ; <statement> ; <statelllt!nt> end

• 4
B6 <declaration> ; <statement> ; <statement>~

• 6
B
5

begin <declaration> ; <statement> <statement>~

• 5
~ begin <declaration> ; <statement> <statement> end

44

We want to reconstruct that parse as we read the string from. left

to right. We start at the left end, B
5

must have been applied; now

we have B
5

begin ••• ; B
5

begin appears in 6 and in 3, there is no

way to know whether we must use 6 or , except to look at theollowing

symbols; since the next symbol is <declaration> we must apply 6,

not~. The situation is worse when later we get ~ <statelDillnt>•••

or B6 <declaration>... : we have to look two symbols ahead in order

to make a decision since both <declaration> and <statement> must

be followed by a " ;" •

If we were proceeding by trial and error, we see J v we would

get into blind alleys, none of which would be longer than two analysis

steps.

This important type of difficulty has been intensively stUdied

for context-free languages (Floyd [19641, Irons [19641, Ross [lJE,41,

Wirth and Weber [1955], Knuth [1965]); in the particular case of

regUlar sets, we recognize the notion of a k-limited automaton

(2-limited, in the example) (Chomsky [1953], page ~36-7). Because

~ are finite state automata which are not k-limited for any k

(ibid.) we see that there are SRL systems for which a bottom-up analyzer

will engage into blind alleys of unbounded le~th.

*Example: Sl = (ac*a + bc*b) + ac* + bc*

51 = aS2 + bS,

52 cS2 + aS l + >..

53 cS
3

i bSl + >..

IN

In fact, it is clear that in the notion of k-limlted automaton,

the finiteness of the automaton does not play any role and that the

notion is generalizable to infinite automata and context-free

languages.

Let us remark t~at to go into a blind alley and then backtrack is

in practice untolerably time and space ~onsuming and must be avoided

when a dec~sion can be made simply by a short look-ahead. Certainly

a disadvantage of the context-free grammar formalism is that it implies

the'use of a non-deterministic analyzer, even in simple cases. Look­

ahead just cannot be described in this formalism. This is one reason

why in Section 6 we shall introduce conditionals in a formalism related

to context-free grammars.

Before that we want to apply to context-free languages the results

and the considerations of this last section and of Section 3.

46

SECTION 5

APPLICATION TO PROORAMMIrG IAIDUAGES

a) Preliminaries

Most programming languages make use of structures conveniently

described by regular expressions, such as the block structure we have

examined in Section 4b; since regular sets are simple to analyze, we

want to take advantage of this.

We will first examine as an example the case of Euler (Wirth and

Weber [1965), in preference to Algol 60 because Euler has an unambiguous,

simple and systematic syntax. Furthermore Euler is a generalization

of AlgOl 60.

Seeing that Euler can effectively be analyzed by recursion of

finite state functions without backtracking, we will formalize this

approach to language recognition, define a class of sets of strings

which we will call regular context-free (ReF) and study its properties.

b) Regular Structures in Programming Languages

Euler syntax (see Appendix 4) is defined in Wirth and Weber [1965]

by a simple precedence context-free grammar consisting of 120 production

rules in a notation similar to BNF Without the vertical stroke for

alternation (Boolean +); were this sign used, it would reduce the

system to some 44 rules, 35 after elimination of some redundancies

necessary to insure precedence.

It is clear that we can consider a context-free grammar as a 3ystem

of equations in e homomorphic to a graph (see Section 1), the only

47

operators used are and +. * could clearly be used and corresponds

to terminating left or r:l8ht recursive rules j as we shall see in Lelllllla 5.4,

non-terminating left or right recursions define variables equal to ~.

Such systelll8 bave one and only one solution (Jinsbur~ and Rice [1962],

Leticbevsk1i [1965]).

If in the Euler system we solve left and right recursions by

introducing * and then solve the system by substitution as much as

this can be done, we eventually obtain no more than two large equations

in one VIlriable, one equation being recursive:

expr

program = f(expr)

g(expr)
see AppendiX 4 for f and g.

This is not enough to ensure that ~~ler can be analyzed without

trial and error by a recursive use of the finite state functions f

and g, because it could happen that the analyzer would not know in

some cases when to go up or down one level in recursion rather than to

keep absorbing symbols on the same level, so that it would have to

proceed by trial and error; in terms of programming, we say that it

would backtrack, in terms of automata theory that it would s:~late

a non-deterministic automaton.

In the Euler case, wherever expr occurs in f or g, it is

surrounded by two bracketing symbols. 'rhese symbols are used only

for bracketing and there is no choice within the brackets. This clearly

shows that Euler can be deterministically recognized by two finite-state

autOlllll.ta, one of which can call itself recursively by way of a pushdC'Wn'~l

store, on which the p~ace where a recursion must return is saved when

48

the recursion is entered. Such analyzer is not only extrelDely tast

but also minimizable.

Si~ce Euler is a generalization of Algol 60 this method seems

prOlDisi~. Io tact the Meta series of compiler compilers (Schorre

[1963], [1964], Schneider and Johnson [1964]) implicitly uses a

variant of it, although in a noo-systematic and informsl way.

The role of regular structures in programming languages was first
v ,

recognized io Culik [1962] and rediscovered by Carr and Weiland [1966]

in a mis1eadi~ paper where it was wro~ly argued that it is possible

to express with regular expressions "the Revised A18o1 1960 syntax in

completely nonrecursive terms". Neither its problems nor its ilDplica-

tions have been studied.

Note that the role of the operator * is to force us to analyze

iteratively what it is not necessary to analyze recursively; in this

strategy the push-down store is used as little as possible.

What we must do now is to rigourously define the strategy we have

broadly described, characterize the subclass of thos~ deterministic

context-free languages which can be analyzed with it and examine their

properties.

c) ~ Languases. Characterizations.

We need first to introduce some important notions.

Definition 5.1: The~ derivative of A with respect to B,

1Jr!' is de! ined by

iJr!' = {cr!(3:t3)[13 € B 1\ ~ € A]}

49

'JI' is the set of all strings obtained by chopping off a string

in B at the head of a string in A.

Particularly when B is a unit set of one string, this notion is

central to the gedanken experiment oriented theory of automata. The

variables in an SRL system SA are equal to derivatives of A. This

approach is used in Stearns and Hartmanis [196'] and Brzozowski [1964]

for regular sets.

Of interest to us here is the left derivative of a se"" with

respect to itself:

~ X .. tal (st3)[~ eX" f3a e xl}x

Definition 5.2: A predicate II on rl is defined by:

n(A,B) .. [first(~AA) n first(B) = ¢)

We shall say that ~ is separable .!n~.

This definition corresponds to the difficulty we have mentioned

in Section 5b. Suppose we are analyzing '1 from left to right, where

r e C .. AB. Necessarily (:3:a)(~)[r = ~ r: ex e A r; ~ e B). The

ana.l.yzer for C calls upon the analyzer for A first; when the

analyzer for A comes to the end of a it should be dismissed and

the analyzer for B called upon, but if there is a string 001 € A

where al and ~ have an initial non-null segment in common we are

unable to recognize at the end of ex whether the analyzer for A

has to be dismissed or not. We see t~at tf A is separable in AB

this cannot occur.

50

Observe that the operation by which the analyzers for A and B

are called successively to form the analyzer for C corresponds to the

notion of function of function.

This notion of separability is important and will be often used.

We shall write n(A,B) for n(A,B) = true •

Because n(A,B) expresses a property of sets, its VIIlue is preserved

when we substitute for A or B expressions to which they are equal.

Let us now define t.he class of sets we are interested in.

Let S be a system of equations:

i '" 1, .•• ,n

where f i is a restricted regular expression over T U IS. Consider

the system S' obtained by developing each f i into its canonical

SRL system, introducing new variables B
i J

:

B
i J

= r aBi + r XBi j + 8(Bi j)
a€T Ja XdS x

i • 1, ••• ,n

J l, ••• ,mi

Definition 5.': A set of strings is resuJ.ar context!!:!!. (ReF) when

it is the solution of a system S' in regular~; i.e., containing

only two types of equations:

(1)

51

To say that X is separable in Bkl means simply that

(ya)(Yl!l)[«13 ~ ~) " (0: € x) " (o:~ € X)) • first(l!l) I. first(Bkl x)] •

The ad~quacy of this defin:tion to the algorithm we wish to use is

Jue~o the fact that the process of expansion into S' is. formal

representation of the algorithm.

n is decidable for context-free language.. Algorithms for its

cOlllpUtation are given and discussed in Appendix 5. Usually, as in the

Iuler ease, n is obviously true.

1!!!!!!! 5.1+: In any system corresp,:>tlding to a context-free grallllll&r, a

variable defined by a non-ter!rlnating recursion is equal to ~.

Proof: _ 18 a solution of the corre sponding subsystem.

The solution is unique. (Ginsburg and Rice [1962], Letichevskii

[1965]). I

Example: N = aN + bN + aNb + NN •

Since I is finite, th3 occurence of variables equal to ¢ can

be recognized by mere testing and the system can be simplified by the

rules A¢ = ¢A = ¢ and A+~ = ~+A = A •

When one has defined a class of sets of strings, it is often

useful, as a tool to study its properties, to characterize it in terms

of a family of automata each of which recognizes Just one set of the

class. Here we are clearly going to obtain a subfamily of the one-way

deterministic 1 1~ (push-down store acceptors) (Schutzenberger [1963],

Ginsburg and Greibach [1965]). . .

52

As we shall see, ReF languages can be characterized by properties

of systems of equations in more than one way. Depending on the particular

characterization one uses, the class of automata can be defined by various

forms of restrictions, necessarily all equivalent, but more ~r ~ess

natural. We are going to introduce one which we find natural_

Definition 5.5: (Greibach [1965]). A grammar rule is in ~'!!!S.£2::!

when it is of the type X -+ IX1•••Xn n ~ o. A graau.r is in staDdard

form when all of its rules are.

For any context-free set L, L-~ has a standard-form grammar (ibid.):

this result is the formulation for grammars of an automaton-theoretic

result: to any pda terminating its computation with an empty pu8hdown

store, one can associate another one which defines the same set of

strings, under the same condition, and has a finite state control-with

just one state (Ginsburg [1966], Lemma 2.5.1). Clearly the latter

works on a left-right, top-down, generally non-deterministic, recQgnition.

Lemma 5.6: In any CF system obtained from a regular form system by

substitutions of equals for equals, if X and Yare two consecutive

variables in the right part of a production rule, X is ~eparable

from XY.

Proof: We have two types of rules

(i)

(ii)

53

In a first substitution there can be a difficulty only when

•excluded.)

subst~tutlng for X the expression to which X is equal. But because

se~~bl1ity is a property of sets, not of grammars, it will be preserve~.
I

The same reasoning is clearly true for otheT' steps of 8ubsti.tution.
/

/(Note in particular that by definition of n the case). c X is no":
I

~t'1nltlOD 5.7: A grammar is an s'-grar.llJl8r when all of its production

rules are in standard form, X aXl...Xfj+l...Xn ' n::: C , or ct

the type X l, subjeet to the conditions that

Itor any ordered pair
~

prodUction rule, X.1

(X
j

, X
j
+l) appearing on the right cf •

is separable in XjX j +1' i.e., TI(Xj,X j +1).

J

!

(11) no two production rules having the same X have the '>am"! a.

Let us work out an example which we shall grneralizp. af+.eJ'·mrd.

Consider the following definition of a simplifi~d arithmetic

expression, where the operators are 0 and ~ and the ~arentheses

are denoted bv square brackets; A stands for arithmeGic expression,

T for term, F for factor, i for identifier (a t~rminal symbol).

A T + A0r

T F + 'NDF

F = i + [A)

Solving the left recursive equations in this system, which is

equivalent to the usual context-free grammar for arithmetic expressions,

we get:

54

A .. Tl0I')*

*T .. F(@F)

F '" i + [AI

All variables but A can be eliminated and 1NI can get A .s.

fUnction of A. for clarity, let us not do it now; we elWMote

only '1' :

* * *A • F(.) (0F(8F))

F = i + [A)

We now expand A into a regular fol'lll systell: (quantities equal

to ¢ not written)

A = Al

1\1 =0 FA2 where (rule B* .. lBB* +). applied tWice):

* * *A
2

.. (0F) (0F(@F))

* * * 11- *= ~(@F) (0F(IlW» + (0F(@f'))

* * *=~l + 0F(0F) (0F(@F)) + X

=~ +81\ +).
1 1

so that we get directly tr.e mini~l 3RL system (over T + {F))

A = Al

Al = FA2

A2 .. ~1 + 81\1 + A

Substituting now i+[A] for l' we get the regu19.-,.. form s;yatell:

A =Al

Al = :lA2 + [~

£2 = M 1 + 8A.1 + A

", = M 4

A~ • JAa

Il(A,A...> .iDee tir8i:(A4) = {l} while first(~,...v) = {0,0) •

.. we ..-to Ul .'-c~; the only equation to be expanded is

a, •M~. 1)0 nb.'t1tut1oa

IIot. that by leMA 5.6

and the s I -graDlllllr is:

A
1
~ iA

2

A
l
~ [A

3

A2 ~w.l

A
2
~ <llA.

l

A
2
~)"

~ ~ iAI'4

A
3
~ [A

3A4

A4 ~]A
2

Note that all these manipulations can be done by a eonqmter which

would easily handle much larger exprescions.

56

Theorem 5.8: Any RCF set has an s'-grammar; any s'-grammar defines

an RCF set.

Proof: (i) Any ReF sP.t has en s'-grammar.

Starting with a regular form system, we ~liminate all variables

equal to ¢ (Lemma 5.4). In the resulting s~rr,,,elT1 we want to elimir,ate

terms of the f'orm B '" CD. In all such Illonomials, where the leftmost

symbol is a meta-variable C, we substitute for C the expression

which defines it. By Lemma 5.4 the process terminates. There is a

difficulty only in case in the last substitution e(c) = A. We obtain

then an equation of tl.· ferm:

B = L aC1 Cl •.• C D + Cl ••• C D + e(B)
T

a n nat ,

;T')For two consec~tive variaoles Ci a j , C(i+l)aj' .. tCi8j'C(i+l)aj ,

by Lemma 5.6.

n(c,u) implies thet Ti n Tj "= ¢ i,j'" l, ••• ,p •

The transition from the system thus obtained to an s'-grammar is

immediate.

(ii) Any s'-grammar defines an RCF set.

To a rule X ~aXl••• Xn associate

if n> 1 the n equations (Yl, ••• ,Yrl- 1 , n-l new symbols):

x '" aYl + 5(X)

Y1 '" Xl
Y2

Y ... X Xn-l n-l n

57

if n '"' 1 tl:.e eqHtion X =- aXl T B(X)

if n=-O t1e equations X. aL + B(X)

L •).

where ~(X). A if. rule X~)' occurs in the s'-grammar and

e-~x} ,... ¢ otherwise.

We c~ot have ll(Xi,Yi+l) = false in on~ of these equalities,

otherwise we would have for s~~ J, i ~ j ~ n , a pair (Xj,X j +l)

for which ll(Xj ,x J+l) = !!!.!£ .

We obtain a regular form system.

Note that if we were not concerned with separability and regular

I

form systems, W~ would have here a simple algebraic proof of the exist~nce

of a standard-form grammar for any context-free set net cont~ining).

(Grd'"Jach [1965]); the rules X -+). being eliminated \'y i;he ml.'thod of

;,~"'II:'a 4.1 in Bar Fillel. Perles and Shamir [l?61J, wb;::h amounts to a

&'L:,titution of Xl +). for x , where Xl = X -). is a new, easily

defined, context-free 1'1lt.

We may call a pre-standard-form grammar a grammar which is made of

a standard-form grlllllll8r plus, possib]~', a rule A -+). , where A is the

root. Any conte:l--t-free set has suc!'l a grammar.

Corollary 5.9: Any ReF language has an s I -gr8Jllllar in which no rule

has a right part containing more than two variables (s ' -2-grsnmar).

Proof: We use the construction of Corollary ,.2 in Greibach [1965].

It preserves the properties of s'-grammars.

"
58

Let n be the length of the longest right part of a rule, We shot{

that if n > 3 .. we can construct an equivalent s'-grammar with n

reduced by one,

For each pair of variables A,B (I create a new symbol [A,B].

For each [A,BI scan all the rules A ~aAl •• ,Ap if P ~ n-2 , create

a rule [A,B] ~aAl,.,ApB if P n-l, create Ii rule

[A,BI ~ aAl ...A ~[A 1,BI if p il, create a rulen-<::: n-

[A,B) ~ &AI' ••A 3 [A 2,A 1] [.to BOi. If 5(A) =). I scan all the rule-n- n- n- n

B ~bBl ... Bq if q'::: n-L , create a rule [A,B] ~bBl...Bq ; if q, cn:t

-r-ea e a rule [A,B] -+ bBl,. Bn_2[B n_l , B] . If 5(B) = A too, create

a rule [A,B] -+ A Now replace all rules X ~ xXI" ,Xn of the old

grammar by a rule X -+ xXI' •• [Xi ..1 ,Xn] ; this connects a number of new

variables [X l'X] to the root, Jake the productions which correspond
n- n

to them and discard the unnecessary ones,

It is clear that "fof the rest:lti.ng grammar were not an s'-grallllll&r

the old one could not he one since 'nly substitutions are applied. I

Note that, as we sltall see in ~ection 5d, an s'-grallllll8r or an

s'-2-grammar can be ambiguous, although it is possible to derive from

them deterministic parses; ~heir fo~ is particularly convenient to

prove re.sults about ReF]<;ng·.8ges and to characterize them automat"n-

theoretically,

Notation: A one-way determinintic pda M (see for instance, Ginsburg

[1966], Section 2.6) ~ith one final state, is given by

where

59

K is the set of states of the finite state control automaton,

K = (qo'."'~} .

T is the input .lphabet. (a l , a2, ••••r)

I is the tinite set ~f pushdown symbols. {A,B,••• }

*'" a NIpping f'rotn x: x (T U {I) U~A}))((I U (h)) into K X I

(traas1tion function)

8 E I (initial pushdown Q'1IIbol)

, 18 tile init1al .tate and only tina.l state.

" 11 cl.etined by rules of I. typea:

n ~ 1 (Read and Expand)

The control 1n st.te ~, ak e T U [A} current symbol on the

input tape, or .k '" \. me.nj:lg t.hat the input t.pe 1s empty, X on

top of the ousbdcwn store, ')r X =). meaning that the push:1own stC're

is empty; ak is reac :,r" ~~.. is reached and X re?laced by
"

Y
l
... Y

n
where Y

r,
Ls r:ow or top of the pushdown store.

,'. n > 1 (Expand only)

same t,r l.r: :.. ~ut the opt:ration does not depend upon the input which is

not read in.

~. (Read and Erase)

sama as 1 but X is erased instead of expanded.

4. : (Erase only)

a combination of 2 and ,.

60

~n~ 5.10: An s'-machine is a one-way deterministic pda with

one final state, which satisfies tl~ ;'ol1ow1Ile ': restrictions:

(i) card(K) < card(T) + 1

(ii) all Read and E7.pand ru1e~ are transitions from qo to

Expand Only qi

Read and Erase qo

Erase Only qi

~

~
1;*0

qi i10

qi i~O

(s~l'lr t) •

Ex~ept that a Read 8~d Erase rule where ~ is read 1s a

transition f~om ~ to qo

(iii) To each state qi' i ~ 0 , is associated one letter

in T , one-to-one so that

- For eaeh Expand Only rule :rOll state qi' there is

a Read and Expand rule where 8 i is read-in, the remainjer

of those two rules being identical.

- In a Read and Erase rUle, the read-in ai corresponds

to the q1 which is reached from ~, ~ to qo

- For eaeh Erase Only rule in q1 there is a Read and

Erase rule where a1 is read-in, the remainder of those two

rules being identic~l.

It a pushdown s)'lllbol appears 111 the left part of a Read and

Erase or Erase Only rule, it appears with every letter in T

in the left part of some rule of type Read and Expand, Expand

Only, Read and Erase, or of type Read and Expand, Expand Only,

or Erase Onl,y, respectively.

61

(iv) It terminates its computation ~ith an empty pushdown store.

These rules are phrased in such a way that the st.tes qi diffe~ent

from qo and only those states are used just to "remember" one character

a i for look-ahead purpose; so that, since the machinp. can remember only

one letter, it cannot read when in a statt qi' i f 0: it just stays

in qi and pops out pushdown symbols until it gets one Which would be

expanded with ai• It then expands it anu returns to qo' Note that

it is forbidden by the last restriction in (iii) to use the pushdown

store to remember from step to step the last letter read-in.

These rules cer+'a~~ly are complicated; it is not clear how they

could be made s ime.ler; on the other hand the functioning of the machine

is intui'tively quite simple.

Theorem 5.11: Any ReF set can be rec'J~:l:' zed 'by an ' -machine and

conversely any s I -machine recognizes an :kClo'et.

Proof: By Theorem ~.8 we can start from an s'-grammar.

To a production

B -ta.X, ••• X
1.J.. n

associate the rules

(q.,E,B) ~ (q ,X "'Xl'1. 0 n

To a production

62

associate for all i such that ai t first(B) , the rules

(q.,t,B) ~ (q.,£)
1 1

and

Separability and the flct that no two productions with the same B

on the left can have the same a. r-n tb: 'l"ight express precisely that
]

the pda just defined is deterministic.

If the computation starts in qo with the pushdown store containing

the root S , it will stop in qo with an empty pushdown store and a

completely read-in input string a, if and only if a belongs to the

language defined by the s'-grammar.

The converse is obtained ty the reverse argum~nt.

d) ~{elation.!:£~ Classes £f Languages

We are going t~ relate ReF languages to two other classes of

languages which have been recently introduced.

In Korenjak and Hopcroft [1966], one-way deterministic pda are

studied which

(i) must read one input symbol per pushdown symbol erased,

0: 11) end their computation with an empty pushdOW'n store and

I

l iii) have a finite state control ot just one state: the s-machinea.

They define the s-languages. If we define an s-grammar to b~ a

standard-form grammar in which no two rules X eXl •••Xn, n > 0

having the same X hf..ve the same a, any a-grammar defines an a-language,

any s-language has an s-grammar.

For such a grammar predictive analysis cannot go into a blind alley;

another ~70rtant property is tbat no initial segment 0f a word derivable

from a variable can be derived from it too (prefix property); this implie s

left and riSht cancellation.

~!! 5.12: The class of a-languages is properly included in the class

c~ ReF languages.

Proof: - Any s-grammar is an s'-grammar because the prefix property

implies separability.

- The finite set {a,ab] does not bave the prefix property, it

is not an a-language. It is ReF as any regular set is. I

We want to give a more complex example because any regular set with

an end marker is an s-language (ibid.) and one may wonder whether

s'-languages are but quite 8 mild generalization of s-languages.

m+l * n n.m+ll] .Consider the set S = fb c c ac D n,m en. This 1S not an

s-language because an s-machine cannot recognize it, since it cannot

save information except on its pushdown store and must read one input

symbol per pushdown sYmbol popped out.

An s' -2-grallllll8.r which defines it is

64

S -of bS1B

51 -of bS1B

51 -of c52K

S2 -of eS2K

8
1

-t aL

8
2

-+ aL

B -tbL

L -t f,.

K -t eL

K -of f,.

Note tha+ the set SO, @ an end marker, is not an s-languaee

either, for ~he same reason as S.

One must emphasize that this last grammar is ambiguous: the

derivable intermediate string, bbccccaKKKKBB for instance, can yield

bbccccaccbb in 6 ways, according to the K 's Which are parsed into f,.

for the corresponding s' -machme, the rule K -+ f,. is to be applied only

when the ~nput character read-in does not belong to first(K). This

cannot be expressed in an s'-grammar; this supplement of information is

in n and in the restrictive rules by which an s'-machine, i.e.,

a deterministic parse, Is derived from the s'-grammar.

To make such condition explicit we could use unrestricted rewriting

rules such as: Kb -+ b •

Let us consider now another class of languages.

The Meta series of compiler compilers (5chorre [196') (1964],

Schneider and Johnson (1964) uses restrictions of regular form systems

65

wbich have not been studied or even made precise at this writi.ng;

because, as we have seen in the Euler case, separability is often in

practice trivially recognizable, it may have seemed unnecessary to

give as general a condition as possible for a language to be in the

realm of the _thod. An attempt is made though in Schorre [1965].
t

Definition 5.1': (ibid.) A binary grammar is a context-free grammar

in which all the rules have just two symbols on the right or are of

the form A -+)., •

Let us use the notation ~,~, ••. for s~~bols which are either

upper or lower case.

Definition 5.14: (ibid.) An f~r (first character recugnition) grammar

1s a binary grallllll8.r in which:

(i) if A -+ 1!£ .,.,1\ A -+ ~ are in it, then

first(!£) & first(~) = ~ and 8(BC) a 8(~) = ~ •

(11) if A -+ BC is a rule, ~ is separable from ~.

Some properties are given in Schorre [1965], yielding an algorithm

to determine wheth~r a grammar is fcr. No further investigation of

these grammars and of the class of lang~ages they define has been

published and the relation of fcr grammars to the formalism used in

the Meta series of compiler compilers has not been made clear.

Note that because n is preserved by sUbstitution, we have in

any derivable string A1A2•••An, n > 1, n(~i'~+l)' i = 1, ... ,n-l

so that the restriction that the grammar be binary is unnecessary.

66

~ 5.15: There are no terminating left recursions in an fer

grammar.

Proof: We certainly cannot have a direct terminating left recursion:

* w-if B -+ Be with B -+ EF or B -+ >.. , then g:£ =B or C =B which

is not compatible with respectively first(BC)n first(EF) = ¢ or

n(B,C) If a left recursion is not direct, it can be reduced to a

direct one by successive substitutions, without altering separability. I

Note that is is as usual possibl~ to get rid of nonterminating

recursions by eliminating any variable eq~al to ¢. We will suppose

that this has been don~.

Theorem 5.16: Any RCF set has an fer grammar, any fer grammar defines

an RCF set.

Proof: (i) Since a regular form system is clearly equivalent to a very

restricted fcr grammar any RCF set has an fcr grammar. We want to show

that the restrictions are not effective.

(ii) In an fer grammar there are rules of 5 types:

2. A -+ bc

3. A -. bC

4. A -. Be

5. A -. BC

67

Let us show that there exist an s I -grallllllllr which defines the same

set as any fer gram""r. And to do that we reduce an f'cr grammar to an

S I -grUlll&r without t..odL/ing the language, just as we did for regular

fOnl Ilystellll. Firs"t define an equivalent system of equations:

- Deter~ine all variables A s~ch that 6(A) = k •

In the equation of A :

- To each rule A -+ be corresponds a term bK, K a new variable,

where K 2 cL, L = ~ •

- To ,"aeb rule A -+ be corresponds a term be •

- To each rule A -+ Be corresponds a term BK.

- To ~ach rule A'" Be corresponds a term BC.

We have a system of equations of the form

A = LaB + LCD + 8(A) •a

In any monomial CK we substitute for the leftmost variable the

expression which defines it: C =L aCa + LEF + a(c) •

We do the same operation in any monomial EFD or D we may have

obtained.

We keep doing this as long as we have in the equation of A some

terms which do not begin by a terminal letter.

By Lemma 5.15, the process comes to an end since the number of

variables is finite and we have eliminated non terminating recursions

us ing Lema 5.4.

We have not introduced new variablec in this calculation and it

is clear that separability is preserved: n(C,D) ~ n(E,F) ~ (EF ~ C) •

n(F,D) ; thUS, the resulting system is equivalent to an s'-grammar

68

because of the condition (A ~BC)" (A -+DE) .. (first(BC) n first(DE) "'~)

for fer grammars. I

The situation of RCF languages among other. classes of context-free

languages is depicted by the following graph:

Context-free

1
bracketed (5) simple

prec~dence (7 I

-,
s-languages

!

d-determin~

deterministic (LR[k) (4)

~
~F b~~d

context (6)

1

I

I
+

linear (1)

sequentially
definable (8)

bounded
context.-free

one sided linear
(regular)

Inclusion is proper along an arrow. (We shall see in the next section

that the class of RCF 1L"l.guages is properly inclUded in the class of

deterministic languages.) The references arp.:

1. Chomsky [1963).

2. Ginsburg and Spanier [1964].

3. Hibbard (1966).

69

4. Ginsburg md Greibach [1965), Knuth [1965).

5. Ginsburg md Harrison [1966).

6. Floyd [1(64) •

7. Floyd [196'), Wirth and Weber [1965).

B. Ginsburg md Rice [1962].

We are now going to study the properties of RCF languages and, to

begin with, we shall delimit the field by some negative results.

e) Nesative Properties of S£!: Languages

Theorem 5.16: It is undecidable whether a context-free language is RCF.

Proof: Following the method of the proof of Theorem 6.1 in Bar-Hillel,

Perles and Shamir [1961), we construct a class of context-free languages

by which we map the set of solutions to the Post correspondence problem

(Post [1946]) onto an RCF language, *T , and the r:'JI-solution onto

non RCF context-free languages.

Given n En, two finite sets A = {al,··· ,an} , B '" {~1'··· '~n} ,

• symbol 3 I T and a finite set S '" {bl, ••• ,bn} , bi I T (Vi)

consider the three following languages, functions of A, Band n

L '"2

fbi ••• bi ~ ••• ~ ~ ~j
1 p P 1 1

(aR ~ ala E (T+s)*}

Ll and L2 are context-free and more precisely minimal linear

(Chomsky (1963]), their complements, Li and L2 are corrte...t-free

70

too (more precisely linear ant} unamb:ig!t<JUs). (Chomsky and Schutzenberger

[1963], Theorem 3, page 141.)

If there is no solution to Post correspondence problem for A, B

cannot beWhen ~ I ~ ,ar.d is RCF.
S

When ~ = ¢ ,

and N, ~ ~ ~ ; otherwise ~ is not context-free (Bar-Hillel et al. i.

Consider its cccnplement rs" Li + L2 .
iR context-frpe as the union of two context-free languages (ibid.).

ReF because then it would be deterministic as any RCF language is and

its complement L7- would be determinist ic too (Schutzenberger [1963],
:;;

Ginsburg and Greibach [1965]) thus, a fortiori, context-free.

Since the Fost correspondence problem is unsolvable for card(T) ~ 2

there is no algorithm to decide whethe:::- a set l.3 ' .. function of A ,

Band n is ReF; this implies the theorem. I

Corollary 5.17: It is undecidable wheth"!r Ii context-free language ~s

equal to a given ReF language.

Proof: Since it is undecidable whether S *T I

Theorem 5.18: It is undecidable Whether the :ntersection of two ReF

languages is empty.

Proof: The proof is very similar to the proof of Theorem 18 in Habin

apd Scott [l959J or Theorem 5 in Landweber [1964].

Given as before n € n, A = {al, ••• ,On}

S (bl, ... ,b), '01 iT (Vi)

B

71

Let

i .. 1, ••• ,n j = l, ••• ,n

Tb".. are two s I -grallllll&rs, as it is easily verified.

Their intersection is empty if and only if the Post correspondence

problem for this particular A, B and n has no solution. This

proves the theorem. I

Corollary 5.19: It is undecidable whether the intersection of two RCF

languages is ReF or not, regular or not.

Proot: (> is an RCF language and a regular set, and it is decidable,

a. we have seen, whether an RCF language (more generally any context-free

language) is empty. Thus Theorem 5.18 implies the corollary. I

This leads one naturally to ask whether the class of RCF languages

is closed under intersection.

~ 5.20: The class of ReF languages is not closed under intersection,

union, concatenat.ion or closure.

Proof: Consider the following ReF languages defined by regular form

systems. (Quantities equal to ~ not written.)

72

L = AC ~.AB1

A=aB+A A .. aA+A

B = AB
I

B .. bBl + A

E = bL B .. Be
1 1

L = A C = cL

C = cC + A L'" A

fa~nc*ln € Sll * n n
€ OJL .. L2 = fa b c In

1

Ll &L2 = (a~ncnln € Sll is not context free (Bar-Hillel, Ferles

and Shamir [1961], Scheinberg [1960]) a fortiori not RCF.

is inherently ambiguous (Parikh [1961]), thus it cannot be RCF since

RCF language& have grammars yielding deterministic parses, as we bave

seen in Sections 5b and c.

Let ~.. dLl + L2, ~ is RCF, a regular form system defining

it is immediately obtained from those defining L1 and L2•
Let L4 .. d + A, L4 is finite thus RCF.

L4·~ = ddLl + d(Ll + L2) + (Ll + L2) is clearly inherently

ambiguous, thus cannot be ReF.

Let L
5

= {da~na*ln € OJ + {a\nan\n € o}. L; 18 not deterministic

(Ginsburg and Greibach [1965], page 33) thus not RCF, while L
5

clearly is.

another example of a non ReF set which is the union of tvo ReI' let••

•

We leave unresolved the question of closure under complementation.

As one could expect fr~ the role of a left to right parse in the

definition of ReF languages:

~ 5.21: The class ot ReF languages is not close~ under reversal.

~'ZaB+CB+>"

B • LIBl
B

l
.. bL

L = >..

is a regular form system whicb defines it.

L~ = {bn(an + cn)ln ~ n) is not ReF because it cannot be recognized

by an s' -machine.

The machine cannot predict whether it will meet a string of a 's

or c 's when counting the b 's; so that when counting the a 's or

c 's, it must remember somehow either what the first non- b letter

was or what the last read-in letter is. It cannot use its finite

state part to do this and if it used the pushdown store it would have

to destroy that information before it could use it. •
Note that L~ = {bn(an + cn)ln € O} 1s obviously a deterministir

language so that the inclusion of ReF languages into deterministic

languages is proper.

gsm-mappings (Ginsburg L~d Rose [196']) are often useful in

proving results about context-free languages.

74

~ 5.22: The class of RCF languages is not closed under gsm-mappiug.

Proof: The set Ll = [a~ aRl~ t T} is RCF as generated by the

s'-grammar

Ll ~ aLIAa }

A ~ aL
a

L -+~
1

L-+A

for all a E: T

The set L2 = [caR} is not RCF because it is not deterministic.

L
2

is obtained from L
l

by the gsm-mapping which erases ~ and

maps all otner symbols onto themselvee. I

This implies that the class of RCF languages is not closed under

sequential transduction, of which gsm-mappings are the deterministic

case.

This impLies also that the class of ReF languages is not closed

under substituti~n of an ReF set for a given letter or substring; here

substitution of (A.} for (~} • A more interesting example is the

following highly pathological non-deterministic context-free language:

(ama~anaI1>aPaml\ll,n,p E O} due to R. McNaughton. It can be obtained

from {amcdamlm E: n} by obvious substitutions. It cannot be parsed by

the classical methods from left to right, right to left nor even both ends

inward ond it is unambiguous.

Another negative property comes up naturally, as we shall see in

Section 5g, in the study of the application of ReF languages to Algol 60;

as the preceding lemma, it disallows the application to ReF languages

75

of techniques frequently useful ~o prove results on context-free

languages such as precisely the machine mapping theorem (Ginsburg

and Rose [196').

~ 5.23: The class of RCF languages is not closed under intersection

with a regular set.

Proof: Let

* * * *L
2

= [a) a + [b] b

~ = Ll + ([na]~ + [~]n~ln E n)

L2 is reguJ.ar.

~ is ReF as defined by the following a-grammar:

C -+ a

L1 is not ReF because it cannot be recognized by an a'-machine:

there is no way by which the machine could save the information that

the bracketed character is for instant'e an "a" for matching against

76

the terminal character, tecause it cannot save it in its finite state

controller and if it puts it on the pushdown store it will have to

erase it to verify the bracket matching.

Nete that the class of deterministic languages is closed under

intersect~on with a reg~lar set. (Ginsburg and Greibach [1965],

Theor'!:I! 3. 1.)

The positive results 'e are going to give in Section 5g are

unclassical, let us give here a classical one:

I

Lemma 5.24: The class of ReF languages is closed under the operation

of dor-Ivat Ion with r sspect to a string.

Proof: It is enough to show that it is closed under derivation with

respect to a letter.

Let S be the root, "a" the given letter.

Consider the rules having S as a left part; among them erase

those the right part of which does not begin by "a" and erase all

the rules connected only to erased rules.

If no rule remain, D A = ~ •a If one rule with S on the left

remains, it is of the form

We replace it by the rules obtained by erasing a and sUbstituting

for Bl any expression eCl •••Cp where we had B
l

-+ cC
I
••• Cp in

the old gramm.ar:

11

We simplify any possible occurence of two identical production

rules.

We still. have an s'-grammar since substitution preserves separa-

bility. I

Noting that a EX. ~(Da(X» = ~ , we see that the pro~f of

tbis Lellll!lll is exactly patterned after the recognition by an s' -machine,

as can be understood best if one thinks of the definition of an automaton

by Nerode equivalence classes.

f) Axiomatic!& Context-!!:!! Grammars

We are now in a position to prove that no complete axiom system

for the equality of context-free gr~mmars can exist.

The idea behind the proof is simple: context-free languages are

*recursive; T is enumerable; thus given two context-free grammars

Gl and G2 defining the sets Ll and L2, we can enumerate the

*strings 1n T one by one, verifying each time whether they do or do

not belong to both Ll and L2• We stop at the first string which

belongs to one and not to the other one. Thus we have a trivial

semi-decision procedure t for the inequality of context-free grammars.

On the other hand there is no decision procedure for the equality of

~ontext-free grammars (Bar-Hillel, et al. Theorem 6.,); at best there

could be a semi-decision procedure t'. But then t and X' taken

together would form a decision procedure for the equality of context-

free grallllll8.rs; thus X' cannot exist; this implies that no complete

axio~ system for the equality of context-free grammars can exist eithp.r.

78

We see that to make this proof formal lie must exbibit an algebra

in which t can be described; in other words an algebra with a complete

axiolll system for the inequality of context-free gralllll8.rs. This is Just

what wt: bave been doing so far.

Recall that. after having proved that any ReF set has all s' -grallllDiU'

(Theorem 5.8) we noted that with minor modifications, the proof could

be turned into a constructive algebraic proof of the existence of a

pre-standard-form grammar for any context-free laI~age; this being

done using only relations in <RE,Rl,R2> and substitutions of equals

for equals.

Let us write

(dl) ~ (X)
a

-It
rest(aT & X)

(d2) ~a(X) = if a ~ ~ then X else ~f1rst(a}(X)

n n
rest(La'Yi)~ '[Yo

i=l ~ i-l ~

Since the inclusion symbol does not belong to our algebra we

replace a (X by 6(~a(X»; A •

Recall that in <RE,Rl,R2> we have tbe rules

(R2) x t if

with the Boolean relations

(b6) *A " (T) ;; A

A + ~ = A

79

We see now that with these rules and with (dl), (d2), and (d')r

we can forma:.ize the process de::cribed in the proof of LellllllB. 5.24

to the point where it defines algebraically an algorithm to verify

whether 6(~a(X»: A and we see that we can do this for any pre­

atandard-form grUllllll1'.

Thus <RE,Rl,R2> together with (dl), (d2), and (d,) form a

complete axiom system for the inequality ot context-free grammars.

Although, as we have Just proven, no complete axiom system for

the equality of context-free grammars can exist, it is reasonable to

look for incomplete but practically sufficient ones. Let us consider

the following relations:

x S first(X)rest(X) for any X ~ A •

We believe that <RE,Rl,R2> together with (dl), (d2), (d3), (d4),

and (d5) are such a system.

We would like to acknowledge the help of J. Friedman in establishing

the non-existence of a complete axiom system.

g) Cancellation, Regularity ~ Equality

The results which follow shed much light on ~he algebraic nature

of separability. The first corollary is a generalization of Lemma 12

in Korenjak and Hopcroft [1966].

80

Theorem 5. 25:

AX = EX f\ X '" ¢ 1\ n(A,x) ... AS B

Proof: We show that P. ri. B 1\ AX = :ax f\ X ~ ¢ 1\ n(A,X) cannot hold

true.

Let ~ be a shortest (possibly null) string in X. Suppose there

is at least one a € A J a i B ; we can write

a € A ... ~ E AX ... ~ E EX ... (refinement rule and string cancellation)

t31 € B "" ~1 ~ € BX ... t31~ € AX ""

(as ::::ore) (3:Q:_'~2)[t3l = Q1~2 f\ a1 € A /\ ~2e c xl •

Thus we have Q = Ql~2~1 ' with ex c A and "1 E A while

~2~ E X and ~l~ EX, ~1! A •

This is not compatible with n(A,X) t, is an initial ;ubst~'ing
c:

of X (or if e2 = A, ~l is); Ql~2 an initial substring ~f A

(Ql~l if ~2 = X) and a1 a string in A • I

Corollary 5.26: (right cancellation).

AX = BX 1\ X ~ ¢ 1\ n(A,X) 1\ n(B,X) ... A = B

The proof is immediate.

Theorem 5.27:

XA = XB f\ X ~ ¢ f\ TI(X,A) • A C B

81

Proof: 'i . show that A tf. B /I. XA '" XB l\ X .; Iii /I. n(X,A) cannot hold

true as before, e~cept that this case is simpler.

J~t t be ~ short~st non null string in X.

Let a £ A. '\ t e ,

ta £ XA a ~a £ Xl· a (refinement rule and string cancellation)

Thus we have tl~l £ A and HI I: X with e I: X , which implies

n(x,A) '"~. I

Cprollary 5.28: (left cancellation)

XA '" XB /I. X ~ ¢ /I. n(X,A) /I. D(X,B) ~ A '" B

The proof is immediate.

Corollary 5.29: The equation A ~ XB ~resp. A '" BX) subject to

n(X,B) (resp. n(B,X» cannot have more than one solution.

The proof is immediate.

An obvious particular case of 5.28 is often used in the fornl

~ '" aB a A '" B , which we have derived in Corollary ,.8.
The following corollary of Corollary 5.26 is a generalization of

what Korenjak and Hopcroft call a type B replacement.

Suppose that from two systems of equations having the same solution

we have a derivable equality Xl",Xm a y 1••• 7n, m,n ~ 2, where

Yl""'Yn are all different from ¢ and such that IT(Yi,yi +l) ,

82

i = l, ••• ,n-l. Let a be s~ non-null string in Xl. a is

certainly an i'1itiaL substring of a string derivable from Yl ••• Yp

00:2••• X
IT1

= Cfl.aYk••• Yn for some set Za and some k > 1 •

£2!0llary 5.30: With the above hypothesis and notations,

k> 1

Proof: (i) =part.

first equality.

fx~, ••. Xm = ZaYk··· Yn

~XI···Xm = Y1···Yn

(corollary 5.24) XIZa = Yl••• Yk - l

second equality.

(ii) <= part.

In the particular case where Xl••• Xm = Yl••• Yn is derivable from

two s'-2-grammars, we can write Zo = Zl••• Zj I j ~ 101+1 and

Zl, ••• ,Zj variables of the ~econd s'-2-gra~1r; given an equivalneee of

this type, we can always reduce it to a system of two equivalences where

the left part contains at most a certain number of variables which

depends upon the minimal length of the strings in Xl'

We now consider equality and regularity questions.

Theorem. 5.'1: A connected s' -2-grammar in which no variable is equal

to ~ defines an s-language if and only if it reduces to an s-grammar

in standard.-2-form by elimination of all variables equal to A..

Proof: The only formal difference between s'-2-grammars and s-grammars

in standard-2-form is in the occurence of rules A ~ A in the former.

Considpr an s-language Al and an ReF language D
1

given by two

connected syatems of equations corresponding to such grammars:

Aj = r aB j OJ
aliT &. a

j = l, ••• ,m

where possibly Bj a or C = A.ja or ¢

same remark as sbove,

i 1, ••• ,n

It is true for i = 1 •

* *Al = DI • (VaHaT ReAl = aT 8= D1] ..

(Ya)[BjaCja = EiaFi a) ..

{Ya)[5(BJaCJa) = B(Bj a)5(Cj a; = 8(Ei aFi a) 5(Eia)6(Fi a)] ..

84

in which case we must have the corresponding Ei.Fi a = A. •

By substituting i~ the same way for all Bj a and Ei a the

~y.pressions which define them we introduc~ new equalities, new variables,

and get 6(Di) = ~ unless Di = A. , for new values of i.

Suppose that a variable Dq is not reached in this process.

Because we suppose the grammar connected and because an s'-grammar

cannot be ambiguous, (Vr)(3a)(a~)[1 E Dq ~ ~ E Dll

be used in the derivation of a1~.

and D has to
q

At step n of the substitution process we have outlined~ all

strings c,f length smaller than n and all initial segnc.ents t1f length

n of longec strings in Dl will have been produced.

Thus at step n = larl , D will have been reached, unlessq

D = ~ ; contrarily to the hypothesis. I
q

.90rollary 5.32: It is decidable Whether an FeF set is an s-language.

Proof: By Theorem 5.8, Corollary 5.9, Tneorem 5.16, we know how to

~onstruct an s' -2-grammar for an ReF <let defined in another way. I

Corollary 5.33: The equality prOblem between ReF se~s and s-languages

is solvable.

Proof: Since Korenjak and Hopcroft [1966] have shown the equality

problem for s-laneuages to be solvable and since we have ju:~t seen that,

given an ReF set, it can be decided whether it is an s-language and

at the same time an s-grammar can be constructed for it, it it actually

is one.

85
I

Corollary 5.,4: The equality problem between ReF sets and regular

sets is solvable.

Proof: Given an ReF set A , the set A@ with @ a symbol not in T,

is ReF. (Tag e to the first rules of an s'-grammar.) This is the

corresponding set with end-marker S.

Given a regular set R, R@ is regular on T U {@} and it can

be proved t.hat it is always an s-language (ibid. Lemma 4).

A@=RI-A R

The corollary follows by Corollary 5.31. I

Note that this result yields another proof of Corollary ~ .17

since it is undecidable whether a context-free language is a regUlar

set (Bar-Hillel, Perles and Shamir [1961)).

Corollary 5.35: An s'-grammar in which no va~iable is equal to ¢

and only one to ~, defines 8 regular set if and only if it is non

self-embedding.

Proof: (1) If an s'-grammar defines a regUlar set R, the sf_grammar

obt.ained by tagging to the rules of the root a new variable A = @ ,

end marker, defines H@. By Corollary 5.9 it can be reduced to an

s'-2-grammar without alteration of self-embedding. By Theorem 5.31

the elimination of all variables equal to ~ reduces it to an

s-grammar in standard-2-form which defines the regular set H@.

By Corollary 2.1 in Korenjak and Hopcroft this a-grammar cannot be

self-embeddi.ng. This imp~.ies that the original one cannot either.

86

(ii) Any non self-embedding context-free grammar defines a regular

set (Chomsky [1959a, b)). I

Note that Corollary 5.;5 implies that we can eliminate all

variables in an s ' -grammar defining a reguls.r set and effectively

compute a regular expression r",presenting that set. This is

obviously true also of regular form systems Since we go from them

to s'-grammars by chains of substitutions.

Note also that this corollary yields a direct proof of Theorem 5.16,

since it is undecidable whether a context-free language is regular.

We have not been able to solve the equality nor the contairJment

problems for 5' -Languages , nor to show that they are not solvable. At

this writing, the class of ReF languages is the most general class of

languages for which such solvability results as Corollaries 5.~2, ;,

and 5 have been obtained. Theorem 5.1 of Ginsburg and Greibach [1965]

implies Corollary 5.,4 but the pruof of 5.34 is constructive and

quit"! simple.

It is interesting to note that the solution to the equality

problem of s-languages reduces precisely to the Salomaa's algorithm

which we have derived from Theorem ; .12 for the equality problem of

regular sets. Because of Lelllllll 5.17 though, it seems that the same

approach which yields the simple :formulation of Theorem 3.12 could

not be used for s-languages without difficulties.

As f,)r RCF languages, corollaries 5.26, 28, and 29 show us that

in practical cases the equality of two ReF languages wiU be verifiable

on the minimal regular form systems which define them.

87

h) Application of !!2! Languages

We have four characterizations of ReF languages, as set~

(11)

(11i)

(iv)

re~ognizable by regular expression techniques used

recursively, (i.e., definable by a regular form sr3tem),

having an s' -grammar,

..'ecognizable by an s' -machine,

having an fcr grammar.

The two first definitions correspond to two analysis techniques

which in most cases are radically different; these differences illustrate

a trade-off between speed and space, in the form of a trade-off between

the use of tl,e flnlte-state control of a FDA and the use of its pushdown

store: the first one of these techniques makes as little use of the

pushdown store as possible and is extremely fast, the other one, which

corresponds to an automaton-theQretic characterization, uses as small

a finite state control as possible and ~;es the pushdown store constantly.

For an actual implementation, the first one is faster and corresponds

to a more convenient notation. This is an example of the fact that

automaton-theoretic characterizations of sets of strings must be

understood as models of their computational complexity and not as

programming strategies, even when the automaton is deterministic.

We have seen that a generalization of Algol 60 is within the scope

of the method; is Algol 60 an ReF language?

There is an Algol 60 context-free construct which bars it from

being RCF: <conditional expression> •

88

The intermediary strings containing any number n of matching

parenthese s:

•••~ (n <b0olean expression»n else <boolean ex~ression>•••

or

•..~ (n <arithmetic expression»n~ <arithmetic expression>•••

are well fonned; but

•••th~ (n<bOOlean expressiOn»n else <arithmetic expression>•.•

and

••• ~hen (n<arithmetic expression»n~ <boolean expression>•••

are not.

As we have seen in the proof of Lemma 5.23, <conditional ~xpressior>

cannot be an ReF set, although it is the intersection of an ReF set and

a regular set.

This seems to be thp. sole difficulty as far as the formal syntacticsl

definition of Algol 60 is concerned. Otherwise ReF languages seem to

be an insufficient model of Algol 60 for the same reasons that context­

free languages are insufficient too.

If we cannot give & more precise answer to the question, it is in

part because the definition of Algol 60 is not fully formali~ed, even

as far as its context-free grammar in BNF (Naur [1963]) is concerned,

and also because this grammar is ambiguous, sometimes deliberately.

e.g.: (2.6.1 in Naur [1963])

<proper string> ::= <any sequence of basic symbols not

c.:-ntaining • or t>l<empty>

<Open string> ::~ <proper string>I '<open string>'!

<Open string> <open string>

89

<string> ::= '<open stri.ng>'

Tbis definition of <string> is ambiguous (not deliberately) and

the variable <any sequence •••> is defined only by the English meaning

of its name (somewhat ambiguous itself), which is naturally intendej to

denote the regular set ('+')'.

In this case the difficulties are easily lifted; for discussions

of the intricacies and the ambiguities, deliberate or not, of the

definition of Algol 60, see Knuth and Merner [1961], Knuth [1965 a, b

page 624), Medema [1965).

We are going to study the ways by which we can enrich the formalism

of ReF sets.

90

SECTION 6

EXTJi'..NSIONS OF RCF LAOOUAGES

a) Direction of Extension, Syntax !ill! Semantics

It may seem natural to try to augment the ClASS of RCF languages

within the class of context-free languages; for instance we could

consider the claas of intersections of RCF languages and regular sets;

this broader class would c~rrr.spond to an extension of s'-machines

with a larger finit~ state con~rol where only certain states could

interact with the pushdown; we might also want to stUd;)' left-right

too-down deterministic analysis with more than one ch~~ecter look-ahead

and in effect we might trr ti) parallel for left-right tOll-down analysis

Knuth's work for bottom-up analysis.

Alth~ugh such research topics would certainly be of high theoretical

interest and seem quite feasible, we want to leave them as proposals and

we want to argue that in practice other avenues for extension must be

sOI~ht. Our argument will apply as well, mutatis mutandis, in the c~e~

of bottom-up analysis, to simple precedence languages as opposed to

higher order precedence languages or LR(k) languages.

If one wants to use an ReF language analyzer to r~cognize the

<conditional expression> of Algol 60, all one should :10 is to set a

flag when going through the first <boolean expression> or

<arithmetic expressdon> and refer to it on encounter of the second one.

In th~ same way it i3 easy to recognize such a set as

{bn(an + ci'l)ln £ 0) • F"rthermore, nothing can prevent a progra3ller

91

from using here a counter or two. In this vein, the non context-free

&et (a~ncnln € 0) is trivial to recognize.

As we ~se flags and counters we can as well use lists or tables.

In effect, this is precisely what has to be done to cLeek some

constraints of programming languages which just cannot be expressed

in a con~ext-free grammar:

e.g.: - that an identifier is declared and just once in a block.

- that use end declaration agree (identifier types, array

dimensions and bounds).

that a label occurs only once in a block.

that a go to statement refers to a label which occurs in its

scope.

Because ~uch a practice is simple and efficient there iE no reason

why it should be used only for non context-free constraints. In the

case of RCF languages we believe that to try to extend the formalism

within the class of context-free languages is not worth the extra

effort, complication and corresponding loss in parsing spef::d, because

these few features of programming languages which are context-free

and not RCF can be analyzed by using the methods we have just mentioned

and because most of the non-ReF features of programming languages are

not context-free anyway.

So far we have carefully talked imprecisely about non context-free

features or co~straints; let us state now that these features are for

us to be called syntactic and not semantic, contrary to what seems to

be the spreading usage. Thi3 is not a point of negligible importance

because it is intimately connected with the way one thinks about the

definition of &rtifi~.al languages:

The tendency has been lately to call semantic whatever peculiarity

of a programming language could hot be described in the phrase structure

system var~ of its definition. The belief that context-free languages

offer a close motel of the syntax of programming languages is not

foreign to this. This tendency is encouraged by the obsp.rvation that

the verification of a non context-free syntactical constraint, such

as existence of the label mentioned in a go to statement, is

conveniently described in the same way as is described the action

coupled with the analysis of that st3tement, such as co1e generation.

Both are specified by associating one-tn-one the :roduction rules of

the grammar and some procedures, which must be ey-ecuted when the

corresponding rule is applied. In the computing community the confusion

has gone to the point where people would talk about the semantic of a

language for the semantic of a compiler or conversely; true, they are

related, since a compiler must be a semantic preserving operator, but

not identical, as is quite clear when one notes that ccmpd Iez-s do have

bugs. Semantics can be precisely stated, for instance as proposed by

Riguet [1%2].

Note that this improper usage we are discussir~ puts the people

who adopt it in an untenable position if they change formalism to

describe the same languag~; what is for them semantic in the wea~er

formalism can be syntactic in the stronger one.

A programming language is not an object independent of its

definition, or rather it should not be: it does not have existence

and we do not know it by anything else. If the formalism adopted for

this definition is not subtle enough to describe it with all the

desired fineness, a set of computable conditions on strings is necessarily

added and described in some other metasyntactical language. In the case

of Algol 60, BNF was insufficient and conditions were described in

English in order to refine the BNF definition; these conditions Wcrp.

put under the heading "semantics", together with some broad descriptions

of the action of an interpreter. This certainly was misleading.

One must di~t~4ish between the relations among symbols defining

the well-formedness of a string of the language and between the actions

this strir~ may induce when analyzed. The latter is Ultimately a

mapping of the language into some domain, the former belongs to the

definition of a set. Because there are formalisms in ~hich all

constraints defining any recursive set can a priori be expressed,

namely, Post's formal systems, a Turing-machine programming language,

McCarthy's recursive functions of conditional expressions, that

distinction i$ qUite meaningful. Furthermore, it is coherent with the

mathematical usage as fixed in the simple case of predicate calCUlus:

well-formedness is not a semantic matter, as definitively discussed

in the introduction of Church [1956], Section 09.

What appears, when we use flags, counters or tables in the course

of analysis, is precisely computable conditions on strings, necessary

to refine a formal defini'jion made in a too weak metasyntactical language.

We want to formalize this approach; befJrehand we will study another

avenue for extension which is very general too, but has never been used

or mentioned, we believe, in spite of its simplicity.

b) Boolean Closure of Recursive Classes of Languages

~ 6.1: The BooleRn closure of a class of recursive languages is a

~lass of recursive languages.

Proof: The proof is straightfcrward. Let us use the original definition

of recursivity as in Post [1944]; although Post is writing about sets

of integers, his worl~ is r'eIevaut, here: we could either arithmetize

the problem, as is often done, or use Davis's reformulati0~ of it for

strings and restrict thi~ formulation to recurslvity rather than

A-recursivit,r by taking A = ¢. (Davi s [1958], Chapter 4).

(i) A set is r~cursive if and only if both it and its complement

are recW'sirely enwnerable, (Post [1944], page 290); thus if a

set is recursive, its complement is recursive.

(it) If two sets are recursively enumerable, so is their union

by the very definition of recursive enumerability.

(iii) The complement of the union is equal to the intersection of

the complements.

This corresponds to the following intuitively obvious fact:

suppose we have a recognition program, for our general purpose computers,

which can recognize any language of a class of sets; for instance

suppose we have a general analyze~ for the class of all context-free

languages such as the Harvard analyzer (Kuno and Oettinger [l96~]);

then we can easily build with it a recognition program for the Boolean

closure of this class, since:

95

a € A 'B .. (a E A) " (a E B)

a E A + B .. (a E A) V (a E B)

aEA' .. aI-A

Note that the Boolean closure of context-free languages is a

larger class in 8 than the class of context-free languages; as proved

by Kuroda [1964) it is included in the class of deterministic context­

sensitive languages (sets recognizable by a deterministlc linear bounded

automaton). In fact, the classical example c:t: a useful context-sensitive

language whi.:h is not context-free is the intersection of two ReF sets:

(so-called "respectively construct") cf. proof of Lemma 5.20

This calls for a few remarks which form Appendix 6.

In practice, this means that if someone finds it natural to define

a language as the intersection of context-free sets, or complement of

some context-free set, or any Boolean function, such as A-B = A &B'

he should not refrain from doing so. As long as the sets, Which he

takes the complement or the intersection of, are independently defined,

there is no diffiCUlty. In fact we sball see in Section Eg that people

actually do so, implicitly; this alone would justify the explicit

introduction of & and

However it is important that there are no two variables Xi and

X
j

in the system such that Xi # Xj while one is defined from the

other one by use of & or In such a case it can happen that the

system bas no solution.

e.g.: 5=5'.

As remarked by M. Arbib who noted this difficulty, the situatioo

is analogous to the one in which we obtain unstable circuits by

assembling well-behaved components without timing constraints.

It is an interesting open problem to know when such systems have

a solution; it is e generalization of the already difficult problem of

knowing when a system of equat.Lons i~ a Boolean algebra of sets has a

solution.

The main shortcoming of the use ('f + or & in the safe case,

is a loss of speed, since the recognizer must be applied twice on the

same string; on the other hand these applications are independent and

can be made in parallel.

Another problem with the use of & and is in defining the

strt:~ture of the analyzed '3tring. This difficulty is removed if we

consider that the structural tree of a string, as jefined usually, does

not reflect an ~nherent property of the string but rather describes

the course Jf analysis, independe~t analysis phases being described by

paralle) branches in the tree. (cf. Section 4a.)

When the application of a rule 1'. BCD corresponds usually to :5

nodes in the structural tree:

1
A

!~\
We associate to it 5 nodes in which the opera'tors inVOlved, here

two concatenations, do appear. Let us adopt the convention that BCD

18 read from left to right, so that BCD is understood as B(CD)

ratber than (BC)D:

~
A

~

,/ ""­.. ".
B 1\

C D

In the same way ~f a rule A - B ~ C is used, the substructure:

1
A

!
Be

/".
B C

wi:l appear in the development of the sentence tree structure.

e.g.: To A - (BC) Be (EF)' corresponds

1
A

t
Be

,r" -,

BI \C
~
•

1\
E F

98

c) Conditicnal Regular Expressions

The methods we are going to use have been introduced in McCarthy

[1963] •

be a set of variables taking values in

(~,false) when defined.

Their algebra B is defined in a slightly different manner than

a Boolean algebra is. We introduce a ternary operator:

if :21 then :22 else ~

with the following valuation rule

~1 if :21 then ~2 else £;

~ value (~2)

~ value (~)

undefined undefined

Such operators as A, V, - are redefined by

~l A ~ = if ~l then ~ else ~

~l V £.2 = 1f :21 then ~ else ~

-- kl = if :21 then ~ else ~

so that /I and V are no longer commutative since .:()r instance we

can have ~1 r.~ =~ and ~ f\:£1 undefined. 'I'his corresponds

to a left to right evaluation scheme.

The family of all functidons built with this ternary o;>erator is

stUdied in McCarthy [1963], 8 comple~e set of r~lations to manipulate

99

them ia given and two canonical forms are derived in Section 7.

Note that we have two types of equivalence,~ and strong,

£1 "w ~, £1 "'s ~ , according to whether !!.l and ~ are equal

only when both defined or furthermore have the same domain of

definition.

Definition 6.2: e{K) , class of functions computable in terms of R,

is defined recursively from R by

(i) E £ R =a E £ C{R)

(11) if El £ C{A.} , E2 € C{R) and !!.l is a variable in 8, then

(E
l)

€ erR} C{R} * € erR}E
1

+ E
2

€ E
l

E
l

& E
2

e C(R) E' € C(R)
1

E
l

• E
2

£ C(R)

if ~l then E1 else E2 £ erR)

(iii) Extremal clause: E £ erR) only if E can be formed by a

fini te number of applic::ttions of ru :.es (d) and (11).

The interpretation of expressionsot efR} is defined in the obvious

way to be coherent with the interpretation of R (3a);

value (if £1 then A else B) '" if 21 then

value(A) else value(E)

Let us adopt the convention that "if" and "else" have the

lowest priority above parentheses in evaluation, so that for instance:

100

(A + if :£1 then B else e + D) = (A + (if £1 then B els£ (C+D)))

* (e*)if £1 then B else e = if £1 then B else

if £1 then £2 else e = D • if £1 then ~ else rC 'J)

"if" and "then", "then" and "else" , are used. as brackets.

We call these expressions conditional regular expressions and

denote them by upper case letters since they take values in 9.

When they do not contain & or we call them restricted.

Note that while a regular expression designates a set, a conditional

one varies over different sets according to the values taken by the £i

variables in them; precisely, it varies over the set of verti~es of a

hypercube of regular sets.

There are two types of equalities in era} , strong ones and weak

ones, as in 8, according to whether the domains of definition of two

expressions coincide or not. We write El =s E2 or El ~w E2 •

At this point it is clear that we can recognize the equalities

of conditional regular expressions, derive canonical forms for them

and get a complete set of axioms for their algebra. Let us do it

briefly, before considering systems of equations in C{R} •

d) Foundations ~ the Algebra of Conditional Regular Expressions

We seek a complete set of axioms for the algebra

<S;+,&,',·,*,if-then-else>. The following 12 rules are clearly valid

according to the valuation mapping we have just defined:

(if £1 then A else A) = Aw

(2) (if true then A else B) = As

101

(,) (if .!!1!!. then A else B) = Bs

(4) (if :£1 then

if £1 then A else B

else C) (if £, then As "-

else C

(5) (if :£1 then A else

if :£1 then B else C) (if £1 then As

else C

(6) (if :£1 then ~ else ~ then A else B) s

(if ::e.l then

if ~ then A else B

else if
~

then A else B

(7) (if :£1 then

if ~ then A else B

else if ~ then C else D s

(if ~ then

if £1 then A else C

else if ::e.l then B else D

These first 7 rules permit us to handle the nesting of if-then-else's

and to do a few simplifications. We naw need 5 rules to permit us to

handle the nesting of an if-then-else within the scope of a +, &,

• , or -11-.

To avoid repeating the same long rule 3 times, let 0 denote a

binary operator; consider the folawing predicate, function of 0:

102

Distrib(0) [((if £1 then A else B) 0 (if ~ then C else D)) s

(if £1 1\ ~ then AOC else

if ""' £1 1\ ~ then B3C else

if £1 1\ ""' £2 then AOO else B0D)]

(8) Distrib(+)

(9) Distrib(&)

(10) Distrib(-)

(11) (if £1 then A else B). = if £1 then A' else B's

(if)* '" A* *(12) £1 then A else B if £1 then elSE: B
s

To these 12 basic rules we want to add another one, which must be

considered as syntactic since we consider here that the equality is part

of the syntax language.

(if £1 then A else B) '" Cw •
else B = Cw

Our 12 first rule s come from McCarthy [1963], Sect ion 7, somewhat

indirectly_ McCarthy studies 8; this is the reason why we do not

have any rule corresponding to his rule 4: if £1 then ~ else

~ =s £.1 ; but in fact he is killing two birds with one stone and

defining rules which are valid, mutatis mutandis, for classes of functions

computable in terms of any base algebra. This is quite clear in the

notation of his rules and in his remark that the relation of functions

to conditional forms is given by a distributive law, which we write

here:

103

f(xl, ••• ,Xi _l ' if

if ~l then

else

~l then g else h, xi+l,···,xn

f(Xl'···'Xi_l,g,xi+l,···,xn)

f(xl,···,xi_l,h'Xi+l,···,xn)

s

where g and h are some expressions possibly conditional.

Our relations (1) to (7) come from his relations (1) to (8),

with (4) omitted, and our relations (8) to (12) from this last one.

By using rules (8) to (12) we can put any conditional regular

expression in a strongly equivalent form with the property that no

if-then-else is within the scope of another operator; we can, loosely

speaking, move all the +, &,

if-then-else 's.

and * 's within the

McCarthy's developments are applicable to any such constructs and

our reader is now referred to McCarthy [1963], Section 7, to see hOW,

by application of rules (1) to (7), we can now get two canonical forms,

a weakly and a strongly equivalent one: Essentially this amounts to

~classical disjunctive normal form of BOOlean algebra; the expression

is represented as the disjunction of the values it takes on the vertices

of the hypercube where it varies. When strong equivalence is concerned

some precautions must be taken, due to the non-commutativity.

Because these values are defined by regular expressions, and because

we can recognize the equality of regular expressions, this solves the

weak and strong equality problems of conditional regular expresafonc,

We have proved the following theorem:

Theorem 6.,: Rules (1) to (12) for conditional regular expressions,

together with system <RE,Rl,R2> for regular expressions, form a

104

complete axiom system for co~ditional regular expressions.

We cannot directly use <RE,Rl,R2> for conditional regular

expressions without putting re~trictions on the nature of the conditions:

for instance RI is no longer valid; suppose B; if ~l then D else F,

we cannot write

I.. ~ & B ; ¢ J 1= A SA + C

*1= A =B C

because one could devise a £1 equal to ~ if B belongs to a

monomial terminated by A and to !!!!! otherwise.

In the same way we caonot always write

A* 2 n *.. ~+A+A + ••• +AA

where A is a conditional regular expression, the condition could

be on whether A has an exponent odd of even or is starred.

This difficulty corresponds to the fact that within an expression

a condition £ can refer to the form ~r the cor.text of the expression.

Note that it is natural to associate to a conditional regular

expression the regular expression which is the sum of the values it

takes for all possible values of the conditionals and also to associate

the regular expression which is the intersection of these values. We

may call them respectively the envelope and the~. We wiU not

use these notions here.

105

e) Recursive F\inctions of Regular Expressions

In C(R) , as we did in R, we consider systems S of recursive

equations of the form

i = 1, .•• ,n

ii a conditional regular expression over T+I ,

i.e., a recursive function cf regular expressions.

Here also we first focus our attention on restricted f i 'so

As we have just seen any f
i

can equivalently be written as

if ~l then gl else if ~ then g2 else ••• gp

where gl, ••• ,gp are restricted regular expressions over T+I.

Replacing each f i by its envelope we can associate to a set

defined in that way its envelope which is a context-free language.

Related systems have already been used with different notations

by some authors.

In Chomsky [1965] the use of "features" is advocated to solve

certain vexing problems in the description of natural languages, or

rather of the native speaker behaviour, by transformational grammars:

To each terminal symbol is attached an array of Boolean variables which

specify binary features of that symbol or of its syntactical usage;

for instance "boy" is a name, designating something human and animate,

"to laugh" can have such things for SUbject; just as for instance in

Slagle's DEDUCCM (Slagle [1965]) to each object is attached its

property list. The base grammar derivations are to be made dependent

106

upon these features, so that sentences such as "The harvest was clever

to agree" can be avoided, by not letting any noun be the subject of any

verb in the base grammar. The resulting system is essentially a

cmlditional production system. It seems that this method permits

a considerable simplification of the transformational rules by putting

much of the burden on thiE conditional "base grammar.

In (albert [1966] a class of languages called "analytic languages"

is defined as given by a context-free grammar coupled with a "scan

function". The latter is a function whir.-h computes at each step of a

bottom-up analysis which productions of the grammar are applicable.

In other terms we have a conditional context-free grammar with rules

of the form:

if applicable then A ~ BC else undefined.

The link between conditional context-free systems used for top-down

and bottom-up analysis is in relation (1;).

It is quite obvious that if we allow the Boolean variables to be

equal to any recursive predicate, any recursive set L of strings can

be defined by a system of two conditional regular expressions:

*S .: if given string € L then T else undefined.

This amounts to defining a language by its analyzer written in

whatever formal language is used to specify ~ = given string € L •

lCfl

Since we are concerned with computers, the ability to define any

recursive set is just what we need.

We see also that, as is the case for regular sets, the Boolean

closure of this (:18ss 1s identical to the class itself (Lemmfl 6.1);

nonetheless if it is more natural to define a set with " and

there is no reason not to do it.

It 18 very likely a diffiCUlt, maybe unsolvable, problem to

determine when such systems have a solution. This does not detract

frOlll the usefulness of the formalism: it is not decidable whether an

Alsol 60 prosram will halt and any recursive set can be defined by a

transformational grammar too, this does not bar A1801 60 from being Il

useful tool and transformational analysis a promising one.

f) !!!!!?! Recursive Functions of Regular Expressions

We suggest defining the syntax of languages by way of systems of

recursive functions of regular express ions as follows:

First a number of arrays, auxilliary variables, counters, list

structures, ad libitum, are declared.

These quantities can be manipulated as they can be in Algol 60

or Lisp.

The manipulation on these quantities are coupled to the execution

of the recognizer steps; that is, they are defined by procedures, each

one of which is associated to an equation of the regular form system,

just like semantic procedures are.

The conditions are conditions upon the state of these quantities.

loB

The role of these manipula~ions of li3.u, flags or arrays coupled

with the analyzer steps is in fact to gatller information in advance of

the time it may be called for in a conditional. For instance, when we

parse declarations in Algol 60 we build an identifier table, fO that

later on, when we parse a procedure call, we will knew whether an

actual parameter is an identifier as an array identifier or as e switch

identifier (this is a point where the Algol 60 syntax is deliberately

ambiguous); we can now formalize this. But note that even if an identifier

table was not built, we cou.1J write a :l.~ngthy Boolean function, say in

Lisp, which would examine the program and report whether the considered

identifier has been declared as a switch or as an array. This is why

we do not want to be formal or even precise about the form of these

procedures coupled to the recogniz,~r steps. They just represent a

practical way of implementing Boolean functions by forseeing the '

questions which may be asked.

As for the conditions themselves, we see them as insuring the

determinicity of analysis.

We suggest applying this method starting from an ReF or a simple

precedence language embedded into the set to be defined; in other

words to enhance well-behaved, fast analysis techniques.

It is true that this formalism is no more r-ewerful than unrestricted

rewriting systems and even perhaps context-seasitive cnes, but we submit

that it is incomparably more convenient just as Algo: 60 is more

convenient than Turing machine programming .rhen it come s t.o numerical

analysis problems. In this respect, we be Li eve that. • number of the

problems of language definition have been self-inflicted. Because we

109

are entering the era of compiler compilers and querry systems there is

a need for such a formalism.

g) ~~ Further Research

Let us hint toward further research and first let us remark that

most often the possibilities of syntactical analysis are at present

unl1erexploited and its nature misunderstood. It is nearly always

considered only a8 describing the recognition of well formed sentences

in non-redundant precisely specified languages.

In Wirth [1966) it is shown how a syntactical analyzer can recover

from errors and keep analyzing in certain cases by deliberately using

production rules corresponding to not well formed sentences. This

promising idea calls for some reflections on the nature of syntactical

*analysis: what an actual compiler analyzes is always T as pa~titioned

into a language L plus its complement L'

be done by classical methods.

The handling of L' can

In a multi-pass compiler, the first pass is usually devoted to a

finite state trar.sduction of the terminal ~ymbols, plus a construction

of the identifier tables by blocks, through a declaration scan. We have

never seen this process explained but informally. It can and should

be understo9d as directed by the syntactical analysis of a language L1

in which the given language L is embedded, a language which would

have the same block and declaration structure as L has, but would

admit any string wh~re L has simple statements. So that Ll could

effectively be described:'to a compiler compiler and analyzed by the

same algorithm by which L is analyzed in subsequent passes. This is

110

not or.ly for clarity's sake) systematic methods are invariably more

efficient. In the particular case of a language organized as Euler

is, we see that this first pass analysis can be accomplished by just

one finite state automaton calling itself recursively at each block

entry. On the other hand, subsequp.nt passes should not have to

analyze the declarations or check the block structure. What is done

is to represent L as the intersection Ll & L2 of two languages

where L2 is obtained by replacing in L the declarations by any

strings. L is accepted when Ll ~ L2 are consecutively a~cepted.

In the field of "natural language" interaction with computers, we

have either ad hoc specialized systems which perform rema~kablywell,

such as Weizenbaum's Eliza (Weizenbaum [19~£ji, Colby's on line belief

system analyzer (Colby [1966), Abelson and Caroll's simulator

(Abelson and Caroll [1965), or on the other hand general and theoreti­

cally grounded systems, fairly rigid and hardly field u;;;able, such as

the! Mitre system (Zwicky, Friedman, Hall and Walker [1965]). All of the

ad hoc programs do not care much ~bout grammatical correctness and do

not extract all the possi'Jle information of a sentence. ~·e believe

that this is necessary t.o llatural language handling and can be

formalized by the methods of syntax description we have outlined.

Last, some recent papers have shown how the theory or the techniques

of syntax analysis can be applied in such apparently unrelated fields

as number theory (Schutzenberger [1966) and c;ombinatorial problems

of geometry (Gross [l96Gl); there may be other elements in diverse

disciplines where such elegant generalizations can be made, in return

111

we might expect from them some more insights into the mathematical

nature of syntax analysis, possibly in th~ form of a theory of the

constructive solutions of combinatorial problems; the first steps in

that direction are perhaps to be found in Riguet [:962].

112

APPENDIX 1

*Ax~ om System !!!.!!~ .2! Inference.!2!: T

(1- is unde.rat.c o i ,)

The following sys~~~ is obtained by minor modifications of an

axiom system for the expressions of predicate calculus in prefixed

form, published in Tarski [1956], VIII, Section 2, page 173. It was

communi~ated to 11S by D. Scott.

(0)

(1)

(2)

(4)

*). E: T

*TCT

il- *a E: T i~ E: T
*013 E: T

aa = be
a = b,a = ~

xa = a

X E: A,TA c A

*A = T

Note the rese~blance to the Peeno's axioms for natural numbers. Note

also that (5) is a particular case of Rl, first rule of inference

for RE.

Axioms for first, and rest ~re: (after McCarthy [196,]).

(6) first(aa) = a

(7) rest(aa) u

113

(8) a = if a = ~ then X else first(a)rest(a).

It is possible to take first and rest as primitive, define

concatena~ion of strings from concatenation of a letter to a string,

taken as primitive, by:

(9) ~ '" if a =). then ~ else first(a)(rest(a)~)

and replace (5) by the recursion induction principle (McCarthy [1%3],

p-se 58, 59) in which case (3) and (4) are no longer needed.

Then we need as in Section 6d the McCarthy's rules to manipulate

tbe nesting of if-tben-else's and 3 rules expressing the distributivity

of if-tben-else over first, rest and equality (see Section 6d, or

McCarthy [1963] page 55 and 58).

We have chosen this last approach, since we have defined in

Section 2 la\, an and oR by recursive conditional expressions.

Let us first give some examples of the first one, aft~r what we shall

derive some relations by the second approach. In particuJ.ar, we shall

prove (3) and (4), thus showing the equivalence of the two approaches.

en = a

Proof: Let A = {a\CX'l. = o] , ~: A by (:~), TA c A by (4), thus

*A=T by (5:.

Associativity: a(~y) = (~)1

Proof: Let A = {ala(~y) = (~)y}, A E A by (3), TA c A by (4),

whence A" m* by (5).

114

Left cancellation: ~ = a., ~ I' = r

Proof: Let A = (ol~ = 0., ~ I> = .,} , ~ € A by (3), TA c A by (4)

*and (2), whence A = T by (5).

Refinement: ~ =16 ~ (~~)[o~ =., or t~ = 6]

Proof: Let A = (O!0f3 =)'6 ~ (3~)[O~ = 1 or U3 = 6] for any

*~,.,,6 € T } , A € A by (3), with ~ = .,; TA C A by (2), whence

*A = T by (5).

(ii) (The methodology and 12, 14, and 13 below are in McCarthy (19631)

(10) first(QI» = if 0 = ~ then first(l') else first(

rest(OI» = if 0 = ~ then rest(~) esl~ rest(O)~.

Proof:

first(QI» first(if a = ~ then ~ else first(O)(rest(o)~» by (9)

if 0 = X then first(~) else first(O)

and by distributivity of if-then-else over functions.

Same proof for rest (01))

(3) xo = 0 by (9).

(11) ~ = A :$ 0 = ~ = A •

Proof:

~ = A :$ (if a = ~ then ~ else first(a)(rest(O)I'» = l

by (6)

:$ if a = ~ then ~ = ~ else first(a)(rest(a)l') = l

~ if a = ~ then t3 = A else false by (1)

(12) ~ =ex

Proof: ~ = if ex = X then \ else first(ex}(rest(ex}X}

= if ex = X then \ else first(ah)(rest(~»

by (10). This has the form of (8). Whence 00. = 0 •

(4) (~)7 =if ~ = X then 7 else first(~}(rest(a~)l)

= if ralse then 1 else a(el)

= a(137)

(13) Associativity:

a(er) ... if a = X thlm 137 else first(O)(rest(a)(137»

(~h = (if a=\ then 13 else first(a)(rest(a)e»7

= if a = X then 137 else (first(a)(rest(a)l3) h

... if a = \ then 137 else first(a)«rest(a)l3}r}

by (4).

Whence a(137) = (~h as they br·th satisfy equations of the form

(14) Left cancellation.

~ = cx7 ~ (if ~ = A the~ 13 else first(a)(rest(ex)I3)} =

(if ex = A the~)' else first(ex)(r~st(a)7»

• if ex: A then 13 = 7 else first(a)(r~ct(a)l3)=

first(a)(restta)r)

~ if a = l then 13 =)' else rest(a}13 = rest(a)r

116

by (2), of the form

p(a,~,7) ; if a; A then true else P(rest(a),~,7)

whence f3 = 7 .

(15) Refinement.

~ = I::''' (if a = A then f3 else first(a)(rest(a)~))= 76

.. if a = A then f3 = 76 else first(a)(rest(a)~) ; y6.. if a; A then a7 ; 7 else y6 ; first(a)(rest(a)~)

~ if ex = A then (~~)[a~ = y] else

if 7 = X then ce = Ii else f1rst(a)(rest(ex)f3) =

first(7)(rest(7)6)

~ if ex = A then ('if~)[a~ = 7) else if 7 = X then (1~)[~~ = 6)

else first(a)(rest(a)~) = firsth')(rest(y)6)

~ if a = X then (~~)[at; 7] else if)' = A then (~t)[~~ = 6]

Of the form:

else rest(a)~ = rest(y)6 by (2).

p(a,f3,7,1i) = if a = A v 7 = A then true else P(rest(a),f3,rest(y),6)

whence CXf3 = 76 • (~~)[ex~ = 7 V ~f3 = 6)

Proof:

(~)R = (if a = A then f3 else first(a)(rest(a)f3))R

if a = X then f3R else (first(a)(rest(ex)~)R

Hi

R
K if a = l then ~ else if first(a)(rest(a)~)= X then

X else rest(first(a)(rest(a)~»Rfirst(first(a)(rest(a)~»

R R= if a = l then ~ else (reBt(a)~) first(a)

while

~RQR = ~R(lf a = l then X else rest(a)Rfirst(a»

• if a = X then ~R else ~R(rest(a)Rfirst(a»

K if a = X then ~R else (~Rrest(a)R)first(a)

both equations of the form.

f(a,~) • if a = X then ~R else f(rest(a).~)first(a)

(17) rP. a

JfP' = (if R RProof: a = X then). else rest(a) first(a»

=1f R R
0: =). then). else (rest(a). first(a»

RR= if a =). then). else first(a)rest(a) •

On the CJther hand

a = if ex = A then l else first(a)rest(a)

whence aRB =a .

(18) Right cancel1aticn. ~ = -ra =$ ~. 'r

by (16), (17), and (14).

1:'..8

For the remaining relations we need the following definition,

for n,p ((1 •

n + P - if n = 0 then p else n- + p'

n I successor of n, p predecessor of p. (See McCart.hy[19631.)

tal'" if a '" ~ then 0 else 1 + \res4;(a>l

if a -= ~ then 0 else Irest(a) I'

(19) I~' lal + \13\
Proof:

1at31 Iif a ~ ~ then f3 else first(a)(rest(a)t3) I
if \al - 0 t.hen

if 'al = 0 then

1131 else !first(a)(rest(a)t3)\

113\ else Irest(a)t3! '

It is possible to prove (ibid.) that n- + p' '" (n- + p)'

whence ~~\ = \a\ + \f31 since ~rest(a)\ = \a\- by definition.

(20) ePaP '" cfl+P

Proof:

ePaP '" (if n = 0 then ~ else :f-~>aP

'" if n '" 0 then a P else eP ooP

= if n = 0 then aP else r:f1-ap l

whence r:f1c! = r/+P •

119

APPENDIX 2

~ Context-free Grammar!2! R

We give • context-free grammar for R in BNFj the symbol

stands for the metalinguistic +; we take T = {a,b,c,d} for

instanee:

R ::= ~1~1

a Ib\c \d!

(R) I
R + RIR i R\~ • RI
R'\R*

Note that this grammar, which follows exactly the formal

definition of ~, is ambiguous. This corresponds to the necp.ssity

of priority rules for interpretation.

120

APPENDIX 3

Some Relations Derivable!!2! <RE,Rl,R2>

(i) Boolean relations: (Huntington [1904] except 6th and 7th).

(bl) to (b8) are globally invariant under an exchange of +

and & , *(~) and ¢. Each derivable relation has its dual

obtained by this permutation.

-- There is no X ~ ¢ such I-A + X = A for all A. Otherwise

we would have I-x + ¢ = X = ~

of the lattice e is unique.

*Dually the maximal element (T)

I-A + (T)* = (A + (T)*) &: (T)* = (T)* &: (A + (T)*) =

* * *(A + A') &: (A + (T)) = A + A' &: (T) = A + At (T)

I * *thus -A + (T) = (T) and dually I-A &: ¢ = ¢ .

Absorption Law.

I-A + (A &: B) = A & (T)* + A &: B ~ A &: ((T)* + B)

* *A & (B + (T)) = A &: (T) = A

tnus I-A + (A & B) = A and dually I-A &: (A + B) = A •

-- The inverse is unique. Suppose A has two inverses Ai and A2

1-A2= (T)* &: A; ~ (A + Ai) & A2= A & A2+ Ai & A2=

¢ + A' & A' = A' &: A + A' • A' = At' (A + A
2'

)
1 2 1 1 2 1

*= Ai • (T) '" Ai •

121

(De Morgan I slaw)

I-A + B = (A' • B')

Proof: firstl-A + (A' + C) ~ (T)* and dually I-A ~ (A' & c) ~ ~

siDce ..I-A + (A' + C) ~ (T) • (A + (A' + C» ..

(A +- A') • (A + (A' + C» ~ A + (A I • (A' + C» ~

*A + II' z: (r)

then

/-(A + B) + (A' • B') • «A + B) + A')' «A + B) + B').

* * *(T) • (T). ~ (T).
I-(A + B)' (A' • B') • (A(A' • B'» + (B(A' & B'» =

¢ + ¢ = ~

whence

I-A + B = (A' & B')'

and dually

j-A & B = (A' + B')'

• 11-

-- ,I-¢' ~ (T)

Proof: I-¢ + (T)* = (T)* and I-¢ & (r)* = ~ .

-- I-(A'), = A

Proof:

I-A .. A + ¢ .. (A' • ~')' = (A' & (T)*)' (A')' •

122

Associativity.

Let (A + B) + C = X and A + (B + e) = Y •

(A' 8: B') & e' = X' •

*W~! have I-Y + A' = Y + B' = Y + C' (T).

Proof: l-Y + A' = A' + (A + (B + C» = (T)* .

I-Y + B' = (T)* & (3' + Y) • (B' + B) • (B' + Y) =

B' + (B & Y) = B' + (B & (A + (B + C» =

B' ... (B &A + (E & (B + C») =

*B' ... (B & A + B) = B' + B = (T)

similarly for Y + '":' •

Dually I-xI 8: A '" X I & B = X I & C .. ~ •

Now

I-y + Xl = Y + «A' & B') & C') ""

* * 4 *«Y + A') & (Y + B' » Be (Y + C') = «T) & (T))8o (r) = (T) •

l-x: Be Y = X' (A + (B + cj) '"

«X' Be A) + (X' & B» + (X' Be C) .. (¢ + ¢) + ¢ = ¢
hence

I-x"" Y and j-A + (B + c) = (A + B) + C .

Dually I-A 80 (B Be C) = A Be (B & C) •

123

(ii) other relations (first, in Aanderaa [19651, Saloma. [1966]).

-- I-¢A= ¢ .

I~ = ¢ .. I~(~) '" •

• 1-15(.) + ~ = 1M • I.... = ~*¢ = ~ •

I~* '" ~ by (sl) ec! above.

I-M. A

Proot:

1-1. • A + ~ = A -r ¢A .. 1M '" piA + A ~

1-11 0: (J*A .. >.A

-- I-A".).
Proof:

*. *I-A .. (>. + ~) ,. fJ e- >.

, .. 2 n* ().-A ,. >.. + A + A +. •• + A A ~n

by (61) and the principle of complete induction for integers.

-- 1-11* '" (A - >,,)* where, as usual, A - B = A & B' •
.. '

P~f:.,l
~" ~ "\f. 1-.* c (A & >.' + A & >.)* .. (A - >.)*

in all cases.

124

Proof:

* * *I-A = l + AA l + (h & A' + A & A)A

* *'" l + (A - l)A + A

* * *in all cases since I-A = A + A •

* * * * *Whence I~ • (A - l)A + A since I-A = X + A by (al),

whence, by Rl

* * * * *I-A '" (A -),) A = A A •

1-)., 8& A '" A • I~* = A* .

Proof:

* *1->.. & A =" • I-A & AA '" A & (A + l)(A + l)

whence

I-}.. Be AA* '").

* * *I-AA =), + AA = A

I-AA* = A(A + AA*) '" A + AM* = A + (A & X')AA* + (A & >..)AA*

I-AA* = (A 110).')*eA + (A &),)AA*) = A*A + A*(A. >")AA*

if I-A & A • we obtain '-Aft.* = A*A

if I-A & >.. =" we obtain

125

\ : ,~

/, .j'; * * * * * * * * • * * *
¥ \ !--r;1 = A A + A)J.A .. A A + A ItA = A A + A, A • A A + A

* * * *whei~e I~ =" .. A A + A •
t.,

On the other haDd 1-1.. 1 "" 1 • 1-1. ="A ... ~ whence

1 * * * * * ..-I. A • A (~ + A) .. A + A A .. A A + A

{

I-A* • A·A + A* *.
• I-A .. A A

~I-A A .. A A + A

.1Dee I-A" .. ItA* we obtain ~"'dea1red relation.

... ..I-A .. A

Proof:

I ... * .. * * • .. ••-A .. A A .. (A Ie l')A + (A • l)A .. (A -).)A + A

I .. * *. *** ***• -A .. (A -~) A .. A A .. A A .",
but

I * ,* *** **-A Ie A = A Ie lA + A) .. A = 1-1. A = A

whence

1 ** *-A .. A

Note on rule Rl.

In

I~(B) .. ¢,I-A .. BA + C

I-A .. B*C

we do need I~(B) .. ~ •

126

'e.g.: 1-1* '" u* +). since 1-8.).It IIIld

I-A* + ~ ~ A* by (sl).

·lrhis wmdd imply I-A* .. X if we had not I~(B) '" ¢ In.lU.

(Generally, we could derive I-A = \. or 1-1\ .. ¢ for any A, ,1uat

as one ellll derive that any nUlllber is equal to any nUlllber by diT1alon

cyzero:)

* III *
Note that we have shown that I-A = (A. - ~)

lin

.... i

torae!

var-

2:

4:

\
Euler fa defined by tbe following con-t,f!xt-free grammar (Wirth

aad Weber (~964}) in whicb Euler parentheses are denoted f and } ,

+ by (!) _\ ~ IItendlag for Identifier, by r , in order to avoid

CQIlfl181oal: \
\

1: vvdec1. \..~ 1
\

~: labdecl ~~ 1

5: var~ ~var- {expr} 6: var- var- 0

7: var -f. var- 8: logval -+~

9: logval -+ !!1!! 10: digit -+0

0 . 0 0 0 0 0 0

19: digit 9 20: inte~er- -+ digit

21: integer- -+ integer- digit 22: integer' -+ integer-

23: real' -+ integer' o integer , 24: real' -+ integer'

25: number -+ real' 26: number ~rea1,10 i4teger'

27: number -+ re8:~ , 10':' integer I 28: number -+ 10 integer'

29: /lumber --+ 10 .:. integer' 30: reference -+@¥ar

31: listhead .-+ listhead expr , 32: listfiead -+ (

33: list' -+ liathead expr] 34: list' -+ l1sthead)

35: prochead -+prochead fordecl; 36: prochead -+"

37: procdef,. prochead expr 38: primary -+ var

39: primary -+ var list' 40: primary -+ logval

41: primary number 42: primary -+13

43: primary -+ reference 44: primary -+ list'

128

4:; :

1,7:

49:

51:

53 :

55:

57:

59:

61:

63:

65:

67:

69:

71:

73:

75:

77:

79:

81:

8;:

85:

87:

89:

91:

93:

95:

primary -+!!ll. primary

primary "'0

pr Lmary "'!!2

primary -+~ var

primary -+.!& var

primary -+~ var

primary, -+~ var

primary ~ length var

primary ~ primary

primary ~ primary

factor- -+factor- t primary

term- factor

term- term- / factor

term- ter~· mo~ factor

sum- tern;

sum- - term

sum- sum- - term

choice- ~um

choice- "'choice-!!! sum

relation'" choice

relation "'chcice, cho~cp.

relation'" choice ~ choice

relation "'choice > choice

negation ...~ relation

conj- "'conjhead conj

conj ... conj-

46:

48:

50:

'32:

54:

56:

58:

60:

62:

64:

66:

68:

70:

72:

74:

76:

78:

80:

82:

84:

86:

88:

90:

92:

94:

96:

129

primary -+ procdef

primary -+ (expr)

primary -+~ var

primary -+.!!!: var

pri~ry -+.!.!1! var

primary!!E var

primary ->~ pri_ry

primary -+ integer primary

primary -+ logical primary

factor- ... primary

factor -+factor-

term- -+ term- lC factor

term- -+ term- + ractor

term term-

sum- 0 term

sum- -+ sum- 0 term

sum -+ sum-

choice- ... choice- .!!!!!l sum

choice -+choice­

relation -+ choice .. choice

relation -+ choice < choice

relation -+ choice ~ choice

negation -+relation

conJhead -+negation ~

conj- -+negation

disjhead ... conj V

'17: 4isj ... disjhead disj 98: dis", con",

~,: catena ... catena ,. primary 100: catena ... disJ

101: tl'Ulput ... expr !!!!. 102: ifclause -+ !! expr~

lCJ;5: Upl'- "black 104: expr- ... ifclause truepart
expr-

105: upl'- "'var .. expr- 106: expr- ... goto prll11&ry

lC!T: expr- ...£!!l upr- 108; expr- ... catena

109: upI' ... expr- 110: stat· ... labdef atat-

111: stat- "'expr 112: stat .., stat·

m: laWe! -. 1 : 114: blokhead ... begin l

115: blokhead ... blokhead vardec1; 116: blokhead .., blokhead labdec1;

117: blokbody"'blokhead 118: b1okbody ... t>lokbody stat

119: block ... blokbody stat !n2. 120: programL block J.

In order to III&ke the system of equations obtained by regular expressions

manipulation techniques more readable, we do not fully eliminate all the

variables which can be eliminated; i.e., all but expr, but leave it

in the form:

program f l(b10Ck)

block f2(expr)

expr f~(expr,primary,b10ck,catena)

catena f4(negation,primary)
negation = f5(sum)
sum f 6(pr i mary)

primary f 7(expr)

130

•
negation

h
expr is common to all circuits.

f 1 corresponds to rule 120

f 2 119-110, 1, ,

109-101, 7~

100-64

6,-4, 2

program = J. block J.

* * ••block = besin «E!! i +~ i);) (1:) expr(;(i:) expr) !!!!!

* *expr .. (~ + .!! expr~ expr~ + i([expr] + .) ~)

(soto primary + block + catena)

* * * *catena = «negation A) negation V) (negation A) negation(" pri_ry)
II-

negation .. h +).)sum«!!!!! + !!!!!1)SUDI)

*(A + (> + ~ + ~ + < + ~ + =)sum(!!! + ~)sua))

*sum = (A + - + (!))primary(t primary)

«~ + + + / + aD)pnlll8.ry{ t

*«- + 0)primary(T primary)

«~ + + + / + aD)primary(t

1'1

* *primary))

* * *prll118ry)))

*primary = (~ + .ll!i + losical + !!!! + integer + length + ~)

«1!!! + .!!a + 1!l + .!!ll + 1!!.! + l!!. + .!!!l + ~)

*i([expr] +.) + ..
.!a + [expr] + 0 + (J + • (!2!!!!!! i;) e:'Cpr' +

* *(expr,) expr] +. i([expr] +.) +

*(0 + ••• + 9) (0 + ••• + 9)

(l + '(0 + .~. + 9)*(0 + + 9»)

(l + lO(~ + ~)(O + ••• + 9)*(0 + ••• + 9» +

lO(l + ~)(o + ••• + 9)*(0 + ••• + 9) +

* *i([expr] + .) (k + (expr;) expr) +~ + f!l!!

We have here, in less than one page the context-free syntax of a

systematic generalization of Algol 60. At the same time this syntax

specifies a high speed analyzer for the language.

If such expressions are not easy to handle for a human beins,

they are well ad.pted to machines.

Note that by not completely eliminating the variables Which can

be eliminated, one can reduce the total size of the tables; for

instance, i', would be unwise to eliminate primary in sum while primary

is repeated 8 times in sum. In the same way the construct

*(0 + ... + 9) (0 + ••• + 9) occurs 4 times in primary, it sb:lUld be

replaced by a variable, unless somebody is interested only in speed

since naturally the introduction of spurious variables reSUlts in more

pushdown manipulation., and a speed loss. On the other hand, introducing

extra variables can result in considerable space savings when the

corresponding extra automata use but a small fraction of the alphabet.

132

APPENDIX 5

Computation £[n

By Definition 5.2:

There are well-known techniques fer the computation of first(X2)

when X2
is context-free.

We are going to give an algorithm to compute fir~t(~ Xl). An
1

example is given at the en: of this Appendix.

(i) For regular form systems.

Let us set ft(X) = first(~) •

Consider the subsystem of X.

The equation of X has two possible forms:

a)

b)

X = 1: aB + 6(X)
adirst(X) a

X = yz

By definition, we see that, respectively:

a)

b)

ft(X) = 6(X)·first(X) + 1: ft(B)
aefirst(X) a

ft(X) = 6(Y)·6(Z)·first(X) + ft(Z) + 6(Z)·ft(Y)

So that to compute ft(X) we need compute the

or ft(Z) and possibly ft(Y) •

ft(B)• 'terms

Bote that &(A) I where A is a context-free set, is easy to

compute.

We do the same manipulation on ft(Ba) or ft(Z) and ft(y)

and we expand ft(X) in that way.

I is finite. When in expanding ft(P) we meet ft(P) we

naturally' do not start computing it recursively', it would amount to

write A. B + A + A + A + ••• ; instead, we just leave it in the

expression, so that we will end up with something of the form:

ft(X) = 1: first(A) + 1: ft(Z)
11 12

This implies r first(A) ~ ft(X) •
1

1

Le't us shOll that rt(X) c 1: first(A)
- I

l

No Vl'riable Z in the 1: ft(Z) term depends upon a variable
I 2

not in I l + I 2 ' by hypothesis.

If I l = ~ no variable contains \, this implies X = ~ ; the

initial system should be simplified; let us suppose then that 1
1

~ ~

Suppose (:Jb)[b E ft(X) f\ b I. L first(A») •
II

b necessarily' occurs in a type a) rule, these are the only rules

containing letters:

(:!b)[B = a~baBa + b~ + II(B»)

and

b € ft(X) ~ x>* B " 6(B) '" A ~ B E 11 ~

b € first(B) ~ L first(A)
1

1

a contradiction.

Thus ft(X) S Lfirst(A)
11

so that ft(X) '" ~first(A)

1

In graph terms what we do is very simple: We consider all the

nodes which are exit points (Xi such that 6(X
i

) = A), the labels

of the vertices going from these nodes yield the elements of ft(X l) ,

unless they correspond to an equation of type h, in which case a little

more work is required.

(ii) for s'-grammars.

The same algorithm, with obvious variations will work for s' -grammars

or we can reduce an s'-grammar to a regular form system as follows:

reduce to an s'-2-grammar (Corollary 5.9).

-- to a rule X -+ aX1X2 acaocfate a term ~ , ~ a new symbol,

in the equation of X , and add the equation ~ = X1X2• Take

6(X) = A in the equat.1on of X if and only if X -+ A occurs in the

s'-2-grammar.

(Iii) for fer grammars.

An algorithm is discussed in Schorre [1965). It works on the same

principle that the one in (i), which we could clearly adapt to

fcr grammars too, but is s:>mewhat more complicated.

135

Example.

Let us take the regular form system which we use as an example

for Theorem 5.8:

Ai .. iA 2 + [A:5

A2 .. -1 + !!Ai + >.

A} .. A1A4

A4 ..]A
2

IN OUT

ft(A
l)

.. ft(A2) + ft(A~) expanding ft(A 2)

.. 8 + 0 + ft(A l) + ft(A:5) expanding ft(A,)

.. II + 0 + ft(A
l)

+ ft(A 4) + 6(A4)ft(A l)
+ 6(A

l)6(A4)first(A l)

= II + 0 + ft(A l) + ft(A2) all the ft terms have been met.

=8+0

as we have Just proved, and as is obvious from an examination of the

graph.

APPENDIX 6

~ Conjecture~ ~ ~ Boolean Closure of Context-free Languages

(i) Ambiguity and inherent ambiguity.

Since a set belonging to the Boolean closure of context-free

languages is deterministic context-sensitive, it has a non-ambiguous

context-sensitive grammar (see in Kuroda [1964] the one-to-one

correspondence between a linear b~~nded automaton computation and a

context-sensitive grammar derivation).

This is true even of such a context-free language as:

which is inherently ambiguous for any string of the non-context-free

intersection of its two components (Parikh (1961)). This fact evokes

the Boolean equality

A + B = A Ii: B' + B

which shows how the set ~OUld be defined without overlapping.

providing an intuitive but possibly wrong explanation for the

existence of a non-ambiguous context-sensitive grammar defining it.

This yields another question: Is every inherently ambiguous

language the union of two context-free languages such that their

intersection is not context-free?

There are very few inherently ambiguous languages known (see

Ginsburg and Ullian [1966]. Hibbard and Ullian [1966]) and it is tbe

case for all of them.

137

Let P be the context-tree set of all palindromes without central

~ker. (Even ~alindromes.)

*We conject1!re that the context-free sets P·T and p.p are

,nherently ambj~ous. Unf~rtunately the Parikh and Ginsburg techniques

are not applicable here. We have been able to obtain only partial

*results for PT by studying the ways in which an even palindrome can

be embedded into another one.

(ii) Characterization.

Another interesting research topic is to try to characterize the

Boolean-closure of context-free languages by a property similar to

the important Bar-Hillel, Perles and Shamir theorem 4.1: A is

context-free and infinite •

Thia theorem is a non-commutative restriction of the Parikh

mapping theorem; the results of Ginsburg and Spanier [1964], [1966],

on the Boolean closure of semi-linear sets make it a reasonable

conjecture that a similar commutative mapping theorem can be obtained

for the Boolean closure of context-free languages.

On the other hand a number of reSUlts on this class can be

gathered from results on context-free languages, such as the undecidability

of the emptiness problem (see Theorem 5.18). A family of endomorph isms

at this class has also been studied by Schutzenberger (1964).

~8

REFERENCES

Aanderaa, S. [1965]. "On the algebra of regular expressions". Harva."<1

University. Mimeograph.

Abelson, R. P. and Carrol, J. D. [1965]. "Computer simulation of

individual belief systems." American Behavioral Scientist.

Vol. VIII. No.9. p. 24-30.

Arden, D. N. [1961]. "Delayed logic and finite state machines."

Proceedings of the second annual symposium on switching theory

and logical design. (AlEE). p. 133-151.

Bar-Hillel, Y., Perles, M. and Shamir, E. [1961]. "On formal properties

of simple phrase structure grammars." Zertschrift fUr Phonetik,

Sprachwissenschaft und Kommunikationsforschung. Vol. 14. p. 14~-172.

Also as Chapter 9 in Bar-Hillel, Y. [1964]. "Language and

Information", p. 116-150, Addison-Wesley, Reading.

Berge, C. [1958L "La th~orie des graphes et ses applications."

(in French.) Dunod , Paris. (English translation: "The theory

of graphs and i til applications", Wiley (1962), New York.)

Braffort, P. and Hirschberg, D. (Eds.) [1963]. "Computer programming

and formal systems." (rcudies in logic and the foundations of

mathematics.) Nortn-Holland Publishing Company, Amsterdam.

Brzozowski, J. A. [1964]. "Derivatives of regular expressions." Journal

of the ACM. Vol. 11. p. 481-494.

Brzozowski, J. A. and McCluskey, E. J. Jr. [1963]. "Signal flow graph

techniques for sequential circuit states diagrams." IRE Trans.

on EC. Vol. 12. p. 67-76.

139

Carr, John W. III, Weiland, J. (1966). "A non-recursive method of Syntlix
\

specification." COlIIll. of the ACM. Vol. 9. p, 267-269.

[]
It \ It

Chomsky, N. 1959a. On certaih formal properties of grammars.

Information and Control. Vol. 2. p, 1~7-167.

Chomsky, N. [l959b]. "A note on phrase structure grammars." Information
I

and Centro1. Vol. 2. p, 393~395.

Chomaky, N. [1963]. "Formal properties of granmars." in Handbook of

mathematical psychology. Vol. \ 2, Chapter 12. p, ~~-4l8.

Luce, Bush and Ga1anter (Eds.).1 J. Wiley, New York.

Chomsky, N. (1965). "Aspects of the theory of syntax." The M.I.T.

Press, Boston.

Chomsky, N. and Miller, G. [1958]. "Finite state languages." Information

and Control. Vol. 1. p, 91-112.

ChOlllSky, N. and Sch~tzenberger, M. P. [1963]. "The algebraic theory of

context-free languages." in Braffort &nd Hirschberg (Eds.) [196~1.

p, 118-161.

Church, A. [19;6). "Introduction to Mathematical Logic." Vol. I.

Princeton University Press. Princeton.

Colby, K. M. [1965]. "Computer simulation of change in personal belief

systems." Paper delivered in Section L2, the Psychiatric Sciences,

General System Research, AAAS Berkeley Meeting, December 29, 1965.

" ,Culik, K. (1962). "Formal structure of Algol and simplification of its

description." in Symbolic languages in data processing. p. 75-82.

Gordon &nd Breach, New York.

Davis, M. [1958]. "Computability and unsolvability." McGraw-Hill,

New York.

140

Floyd, R. w. [1963]. "Syntactic analysis and operator precedence."

Journal of the ACM. Vol. 10. p. 316-333.

Floyd, R. W. [1964). "Bounded context syntactic analysis." Comm. of

the ACM. Vol. 7. P' 62-65.

Friedman, J. [1957]. "Some results in Church's restricted recursive

arithmetic." Journal of symbolic logic. Vol. 22. No.4. p, 337-342.

Ghiron, H. [1962]. "Rules to manipUlate regular expressions of finite

automata." IRE Trans. on EC. Vol. 11. p, 574-575.

Gilbert, P. [1966]. "On the syntax of algorithmic languages." Journal

of the ACM. Vol. 13. P' 90-107.

Ginsburg, S. [19661. "The mathematical theory of context-free languages."

McGraw-Hill, New York.

Ginsburg, S. and Greibach S. [1965]. "Deterministic context-free

languages." SDC report TM-738/0l4/oo. May 7, 1965. AlSO, in

Information and Control. Vol. 8. (1966). p. 620-648.

Ginsburg, S. and Harrison, M. A. [1966]. "Bracketed context-free

languages." SDC report 'fM-738/023!OO. Jan. 4, 1966.

Ginsburg, S. and Rice, H. G. [1962]. "Two families of languages

related to Algol." Journal of the ACM. Vol. 9. p, 350-371.

Ginsburg, S. and Rose, G. F. [1963]. "Operations which preserve

definability in languages." Journal of the ACM. Vol. 10. p, 175-195.

Ginsburg, S. and Spanier, E. H. [1964]. "Bounded Algol-like languages."

Transactions of the American Math. Soc. Vol.. 113. p, 333-368.

Ginsburg, S. and Spanier, E. H. [1966]. "Semigroups, Presburger

formulas and languages." Pacific Journal of Mathematics. Vol. 16.

p. 285-296.

141

Ginsburg, S. and Ullian, J. [1966]. "Ambiguity in context-free languages."

Journal of the ACM. Vol. 13. p, 62-89.

Greibach, S. A. [1965]. "A new normal form theorem for context-free

phrase-structure grammars." Journal of the ACM. Vol. 12. p. 42-52.

Gross, M. [1966]. "Applications g~o~triques des langages formels."

(in French.) ICC Bulletin. Vol. 5. No.3. p. 141-161.

Hibbard, T. N. (1966]. "Scan limited automata and context limited

grallllll&rs." To appear.

Hibbard, T. N. and Ullian, J. (1966]. "The independence of inherent

ambiguity frOlll complementedness among context-free languages."

Journal of the ACM. Vol. 13. p, 588-593.

Huntington, E. V. [1904]. "Sets of independent postulates for the

a18ebra of logic." Trans. Amer. Math. Soc. Vol. 5. p, 288-309.

Irons, E. T. (1964]. ""Structural connections" in formal languages."

Comm. of the ACM. Vol. 7. p, 61-71.

neene, s. c. (1951]. "Representation of events in nerve nets and finite

automata." RAND research memorandum RM-704 (12/15/1951) and in

Shannon, C. E. and McCarthy, J. (Eds.) (1956]. p. 3-41.

Knuth, D. E. [1965a]. itA list of the remaining trouble spots in

A18o1 60." AB19.}.7 Algol Bulletin No. 19. p, 29-38.

Knuth, D. E. [1965b]. "On the translation of languages from left to

right." Information and Control. Vol. 8. p, 607-639.

Knuth, D. E. and Merner I J. N. [1961). "Algol 60 Confidential."

Comm. of the ACM. V~l. 4. p. 268-272.

142

Korenjak, A. J. and Hopcroft, J. E. (1966). "Simple deterministic

languages. " Technical report No. 51, August 1966. Princeton

University. Also in the proceedings of the 7th annual symposium

on switching and automata theory. (IEEE). p, 36-46.

KUno, S. and Oettinger, A. G. [1962). '~ultiple-path syntactic

analyzer." In Information Processing 62 (IFIP congress).

p. 306-311. Popplewell (Ed.), North-Holland, Amsterdam.

Kuroda, S.-Y. [1964]. "Classes of languages and linear bounded

automata. " Infonnation and Control. Vol. 7. p, 2(J] -223.

Landweber, P. s. [1964]. "Decisiar. problems of phrase structure

grammars." IEEE Trans. on EC. Vol. 13. p, 354-362.

Letichevskii, A. A. [1965]. "The representation of context-free

languages in automata with a push-down type store." Cybernetics

(Kibernetika). Vol. 1. No.2. p. 81-86. The Faraday Press,

New York.

Medema, P. [1965]. "Another trouble spot in Algol 60." AB 20.3.7.

Algol Bulletin. No. 20. p. 47-8,

McCarthy, J. [1960]. "RecUT3ive funct;!.ons of symbolic expressions and

their computation by machine. Part I." Comm. of the ACM. Vol. 3.

p, 184-195.

McCarthy, J. [1963]. "A basis for a mathematical theory of computation."

in Braffort. P. and Hirschberg D. (Eds.). [1(63). p. ~3-70.

McNaughton, R. [1965]. "Techniques for manipulating regular expressions."

M.I.T. Project M.A.C. Machine structure group memo No. 10.

McNaughton, R. and Yamada, N. [1960). "Regular expressions and state

graph for automata." IRE Trans. on EC. Vol. 9. p. 39-47.

143

M\'ores E. F. [19561. "Gedanken-experiments on sequential machines."

in Shannon and McCarthy (Eds.) (l956). p. 129-153.

Nt.'Ur, P. (se.) [19631. "Revised report on the algorithmlc language

ALGOL 60." Comm. of the ACM. Vol. 6. p. 1-17.

Parikh, R. J. [1961]. "Langu~e generating devices." Quarterly progress

report Bo. 60. Research Laboratory of Electronics, M.r.T.

January 1961. p. 199-212. Reprinted with minor editorial revisions

under the title: "On context-free languages. 11 Journal of the ACM.

Vol. 13. p. 570-581.

POlt, E. £19441. "Recursively enumerable sets of positive integers and

their decision problem~" Bulletin of the American Math. Soc.

Poat, E. [1946]. "A variant of a recursively unsolvable problem."

Bulletin of the American Math. Soc. Vol. 52. p, 26!~-268.

Rabin, O. and Scott, D. [1959]. '~inite automata and their decision

problems." IBM Journal of Res. and Dev.. Vol. 3. p, 114-125.

Redko, V. N. (1964). "On ~efining relations for the algebra of events."

(10 Ruslian.) Ukraine Mat. Z.. VOl. 16. p. 120-126.

Riguet, J. [1962). "Programmation et theories des categories."

(in French.) in Symbolic languages in data processing. p. 83-98.

Gordon and Breach, New York.

Ross, D. T. [1964). "On context and ambiguity in parsing." Comm. of

the ACM. Vol. 7. p, 131-133.

Rudeanu, S. (1963). ltAxiomele laUciar ,!i algebrelor Boolene."

(1n Rumanian.) Edition of the Rumanian PopUlar Republic Academy.

Salomaa, A. [1966]. "Two cOlllplete axiom systems for the algebra of

regular events. II Journal of the ACM. Vol. 13. p, 158-169.

Scheinberg, S. [19601. "Note on the Boolean properties of context-free

languages." Information and ControL Vol. ,. p, '12-315.

Schneider, F. W. and Johnson, G. D. [1964]. "Meta-3, a syntax directed

compiler writing compiler to generate efficient code." Proceedings

of the 19th national conference of the ACM. Dl.5.

Schorre, D. V. [1963]. "A syntax-directed Smalgol for the 1401."

1963 ACM National Co~ference.

Schorre, D. V. (19641. '~eta II. A syntax oriented cOlllpi1er writing

language." 1964 ACM National Conference. DL3.

Schorre, D. V. [1965]. '~ necessary and sufficient condition for a

context-free grammar to be unambiguous." SDC report SP-2153.

Schiitzenberger, M. P. [19631. "Context-free languages and push-down

automata. " Information and ControL Vol. 6. p, 246-264.

Schutzenberger, M. P. [1964]. "Classification of Cbomslty languages."

in T. B. Steel (Ed.) (19661. p. 100-102•

. Schutzenberger, M. P. [19661. "Some remarks on acceptable sets of

nUll1bers." Paper presented at the August 1966 conference on the

algebraic t~;ory of machines, languages and semigroups.

Shannon, C. E. and McCarthy, J. (Eds.) [1956]. "Automata studies."

Princeton University Press. Princeton.

Slagle, J. R. [1965]. "Experiments with a deductive questLm answering

program. " Comm. of the ACM. Vol. 8. p, 192-798.

Stearns, R. E. and Hartmanis, J. [1963]. "Regularity preserving

modifications of regular expressions." Information and Control.

Vol. 6. p. 55-69.

Steel, T. B. (Ed.) [1966]. "Formal language description languages for

computer prograllllling." North-Holland (1966). (Proceedings of

the Baden IFIP conference of September 1964.)

Tuski, A. [1956]. "Logic, semantics, metamathematics." Clarendon

Press, Oxford.

We1zenbaum, J. [1966]. "ELIZA - A computer program for the study of

natural language conmunication between man and machine." Comm.

of the ACM. Vol. 9. p. 36-45.

W~rth, N. and Weber, H. [1965]. "Euler, a generalization of Algol and

its formal definition." Report CS20, Stanford University,

April 'Z7, 1965, and Comm. of the Aa.1. Vol. 9. p, 1'-25 and 89-99•...---".-
Wirth, N. [1966]. "A progralllllling language for the 360 computers."

Report CS53, Stanford University, December 20, 1966.

Zwicky, A. M., Friedman, J., Hall, B. C., Walker, D. E. [1965]. "The

Mitre syntactic analysis procedure for transformational grammars."

Proceedings of the Fall Joint Computer Conference 1965. p. 317-326.

Spartan Books, Baltimore.

146

