CS 52

LECTURE NOTES ON A COURSE IN SYSTEMS PROGRAMMING
BY
ALAN C. SHAW

E,o“r{ﬁ}r;f‘ SHEET INCLUVDE D
TECHNICAL REPORT NO. 52
DECEMBER 9, 1966

These notes are based on the lectures of Professor
Niklaus Wirth which were given during the winter and
spring of 1965/66 as CS 236a and part of CS 236b,
Computer Science Department, Stanford University.

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

January 15, 1967
ERRATA in
ALAN C. SHAW, LECTURE NOTES.ON A COURSE | N SYSTEMS PROGRAMM NG

CS TR No. 52, Dec. 9, 1966

p. 17, line 5, read S.41" for Sk
p. 34, line 4, read "operand[O:m];" for "operands[O:m];" .
p. 35, line 3, read "real or" for "real of" .

p. 39, line -7, read "KDF-9" for "KDK-9"
p. 50, line -8, read "careful" for "cardful" .
50p add an arrow from "Data Channel" to "Menory" in the diagram

p. 74, last box on page, read "TSX O, 4" for "rsx 4, in all cases.

p. 75 diagram read "SQrT" for "SPRT" .
p. 86, line 10, append "s2 := s2 + a[j] X b[3];",
line -10, read "c[1l:£,1:n];" for "C[1l:2,1:m];" .
p. 91, last paragraph, replace by
"Di| kstra11 has devel oped a solution to the nore general problem

where there are n processes, instead of only 2, operating in parallel.
See Knuth® for a discussion and extension of Dijkstra's solution.".

p. 100, left, insert between lines -6 and -7, "TRA EQ .
left, line -2, read "1" for "7" .

Lo
LDQ CL
p. 117, second diagram read

" " for
[e Ix [- |- | x|

p. 105, Exanple, read :,'1, Ax" for ",AXx ".

p. 119, line -7, read "u,v (possibly enmpty)" for "u,w (possibly entpy)".
p. 120, line 1, append to-first sentence
"where the elenents of £ are of the form

U= e £ . UV, xel*) |

T
.

CS 52 ERRATA, Al an C. Shaw

p. 131, lines 1 and 2, interchange "iterative" and "recursive".

p. 136, replace-program by

" SO:= Po;i:= O3k := 1,
whi | e P £ L do
begin i :=| := i+1; 8, := Pk; K := k+1;

while s, > P do-
—_— i k

begin while SJ.._l = SJ. do j:i= j-1;
Sj .- Leftpart(Sj CoL S)i =

end
end

p. 137, repl acﬂé (b) by

1 [4)\. 3 }\ >\‘ 9 1] L] 1
L i [—J
<head> <head>
L Il J
<head> <head>
1 4
<head>
<string>
[
<head>

L |

<string> "

line -2, read "of i<string>L ." for "of i<string> ."
p. 140, line -3, insert "The word "sinple" is henceforth onitted.".

p. 147, lines 5 through 9, replace by

"directly reducible substrings (a)1 S, oSy and (b) SJ‘”"S/z ot
follows fromthe definition of precedence relations that S'J-I <‘Si
and 8, »8,, Now if i< j, thenalso k <j, since i< j<k
implies SJ._1= 5 If i=j and k< ¢, then k =14, since

J<k< 1 inplies Skésk+l.
p. 151, line -13, read "conditional" for "condition"
p. 154, line -7, read "<digit>" for "<digit" .

p. 179, insert between lines -+ and -5
"procedure Qn); integer n;"

Lecture Notes on a Course in

SYSTEMS PROGRAMM NG

December 9, 1966

These notes are based on the lectures of Professor
N klaus Wrth which were given during the winter and
spring of 1965/66 as CS 236a and part of CS 236b, Com
puter Science Department, Stanford University.

Alan C. Shaw

SYSTEMS PROGRAMM NG

Page
Introduction L o e 1
I-1. Advanced Progranming «. o« 1
[-2. Purpose and Prerequisites of the course 2
I-3. Translators 24
I-4. References, «., . e.. . .. K
Assenblers e e e e e e e e e e e 5
[1-1. Basic Concepts © v v v D
IT-2. Milti-Pass Systenms «. «o.. T

IT-3. Oganizing and Searching Symbol Tables11

IT-3.1 Unordered Tables . . v v « v « o « o o o » 12

IT-3.2 Ordered Tables12
II-3.3 Sorting «.1k
II-3.3.1 Bubble Sort 14

I1-3.3.2 Ranking By Insertion 16

II-3.3.3 Ot her Common Methods 17

II-3.% Scranbling Methods 17

II-4. One-Pass Assenbly e e e e e e e e 18
II-5. Block Structure in Assenblers s.. 21
II-6. References e i e . .. 206

II-7. Problens e e e e e e e e . 26

[I1* Interpreters .

LET-1*

11X- 2.

II1I-3.
ITI-k.
I1I-5.
III-6.

III-7.

Definition and Exanples

Basic Interpreter of Sequential Code

Interpreter for a von Neumann Machine .

Polish String or Stack Organized Machines .

Interpretive Conputers

Ref erences .

Pr obl emrs.

[V Input-Cutput Programming , .

[V-1.
I'V-2.

The Input-Qutput Problem

| mredi ate | -0

Iv-2.1 No "Busy" Flag.

IV-2.2 "Busy" Flag. .

IV-3. Indirect 1-0.

v-4. 1-O Processors.,
IV-5. Experinental Conparison of Several Methods of |-Q
Organiiation.
IV-6. |-0 and Systens Progranmi ng.
V. Supervisory Prograns (Mnitors). . . ,
V-1, Monitor Tasks ..o . . oo o v v 0 0 0 0 0 e e
v-2. Types of Mnitors. . . . « ¢« ¢« o v o s o o o

Iv-3.1 Channels .

IV-3.2 CPU Interrogates Channel

IV-3.3 Channei Interrupts CPU .

V-2.1 Batch Processing Mnitors .

Page
30

30
31
33
38
41
43
43

48
48
49
50
50
51

.. 52

.53

L 0T

66

66
68

69
69
71
71

VI

Page

V-2.2 Real Time Monitors 11
V-2.3 Time Sharing Mnitors 172
v-3. Storage Allocation Methods 73
V-3.1 Static Relocation 714
V-3.2. Dynanmic Relocation , 16
v-3.2.1 Ferranti ATLAS Method '"78
V-3.2.2 Burroughs B5500 80
V-3.2.3 Arden, et al. Scheme80
V-3.3 Menory Protection82
V-3.4 Invariant Procedures83
V-4 . "Loosely Connected Parallel Processes 85
V-4 .1 Programm ng Conventions for Parallel
Processing . 86
V-4.2 The Control Problem for Loosely Connected
Processes . C e e e 87
V-4.3 Solving the Problem. 88
V-4.4 The Use of Semaphores 9
V-4.4.1 Two Processes Conmunicating via
an Unbounded Buffer 93
v-4.4.2 Processes Comunicating via a
Bounded Buffer. 9
V-5. References .
v-6. Problem 99
Conpilers - An Introduction 100
VI-I. Tasks of a Conpiler 100
VI-2. Heuristic Techniques for Expression Conpilation . . 103

VI,

VI - 23 Rutishauser (1952) .
VI-2.2 FORTRAN Conpiler (1954+)
VI-2.3 NELIAC (a dialect-of ALGAL 58)
VI-2.4 Sanelson and Bauer (1959)
VI-2.5 Dijkstra (1960)
VI-3. Conpilation of Expressions Using a Stack
VI-4. Phrase Structure Methods .
VI-5. References - . . « « v v v i oo

vi-6. Problens. o . . o000

Phrase Structure Programm ng Languages .
VI1-1. Introduction .
VII-2. Representation of Syntax
VII-3. Notation and Definitions
VII-4. Chomsky's O assification of Languages - - -
VII-5. The Parsing Problem.
VII-6. Irons' Cassification of Languages According to
Parsing Difficulty .
VI1-7. Pparsing Methods .
VII-7.1 A "Top Down" Method .
VI1-7.2 Eickel, Paul, Bauer, and Sanelson .
ViI-8. Precedence Phrase Structure Systens .
VII-8.1 Ptojzcedence Rel ati ons and the Parsing
gorithm.
VII-8.2 Finding the Precedence Relations .

VII-8.3 Use of Precedence Functions

vI1-8.4 Anbiguities - -«o

Page

103
104

105
106
106
106
111
112
112

11k
114

115
119
122
122

126
128
128

131
133

Page

VII-9. Association of Semantics with Syntax. 147
VII-9.1 Mechani sm for Expressing Semantics. . . . 147
VII-9.2 Handling of Declarations 150

VIl 9.3 Conditional Statenments and Expressions. . 151

VII-9.4 GO TO and Labelled Statements 153

VII-9.5 Constants 154

Vil-lo. References 155
VIl-11. Problems 156
VIII. Algol Conpilation 166
VI1I-1.--" Probl ens of Analysisand Synthesis 166
VIT11-29 Run Time Storage Administration. 167
VIII-3. Treatnent of Procedures 170
VITI-k. Arrays 16
VITI-50 References 18
VIII-6. Problens. 178

Vi

I | NTRODUCTI ON

I-1. Advanced Progranmi ngl’lL

In attenpting to define "Advanced Programming”, E W Dijkstra1
described the purpose of the subject to be "Advancing Programmng"; he
stressed "those efforts and considerations which try to inprove 'the
state of the art' of programmng, maybe to such an extent that at sone
time in the future we may speak of 'the state of the Science of Program
mng."" Until recently, the design of machines al nost always preceded
any serious thought about programmng them this had the unfortunate
result that programm ng |anguages and translators had to be severely
restricted to fit into the constraints inposed by machine designers.
Programming beyond these restrictions succeeded onlyl "by using the ma-
chine in all kinds of curious and tricky ways which were conpletely
uni ntended and not even foreseen by the designers.” Programmers "have
concocted thousands and thousands of ingenious tricks but they have nade
this chaotic contribution without a mechanismto appreciate or evaluate
these tricks, or to sort themout."

Dijkstra's remarks were made in 1962. Since then, the situation has
not changed significantly. New features, termnology, and "tricks" are
continually being introduced with very few attenpts to order or evaluate
themin terms of a general framework or set of principles.

This is the challenge and function of Advanced Progranm ng:

-to put order into the present chaos

- to devel op useful principles of programing

- to apply these principles to programming |anguages,

translators, and applications.

-2. Purpose and Prerequisites of the Course

The intent of the course is to treat the design and inplenentation
of Programmng Systens in terns of some general principles that have been
extracted fromthis field. Enphasis is on general methods rather than
specific "tricks". It is assuned that the reader is famliar with the
fundanental s of conputer programm ng including:

(1) coding in machine, assenbly, and higher-level |anguages, and

(2) the use of a supervisory or nonitor system 2
Because of its inportant role in the evolution of |anguage and conpiler
design and its usefulness as a vehicle for expressing algorithns,

ALGOL 60° shoul d be\thoroughly understood. Mst of the exanples and
al gorithns discussed in this course are presented as ALGOL prograns.
Systens Prograns, such as assenblers, interpreters, conpilers, and

monitors can all be regarded as translators; fromthis point of view,

Systens Programming is the science of designing and constructing trans-

lators. It is thus worthwhile at this point to examine the idea of a
translator before looking into the specific details of various types of

transl ators.

1-3. Translators

A translator can be viewed as a device which transforns an input

string A into an output string B; schematically

Exanpl es

A B T is called
(1) Binary Code Resul ts Conputer (or Interpreter)
(4,) (&) (T5)
(2) Synbolic Code Binary Code Assenbl er
(a,) (a,) (1))

(3) Phrase Structure Language Synmbol i ¢ Code Conpi | er

(8) (8) (x,)

Mil ti-pass systens are those which require passes through several
translators to produce the final output string. For exanple, the famliar

transl ations-from conpiler |anguage to assenbly |anguage to binary code

to conputed results - can be represented:

A A
1
O—-' Tl‘__'_" T2 »T§ ’AB =B

where the notation corresponds to the last exanple.

A, =B = TB(T2<T1(A>)) = T(A

where T = TBTng .

Translators are often multi-pass systens internally but appear as single
pass to the user. An assenbler with "macro" facilities can be such an

"invisible" nmulti-pass system

Synbolic Code —pQUT | @ |—pBiflary €

Here MT is a macro translator which expands all macro calls in the input

and T performs the basic assenbly. A macro definition such as

MACRO X(Y, Z)(....Y~...Z),
macro body

where X is the macro nane and Y, Z are paraneters, signals Ml to
replace macro calls in the input, such as X(A, B), by the "body" of

the macro, substituting A for Y and B for Z in this exanple.

I-4. References

1. Dijkstra, E. W Sone Meditations on Advanced Progr amm ng.

I nfornation Processing 62, Popplewell, C. M (Ed.)

535-538, North-Hol | and, Ansterdam 1963.

2. Leeds, H D. and Winberg, G M Conputer Programmng Funda-

mentals. MGawH |, New York, 1961.

3. Naur, P. (Ed.) Revised Report on the Algorithnic Language
ALGOL 60. Comm ACM6 (Jan. 1963), | -17.

- 4. Barton, R A Critical Review of the State of the Programm ng

Art. Proc. Spring Joint Conputer Conference 1963. 169-177.

I'l1. ASSEMBLERS

11-1. Basic Concepts

An assenbler is usually understood to be a translator which produces
machi ne | anguage code as output froman input |anguage which is simlar
in structure to the output; the natural synbolic units of the assenbly
| anguage or input correspond to the natural units of the computer for
which the assenbly is intended. From another point of view, an assem
bler can be considered a sophisticated |oader. A |oader accepts nuneric
code containing machine |anguage instructions, l|ocation addresses, relo-
cation designators, and header information, translates this into directly
executabl e code, and inserts the code into conputer nemory; this inter-

pretation of an assenbler is sketched bel ow

Symbolic " Numeric

Code Code
L 4

Assembler Loader

v v
Machine Language Machine Language
mapped into
Memory

The formof an assenbly |anguage instruction, assenbler record, or

natural synbolic unit is

Location Field Qperation Code Operand Fiel ds | ;

for exanple, LOCP CLA RATE, 1 . This record corres-

ponds to one machi ne | anguage instruction. The operation codes are
synbol s defined by the assenbler and correspond to machine operation
codes; operand fields contain programer-chosen synbols which are trans-
lated into machine nenory addresses; non-blank location fields define
the values of synbols. The basic task of an assenbler is to establish
the correspondences between progranmer-chosen synbols and nachine addres-
A record-by-record total translation fails in general because it
is not possible to translate operand field synbols until the entire pro-

gram has been scanned. This is illustrated in the followng partia

| READ RECCRD |

=

No
TABLE LOOK- UP FCOR
OPERATI ON CODE

v

TRANSLATE CPERAND
FIELD SYMBOLS How?

:

flow chart:

In order for the operand field synbols to have any value, they nust

appear in a location field; sequential total translation cannot be done

6

because location field definitions of synbols often follow their first

appearance in the operand field. In the skeleton program
(1) BATE 8sS 10
(2) LOOP CIA RATE, 1

t he assenbl er can assign the synmbol RATE to the next open address at
point (1); then, on reaching point (2), the assigned address for BATE

can be correctly inserted. However, if the programis

(1! LOOP &IA BATE, 1
(2)’ BATE BSS 10

BATE has no value at point (1)' and conplete translation of (1)' is

| npossi bl e.

II-2. Milti-Pass Systems

The sinplest and nmost comon sol ution to the above problemis to
use a 2-pass system The first pass assigns values (addresses) to al
synbols. A location counter (LC) steps through the assenbl er records
so that at each record, LC contains the address where the corresponding
machine instruction will be located in conputer menory (ignoring reloca-
tion); when a synbol is encountered in the location field, it is assigned
the current value of LC. Synbols and their values are stored in a

symbol table. Pass 2 performs a record-by-record total translation,

referring to the synbol table for the values of location field synbols.

A general flow chart of this nmethod of assenbly follows:

!

S| MPLE TWO PASS ASSEMBLER

PASS 1

=.

®

[READ RECORD

GO TO\

Yes
PASS 2
\—/

A‘NO

INCREMENT LC

® ®
EXAM NE LOCATI ON

FI ELD FOR SYMBOL

\
A 4

ENTER SYMBOL IN

SYMBOL TABLE
ALONG WITH LC

PASS 2

|

"REWIND'" INPUT

@ ¢

READ RECORD

Yes

END?

® g No

INCREMENT LC

| TRANSLATE OPERATI ON CODE |

\
v

TRANSLATE OPERAND FIELDS

.

ASSEMBLE AND STORE | NSTRUCTI ON

These charts becone nore conplex when the additional facilities
provided by practical assenblers are inserted. These are the "pseudo-

codes" or assenbly instructions, they do not translate into executable

code but are instructions to the assenbler, for exanple, for the alloca-
tion of data and instruction space, and the assignment of values to
symbols. using exanples fromthe MAP Assenbler for the |BM 7090/7094
conput ers, L the nmost inportant pseudo-operations are:

L. Location Counter Pseudo-(perations

These al |l ow the programer to control the operation of |ocation

counters, e.g. _ ORG 315 resets the |ocation counter to

315 causing the assembler to start or continue the assenbly from conputer
storage |ocation 315.

2. Storage Allocation Pseudo-Qperations

The instructions in this class reserve blocks of storage and incre-

ment the | ocation counter to reflect this, e.g., MATRIX | BSS | 25

assigns the current value of LC to the synmbol MATRI X and increnents LC
by 25, effectively allocating a 25-word bl ock of storage identified by
the symbol MATRI X

3. Data Cenerating Pseudo-Qperations

These are used to define constants of various types, e.g.,

YEAR | DEC 1966 instructs the assembler to insert the decinal

constant 1966 at the address defined by LC and to assign this address
to the synbol YEAR.

The 2-pass assenbl er outlined above can handl e these pseudo- opera-
tions by adding some blocks to its flow charts at points Ain pass 1

and 2:

IS THIS A_
PSEUDO
OPERATION?

Yes

| NTERPRET Y
INSTRUCTION

&

| NTERPRET" | NSTRUCTI ON usual I'y invol ves incrementing LC and assigning a

val ue to a synbol.

Most assenblers all ow the use of actual operands or literals in the

operand fields; for exanple, ADD =1 i ndicates that the

operand field is to contain the address of the constant 1 after trans-
lation. The easiest way to translate literals within our 2-pass assenbler
Is to invent synbols for them during pass 1 and add definitions of these

synbols to the program then, literals do not have to be considered in

the second pass, e.g., ADD | =1 is translated during pass 1

to ADD ONE| ... [ONE DECL 1] . A point Cin the flow

*chart, the bl ock

TRANSLATE LITERALS

may be added.
Modern assenbl ers usual |y have a host of other features but most of
these can be easily handled within the sinple 2-pass system described

here.

10

It is necessary at each pass of a multi-pass assenbler to reread
the source program Small progranms may be stored in main nenory for
the duration of the assenbly. Systens allow ng |arge progranms usually
wite the source programon second-|evel storage such as magnetic tape
or discs; the program nust then be read fromthis storage at each pass
Partial or conplete overlapping of processing and input-output operations
can be acconplished by careful program organization; e.g., the follow ng

sequence enabl es process and input-output overlapping

Read Process Wite

Record No. i+l [i-

Defining and translating synbols during assenbly requires the build-
ing and searching of symbol tables. Since assenblers spend nuch of their
tine performng these functions, it is inportant to investigate efficient

met hods for table organization and searching.

II-3. (rganizing and Searching Synbol Tables

Tables of all types have the general form

- —— -

11

where the left-side is a list of argunents and the right side is a |ist
of values associated with the arguments. Here, the argunents are synbols

and the values are addresses.

II-3.1 Unordered Tabl es

The easiest way to organize a table is to add el ements as they
appear without any attenpt at ordering. A table search requires a
synbol by symbol conparison with each elenent in the table until a match
is found; for a table of n elements, g conparisons would have to be
made on the average, before a match between the input and table argunents
is found. This method has merit only for extrenmely small tables which

are searched infrequently.

II-3.2 Ordered Tabl es

An ordered table is one in which (1) an ordering relation > (or <)

exi sts between any pair of argunents of the table, and (2) if 8,
represents the ith element of the table, then for all i and j,
"8, > s.3 if and only if i>j (or 8, < s.J if and only if i< j) .
The table is then ordered in ascending (or descending) sequence.

. The nost efficient general nethod for searching ordered tables is
the binary search; starting with the conplete table, the table subset
under consideration is successively divided by 2 until a match is found

An ALGOL binary search procedure for a table ordered in ascending

sequence fol | ows:

12

procedure Binary Search (S, n, arg, k);

value n, arg; integer array s[1]; integer n, arg, k;

comment S is array of table arguments, n is length of table,
arg is search argument, sS[k] = arg on return

begin integer i, j;

i = 13] :=n;
for k := (i+j) +2 while s[k] # arg do
if s{k] > arg then j := k-I
else i = ktl

end Binary Search

It is assumed that arg is in the table in the above program A binary
search requires log, n conparisons at nost to search an ordered table
of n elenents. In order to find a match in a table of length 128(27),
a binary search would require 7 conparisons at nost while an element by
el ement scan woul d require 64 conparisons on the average.
Instead of using one large table, it is sometimes more convenient

to set up several smaller tables; for exanple, one could set up 26

tables for an assenbler symbol table, each table corresponding to synbols
starting with the sane letter of the al phabet. The search then becones

a multi-level search; at the top level, the particular table is found

and at the next level, the table is searched. In the above exanple of

26 tables, an even distribution of first letters of symbols over the
letters of the al phabet would be necessary for efficient use of table
storage. The advantage of nmulti-level schemes is that the relatively

smal| tables may be searched very quickly; however, organization and

13

searching is more conplex and use of storage is not always as efficient
as the sinpler [-level system These alternate nethods have to be
evaluated in ternms of specific systems and goals in order to select the

best method for a particular application.

II-3.3 Sorting

If an ordered table is desired, sone type of sorting method nust be
enpl oyed to order the elements. There are many ways to sort a table or
a file; sorting may be done internally in main storage or, when |arge
files are to be sorted, with the aid of auxiliary storage devices such
as tapes, discs, or drums. Only a few of the nost inportant will be
di scussed here. Reference 2 contains a detailed presentation and eval u-

ation of many sorting nethods.

II-3.3.1 Bubble Sort

The basic idea is to successively pass through the unsorted part
of the table, "bubbling" to the top the maxi mum (or mi ninmunm unsorted
*elenent; this is done by repeated conparisons and interchanges as illus-

trated in the follow ng exanple:

To sort the table: 13 2 18 5 4

13 2 2 2 2
First e Ll , 1, 13, 13
St age 18 18 18 H

5
5 5 5 18 4
4 L- 4 4 A8

14

3 H
{
Second : - : - 1; -
Stage
4

Third - g

Stage

- ———

Last -

Stage

15
18

Sorted

Tabl e
13

18

An ALGOL procedure for a sinple Bubble Sort is:

15

procedure Bubble Sort (S, n);

value n; integer array S[1]; integer n;

comment Bubble Sort sorts array s[l:n] in ascending sequence;

begin integer i, Jj, k; boolean tag;

procedure interchange (X, Y);
value X, Y, 1integer XY,

begin integer T,

T:=X X:=Y, Y : =T,
tag := true

end I nt er change;

for j:=1 step 1 while tag do

begin tag := false;, ki= n-j;
for i :=1 step 1 until k do

if sli} > s[i+1] then
interchange (s[i], S[i+1])
end

end Bubble Sort
For fewer menory references, this may be nodified to elimnate the
interchanges; instead, the largest elenment of the unsorted table is

found and interchanged with the top elenent at each stage.

I1-3.3.2 Ranki ng by Insertion

Starting with an enpty ordered table and a given unordered table,

at each stage, the next elenent of the unordered table is inserted in

16

the correct position in the ordered table, this process is term nated

when the original unordered table is enpty. Thus, if 8 8, . . . 8 8

1 i+l

S, represents the ordered table (ascending sequence) at the kth
stage and the next element U of the unordered array is such that s,

< UKL 8, then Uis inserted between S, and S. . 8 S
it i i+

1’ 1" 7i+k - © Tk
then have to be moved to make room for U . This block novement can be
very inefficient unless the machine has a block transfer command. On

the other hand, a binary search can be used to rank U and in the case
of assenbler synbol table construction, the table can be ordered contin-

uously as it is built up. These features nmake the nethod useful for

| arge synbol tables.

I1-3.3.3 Other Conmpn Met hods

There are many other sorting methods in conmmon use as well as
variations of the above two nmethods. CQther nethods include the radix

: L . 2
sort, various nmerge sorts, odd-even transposition, and selection sort
Sorting of a synbol table in a 2-pass assenbler would occur at the

end of pass 1 or beginning of pass 2.

II1-3.4 Scranbli ng Met hods

Scrambling or "hash addressing” is a fast nethod for converting
synbol s to addresses. Addresses are obtained by performng some sinple
arithnetic or logical operation on the synbol. For exanple, one nethod
Is to square the nuneric representation of the synbol and select the
central bits or nunbers of the result as its table address; if a partic-

ular symbol, say X, is represented nunerically as 3275 and we W sh

17

a 3-digit address, the conputation would proceed as follows:

527 5 = 10725625

address of Xl = 725

Care nust be exercised to either prevent or account for non-uni que map-
mngs of identifiers and to use table storage efficiently; this work often

negates the advantage of the fast address calculation

II-4. (ne-Pass Assenbly

(One- pass assenbly can be acconplished despite the problemraised
at the end of section Il-I. The "forward reference" problemis solved
by maintaining a list of undefined symbols with pointers to the |ocations
where they are to be "fixed-up" upon definition. A flow of this schene

is

Encounter a Synbol
(Except in Location Field)

YES
' .
Normal Enter Synbol in
Processing UST along with \
Pointer to fix-up
| ocation

UST. Undefined Synbol Table

18

During assenbly, a synbol table (ST) and UST are constructed:

Partially
Assembled Program UsT ST

____/’. —

< o] _
/1‘ I

«/ L

<4 Pointers to locations
to be fixed up

On finding a synbol in the location field, the assenbler flow is:

Encounter a symbol
in location field|

[Enter Synbol in Synbol Table]

[Check for occurrences in UST]

If in UST, fix-up code and
delete entry from UST

Wien the same undefined synbol is encountered nore than once, a

.chaining method provides a convenient nmeans for recording their appear-

Ml tipl e appearances/of undefined synbols

ances and for later fix-ups.

can then be recorded as bel ow

19

Partially Assenbled Program (usT, ST)

Address Synbol d/u
0 4 1

l N 2

/""———-—-_—7 L¢¢P v

| & 3 |7

) Le”

l' 4,
| -&]--7h

Address: Synbol Location
or
Fi x-up Location

d/u : defined/undefined flag

The address part of the entry for the undefined synbol L@FP points to
the last location seen by the assenbler where L@gP appeared; pointers
-to 2 and'" 1 produce a chain through the earlier fix-up locations for
loop. @ (undefined) indicates the end of the chain. If LggP again
occurs at point 4 and is still undefined, the pointers change as indi-
cated by the dotted lines and the pointer fromthe address part of
LPGP to 3 is deleted. When L@PP is defined, its addresses are
inserted in the places occupied by the chain pointers.
(ne-pass assenbly has the advantage that the source programis
... read only once; this advantage is gained at the expense of nore conplex

routines for handling symbols. The assenmbled program and various tables

20

must be stored in main menmory during assenbly or the above advantage

over multi-pass systems no |onger holds. Assenblers with block structure

can be constructed conveniently by the one-pass method

II-5. Block Structure In Assenblers

Wiile few assenbly | anguages have the block structure of ALGOL, it

is still useful to study the inplenentation of block structure by assem

blers for several reasons

1. Mny
usua
€9,
QUAL

assenblers have limted forms of block structure,
ly allowing symbols to have local and global significance.
MAP programs may be structured through the use of the

pseudo- operati on

2.. The basic nethods enployed by conpilers to handle bl ock

structure can also be used for assenblers and thus can be

illustrated in a less conplex setting

3. Many

conpilers translate source |anguage into "intermediate"

| anguages which retain the original block structure and are

siml

ar to assenbly |anguages.

In general, a block is a delineated section of source |anguage

code having explicit or inplicit declarations for some of the synbols

used in the code; synbols may be declared explicitly by formal declara-

tions (e.g.,

ALGOL identifiers) or inplicitly by their use (e.g., ALGOL

| abel s). Symbols defined within a block may only be referenced in that

bl ock.

21

s

Examl e:

o
e
lo

2 This representa a

c, d program with 4 bl ocks,

T each having synbols
defined withinit. a
and b may be referenced
throughout the program

3 C and 4 are only

d, e, f Tknown" Tn block 2, d,

4 e, and £ in block 3

8 and %, and g i s known

- only in block 4 Note

that the d in block 2

IS different fromthe d

inblock 3; each has its own scope of validity.

The effect of a defined area of validity for synbols in assenblers
is to allow sharing of symbol table storage among "parallel" blocks; in
the above exanple, blocks 2 and 3 are in parallel. |If opening and
closing of blocks are indicated by left and right parentheses, the depth
or level of a block in a programcan be found by nunbering the matched

parentheses pairs; using our exanple again, we have

bl ock No. 1 2 3 4
(E: b (_C,: _(_1) (Q) e, f (5))
- bl ock |evel 1 2 2 2 3 3 2 1

In a one-pass assenbler, synbol table space may then be rel eased
on exiting froma block. On entering a block, a block marker is set
when |eaving the block, the marker is reset to that of the last enclosing
block. This schene can be inplenented by using the first symbol table

entry for each block as a pointer to the previous block 'head" or entry.

22

Let ST[i] be contents of the . ith synbol table entry and j be a
pointer to the first synbol table entry of the current block. fThen

synbol table housekeeping can be done as foll ows:

i:=0;] := 03
bl ock entry: i = i+l

STii] == 1];

j = i;
bl ock exit: i:= -4

i =873l

The evolution of the synbol table of our previous exanple is

lST sT, | ST, ST? st | s stt | s | srt
1 0 0 0 o [|o 0 0
2 a & & a & & a
3 b b b L} b b L
I 1 (1) T 1 (1)
5 c () 4 <t 4 (a)
6 d (4) e e e | (e)
7 £ £ f (£)
8 4 () | &)
9 e | @ | @
10

j= 0 1 4 1 4 8 1 1

0%

ST, is the synbol table at bl ockentry for block k; st* is the synbol
table at blockexit for block k . Elenents in parenthesis are in the
tabl e (because they haven't been destroyed) but inaccessible.

This nethod has to be nodified to handle forward references. For

the program with structure:

begi n
begin,
L Use of L
- .ﬂ,
L: Decl aration of L
end

the global identifier L is used in an inner block before it is declared
in the enclosing block, On reaching block exit, all undefined synbols
may be carried out into the enclosing block and filled in the synbol
.table; undefined synmbols may then be treated correctly using the chaining
and fix-up method described for one-pass assenblers. Care nust also be

taken in generating the correct reference in the follow ng case:

begi n _ _
L: First Declaration of L
begi n
g0 to L; Use of L
L: Second Decl aration of L
end
end

2k

Here, the use of L refers to the L in the inner block (second decl a-

ration); possible forward references within a block have to be considered

before treating symbols as global to that block.

5e conventional two-pass assenbler can be nodified for |anguages
with bl ock structure properties by grouping the synbol table on a per

bl ock basis and maintaining a dictionary pointing to the synbol table

bl ocks.

Exanpl e: 1. begin real a, b, c, d;

2: begin real e, f;
end,
3. begin real g;

4L: begin real h;

end
end
end
Dictionary

Bl ock [ndex to Nunber of Ancest or
Nurber Synbol Tabl e Entries in Block Bl ock

2 L2 1

4 b 1" 3

3 L3 1

1 Ll 4 0

25

Synbol Tabl e

Ll: |a, b, c, 4

L2: e, T
L3: .
L4: chl

Dictionary entries are made on exiting froma block. The synbol
table can be one large table grouped on a block basis. To translate
synbol s during pass 2, the dictionary is searched with the block nunmber
as the search argunent; fromthe dictionary entry, the pointer to the
correct place in the synbol table is obtained. If a symbol is global,
the ancestor entry of the dictionary which points to the enclosing block,

can be simlarly used.

II-6. References
1. I BM 7090/709% |BSYS Qperating System Version 13, Macro Assenbly
Program (MAP) Language. Form C28-6392-0. | nternati onal

Busi ness Machi nes Corporation, 1963.

2 . Papers presented at an ACM Sort Synposium Comm ACM, 6, 5
(May 1963).

II-7. Problens
L One useful variant of the bubble sort is to alternately pass through
the table in both directions, bubbling the [argest elenment in one

direction and the smallest in the other.

26

—_—b
<
»
¢
>
Code this variant as an ALGOL procedure.
) -
Conput er Sci ence 236a N. Wirth
Wnter 1966 Due Date: Feb. 10

Term Problem |

Design an assenbler according to the follow ng description.

| nput

out put

Synmbol s

Fi el ds

One instruction per record (card), consisting of |ocation
fields (cols. 1-10), operation field (cols 12-14) and operand
field (cols. 16-72).

Listing of assenbled instruction in hexadeci mal form al ong
with instruction counter and given synbolic instructions.

Symbols are either nanes, literals or constants not contain-
ing blank characters. A nane is a sequence of 1 to 10
letters or digits starting with a letter. A constant is a
decimal integer, possibly preceded by a sign. A literal is
a constant preceded by an equal sign (=). It denotes the
address of any storage cell into which the constant is
assenbl ed

The location field is blank or contains a name (left-adjusted
inthe field) in which case it is the definition of that

name. The operation field nust contain an instruction code
(cf. Table 1), or an assenbler instruction (left-adjusted
inthe field). The operand field is divided into two or three
subfiel ds depending on the formof the instruction. The
subfields are separated by commas. A mssing subfield is
interpreted as O.

27

Target code: An array of individually addressable 8 bit characters
(bytes), listed in hexadecimal form each character as a
pair of hexadecimal digits.

I nstruction Formats: Instructions are grouped into two categories to
be translated into the fol lowing forns:

RR Instruction occupies 2 bytes. Form of operand field is
"r1, r2" where rl and r2 are integers.

code rll r2
8 4 L bits
RX: Instruction occupies 4 bytes. Form of operand field is
"rl, a2, r2" where rl, r2 are integers, and a2 is a
synbol . --
code rl r2 a2
8 i 4 16 bits
Table 1. Instruction codes
RR Form RX Form
Synbol i ¢ Hexadeci nal Synbol i ¢ Hexadeci nal
AR 1A A SA
BCR o7 BAL 45
CR 19 BC 47
DR 1D C 59
LR 18 D 5D
LCR 13 1IcC 43
MR 1C L 58
SR 1B LA 41
HLT 00 M 5C
R La
SL 48
SR L9
ST 50
STC 4o
W LB

Assenbl er Instructions:

1. Define nane and increment |ocation counter. Synbolic code: DS .

28

The name in the location field is defined and subsequently the
| ocation counter is incremented by the integer in the operand field.
(The loc. counter addresses bytes.)

Set the location counter. Synbolic code: ORG. The location
counter is set to the value of"the constant in the operand field.

Term nate assenbly and print the produced output in condensed hexa-
decimal form Synbolic code: END .

Exanpl e of an assenbly Ilisting:

0000 41000000 START LA 0,0
0004 41100000 LA 1,0
0008 41200190 LA 2,400
000C 5A01001C LOCP A 0,ARRAY,1
0010 1A12 AR 1,2
0012 591001AC C 1,=400
0016 4720000C BC 2, LOOP
0014 0000 HLT
001C ARRAY DS 400

END

O1AC 00000190

Not es:

L.

Program the assenbler in Extended ALGOL on the B5500 computer and
test it. The program should contain coments to explain the main
points and to facilitate the understanding of its principles. It
Is stressed that the program be presented in a neat and well
structured form

A few days before the due date, a sanple program will be available
to test the assenbler. It is advised that the student test his pro-

gram before that date with his own test cases.

At the due date, submt the program together with the output result-

ing fromthe distributed test case.

29

[11. | NTERPRETERS

I11-1, Definition and Exanples

Corresponding to each statenment of a |anguage, there exists an inter-

pretation rule or action representing its meaning. An interpreter is a

| anguage translator whose prinary task during translation is to perform
the actions dictated by the neaning of the statements of the |anguage, In
nmore concrete terms, interpreters read and obey the statenments of |anguages.
By contrast, assenblers translate assenmbly |anguage into another |anguage
which is later interpreted or obeyed

Interpreters are commnly used in the follow ng applications

1. Sinulation of real conputers

A given conputer can sinulate the operation of another conmputer --

either a proposed conputer or one already in existence. For exanple, the

Bur roughs B5500 can be simulated on the 1 BM 7090 and vice versa.

2. Simulation of hypothetical conputers

Hypot heti cal machines are studied and used by sinulating themon

existing machines. Exanples of such nachines are the list processing na-

chine (or language) IPL V and the "polish string" machines used by the

early ALGOL conpiler systens.

3. Interpretive Conpilers

Instead of translating higher-level |anguages into machine |anguage
programs and then executing these programs, sone systems execute the source
| anguage directly via an interpreter. [ISP 1.5 on the |BM %aaa i S such a

system

4. Sinulation |anguages

Languages, such as SIMSCRIPT, SCL, and GPSS, which are designed to
describe parallel processes, are often inplenented on conventional se-

quential nmachines by interpreters.

5. Mbnitor systens

Control of batch processing, real-time, and tine-sharing nonitor
systems is acconplished by user-witten control instructions which are
interpreted by the system

Instead of wusing interpreters for the above, one could translate
into equivalent nachine |anguage programs - as in assenbler systens - and
then execute these programs. Both approaches are enployed. Interpreters
are usually nmuch easier to wite, debug, and nodify but can be extremely
slow and wasteful of storage. For these reasons, interpreters are wit-
ten 1. for research or exploratory purposes, 2. when the |anguage is
not used on a "production" basis, 3. for very conplex systens, or 4.
for a conbination of the above.

This chapter examnes interpreters of sequential conputer code, as
opposed to higher-level |anguage interpreters or systems allowi ng parallel
processing, The operation of typical von Neumann and stack machines are

described via interpreter prograns.

ITI-2. Basic Interpreter of Sequential Code

Let Instr = a vector containing the instruction sequence, such that

Instr[i] contains the ith instruction in the sequence

instruction counter, and

(]
1

current instruction.

31

The main loop of an interpreter of the programrepresented by Instr

d-

1. Fetch instruction designated by
instruction counter.

C :=lInstr[i]

i

2: Increment instruction counter.
o= i+l

:

3: Execute instruction.
(Branch to subroutine designated by c)

Y

Step 1 may be divided into several substeps by breaking Instr[i]

into its conponent parts:
Instr[i][0] = operation code

Instr[i][1], Instr[il[2],..., Instr[illn]

= operation paraneters .

C is also divided into corresponding parts:

c[o], c[1], « , c[n]

n=0 corresponds to a no-address conputer;

n=l corresponds to a |-address conputer;

32

n=2 corresponds to a 2-address conputer
etc.

Then, step 1 becones:

e[0] := Instr[il[O];

c[1] := Instr[i][1];...; c[n] := Instr[i][n] ,

and step 3 may be expressed:

Exegute(c[O](C[l], c[2],..., c[n]))

111-3. Interpreter for a von Neunann Machine

These machines may be classified into (a) single address, single
register conputers and (b) multi-address and/or nulti-register computers.
In the forner, operations on operands are performed in a single register
usual ly called the accunulator; for operations requiring two operands
the address of one is inplicitly understood to be the accunulator while
that of the other 1is contained in the instruction, e.g., |BM 7090, DEC
PDP-1. In the latter, operations may be performed in one of several ad-
dressable registers and instructions may contain several addresses, e.g.
| BM 360. An interpreter programfor a sinple single address, single

register machine is presented bel ow

33

PROGRAM

i nteger array operator, address[0:£],

operands[O:m]js

I nt eger op,
adr,
reg,
count;
count := 0;
L op := operator[count];

adr := address[count];
2. count := count + 1;
3: if op =1 then
reg .= operand[adr] else
if op =2 then
opérand{adr] := reg el se
if op =3 then
reg .= reg + operand[adr] el se
if op =4 then
reg := adr else
if op =5 then
count := adr else
if op =6 then begin if reg = 0

thenu nt := adr end el se

3k

REMARKS

instr[i] = (operator[i],
address[i])

data menory

operation code

operation address

single register

instruction counter

Fetch

Increnent instr. counter
Load

Store

Add

Load inmediate

Transfer

Conditional Transfer

Wiile this programor a simlar one may be adequate for sonme applica-
tions, there are several inaccuracies and om ssions which nust be corrected
in order to precisely describe the operation of any real of hypothetica
machine of this class:

1. The word length of the machine has been ignored

2. Logical and arithnetic operations cannot be handled at the bit

| evel since all variables are of type integer

3. Data and program should reside in the same menory.

An interpreter for a binary conputer can be witten in ALGOL taking
the above factors into account. The key change is to define all variables
as type Bool ean.
conment The conmputer has (n+l) words of memory M and word |ength of

(4+1) bits. Operation code, op, is (11 + 1) bits; operation
address adr is (42 + 1) bits; («1+1) + 42+ 1) =2+ 1.

reg is a (4+1) bit register and count is a (43 + 1) bit instruc-
tion counter. et (43 + 1) = n + 1,

Boolean array M Qn, 0:£], op[0:£1], adr[0:£2], reg[0:4], count[0:43];

integer procedure number(x, K);

Bool ean array x[0]; integer k;

comment nunber treats the array x as a positive binary nunber of (k+1)
bits and converts this to an integer;

begin integer i, n;
n := 0;
for i :=0 step 1 until k do
n:=nx2+ (if x{i]then 1 else 0);
nunber = n

end nunber;

35

comment initialize number(count, £3) to O;

for i :=0 step 1 until 23 do count[i] := fal se;

comment begin interpreter cycle;

1: n := nunber(count, £3);

for i :=0step 1 until £1 do op[i] := M[n, i];

for i :=0step 1 until #2 do adr[i] := Mn, 1 + 1 + i];
2. N = ntl;

bi nary(n, count, £3);

comment the procedure, binary, converts the integer nto a 3+ 1 bit
bi nary nunber, count;

3: i f number(oi), 21) = 1 then
begi n : = number(adr, £2);

coment | oad;
for i := 0 step L until ¢ do reg[i] : = M[n, i]

end el se

etc.

If the reader has followed this program he is aware of the awkward-
ness of ALGOL for describing the operation of an interpreter at the bit
level. Cearly, another |anguage or notation is desirable. A powerfu
notation for this type of description is the lverson Ianguage.l The fol -
lowing "lverson" description of a single address, single register binary
machine illustrates the elegance and power of the notation. (The reader
shoul d consult Reference 1 for nore details on the notation and its appli-

cation.)

36

Vari abl e Meani ng;

M conputer nmenory

v(M) = 2+1 word | ength

u(M) = n+l no. of words in nenory
r register

v(r) = 1+1 register length
S instruction counter

v(s) = 11 + 1, 2¢(41 + 1) = n+l
C instruction register

v(c) = 2+1 instruction length

M r, s, and ¢ contain binary conponents. See next page for |verson program

Language interpretation can thus occur at different levels of detail.
If the interpreter is testing the design of a new conputer, then conplete
details of word length, radix, registers, handling of address and arith-
nmetic overflows, etc. have to be included; on the other hand, interpreta-
tion at the level easily handled by ALGOL programs may be sufficient if the
purpose of the systemis to evaluate the useful ness or power of a particular

| anguage.

37

1 s « 0
2 > c <—ML
3 op La£1+l/
4 adr <—Lw£2+l/c
) 1ls «1 + 1ig
6 - (7,8,..... .)op _______________
71— Y l¢-Load ;
§|— Nﬁdr —r le Store |
I
g|—= EPEEY o Y | Add !
Load |
1C|— ir « adr | medi at e |
|
11 |— i1s tadr Tr ansf er |
1
o i
12 é— reg : 0 k Condi ti onal
Transfer \
— Ls tadr }
\

ITI-4. Polish String or Stack O gani zed Machines

Polish notation and stacks will be discussed further in Chapter V.
In this section, some of the basic ideas are introduced to illustrate the
operation of stack machines.

The reverse or postfix polish formof a statement or expression of a

| anguage is obtained by reordering the elenments of the expression so that
operators appear after their operands rather than before or between them

as is normally the case.

38

Exanpl es

Conventional Form Reverse Polish
1. at+b+c ab+c+
P
 — |
2 X = b Xetd -e xbedt X € - 1=
—
| — |
L‘-__———l §
. a/(btec - e) + - f) x becle - f - X +
3. a/(btc-e) +(e-f) xg all_gﬁ1/,e.gl
—_—

(Note the elimnation of
par ent heses)

This formof an expression is very convenient for conpilation or
interpretation and has led to the devel opnent of conputer organizations
that can handle reverse polish expressions easily. These are the stack-
organi zed conputers, such as the Burroughs B5500 or the English Electric
KDK-9. They contain a stack or "cellar" which is a first-in, |ast-out
store used for tenmporary storage of operands. Many of the instructions
in such a machine have no address fields but inplicitly refer to the top
element or elenments of the stack. "Pushing-down" or "popping-up" of the
"stack is performed automatically during instruction execution.

The following partial interpreter is for a machine with a stack

mechani sm

39

PROGRAM

integer array instr[O:Z], instruction sequence
M[O:m], data nenory
s[o:n]; | stack or cellar
i nt eger op, operation code
count, instruction counter
S3 stack pointer
S :=0; count := 0; Initialization
op := instr[count]; instruction fetch
count := count + 1, increnent instr. counter

if op =1 then
Begin = s+ 1

S[s] += M{instr[count]]; Load
count := count + 1,
end el se
if op 2 theas
begi n M[instr[count]] : = S[sl; Store
S :=s-1; count := count + 1
end el se
if op =3 then
begi n S[s-1] := S[s-1] + 8[s] Add
§ 1= s-|
end el se

etc .

Each word in instr[] is either an operation code or an operand; for
Loads and Stores, the required address is in the word follow ng that
containing the operation code.

Using the expression in 2. from the reverse polish exanples, the

instruction sequence in the program format is:

40

s[]

i: 01234567 891011

instr[i]: 1 b, 1C 1d46521ed?2
L |

| N
\

where the operation codes have the neaning:

code: 1 2 3 4 h 6

meani ng: Load Store Add Subtract Miltiply Exponentiation

The stack contents are displayed bel ow after each instruction is executed

in this exanple:

after instr[1} instr{31 instr{5} instr[61 instr[7} instr[9} instr[10] instr{il] '
b b b b bXetd bXetd bXctd-e
c c ctd e
s = 1 2 3 2 1 2 1 0

Because all operations are performed on elenents of the stack, the
stack access time must be small. Fast registers are therefore used for
the top elenents of a stack; since these are expensive, their nunber nust
be severely limted. This limtation causes major sSystems progranming
problens related to stack admnistration, stack overflow, and code opti-

m zati on.

III-5. Interpretive Conputers

The execution of nachine language instructions by conventional com

puters occurs via an interpretive process. Instructions are translated

41

i nto nmechani cal or -electrical coperations, such as opening or'«closing 'data
paths, setting and testing internal registers, swtching nemory cores,
etc.

Recently, the interface between hardware and software interpretation
has become |ess distinct. In many nodern conputers, machine |anguage

instructions are executed interpretively by mcroprograns which reside

in a read-only menory in the control wunit. 2 These mcroprograns translate
machi ne code into mcroinstructions which are the basic executable instruc-
tions of the permanent hardware. Changes in machine |anguage can be made
by reprogramm ng»_‘the control unit to performthe desired translation. A

schematic of the organization of such a conputer is:

| M cro- Micro- \
} I nstruction I nstruction \
| Regi st er Count er \|
' | \ "
| t . | Macro-
\I . '*; @—» Instructions
[‘ and
M croprogram |
! In | Dat a
} Read- onl y !
f Menor y :
] |
] |
R e Vs W s s s e e e ¢ <Jd
Cont r ol Main Memory

Qperations at this level follow the same basic interpretive cycle as the

other exanples of this chapter.

42

III-6. References

1. lverson, K E A Programmng Language. Wley, New York, 1962.

2. Fagg, J., Brown, J. L., Hpp, J. A, Doody, D. T., Fairclough, J. W,

Geen, J. |BM system/360 Engineering. AFIPS Conference

Proceedi ngs, Fall 1964, Spartan Books, Inc.

111-7. Probl ens

Conput er science 236a

N. Wrth '
Wnter Quarter, 1966 February 2, 1966

Term Problem 11

Construct an interpreter which represents a conputer with the follow ng
speci fications:
The conputer consists of

1. A nmenory consisting of 4096 consecutively addressed bytes, each
byte consisting of 8 bits;

2. 16 registers, each with 32 bits;

3. A condition register, able to represent 4 distinct states;

L3

4, An instruction register, (32 bits);
5. An instruction counter (12 bits).

Instructions have the formats as indicated in TermProblem!|, and cause
the followng actions to be taken:

(To identify-an instruction, the mmemonic codes of Term Problem| are
used, the instruction paraneters are denoted by rl, r2, a2.)

Goup 1

These instructions have an RR and an RX version. They designate two
operands, the first of which is the register designated by rl . The
second operand is the register designated by the r2 parameter in the RR
case, or the consecutive four bytes of nemory, the first of which is desig-
nated by the sumof a2 and the value of register r2 .

[nstruction Code Meani ng

Add A AR 01 :=01 + 02

Subt r act S, SR 01 :=01 - 02

Mil tiply M, MR 01 :=01x 02

Di vi de D, DR 01 :=01/ 02

Load L, LR 01 := 02
0] =

Conpare Condition register := ¢15 , if OL (< p 02
2 >

Moreover, if the result of any arithnetic operation is > 221 in absolute
value (overflow), or if a divisor is =0, then the next-instruction in
sequence is taken from location 4 of menory. In the case of overflow,
the condition register is set to 3.

Goup 2

The paraneters of the instruction are interpreted as in Goup 1.

| nstruction Code Meani ng

Branch BC Branch to 02, if the state bit*
corresponding to the condition register
value is 1 .

Branch BCR Branch to the address contained in register

r2, if the state hit* corresponding to
the condition registervalue is 1 .

Branch and Link BAL Branch to 02 . Assign the address of
the next instruction after the BAL to
register ri

Load Conpl i ment LCR 01 := -02

*The field rl -contains 4 bits, called state bits, nunbered 0,1,2,3 .

Ll

(Conti nued)

| nstruction Code Meani ng

Insert Character IC The right-nost 8 bits of register rl
are made equal to the single byte 02 .

Store Character STC The single byte 02 is nmade equal to the
right-nost 8 bits of register rl

Load Address LA Register rl is assigned the address
whi ch designates 02 .

Store ST 02 := 0L

Shift left SHL Shift to the left the bits in register rl
by as many positions as indicated by a2
plus the value of register r2 . Vacated

N bit positions are assigned Os .

Shift right SHR Anal ogous to SHL.

Read R Read a card, assign the 80 characters
read to the 80 bytes the first of which
is (a2, r2) . In each byte, the first
two bits are set to 0, the remaining 6
bits are assigned the correspondi ng BCD
character.

Wite w Anal ogous to Read; the register rl in-

[f in any instruction,

Programm ng Notes:

dicates the nunber of characters to be
printed on the output line.

an effective address > 4096 is created, the next
instruction in sequence will be taken from location 8 in the nmenory.

The interpreter is to be programred in Extended AIGOL for the B5500 com

puter. After debugging,

It should be nmerged with the assenbly program

of Term Problem 1 in the follow ng way:

BEG N COWENT QUTER BLOCK;
BEG N COMMENT ASSEMBLER

END,

BEG N COWMENT | NTERPRETER

END
END.

L5

The "outer block" contains declarations of quantities shared by' the two
programs, such as the array of assenbled program instructions. The inter-
preter is then supposed to execute the code which was assenbl ed by the
assenbl er.

You may assune that the first 4 bytes-of the memory will never be used.

Before the due date, a problemwll be given to be progranmed in the
assenbly |anguage as described in the Term Problem At the due date,
subm t
1. a listing of the conbined assenbler/interpreter program
2. the solution of the progranm ng problemin the form of

a. an assenbly listing, and

b. the output fromthe interpreter executing this program

Supply (but do not overburden) your programw th conments at appropriate
pl aces. -

C.S. 23%6a
Wnter, 1966

Test Prograns for Term Problem ||

The following are Test Problens to be programred in the Assenbly Code of
Term Problem 1. They are to be assenbled and interpreted by your Assem
bler and Interpreter Prograns.

1. Read a card, sort the first 30 characters according to their BCD key,
and print the resulting string of 30 characters. Repeat this process
for as many cards as provided.

2. (Optional) Read from cards the sequence of integers

N, 815 8y @ o o an, bl’be’ oo ey bn

conpute and print .

n
LAy, by =laibi

.

i=1 i=1 i

46

Performreading and printing with the use of subroutines,” which:read and
print one nunber respectively. A number should be acceptable if it con-
sists of a. sequence of digits, possibly preceded by a. sign, and if it is
separated from other numbers by at |east one blank space.

bt

V. 1 NPUT- QUTPUT _PROGRAMM NG

IV-1. The Input-Qutput Problem

The components of a large conputer systemcan be ordered in a hier-
archy according to their speed of operation:

Central Processors

Control Grcuitry
Regi sters
Arithnetic Units

Mai n Storage

Y-S Ihi n Film
Cor es | ncreasing
Dr UNe Speed

Secondary or Auxiliary Storage

e.g., Cores
Druns
Di sks
Tapes

Pure |nput-Qutput Devices

e.g., Card Readers, Punches

Printers

Di splay Devices

Typewiters

Paper Tape Readers and Punches
The rate at which information can be handl ed varies fantastically through-
out this hierarchy - fromone or fewer characters per second at the |owest
level to billions of characters per second in the central processor. This

is a factor of approximately 107

L8

Each of the above conponents can be viewed as input-output (1-0
devices in sonme contexts; for exanple, information on a secondary storage
device, such as a drum can often be sent to or received froma central
processor, main storage, other secondary storage devices, or any of the
pure input-output devices. One of the nost inportant objectives of -0
hardware and program design is to utilize all conponents of the conputer
system at their maxinumrate; no conponent should ever be idle because
it is waiting for another one to conplete its operation.

Communi cation scheduling between the central processor and main
storage is perfornmed mainly by hardware; to counteract the relatively long ac-
cess time to storage, instruction |ook ahead and interleaved storage are
used on some |arge conputers. The systens programming problemis to sched-
ule and organize [-0O anong the elenents of nmain storage, secondary storage,
and the pure 1-0O devices. To do this, various techniques and devices,
such as [-O buffering, interrupts, channels, and I-O processors, my
be enpl oyed.

This chapter briefly examnes sone of the methods used to schedul e

and organize I-O One multiple buffering scheme is presented in detail.

IV-2. Immediate |-0O

Many of the earlier conputers and some of the smaller nodern computers
have immediate [-Oinstructions; by "imediate", we mean that the com
plete 1-O operation is handled directly by the central processor imre-
diately upon receiving the I1-O instruction. This includes initiating
the 1-Q specifying the 1-0O areas, naintaining a count of the nunber

of characters transmitted, and testing for errors.

ko

IV-2.1 No "Busy" Flag

The nost primtive inplenentation of imediate |-O instructions
has no provision for testing, by program the status of the I-O units.

If a unit is busy when an |-O command is given for it, program execution
cannot continue until the unit is free and the command is accepted. Care-
ful spacing of [|-O operations can ninimze this waiting time. (ften,
output instructions to a console typewiter are of this type.

Many conputers have hardware buffering for pure |-O devices wth
fixed record lengths, such as card readers and printers, An input (out-
put) instruction\enpties (fills) the buffer into (from storage and acti-
vates the device to automatically refill (enpty) the buffer while the
program proceeds, The device is always one |-O operation ahead of (behind)
the program The advantage here is that, with cardful spacing, the I-0O
instructions are conpleted at electronic speeds while many pure |-0O de-

vices actually operate at electro-nechanical speeds.

IV-2.2 "Busy" Flag

A programaddressable flag bit is automatically set when an |-0O
unit beconmes busy and is reset when the unit becomes free, For a sinple
conputer with 1 -0O buffeénsnd out, an I-Oinstruction produces the

fol l owing hardware actions:

50

Input. out put_

1 ¥ 1
flag = » flag =
0 0
4 : _ v
inarea ;== I_il_:ﬂ_l Iout . = outarea
flag := 1 flag := 1
. . ! . '
Initiate Device Initiate Device
v v

where inarea and outarea are storage areas for input and output. Since

the flag or "busy" bit is addressable, the programmer may use it to branch

to routines involving no 1-Owhile waiting for the unit to becone free:

y ,

1 Compute-Only
flag = *|” Rout ines

Issue I-O
Command

v

This requires nuch progranmng of an admnistrative nature for testing

of the flag and conputing when the I-O unit is busy.

Iv-3. Indirect -0

Most conputers presently available have sone formof indirect I-0

The central processor only initiates the operation; the operation is

51

performed by an independent unit, such as a channel or I-O processor

Once an |-0O operation has been initiated correctly, the conputer can

continue processing concurrent with the execution of the [-O comand.

| V-3.1 Channel s

A data-channel is a control device which acts as an interface between

the processor and nmenory on the one hand and one or nore |-O devices

on the other

- CPU < » Menory
Command Reply
Dat a
Channel

| - O Devices

An 1-0O conmand fromthe processor consists of a request for an -0

operation and control information (or an address containing control in-
formation). The control information usually includes the device address
|-O area address, and nunmber of units of data to be transmitted. The
channel performs the work of initiating the |-0O device, counting the

data units transmtted, and testing for errors. Wth concurrent conputing

52

and |-O there is conpetition for nmenmory cycles; the channel "steals"

its cycles when needed.

Two methods of communication between a data channel and central pro-

cessor are possible:

(1) The CPU nay interrogate the status of the channel, e.g., Is the

channel busy? or

(2) The channel can interrupt the CPU on termnation of the I-0O

operation or on an error condition.

IV-3.2 CPU_[Interrogates Channel

, A sinple exanple of an input-output routine witten in FAP for the
| BM 7090 with one channel is presented. In this programno use is made
of the channel as a separate independent unit since the CPUis held up

until the input or output is finished. A typical call of LINE is:

TSX LINE,4
PZE COUNT
PZE BUF

COUNT DEC 20
BUF BSS 20

" To allow overlap of 1-O with conputing, a sinple software buffering
schene may be used; LINE noves the information fromthe I-O area to a buf-
fer and the channel works on the buffer area. The IBM FORTRAN system on the
7090 handles 1-Oin this way. The call of the nodified LINE given bel ow
is the same as in the previous exanple:

23

CARD

LINE

ETT

101
100

Si npl e Exanpl e of | nput-CQutput Routine

FAP
COUNT
LBL
ENTRY
ENTRY
TAPENO A
TAPENO A

CLA

STA
RTOI!
RCHI
TCOI
TEFI»
TRCI*
TRA ~.

CLAW
ALS
STD
CLA
STA
WTDO
HCHO
TCOO
ETTO
TRA
TRA

RUNO
HTR

I10RT
IORT
END

Where CPU Interrogates Channel

100
CRLN
CARD
LINE
2
3

124
101

101

2,4
304
44

1,4
18

100
204
100

100

ETT
354

LINE

wky, 14
[A FWE R

5k

CARD

Cl

ce

X1
X2

‘EOF
ERR

100
INBUF

CALLING SEQUENCE « 0

Buf f ered | nput - Qut put Routine Where CPU

| nt err ogat es Channel

FAP
COUNT 200

C ARD READER
LBL CRDLIN
ENTRY CARD
ENTRY LINE

A NDLIN E PRINTER

CARD (BUFFER, EOF EXIT, REDUNERREXIT)

TAPENO A 2

CLA 1»4

SXA X1,1

SXA X2»s2

PAC 092

TXH €2,0,0
TRCI v+]

TEFI ~ k]

RTDI

RCHI 10D

CLS Cl

STO Cl

AXT 521

TCOl *

TEFI EOF

TRCI ERR

AXT 0r1

CLA INBUF 1
STO 0,2

TX1I *+1s2,=1
TXI w+1rl1,=1
TXH t=lhsls=14
RTDI

RCHI 10D

AXT kw,]

AXT ¥k, 2

THA 424

BSRI

TRA* 2s4

BSRI

RTODI

RCHI 10D

TIX C2+1,191
TRA® 3r4

IORT INBUF»0,14

BSS

14

END OF FILE EXIT

REDUNDANCY ERROR EXIT

CALLING SEQUENCE IS, LINE(WORDCOUNT» BUFFER)

TAPENO A 3
LNEST 800L 77
LNCNT BOOL 141
LINECLA?Y 1,4 WORD COUNT
SXA Si,1
SXA S2,2
SXA S4,4
PAX 0»1
TXL *+25 1822
AXT 22,1
SXD 10X» 1
CLA 2r4 OUTPUT AREA
PAC 0,2
AXT 0r4
TCOO]
ETTO
TRA ETT
L2 CLA or2
STO 0BUF» 4
TX1 *+12d,~1
TXI *+1,2,"1
TIX v=l4sls 1l
WTDO
RCHO 10x
CAL LNCNT
ANA =Q77777
ADD =]
STA LNCNT
SUB LNEST
TPL QUIT
S1 AXT LAF NI
§2 AXT wh,2
s 4 AXT Y
TRA 34 EXIT "LINE"
*
QUIT CAL * TOO MANY LINES PRINTED
STP LNEST
TSX $EXIT»0
"
ETT WEFO
RUNO
HTR L2
10X IORT OBUF » Qs &
OBUFBSS 22
END

56

This schene begins to take advantage of the ability of the channe

to function independently of the CPU, for exanple, in LINE the CPU may
perform any non-1-O operation as the buffer is enptied by the channel

to the 1-O device. However, an inherent limtation exists when the

CPU is required to interrogate the status of the channel. If bursts of
I-O occur at infrequent intervals during a program the CPU would often
be idle while these bursts were taken care of. Interrupts allowthe I-0O

to be scheduled nore uniformy over the processing tine.

[V-3.3 Channel Interrupts CPU

Interrupts are automatic hardware transfers and "saves" that occur
when unusual or infrequent conditions result during program execution

n

For exanple, if an overflow occurred during the execution of a . = brc",
most machines woul d autonmatically reset the instruction counter to a fixed
| ocation in the nmachine where an error routine resides, Wthout this
facility, at each add, the careful programer would have to wite the

equi val ent of:
a :=h+c if overflow then goto error;

where overflow is a Boolean variable set by the add operation when an
overflow occurs and error is the error routine entry. In the same way,
interrupts occur on ternination of 1-O and [-O errors.

By using interrupts in conjunction with several buffers, channels
can operate alnost conpletely independently of the CPU. The degree of
paral | el i sm obt ai ned depends on the nunber of buffers, the nunber of

channels, and the amount of I-0 called for. Wth a reasonabl e nunber

of buffers, the processor should rarely be in a "wait" loop waiting for

o1

a channel to be free. Buffer handling by interrupts by an output routine

can be organized as follows: ‘

Central
Processor

Fill
Buffer

Buf fers

Empty
l Buffer

Channe
{or 1-0
processor)

A detailed description of such a nultiple buffering output routine using
interrupts is given on the follow ng pages. The FAP program al so includes

a simlarly constructed input routine

Miltiple Buffer Qutput System Using Interrupts
1. Program Buffer, and Pointer O ganization

e T e - e - o i —— - - — e ——— — - -

/ \
/ A\
| \

N |
- —— —— - -

"’JOutput
(j}??gi]; #B[2] ZBIN] Buffers

flag| Buffer Address)

L4
Q Qg //////’ '

1
|
|
R:| « | ! Buffer Address
~__ — ! Table
“ busy
S flag = <jfree>

58

Ql : next free buffer, or

buffer that will be available first

Q, buffer being enptied by channel

The CPU fills buffer Q and the channel enpties buffer Q - The
program is organi zed so that Qy chases Q, - An interrupt occurs after
a buffer Q has been enptied by the channel; the interrupt program
adj usts the Q% pointer and initiates another output if the- nEM/OB[Qz]
is full. The routine LINE is called from the main program whenever out-

put is required. LINE fills OB[Ql] and increnents Q

2. Flow Charts

LINE : Activated by Main Program

| Get word count and block address

nitiate Ig

Move info into ;dB[Ql]

v
Advance Ql

{Initiate Ig

59

Ips Initiate IP (subroutine)

|set up channel command]

Wite

4
Mark out put busy

T2. Qutput Ternination

Activated by a channel interrupt when channel term nates an
output instruction.

Mark output free

w
|Mark #B[Q,] empty |

©

v
Advance Q2

Initiate Ig

e

FAP_Program

CARD S

€2

ca

(4]

Cé

T1

INPUT

TAPEND A2

X A CEX»2

SXA CEX+1st

CLA 154

STA c5

LXA Ps4

CLA Ts4 IS BUFFERFULL
TMI c4 YES

ZET END

TRA QUIT

NZT BUSYI

TSX 11,4

ENR MSK

TRA €2

PAC 0,2 TRANSFER INPUT DATA
AXT V4

CLA 0,2

STO whpl

TXI *+1,2,~1

TXI téiolis=1

TXH *olsl4,=iL

LXA Psd MOVE POINTER P1
ZAC

STP Tsd

TIX *+254,51

AXT N2 4

SXA Psr4

NZT BUSY1

TSX 11,4

AXT *hy 2

AXT whyd

TRA 04,4

SXA C6,4 INITIATE INPUT
LXxD Ps4

CLA Trt

™1 (of

STA ICOM

RTOI

RCHI 1COM

CLA Ti

STO 11

STO BUSYI

AXT wk, 4

TRA 1,4

EJECT

TRA *4q INPUT INTERRUPT
SXA T12.4

STQ M@

LGR 2

61

*

ST0
STZ
LXD
TXH
TXH
T13 CLA*
SUB
TZE
LX0D
CLA
SSM
STO
TIX
AXT
SXD
CLA
™1

TSX -

T11 CLA
LGL
LDQ

T12 AXT
RCT
TRAw

ENCF STL
STZ
TRA
RED AXT
BSRI
RTDI
RCHI
TCOl
TRC1I
TRA
TIX
STL
TRA

QUIT LXA
ZET
TRA*
TRA+

AC

BUSY!
10.4
ENDF 4,2
RED»4» 1
I1COM
FINIS
ENDF

Ps4a

Tr4

Tr4 MARK SUFFER FULL
*+254,51

Nsd

Psd

Ts4

*+2 IS NEXT BUFFER EMPTY
11,4 YES

AC

2
M0

whyl
10

END END OF FILE

BUSYI

Ti1

3,4 REDUNDANCY CHECK ERROR

ICOM

*
*+2

T13
RED+1,4,1
ERR

ENDF

CEX+1,4
ERR
2s4
354

62

]

0

OUTPUT

TAPEND

LIKE SXA

L2

L4

L5

LEX

10

SXA
SXA
CLA+
ALS
STO
CLA
STA
LXA
CLA
TPL
NZT
TSX
ENB
TRA

PAC
CLA
STD
POX
AXT
CLA
STO
TXI
TXI
TIX

LXA
CcLS
sTO
TIX
AXT
SXA

NZT
TSX

AXT
AXT
AXT
TRA
EJECT
SXA
LXQ
CLA
TPL
STA
STD
WTDO
RCHO
CLA
STO

STO

B3
LEX»1
LEX+1,2
LEX+2,4
1r4

18

WC

2s4

LS

Q4

S»4

L4
BUSYO
10,4
MSK

L2

0,2 TRANSFER OUTPUT DATA
WC

S»4

0»1

04

2y

0s2

weir2s=1

*+isl4,=1

*=l4,1,1

Q4 MOVE POINTER @}
Ss4

S» 4

*+2s4,1

M 4

Qs4

BUSYO
10,4

ek,]
hhy2
kw4
3r4

Lé6s4 INITIATE OUTPUT
Qry

S»4

Lé

OCOM

OCOM

OocoMm
T2

13
BUSYO

63

L6

T2

T21

T22

ETP

AXT
TRA

TRA
SXA
STQ
LGR
STO
STZ
ETTO
TRA
LXD
ZAC
STP
TIX
AXT
SXD
CLA
TPL
TSX
CLA
LGL
LDQ
AXT
RCT
TRA#*

RUNO
HTR

**,ll
1,4

0 4]
T2224
M@

2

AC
BUSYOD

ETP
Q4

S»d
*+204,1
Ms 4

Qe 4

S»4

42
1024

AC

2

MQ
**’a

12

T21

OUTPUT NTERRUPT

MARK BUFFER EMPTY

IS NEXTBUFFERFULL
YES

N EQU 4 NUMBER OF INPUT BUFFERS

M EQU 4 NUMBER OF OUTPUT BUFFERS
WC PZE LENGTH OF OUTPUT RECORD
ERR PZE FLAG SET BY REOUNOANCY ERROR
p PZE N2»N INPUT TABLE POINTERS .
Q PZE Moo M OUTPUT TABLE POINTERS
ENC PZE FLAG SET BY ERROR CONDITION
BUSY | PZE FLAG ON IF INPUT CHANNEL BUSY
BUSYO0 PZE FLAG ON IF OUTPUT CHANNEL BUSY
ICOM 10RY *ky14
OCCMIORT Wk, gk
MSK PZE 3551
FINIS 8CI 1,FINIS
MQ PZE
AC PZE
PZE 181
PZE 182
PZE 103
PZE 184
T SYN » INPUT BUFFER TABLE
PZE 0Bis»0
PZE 0B2s»0
PZE 0B3s»0
PZE 0B4s»s0
S SYN * TABLE OF OUTPUT BUFFERS
181 BSS 14
182 BSS 14
183 BSS 14
184 BSS 14
0B1 BSS 22
og2 BSS 22
083 BSS 22
0B84 BSS 22
END

65

For conputers with several channels, there is the possibility of
interrupts from different sources occurring sinultaneously. To handle
this, there nust be hardware or software provision for determ ning
priorities of interrupts and storing pending interrupts in a priority
queue. It is the task of nonitor or supervisory prograns to administer

these interrupts correctly.

IV-4. [1-0O Processors

The next level of sophistication after channels is the use of sepa-
rate 1-O processors to process |-O In this context, a channel is
a crude 1-0O processor. Wth |-0O processors that approach the power
of a conputer, 1-0O data can be edited, checked, and manipul ated before
it reaches the central processor; that is, all the |-O housekeeping
tasks can be delegated to the I-O processor. An |-O processor can
be a specifically designed unit for a particular machine, as in the DEC
PDP-6 system or it may be another conputer attached to the main machine,

as in the I BM7090-70+0 direct-coupled system

Iv-5. Experinental Conparison of Several Methods
of 1-0 Organi zation

Several nethods of organizing |-0O for the scanner portion of an
experinental ALGOL conpiler on the IBM 7090 were exanmined by N. Wrth,

The basic problemis illustrated bel ow

66

(Tapej i
Input pl Scanner

ALGOL Source

For the experinent,
then conpiled into core producing an output tape

guage instructions were conpiled).

A

D:

Code

ALGOL
Compiler

Compiled

Code Core

No Buffers
1 Channe

CPU interrogates channel

1 Buffer

1 Channe

CPU interrogates channel

1 Buffer

2 Channels (one for input, other for output)

CPU interrogates Channel

L Buffers

2 Channels (one for input, other for output)
Channel interrupts CPU

(FAP program of section IV-3.2.)

67

Input Copy
plus some
generated
information

650 card records were put on tape as the input and
(5,5508 machi ne | an-

Four 1-0O schenes were investigated:

Test

Resul ts

Met hod
A B C D
Conpile Time
(Seconds) 16.11 12.12 7.05 6.31
*Conpar i son 1 1.33 2.29 2.55
Length of
|-O Program 268 5lg 51g 2&&8
Tot al
Buf f er
Length 0 uu8 448 220g
* The conparison gives the ratio of the Conpile Time of A to that of

B,
For this particular application,
separate channels are used for input and output.

schene is marginal

¢, and D.

here.

However ,

processing time in this experiment.

a greater gain for applications where the

IV-6.

|-O and Systens Progranmming

the greatest gain is for nethod C where
The multiple buffering

the 1-O occurs uniformy over the

It is predicted that D would show

| -O occur

in bursts.

Today the applications programrer seldomworries about the detailed

scheduling and programmng of 1-0Q

not inpossible in some instances,
machi ne |-0O comrands.
"1-0 tasks requested,

tens.

out

Ther ef or e,

most

In fact,

"central ly" by the systens programer.

68

it is very difficult, if

even at the assenbly |anguage |evel

for the user to gain access to the

Monitor programs carry out the details of the

for some sys-

|-O progranmng for conmputer systens is carried

V. SUPERVI SORY PROGRAMS (MONITORS)

V-1. Monitor Tasks

H storically, nonitor or supervisory prograns were developed to en-

sure the continuous operation of conmputer systens with [ittle or no hunan
intervention. As systens becanme nore complex,monitors assumed the respon-
sibility of scheduling and allocating conputer resources, such as storage
channels, 1-O units, and processors. To acconplish these tasks, it is
necessary that ultimte control wthin and anong user jobs resides in the
noni tor.

Monitor systems perform the follow ng general functions:

1. Job-to-Job Contro

This consists of the automatic termnation and initiation of
jobs. Jobs may be termnated "naturally" or on error conditions
termnnation tasks include sign-off accounting, closing of files
and conpilation of job statistics. Job initiation includes sign-
on accounting and interpreting user nonitor control conmands for

opening files and program | oadi ng.

2. Accounting

Records of use of the conputer system conponents during a job

are kept and the user is charged accordingly.

3. Program Loading and Meraging

Prior to or during execution, user prograns and subroutines nust
be | oaded into storage and |inkages established anong them The
monitor allocates storage to the programs, |oads theminto storage
performng the necessary address relocations, and sets up |inkages

among the prograns so-they may communicate with one another.

69

4, Accessing and Miintenance of Library Prograns

Most monitors maintain a library of systems and applications
prograns that may be "called" by a user; these include conpilers,
assenblers, |-Oroutines, and comon nmathenatical functions. Load-
ing and nerging, and inserting and deleting library programs are

handl ed by the nonitor.

5. 1-0 Processing

In order to maintain job-to-job control and to obtain optinum
use of I-O facilities, most nodern systens delegate all I-Oto
t he supervisor- These systens often have hardware supervisory and
probl em nodes of operation. Hardware |-O instructions are “super-
visory" type, that is, only the monitor is permtted to use them
To performan |-O operation, the user issues an |-O request to

the nonitor which does the actual execution.

6. Error Checking and Recovery

Run-time errors, such as overflow, use of illegal or "privileged
instructions (e.g., 1-O instructions), exceeding run tine limt,
nenory-protect violations, etc., result in interrupts or calls on
the supervisor; the supervisor determnes the cause of the error
. deci des whether to termnate execution or not, and produces diag-

nostic information for the user.

7. Interrupt Handling

Monitors are responsible for the analysis and disposition of
all interrupts that may occur during systems operation; this may
include maintenance of pending interrupt queues and priority sched-

uling of interrupt handling.

70

8. Scheduling and Allocation of Resources

Wien conputer resources are insufficient to satisfy the tota
demand on themor when it is desired to maintain a high degree of
paral | el operation of the system conponents, resource allocation and
scheduling routines are necessary. These becone part of the nonitor
progr am

This chapter outlines the three basic types of nonitors and discusses
some general nethods of allocation and relocation which are central to
the above tasks. A separate section describes sone approaches to solving
an inportant control problem for parallel processes.

v-2. Types of Mnitors

V-2.1 Batch Processing Monitors

This is the sinplest and ol dest type of nonitor. In this type of
systems, jobs arrive sequentially in "patches" usually from one input
source. Normally, one job at a time is processed; where multiprogramm ng
Is possible, several jobs may be in storage sinultaneously and the noni-
tor controls the switching anong jobs. Typical conventional nonitors

are the 1BM 7090/709% |BSYS Systeml and the B5500 Qperating Sy-stem2

(mul tiprograming).

V-2.2 Real Time Mnitors

Interrupts fromexternal devices command the attention of the system
and nust be processed within a given tine interval. |pterrupt tines are
unpredi ctabl e but several may occur during the processing of another
interrupt. Airlines reservation system;3 and conputer control of physics
experinents” are applications of this type.

T1

The major task of a real time nonitor is the handling of interrupts
In addition, nost systens batch process "background” prograns while there
are no interrupts pending; on an interrupt, the real time nonitor transfers
control from the "background" program to the particular interrupt proces-

sing routine.

V-2.3 Tinme Sharing Mnitors

A time-shared digital conputer systen? is "a system from which many
peopl e (or machines) may demand access and expect to receive responses
after short enough deLays to satisfy them" Batch processing and rea
tine operations may be included as part of the capabilities of a genera
time-sharing system

The nmost common net hod of inplementing a time-sharing systemis through

b n

nul tiprogramming where” "several programs are maintained in an active state

(with others probably waiting in a queue), and at various times each is
given control of some part of the conputer, until one or another of them

is finished, or until a new task is brought in to replace an ol der one
according to sone scheduling algorithm Fast response by the conputer

to many users (e.g., 150 to 200 or nore) requires that each task be given

a "time slice", and if the task cannot be conpleted during its "time slice"
that it nust be interrupted to allow another task its turn.”

A tinme-sharing monitor has the follow ng demands and requirenents:5
"(1) At any nmonent in tinme one may expect to find a great many partially

conpleted programs, each waiting for a turn at the central processor, an

I nput - out put processor or sone other part of the computer.

72

(2) Very effective use must be nade of high speed storage, since many
programs nust have access to it, but usually only a fraction of these
prograns can reside there at any one tinme.
(3) The overhead incurred in keeping track of the programs which are
partially conpleted or not yet begun and the overhead incurred in switch-
ing control among them (while protecting each from the others), nust be
reduced to a mininmum otherwise, it wll quickly beconme intolerable.”

Met hods for allocating high speed storage and satisfying requirement
(2) for any type of nonitor are discussed in the next section. The papers

on the MULTICS systemi contain a good discussion and bibliography on tine-

sharing

v-3 . Storage Allocation Methods

Storage may be allocated to a program at the time it is translated,
before execution, or during execution. In the first case, a translator
such as an assenbler, generates absolute addresses for data and instruc-
tions and the entire program including subroutines nust be translated at
the sane time; nerging of independently translated programs can only be
done with great difficulty since address conflicts easily occur.

Because storage is allocated after translation in the latter two
cases, the translation must result in a program with rel ocat abl e addresses;
e.g., instruction addresses, data addresses, and operand addresses nay
all be translated relative to a given base address, comonly 0 . Loading
of programs, parts of prograns, or subroutines into storage is done before
or during execution by adding relocation constants to the addresses.

Rel ocation performed before execution is called static relocation; xeloca-

tion perforned during execution is called dynamc relocation

73

V-3 .1 Static Relocation

Static relocation is perfornmed by a relocation |oader as the program
is loaded into storage. A nunber of progranms conprising a job may be
translated independently; the relocation |oader allocates storage to the
prograns, relocates addresses to reflect this allocation, establishes
| i nkages between programs, and places themin storage ready to be executed.
During translation, flags can be set for each instruction to indicate
which addresses in that instruction are relocatable and which are absolute
(e.g., imediate type addresses); calls on "external" prograns and program
entry points are tabulated so these correct addresses may be inserted at
| oad tine.

The | BM 7090 FAP systen? relocates statically as illustrated bel ow

Name Address
gé o Table of entry Points
Name
SIN Exit List (External programs)
P: cas or
. d: SQRT Transfer Vector
Pl—» Program
TSX 4, call on SIN
P2—»p r///
TSX 4, call on CgS
TSX 4, Ccall on SQRT

Th

This is the input to the relocation loader. The |oader reads P
and nerges the library programs SIN, COS, and SGRT i nto storage per-
formng the required address relocations; |inkages are made using the

transfer vectors:

Program P and Library Prograns after Loading

Transfer Vectors k,f””//””,”' SIN Routine
SIN -

ﬂﬂ,.———*"”'—”—* CgS Routine

SQRT . SZRT Routine

o -

Entry Points

p1 *—————*"""-__‘—’
p2 *————*“"'**_—-—’

The use of entry and exit point tables and transfer vectors is the nost
conmmon nethod for performng the |oading task,

Loading with a relocation |loader is a conplex and time consum ng
job. If a fast assenmbler or conpiler is available, it is sometines nore
efficient to translate and load all programs required by a job each tine
the job is run. This is the approach taken in the B5500 operating system

Conceptual Iy, a conputer with base addressing, such as the IBM 360,

can performrelocations very easily. For exanple, an IBM 360 address is

75

formed from the contents of a specified base register and a displacenent

(ignoring indexing):

address = (b, d), where b - base register
d - di splacenment

effective address := R[b] + d where R] - register

Translation could occur with respect to the displacenent; in loading, a

relocation constant would be inserted in R[b]. This scheme requires that

certain registers be-unavailable for use by the programer and that the

di spl acenent cover a large address range

V-3.2 Dynani c Rel ocation

Wien a programis too large for main storage and auxiliary storage
is available, sone method for dividing the programinto nanageable se@-
ments and adm ni stering the swapping of these segments between nain and
auxiliary storage is necessary. (ne static technique that has been used
is the fol | owi ng:

The nmonitor or translator, at translation tine, (or the progranmer
when -he codes the problen) divides the programinto segnents which will
fit into main storage and inserts "segment calls" to bring in new segnents;
all segments are relocated statically before execution of the program
begins. This requires that the system (or programmer) know how nmuch stor-
age will be available for programand data at execution time; when severa
prograns reside in core sinultaneously as in a nultiprogranmng or tine-

sharing environment, or when data can be dynamcally declared, this -

76

know edge is not available in general. A nore satisfactory nethod is to
divide the programinto fixed or variable size segnents, each of which

can be dynamcally relocated during execution.

A description and eval uation of this technique as used for the G ER
ALGOL systemis given by P. Naur in Reference 8. A typical picture of

the allocation during execution is:

Main Storage Auxiliary Storage

Administration
of Program Storage

Program
Segments'

{

Data Area

The data area is dynamically allocated by the program during execution
using a stack nechanism Prograns are divided into small segments so that
there is room for several segnents in main storage at any tinme; segnent

to segment transfers are controlled by the Program Storage Administration -
if the required segment is in core, (a table is kept of all segments in
core) the transfer is made; if not, then the segnent is brought into main

storage from auxiliary storage. Segnents which are unused for the |ongest

77

tines are the candidates for replacenent. Naur's concl usions were that
the sinple segment admnistration nethod used yielded satisfactory results
in terms of run time efficiency and that a_significant per f ormance in-
crease could be achieved by adding a hardware instruction to perform seg-
ment to segment transition (and thus reduce the segnent table searching
time)

This ability to insert segments anywhere in main storage during exe-
cution requires that all addresses be dynamically relocatable; addresses
take the formof a pair (s, i) where s is a segment nunber and i
represents the addre§§ wthin s . (This form of address was originated
in the Ferranti ATLAS conputer.) During execution of a segnent, the pair
(s, i) is translated to the correct absolute address, usually by hard-
ware (however, the GEIR ALGOL system does this by software). Some of the
hardware nethods for inplementing dynamc relocation are described next.

Reference 9 gives a good general discussion of these nethods

v-3.2.1 Ferranti ATLAS Met hod

The upper part of the 20 bit machine | anguage address is interpreted
as the page number (page i s synonynous with segment here) and the |ow order

part as the address within the page or |ine nunber:

Addr ess

s i

<4—n—p4g—n bits —Pp n
m

11
9

i

The addressing structure thus allows a program of up to " pages, each

page consisting of 2= words. -However, in general, min storage consists

78

m+k k

only of 2 words, where k< n . Associated with each of the 2
pages that may be in main storage is a hardware page register. Generation
of the actual address fromthe relocatable address (s, i) proceeds as
fol | ows:
1. Search all page registers for s
2. if value(Register[j]) = s then
address := jx 2™+ i
(i.e., page is in core)
3. Oherwise, fetch page from drum

Steps 1 and 2 are performed by the hardware; a hardware interrupt to the

supervisor occurs if the page is not in core.

Example

k=2, m= 3
(s,1) = (37,6)

Page Registers Main Storage
R[O] 52 0 x 23:
R[1] 2
R[2] 27 1x23:
R[3] 90
2 x 23:
Eme——
address = 2 x 23 + 6 3 x 25:

79

Admini stration hardware keeps track of page usage; when a new page

is required fromthe drumand core is full, the page with the |east usage
is replaced. The relocation method applies both to data and program
The programer sees a "virtual" nemory of 2™ ords and does not have

any control over the segnenting and dynamc relocation processes.

V- 3. 2.2 Burroughs B5500:

B5500 ALGOL is conpiled so that segnents consist of ALGCL bl ocks,
data, and control information. A program reference table (PRT) contains
block and array "descriptors" which point to the core area containing the

segnent. Addresses of the form(s, i) are translated by:

Physi cal address := Mlb+s] + i
M nenory

b: base of PRT

Segments are not of fixed length but contain a size limt entry that

enabl es an automatic check, e.g., if subscripts exceed their declared
bounds. The advantage of making bl ocks equival ent to segnents is that
segments (or blocks) can then only be entered fromthe top and left either
fromthe bottomor by a go to statement (ALGOL requirements).

v-3.2.3 Arden, et al. Schema5

The schene devel oped by Arden, et al., (and inplenmented on the Ceneral
El ectric 645 and | BM 360/67 conputers) considers a machine address to be
atriplet (s, p, i) rather than a pair (s, i) . Physical address gen-

eration can be illustrated by the follow ng diagrans:
80

Segment Number Page Number Line Number

Address: . S D e 1
Segment
STR < Tgble Memory M
Segment ()"ﬂ |
Table Page
Register Table
— L[e D--»
lli t——ﬁ}--*’ o
rage |
/\7—» I
Physical
Address
Physical Address := M[M[M[STR+S] + p] + i]
zP and li i ndi cate page table Iengths and page |engths so that auto-
matic error checks occur if p > zP or 1>1, .

In this scheme, which is proposed for time-sharing systens, each
user has his own segnent table and the STR register contains the segnent
table base for the user currently in control; the page and segment table
entries also have an availability bit to indicate whether the page or
segnent is in nmenory or not. The triplet is used since it is anticipated
t hat pages and page tables will be shared by many users (see section on

I nvariant Prograns).

81

To save storage references through page and segment tables, severa
associative registers containing (s, p, physical page base) can be used.
Address generation then consist of a parallel hardware search through the
associative registers; if a match is found, the Iine nunmber is added to
the physical page base stored in the register; otherw se, the segnent
and page tables nust be searched, as before. The associative registers
are controlled by the nonitor so that the most frequently used page ad-
dresses are stored there. It appears that this nethod will be in comon
use in the future.

v-3.3 Menobry Protection

Wien user prograns run under the control of a nonitor, it is inpera-
tive that there be hardware and/or software to also control and restrict
the bl ocks of nenory that are available and unavailable to a particul ar
user. A block, page, or segnent of nenmory nmay have one of four types of
access al | owed:

1. Read and Wite

This is the "classical" type of access; the block may be
read fromor witten into - both [oads and stores are

allowed. Program data blocks are usually read and wite,

2. Read only

A block may be read but not witten into - [oads but no
stores. \Wen several prograns share the sane procedure,
the shared procedure is read only.

3. Wite only

Only stores are allowed to the block

82

4. Neither read nor wite

Both read and wite access are prohibited. This protects
i ndependent programs and data from access by other prograns.
The 1BM 360 provides read wite, read only, and neither read nor
wite access. A L-bit "key" identifiesﬁ each nenory block; each program
is also given its own "key". For read-wite access, program keys nust
match nmemory block keys: an additional fetch protect bit is used for
read-only protection, on the 360/67. Hardware interrupts occur on pro-
tection violations.
Segment and page table entries have |length indicators indicating
the segnent or page size; these are checked during physical address com-

putation to further check for menory protect violations.

V-3.4 Invariant Prograns

In the early days of conputer programmng, there was nuch enphasis
on conputer instruction codes that nodified thenselves during the conpu-
tation. For exanple, to conpute a sum the followng self-modifying in-
struction sequence in MAP could be used:

Initialize

LOOP CLA *+3

ADD =1
STO *+1
ADD A
STO SUM
-end test-
TRA LOOP
SUM BSS 1
A BSS1
BSS 100

&

Later, the use of index registers to store and conpute addresses nade
instruction self-nodification unnecessary. Looping and subroutine trans-
fers, the two principal areas where prograns mght have to change them

selves, can be acconplished easily with index registers:

1. Looping:
The loop: "for i :=1 step 1 until M do s"

(M>1) can be witten in MAP as:
CIA M
ALS 18
STD B
AXT 1, 1

S
TXI *+1, 1,1
B TXL I, 1,%*

2. Subroutine Transfer and Return

TSX SUB,4 SUB SXA L,k
L AXT *%,4
TRA 1,k
The current trend is to elininate self-modifying prograns. In nulti-

programmng and time-sharing systems, invariant procedures, that is,
procedures that do not nodify thenselves, are shared by many prograns
(page and segnent tables of several programs point to the same area for
these procedures). The invariant procedures may be library prograns of
several different types - evaluation of mathematical functions, sorting
routines, editing and formating routines, etc. It is these invariant pro-

cedures that nust be read-only protected.
84

v-4. Loosely Connected Parallel Processes 10, 11, 12, 13

To achieve faster speeds and allow conputer-to-conputer comrunication
conputer systens designers connect several independent processors to common
menory banks and control circuitry, and run these in parallel. This in-
cludes central processors, |-0O processors, data channels, and specia
purpose processors, such as a floating point arithmetic processor. Wth
this type of arrangenent, nore than one program and parts of a single
program can be executed in parallel and comunicate with each other.

In general, we have many processes operating in parallel and communi-

cating with one another by means of common variables. |n such a situation

it is necessary to ensure that no conflicts arise in accessing these vari -

ables. Two exanpl es of these |oosely connected processes should clarify

t hese ideas:

1. 1-0 processing

An 1-0O area in storage (or buffer area) may be filled or enptied
by the central processor or by I-O processors. The system nust be
programed so that the common variables, the 1-O area, are not accessed
by more than one processor at a time. (One special nethod for this case
is the nultiple buffer system described in chapter IV.

2. Ceneral file Processing

Wien several central processors have access to a common file, such
as a payroll, accounting, or inventory file, access must be restricted to
one processor at a time in order to maintain accurate files; if not, it
Is possible for the same itemto be updated sinultaneously by more than
one processor and only one of the updates would then be recorded instead

of all of them

85

V-4.1 Programm ng Conventions for Parallel Processing

Fol l owing Wrth, 10 the parallel execution of two or nore ALGOL state-
ments will be indicated by replacing the -senicolon separating the statenents
N
by the symbol and . For exanple, to conpute Zaibi in two parallel

i=1
parts, the program (mnus declarations) is:

sl :=s2:=0;
for i :=1 step 1 until N+ 2 do
sl :=sl +a[i] X Db[i]
and
for j =Nt 2+l step 1 until N do
s :=5sl +s2

A matrix nultiplication program10 computing A := B X C, where all

el ements of A can be conputed simultaneously is:

integer array A[l:m, l:n], B[1l:m, 1:£7, C[1:f, l:m];
procedure product(i, j);
value i, j; integer i, j;

begin
integer k; real s;
s := 03
for k :=1 step 1 until ¢ do
s := s + B[i, k] X C[k, j];
Ali, jl:=s

end product;

86

procedure column(i, j);
value i, j; integer i, j;
product(i, j) and

if j >1then colum(i, | - 1);
procedure row(i); |
value i; integer i;
column(i, n) and

if i >1then row(i- 1);

row(m

V-4.2 The Control Problem for Loosely Connected Processes

The problem and its environment can now be stated nore precisely.
W are given several sequential processors which can comunicate with
each other through a common data store. The prograns executed by the

processors each contain a "critical section” (CS) in which access to the

conmon data is made; these programs are considered to be cyclic. The
problemis to programthe processors so that, at any noment, only one of
the processors is in its critical section;, once a processor, say A
enters its critical section, no other processor may do the same until A
has left its CS
The follow ng assunptions are nmade about the processors:
1. Witing into and reading fromthe common data store are each
undi vi dabl e operations; sinultaneous reference to the same |ocation
by nore than one processor will result in sequential references in
an unknown or der
2. Oritical sections may not have priorities associated with them
3. The relative speeds of the processors are unknown.
There are two possible types of blocking which the solution to the

probl em nmust prevent:

87

1. A programoperating well outside its CS cannot then be bl ocking
anot her program fromentering its CS .

2. Several programs (or processors) about to enter their CS's can-
not, by an "after you" - "after-you"“ type of intercomunication,
postpone indefinitely the decision on which one actually enters.

W will nowtry to develop solutions to the problemand illustrate

some of the pitfalls that exist.

V-4.3 Sol ving the Probl em

The problemw || be restricted to 2 processors, each with its own

Program " Program
1 2

Processor 1 Processor 2

CS:

1. Exanple 1

begin integer turn; turn := 2;
Pl: begin Ll: if turn = 2 _then go to Ll;
CSl: turn := 2;
program 1; go to Ll
end and

P2: begin L2: if turn =1 then go to L2;
cs2; turn := 1;
program 2; go to L2
end
end
88

Unfortunately, neither PL nor P2 may enter its CS twice in succession;

the program insists that they enter alternately.

2. Exanple 2

An attenpt is made to avoid the nutual blocking in exanple 1 by

defining two common variables, C and C2 .

Begiol ean O, C; d :=C :=true;

Pl: begin Ll: if —C2 then go to ILl;
a := false; Csi;
Ca :=true; program 1;
go to Il
- end and

P2: begin L2 if —Cl then go to L2
c2 :=false; CS2;
c2 := true; program 2;
go to I2
end
end

Wen 0 or C is false (true), the corresponding process is inside

- (outside) its critical section. The nutual blocking of exanple 1 is now

not possible but both processes may enter their CS's together; the latter
can occur since both progreams may arrive at L1 and L2 together wth

Cl = c2 = true.

3. Exanple 3
The mutual execution of exanple 2 is avoided by setting d and

C2 false at L1 and L2 respectively:

89

begin Boolean d, C; O := C2 := true;
PL: begin Al: a := false;
Il: if -~ C2 then go to I1;
csl; A := true;
program 1; go to Al

end and
P2: etc. . . .
end

The last difficulty has been resolved but mutual blocking is now possible
again. O may be set false at Al at the sane tine that G is set
false at A2:, in this case, both PL and P2 will loop indefinitely
at L1 and L2 . }he obvious way to rectify this is to set d and C

true after testing whether they are false at 11 and L2 .

L. Exanple 4

begin Boolean O, C2; 4 := Q2 := true;
Pl: begin I1: d := false;
if 1 C2 then begin O := true;

go to Il

end;

csl; A := true;
program1l; go to Ll
end and
P2: etc.----
end

Unfortunately, this solution may still lead to the same type of bl ocking

as in the last exanple; if both processes are exactly in step at Ll
and L2 and their speeds are exactly the sane for each succeeding

instruction, the sanme |oop as before will develop around L1 and L2 .

90

The above attenpts illustrate some of the subtleties underlying this

problem The following solution was first proposed by Th. J. Dekker:

begin integer turn; Boolean "d,
ad :=c2 :=true; turn := 1,
Pl: begin Al: A :=false
Li: if = C then
begin if turn = 1 then go_to ILl;

a :=true;
Bl: if turn = 2 then go to BI;
go to Al
end
- CSl; turn := 2,
a :=true; program1;
go to Al
end and

pP2: etc. ---
end

A and C2 ensure that nutual execution does not occur; "turn" ensures
that mutual blocking does not occur.

Dijkstrall has devel oped a solution to the nore general problem where
there are n processes, instead of only 2, operating in parallel. If
it was further stipulated that no individual process be indefinitely
bl ocked, both the above solution and Dijkstra's solution would fail; for
example, if in Dekker's program the speed of processor 2 is nuch greater
than that of processor 1, it is possible for processor 1 to |oop inde-
finitely at L1 while processor 2 executes its cycle continuously. This

problemis considered in Reference 13.

91

V-4.4 The Use of Semaphores

Wiile Dekker's and Dijkstra's programs solve the given problem
there are, nevertheless, two unappealing features of them
1. The solution is nystifying and-unclear in the sense that a
sinple conceptual requirenent, nutual exclusion, leads to cunber-
some additions to prograns.
2. During the time when one process is in its critical section,
the other processes are continually accessing and testing conmon
variables; to do this, the waiting processors must "steal" nenory
cycles fromthe active one. The result is a general slow ng down
of the active process by other processes that are not doing any
useful work.
An inproved solution can be obtained by adding two new primtive
or basic operations (Dijkstralg). These primtives, designated V and
P, operate on integer non-negative variables, called "semaphores"; it
is the semaphores that perform the comnunications anmong processes. The
V and P operations are defined as follows:
1. V(S) (S a semmphore variable). S is increased by 1 . This
is not equivalent to S :=8+1. e.g., If S =5 and 2 proces-
ses call V(S) simultaneously, both V-operations will be performed
(in some order) with the result that S =7; however, if the ALGOL
S :=8+1 is executed by each process, it is possible for each
process to fetch S when it is 5, increment it by 1, [leaving
S5 -i.e., S has only been increnented once instead of tw ce.

V(S). does the fetch, increnent, and store as one operation.

92

2. P(S) (s a semaphore variable). P(S) decrenents S by one,

if possible. If s =0, then it is not possible to decrement S
and remain in the domain of non-negative integers; in this case, the
P-operation waits until it is possible.

Let us apply these prinmitives to the mutual exclusion problemwth

N processes:

begin integer mutex; nutex := 1;
Pl: begin . . nend _d
P2:

Pi: begin Li: P(mutex); csi; V(nutex);
- programi; go to Li
end and

Ph: . .. L
end

nmutex = 0 when one of the processes is inits critical section; other-
wise, nutex =1 . Mitual execution of CS's cannot happen since mnutex
can't be decrenmented below zero by the P-operation. It should be noted
how nuch sinpler and clearer the solution is when the V and P-operations
are enployed. Sone nore general applications of semaphores will be illus-

trated next.

V-4.4.1 2-Processes Communi cating via an Unbounded Buffer

- A "producer" process produces information for the buffer and a
"consumer" process consumes information from the buffer; this is analo-

gousto the situation where-a CPU fills an output buffer and a data

93

channel consumes or enpties the buffer contents. The following two sema-

phores are used:

n = nunber of queued portions of output of the producer and input
to consurmer,
b 0 indicates adding to or taking from buffer is occuring

1 indicates buffer access routines are not active.

The critical sections are the buffer access routines, "Add To Buffer"

and "Take From Buffer".

begi n integer N, b; n :=0; b :=1;

producer: begin Lp: produce next portion of data;
P(b); Add To Buffer; V(b);
V(n); go to Lp

end and

consuner: begin L P(n);
P(b); Take From Buffer; V(b);
Process Portion; go to Lc

nd

end

The two most conmon net hods of organizing a buffer are the cyclic nethod
(Chapter 1V) and the chaining nmethod, where each portion of the buffer
is an elenent in a linked list or chain. |n the latter case, adding or
taking from the buffer simultaneously can disturb the Iinkages; the
semaphore b ensures the nutual exclusion of the critical sections,

Add To Buffer and Take From Buffer.

In general, it is always possible to replace a general semaphore
(taking all non-negative integer values) by one or nore m senmaphor es
(taking O or 1). Below, the last example is programmed using binary
semaphores only; the sinple integer variable n and the binary semaphore

d are used instead of the general semaphore n :

begin integer b, n, d; b:=1, n:=d:=0;
producer: begin: L_: produce next portion;

Pl(Db); Add To Buffer; n := n+l;
if n =1 then V(d);
V(b); go to Lp
. end and
consunmer: begin integer ol dn;
L,: P(d);

L : P(b); Take From Buffer; n := n-I;
oldn :=n; \V(b); Process portion;
if oldn £0 then go to L else goto L

D
>
o

end

Another solution, called "The Sleeping Barber", presents the actions

of the producer and consumer nore clearly:

begin integer b, n, d; b :=1; n:=d := 0;
producer: _begin LP: produce next portion;
P(b); Add To Buffer; n := n+l;
if n =0 then V(d);
V(b); go to L
end and

P

95

consumer: begin L : P(b); n := n-|
if n=-1then
begin V(b); P(d); P(b) end;
Take From Buffer;
V(b); Process portion;
go to L,
end
end

When n= -1 outside of CS execution, the buffer is enpty and the

consunmer, having noted this, is waiting. The "sleeping barber" story

goes as fol | ows:

Barber' s
..1: Chai r N,
r Wi ting Room Bar ber shop

Custoners enter the waiting room and the Barber's room through a
sliding door that only adnmts entrance to ae of the roons at a tine
(mutual exclusion of custoner producer and consuner); the entrances are
designed so that only 1 custoner may come into or |eave the waiting
roomat a tine. Wien the barber finishes a haircut, he inspects the
wai ting room by opening the door (P(b) at Lc); if the roomis not
enpty, the next customer is invited in (n £ -1); if the roomis enpty
(n= -1), the barber goes to sleep (waiting at P(d)) . Wen a custoner

enters and finds a sleeping barber, he awakens him

96

V-4 4.2 Processes Communi cating via a Bounded Buffer

The general semaphore is applied to the last problemin a. nore
realistic setting - a bounded buffer. N is the buffer size, in portions

and is a global variable in the program Two general semaphores are used:

>
1

number Of enpty portions in buffer

3
I

nunber of queued portions
b is a binary semaphore ensuring nutual exclusion of critical sections.

begin integer my n, by m:=0; n:=N b :=1,
producer: begin LP: produce next portion; P(n);
P(b); Add To Buffer; V(b);
V(m); go to L,
end and

consuner: begin L : P(m);

P(b); Take From Buffer; V(b);
V(n); process portion;
go to L

C
end

end

V-5. References
1. Noble, A S, Jr. Design of An Integrated Programing and Qperating
System Part |: System Considerations and the Mnitor. |BM

Systens Journal 2, (June 1963),153-161.

2. Master Control Program Characteristics, B5500 Information Proces-

sing System Bulletin 5000-21003-D, Burroughs Corp. My 1962,

3. Desmonde, W H., Real-Tine Data Processing Systens: Introduc-

tory Concepts Prentice-Hall, Inc., N.J., 1964.

4, Cark, R, Mller, W F., Conputer-Based Data Analysis Systens.

Met hods of Conput at i onal Phi)si cs, 5 (1966). Academic Press.

pp. 47-98.

5. Arden, B. W, Galler, B. A, O0'Brian, T. C., and Westervelt, F. H.,
Program and Addressing Structure in a Time-Sharing Environnent.

J. AOM 13 (January 1966), |- 16.

6. A New Renbte Access Man-Machine System AFIPS Conference Pro-

ceedings Fall 1965 Part 1 Spartan Books. pp. 185-247.

7. |BMT7090/7094 Progranming Systems, FORTRAN || Assenbly Program
(FAP). Form C28-6235-4. | BM Cor poration, 1963.

8. Nauer, P., The Performance of a System for Automatic Segnentation
of Prograns Wthin an ALGOL Conpiler (CGEIR ALGOL). Conm ACM
8, 11 (Nov. 1965) 671-676.

9. MGee, W C., On Dynanic Relocation. |BM Systems Journal, 4,
3 (1965) 184-199.
10. Wrth, N., A Note on "Program Structures for Parallel Processing."

Conm ACM 9, 5 (May, 1966), 320-321, (letter to the editor).

11. Dijkstra, E W, Solution of a Problem in Concurrent Program

ning Control. Comm ACM 8, (Septenber, 1965), 569.

12. Dijkstra, E. W, Cooperating Sequential Processes (Prelimnary
Version). Mthematics Department, Technol ogical University,

Ei ndhoven, The Netherlands, September, 1965.

98

13. Knuth, D. W, Conm ACM 9, 5 (May, 1966), 321-322, (letter to the

editor).

4. Dennis, J. B., Segnentation and the Design of Miltiprogramred Com-

puter Systems. J. ACM 12, 4 (Cct. 1965) 589-602.
V-6. Probl em

"Prove" that Dekker's solution, to the nutual exclusion problemis

correct.

99

VI. COMPILERS - AN | NTRODUCTI ON

The next 3 chapters are devoted to the description of the main
techniques and fornmal nethods that are useful for designing mechanical

| anguages and their conpilers.

VI-1. Tasks of a Conpiler

A translator whose input is a language with some "structure' will
be called a conpiler; nost interpretations of the word "conpiler" are
included in this definition. Specific exanples will be restricted to
conpi lers of algebraic |anguages - ALGOL and FORTRAN being the two nost
common ones.

To understand the neaning of 'structure" in the above definition,

solutions to the same problemare coded in MAP, FORTRAN, and ALGOL:

Probl em
G ven: a,, b, i=1, 100
a. if a; > b, i =1, 100
conput e: c, =07 i¢ 8 < b
] - 1
MAP Sol ution FORTRAN Sol uti on
AXT 1,1 DO 100 | =1, 100
LOOP CLA Al IF (A1) - B(1)) 10,10,20
CAS B,1 10 c(I) = B(1)
TRA UNEQ GO TO 100
TRA EQ 20 c(I) = A1)
UNEQ STO C,l 100 CONTI NUE

BUMP TXI *+1,1,1
TXL LOOP, 1,101

HTR
EQ CLA B,7
TRA UNEQ

100

ALGOL Sol ution

begin real array A,B,C[1:100]; integer i;

for i :=1step 1 until 100 do

c[i]l := if' A[i] > B[i] then A[i] el se B[i]

end

The nost significant feature that distinguishes these three solutions
(and the Ianguages) from each other is the degree of structure in the
programs. The logical flow of the MAP solution is indicated through

the extensive use of l|abels and transfer instructions. The statenents
are sinple, al rmst"'independent of each other, and it is easy to decom
pose them into conponent parts. In contrast, the ALGOL solution is
highly structured; the structure itself exhibits the logical flow Each
ALGOL statement must be analyzed into conponent statenents and parts;

for exanple, in the above solution there is a Bool ean expression which
is part of an arithmetic expression which is part of an assignment state-
ment which is part of a block which constitutes the program The FORTRAN

solution lies somewhere bhetween these two extrenes.

The basic tasks of a conpiler are:

1 Recognition of the Basic Parts of the Source or Input Language.

The source program nust be exhaustively scanned to recognize and con-
struct its primtive conmponents; these may include identifiers, nunbers,

delimters, and other basic units.

101

2. Analysis of the Structure of the Language.

The scope and constituent parts of the input statenents are deter-
mned. This is a recursive process since statements may consist of
sets of other statements each of which again nust be analyzed for scope

and constituents. Qutput reflecting this structure is produced.

3. Processing of Synbolic Names.

The declaration and use of synbols nust be linked; this is very sim

ilar to the synbol processing performed in an assenbler.

4. Transformation of Arithmetic Expressions Into a Sequence of Sinple

Qper ati ons.

Arithnetic expressions are analyzed to transform them into sequences

of elenentary arithnetic operations. Structure in arithmetic expressions
was a feature of nost of the early algebraic |anguages and many techniques

were devel oped to analyze them

5. Storage Allocation.

Wien the output language is a machine |anguage, real or "virtual"

storage nust be allocated for programs and data
Expressions conpilation methods are briefly surveyed in the renain-

der of this chapter. The environnent is relatively sinple, yet it pro-

vides insights and clues to conpilation nmethods in general.

102

VI-2. Heuristic Techniques for Expression Conpilation'

VI-2.1 Rutishauser (1952)

The expression is repeatedly scanned, each time extracting the
i nnernost subexpression; elementary arithmetic operations are generated
for the selected subexpression and it is replaced by a single operand
inthe original. The first scan, from left-to-right, assigned |evel
nunbers to each el enent of the expression - operands and "(" increnent
| evel nunbers while operators and ")" decrement them The innernost
subexpressions are defined by the highest |evel nunber; the nunbers are
updat ed as subexpressions are replaced.

Exanpl e

Level nunbers appear under the expression elenents.

Scan No. Expression After Scan Generated Operations
1 (Al - (A2+A5)) - (Al x Ay xAB)
012 123 23 21012 12 1210

(A1+Rl)— (Al xAng5) R, ::A2+A3
012 121012 12 1210
—_

Re-(AleexAB) Ry 1= A + R}

01 012 12 1210

2) > L 2 5
01 010

010

103

VI-2.2 FORTRAN Conpiler (1954 +)

The enphasis in the first FORTRAN conpiler was placed on producing
efficient code for the 701 conputer. Expression conpilation was a 5-pass
task with the follow ng functions:

PASS 1 : Replace all constants and subscripted variables by sinple
variables. e.g., A +Bt3/Y(6) becomes A + BtC/D

PASS 2 : Insert all parenthesis in expression so that operator
precedences are explicit. e.g., A + BtC/D becomnes
(((a))) + (((B)1(c))/((D)))

PASS 3 . Break expression into subexpressions or "segnents." e.g.,
the expression (((a+B) -C)A(Dx(E+F)/G) - H+J)) (extra

parentheses are onitted for sinplicity) breaks into 6 segnents:

1. (A+ B)
2. ((A+B) -0
3. (E + F
4. (O x (E + F)/a)
5. ((Dx (E+F)/G-H+J)
6. (((A+B) -¢C)/((Dx (E+F)G)-H+]J))
PASS 4 : Triplets of the form (segnent no., operator, operand) are

conpiled from each segnent. The segments of pass 3 are trans-

lated into the triplets:

(1, +, A) (1, +, B)
(2, +, 1) (2, -, C)
(3, + E) (3, +, F)
(&, x, D) (45 x5 3) (& /5 G)
(5, +>) (5, -» H) (55 +,)
(6, x, 2) (6, /5 5)
PASS 5 . Repeated scans of the triplets are made-del eting redundant

parenthesis, removing triplets corresponding to commmn subex-

104

pressions, re-ordering triplets to mnimze fetch and stores

and finally, generating assenbly code

VI-2.3 NELIAC (a dialect of ALGOL 58)° ~

A tabul ar technique was used in which pairs of operators, the
current operator (COP) and the next operator (NOP), are used to generate

code in a single scan fromleft to right.

Exanpl e
NOP
COP y + - X
, CLA CLA LDQ
+ ADD ADD ADD STO T
DQ
- STO
X MPY (|ADp T)
XCA MVPY
XCA

s AXxB+C—-D, generates ILDQ A
“E——’ A WY B
XCA
MPY ADD C
XCA sTo D
ADD
STO

The method is very fast but expressions are severely restricted so that
only 1 tenporary storage cell T is needed--no parenthetical nesting
of expressions is allowed and only 2 levels of operator hierarchy exist.
The pair (COP, NOP) actually acts as a 2-dimensional switch to branch
to an appropriate subroutine.

105

VI-2.4 Samelson and Bauer (1959)°

Two symbols at a time were conpared as in the NELIAC nethod but
Sanel son and Bauer introduced the push-down store (stack or cellar) for
saving operators and tenporary results:' Synbol pairs were used to access

an element of a two-dinensional "transition natrix" which selected the

appropriate action.

Exanple: (a x b +c xd)/(a-d) is translated into:
R :=a R :=Db R :=R xge;
R2 :=c; R} 1= d;, R := R2 x R3;
T Rl :=RlL+ R2; R2 :=a; R3:=q;
R2 != R2 - R3; Rl : = R1/R2;

where R are the stack el enents.

VI-2.5 Dijkstra (:L96o)LF

Dijkstra used an extension of the stack techni ques of Sanel son and
Bauer in his inplementation of the first ALGOL 60 conpiler. He denon-
strated that the cellar principle is also appropriate for other construc-
tions of ALGOL beyond expressions. Dijkstra's nethod and nodifications
of it formthe basis for many algebraic conpilers; the next section

presents a general description of it.

VI-3. Conpilation of Expressions Using a Stack®

An arithmetic expression can be easily converted to a reverse or

postfix Polish string with the aid of a stack. This string can be viewed

106

as the sequence of elementary arithmetic operations represented by the
original expression.
The process is analogous to a "T-shaped" railway shunting system with

the shunting or re-ordering performed in"the vertical bar of the "1":

Outgut (Reverse polish string) | nput (Expression)
— ——

NN/

\V/

~ Stack

(perands take the direct route to the output while operators pass through
the stack. Priorities are defined for the operators to reflect their

precedences; for exanple:

priority("t") > priority("X") > priority("+"

Assumng the input string is an arithnetic expression consisting of

operators and operands, conversion to reverse Polish goes as follows:

1 if nextsymbol(input) = operand then pass it through to the output
el se
2a. if priority(operator at top of stack) > priority(incoming operator)

t hen pass stack operator to output else

2b. nove incomng operator to top of stack.

107

Exanple 1

Priority Tabl e

Operator I Priority

+ 1
X
! 3
L -» (expression ternination operator)
4¢——— ab + L — 4 £ ¥
#

£ Stack initialized to L

The termnation synbol + at the end of the expression is not put into
the stack (a special case); its use is to cause total unstacking at the
end of the expression.

Example 2

abc X + L — — 4 LB X4

=RCX

108

Par ent hesi s may be handl ed by nodifying the algorithm Two kinds

of priorities are defined for operators - a stack priority which hol ds

when the operator is in the stack and a conpare priority which holds with

the operator is the incomng synbol. The priorities are determned so
that a "(" is automatically stacked and remains there until its corres-
ponding ")" arrives; the ")" then causes unstacking to its"(".

Step 2a. nust be changed to:

2a'. if stackpriority(operator at top of stack) > conparepriority
(incomng operator) €hen pass statk operator ts output e
Exanpl e 3

Oper at or Stack Priority Conpare Priority

(0 4
+ 1 1
X 2 2
t 3 3
) — 1
1 -0 -
¢—— abc + X d + L \ A A F A AL

N\

EOTIR R

109

")" is never stacked; after unstacking down to "(" both "(" and

")" are deleted. Disecting the operation of the method in this exanple,

we have:
I ncom ng Synbol After Processing S

S St ack out put
) L a
X X a
(Lx(a
b LX(ab
+ LX(+ ab

) c LX(+ abc

)) LX abc+
+ 1+ abe+X
d 1+ abe+Xd
1 abec+Xd+L

Rel ational operators (<, <, >, . ..), Boolean operators (A, VvV, =),

and the remaining arithmetic operators can be included by adding their
priorities to the table. Subscripted variables can be handled by treat-
ing the subscript brackets, "[" and " |, and the commas separating
the subscripts in a simlar manner as parentheses. Finally, conditiona
expressions, sinple statenents, conditional statements, and conpound
statements can all be transfornmed into a neaningful sequence of reverse
Pol i sh operations by establishing priorities for the delimters and using
the shunting algorithm

The transformed expression - the reverse Polish representation of
the input string - can directly correspond to a sequence of instructions

for a stack conputer (see the stack interpreter in Chapter I11).

110

VI-4: Phrase Structure Methods

These methods use the formal definition of the language directly.

Expression conpilation - and conpilation in general -is based on a
mechani cal parse of the input program which exhibits its structure

These parses may be conveniently represented as trees

Expr essi on Tree Representation
a b c d
aXb+cXd N, N A

N

a b c
a+bXc 1 2\\X‘,//§
\ +%
E

¢

a b
aXb+c ;>\\33//; L
NS
+
E
The numbering of the tree elements is perforned by a left-to-right and
top-to-bottom systematic count. If the elenments are ordered according

to nunber, the result is their reverse Polish representation. This is

111

not an accident. Precedences are inplicit in the formal definition of the
| anguage and the parse automatically produces the reverse Polish.

Present production conpilers are based on the heuristic and stack
nethods. The nore formal phrase structure schenes are of recent origin
and have been applied to several successful experimental systems. They
appear to offer great prom se for changing compiler witing froman art
to a science, The next chapter develops the nain ideas of Phrase Structure

Programm ng Languages and their translators.

VI-5. References

1. Randall;" B, and Russell, L. J., ALGOL 60 Inplenentation.

Academ ¢ Press, London and New York, 1964.

2. Halstead, M H, Machine-Independent Conputer Programm ng.

Spartan Books, Washington, D.C., 1962.

3. Sanmelson, K, and Bauer, F. L., Sequential Formula Translation.

Comm. ACM Vol. 3, pp. 76-83 (Feb. 1960).

L. Dijkstra, E W., Making a Translator for ALGOL 60. Annual

Review In Automatic Programming, Vol. 3, pp. 347-356 (1963).

VI-6. Problens
1. Produce the reverse Polish representation of the follow ng

arithnetic expressions:

(1) a + b xct(ate)/f
(2) (((aXbtc)Xd+e)Xf+g) 12
(3) a+ 3 x (b-c+d) - i x(j/etex(b+3xi)+c)

112

2. Expand the priority tables to include the Bool ean operators

(=, 35,1, V, and A), the relational operators (>, >, <, <, =,
and £), and all the arithmetic operators (+, -, /, ¥, X, 1) .
Note: special cases nust be made for the unary operators. Use the
shunting algorithm to translate:

b<-c-(dte) =e X f+gth>iA=j into reverse Polish.

113

VI1. PHRASE STRUCTURE PROGRAMM NG LANGUAGES

VIT-1. [ntroduction

Intuitively, a language is a set of sentences or word sequences;
each sentence is fornmed by concatenating sone words in the | anguage vocab-

ulary according to given conposition rules. The conposition rules are

called the syntax of the language and define its structure. An analysis
of a sentence that produces its structure or syntactical conponents is a
parse of the sentence. A language is ‘anbiguous if there exist sentences
to which nore than one structure can be assigned.

Exanple 1
= \E (€0)] TO TOMN

pronoun verb prepgiitional
phrase

subject predicate

sentence

A possible set of rules or syntax which underlies this parse is:

pronoun - WE
pronoun - YQU
noun - CH LDREN
verb - GO

verb - DRIVE

prepositionalr - TO TOM
phrase

subj ect - pronoun

subj ect - noun

predi cate - verb

predicate - verb prepositional-phrase
sentence - subject predicate

114

Example 2

| CANT SEE FLYING KITES
o i]l] 1 |

The sentence is ambiguous since it can have either of the two indicated
structures

Usual Iy, a set of rules and a string are given and the question
"I's the string a sentence of the |anguage?" nust be answered; if the
string can be parsed, the answer is "Yes". |t is rarely required to do
the opposite - i.e., generate a sentence froma given set of rules.
(I'n conputing, programmers generate strings of code; conpilers analyze
them) A syntactic analysis can be used to help determne the neaning
or semantics of sentences; for exanple, given the neaning of the subject
and predicate in Exanple 1, the meaning of the entire sentence can be
determned. Meaning is obtained by associating a semantic or interpre-
tation rule with each syntactical rule. Semantic rules can also indicate
when "neaningl ess" sentences have been successfully parsed

These notions will now be formalized, extended, and applied to

* programm ng | anguages and conpil ers.

VI1-2. Representation of Syntax

The most common nethod for expressing the syntactical rules of a
| anguage is by a straightforward list of productions, each of the form
x>y
where x and y are strings over the vocabulary of the |language. The

vocabul ary consists of non-termnal symbols, such as (term) or (factor),

and basic or termnal synbols, such as begin, else, or + .

115

(if clause) = if (Boolean expression) then
(term - (term) x (factor)

ADC - XC

The representation used in the ALGOL report, the Backus Normal Form
(BNF), is an abbreviation of the above which allows several productions

to be given on one line and uses ::= instead of - .
e.g., ~{term) : := (factor)\ (term x (factor)
Both will be used where convenient.
A graphi cal specification of syntax can be very useful, especially
when witing a conpiler. B5500 ALGOL syntax is expressed in a chart’

using the follow ng graphic synbols:

Symbol Meani ng

synmbol definition
reference to symbol

term nal

QE@

T: termnal synbol
NT: non-termnal synbol

Example

(tern) ::= (factor)| (tern) x (factor)

116

i's expressed:

Term

* Term b@—o{ * | Factor

* gives a "coordinate" reference to the point of definition of the sym

bol in the box.
Anot her graphi cal method replaces the coordinate references by dotted

lines pointing to the occurrences of the syn’ool:2

HBE

3
e - —— EEhEDENEDED Fact or

Here the directions of the arrows have been reversed to indicate
reductions rather than productions. A conplete specification for ALGOL

using this method is given on the next page.

117

EIEIEICISEMIE

i

¥ @

I JIENSE | 8t

1

{296 Idy) Bunseus awor Sy4 0 wewmddns By $3pNII

09 097V 40 LYVHO TTVOILOVLINAS

118

VII-3. Notation and Definiti ons5

Capital letters and letter sequences enclosed in "{" and ")"
denote synbols; e.g., (tern, A, U (sentence), T . Smll letters de-
note strings of symbols. The enpty string is designated A . Script
letters are used for sets; e.g., £, 7V, .

The set Vv of synbols is called the vocabul ary. v* is the set of

strings generated over V ; formally:

V¥ — {s]s = Aor (s =s’S with s'eV®, Sev))

Exanple: V = {a, B}
V* = (Aa A! B! AB) AA) AAB)""}

® is a set of syntactic rules of the form

X~y x ye™ .

- Astring x directly generates y if and only if there exist strings

u, w (possibly entpy) such that x = ww, y = uzw and v - ze P

This is denoted x =y . e.g., Using Exanple 1 of section 1,
(verb)(prepositional phrase) = (verb) TO TOM

X generates y (x —y) if there exists a sequence of strings

X = xgp Xyy Xgpeesy X =Y such that X, l“" xi,i =1l,..., . e.g.,

(verb) (prepositional phrase) A Q0 TO TOWN
(sentence) i VE GO TO TOMWN

119

A phrase structure systemis a pair (v,?) . A phrase structure

| anguage (v, Vs &, 9 is defined:
LV, VT,@, 8) = {slser¥, v CV, sev - Vo
and S = s}

VT' the set of basic or termnal synbols, is the subset of V such

that no el ement of Vo, occurs as the left part of any production,

Exanple 1
v=1{aA B C s}
Vo = {a, B, C}
@ = (S~ ABC
<«£ = {ABC}
Exanple 2
V= {S’ A, B, C, D, E}
@ -{s- AB B-CD C-E}

Vo {a, D, E}

The generation of £ fromSis
S AB » ACD = AED

SoL = {AED}

120

Exanpl e 3
V={s,A B C D E}
VT = {a, D, E} |
@={s-AB B-CD B~ DC C~E

~L = {AED, ADE)

Exanpl e 4
YE {s, A, B, C}
VT = {B’ C}
@={s"A A-B, A" CA
‘.‘£={B, CB, CCB, CCCB, . ..} or

£ = {jn BIZO, 1, ..}

A is defined recursively here, that is, in terns of itself.

The language derivation or generation can be represented as a tree:

S
I
J/ AN
o/ N\
/N,
Example5 Replacing the rule A - CA by A~ CAC in Exanple 4,

£ becones:

£

[B, OBC, OCBCC ..)
{c"sc™|n=0, 1, . ..)

Ll

121

VII-k. Chonsky's Oassification of Languages

Chonsky has classified |anguages according to the type of productions
used to generate them

Cass 0: No restrictions.

Cass 1: Al productions are of the form

vAv ~ uav
(u, v may be A).

This is sonetimes called context-dependent Since A~ a
only in the context of u, v .
Class 2: Productions are restricted to the form
A~—a
Class 2 |anguages are also called context-free.
Cass 3: Productions are severely restricted to either of the forns:
A- Bor A- BC
with A Cev - VT
BeV

T
This class of languages is also called finite-state.

There are class i languages which are not in class i+l
(for i = 0,1, 2), so that the class to which a |anguage belongs is

sone indication of its power. Mst programm ng |anguages can be (al nost)

formul ated as nenbers of O ass 2.

VII-S. The Parsing Probl em5

A direct reduction of b into a, designated b = a, 1is an ap-

plication of the production X =y, where b = uyv and a = uXv for
*, .
some u, ve¥® . A reduction of b intoa, b —a, is a sequence of
direct reductions x, =~ x. . for i =Q..., n-l, such that x; =,
i i+l

Xg = a, this is also called a parse.

122

Exanple 1 A - BC
B -~ DE
C— G

Parsing or reducing the string DEFG gi ves:

(a) DEFG =~ BFG — BC —> A
or
(b) DEFG —~ DEC =~ BC = A

*
..DEFG -~ A

These reductions may be expressed as trees

Crcled nunbers indicate the order of the reduction; the resulting
trees are identical. The above difference in parsing, due to the order
of application of the reductions, is trivial and can be elininated by

introducing a canonical ordering to parses. The canonical parse is the

one that proceeds from left to right in a sentence and reduces a left-
most part of a sentence as far as possible before proceeding further to

the right. Thus, if x = x,x, and x, ™~ s., x, —s_, then the re-

12 1 1’ 72 2’

duction x, = s1 is performed first. In this exanple (a) is the can-

oni cal parse

12%

Exanple 2 A-X XXXX
A~ AX

Par se

The sequence of X s is defined using a |left-recursive definition.

Exanpl e 3 A—-X

X X X W have run into a dead end by

starting the parse fromthe left.

X XXX A successful parse is obtained by

. : starting fromthe right.

Here, the sequence of X s is defined by a right-recursive defini-

tion.
Exanpl e 4 A-X

A" XAX

XX XXX The parse nust start at the mddle
[)

\ A | of the string at each stage.
A
A

124

Exanpl e 5 A - BY|CZ

B - x|Bx
C - x|xc
(a) (b)
XXXY X X X Z
[[)
B c
| — | WSS |
B C
B C
L
A A

This exanple illustrates how the input string determnes the direction

and position of the reductions.

-

Exanpl e 6 A - WX
B~ AY
¢ - Bz|wD
D = XE
E- YU

(a.)
XYZ WXYU WXYU

W
| MO |
A A E

— —
ITJ l__.._.__t—c.__l

In (b), the first try leads to a dead end. The second, and suc-

cessful, parse starts with the next reducible substring from the

left, namely YU .

125

The parsing problemis to anal yze sentences efficiently; the idea
system woul d have a "recognizer" that recognizes productions and deter-

mnes the correct reduction to be made at any stage

VII-6. lrons' O assification of Languages According to Parsing

Difficulty’

Irons suggests that |anguages be classified "according to the com

plexity of interaction between parses or disjoint subs-kings of a parsed

[~
n 7

string. Several exanples will illustrate the basic idea of his schene.
Exanple 1 A - x|Ax

In the string X X X X X, each X is inmrediately reduced to A w thout

any need to examne its surrounding synbols.

Exanple 2 A - XB
B ~ Y|zB
X727Y Precedi ng synbol s nust be stored until
L
. B Y is reached but each reduction can
B
— be made, e.g., ZB — B, without
A exam ning any synbols not in the re-

duction itself.

126

Exanpl e 3

A - BY|cz
B - X|BX
c - X|xc
XXX Z
et
C
[TS |
C
e
C
A

To reduce X it is necessary to look ahead to the end of the string

to see whether the reduction should be to a Bor to a C.

Exanple & --
(a)

f'z
\

A" owx

B - AY

C - BZ|wD

D - XE

E - YU
(b)
WXY

U
v/
E

The substring WK cannot be reduced to an A until we have | ooked

2 synbols to the right of it. This language is then classified as

0SL,28R . (SL - synbols left; SR - synbols right.)

Generally, Irons classifies a |anguage as n{g},nﬂ;}R, wher e

s = synbol in input string

B = "bracketed" string,

reduced
L = left
R = right

n, mare nunbers.

meaning a string that has already been

127

This defines "the extent to which symbols surrounding a string

determne its parse. "o

Exanple 1 and 2 are both OSL, GSR (or "uncon-
nected") languages. Exanple 3 is QSL but it is inmpossible to fix m

since one nust always | ook to the end of the string, whatever its |ength

my be.
Exanple 5 A - W
B - AY
C -~ Bz|UD
D~ XE
E-YZ

(a)
v Y 7
\J\: Y

Here, YZ cannot be reduced in isolation. One nust first |ook two

symbols to the left - if a UXis found, YZ can be reduced to E

otherwise it cannot. This |anguage is then 2SL,08R .

By classifying a language in terns of its parsing difficulty, we
gain a clearer understanding of what is needed for its automatic analysis.

Sone general parsing nethods are discussed in the next section.

VII-7. Parsing Methods

VII-7.1 A "Top Down" Method6

A "bottom up" parse of the string s of the |anguage £(V, VT@,S)
starts with s and |ooks for a sequence of reductions so that g *_\s;

the parses in the exanples of the last few sections have been inplicitly

128

of this type. A "top down" parse starts with S and |ooks for a sequence

of productions such that S x s . The sane parsing trees are produced but

they appear with the root at the top in the latter case and at bottomin

the forner. The tree of Exanple 5(a) of the last section is:

bott om up
\9/)

top down
/\
\ W/GY z

/
-E ::= TIT+E,
Gven the syntax T ::= F|FXT, the following ALGOL procedures, in
F ::= M (E)

conjunction with some synbol pointer and storage adm nistration which have

been intentionally omtted, will performa "top down" analysis:

Bool ean procedure E;
E:=_if T then (if issymbol ('+') then E else true) else
fal se (i ssynbol (arg) is a Bool ean procedure which com

pares the next synbol in the input string with its argunent, arg.)
Bool ean procedure T;
T :=if F then (if issymbol ('X') then T else true) else

fal se

Bool ean procedure F;
F :=_if issymbol ('A') then true else
if issymbol ('(') then (if E then
(if issymbol (')') then true el se fal se)
else false) else false

If the last production in the syntax were changed to E ::= T|E+T, a
straightforward application of the general nethod will yield the new pro-

cedure for E :
129

Bool ean procedure E

E :=if T then true else if E then .

For the string, A+ A the procedure E will call T which calls
F which tests for 'A* and gives the result true; E then is true,
but only the first elenment of the string is in the analysis; i.e., the

anal ysis stops before conpletion!

mECA L[>

If the input string is not a nenber of the language, T is false and we
can easily get into an infinite |loop on E . (The problemis that Eef(E) -
see next section on precedence grammars). The usual solution to the prob-

lemis to replace the recursive definition of E by an iterative definition:

Yes

No

Fal se

150

A possi bl e extension of BNF that replaces iterative definitions by

recursive ones is

E ::= 1{+1} ,

where the quantity in the braces can be repeated any nunber of tines,
including O .
This method has been inplenented on several conpilers, for exanple,
t he B5000 EXTENDED ALGOL conpiler. It has the advantage of being concep-
tually sinple. However, it has some severe disadvantages:
(1.) Many false paths can be tried before the correct one is found;
a failure on any path requires backtracking to the last suc-
cessful recognition.
(2.) It is difficult to insert semantic rules, such as code
generators, into the system
(3.) There is no systematic way to determne the success or failure
of the method, except by exhaustion
In general, we can classify the "top down" nethod as being a heur-

istic solution to the parsing problem

)) 7
VII-7.2 Eickel, Paul ., Bauer, and Sanel son

This nethod deals with productions whose right sides are of length

1or 2 i.e., U::=Rand U::=ST are the only forns allowed. No

generality is lost with this restriction since the production

Uu:.: 5132' .. 8, can be replaced by the equivalent set (U::= 8,0

U, .= S2U2,..., U

1 L= sn] . A stack is used to store synbols and

n-1

151

reduced. substrings; at any point, only the top two elenents in the stack
need be examned. A table of possible synbol triples is built fromthe

syntax; each element of the table has the form (slsesi) n N wth the

interpretation:
I f 8,8, are the top two elenents of the stack and 83 is

the incom ng synbol of the input string, then we are in case n

and action N is perforned.

case action
n=1 U::= gﬁeeéa Pop stack and repl ace SlsQWLJ'
n=2 U::= SzedD Replace s, by Uin stack.
n =3 No pfbduction exi sts. Push down stack, insert 83 in stack

and read next input synbol

This is a systematic nechanical nethod for parsing strings; the
authors claim that the nethod can handl e any unanbiguous class 2 |anguage.
Semantic rules could be easily included in the parsing algorithm at the
points where the triples and action are determned. The method shoul d
be able to easily "recover" from syntax errors (an inportant consideration
" for programming |anguages). The main disadvantages are the large storage
requirements for the tables and the relatively long tine it takes to

scan the table of triples for matches.

VII-7.3 Precedence Methods
8

Floyd™ has devel oped a nethod of syntactic analysis for class 2

| anguages, which is based on the use of "precedence" relations between
pairs of termnal synbols. Productions are restricted so they cannot be
of the form

132

U- xUlUEy, wher e L&, Uee(V - VT);
the resulting language is called an operator |anguage. The beauty of
Floyd's nethod is that it admts a very éinple and efficient parsing

al gorithm which produces the unique parse.

Wrth and Veber3 have generalized Floyd's results and shown how
efficient conpilers for practical non-trivial programm ng |anguages may
be inplenented using precedence methods in conjunction with semantic
rules. Wrth and Wber's precedence grammars and their application to

conpi ler witing is discussed in the renmainder of the chapter.

VII-8. Precedence Phrase Structure Systens

VII-8.1 Precedence Rel ations and the Parsing Al gorithm

For all siSjeV, it is either possible or inpossible for the string
sisj to appear in a successful parse. \Wen they do appear, there are

only 3 ways in which they may be reduced

1. .. S, S....
. Ly . J

reduci bl e
substring

Sg is the first or left nost synbol of a reducible substring. Using

Floyd's notation, this is indicated by 8, < S.J

2. RS - TR
e r

S8 is part of a reducible substring

133

cH is the last or rightnost part of a reducible substring

<, =4 are 3 precedence relations that may exist between ordered pairs

of synbol s.

Exanpl e 1

I nput String sl S2 85 5, 8 s6

G ven Relations < < = > >
there nmust exist a synbol U, eV

Si nce S2<83’ S ésu, 5, > 8

3 5’

such that

Reduced String 8, S, U S S6

Gven Relations < = = >

Q

.3 UyeV such that v, - S,U,85€

The reduced string then is SlUES6‘
Let p be any input string, where p = PP, . P encl ose p’
by the termnating synbol &1 so that Po = Popp = 43 for any synbol

13k

SV, L < Sand S > L. @Gven one precedence relation between any two

synbol s that may occur together, p may be parsed using the follow ng

al gorithm

& ;
i o~ i+l

j-i
Si'-Pk
i -
1ol K = k+l
kel
S, ~ 1
1 -
F 3

a8

155

S is a stack which contains the partially reduced string at any stage.
P is copied into Suntil the relation > is encountered, Then, we
retreat backward through S until the beginning of the reducible sub-
string is found. W are then guaranteed (if the string is in the |an-
guage) that there is a production whose rightsideissj,..., Sy
"Reduce S.J, Ce Si “ replaces the substring by'the left side of that
producti on.

An ALGOL-like program for the algorithmis:

- doj i=j-l;
1T oy 8l

?j = Leftpart(SJ..... 81)3

Note that the algorithm involves no backtracking.

Exanple 2
(entire string) ::= L(string)L
(string) ::= (head)'

(head) ::= ¢| (head) A | (head)(string)

136

The precedence relations may be described in a precedence matrix M

(string){head) A ¢

(string) > > > > >
(head) z < S <« &
A > > > > >

¢ > > > > >

’ > > > > >

The el enents Mlg represent the relation between the synbols 8, and
8,5 8., (head) = A
A >a(head)
(a) Parse using algorithm

L (head) (head) Yl

< < > >
[O S——
= &ing) 9
< (head) =
< (string) >
(b) Parse using algorithm
1 3 A ¢ A A ’ ’ 1
[beieed
(nead) (head)
(head) (head)
(head)

(string)

(string)

The parse ternminates while the stack contains i{string)’L instead
of t(string)l. This indicates that the string is not_a nember of the

| anguage.
137

VII-8.2 Finding the Precedence Relations

The precedence relations definitions are first formalized:

1. s, =s. if and only if there is a rule U~ x8.8.y .
dJ 13
i -s.J if and only if there-'is a rule U"'xSiUzy and

o
{2}
AN

3. 8;> sJ if and only if there is a rule U -'xng_y and
J
-t — -.)ﬁ
Uk zs; o U XUkUly and Uk Zsi
v 5
’ SJ.W .
The strings w, X, y, z nay be enpty in the above definitions.

Exanpl e 3

A - BC
B - WX
cC ~ Yz

From definition 1. : B=C W=X,Y=2Z

From definition 2. : B< Y

Fromdefinition 3.: x»c¢, X>Y

The leftnost synbols of a non-terminal synbol U are defined

£(U) = {s]32(u = s2)} .

The rightnost synbols of a non-termnal symbol U are

R(U) = {s|32(U > 28)} .

138

The precedence relations can now be alternately defined:

1. 8. = Sj o 33p(p: U > xSiSjy)
pe.P
2. 8., < Sj o p(p: U - XSiUly)
As i €£(UI)
3. 8; » SJ. o 3p(p: U —)XUijy)/\Sieﬂ(Uk)
v 3p(p: u —>xUkU£y) A SieR(Uk)

A de’(Ul) .

The use of these definitions directly leads to an efficient nechanica
algorithm for finding the relations. The sets £ and ® may be found

by using their recursive definition:

£(U) = {s|32(U = sz) Vv
3z, U (U = U’z A SeL(U'))]
R(U) = {s|32(U ~2z8)V

3z, U'(U = zU’ A SR(U'))}

These are easier to work with than the original definitions; however,
some conplex admnistration is needed to ensure that the program does
not fall into an infinite recursion, for exanple, in the case where

A~ B, B”A are in P

Exanpl e 4
S-E
E-E+ T[T
T~T=*F|F
F -~ A (E)

139

U £(U) R(U)
S|E T, F, A, (|E, T, F, A,)
E|E T, F, A, (| T, F, A,)

Tl T, F, A, (F, A,)

Fl1 A, (A,)

Precedence Matri x

S| E| T| gl+I*xi A (1)

S
E = =
T 1, 1 4] = S
F »| > >
+ ‘@< <] <

T ox = <] <
A > | > >
(S «| < <| <
) vl > >

Note that there are 2 relations for the ordered pair (+, T) and

for the pair ((, E) . i.e.,

=T and + < T

+
I

—~
1l

=E and (< E

A syntax is a sinple precedence grammar (or sinple precedence syntax)

if and only if at nost one of the relations =, <, and » holds between
any ordered pair of synbols. Thus, exanple 4 is not a precedence granmmar;

it can be nmade into a precedence grammar by nodifying the syntax as fol-

| ows:

140

S~-E E~FE, EF ~F +11,T~T ,

T =T *FlF, F~ ()

If none of the relations holds between a.given ordered synbol pair, then
t he appearance of this ordered pair during a parse indicates a syntax
error, i.e., the input string is not a menber of the |anguage.

For a practical |anguage, the nunber n of synbols in the vocabu-
lary is very large (ALGOL has n ~ 220, ~ 110 synbols in VT and ~ 110

synbols inV -V A precedence matrix then has n° el enents. To

T) ' A
conpact the precedence information, Floyd introduced "precedence func-

tions". -

VII-8.3 Use of Precedence Functions

VW try to find two functions, f and g, such that for any ordered

symbol pair (si, Sj):

I

f(Si) = g(Sj) o8, =8
f(Si) < g(s.) o5, <8
f(Si) > g(Sj) o SiA > 3

At least 2 functions are required since 2 synbols 8, and SJ may be

rel at ed S.iE?.lSJ. and S.B $. where R Rge{/\, %, <, »} and Ry £ R,

l}
(see Exanple 1). If f and g exist, then only 2n elenents are nec-
cessary to store the precedence relations and the relations can be found

much faster.

141

Exanple 5

E-FE

E -7l + 7| - T

T-T

T ~Flr’ XFT/F

F-F

F - PlF %P

P~ A|(E)

V. = CA (,),*,X,/,+,_3
v -V ={E, E, T, T', F, F, P}

T

U c(u) R(U)
E|ETT FF PA(|E TT FFPA)
E|ETT FF PA(TT' EF' PA)
T T' FF' PA(T FF PA)
T TFF PA(FF' PA)
F F'PA(FFPA)
F F'PA(PA)
P A (A)

142

Precedence Matrix

g|8 87 6 6 5 4 L 4 3 2 2 2 1 1
N (A PP F Fr/ X TT - + E)E
1 ‘
8) }~> 3 4 3 > >
8 a ‘|> > > > > >
TP | > 3 3 D '
1x <<l T
6 F : = > > > > >
]
6 F | V> > > > >
i B l
5/ < < < |
5 X < < < Iz |
|
LT)= = > » >
~)
Lo ; > > >
Sttt I |
el < < < < < = |
34|l << < < < 'z [
; ' [
2E o= = 2
1E | 2
‘———_"'T
1 (< < < < < < & < =

The functions exist when we can permute the rows and colums of the pre-
cedence matrix so that it is divided into 3 areas, only one relation

" holding per area. This has been done in the above exanple. I|f the ma-

trix division is of the form [1’\;\6], f and g function val ues

can be assigned starting fromthe bottomleft corner of the array. An
algorithm for determining f and g, if they exist, is published in
the Al gorithm section of the Conmunications of the ACM 2
Unfortunately, f and g do not always exist; however, it is
often possible to make m nor changes to the syntax that allow f and

g to be found.

143

Exanple 6
T = PB}
P-{
B - xx|xT|Tx|TT

This grammar generates |ist structures,

e.g., {{xx}x]

ul £ | R
- T | P{ }

P | { {

B | x1{P | xT}

{ P x T } B
1> > > > % >
J > » » > >
x [< <2 2ls
T [< <'2 =I>

——l——— —

Pl < < < z
1‘
B | =

The entry designated by * is enpty; therefore, the f and g functions
my be found. However, if we add T - {} to the production in order
to allow the enpty list, the relation {} holds and * becones = .
f and g then do not exist even though the syntax is still a prece-
dence syntax. |f we change the first rule to T = PB}|P}, the enpty

string is allowed but f and g can be found.

144

A conparison of these results with Dijkstra's priority nethods dis-

cussed in the last chapter leads to the follow ng inportant connection:

The f and g functions for precedence granmars are

exactly equivalent to the stack and conmpare priorities used

for the transformation of expressions into reverse Polish
form
The contribution here is a formalization and extension of the early

priority ideas so that the follow ng conpilation problems can be handl ed

by general algorithns:

1. determning whether a given syntax is a precedence syntax

2. finding the precedence relations

3. conputing the f and g functions, if they exist

4. parsing strings in a precedence |anguage in an efficient manner

An open problemis howto transforma syntax so that it is a prece-
dence grammar. As shown after exanple 4, it is presently necessary to

add sone "artificial" productions to a granmar to make it a precedence

gramar .

. VII-8.4 Anbiguities
An unanbi guous syntax is a phrase structure syntax (the ordered
quadruple & = (v, VT,éa,S)) with the property that for every string

xeL(H) there exists only one canonical parse.

145

Exanpl e 7

z = uc|pv

Uu- A3

V = BC

P' A

ABC ABC

— - —
U PV

I —

z z

ABC has 2 canonical parses and is therefore ambiguous. A |ocal anbi-

guity occurs where a substring may have nore than one canonical parse:

Exanpl e 8
z ~ uc|pB
Uu- AB
P'" A
ABC ABC
U

i.e., local anbiguities lead to backtracking.

Theorem The parsing al gorithmdescribed in this section yields the
canoni cal formof the parse for any sentence of a precedence
phrase structure language if there exist no two syntactic rules
with the same right part. Furthernore, this canonical parse

I's unique

Pr oof

This theoremis proven, if it can be shown that in any sentence its
directly reducible parts are disjoint. Then the al gorithm proceeding

strictly fromleft to right, produces the canonical parse, which is

146

uni que, because no reduci bl e substring can apply to nore than one
syntactical rule.

The proof that all directly reducible substrings are disjoint is
achieved indirectly: Suppose that the string S, . . . 8 contain two

directly reducible substrings s; . . . Sk(a.) and S. 5 Sz(b')’

where 1 <i <j <k <t<n. Then because of a. it follows fromthe

definition of the precedence relations that Sj-l é% and 8, > S

and because of b. Sj o <-SJ and Sk =8,,; -+ Therefore this sentence

cannot belong to a precedence gramar.

k+1’

Since in particular the left most reducible substring is unique,
the syntactic rule--to be applied is unique. Because the new sentence
again belongs to the precedence |anguage, the next reduction is unique
again. It can be shown by induction, that therefore the entire parse

must be uni que.

By associating semantic rules with the syntactical rules of a pre-

cedence phrase structure |anguage, the meaning is also unambi guous.

VII-9. Association of Semantics with Syntax

‘ VII-9.1 Mechani sm for Expressing Semantics

An environnent € is a set of variables whose val ues define the

meaning of a sentence. T is a set of interpretation rules each of which

define an action (or a sequence of actions) involving the variables in

€ . A phrase structure progranmm ng | anguage SP(V, L &, s, T, &) is
a phrase structure |anguage £(V, VT,@, S) where T is a set of inter-
pretation rules in one-to-one correspondence with the elenents of & and

€ is an environment for the elenents of 7. The nmeaning m of sentence

147

xe£P is the effect of the execution of the sequence of interpretation

rules tq, to,-.. t on the environnent €, where Pyp Pyseees P

l’ 2’ 2

is a parse of x into $ and ti corresponds to 1 for all i

n

The fact that the precedence grammar parsing al gorithm never back-
tracks allows us to attach semantic rules to each syntactical unit or
reduction. It will therefore be assumed that we are dealing with pre-
cedence grammars. Corresponding to the symbol stack S used in the

algorithm we maintain a value stack V. At the sane tine the syntac-

tical reduction U~ Sj .o Si is made, a simlar semantic "reduction"
or rule is obeyed for the elenents V.J Vi in the value stack.
Exanpl e 1 -
Syntactic Rul es Semanti ¢ Rul es
S— A :=E Vv. "‘Vi
J
E-T|E+ T AV, v, + Vv
3 J 1
T-FlTXF Alv, v, x v,
J 3 i
F -~ A (E) V.J ijle " Vi

Vv, represents the value associated with the stack synbol 8, - The

semantic rule VJ. “V,+ V., corresponding to E~ E + T can also be

J l
witten "value(E) <« value(E) + value(T)". The first way makes explicit
reference to the parsing algorithm block "reduce SJ. C Si". In the

rul e vj v, V;] originally holds the address of the particular vari-

able used. A is a representative for all possible variable identifiers.

148

Exanple 1 gives semantic rules for an interpreter.

shows how semantic rules for a conpiler for a stack machine may be asso-

ciated with the same syntax as above.

Example 2
Synt ax Semanti cs
X N:=E store M
E-T A
E-E+T add
T-F A
T' TXF mltiply
F-= A | oad A
T F- (E) A
A :=B + C X D The nunbers indicate
h a2 i 4-J A the order of the re-
A 5& 7 LK_J 10 'i, ducti ons.
F F F
My 8 |
T T
> | 1y J
E T
12 _ |
t E]
S
beying the semantic rules, the statement conpiles into:

Reduction Step

| oad B

| oad C
| oad D

mltiply
add

store A

149

3

;
10

11
12
13

The next exanple

In these exanples, it has been assuned that the specific variable
nanes and val ues are available. (v, of the interpreter, A in the

J
conpiler.) W now show how this may be acconpli shed,

VII-9.2 Handling of Declarations

A common way of putting declaration lists (DL) and statenent

lists (SL) into the syntax is illustrated by the following sinple

exanpl e:
Exanmple 3
P - begin DL; SL end
DL - D|DL, D
SL - s|sL, s

begin D, D, D; S end
-t

W
—_ a1

The difficulty here is that when the parse reaches the statenent S,
the stack contains "begin DL;". Wat is needed is to retain the
declarations D in the stack so the senmantic rules for S may refer
to them for addresses or values of specific variables.

Exanpl e 4

P -Belin e nd
PB - D; PB'|SL
SL - s|sL, s

PB - PB

(PB’ nust be included to make the syntax a precedence grammar.)

150

begi n D; D; S, S end

Syntax and semantics for declarations D and variables V are:

Synt ax Semanti cs
Do real | V. « {q, 1}
V-1 Search Stack for |

Q@ (undefined) is the initial value of I

After reducing to D, the value stack contains a value (@) and a nane;
when the statements S are reduced, they may refer to the values and

nanes in the stack. In a conpiler, the declarations would produce

"reserve storage" instructions.

VII-9.3 Conditional Statenents and Expressions

For a first try, the syntax for a condition statenent is defined

in an obvious way:

(conditional statenent) ::= if (Boolean expression) then
(statement 1) else
(statement 2)

The reduction to (conditional statement) occurs when the synbol stack

of the parse contains: y
i
(Bool ean expressi on)
t hen
(statement 1)
el se
(statement 2) <« top of stack

151

If code is being generated by the semantic rules, it is then too late
to conpile "junps" around the statenents. The semantic rules shoul d

conpi | e:

code for (Boolean expression)

conditional junp (CJ
code for (statenent h
unconditional junp (UJ
code for (statement 2)

The AIGoL definition of conditional statenent is:

(conditional statement) ::= (if clause)(statement 1)
el se (statenent 2)
(if clause) ::= if (Boolean expression) then

Here, we may attach the semantic rule for (if clause):

Generate CJ @
Set v({(if clause)) = Pointer to Generated code CJ @ .

This will take care of the first part of the conditional statement.
Unfortunately, the else is not reduced in tine for a UJ; (statement 2)
has been reduced and its semantics obeyed before the entire (conditional

statement) with the else is recognized.

To allow the syntax to correspond with the desired semantics and

vice versa, the conditional statement is further divided:

152

(conditional statement) ::= (if clause){true part)
(statement 2)

(if clause) ::= if (Boolean expression) then
(statement 1) else

1l

(true part)
The desired meaning can then be attached; for exanple,

v({if clause)) Pointer to Generated code CJ @
V({true part)) Pointer to CGenerated code Ul @

V({conditional statement)) = Insert Junp addresses
in CJ and UJ comands

Condi tional expressions can be treated in a sinlar manner.

VI1-9.4 QO TO and ILabelled Statenents

It is difficult to give a clean set of interpretation rules for the

GO TO statenent, GO TO (label) for an interpreter since the (label)
a conpiler can use:

m ght not have a value at that point. However,

Semantics (GO TO (label)) = Search Synbol Table for (label)
and emt UJ instruction

"Chaining" (see Chapter II-k on One-Pass Assenbly) or indirect addressing
can be used to solve the forward reference problem
The ALGOL definition of (basic statenment) is:

(basic statenent) ::= (label) (basic statenent)

153

A problem simlar to that in conditional statements exists here;

(basic statenent) nust be recognized and conpiled before the |abel

definition "(label) :" is detected. The syntax is therefore changed
to:

(basic statenent) ::= (label definition)({basic statenent)

(label definition) ::= (label)

The location counter can then be assigned to the (label) before the
(basic statement) following it is conpiled:

Semantics ((label definition)) = Enter (label) together with
the location counter into the
Synbol Tabl e.

VI1-9.5 Constants
Conversion of catenated synbols representing constants to their

nunerical values can be handled by rules of the follow ng type:

Synt ax Semantics
(integer) ::= {aigit)| A
(integer){digit Vl] ~ 10 X Vj + Vi

(digit) ::= 0| Vj"'O

1] v, ' 1

" J .

V., ¢
9 3 9

154

The inportant point to note in the preceding exanples is that it
is both desirable and feasible to explicitly exhibit the natural rela-
tionship that exists between the structure and the neaning of a program
mng |anguage. An unanbi guous syntax then guarantees that every sentence
(program) in the language has one and only one well-defined meaning.
Precedence grammars offer a powerful framework in which to design, ex-
periment with, and inplenent programmng |anguages. The reader should
consult reference 3for an exanple of a |anguage nore general than ALGOL

that has been inplenmented using these nethods.

VII-10. Ref erences‘m
1. Taylor, W, Turner, L., Waychoff, R, A syntactical Chart of ALGOL 60.
Comm. Acv 14, 9 (Sept. 1961) 393.

2. Anderson, C., An Introduction to ALGOL 60.

3. Wrth, N, Wber H, EULER - A CGeneralization of ALGL, and its
Formal Definition: Part I, Part II. Comm ACM Vol. 9, pp. 13-25,
89-99, (Jan/Feb. 1966).

=

. Chonsky, N,, Schutzenberger, M P., The Al gebraic Theory of Context-

- Free Languates. Conputer Progranm ng and Fornal Systens, North-

Hol and, Ansterdam 1963.

5. lrons, E T., Structural Connections in Formal Languages. Conmm

ACM Vol . 7,pp. 67-71(Feb. 1964).

6. Leavenworth, B. M, FORTRAN |V as a Syntax Language. Comm ACM
Vol. 7, pp.72-80 (Feb. 1964).

155

7. Eichel, J., Paul, M, Bauer, F. L., Sarmelson, K, A Syntax-controlled
CGenerator of Formal Language Processors. Comm. ACM Vol. 6, pp. 451~

455 (Aug. 1963).

8.Floyd, R W, Syntactic Analysis and Qperator Precedence. J. ACM

vol. 10, pp. 316-333 (July, 1963).

9.Wrth, N, Find Precedence Functions. Algorithm 265 Comma ACM
8, 10 (Oct. 1965) 604-605.

Addi tional References

1. Brooker, R A Mrris, D, A General Translation Program for Phrase

Structure Languages. J. ACM Vol.9,pp. |-10 (Jan. 1962).

2. Knuth, D. E, On the Translation of Languages from Left to R ght.

Information and Control, (1965).

3. lrons, E T., The Structure and Use of the Syntax-Directed Conpiler.

Annual Review of Automatic Programming. Vol.3, pp. 207-227 (1963).

4.Floyd, R W, The Syntax of Programm ng Languages - A Survey. |EEE
Trans on EC, Vol. EC 3, pp.246-353 (August, 1964).

VI1-11. Probl ens

CS 236a Feb. 24,1966
Probl em Set |11 N. Wrth

1. Gven is the follow ng set 6’1 of productions:

S - A
A - B|BCB
B - DI|E

156

Wiich are the sets of termnal and nontermnal synbol s?

: , T
Wiich is the |anguage .S:l(vl, Vi 5’1, S)?

2. Add to the set pl the production ”

B -~ FBG

obt ai ni ng 92. Wi ch are the synbol sev¥

T oTT
the language £2(V2, Vg’é)gL S)?

T . :
5 andV2, and which is
Use the notation X for the n-fold concatenation of the synbol X

and indicate which values n nay assune.

3. Instead of B - FBG add the production
B = FAG
to 6’1’ thus obtaining @3 . (and VB)'
s the string
FFEGGCFDG

a sentence of £3(V3 Vg,%, S)?
Is it also a sentence of £2 ?

' ?
Does .L'3 differ from.i:2 :
If so, construct a string which belongs to one |anguage (indicate which)

but not to the other; if not, show that they are equal.

L. Find a grammar which defines a |anguage £ such that a string con-
sisting of any even nunber of B's with any nunber of A s between

two consecutive B's, is a sentence of the |anguage.

5. Find a grammar defining a | anguage whose sentences have the form

XYz (n =1,2,...)

157

Q—O—C

BEGIN

Starting out at "BEG N' you choose a path according to the arrows in

the above notework, each time appending the encountered letter to a
letter string, until you reach the "END' point.

Define the set of all strings you can construct in this way, and
call thema language. Wich is this |anguage? Use the sane notation

as in problem2.

7. Construct a set of productions which generate the |anguage of prob-
lem 6. You should not need to introduce nmore than 6or 7 nonterminal

synbol s.

8, Consider an arithnmetic expression to be defined by the follow ng
synt ax:

(expression) = {term)|(expression) + (term) | (expression) - (term
(term) ~ (factor)|(term) x (factor)|(term) / (factor)

(factor) = (primary)|(factor) * (primary)

{primary) - (letter)|({expression))

(letter) = AlBlc|ple|rlclulz|s|x|r|mlx|o|plalr|s||ulv|w|x|¥|z
Wiich are the values of the priority functions used in the "railway

shunting yard" algorithmfor producing a polish postfix notation of

such an expression.

158

Stack Conpar e
Synbol priority priority
(
+
X
/
*
)

9. Wite in B5500 ALGOL and test on the computer a program perform ng
the follow ng taskg:
a. Read froma card an expression as defined in problem8. (The
correctness of the input need not be checked).
b. Print this expression
c. Use the "railway shunting yard" algorithmto produce polish
postfix notation of the read expression, and print it on one |ine.

d. Fromthe result of step c., conpile a sequence of "machine instruc-

tions" representing the read expression, and print it (one instruction
per line). The underlying nmachine is supposed to be a nulti-register
conputer, where all its 9registers are alike. The form of those

printed nmachine instructions shall be

(result) = (operand){operator){operand)

wher e
(operator) ::= +|-|x|/|*
(result) ::= (register)
(operand) ::= (letter)|(register)

(register) ::=1[2|3|4[5]6]7[8]9

159

The sequence shall be such that the result is left in register 1
Does your conpiled code represent the mni mum nunber of instructions
necessary to evaluate the expression, and is your code such that the
m ni mum nunber of registers is used necessary to eval uate the expres-
sions on this machine? Use the following expression as test cases

AXB+C

A+BXC-D

AXB+C-D
AX(B+C)/D*E
A+B-CXD/ F*F

((AXB+C)XD+E) XF+G
A+ (B+ (Ct(D+ (B+F))))

10. Is the syntax of problem 2a (sinple) precedence syntax? The one
of problem3? For both syntaxes, construct the sets of leftnost and

rightmost synbols and the matrix of precedence relations

11. Replace in the syntax of problem 2 the symbol G by the symbol F .
Is the resulting syntax (and |anguage) unanbi guous? Explain. Make

the sane replacenent in the syntax of problem 3,and given the answer

to the same question.

160

Problem Set 11l: Solution to Problem?9

BEGIN COMMENT CS 236, NeWIRTHe EXAMPLE OF AN EXPRESSION COMPILER}
INTEGER I5JsKsUsVsXsR) .]
INTEGER ARRAY A,B[0831), S(089), FsG[O363)3
FORMAT FO (32A1)}

LABEL L1,L2)
FL®+m) ¢ 33 FI"=") t 3J FI"x"] t 5 3 FL"/") ¢ S5} F("+"] ¢ 7}

GL"+"]) ¢ 23 GI"=") €23 GI"x") T 4) GL"/") ¢ 41 G("*"] ¢ 6}
FL"C™) ¢ 13 GL"(") ¢ 81 GI")") ¢ 1 3 GC" "] ¢ 1}
L1t READ (FO» FOR 1€ OUSTEP 1 UNTIL3%t DO AfI}) (L2)3
WRITE (FO» FOR I€¢OSTEP{UNTIL3t DO AL1)))
COMMENT PART 18B¢ POLISH POSTFIX C(A) }
Je¢ J ¢ KeXeSI0)e O
WHILE S[K) # " "™ DO
BEGIN X ¢ A[II} 1 ¢ 1¢1}
IF GI{X) = 0 THEN
BEGIN BLJ) ¢ X} J ¢ J¢l
END ELSE
BEGIN WHILE FISCK]]I>»G{X) DO
BEGIN BlJle¢ S{KI3 J € Jel) K ¢ K=i
END 3
IF FISEKI) sGEXJ THEN K ¢ K-1 ELSE
BEGINK ¢ K¢#1J) S(K)e X
END
END
END
BLJ) ¢ " 7}
WRITE (FO»FOR | «OSTEP 1 UNTIL J DO BLI)))
COMMENT PART2% GENERATE MACHINE INSTRUCTION SEQUENCE)
J ¢ K €¢€R ¢ 0}
WHILE 8{Jl# " "™ DO
BEGIN Xe B{J)} J ¢ J+1}
I FGIX]s 0O THEN
BEGIN K ¢ K+1J) S[K)e X
END ELSE
BEGIN U t SIKJ} IF U < 10 THEN R ¢ R=1) Ke¢ K=13J
Ve SEK13 IF Vv ¢ 10 THEN R ¢ R-1; StKle R ¢ R+t}
WHITE (<X32A12" ¢",3(X15A1)>» RsVeXsU)
END
END 3
WRITE C(LDBLJ)S GO TO L1}
L21
END

161

A+BxC=D
ABCx+D~
{1 ¢ x

8 c
A +1
D

-

Tt e
-
]

AXC(B+C)/D*E
ABCH+XDE*/

i1 «8B
-
S
3

M P o

+
x
*
/

e
-o >

A+B=CxN/EwF

AR+COXEF*/=
¢« A+ B
X
"

/

N N -
l-'NITIO
N W T O

f,ff

((AXB+CIXD+E)IxF+5

ARXC+DOXE+FXG+
{1 ¢« A X B

¢
0
E
F
G

A+(B+(C+(D+(E+F)I)I))

ARCDEF+++++
1 ¢ +

* *TT T
> DOOM
+ + 4+ +
- s — T

s e

162

Probl em Set A C.S. 236D
N. Wrth April, 1965

Devi se grammars a(v,T,P,s) which generate strings according to the
follow ng specifications: ‘

a. a®® here x{M) signifies a string of n x's for arbitrary n.

b. strings consisting of a's and h's, such that there is always an
even nunber of b's in the string, and there are either 0 or nore
than 1 a's between any two b's.

o a(m), () @)

Devise a set of ArLgoL procedures which analyse strings generated by
the follow ng grammr:

S ::=A
A ::= AaB
A .. =B
B ::= BC
B.:=C
C 1= cAc
C?:Bd

Assune the presence of a Bool ean procedure "issymbol(‘x®)", which tests
the next synbol of the input string. Choose the names of the procedures

in correspondence with the nontermnal symbols of the vocabul ary.

Consider the grammars given below. Determne whether they are precedence
?rarmars. If so, indicate the precedence relations between synbols and
ind the precedence functions f and g; if not, indicate the synbol pairs
whi ch do not have a uni que procedence relationship. Aso, list the sets
of leftnost and rightmost symbols L and R

a. S =
E . =F
E .= FeF
Fi=x

- F 1= GEz

F iz (2
G ::= &
G i=a

b. S::= A
A =B
A= x,A
B = Byy
B =Y

163

Frobl em Set A, Sol utions C. S. 236b
May, 1965
N. Wrth

| a. S > A
A -5 aAb |A

Ib. S3U|av| Ua| ava

Uosv | w
VoW | oW
WA l/\

A Aa | aa

I c. S—-A
A - abBAc I C
bBa — abB
bBC » (b
aC 3 &

2. Bool ean procedure S; S := A
Bool ean procedure A
A :=if Bthen
(if is synmbol (“a’) then A else true) else false;
Bool ean procedure B B
B :=if Cthen
(if is symbol (‘v?) then B else true) else false;
Bool ean procedure C
C:=if is synbol (“c?) then
(if A en is synbol (%c®) else false) else is symbol (‘a%);

164

Probl em Set A, Solutions = C.S. 23%6b

3a.

3b.

Pt R

S EF Gx a E F x z
E F & a F x z
F G x a X Z
G G a , a

S E F C X a,
S
E =
F = >
G = < < =
c | = <
x > >
z‘ > >
a > > > >
, > > > >

|s E F c x a,
f 1 1 2 2 3
g 1 1 2 2 1

@%a IS a precedence gramar.

£ | R
S | ABxy | ABy
A Bxy ABy
B By Y

G3b is not a precedence grammar, Ssince

165

VITI. ALGOL COVPI LATI ON

VITT-1. The Problens of Analvsis and Svnthesis

The tasks of a conpiler can be divided into two distinct phases--
the analysis of the source program and the synthesis of an equivalent
obj ect [anguage program It was argued in the last chapter that these
phases may occur in parallel by obeying semantic rules as the input is
reduced to its syntactic conponents. Some production conpilers for
ALGOL generate object code as the source programstructure is anal yzed
but nost perform several analysis passes first; the analysis passes
check for errors and transform the input into a nore convenient form
For exanple,Naw's CGEIR ALGOL compilerg consists of 9 passes--the first

6analyze the input and the last 3synthesize object code:

GElR_ALGOL COWPI LER

Pass Task
L Check and convert input to ALGOL synbols.
2. Associate each identifier with an integer.
3. Anal yze and Check delimter structure.
4. Col l ect declarations and specifications.

Rearrange procedure calls.
5. Al'locate storage for variables.
6. Check operand types. Convert strings to

reverse Polish notation.

7. Generate machine instructions for expressions.
8. Final program addressing and drum allocation.
9. Rearrange drum segnents.

166

Mich of the conplexity (and challenge) in ALGOL conpilers lies in
the allocation of storage for handling block structure, especially
recursive procedures and dynamic arrays. The latter two features nake
it inpossible to conpile pure machine |anguage addresses for variables.
Instead, what is needed is the generation of calls to run time admnis-
tration routines (RTA) that allocate storage and conpute addresses.
Assuning a stack conputer, this chapter discusses one particular RTA
schene that correctly reflects the dynamc behavior in an ALGOL program
nost of the material may be found in Reference 1. The reader should
review the discussion of assenbler block structure in Chapter 11.

-

VIII-2. Run Tinme Storage Adninistration

Execution of an ALGOL (block) requires that storage be allocated
for its declared variables and tenporary results. Tenporaries present
no problemsince they are automatically created and destroyed in the
run-tine stack. During conpilation, reduction to a (block head) causes
the generation of the code BLOCKENTRY(bn, n), where n is the anount
of space to be assigned for variables (obtained fromthe variable declara-
tions), bn is the block nunber, and BLOCKENTRY is a RTA subroutine
that performs the storage allocation. An address for a variable is
produced as a pair (bn, on), where on is the order nunber or address
relative to the base of the variable storage area for block bn . The
bl ock nunber bn indicates the level or depth of nesting of the bl ock.
A call to the RTA subroutine BLOCKEXIT is produced at the end of the

bl ock to release the storage

167

Exanple 1

Program Skel et on CGenerated Code
A begin real a;;ay-..,a; BLOCKENTRY (1, n)

B: begi'n r eal LIETRRPLI BLOCKENTRY (2, m)
end B; BLOCKEXI T

C begin real c,, YRR BLOCKENTRY (2, p)

D: begin d ;. . +,d; BLOCKENTRY (3, q)
end D BLOCKEXIT

end C BLOCKEXI T

end A -- ‘ BLOCKEXI T

d, has the address (3, k) .
(a) During execution of the block |abeled B BLOCKENTRY(1, n)
and BLOCKENTRY(2, m) have been invoked and the storage is

allocated as foll ows:

1 n & DPlock mark
&1
I: 8o
T
|
|
.I 1is an index main- 2
- tained by the RTA which n .
points to the most recent[® 2 m «| block mark
block mark. by
b
]
3
I
t
1
b
m
Variable Storage
4

168

(b) After entry into block D, the variable storage has been

re-all ocat ed:

1 n . -« blockmark for A
81
4
]
I: |
|
]
1
a
Il
2 P ! block mark for C
¢,

cl
. /
3 q - - block mark for D

Variable Storage

_Note the space for B has been released. The dotted arrow indicates
the change in | after BLOCKEXIT for D . To locate a synbol,

8, = (1, k), while in block D, we chain back through the block marks
until the bn in the block mark agrees with the bn in the address,

i.e., at the block mark for A, a, is then at the kth location follow ng

k
the bl ock mark.

Variables may be | ocated nore efficiently by adding a bl ock mark
pointer array or display to the scheme described above. Then the address
(bn, on) is translated inmediately to display[bn] + on . Exanple 1 (D)

can be redrawn to indicate the display:

169

1 n <
a|l \ display[bn]
| e
i
| : -
I: ™
an /V‘
2 P <
€1
|
cp /
4
> 3 | q t <
dy
I
i

VIII-3. Treatment of Procedures

The RTA scheme of the last section nust be expanded in order to
handl e procedure calls correctly. Ignoring paranmeters for the nonent,
storage for procedure variables can be allocated in the same way as that
for blocks; however, when a procedure is called, two types of information
are needed:

(1) what variables are accessible to the procedure, and

(2) the return address of the procedure.

The first is given by the static block structure of the program regard-
|l ess of where the procedure was called from The second is given by the
dynam ¢ behavior of the program at execution tinme; both are conplicated
by the possibility of recursion. The solution is to maintain two sets

of pointer chains, a static chain or display of the last section, and a

dynam ¢ chain. The static chain determ nes which variables have currently

170

valid declarations; the dynamic chain points to the blocks that have
been activated and not yet conpleted. Calls to the RTA routines
BLOCKENTRY and BLOCKEXI T are produced for both procedure declarations

and bl ocks; procedure calls are conpiled into transfers to the procedure

BLOCKENTRY . At run time, the RTA's allocate storage, update static and

dynamic pointers, and keep track of procedure return addresses (RA)

Example 1

A: begin real 81500y 85
procedure r;
begi n real Tyseers T3

R ry o= 0

end r;

B: begfn real Dyyeees bp;
Bl:r
end B

A: r

end A

171

Storage Allocation at

R when r is called at Bl

/

/

N

Di spl ay
or
Static
Chai n

The variables of block B are inaccessible since B and r

» 1 n N
C EAREEREE 8
2 p "\
b dynamic
l’ E] p ‘/\-/'.\ Chain
° 2 L S
IELEERTRY)T RA: return address

of r

sane |evel.

are at the

Storage Allocation at Rwhen r is called at A

»] n <
Byseeereegd

~» 2 m RA *
Tigerenens 3T

Storage allocation for recursive calls are correctly admnistered by the

sane neth

od.

172

Example 2
A in .
begi n _real 8iseees 8 s
procedure r;
begi n real SURREPI ¥

r is called at Al; after r is called recursively for the first tine

at R storage and pointers appear as follows:

Display _p 1 n <~
.‘
S EERREREE 58
\ n
R I =
2 m RA <
Tiseeerens T
| first call of r
p—pp 2 | m F\;AT—1 o
Toy. I
1 m
recursive call at R

The dynamic chain gives the correct |inkage upon return fromr; the
static chain nmakes inaccessible the original set of variables for r .

An additional nechanism is needed for procedure paraneters:

173

Exanple 3
begin procedure P(a); real a;

a = atl;
B: begin real b;

P(b)
end

Normally, the variable b is inaccessible to procedure P since B
and P are on the sane block level. However, in this case, b is called
by nane and is therefore known in P .

On entering a procedure, storage is reserved for parameters as well
as the variables declared in the procedure body. The paraneter |ocations
(called formal |ocations) contain transfers to inplicit subroutines which
compute the value or address of the actual parameters; at each use of a
formal paraneter inside a procedure, a transfer to the formal location is
conmpiled (or the formal location could be indirectly addressed). Declara-
tions which are valid at the place, C, of the procedure call are nade

accessible by regarding the inplicit subroutine as a block inserted at C .

Exanpl e 4
begin real x;
procedure g(t); real t;
begin X := x+t; X = x/(1-t)
end g;

begin real vy;
Yy :=05;x := 1.0;
g(y-0.2 x x)

end.

end
17k

During the execution of g(y-0.2 x x), storage allocation is as follows:

1 1 \ <+

di spl ay

Y

\ 1 RA
formal |ocation

N\ bl ock marker
for inplicit
procedure to
conpute y-QO 2 Xx.

Wien the programis in the inplicit subroutine, the pointers |abeled i
are in force; inside g, the i pointers are deleted and display [2]
contains the g pointer.

It is apparent that a great deal of housekeeping nust be done at
run time to cope with the full generality of ALGOL. The administrative
work can be reduced by elimnating the inplicit subroutine for sone types
of name paraneters, such as constants and sinple variables, and inserting
their value or actual address in the formal |ocation. Value paraneters
can also be compiled in a sinple manner so that they appear in the fornal
location. To avoid copying arrays, it is generally nore efficient to
pass themas nane paranmeters. Arrays have been neglected in the precced-
ing discussion; they present sonme special problems in storage allocation

and addressing, and are exam ned next.

175

VIII-4. Arrays

For each array declared in a block, a storage location with address
(bn, on) is reserved in the variable storage area. The RTA allocates
array storage in a separate area and inserts both a pointer to that area
and some mapping data in (bn, on) . Reference to a subscripted variable

generates a call to a mapping function that conputes the physical address

of the element at run tine.

One nethod for organizing array storage is to allocate a separate
area for each row or colum. The B5000 ALGOL conpiler stores each row
of an array as a linear string. For exanple, the declaration

real array A[l:m, 1:n] results in the following run tinme organization:

/ n
Bl ock or 1ol A : }
variabl e /' > N
storage n ~—
v i
(bn, on) : Alm] : \ |
|] n
) m n ~y 1
length field X -
for bound Row \ :
testing Pointers

N/

Array El enent
Storage

The contents of elenent A[i, j] is then (((a) + i) + j) .

A second nmethod is to conpletely linearize the array and store it

in one contiguous area. A[l:m, 1:n] isS stored A S A

117 Ao 21"

A A (byrow. The element Ali, j] has

'rAn) m2)""

n’ "7 Anp

176

the address (i-1) xn +j - 1 relative to the base of A's storage

area. The general case is treated as follows:

array A[zl:ul, lg:ué,.--, ﬁk:uk]

Let A =u, -2, +1
| 1 1

The address of A{nl,ne,.”, n.] 1s then:

k
(...((nl - ll)A2 + (n2 -112))155 + ...+ (nk_l - zk_l)) o - d
= . e + -+
(o (gt e oM g Fom Ay + oy
- ((...(zlA2 LIERRRL 2)Ak Lt l)Ak + 4

=a-p.

B can be conputed by the RTA when storage is allocated for A
a is conputed by the mapping function when the element is accessed.

Storage allocation after run time processing of the array declaration is

Storage of elenents of A

Bl ock or b
variabl e
storage 0
1
- (bn, on) : Al y [b-B :
|
l}
L]
i
Ap
b3
]
|
]
|
By
nmappi ng
const ants

177

b is the physical address of the first element of A i.e.,

psees 20,

b -p is the address of the (fictitious) element A[0, 0,..., O]

A[!l, L

The physical address of an element is then o+ b - B.

The storage allocation problemfor ALGOL conpilers has been sol ved
by a run time interpretive scheme (the RTA's). There is a sinmlarity
between this solution and that of the dynam c rel ocation probl em descri bed
in Chapter v. The paging and segnmentation methods can be conveniently
enpl oyed to handle the dynamic allocation problenms in an ALGOL conpiler

--in fact, the B5000 ALGOL conpiler does this.

VII1-5. Ref er ences

L Randal |, B. and Russell, L. J. ALGOL 60| npl ement ati on. Acadeni ¢

Press, London and New York, 196..

2. Naur, P. The Design of the GEIR ALGOL Conpiler. BIT 3 (1963)
124-140, 1k45-166.

VIII-6. Problens

cs235 B March 31, 1966
Probl em Set | Prof. N. Wrth

The purpose of this problemset is to draw your attention to certain
facilities and problens of ALGOL 60 which nust be clearly understood
before one discusses the inplenentation of ALGOL 60 on any conputer.

For each of the problens list the output produced by the "write

178

statenents”. Not all of the programs are correct ALGOL 60,and even

fewer can be handled by the B5500 system Along with the numeric results,

state in a brief comment what, if anything, is incorrect or at |east

controversial. Indicate where the B5500 system deviates from ALGOL 60.
You may do so, but you are not expected to use the computer for

this problemset. If you had to resort to the conputer, indicate for

which problenms. Gve the answers on a separate paper.

1. begin integer i, j, m, n;

i :=3; j :==2;m = 8 s2ti; n = 8 +21j;
wite (m); wite (n)

end

2: begin integer procedure f(x); value Xx; integer =x; f :=x + 0.25;
write(£(1.3))

end
3:begin integer i; array A B, c[1l:1];
integer procedure j; begin j :=1; i := i+l end;
i :=0; B[1):=1; c[1]:= 3
for Alj] :=B[j] step B[j] wumtil c(j] _;
wite(i)
end

4: begin integer i, k, f;
ptegec e dur e n; begin ni= 5 k := k+l end;
procedure P(n); value n; integer n;
for i :=1step 1 until n do f:= fxi;
k :=0; f :=1; P(n); write(f,k);
k :=0; f:=1, Qn); wite (f,k)

end
179

5: begin integer i, s; integer array A[O:n];

I := n;
while 1> 0 AA[il#s do 1 := i-1;
coment anything wong with this?;

end

6: begin real x;
procedure g(t); value t; real t;

begin t = X+t; X := t/(1-t) end;
x 1= 0.5
begin real x; x:= 0.5;
g(x-0.2); wite(x)
end,
write(x)
end

7: begin integer array A[1:5], B[1:5, 1:5];

i nteger 1i,J;
integer procedure S(k,t); integer k, t;

begin integer s; s := 0;
for k:=1sﬂ 1%' 5_gps:=s+t;
S :=s

end;

coment initialize A and B to:

3 8 2 3 0 0
2 5 3 2 1 0
A= 0 B = o -1 7 1 0 ;
4 o 0 4 6 3
1 o 0 8 5 9

write(s(i, A[i]));
write(s(j, Al3] x B3, 31));
write(S(i, S(j, B[i, j])))

end
180

8: begi
procedure p(r,b); val ue b; Bool ean b; procedure r;

begin integer i;
procedure q; i := itl;

| = 0

if b then p(q, —b) else r;

wite(i)

end,
p(p,true)
end

9: begin procedure C(x); value x; integer Xx;

begin own integer Kk;
if i=0O_then k :
if x > 1 then c(x-1)

= x el se begin k :=kx2; wite (k) end,

end;
integer
for i := 01 do C(5)
end
10: begin integer i;
real procedure P(k, x1, x2, x3, xk, x5); value k; integer k;
@egin real procedure
begin k := k-1, Q:=P(k, Q xl, x2, x3,x4)
end Q
P:= if k <0 then xk + x5else Q
end P;
for i :=1step 1 until % do wite(Pi, 1, 2, 3,4,5))
end

181

11 TERM PROBLEM

You are to wite an interpretive programfor a sinple programmng | anguage
to be described presently. The language is designed for sinple conputa-
tions of the desk-calculator type with immediate response. The conputer
to be used is the Burroughs B5500, using a programred character-input
routine sinmulating characterwise input froma typewiter. The |anguage

is by no neans a conplete and very useful tool, but exhibits the basic
features upon which extensions could easily be built.

Description of the Language

The elements are nunbers, variables and operators. The nunbers are
decimal integers denoted in standard form The variables are naned by
the letters A through z. Thus there exist exactly 26variables which

do not have to be declared. There exist the follow ng operators; listed
in order of increasing priority:

$ logical OR

& | ogi cal AND

<< =#F>> relational (resulting in 1 or 0)
"e mn, nax

+ - add, subtract

x / miltiply, integer divide

* exponenti ate

These operators can be followed by a period (.) and are then to be under-
stood as unary operator-s with the follow ng neanings:

$a = a

& a = a

<. a = 0<a (same for other relational ops.)
"e ® H ©

@ a = a

+. a = a

-.a = 0 - a

X. a = a

/a = 1/a

¥.. a4 = 2 % g

182

The standard precedence rules can be over-ruled by use of parenthetica
grouping in the conventional way. Using numbers, variables, operators
and parentheses expressions can be formed, whose resulting value can
then be assigned to any variable through an assignnent statement of the
form

v<—Exp;”
The nmul tiple assignment shall be admtted and is of the form
Vievae «vn « Exp;
The interpreter shall upon each execution of an assignment print the
name of the variable and the value to be assigned. (This constitutes

the output of the program) Every assignnent statement shall be term -
nated by a semcolon (;).

So far we have described Subset A of the |anguage

The | anguage is abl'e to handl e vectors (linear arrays), represented as
fol | ows:

where E, F through H are expressions. A vector can be assigned to a
variable, but only if this variable has been previously declared as vector.
A vector declaration takes the follow ng form

vV . Exp;

and neans that the variable v shall consist of as many elenents as the
value of the expression Exp indicates. Upon assignnent, the vector to

be assigned nust be coggatible, i.e., of equal length, with the variable
v. Anultiple vector declaration is witten as

vi: v2: :Exp;

Al existing operators are now extended to apply to vectors (c.f. lverson's
notation),

183

according to the follow ng definitions:

Let a, b be scalars, x,y vectors, and 0 a binary operator, then

al0x=[a0x,a0zx,..,a0 }n]
XOb:[leb, E@Ob’ o EnOb]
X0y =[x 0y 5% s x, 0yl

Let x be a vector and 0 an operator, then

0. x=[o. % 0x0.....0x] (reduction of x)
where 0. is the unary operator corresponding to the binary 0 .

Expressions involving vectors may, of course, also use parenthetica
gr oupi ngs.

Exanpl es of statenents:

X«<A+BxC;
YA+ [1l 49 16]
Z <+ (Xx2) (scal ar product)

Xe*. ([1, A+ Bl+[* 2Z 55])+1

Hnts

The inplenentation of this interpreter requires a conbination of what
usually is called a translator and an interpreter of sequential code
Instead of having the translator produce a |ist of code and then have
the interpreter process it after termnation of the translation process
the interpreter immediately processes an instruction when it is issued
by the translator. The inplenentation of this method is greatly facili-
tated by the absence of conditional and go to statenents

Vectors nust be created dynamically. The interpreter shall be witten
in such a fashion that after the execution of an assignment statenent
all storage used for tenporary vectors is released again. Upon ternina-
tion your program should print out a nessage indicating how mich tota
vector storage space has been used up (through permanent vector declara-
tions). This space shall initially include 1000 cells.

An exanmple of a character-input routine is |listed bel ow and makes use of
the follow ng declarations

184

| NTEGER CC, WC
ARRAY CARD[0:1k4];
LABEL EXIT:

STREAM PROCEDURE CLEAR (D); 3
BEGIN DI « D; DS - 8 LIT " "; SI « D; DS - 14 wDsS END;

STREAM PROCEDURE TRCH (S, M D, N); VALLE M N
BEGN D «D; DD «DI+ N Sl « S SI « S +M DS« CHR END,

PROCEDURE INSYMBOL (S); | NTEGER S;
BEG N INTEGER T, LABEL L;
L. IF CC=7THEN
BEGN IF WC = 8 THEN
BEGN READ (caroriL, | o, carpo[*¥]) [ExiT];
WRI TE (PRINFIL, 15, CARD[*];WC« O
END
ELSE WC «WwC + 1;
cc « 0
END
ELSE CC « CC + 1;
TRCH (CARD[WC], CC T, 7);
IFT=""THNGO TOL ELSES « T
END

At the due date, submt

A:‘
B.
C.

A statenment whether you inplenented Subset A or the entire |anguage;
A syntactic description of the |anguage you inplenented;
A block diagramindicating the main principles of the system (this
di agram shoul d not exceed one page);
A table of the basic characters of the |anguage and their priorities
(if you used such);
A B5500-AIGOL listing of the system followed by
The out put produced by your systemand a test programto be issued
one week before the due 'date. (One will be issued for Subset A, one
for the entire language.)

185

Sol ution To TERM PROBLEM

BEGIN COMMENT CLEVER TYREWRI TER, NeWIRTH MARCH 1965;
INTEGER Rj»Xs NUMBER;
INTEGER CC,» WC3 COMMENT | NPUT POINTERS]
INTEGER I3 COMMENT TRANSLATOR STACK POINTER;
INTEGER Jj COMMENT ARRAY STORE POINTER;
INTEGER K3 COMMENT WORKSTACK POINTER;
INTEGER ARRAY CARD [03141} COMMENT INPUT BUFFER;
INTEGER ARRAY T[0:311; COMMENT TRANSLATOR STACK3?

ARRAY S»V[0:127); COMMENT THE WORKING STACK;
ARRAY A[0$11022); COMMENT SECONDARY ARRAY STORAGE;
INTEGER ARRAY F»GL[0:631); COMMENT PRIORITY FUNCTIONS;
LABEL L1»L2»L3» NEXT, EXITS
LABEL DIG, NIL, MAX, ARYs GTR, GE®» ADD, VAR» DOT, LBK, LAN, LPA,
LSS, ASS» MUL, LORs, MINs, SUB, RPA, SCL»s LEQs DVD, CMA, NEQ, EQL,
RBK, PWRs UMX, UGR» UGQs UADs» UAN, ULS, UML, UCRs, UMN, USB, ULA,
UDD» UNQs UELs UPR3
SWITCH EVALUATE ¢
D1G,DIG»DIG,DIG»NIGs» DIG, DI G, DIG»
DIG,DIG» NIL, MAX, NIL, ARY, GTR, GEQ,
ADDs» VARs VAR, VARs VAR, VAR, VAR, VAR,
VAR, VAR, DOT, LBK, LAN, LPA» LSS, ASS,
MUL, VAH, VAR, VAR, VAR, VAR, VAR, VAR,
VAR, VAR, | OR» PWR, SUB, RPA, SCL, LEQ»
NIL, OVDs VAR, VAR, VAR, VAR, VAR, VAR,
VAR, VAR, ¢MA, RRK, NEQ, EQL»s» NIL, MIN»
NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL,
NIL, NIL, NIL, UMX, NIL, NIL, UGR,UGQ,
UAD, NIL, N 1 L, NILsNIULsNILsNILoNIL,
UAD, NIL, NIL, NIL,UANs NIL,ULS, NIL,
UMLs NiL, NIL, NIL, NILsNILsNIL,NIL,»
NIL, NILs UOR, UPR, USB» NIL, NIL, ULG,
NIL, UDD» NIL, NILs NIL, NIL, NIL, NIL,
NIL, NIL, NILs NILs» UNQs» UELs NIL, UMN;J
DEFINE TYPE = [1:2) #, LOW =[103101#» UP = [20310] #;
DEFINE FLAG = [3:1) #, ADR = [30:10] #}
DEFINE VALTYPE = 1 #» ADRTYPE = 2 #s ARYTYPE = 3 #3}
DEFINE THRU = ST.EP 1 UNTIL #;
DEFINE Z = @56 #;

STREAM PROCEDURE CLEAR (D)3’
BEGIN D1«DsDSe 8 LIT" "5 SleDi DSe 14 WDS END 3
STREAM PROCEDURE TRCH (SsMsDsNJ); VALUE MsNJ
BEGIN DI e D3 DI « DI+N; SI ¢ 53 S| €SI+M3DNS e CHR END 3
PROCEDURE INSYMBOL(S)? INTEGER S}
BEGIN INTEGER T; LABEL LJ
LY IF CC = T THEN
BEGIN IF WC=8 THEN
BEGIN READ (CARDFIL,10» CARDC*I)LEXITI;
WRITE (PRINFIL,»15,CARD{*]); WC ¢ O
END
ELSE WC ¢WC+1;
cc « 0
END
ELSEC Ce¢CC+1;
TRCH (CARDLWCY» CC, T, 7))

186

IF T =" THEN GO TO L ELSE S ¢7T
END
PROCEDURE ERRORIN); VALUE N? INTEGER N3
BEGIN LABEL 3 COMMENT PRINT MESSAGE AND RESUME PROCESSING;
SWITCH FORMAT TEXT ¢
(""PARENTHESES 00 NOT MATCH")»
("INCOMPATIBLE ARRAYS"),
(" INCOMPATIBLE ASSIGNMENT™),
(""ASSIGNMENT TO0 UNKNOWN GQUANTITY™")»
("ILLEGAL LIST ELEMENT”1 »
("ILLEGAL OPERATOR™),
("ARRAYSPACE EXHAUSTED"),»
("DIVISION BY ZERO™);
WRITE (TEXTIN]);
FOR K « K STEP =1 UNTIL 64 00
| FSCKI,TYPE = ARYTYPEA N DSCK)«FLAG=1THEN J ¢ S[(K),LOW;
te IF R # »;» THEN BEGIN INSYMBOL(R)? GO TO L END }
| €060 TO Ll
END ; i
PROCEOQOURE FETCH3 ™
BEGIN VEK) ¢ VISLKI.ADR)S SCK) « S{SEK]I.ADRI END
PROCEDURE UNARY(FCT,NULL)}
REAL PROCEDURE FCT3 REAL NULL
BEGININTEGERLsUsX;REALESE «NULLS
| FS{KY,TYPE = ADRTYPE THEN FETCH;
IF S{K],TYPE = ARYTYPE THEN
BEGIN Le#SIKI.LOWSU«SIKI,UP}
IF StK)J.FLAG= 1 THEN J «L}
FOR XelL THRU U DO E ¢ FCT CE»ALX])}
VIK) ¢ £3 SCK),TYPE ¢ VALTYPES
END ELSE
VIKY ¢ FCT (NULL, VIK])}
END UNARY 3}
PROCEDURE BINARY(FCT);
REAL PROCEDURE FCT3;
BEGIN
| FSIK],TYPE = ADRTYPE THEN FETCH;
K ¢ K=3t
| FSIKY,TYPE =ADRTYPETHENFETCHS
IFS{K],TYPE=AHYTYPE THEN
BEGIN IF SCK+11+TYPE=AHYTYPE THEN
BEGIN INTEGER L1,L25sU15U2,X,Y3}
L1 ¢ SI{KI.LOW? Ul ¢ SIKI,UP; L2 ¢ S[K+1].,LOW;
U2 ¢« STK+1J,UP5 Y ¢ L2}

| FUL=L17U2=L2T H E NERRORC1):
IFStK+11.FLAG= 1 THEN JeL2;
IFSIKI.FLAG =1 THEN JeLl}

SIKILOW ¢ J3 SCKI,UP ¢ J+Ul=L1; SIK).FLAG ¢ 13

FOR X e LITHRU UI D O

BEGIN ACJI « FCTCALX]» ALY])} Y € Y+13 J « J+1 END
END ELSE
BEGIN INTEGER L+UsX} REAL Y}

L ¢ SIKI.LOWS U ¢ SIKI UP3 Y ¢ VIK+113

IFSIKY.FLAG= 1 THEN J e L3J

SLKILOW ¢ Jj-S{K),UP & J+U~L} SIKI.FLAG ¢ 13

187

FOR X ¢« L THRU U DO
BEGIN ACJl « FCT CALX1s, YY)} J «J+#1 END
END
END ELSE
BEGINIFStK+11,TYPE = ARYTYPETHEN
BEGIN INTEGER L.»UsX3 REAL VY:
L ¢ SIK+11.L0W; U € SIK+11,UP; Y ¢ VLKI];
IF SUK+1] oFLAG =1 THEN J €Lj SIK].FLAG «13;
S{K),TYPE ¢ ARYTYPE} SIK).LOW e J3 S{KI,UP ¢ J+U=L3
FOR X ¢ L THRU U 00
BEGIN ALJ)Y « FCT (Y, ALXY)} J « J+1 END

END ELSE
VEK] ¢ FCTC(VIKI»VIK+1])
END

E N DBINARY
REAL PROCEDURE SUM(XsY)? VALUE X»sY; REAL X»Y3}SUM e
REAL PROCEDUREDIFF(X»Y)? VALUE X»Y3 REAL X»Y} DIFF ¢
REAL PROCEDURE PROD(XsY)} VALUEXsY; REALX»Y; PRCD «
REAL PROCEDURE QUOT(X»Y)3 VALUE X»Y; REAL X»Y3}

IF'Y = 0 THEN ERROR(7) ELSE WQUOTeX DIVY;
REAL PROCEDURE EXPO(X»Y)3 VALUE XsY3 REALXsY? EXPD ¢ X *Y;
REAL PROCEDURE LESS(X»Y)? VALUE Xs Y REALX»Y3 LESS ¢REAL(X<Y)]
REAL PROCEDURE LEQL{X»Y)3 VALUE X»Y; REAL X»Y;LEQLeREAL(XSY)}
REAL PROCEDURE EQUL(X»Y)3 VALUE XsY; REAL XsYSEQUL+«REAL(X=Y)}
REAL PROCEDURE NEQL(XsY); VALUE XsY; REAL XsYINEQL+«REAL(XZY)}
REAL PROCEDURE GEQL(X»Y)3 VALUE X»Y;REALX»Y} GEOL¢REAL(X2Y)}
REAL PROCEDURE GRTR(X»Y)3 VALUE X»Y3 REAL X»Y3 GRTR ¢REAL(X>Y)}
REAL PROCEDURE INFICX»Y)? VALUE XsY3 REAL X2Y5

INFI «JF X <Y THEN X ELSE VY3
REAL PROCEDURE SUPR({(X»Y)? VALUE X»Y3 REAL X»Y3

SUPR ¢ IF X> Y THEN X ELSE Y3i
REAL PROCEDURE UNON(X»Y)3 VALUE XsY3 REAL XsY3

UNON ¢ REALCBOOLEANCX) OR BOOLEAN(Y));
REAL PROCEDURE INSC(XsY);VALUEXsYS REAL X»Y3

INSC ¢« REALCBOOLEANCX) AND BOOLEANCY))}

X %
X|+
< < <
e wo ge

COMMENT INITIALIZE POINTERS ANDTABLES
AC « 85 CC « 7; CLEAR (CARDILO]);
1 ¢ J ¢ NUMBER ¢ 0; TLO1 « mgn;
FORK ¢ 0 THRU 53DOSIKI.TYPE ¢« VALTYPE) K ¢ 63;

COMMENT PRIORITY FUNCTIONS OF RASIC SYMBOLS.

SYMBOL F G # (0CTAL)
¢ 1 19 35
C 20 19 33
b4 1 19 73
$ (0R) 6 5 52
& (AND) A 9 34
< < =% 2> 10 11 36 57 75 74 17 16
"w ® (MIN MAX) 12 77 13
+ - 14 13 20 54
x / 16 15 40 61
* 18 17 53
LETTFR 20 19
DIGIT 23 19

188

) 20

1 20

«

SEMICOLON 2 1 19 0
» 20

L[]

£ (FILEMARK) 20 =1 19 O

: (ARRAY) 2 19

FILL FC+3 WwITH
20520520520220220»20520520,20,~1»12» 0s 25,10510»
18520520220220»,20520»20,20,20,20»,20, 8: 1,10, 2»

COMMENT READ AvD REORDERBASIC SYMBOLS.

L1t
L2

L3¢

NEXT3

ADD:
sue :
MUL :
DVD
PWR:
MIN:
MAX :
LSS
LEG :
EQL
NEG :
GEG:

LAN?
LORa
UAC :
‘USB
UML
uoc :
UPR :
UMN ¢
UMX:
ULS:
uULG:
UEL:
UNC :
UGG

165205205202205,20»,205205,20,20»

55
76
37
56
72

an
15 ;

65185,14,20, 1510,

0516220,20020,205,20,20,20,205,20, 1,10510,20,123
FILL GC*1 WITH

19,192192192195195,19,19519519» 0,115 05,195 9,9

l

13519219519519519,19219519,195195195 75,19, 9,19,

15519519+19»195,19+19,195,19,19,»
05,152195192195195195,19»,19,19»

INSYMBOL (R)

IF FLTCIY.082:611 S GLRY THEN

5s175135 15 0, 9,

3,19, 9» 90 1,113

BEGIN I « 1+41; TLI)eR3 GO TO L1 END
IFE FLTLI=13.042:63) = GCTL1).[428613 THEN

BEGIN I +«I-=1;;GO TO L3 END

G OTO EVALUATELTIII+1}s-
I « I=13 co TO L2}

BINARY ¢SUM); GO TO NEXT;
BINARY (DIFF)?GOTO NEXT;
BINARY¢PROD)}G OTO NEXT;
BINARY (QUOT)$ GO TO NEXT3
BINARY(EXPO)X; G O T oNEXTS
BINARY CINFIJY} GO TO NEXTS
RINARY ¢SUPRIS G OTO NEXTS
BINARY (LESS); GO TO NEXT;
BINARY (LEQL)S GO TO NEXT;
BINARY(EQUL)S G O TONEXTS
BINARY ¢(NEQL)2 GO TO NEXT3;
BINARY(¢GEQL)}GOTO NEXT;
RINAHY ¢(GRTR)Y;GO TO NEXT;
BINARY (INSC)3 GO TO NEXT;
RINARYC(UNON)? GO TO NEXT;

UNAHY (SUMs0)2GOTO NEXT:
UNARY(NDIFF»0)5G0OTO NEXT:
UNARY (PROD» 1) GO TO NEXT;
UNARY (QUOT»1)3 GO TO NEXT:
UNARY C(EXPDs 2)3 GO TO NEXT:
UNARY (INF1s Z)3 GO TO NEXT;
UNARY (SUPR»=2); GO TO NEXT:
UNARY (LESS» 0)7 GO TO NEXT;
UNARY (LEQL» 035 GO TD NEXT;
UNARY CEQUL» 0)3 GO TO NEXT;
UNARY (NEQLs 0)3 GO TO NEXT;
UNAHY (GEQL#0)7GOTO NEXT;

189

»

BRANCH TO INTERPR,RULES;

UGR®
UAN®
UOR -
VAR
DIG:

Doy
ARY

LBK

RBK :
CMA

RPA
SCL .

LPA:
NIL:
EXIT:

0 TO NEXT;

UNARY (GRTRs 0)5 G
GO TO NEXTS
G
F

UNARY (INSC» 1)
UNARY (UNON. O 0O TO.NEXT;

K ¢ k+1; S[IK1,T ¢ ADRYYPE; SIK],ADR € Tr1l; GO TO NEXT:

NUMBER « NUMBER x 10 + T[IJ;

IF R 2 10 THEN ST

BEGIN K ¢ K+13 S[{KI.TYPE « VALTYPE; VIK] ¢ NUMBER; NUMBER ¢0 END;
GO TO NEXT;

TLI=1) « TCI=13+647 GO TO NEXT;

X « S[{K=11.A0R;

IF S{KJ.TYPE = ADRTYPE THEN FETCHJ

SEXI.TYPE « ARYTYPE; SIX).LOW € Jj SIXI.UP € J+VIKI=13}

SIXILFLAG ¢ 05 J ¢ J + VIKI; IF J > 1022 THEN ERROR(6):

K « K=13 SIK] « $IK+1313 VIK] « VIK+11; GO TO NEXT;

K « K+13 SIKI1.TYPE « ARYTYPE; S[KILFLAG « {3

SIKI.LOW ¢ Ji SIKILUP & =13 TLI) ¢ "%&"3 1 « I+13 GO TO ~NEXTS

;
;
;
YP

IF SC{KI.TYPEL = ADRTYPE THEN FETCH;
IF SIK1.TYPE # VALTYPE OR SIK=1].TYPE ¥ ARYTYPE THEN ERROR(4);
K o« Ke13 SIKI.UP « J; ALJY € VK411 J ¢ J+ls
IF J > 4022 THEN ERROR(6)? GO TO NEXT;
IF S[K=11.TYPE Z ADRTYPE THEN ERROR(3)}
IF S(KJ,TYPE = ANRTYPE THEN FETCH;}
X ¢ SIK=~1J.ADR;
IF SIX1,TYPE # S[K3.TYPE THEN ERROR(2);
IF SIX1.TYPE = ARYTYPE THEN
BEGIN INTEGER L1,L2,U1,U2;
WRITE (INDJY, <"x Y,Al," ">, X);
Ll € S{X)I.,LOW; Ul « S{X1,UP3 L2 « S[KI,LOW? U2 « SCKI,UP;}
IF Ut=L1 # U2-L2 THEN ERROR(1);
FOR X ¢ L1 THRU Ul DO BEGIN A[X) « A[L2)3 L2 ¢ L2+1 END /
WRITE (<X6,10110>, FOR X ¢ L1 THRU Ul DO ALX1)}
END ELSE
BEGIN VIX) & VI[K3}3 WRITE (<"% ",Al," €", 110>, X, VIX])}
END
K ¢« K=1; SiK} ¢ SCK+1); VIK) ¢« VIK+13; GO TO NEXT;
ERRORCO)
IF S[KI.TYPE = ARYTYPE AND S(KJ. FLAG = 1 THEN J ¢ S[KJ.LOW}
K « K=13 GO TO NEXTS
;

o

GO 7O wMfX
ERROR (%)

.
’

WRITE (</"ARRAYSPACE USED:",I14," CELLS">, J)J

END .

190

cs 236 B April 5,1966
Probl em 2 N. Wrth

Design a sinple programm ng |anguage for conplex arithnmetic and inple-
ment it on the B5500 conputer. The inplenentation shall consist of a
transl ator based on a precedence syntax analyzer, and an interpreter of
the conpiled code.

. The | anguage.

The |anguage should include facilities to express arithmetic opera-
tions on conplex nunbers and variables, such as addition, subtraction,
mul tiplication, division, taking absolute value, sign inversion, conpari-
son and possibly others. On the statement |evel there should exist the
assignment operation, an output operation, and facilities for conditional
and repeated execution of statements. Variables are designated by identi-
fiers in the usual sense. A programshall be preceded by sone form of
declaration of those identifiers.

[1* The translator.
The translator should consist of three main parts

1. A routine reading basic synbols from the input source. It is
recormmended that this routine reads entire identifiers (and possibly
nunbers) which are considered in the syntax as a basic synbol. The source

program should be listed by the printer.

2. A set of interpretation rules, corresponding to the syntactic
rules of the |anguage.

3. The algorithm for syntactic analysis.

The conpiled code should be printed in a readable form upon conpletion
of the conpilation.

[11* The Interpreter
The interpreter executes the program conpiled by the translator.
The conputer represented by-this interpreter should consist of an instruc-

191

tion register, an instruction counter, a set of arithmetic registers,
and a nenory, divided into a program, and a data-part. The interpreter
shall not include a stack mechanism
In order to determne the precedence relations and functions, a
syntax processing programis available on the B5500 conputer. This
program accepts a sequence of syntactic productions, one per card,
punched in the following format: Each card consists of 6fields, each
12 characters long, each representing a synbol (blank spaces count!).
The first field represents the left part synbol of the production; if
it is left entirely blank, then the left part symbol from the previous
production is copied into it.
The syntax processor is called in the follow ng way:
a In the "systent field of the type-1l card wite "DISKICO'.
b. The type-11 card is followed by a card containing
? EXECUTE SYNTAX/PROCL
where ? is a 2-8punch in colum 1. This is followed by a
"Geen card", followed by the data.
Use a tinme estimate of 2 mnutes.

The total available machine time for this problemis 30m nutes.
On April 19, submt the output produced by the syntax processor from
the syntax underlying your language. May 6is the final due date, when
you should submt:

1. your tested conpiler and interpreter program

2. a clear and systematic description of your |anguage, and of the
organi zation and the instruction code of your interpreter, and

3. an output produced from a sanple program This sanple program
shoul d denonstrate the main features of your |anguage, and the correct-
ness of your translator.

192

cs 236 B N. Wrth
May 1966

A SOLUTI ON TO PROBLEM 2

| ntroduction
A description is given of a sinple programm ng | anguage to express
conput ati onal processes involving conplex nunbers. The structure of the

| anguage is defined by a syntax (described in BNF). To each syntactic
construction corresponds a certain operation which is systematically
described by the processor. This processor has been chosen to consi st
of two parts:
1. a translator (conpiler), and
2. an interpreter, closely reflecting the design and capabilities
of a present-day conputer

The Language

The basic constituents of the |anguage are conplex nunbers and vari-
ables. They can be used as operands in expressions, containing the dyadic
operators of addition, subtraction, multiplication and division, and the
monadi ¢ operators of sign inversion, exponentiation (e¥), selection of
the real or imaginary part of a conplex nunber (real x,_imx), taking
the absolute value (modulus), and of identity.

Expressions are constituents of assignnent statements, which specify
that the value of the expression be assigned to a variable. Statenents
can be executed conditionally, depending on whether a relation between
two conplex nunbers holds or not. In the sane fashion, a statenent may
be' executed repeatedly as long as (while) a relation is satisfied.
Sequences of statements may be bracketed and thus be subjected to condi-
tions as a unit. Relations on conplex nunbers are understood as the
ordering relations taken on their absolute val ues.

Variables are denoted by freely chosen nanes, so called identifiers
i.e. sequences of letters and digits the first elenent being a letter.
Al identifiers nust, however, be declared in the heading of the program
Since, due to the limted character set of the equipnent available,

193

certain operators and delimters are represented by sequences of letters,
the following such sequences may not be chosen as identifiers:
NEW BEG N, END, IF, THEN, ELSE, WH LE, DO CQUT, EXP, ABS, REAL, IM

Nurmbers are denoted as follows (they are treated as basic constitu-
ents of the language and are therefore not described in the general
synt ax):
Syntax of nunbers:
(nunber) ::= (real part)I(imaginary part)|(real part)
(real part) ::= (real nunber)
(imaginary part) ::= (real number)|-(real nunber)
(real nunber) ::= (digit sequence)]
(digit sequence) . (digit sequence)
(digit sequence) ::= (digit)|(aigit sequence) (digit)

Exanpl es of nunbers:
1 12.5 91.5123.8 0I-0.75 0.8311

The Processing System

The processing systemis given as a B5500 Extended Algol program
It utilizes the techniques of precedence syntax analysis as discussed
in class and as described in Wrth and Wber [1].

The syntax of the language is analyzed by a program which deter-
m nes the precedence relations (printed belowin the formof a matrix)
and the precedence functions (F and G of the synbols of the |anguage.
These functions, along with tables representing the productions of the
syntax (KEY and PRTB), occur in the program of the conpiler. The
organi zation of the two latter tables is as follows:

KEY[i] represents for the i'th symbol the index in the production
tabl e PRTB, where those productions are |isted whose right part string
begins with the i'th synmbol. For each production, the right part is
listed without its leftnost synbol, followed by the identification number
of the listed production and the left part synbol of the production.

The end of the list of productions referenced via Key[i] is marked with
a 0 entry in PRTB.

This representation of the productions was chosen to speed up the
table lookup process. Cearly, even nore efficient methods could be
devi sed.
A programlisting the conpiled code in menonic formis activated
bef ore execution of the code.
The ficticious conmputer, represented by the interpreter, consists
of the followi ng elements:
1. A program storage area (PROGRAM), into which the code is conpiled.
2. A data storage area (DATAR, DATAC), into which constants (numbers)
are conpil ed.
3. Aset of 16"registers" (REGR REGC), upon which aritmetic
operations can be performed.
L. An instruction register (IR, holding the currently executed
instruction.
5. An instruction counter (1C), holding the address of the next
instruction in sequence.
6. A condition register (TOGAE), holding the result of a conparison.
The instruction formats are the follow ng:

a. { op] R A | OP # 3

b [3]op [r | R |

In case (a), the OP field designates the operations of a fetch, a store,
or a branch, involving the register specified by the Rfield and the
storage cell addressed by the Afield (in the case of a branch, the R
field determ nes whether the branch is taken unconditionally or depending
on the value of the condition register). In case (b), the OP field spe-
cifies the operation to take place on the registers specified by the RL
and R2 fields.
Two Exanpl es

Two exanples of short prograns are given below. The first is inten-
ded to illustrate the main features of the language. The second exanple
was executed with a nodified output operator, providing a primtive

- graphi ¢ representation of the conpl ex plane.

Ref er ence:

1. "EULER A Ceneralization of ALGOL and its formal definition," Conm ACM
9/1,2 (Jan. Feb. 1966)

195

PRODUCTIONS

OCO®NOIOPWME WN—

<PRNOGRAM>
<HEADING>
<DECLAR>

<COMP STAT>
<COMP ST H>

<STAT>
<STAT+>
<COND STaAT>
<IF CLAUSE>
<TRUE PART>
<ITER STAT>
CWHILE CL>

<WHILE HD>
<RELATINND>

<SIM STAT>
<OUT STAT>
<€ASS ST AT>

<EXPR>
CEXPR*>

<TERM>
CTERM*>

<FACTOR>

<PRIMARY>

<VARIABLE>

T+ T TT QP PTL T T OLTYTEYET PRSP L L L ETTITTTIYTEIEYTEELTYTEELIYELYYY YD

3

<DECLAR>
NEW
<DECLAR>
<CNUP ST H>
REGIM

<COMP ST H>
<STAT*>
<SIM STAT>
<COND STAT>
<ITER STAT>
<IF CLAUSE>
<IF CLAUSE>
1F

<STM STAT>
<WHILE CL>
<SWHILE HN>
WHILE
<EXPR>
<F.XPR>
<EXPR>
<CXPR>
CEXPR>
<EXPR>

<ASS STAT>
<COMP STAT>
<AUT STAT>
nyT
<VARTARLE>
<VARTABLE>
<CEXPR*>
<TERM>
<EXPR#*>
<EXPR*>

+

<TERMw»>
<FACTOR>
<TERM#*>
<TFRM¥*>
<PRIMARY>
FXP

ARS

REAL

M

<NUMRER?>
<VARTABLF>
(

<ID>

196

<HFARING>
}

<In>

]

END

<STAT>

<STAT+>
<TRUE PART>
<RELATION>
ELSE
<STAT#*>
<RELATION>

VIiVY #IAA

<EXPR>
-
S

+

<TERM>
<TERM>

x
/

<FACTNR>
<FACTOR>
<F ACTOR>
<FACTOR>

<E XPR>

<CNMP STAT> §

<1D>

<STAT#>
THEN

Do

<EXPR>
<EXPR>
<EXPR>
<EXPR>
<EXPR>
<EXPR>

<EXPR>

<ASS STAT>

<TERM>
<TERM>

<FACTOR>
<FACTOR>

NONBASIC SYMBOLS

BASIC

16T

1 <PROGRAM>
[<STAT>
11 <ITFR STAT>
16 <DUT STAT>
21 <TERM=®>
SYMBOLS
25 3
30 ouT
35 REAL
@ c ’
45 <
50 «
55)

12

22

26
31
36
41
ué
51

<HEADING>
<STAT*>
<WHILE CL>
<ASS STAT>
<FACTOR>

NEW

M

X u

13
18

23

27
32
3?7
42
47
52

<DECLAR>
<COND STAT>
<WHILE HD>
<EXPR>
<PRIMARY>

BEGIN
<NUMRFER>
END

X

/

14
19
24

2R
33
3A
43
4Rr
53

<CNMP STAT>
<IF CLAUSE>
<RELATIONS>
CEXPR*>
<VARTABLE>

1F
E£XP

ELSE

THEN

10

20

29
34

44
49
54

<COMP ST H>
<TRUE PART>
<StM STAT,
<TERM>

WHILE
ABS
<ID)

0n

PRECEDENCE MAT
1

s<

»
<¢m<<<,
‘ .
.

L]
<< mc<,
<< 3<<,

[]
<< =<<,

2 e A s b s e
© N2 WNF OOVDNOWUEWN -

=<

235>>>

NNNNNNNDN N
ON>UIEWNFE O

WWWWWWN
b wNhNFEF OO

Wwww
©O© oo~

23295>

® ® ® © ® © & 6 o & © & © o ® o » o O & & o oo o

> >>>

L)
> >>>,
>> 353>,

55 .

RIX

€< «¢<<

#<<< <<
€«€< «<<L

€< <<<

= €< ,<<<<L<

-

L[]
L)
. >
<<, <€
22 ,92>>>>
=<, <€<<<
2€<<<
<<

<<

€<

L X &4

22> »>>
=
>

e o 9 o o

8¢, <<

>3> >>> >

e & & » o o

>3> 2>> . >
B<, €<<CL<
¢, €<
2¢,€<<L<
2¢,€<<<LL
¢, €<<C<L
B¢ ,€<<<<<
2x¢, <<
=2<<
x<<
225> >>>

23> >>> >

ac<

>

>>>

>>>

>
>>>,

.
.
.
[]
.

>>>,
>>>,

198

® o & @& & o & o 0 ° o o oo

==
>>
>>
>>
>>
>>

®,

2
€<CCC<C<KKK,
235553553,
<<ce<c<<s,
L <<k<e<<,
<<<ce<<,
<c<c<<<,

>

<<<<c<<<,

T €gCC<k<,
<<<<<<<,

>> .
<<ce<ac<<,
>
> >,
=,
[]
>
ccccCe<<s,
<<<C<<<<<,
<<<<Ccc<<,
<<<C<c<<,
<<<<<<<<<,
<<<<<<<<<,
<<eC<<C<<,
<<<<<<<,
<<<¢e<<,
>

>

>

>
>
>>

>

>

2

>

S

[]

.

.
> .

.

.

[

[

)

L]

.

.

[)

. s
» .
> .
> []
>EZuREI, >>=
23553>>, >>»>
25255>>, >>>
21222>>, EEI>>
225320, DI2>>>
2222332, IO2>>

2339533 ,XD3>>>

232332>, >>>>>

23 3335323 ,2255>>

.
.
> .
.
-9
L)
)
[
)
)
.
.
.
[]
L}
2223053 >, 325>

PRECEDENCE FUNCT JOMS

<PRNOGRAM>
<HEADING>
<PECLAR>
<COvP

<COMP SY
<STAT>
<STAT#>
<COND STAT>
<1F CLAUSFE>
<TRUE PART>
<I{TER STaAT>
CWHILE CL.>
CWHILE N>
CRELATIONS
<SIM™ STAT>
<QUT STAT>
¢ASS STaAT>
<EXPR>
CEXPR#*>
<TERM>
CTERM®>
<FACTOR>
<PRIMARY>
<VARIARLE>
s

MEW

REGIN

1F

WHILE

ouT

+

EXP

ARS

REAL

M

<NUMRF.R>

(

<IN>

}

]
END
ELSF

NK P VIV N IAA

~ O -t
X
™M

z

STAT>
H>

199

S WWW NN WA N W W

D NNOUI U WwwwWwwWww NI N WO PO D DN NDe—= 220

W = N PRWWDBDWWROWONEEE— OFTORDDPIPOREDOWW PVLWEROUIUE R PRWLWWWWRFWWWNIWW N DWN— —

BEGINCOMMENT COMPILESGS?36H. SPRING 1966. NoWIRTH}

INTEGER LENGTH; COMMENT LENGTH Of THE PROGRAMCOMPILED:
INTEGER ARRAY PROGRAM [02255]} COMMENT PRCGRAM STORE:)
REAL ARRAY DATAR, DATAC (0225513 COMMENT NATA STNRt REAL/IM PART}

DEFINE NNE = (3230)#,TW0=(36%43#,T H R E E=(40243#, FOUR =CL4nt4)#}
DEFINE ADR =L40881)#%; .
LABEL ALLTHRU;

BEGIN COMMENTTHISBLOCK IS THE TRANSLATOR;

INTEGER I»JrKslL; COMMENT IND I C E SUSEDBYSYNTAX=ANALYSER}

INTEGER LNOCS COMMENTINNEXDFDATA=STNRE S

INTEGER PLOCS COMMENT INDEX Of PROGRAM=STORE }

| NTEGER NYX3 COMMENT INNEX (O fNAME LI1STS

| NTEGER CHaR3 COMMENT LAST CHARACTER RFAD RY "NEXTCHAR"}
BIOLEAN LORDS COMMENT "CRAR"™ IS A ILLETTER OR A DIGITS

| NTEGER W(C,CC3 COMMENT WORN= AND CHAR-COUNTER NN INPUT=RUFFERS
| NTEGER SYMBOL»SYMBOLVALUES COMMENT LAST SYMBOL READ BY "INSYMBOL"™S
| NTEGER Ry COMMENTRERISTERNN,LAST USFDRBY CODES

ARRAY BUFFERCO!14Y3COMMENT INPUTRUFFFR3
INTEGERA RR A YWARNNELIMITER, DFILIMITERNUMBER[0212)}
NTEGERA R R A YDNPERATNRS NPCNDE (021533

INTEGERARRAYF-GL0:55)3 COMMENTPRINRITY FUNCTIONS OF SYMBOLS)
INTEGER ARRAY KEY L0:551; COMMENT KEY INDEX TO PRODUCTION TABLES
INTEGER ARRAYPRTB(0320515 COMMENT PRONUCTION TARLE)
INTEGERARRAY S,V [0:49]; COMMENT SYMBOL*= AND VALUE-STACKS)

|[[UTEGER ARRAY NAMEs, LOCATIONEND399];
DIEFINE ENDFILE = 25 %}

STREAM PROCEDURE CLEAR (D)}

BEGIN NI « D3 15(NS « B LIT *w)
END

BOOLEANSTREAMP RO CEDUREALFA(S,NsD)Y3 VALUE NS

BEGIN TALLY ¢1381 ¢3S SI «SI+¢NS 01 « D3 DI « DI+7}
IF SC = ALPHA THEN ALFA « TALLYSn s ¢« CHR
END

PROCEDURE ERRNR (NY3 VALUE N3 INTEGER N3

COMMENTMARKPOSITIOMODF INPUTPDINTFRANDPRINTE RR O RMESSAGE.
NO ATTEMP TTOCONTINUECOMPILATION | S MADES
BEGIN INTEGER K,yM3
" SWITCH FORMAT MESSAGE ¢
("SYNTACTIC ERROR IN PROGRAM"),
("ILLEGAL CHAFACTER TN PRNOAGRAM™),
C"UNDECLARED INENTIFIERM™),
("T00 MANY REGISTERS REQUIREN™),
(“PROGRAMISTOOLONG"),
(*TOO YANY VARIABLES ORCNONSTANTS")3
MeWCXB + CC:
WRITE (<80A1>sF O RXe¢ 1 STEP 1 UNTILMDO ™", %e");
WRITE (MESSAGEIN))
G OTOALLTHRU
END ERROR;

200

PROCEDURE NFEXTCAHAR;
COMMENT ASSIGMNS THE NEXT CHARACTFR INMTHE SOURCE STRINGTO “CHAR”,
A'S STGNS"TRUF"TOMLORN”, TF THE CHARACTER| S ALETTERA RDIGITS
BEGIN |F CC =7 THEN
BEGIN IF #AC = R THEN
BEGIN RFAN (CARDFIL, 10, SUFFERC*III W Ce 03
NRITFE (PRINFIL» 19» RUFFER[*])
END ELSE
NC ¢ WC+13
CC ¢ O
END ELSE
cc «CC+1;
LORD ¢ A|.FACRUFFERIWCI»CC, CHAR)
END

PROCEDURE REANNUMBER;S

COMMENTREADS A COMPI_EXNUMBFRAND ALLOCATES ITINTHEDATASTORE,
"SYMBOL V ALUF® | SASSIGNEDTITSI NDE X | NTHE DATA STORES

BEGIN OWN REAL MsNJONN | N T E G E R I3 BOOLEAN STGNS

PROCEDURE READINTEGF®}
WHILE CHAR < 10 DO
BEGIN N « Nx30 + CHAR | ¢ T=1; NEXTCHAR
END

Me N «03 | ¢«0;

READINTEGERS M ¢ N3

IF CHAR="." THEN

BEGIN N ¢ 0; | « n3 NEXTCHAR}I REANINTEGERS M ¢ {0#]IXN+M

END

DATARILDC]) ¢ M3

IFCHAR="I1"THEN

BEGIN M « N « 03 1 ¢« 03 NEXTCHAR}
SIGN¢C H A R="="; IF SIGN THEN NEXTCHARJ
READINTEGER: M ¢« Nj
| FCHAR="."THEN
BEGIN N ¢ 03 I ¢« 03 NEXTCHAR} READINTEGERS M ¢ 10#IXNeM
END
DATACCLOCY «1IF S | G N THEN =M ELSE M}

END ELSE

DATACLLOC) ¢« 03

SYMBOLVALUF ¢ L0NC} LOC « LOC+Y

END READNUMBER 3

PROCEDURE INSYMROL

COMMENTA S SIGNS THENUMERIC CODE OF THE NEXT SYMBOL IN THE SOURCE
STRING TO"SYMROL". IDENTIFIERS AND NUMBERS ARECONSIDEREDAS
SYMBOLS, AND ARENOTFURTHERDECOMPASEDBY THESYNTAX)

BEGIN INTEGER I,T} LABEL FXIT;
WHILE CHAR = " " DO NEXTCHAR}
IFC H A R<10 THEN
BEGI N READNUMRER;SYMARQL ¢ 37
END ELSE
IF LORN THEN
BEGIN Te CHARSNFXTCHAR;

WHILE LORD DO’

201

BEGINT€C H A R&T[172318230): NEXTCHAR

END3:

FOR I « O STEP ' UNTIL 12 DO

IF WORDDELIMITFERIT] = T THEN

BEGINSYMROL ¢« DFELIMITERNUMBERLITIISG OTOEXIT

END?’
SYMBOLVALUE «T!ISYMRNL«3903C OMMENTIDENTIFIER}

END ELSE
BEGIN FOR1 ¢ O STEP 1 UNTIL 15 DO

IFOPERATORLI)I=C H A R THEN

BEGIN SYMBROL « OPCADELI); NEXTCHARS GO TO FXIT
END

ERRNR(1)

END

EXITs

E N DINSYMBOL

PROCEDURE EDITX (CLASS»REG,ADDR);
VALUECLASS,REG»ADDR} INTEGER CLASS,»RFG»ADDR3S
BEGIN INTEGER CNM3 COM ¢ 0

COM.,ONE ¢ CLASSS COM,THD ¢ REG3 CNM.,ADR ¢ ADDR}

PROGRAM (PLOCY « COM; PLOC « PLNC+13 IF PLOC > 255 THEN ERROR(4)

END 3

PROCEDUREED I T3(NP,R1,R2);
VALUE OP»RY ,R23 INTEGER OP»R1i,R23
BEGIN INTEGER COM3 COM ¢ 03

COM,OMF « 3 ; COM,TWO « OP: COM,THREE ¢ R13 COM,FOUR ¢ R23
PROGRAM [PLOCY ¢ COM; PLOC « PLOC+1S |

END

PROCEDURE FIXUP (WHERE,WHAT);
VALUE WHERE,WHAT; INTEGER WHERE,WHATS
PROGRAMIWHERE)«ADRe¢ WHAT;

PROCEDURE

INTERPRET(N)S VALUE N3 INTEGER Nj

COMMENT EXECUTES T H EN"THIMTERPRETATION RULE;
CASE N OF BEGIN

}

]
BEGIN NAMECNX) ¢ VIIJ3 NX « NX+1} (LOC ¢« LOC+] END
BEGIN NAMELNXY ¢ VIIY3 NX ¢ NX+13L O Ce LOC+1 END 3

]

We we e we W we

FIXUP (VIJIsPLOC)
BEGINFIXUP(V[J]’V[J+1]+l)}FIXUP(VIJ+1]:PLOC)E N D3
BEGIN V{J] ¢ PLOC; EDITX (250+0)E N D

BEGIN VL J) «PLOCSEDITX (2»1»0)E N D3

BEGINEDITX(2,1,VIJ)o[16816])3

BEGIN V[J1,0323161¢ P1LOCS EDITX (2,0,0) END

202

F PLOC > 255 THEN ERROR(4)

FIXup (VIJ1,.[32316),PLOCY END 3

VEJ),. (168161 « PLOCS

BEGINEDIT3 (5sR=1,RY5 R ¢ R-2 END
BEGIN EDIT3(6sR=1»RYSR¢R-2 END
BEGIN EDIT3 (7sR=15R)} R ¢ R-2 END }
BEGINE D | T 3(8sR=1,RY3ReR=2E N D3
BEGIN EDIT3(9sR=1sRY;Re R-2 END}
BEGIN EDIT3(10,R=1,R)3 R ¢ R=2 END ;

we ‘weo

o we ‘%o

BEGIN EDIT3(15,R,0)3 R ¢ H-l END 3}
BEGINENRITX (1»,R»VIJIII R ¢ Q-1 END?3}
EDITX C(1,R+1,VIJ1);

EGINEDIT3(0sR=1sRYReR=tEND;
EGINEDIT3(1sR=1sR)SReR=1 END

o 00 00 >

EDIT3 (12,R»0)3

® ‘we

)

BEGINE D | T 3(2sR=1»R)3 R« R=1END ;

BEGIN EDIT3 (3,R=~1sRY3 R ¢ R=1 END

|

EDIT3 (4»R,0)3

EDIT3(11,R,0);

EDIT3(13,R»0)’

EDIT3(14,R,0);

BEGINR¢R+13|FR >15THENERRNR(C3);
EDITX €O,R,V([J)I)}

END3S

BEGINRR+13IFR>15THE NERRNR(3)S
EDITX (0sR,V[JY)}

END3

)

BEGIN INTEGER «»1D3 K ¢ NX; | D «VvIlJ3}
WHILENAMELIKIZIDD O
BEGIN IFK =0 THENEPRUR(2)ELSE Ke¢K=1
END3
VIJ) € K

END

END INTERPRET 3

COMMENTINITIALIZE THE TARLESAND READ THEFIST SYMBOL)

FILL WORDODELIMITERC*Y WITH
"IF", "THEN", "ELSE"»"WHILE"»"DO"» "ABS", " OUT", "REAL"» " IM", "EXP",
"BEGIN"."END"'"NEW";

FILL DELIMITERNUMBERI*) WITH
28,53543929,54,30930,35,36533,27,42,26}

FILL OPERATORI*Y WITH

Het, "tw, Neorw , yn, Hyn, "

neM) e m e, gy

FILL OPCODEL*) WITH
50»31532,51-52,40,44,45,86,487,4B,49,3R,%5,41,25}

FILL FL#) WITH

s MU, ngh, NgH, Ngn, NN, wyn,

203

0 1, 3, i,
2, 1, 1o 2,
6, 1, A T
S 6, 3» 7,
3, 3, 5,
3,
FILL GU*J1,WITH 1, 2,
‘3’ 3" 1» 3,
6, 3, 2 4

b6 .Y 6 6

3 3, 6 S5
FILL KEYL#*) WITH
0, 1, 2 3,
41, 455 S50 S1»
119, 130, 136,140,
175, 179, 182, 187,
198+ 1 9 9 , 200 201,

FILL PRTBL*IWITH
0»0, O 4 O

15, Or 43, -5,
6, 0, =103 7,
0s C» =11, 7,
12, 0, 0> -9,
-25, 15, 0, 44,
18, -21,14, 47,
18, ‘24, 14, 0O,
-34, 19, 0» =32,

52,22, -40, 21,
18, =29, 17, 50,
25, =1, {> 0,

538 -14, 9, o,
-35, 19, Or 200
-43, 22, 0 32,

23, 0, 18 59

0> 0, 0>» 0>

0, 0;
CLEARCBUFFERLD]Y;

3
3,
1)

S

1

7
A
7

Uy
3
3
1

1»

14,
60,
148,
191,
203,

2>
X
7,
7,
43,
=19,
-22
18,
[V
-38,
=30
_3,
13,
19,
22,
?3»
O»

1o
3,
3
Uy
7

e
3
3
K
1,

22

63
151
193,
204,

41,
40>
=12,
~1h,»
=15
145,
14,
31,
=37,
21>
17»
3
0,
Qs
0>
Or
0»

CC t 73 WC t 83 NEXTCHAR; INSYMBOLS

J

¢« 13 S[1) ¢« ENDFILF)

NX « LOC t PLDOC ¢ 03 R ¢ =13

2
4,
iy
7»
63

2
U,

2
33

23,
BR»
159,
193,
2083

39,
-7,
Ry
11,
10,
48,
48,
20,
20,
(VI
=47
0>
18,
23,
22
=49,
0»

wAON

4,
3

26,

99,
159,
1904,

-8,
S5
10,
0,
0>
18,
18,
-33,
51,
~41,
33,
-8,
-28,
-42,
=45,
24,
0»

2
S
S

6
3,

29,
102»
163,
195,

0»
7>
14,
-27,
=20»
=23,
19,
22»
22,
0>
S»
16,
22>
22»
0,
0,

COMMENT ALGORITHMFNRPRECENENAE S Y N T A X ANALYSISS

NHILE SYMROL # ENDFILE DO

J+13 S[J) « SYMBOL} VIJ) ¢« SYMBOLVALUE} INSYMBOLS
NHILE FUSCJIY > GISYMAROL]) DO

GISCUITAND J >100 J ¢« J=1}

BEGIN Te) ¢

BEGIN WHILEF[STU=11)

COMMENTStJ)s0e

THE CORRESPANDING LEFTPART FROM T

« KEYLSTJYYS

L
WHILEPRTRIL)ZODO
B

EGINKeJ+1s

WHILE <! AND SI{KI=PRTRILY DO

BEGIN K ¢ K+1J

END

IF K>1 ANDPRTB[LI<NT H E N

L

« L+

204

2
6
S5»
3

2
S»
6

37,
113,
167,
196,

s
-13»
54,
15»
14»
14,
32»
=30,
0,
2
0»
0,
0»
0»
0»
0>

2
6y

3,
6

3,

38,
116,
171,
197,

=26,
-8'
R,
=17,
Or
46,
49,
20,
21,
S0,

14,
20,
22,
-46.
0,
0>

SCIT1 IS THEREDUCIBLE STRING, NOWFIND
H EPRODUCTION TABLES

BEGIN INTERPRETC((=PRTRIL))3SIJ)¢PRTRIL+1I3L*0O

ENDELSE
BEGIN WHILEPRTBILI>000LeL+1lLeL+2
END
END
IFL#0 T HENFRROR(0);
Ie J
END
END

LENGTH®PLOCIEDITX(4,0,0);
ENDCOMPILER 3

BEGIN COMMENTY ILIST THE COMPILED PRNGRAMU S | N G SYMROLIC CODESS
INTEGER K3 ARRAY MNEMONIC (021513
FILL MNEMONICI*YWITH
” ADD "’" SUB n’" MUL ”"0 nlv "0” Exp ".
® LSS "," LFQ Y, FAQL "," NEQ "," GEQ "," GTR ",
* ABS ", MNEG "," REAL"s" IMAG"," O0OUY "}

WRITEC</Z/"COMRILED CONES"/>)}
FORKe¢ 0O STEPIUNTIL LENGTHDO
CASE PROGRAMIK]I.ONE+1 OF BEGIN
"WRITE C<IB,” LOAN"»14,"»",13>,
Ks PROGRAMIK),TWO, PROGRAMCK),ADR)}
WRITE (<IBs® STOR™,14,%,",13>,
K ,PRNGRAMIK),TWN, PRNGRAMLK).ADR)}
HRITE (<IBsA6»18>, K, 1F BOOLEAN (PROGRAMCK),TWO) THEN
" JUMP" ELSE " IFJP", PRDGRAMIK),ADR)S
WRITEC(<IBsA6»T14s"»"»13>»Ks MNEMONIC [PROGRAMIK),TWO],
PRAGRAMIK) ,THREF» PROGRAMCK) ,FOUR)}
WRITE C<IR," HALT">) K)
END
END LISTER 3}

BEGIN COMMENT THIS BLOCK | S THE INTERPRETER;

° BOOLEAN TOGGLF}
INTEGER IR,JC3 COMMENT INSTRUCTION REGISTER AMD=COUNTER}
REAL ARRAYREGR, R E G C[011513 COMMENT REGISTERS: REAL/IMPART}
LABEL CYCLE» FINIS}

REAL: PROCEDURE ABRSV(I)5 VALUE I3 INTEGER I}
BEGINR E A L XsY3X¢REGR[I)SYe¢ REGCII)}
ABSV « IF Y = 0 THEN ABS(X) ELSE
| F x= 0 THENABSCY)E L s ESQRT (X*24+Yw%2)
ENDABSV;

WRITE (<//"EXECUTION"/>)3
IC ¢ 03
CYCLE?
IR ¢« PROGRAMIIC)I} IC ¢ IC+1;
CASE IR.ONE +1 OF BEGIN
BEGIN REGRIUIR.TWN1¢«DATARLIR,ADRY}
REGCLIR.TWO) ¢« DATACLIR.ADR)S

205

END
BEGIN NATARIIR,ANR) ¢ QEGRITR,TW0)S
DATACLIR.ANRY ¢ RFEACTTR,TWNYS
END
BEGIN IF BOOLEAN (T192,7TWNY DR TOARGLE THEN IC ¢ IR.ADR
END N
BEGIN INTEGER M,M3 M « TR,THREES N e [RLFOQURS
CASE '?.Twn +1 OF BEGIN
BEGIN REGR(MY « REGRIMI+REGRIN]S QEAGCIM) ¢ REGEIMI+REGCIN]
END ,
BEGIN "ZAR[M] ¢ RFGRIMI=RFEGRIN)} REGCIM) ¢ REGCIMIwREGCIN)
END
BEGIN REAL ¥ X ¢ LFGRIMIXRFEAR[N) = REGCIMIXREGCINIS
REGEIM) « REGRIMIXREGCINY + REGCIMIXREGREINIS REGRIM) ¢ X
END
BEGIN REAL Ns¥X3 D « RFGRIMIw2 4+ REGCINI*2;
X & (REGRIMIXRECRINY + REGCIMIXRCACINIY /2 D3
EGCTIMY ¢ (REGCIMIXREGRIM] = REGRIMIXREGCINY) 7 D3
REGR{M) « X |
END
BEGIN-REAL X,V
X ¢« FXPIREGRIMI); Y ¢ REGCIMI3
REGRIMY e CNS(Y)IXXS RFGCIM) ¢ muzﬂ<,xx~

END

TIGGLF « ARSVIM) 2 ABSVIN)3

qamnrm + AEBSVIM) > ABSV(N)]
AGSLE « ARSV(M) # ABSV(N);
am:rm « ARSV(M) = ARASVIN)}

TOGOLE ¢ ABSVIM) < ARBSV(N)3

TOG3LF ¢ ARSV(M) < ABSV(N);

BEGIN RFGR(M] ¢ ABSV(M)} REGCT{M) ¢ 0 END 3

mmmuz RFEGRIM] ¢ =REGRIMI; REGC(M] ¢ =REGCIM) END
REGCLMY « 03

REGRIM) ¢ 0

ARLITE (<F20,10." T"»E18,10>, REGR(M), REGCIM])}

END

i END

GO YO FINIS

END

60 YO CyCL":
FINIS:?
END -COMPUTER
ALLTHRU:
END .

206

NEW AsBsC»sD}
¢ SI5) B¢ =31=8,53 C ¢« Ax(B+A)=2,5} OUT CJ
OUT CABS B = REAL A +IM B)J
IF A> 0 THEN OUT
A e 03 D « 010,7853981634)

BEGIN A

WHILE A < 10 DO BEGIN OUT EXP Al

END S

COMPILED

1 e ot e ol
QOO NOUBWNRPOOMNOU RWN = O

N
[y

CODE:s

LOAD
STOR
LOAD
NEG
STOR
LOAD
LOAD
LOAD
ADO
MUL
LOAO
SUB
STOR
LOAD
ouT
LOAD
ABS
LOAD
REAL
SUB
LOAD
IMAG
ADD
ouT
LOAD
LOAD
GTR
IFJP
LOAD
NEG
ouT
JUMP
LOAD
ouT
LOAD
STOR
LOAD
STOR
LOAD
LOAD
LSS
IFJIP
LOAD
EXP

0»
or

0»
or
0,
i»
2
1,
or
i
08
0»
0»
0»
0,
0,
i,
1,
0»
1
i,
or
0»
0»
1,
0»

0»
0>
or

08
0»
0,
0,
0»
0»
Or
1»
0>

O»
0»

OCO0OO—ONN—O—NOFO—OWUWO P~

w

w
000~ 00WOBB®BOOPROOON—=NOO— O =r

——

w0

-A ELSE OUT A3

207

A ¢ A+D} END }

0
0»
)
0,
0,

44
45
46
47
48
49
50

ouT

LOAD
LOAD
ADD

STOR
JUMP
HALY

EXECUTION

=6,0000000000P401
4,013878188704+400
=5,00000000008+00
1.00000000000+00
7.07106781190=01
=1.45519152288=11
«?7,07106781208=01
=1,000000000004+00
=?2,07106781188=01
1,45519152286=11
7,07106781208=01
1,00000000008+00
7.07106781160«01
0.0000000000P+00
«7,07106781258=01
*=1:.00000000008400

NEW A} BEGIN A ¢ 1}

WHILE A < 5 DO

BEGIN A ¢« A x 110.2;
END §

COMPILED CODE

0 LoAp 0,
1t STOR 0
2 LOAD 0,
3 LOAD 1»
4 LSS 0Os
5 IFJP

6 LOAD O»
7 LOAD i»
8 MuL N
9 ST10% 0>,
10 LoAr 0,
11 ourv 0,
12 Jump

13 HELT

EXFECUTION

0O~ wWO O

[
!

NOOO= LCWre N OO -

7.75000000008+01
8.,50000000008400
-5,0000000000€400
0.0000000000€+00
7.07106781190«0%
1,0000000000€400
7.07106781186=0}
=1,4551915228€0=11
=7,0710678120€0<01
=1,0000000000€400
=7,07106781180=01
1,45519152288=11
7.07106781200=01
1,00000000008+00
7.,07106781168~01
0,000000000084+00

QUT A3 END 3

208

1
1
1
1
!
X x ﬂ x
x 1 x
1
x I
1
1
X 1 x
1
1
x x x1 x x
X 1 X
x 1 X
x 1 x
x 1 x
x X x X X x
b 1 X X X
x X x 1 x x
x : 1 x
x % 1 x x
b 4 1 x x
'l-"l‘-l"--‘.l-"“'-'--‘.-‘-"I--‘K.lll-----ll'l-lll-l'-ll|l.-|"l.--x-I---.-'.-l.."'.-l-'.l-ll.l--'
x b x
x x
X x x
x Al
x X x
x x x
X x x
x x 4 x x
x i
x

X
x

=l b el 0ol el e 2= e PG Pl bmd PG P beg b et el X et b$ bd eed bl d e
X

209

