
CS 52 /
, ./

LECTURENOTES ON A COURSE iN SYSTEMS PROGRAMMING
. BY. .

AIANC. SHAW

$F) pq WEET n+KLUWD
--. K~~NICALREPORT NO. 52

DECEMBER 9, 1966

These notes are based on the lecturei of Professor
Niklaus Wirth which were given during the winter and
spring of 1965/66 as CS 236a and part of CS 236b,
Computer Science Department, Stanford University.

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

.

,’

January 15, 1967

ERRATA in .

ALAN c. SHAW, LECTURE NOTES.CN A COURSE IN SYSTEMS PROGRAMMING
* . .

CS TR No. 52, Dec. 9, 1966

P* 17,

P* 34,

P* 35,

P* 39,

P* 50,

P* 5%

P* 74,

P* 75,

P* 86,

F* 91,

line 5, read "Si+l'! for "Si+k" .

line 4, read "operand[O:m];" for "operands[O:m];" .

line 3, read "real or" for "real of" .

line -7, read "KDF-9" for "KDK-9" .

line -8, read "careful" for "cardful" .

add an arrow from "Data Channel" to "Memory" in the diagram.

last box on page, read "TSXf, 4" for "TSX 4,r" in all cases.

diagram, read "SQRT" for "S$RT" .

line 10, append "~2 := s2 + a[j] X b[jl;" ,

line -10, read "C[l:&l:n];" for "C[l:.!,l:m];" .

last paragraph, replace by

"Dijkstra 11 has developed a solution to the more general problem

where there are n processes, instead of only 2, operating in parallel.

See K.nuth13 for a discussion and extension of Dijkstra's solution."..

p. 100, left, insert between lines -6 and -7, "TRA EQ" .

left, line -2, read "1" for "7" .

p. 105, Example, read " A X" for ",AX " l

i.2

LDQ kf

P* 117, second diagram, read

" mx!-] f " for 'i-q--q-qq " .

p. 119, line -7, read "u,v (possibly empty)" for "u,w (possibly emtpy)".

p. 120, line 1, append to-first sentence 1

"where the elements of 6' - are of the form:

U' ⌧(⌧ f u, u&, ⌧df*) l �0

, .: /

CS 52 ERRATA, Alan C!. Shaw

p. 131, lines 1 and 2, interchange "it&rative" and "recursive".

p. 136, replace-program by . .

((So := PO; i := O;k := 1;

while Pk /= ‘I' &

begin i := j := i+l; Si := Pk; k := k+l;

while Si .> Pk do'

begin while Sj,-l k Sj do j := j-l;

S
j

l - Leftpart(S
l .- j

. . . S,); i := j

end

end

--_

p. 137, replace (b) by

I b A ‘ A A

I 4
<head> <head>
-II
<head> <head>

1 1
<head>

9 9 9 I

<strin@

<head>

<strin@

1

1 1' .

line -2, read "of KstringX ." for "of Xstring> ."

p. 140, line -3, insert "The word "simple" is henceforth omitted.".

p. 147, lines 5 through 9, replace by

"directly reducible substrings (a) S..e..Sk and (b) Sj....S1 . It1
follows from the definition of precedence relations that S. Q S

J-l j
and Sk 4 Sk+l . Nowif i<j, then also k < j, since i<j<k

implies S l s
j-l= j'

If i=j and k<_L, then k=l, since

jLk<l implies Sk A sk+l ." .

p. 151, line -13, read "conditional" for "condition" .

p. 154, line -7, read "<digit>" for "<digit" e '

p. 179, insert between lines -4 and -5

"procedure Q(n); integer r-q"

2

I
-

Lecture Notes on a Course in

SYSTEMS PROGRAMMING
-.

Decerriber 9, 1966

These notes are based on the lectures of Professor

Niklaus Wirth which were given during the winter and

spring of 1965/66 as CS 236a and part of CS 236b, Com-

puter Science Department, Stanford University.

Alan C. Shaw

i

SYSTEMS PROGRAMMING

Page

I* Introduction e o 0 . e o e . 0 1

I-l* Advanced Programming e, . o 0 0 e . 1

I-2. Purpose and Prerequisites of the course D e ., o e . 2

1730 Translators . . D + a e . o D o 0 2

I-4. References . . . o o . D . . . , 0 * , . e o . . 0 . 4

II. Assemblers . . . D e Q o o . ., ., . o Q . . 0 . . e D D ., 0 o 5--.

II-l.

11-2.

11-3.

11-k.

II+

11-6.

11-7.

Basic Concepts . o a ,, . e ., . o e 0 o 5

Multi-Pass Systems a . ., e . . o . o 0 ., 0 7

Organizing and Searching Symbol Tables . D . . 0 . e 11

11-3.1 UnorderedTables ..e o e.O o o o O.. 1 2

II+2 Ordered Tables 0 . . 0 . . o a o 12

11-3-3 Sorting . o . . o e . . e 0 o . . . o 14

11-3.3.1 Bubble Sort o a e a a D o o o e ., m 14

11-3.3.2 Ranking By Insertion . o e . Q o D 16

11-3.3.3 Other Common Methods D . 0 ., o 0 o 3-7

II-3.4 Scrambling Methods D . e 0 o . o o o Q o o a 17

One-Pass Assembly . o e Q q 9 o . . D 0 D 0 e D o o . 18

Block Structure in Assemblers e . . 0 e 0 ., e . o D o 21

References a o o 0 o ., d ., o a a . o o . . e ., . 0 . 26

Problems . ., ., ., 0 e o . . . o q a ., D o . . 26

ii

Page

III* Interpreters . 30

III-l* Definition and Examples 30

11X-2. Basic Interpreter of Sequential Code 31

111-3. Interpreter for a von Neumann Machine 33

III-b. Polish String or Stack Organized Machines 38

111-5. Interpretive Computers 41

111-6. References . 43

111-7. Problems. 43

IV. Input-O'Wut Progr=ing. 48

IV-l. The Input-Output Problem 48

IV-2. Immediate I-O. 49

IV-2*1 No "Busy" Flag. 50

IV-2.2 "~sY~ Flag. 50

IV-3. Indirect I-O . 51

IV-3.1 Channels , .I. 52

IV-3.2 CPU Interrogates Channel ,53

IV-3.3 Channei Interrupts CPU . . l l . . . l e l 57
.

Iv-4. I-O Processors. , 66

w-5. .Experimental Comparison of Several Methods of I-O.

Organiiation. +. 66

IV-~. I-O and Systems Programming. 68

V. Supervisory Programs (Monitors). . . ,

V-l. Monitor Tasks l '* . . l l

v-2. Types of Monitors. . . l

V-2.1 Batch Processing

iii

.

.

Monitors

69

69

71

71

Page
V-2.2 Real Time Monitors 71

V-2.3 Time Sharing Monitors 72

v-3. Storage Allocation Methods 73

V-3.1 Static Relocation 74

V-3.2. Dynamic Relocation , s . . l . . . 76

V-3.2.1 Ferranti ATLAS Method '78

V-3.2.2 Burroughs B5500 80

V-3.2.3 Arden, et al. Scheme 0 . a 80

V-3.3 Memory Protection . . o e 82

V-3.4 Invariant Procedures o . 0 e 83

v-4 . --'Loosely Connected Parallel Processes 85

V-4 .l Programming Conventions for Parallel
Processing 86

V-4.2 The Control Problem for Loosely Connected
Processes l 87

V-4.3 Solving the Problem . . . e o . . 88

V-4.4 The Use of Semaphores o . 92

V-4.4.1 Two Processes Communicating via
an Unbounded Buffer 93

v-4.4.2 Processes Communicating via a
Bounded Buffer. 97

v-5. References . . e . e . . o 0 . . 97

v-6. Problem. -. c e e *. 99

VI. Compilers - An Introduction Q 100

VI-l. Tasks of a Compiler Q . . 100

VI-2. Heuristic Techniques for Expression Compilation . . 103

iv

Page

VI-23 Rutishauser (1952) 103

VI-2.2 FORTRAN Compiler (1954+) l@b

VI-23 NELIAC (a dialect-of ALGOL 58) 105

VI-2.4 Samelson and Bauer (1959) 106

VI-2.5 Dijkstra (1960) 106

VI-30 Compilation of Expressions Using a Stack 106

m-4. Phrase Structure Methods 111

VI-5. References . 112

VI-~. Problems. 112

--_

VII. Phrase Structure Programming Languages 114

VII-l. Introduction 114

VII-20 Representation of Syntax 115

VII+ Notation and Definitions 119

VII-b. Chomsky's Classification of Languages 122

VII-5. The Parsing Problem 122

.

VII-~. Irons' Classification of Languages According to

Parsing Difficulty . . l l . l + l l . 126

VII-7. Parsing Methods' 128

VII-?*1 A "Top Down" Method 128

VII-7.2 Eickel, Paul, Bauer, and Samelson 131

~11-8. Precedence Phrase Structure Systems 133

~11-8.1 Precedence Relations and the Parsing
Algorithm 133

~11-8.2 Finding the Precedence Relations 138

~11-8.3 Use of Precedence Functions 141

VII-8.4 Ambiguities 145

Page

~11-9. Association of Semantics with Syntax. 147

VII-9.1 Mechanism for Expressing Semantics. . . . 147

VII+2 Handling of Declarations 150

VII 9.3 Conditional Statements and Expressions. . 151

VII-9.4 GO TO and Labelled Statements 153

VII+5 Constants o 154

VII-lo. References . 155

VII-11. Problems . 156

VIII- Algal Compilation . 166

VIII-l.--' Problems of Analysisand Synthesis 166

VIII-29 Run Time,Storage Administration. 167

VIII+ Treatment of Procedures 170

VIII-k. Arrays . 176

VIII-50 References . 178

~111-6. Problems. 178

vi

--.

I. INTRODUCTION

I-l. Advanced Programming194

In attempting to define "Advanced Programming", E. W. Dijkstra
1

. .

described the purpose of the subject to be "Advancing Programming"; he

stressed "those efforts and considerations which try to improve 'the

state of the art' of programming, maybe to such an extent that at some

time in the future we may speak of 'the state of the Science of Program-

ming."' Until recently, the design of machines almost always preceded

any serious thought about programming them; this had the unfortunate

result that programming languages and translators had to be severely-.

restricted to fit into the constraints imposed by machine designers.

Programming beyond

chine in all kinds

unintended and not

these restrictions succeeded only' "by using the ma-

of curious and tricky ways which were completely

even foreseen by the designers." Programmers "have

concocted thousands and thousands of ingenious tricks but they have made

this chaotic contribution without a mechanism to appreciate or evaluate

these tricks, or to sort them out."

a Dijkstra's remarks were made in 1962. Since then, the situation has

not changed significantly. New features, terminology, and "tricks" are

continually being introduced with very few attempts to order or evaluate

them in terms of a general framework or set of principles.

This is the challenge and function of Advanced Programming:

- to put order into the present chaos

- to develop useful principles of programming

- to apply these principles to programming languages,

translators, and applications.

1

I-2. Purpose and Prerequisites of the Course

The intent of the course is to treat the design and implementation

of Programming Systems in terms of some general principles that have been

extracted from this field. Emphasis is on general methods rather than

specific "tricks". It is assumed that the reader is familiar with the

fundamentals of computer programming including:

(1) coding in machine, assembly, and higher-level languages, and

(2) the use of a supervisory or monitor system. 2

Because of its important role in the evolution of language and compiler

design and its usefulness as a vehicle for expressing algorithms,
--.

ALGOL 603 should be thoroughly understood. Most of the examples and

algorithms discussed in this course are presented as ALGOL programs.

Systems Programs, such as assemblers, interpreters, compilers, and

monitors can all be regarded as translators; from this point of view,

Systems Programming is the science of designing and constructing trans-

lators. It is thus worthwhile at this point to examine the idea of a

translator before looking into the specific details of various types of

translators.

1-3. Translators

A translator can be viewed as a device which transforms an input

string A into an output string B; schematically:

A-+ T +B
a

B := T(A)

2

Examples

A

(1) Binary Code

(A >2

(2) Symbolic Code

(A >1

(3) Phrase Structure Language

(A >0

B

Results

(A >i

Binary Code

(A >2

T is called

Computer (or Interpreter)

(T >3

Assembler

(T >2

Symbolic Code Compiler

(A >1 0 >1

Multi-pass systems are those which require passes through several
--.

translators to produce the final output string. For example, the familiar

translations-from compiler language to assembly language to binary code

to computed results - can be represented:

where the notation corresponds to the last example.

A3
= B = T3(T2(Tl(A))) = T(A)

where T = T3T2Tl .

Translators are often multi-pass systems internally but appear as single

pass to the user. An assembler with "macro" facilities can be such an

"invisible" multi-pass system.

Symbolic Coded;winaryC o d e

3

Here MT is a macro translator which expands all macro calls in the input

and T performs the basic assembly. A macro definition such as

MACRO X(Y, Z)(....Y-*...Z) ,
macro body

where X is the macro name and Y, Z are parameters, signals MT to

replace macro calls in the input, such as wb B), by the "body" of

the macro, substituting A for Y and B for Z in this example.

I-4. References

1.

2.

3.
.

- 4.

--.
Dijkstra, E. W. Some Meditations on Advanced Programming.

Information Processing 62, Popplewell, C. M. (Ed.)

535-538, North-Holland, Amsterdam, 1963.

Leeds, H. D. and Weinberg, G. M. Computer Programming Funda-

mentals. McGraw-Hill, New York, 1961.

Naur, P. (Ed.) Revised Report on the Algorithmic Language

ALGOL 60. Comm. ACM 6 (Jan. 1963), l-17.

Barton, R. A Critical Review of the State of the Programming

Art. Proc. Spring Joint Computer Conference 1963. 169-177.

II. ASSEMBLERS

11-l. Basic Concepts

An assembler is usually understood to be a translator which produces

machine language code as output from an input language which is similar

in structure to the output; the natural symbolic units of the assembly

language or input correspond to the natural units of the computer for

which the assembly is intended. From another point of view, an assem-

bler can be considered a sophisticated loader. A loader accepts numeric

code containing machine language instructions, location addresses, relo-

cation designators, and header information, translates this into directly--.

executable code, and inserts the code into computer memory; this inter-

pretation of an assembler is sketched below:

The form of an assembly language instruction, assembler record, or

natural symbolic unit is:

Location Field Operation Code
I

Operand Fields
I

;

c

for example, LOOP CLA RATE,1 l This record corres-
*

ponds to one machine language instruction. The operation codes are. .

symbols defined by the assembler and correspond to machine operation

codes; operand fields contain programmer-chosen symbols which are trans-

lated into machine memory addresses; non-blank location fields define

the values of symbols. The basic task of an assembler is to establish

the correspondences between programmer-chosen symbols and machine addres-

s e s l

A record-by-record total translation fails in general because it--.

is not possible to translate operand field symbols until the entire pro-

gram has been scanned. This is illustrated in the following partial

flow chart:

READ RECORD

Yes

TAlKliE LOOK-UP FOR
OPERATION CODE

TRANSLATE OPERAND
How?

.

In order for the operand field symbols to have any value, they must

appear in a location field; sequential total translation cannot be done

6

because location field definitions of symbols often follow their first

appearance in the operand field. In the skeleton program:

. ..

(1) BATE kSS 10.

(2) LOOP CLA RATE, 1

the assembler can assign the symbol RATE to the next open address at

point (1); then, on reaching point (2), the assigned address for BATE

can be correctly inserted. However, if the program is

--. .

(1) I LOOP CLA BATE, 1.

(2)
I BATE BSS 10

BATE has no value at point (1)' and complete translation of (1)' is

impossible.

11-2. Multi-Pass Svstems

* The simplest and most common solution to the above problem is to

use a 2-pass system. The first pass assigns values (addresses) to all

symbols. A location counter (LC) steps through the assembler records

so that at each record, LC contains the address where the corresponding

machine instruction will be located in computer memory (ignoring reloca-

tion); when a symbol is encountered in the location field, it is assigned

the current value of LC. Symbols and their values are stored in a

symbol table. Pass 2 performs a record-by-record total translation,

referring to the symbol table for the values of location field symbols.

A general flow chart of this method of assembly follows:

7

SIMPLE TWOPASS AssEpmER

PASS 1

0START _.

0%B
1 READ RECORD

No , 00'c
EXAMINE LOCATION
FIELD FOR SYMkL

I--.

PASS 2

ENTER SYMBOL IN
SYMBOL TABLE

START.Q
READ RECORD. I

No
I I-
I TRANSLATE OPERATION CODE j

I I

ASSmLE p;ND STORE INSTRUCTION
I I

8

These charts become more complex when the additional facilities

provided by practical assemblers are inserted. These are the "pseudo-

codes" or assembly instructions; they do not translate into executable-.

code but are instructions to the assembler, for example, for the alloca-

tion of data and instruction space, and the assignment of values to

symbols. using examples from the MAP Assembler for the IBM 7090/7094

computers,
1 the most important pseudo-operations are:

1. Location Counter Pseudo-Operations

These allow the programmer to control the operation of location

counters, e.g. --.*I resets the location counter to

315 causing the assembler to start or continue the assembly from computer

storage location 315.

2. Storage Allocation Pseudo-Operations

The instructions in this class reserve blocks of storage and incre-
.

men-t the location counter to reflect this, e.g., *I

assigns the current value of LC to the symbol MATRIX and increments LC

by 25, effectively allocating a 25-word block of storage identified by

* the symbol MATRIX.

3* Data Generating Pseudo-Operations

These are used to define constants of various types, e.g.,
.

YEAR DEC 1966 instructs the assembler to insert the decimal

constant 1966 at the address defined by LC and to assign this address

to the symbol YEAR.

The 2-pass assembler outlined above can handle these pseudo-opera-

tions by adding some blocks to its flow charts at points A in pass 1

and 2:

9

Yes

*

INTERPRET
IBSTRUCTION.

INTERPRET'INSTRUCTION usually involves incrementing LC and assigning a

value to a symbol.

Most assemblers allow the use of actual operands or literals in the

operand fields; for example, ADD =l indicates that the

operand field is to contain the address of the constant 1 after trans-

lation. The easiest way to translate literals within our 2-pass assembler

is to invent symbols for them during pass 1 and add definitions of these

symbols to the program; then, literals do not have to be considered in

the second pass, e.g., 1 ADD 1 =l is translated during pass 1

to

*chart, the block

. At point C in the flow

TRANSLATE LITERALS

may be added.

Modern assemblers usually have a host of other features but most of

these can be easily handled within the simple 2-pass system described

here.

10

It is necessary at each pass of a multi-pass assembler to reread

the source program. Small programs may be stored in main memory for

the duration of the assembly. Systems allowing large programs usually

write the source program on second-level storage such as magnetic tape

or discs; the program must then be read from this storage at each pass.

Partial or complete overlapping of processing and input-output operations

can be accomplished by careful program organization; e.g., the following

sequence enables process and input-output overlapping:

Read Process Write--.

Record No. i+l i i-l

Defining and translating symbols during assembly requires the build-

ing and searching of symbol tables. Since assemblers spend much of their

time performing these functions, it is important to investigate efficient

methods for table organization and searching.

. 11-3. Organizing and Searching Symbol Tables

Tables of all types have the general form:

Argument V alue

------..- ----------

----- ---m--c-

--P----m --------

11

where the left-side is a list of arguments and the right side is a list

of values associated with the arguments. Here, the arguments are symbols

and the values are addresses. . .

11-3.1 Unordered Tables

The easiest way to organize a table is to add elements as they

appear without any attempt at ordering. A table search requires a

symbol by symbol comparison with each element in the table until a match

is found; for a table of n elements,
i comparisons would have to be

made on the average, before a match between the input and table arguments

is found. This method has merit only for extremely small tables which

are searched infrequently.

11-3.2 Ordered Tables

An ordered table is one in which (1) an ordering relation > (or <)

exists between any pair of arguments of the table, and (2) if Si

represents the ith element of the table, then for all i and j,

-si > s.
3

if and only if i> j (or si < s.
J

if and only if i<j).

The table is then ordered in ascending (or descending) sequence.

- The most efficient general method for searching ordered tables is

the binary search; starting with the complete table, the table subset

under consideration is successively divided by 2 until a match is found.

An ALGOL binary search procedure for a table ordered in ascending

sequence follows:

12

procedure Binary Search (S, n, arg, k);

value n, arg; integer array S[l]; integer nj ark5 k;

comment S is array of table arguments, n is length of table,

arg is search argument, S[k] = arg on return;

begin integer i, j;

i := 1; j :=n;

for k := (i+j) f 2 while Sk] # arg 2

if S[k] > arg then j := k-l

else i := k+l

end Binary Search-m.

It is assumed that arg is in the table in the above program. A binary

search requires log2 n comparisons at most to search an ordered table

of n elements. In order to find a match in a table of length 128(2 7),

a binary search would require 7 comparisons at most while an element by

element scan would require 64 comparisons on the average.

Instead of using one large table, it is sometimes more convenient

. to set up several smaller tables; for example, one could set up 26

tables for an assembler symbol table, each table corresponding to symbols

starting with the same letter of the alphabet. The search then becomes

a multi-level search; at the top level, the particular table is found

and at the next level, the table is searched. In the above example of

26 tables, an even distribution of first letters of symbols over the

letters of the alphabet would be necessary for efficient use of table

storage. The advantage of multi-level schemes is that the relatively

small tables may be searched very quickly; however, organization and

13

searching is more complex and use of storage is not always as efficient

as the simpler l-level system. These alternate methods have to be

evaluated in terms of specific systems and goals in order to select the

best method for a particular application.

11-3.3 Sorting

If an ordered table is desired, some type of sorting method must be

employed to order the elements. There are many ways to sort a table or

a file; sorting may be done internally in main storage or, when large

files are to be sorted, with the aid of auxiliary storage devices such

as tapes, discs, or drums. Only a few of the most important will be

discussed here. Reference 2 contains a detailed presentation and evalu-

ation of many sorting methods.

11-3.3.1 Bubble Sort

The basic idea is to successively pass through the unsorted part

of the table, "bubbling" to the top the maximum (or minimum) unsorted

*element; this is done by repeated comparisons and interchanges as illus-

trated in the following example:

To sort the table: 13 2 18 5 4

cl13 2 2 2

First

Stage 18 18 cl18 5

5 5 5 cl 18
4 4- 4 4

2

13

5

4

c l18

14

Second

cl2
1-3

-b

5
Stage

4

18

cl2
Third

Stage

5
3

4

w-----c,

--.

1-3

18

cl2
Last

Stage

4
4

cc-c---

5

Sorted

Table

13

18

2

4

5

13

18

2

c l1.3
-I

5

4

2

c l5 +
4

2

c l
4

2 2

5 5+
cl 13 4

4 q1-3

2

4

cl5

An ALGOL procedure for a simple Bubble Sort is:

15

procedure Bubble Sort (S, n);

value n; integer array S[l]; integer n;

comment Bubble Sort sorts array S[l:n] in ascending sequence;. .

begin integer i, j, k; boolean tag;

procedure interchange CL a;

value X, Y; integer X Y;

begin integer T;

T := X; X := Y; Y := T;

tag := true

end-=;: interchange;

tag := true;

for j:= 1 step 1 while tag do

begin tag := false; k:= n-j;

for i := 1 step 1 until k do

if S[i] > S[i+l] then

interchange @[iI, Sb+ll)

end

end Bubble Sort.

For .fewer memory references, this may be modified to eliminate the

interchanges; instead, the largest element of the unsorted table is

found and interchanged with the top element at each stage.

11-3.3.2 Ranking by Insertion

Starting with an empty ordered table and a given unordered table,

at each stage, the next element of the unordered table is inserted in

16

the correct position in the ordered table; this process is terminated

when the original unordered table is empty. Thus, if Sl S2 . . . Si Si+l

. . . Sk represents the ordered table (ascending sequence) at the k4kf

stage and the next element U of the unordered array is such that Si

’ ” ‘i+l’ then U is inserted between Si and Si+l q Si+# . . . Sk

then have to be moved to make room for U l This block movement can be

very inefficient unless the machine has a block transfer command. On

the other hand, a binary search can be used to rank U and in the case

of assembler symbol table construction, the table can be ordered contin-

uously as it c's built up. These features make the method useful for

large symbol tables.

11-3.3.3 Other Common Methods

There are many other sorting methods in common use as well as

variations of the above two methods. Other methods include the radix

2
sort, various merge sorts, odd-even transposition, and selection sort.

Sorting of a symbol table in a 2-pass assembler would occur at the

.
end of pass 1 or beginning of pass 2.

11-3.4 Scrambling Methods

Scrambling or "hash addressing" is a fast method for converting

symbols to addresses. Addresses are obtained by performing some simple

arithmetic or logical operation on the symbol. For example, one method

is to square the numeric representation of the symbol and select the

central bits or numbers of the result as its table address; if a partic-

ular symbol, say XI, is represented numerically as 3275 and we wish

a 3-digit address, the computation would proceed as follows:

327 52 = 10725625. .

address of XI = 725

Care must be exercised to either prevent or account for non-unique map-

@ngs of identifiers and to use table storage efficiently; this work often

negates the advantage of the fast address calculation.

11-k. One-Pass Assembly

One-pass assembly can be accomplished despite the problem raised

at the end of section II-l. The "forward reference" problem is solved

by maintaining a list of undefined symbols with pointers to the locations

where they are to be "fixed-up" upon definition. A flow of this scheme

Encounter a Symbol
(Except in Location Field)

Enter Symbol in
UST along with
Pointer to fix-up

location

UST: Undefined Symbol Table

18

During assembly, a symbol table (ST) and UST are constructed:

Partially
ST

On finding a symbol in the location field, the assembler flow is:

Enter Symbol in Symbol Tablei

When the same undefined symbol is encountered more than once, a

-chaining method provides a convenient means for recording their appear-

ances and for later fix-ups. Multiple appearances/of undefined symbols

can then be recorded as below:

19

Partially Assembled Program (UST, ST)

IAddress Symbol d/u

U

Address: Symbol Location

or

Fix-up Location

d/u : defined/undefined flag

The address part of the entry for the undefined symbol L#P points to

the last location seen by the assembler where L$$P appeared; pointers

-to 2 and' 1 produce a chain through the earlier fix-up locations for

loop. s2 (undefined) indicates the end of the chain. If L@P again

occ1urs at point 4 and is still undefined, the pointers change as indi-

cated by the dotted lines and the pointer from the address part of

L@P to 3 is ,deleted. When L@P is defined, its addresses are

inserted in the places occupied by the chain pointers.

One-pass assembly has the advantage that the source program is

* , es- read only once; this advantage is gained at the expense of more complex

routines for handling symbolsc The assembled program and various tables

20

must be stored in main memory during assembly or the above advantage

over multi-pass systems no longer holds. Assemblers with block structure

can be constructed conveniently by the one-pass method.. .

X-5. Block Structure In Assemblers

While few assembly languages have the block structure of ALGOL, it

is still useful to study the implementation of block structure by assem-

blers for several reasons:

1. Many assemblers have limited forms of block structure,

usually allowing symbols to have local and global significance.--.

e.g., MAP programs may be structured through the use of the

QUAL pseudo-operation

2.. The basic methods employed by compilers to handle block

structure can also be used for assemblers and thus can be

illustrated in a less complex setting.

39 Many compilers translate source language into "intermediate"

languages which retain the original block structure and are

similar to assembly languages.

In general, a block is a delineated section of source language

code having explicit or implicit declarations for some of the symbols

used in the code; symbols may be declared explicitly by formal declara-

tions (e.g., ALGOL identifiers) or implicitly by their use (e.g., ALGOL

labels). Symbols defined within a block may only be referenced in that

block.

3

.
7.

21

Example:

I - ,d, z., z

I

2 This representa a
program with 4 blocks,
each having symbols
defined within it. a
and b may be refersnced
throu@;hout the program;

3

4

C and ,d are only
Fknown'f in block 2, cJ,
5 and g in block 3
and 4, and & is known
only in block 4. Note
that the d in block 2
is differezt from the d

in block 3; each has its own scope of validity.

The effect of a defined area of validity for symbols in assemblers

is to allow sharing of symbol table storage among "parallel" blocks; in

the above example, blocks 2 and 3 are in parallel. If opening and

closing of blocks are indicated by left and right parentheses, the depth

\ or leve,l of a block in a program can be found by numbering the matched

parentheses pairs; using our example again, we have

block No. 1 2 3 4

(2, b (2, 5) (29 5.t r. (5 > > >
- block level 1 2 2 2 3 3 2 1

In a one-pass assembler, symbol table space may then be released

on exiting from a block. On entering a block, a block marker is set;

when leaving the block, the marker is reset to that of the last enclosing

block. This scheme can be implemented by using the first symbol table

entry for each block as a pointer to the previous block 'head" or entry&

22 '

Let ST[i] be contents of the .ith symbol table entry and j be a'-

pointer to the first symbol table entry of the current block. Then

symbol table housekeeping can be don.? as follows:

i := 0; j := 0;
.

block entry: i := i+l;

ST[i] := j;

j :T i;

.

block exi.;,: i := j-1;

3 := ST[j];.

The evolution of the symbol table of our previous example is:

2

C

d

j= 0 1 4 1 4 8 1 1

‘*

.p ,’

23

STk
is the symbol table at blockentry for block k; STk is the symbol

table at blockexit for block k . Elements in parenthesis are in the5

table (because they haven't been destroyed) but inaccessible.. .

This method has to be modified to handle forward references. For

the program with structure:

begin
l

begin-.

L

-w. .

end;.-

L: Declaration of L

end

Use of L

the global identifier L is used in an inner block before it is declared

in the enclosing block, On reaching block exit, all undefined symbols- -

may be carried out into the enclosing block and filled in the symbol

. table; undefined symbols may then be treated correctly using the chaining

and fix-up method described for one-pass assemblers. Care must also be

taken in generating the correct reference in the following case:

begin
L: First Declaration of L
.

begin

Eta L; Use of L

L:
end

Second Declaration of L

end

24

Here, the use of L refers to the L in the inner block (second decla-

ration); possible forward references within a block have to be considered

before treating symbols as global to that block.-.

5e conventional two-pass assembler can be modified for languages

with block structure properties by grouping the symbol table on a per

block basis and maintaining a dictionary pointing to the symbol table

blocks.

Example: 1: begin real a, b, c, d;

2: begin real e, f;- -

end;

3: begin real g;

4: begin real h;- -

end

end

end

Dictionary

Block Index to Number of Ancestor
Number Symbol Table Entries in Block Block

2 L2 2 1

4 L4 1 ' 3
3 L3 1 1

1 Ll 4 0

25

Lli la, b, c, dl

Symbol Table

L2: le,J
L3: clg

L4: clh

Dictionary entries are made on exiting from a block. The symbol

table can be one large table grouped on a block basis. To translate

symbols during pass 2, the dictionary is searched with the block number

as the search argument;--. from the dictionary entry, the p,ointer to the

correct place in the symbol table is obtained. If a symbol is global,

the ancestor entry of the dictionary which points to the enclosing block,

can be similarly used.

11-6. References

1. IBM 7090/7094 IBSYS Operating System, Version 13, Macro Assembly

Program (MAP) Language. Form C28-6392-O. International

- Business Machines Corporation, 1963.

2 . Papers presented at an ACM Sort Symposium. Comm. ACM-, 6, 5

MY 1963 > l

11-7. Problems

1. One useful variant of the bubble sort is to alternately pass through

the table in both directions, bubbling the largest element in one

direction and the smalle-st in the other.

26

Code this variant as an ALGOL procedure.

-&.

2.

Computer Science 236a
Winter 1966

Term Problem I

N. W&h
Due Date: Feb. 10

Design an assembler according to the following description.

Input: One instruction per record (card), consisting of location
fields (~01s. l-lo), operation field (~01s E-14) and operand
field (~01s. 16-72).

output: Listing of assembled instruction in hexadecimal form along
. with instruction counter and given symbolic instructions.

Symbols: Symbols are either names, literals or constants not contain-
ing blank characters. A name is a sequence of 1 to 10
letters or digits starting with a letter. A constant is a
decimal integer , possibly preceded by a sign. A literal is
a constant preceded by an equal sign (=). It denotes the
address of any storage cell into which the constant is
assembled.

Fields: The location field is blank or contains a name (left-adjusted
in the field) in which case it is the definition of that
name. The operation field must contain an instruction code
(cf. Table l), or an assembler instruction (left-adjusted
in the field). The operand field is divided into two or three
subfields depending on the form of the instruction. The
subfields are separated by commas. A missing subfield is
interpreted as 0.

27

Target code: An array of individually addressable 8 bit characters
(bytes), listed in hexadecimal form, each character as a
pair of hexadecimal digits.

Instruction Formats: Instructions are..grouped into two categories to
be translated into the following forms:

RR: Instruction occupies 2 bytes. Form of operand field is
"rl, r2" where rl and r2 are integers.

8 4 4 bits

RX: Instruction occupies 4 bytes. Form of operand field is
"rl, a2, r2" where rl, r2 are integers, and a2 is a
symbol. --.

8

Table 1: Instruction codes

RR Form

Symbolic Hexadecimal

AR LA
- BCR 07

CR 19
DR 1D
LR 18
LCR 13
m 1c
SR 1B
HLT 00

Assembler Instructions:

4 16 bits

RX Form

Symbolic Hexadecimal

A 5A
BAL 45
BC 47
C 59
D 5D
IC 43
L 58
LA 41
M 5c
R 4A
SL 48
SR 49
ST 50
STC 42
W 4B

1. Define name and increment location counter.

28

Symbolic code: DS .

The name in the location field is defined and subsequently the
location counter is incremented by the integer in the operand field.
(The lot. counter addresses bytes.)

2. Set the location counter. Symbolic code: ORG l The location
counter is set to the value of-the constant in the operand field.

3* Terminate assembly and print the produced output in condensed hexa-
decimal form. Symbolic code: END .

Example of an assembly listing:

0000
0004
0008
oooc
0010
0012
0016
OOIA’
OOlC

41000000
41100000
41200190
5AOlOOlC
IA12
591oolAc
472OOOOC
0000

START

LOOP

ARRAY

OlAC 00000190

Notes:

1.

2.
.

3*

LA
LA
LA
A
AR
C
BC
HLT
DS
END

w
LO
2&o
0,ARRAY,1
12
1,=400
2, LOOP

400

Program the assembler in Extended ALGOL on the I35500 computer and
test it. The program should contain comments to explain the main
points and to facilitate the understanding of its principles. It
is stressed that the program be presented in a neat and well
structured form.

A few days before the due date, a sample program will be available
to test the assembler. It is advised that the student test his pro-
gram before that date with his own test cases.

At the due date, submit the program together with the output result-
ing from the distributed test case.

29

III. INTERPRETERS

III-l, Definition and Examples

Corresponding to each statement of a language, there exists an inter-

pretation rule or action representing its meaning. An interpreter is a

language translator whose primary task during translation is to perform

the actions dictated by the meaning of the statements of the language, In

more concrete ,terms, interpreters read and obey the statements of languages.

By contrast, assemblers translate assembly language into another language

which is later interpreted or obeyed.

Interpreters are commonly used in the following applications:--.

1. Simulation of real computers

A given computer can simulate the operation of another computer --

either a proposed computer or one already in existence. For example, the

Burroughs B5500 can be simulated on the IBM 7090 and vice versa.

2. Simulation of hypothetical computers

Hypothetical machines are studied and used by simulating them on

. existing machines. Examples of such machines are the list processing ma-

chine (or language) IPL V and the "polish string" machines used by the

early ALGOL compiler systems.

3. Interpretive Compilers

Instead of translating higher-level languages into machine language

programs and then executing these programs, some systems execute the source

language directly via an interpreter. LISP 1.5 on the IBM 7090 is such a

system.

30

4. Simulation languages

Languages, such as SIMSCRIPI, SOL, and GPSS, which are designed to

describe parallel processes, are often implemented on conventional se-. .

quential machines by interpreters.

5* Monitor systems

Control of batch processing, real-time, and time-sharing monitor

systems is accomplished by user-written control instructions which are

interpreted by the system.

Instead of using interpreters for the above, one could translate

into equivalent machine language programs - as in assembler systems - and

then execute these programs. Both approaches a,re employed. Interpreters

are usually much easier to write, debug, and modify but can be extremely

slow and wasteful of storage. For these reasons, interpreters are writ-

ten 1. for research or exploratory purposes, 2. when the language is

not used on a "production" basis, 3. for very complex systems, or 4.

for a combination of the aboved

. This chapter examines interpreters of sequential computer code, as

opposed to higher-level language interpreters or systems allowing parallel

processing, The operation of typical von Neumann and stack machines are

described via interpreter programs.

111-2. Basic Interpreter of Sequential Code

Let Instr = a vector containing the instruction sequence, such that

Instr[i] contains the ith instruction in the sequence,

i = instruction counter, and

C = current instruction.

31

The main loop of an interpreter of the program represented by Instr

is:

1: Fetch instruction designated by
instruction counter.

C := Instr[i]

I 2: Increment instruction counter.
i := i+l I

I 3: Execute instruction.
(Branch to subroutine designated by c)

I
t

Step 1 may be divided into several substeps by breaking Instr[i]

into its component parts:

.

Instr[i][O] = operation code

Instr[il[ll, Instr[i][2],c,., Instr[i][n]

= operation parameters .

C is also divided into corresponding parts:

01, 411, l , h-4 .

n=O corresponds to a no-address computer;

n=l corresponds to a l-address computer;

32

n=2 corresponds to a 2-address computer;

etc.

Then, step 1 becomes:

401 := Instr[i][O];

411 := Instr[i][l];...; c[n] := Instr[il[nl ,

and step 3 may be expressed:

Exe_cute(c[O](c[l], c[2],...9 c[nl>> .

111-3. Interpreter for a von Neumann Machine

These machines may be classified into (a) single address, single

register computers and (b) multi-address and/or multi-register computers.

In the former, operations on operands are performed in a single register,

usually called the accumulator; for operations requiring two operands,

the address of one is implicitly understood to be the accumulator while

that of the other is contained in the instruction, e.g., IBM 7090, DEC

PDP-1. In the latter, operations may be performed in one of several ad-

dressable registers and instructions may contain several addresses, e.g.,

IBM 360. An interpreter program for a simple single address, single

register machine is presented below:

33

PROGRAM,

integer array operator, address[O:L], instr[i] = (operator[i],

. . address[i])

operands[O:m]; data memory

integer OP, operation code

1:

2:

3:

.

Fetch

adr, operation address

ret37 single register

count; instruction counter

count := 0;

oP := operat.or[count];

a.dr := address[count];

count := count + 1;

if op = 1 then

reg := operand[adr] else Load

if op = 2 then

operand[adr] :t reg else Store

if op = 3 then

reg := reg + operand[adr] else Add

Increment instr. counter

reg := adr else

if op = 5 then

count := adr else

if op = 6 then begin

c o u n tthen := adr end else- -

.

.

.

Load immediate

Transfer

Conditional Transfer

34

While this program or a similar one may be adequate for some applica-

tions, there are several inaccuracies and omissions which must be corrected

in order to precisely describe the operation of any real of hypothetical
. .

machine of this class:

1. The word length of the machine has been ignored.

2. Logical and arithmetic operations cannot be handled at the bit

level since all variables are of type integer.

3* Data and program should reside in the same memory.

An interpreter for a binary computer can be written in ALGOL taking

the above factors into account. The key change is to define all variables

as type Boolean.

comment The computer has (n+l> words of memory g and word length of

(1+1) bits. Operation code, s, is (11 + 1) bits; operation

address adr is (12 + 1) bits; (Rl+ 1) + (12 + 1) = & + 1 .

reg is a (I+l) bit register and count is a (13 + 1) bit instruc-

tion counter. 2r(a3 + 1) = n + 1;

Boolean array M[O:n, O:a], op[O:Ll], adr[0:12], reg[O:&], count[O:!3];

integer procedure number-(x, k);
a

Boolean array x[O]; integer k;

comment number treats the array x as a positive binary number of (k+l)

bits and converts this to an integer;

begin integer i, n;

n := 0;

for i := 0 step 1 until k do- -

n := n X 2 + (if x[i] then 1 else 0);- P

number := n

end number;

35

comment initialize number(count, 13) to 0;

for i := 0 step 1 until 13 do count[i] := false;

comment begin interpreter cycle; . .

1: n := number(count, 13);

for i := 0 step 1 until 11 op[i] := M[n, i];

for i := 0 step 1 until 12 do adr[i] := M[n, Rl + 1 + i];

2: n := n+l;

binary(n, count, 13);

comment the procedure, binary, converts the integer n to a 13 + 1 bit

binary number, count;
--.

3: if number(op, 11) = 1 then

beginn := nwnber(adr,

comment load;

for i := 0 s,tepl

end elsem-

until & do reg[i] := M[n, i]P -

etc.

.
If the reader has followed this program, he is aware of the awkward-

ness of ALGOL for describing the operation of an interpreter at the bit

level. Clearly, another language or notation is desirable. A powerful

notation for this type of description is the Iverson language.
1

The fol-

lowing "Iverson" description of a single address, single register binary

machine illustrates the elegance and power of the notation. (The reader

.- c

should consult Reference 1 for more details on the notation and its appli-

cation.)

36

Meaning;Variable

M

r

computer memory

v(M) = 1+1 word length

P(M) = n+l no. of words in memory

register

v(r) = &+l register length

instruction counter

v(s) = 11 + 1, 2t(Rl f 1) = n+l

C instruction register

VW = L+l instruction length--.

S

M, r, s, and c contain binary components. See next page for Iverson program.

Language interpretation can thus occur at different levels of detail.

If the interpreter is testing the design of a new computer, then complete

details of word length, radix, registers, handling of address and arith-

metic overflows, etc. have to be included; on the other hand, interpreta-

tion at the level easily handled by ALGOL programs may be sufficient if the

purpose of the system is to evaluate the usefulness or power of a particular

language.

37

1

2

3

4

5

6

7

8

9

1c

11

12

.

-

-

-..-

-

i-

-

S G-0

d
S . .

C!t

op +lcXR1+l/c

adr tI~'~+'/c

1s tl+ Is

+ (7,8,......)
oP

rt sdr

adrM tr

lr .+Itidr + lr

Lr t a.dr

Is tadr

reg : 0

IS tadr

e.

------m--11--11
I

Load I
I

Store
I
J

#Add 1

Load I

Immediate
I
I
I

Transfer I
1
I

Conditional
' Transfer

I
I
I
I
I

111-4. Polish String or Stack Organized Machines

Polish notation and stacks will be discussed further in Chapter VI.

In this section, some of the basic ideas are introduced to illustrate the

operation of stack machines.

The reverse or postfix polish form of a statement or expression of a

language is obtained by reordering the elements of the expression so that

operators appear after their operands rather than before or between them

as is normally the case.

38

Examples

Conventional Form

1. a + b + c

2. x := b X c?d - e

3. a/(btc - e) + (e - f) X g

Reverse Polish

a b + c +
L-J1 4

xbcd? X e - :=

1

atie- ,ef -, g X +
1 J I 4

1

(Note the elimination of
parentheses)

This form of an expression is very convenient for compilation or

interpretation and has led to the development of computer organizations

that can handle reverse polish expressions easily. These are the stack-

organized computers, such as the Burroughs B5500 or the English Electric

KDK-9. They contain a stack or "cellar" which is a first-in, last-out

store used for temporary storage of operands. WnY of the instructions

in such a machine have no address fields but implicitly refer to the top

element or elements of the stack. "Pushing-down" or "popping-up" of the

'stack is performed automatically during instruction execution.

The following partial interpreter is for a machine with a stack

mechanism:

39

PROGRAM

integer array instr[O:&],

M[O:m],

S[O:n];

integer OP,

count,

, r
s;

S := 0; count := 0;

1: op := instr[count];

2: count := count + 1;

instruction sequence

. .
data memory

stack or cellar

operation code

instruction counter

stack pointer

Initialization

instruction fetch

increment instr. counter

3: if

if

if

oP = 1 then

begins := s + 1;

S[s] -:= M[instr[count]];

count := count + 1;

end else- -

oP =2 then

begin M[instr[count]] := SCSI;

S := s-l; count := count + 1

end else- -

oP = 3 then
begin S[s-l] := s[s-13 + s[s]

S := s-l

end else- -
...

etc e

Load

Store

Add

Each word in instr[] is either an operation code or an operand; for

Loads and Stores, the required address is in the word following that

containing the operation code.

Using the expression in 2. from the reverse polish examples, the

instruction sequence in the program forma.t is:

40

i:

instr[i]:

012345678gloll

;L b, $ c, ,l, d, 6 5 ,Q 4 2
1 I1 II I 1

where the operation codes have the meaning:

code: 1 2 3 4 5 6

meaninq: Load Store Add Subtract Multiply Exponentiation

The stack contents are disPlayed below after each instruction is executed

in this example:

Because all operations are performed on elements of the stack, the

stack access time must be small. Fast registers are therefore used for

the top elements of a stack; since these are expensive, their number must

be severely limited. This limitation causes major systems programming

problems related to stack administration, stack overflow, and code opti-

mization.

111-5. Interpretive Computers

The execution of machine language instructions by conventional com-

puters occurs via an interpretive process. Instructions are translated

41

into mechanical or electrical~operations, such as op'eningbor'closing 'data

paths, setting and testing internal registers, switching memory cores,

etc.

Recently, the interface between hardware and software interpretation

has become less distinct. In many modern computers, machine language

instructions are executed interpretively by microprograms which reside

in a read-only memory in the control unit.
2

These microprograms translate

machine code into microinstructions which are the basic executable instruc-

tions of the permanent hardware. Changes in machine language can be made

by reprogramming the control unit to perform the desired translation. A=.

schematic of the organization of such a computer is:

-------------e--w

I
- - - - - - - - - I - - - -

I
Micro- Micro- 1

I

I
Instruction Instruction I

1 Register Counter I

I

1
I I

I
I

I
I

I
A

le,

I I
I Microprogram I
I Tn II

I Read-only I
- i

I
Memory

:
.

I - - - - - - - - e - - - - - v - w - - - - - - - - - - - - c <

Control

Macro-
Instructions

and

Data

Operations at this level follow the same basic interpretive cycle as the

other examples of this chapter.

42

111-6. References

1. Iverson, K. E. A Programming Language. Wiley, New York, 1962.

2. Fagg, J., Brown, J. L., Hipp, J. A., Doody, D. T., Fairclough, J. W.,

Green, J. IBM System/360 Engineering. AFIPS Conference

Proceedings, Fall 196$ Spartan Books, Inc.

111-7. Problems

Computer science 236a
Winter Quarter, 1.966 --.

N. Wirth
February 2, 1.966

Term Problem II

Construct an interpreter which represents a computer with the following
specifications:

.

The computer consists of
1. A memory consisting of 4096 consecutively addressed bytes, each

byte consisting of 8 bits;

2. 16 registers, each with 32 bits;

3. A condition register, able to represent 4 distinct states;

43

4. An instruction register, (32 bits);

5. An instruction counter (12 bits).

Instructions have the formats as indicated in Term Problem I, and cause
the following actions to be taken:
(To identify-an instruction, the mnemonic codes of Term Problem I are
used, the instruction parameters are denoted by rl, r2, a2 .)

Group 1:

These instructions have an RR and an RX version. They designate two
operands, the first of which is the register designated by rl . The
second operand is the register designated by the r2 parameter in the RR
case, or the consecutive four bytes of memory, the first of which is desig-
nated by the sum of a2 and the value of register r2 .

Instruction Code Meaning

Add
Subtract
Multiply
Divide
Load

A, AR 01 := 01 + 02
S, SR 01 := 01 - 02
M, MR 01 := 01 x 02
D, DR 01 := Ol/ 02
L, LR 01 := 02

Compare Condition register := {:I, if oi{:}o2

Moreover, if the result of any arithmetic operation is >2l 'in absolute
value (overflow), or if a divisor is = 0, then the next-instruction in
sequence is taken from location 4 of memory. In the case of overflow,
the condition register is set to 3 .

Group 2:

The parameters of the instruction are interpreted as in Group 1.

Instruction Code Meaning

Branch BC Branch to 02, if the state bit*
corresponding to the condition register
value is 1 .

Branch BCR Branch to the address contained in register
r2, if the state bit* corresponding to
the condition registervalue is 1 .

Branch and Link BAL Branch to 02 . Assign the address of
the next instruction after the BAL to
register rl .

Load Compliment LCR 01 := -02
*The field rl -contains 4 bits, called state bits, numbered 0,1,%3 .

44

(Continued)

Instruction Code Meaning

Insert Character

Store Character STC

Load Address LA

Store

Shift left

--

Shift right

Read

Write

IC

ST

SHL

SIB

R

W

The right-most 8 bits of register rl
are made equal to the single byte 02 .

The single byte 02 is made equal to the
right-most 8 bits of register rl .

Register rl is assigned the address
which designates 02 .

02 := 01

Shift to the left the bits in register rl
by as many positions as indicated by a2
plus the value of register r2 . Vacated
bit positions are assigned O's .

Analogous to SHL.

Read a card, assign the 80 characters
read to the 80 bytes the first of which
is (a2, r2) . In each byte, the first
two bits are set to 0, the remaining 6
bits are assigned the corresponding BCD
character.

Analogous to Read; the register rl in-
dicates the number of characters to be
printed on the output line.

If in any instruction, an effective address 2 4096 is created, the next
instruction in sequence will be taken from location 8 in the memory.

Programming Notes:

The interpreter is to be programmed in Extended AIGOL for the B5500 com-
puter. After debugging, it should be merged with the assembly program
of Term Problem 1 in the following way:

BEGIN COMMENT OUTER BLOCK;
BEGIN COMMFJJT ASSEMBLER;

.
END;
BEGIN COMMENT INTERPRETER;

.
END

END. -

45

.
The "outer block" contains declarations of quantities shared by'the two
programs, such as the array of assembled program instructions. The inter-
preter is then supposed to execute the code which was assembled by the
assembler.

You may assume that the first 4 bytes-of the memory will never be used.

Before the due date, a problem will be given to be programmed in the
assembly language as described in the Term Problem. At the due date,
submit

1. a listing of the combined assembler/interpreter program,

2. the solution of the programming problem in the form of

a. an assembly listing, and

b. the output from the interpreter executing this program.

Supply (but do not overburden) your program with comments at appropriate
places. --.

C.S. 236a
Winter, 1966

Test Programs for Term Problem II-

The following are Test Problems to be programmed in the Assembly Code of
Term Problem I. They are to be assembled and interpreted by your Assem-
bler and Interpreter Programs.

1. Read a card, sortthe first 30 characters according to their BCD key,
and print the resulting string of 30 characters. Repeat this process
for as many cards as provided.

2. (Optional) Read from cards the sequence of integers

n, a 1p a2� . . l 9 an9 bl, b2, . . .,
bn

compute and print .
n n nc a '9
i=l l- z,bi,

i=l
Caibi l

i=l

46

Perform reading and printing with the use of subroutine&y tihi3h::retid arid
print one number respectively. A number should be acceptable if it con-
sists of a. sequence of digits, possibly preceded by a. sign, and if it is
separated from other nmbers by at least one blank space.

--.

47

IV. INPUT-OUTPUT PROGRAMMING

IV-l. The Input-Output Problem

The components of a large computer system can be ordered in a hier-. .

archy according to their speed of operation:

Central Processors

Control Circuitry

Registers

Arithmetic Units

Main Storage

cage, Thin Film--.

Cores

Drums

Increasing

Speed

Secondary or Auxiliary Storage

e.g., Cores

Drums

Disks

Tapes

Pure Input-Output Devices

e.g., Card Readers, Punches

Printers

Display Devices

Typewriters

Paper Tape Readers and Punches

The rate at which information can be handled varies fantastically through-

out this hierarchy - from one or fewer characters per second at the lowest

level to billions of characters per second in the central processor. This

is a factor of approximately 109 Ie

48

Each of the above components can be viewed as input-output (I-O)

devices in some contexts; for example, information on a secondary storage

device, such as a drum, can often be sent to or received from a central

processor, main storage, other secondary storage devices, or any of the

pure input-output devices. One of the most important objectives of I-O

hardware and program design is to utilize all components of the computer

system at their maximum rate; no component should ever be idle because

it is waiting for another one to complete its operation.

Communication scheduling between the central processor and main

storage is performed mainly by hardware; to counteract the relatively long ac-

cess time to storage, instruction look ahead and interleaved storage are

used on some large computers. The systems programming problem is to sched-

ule and organize I-O among the elements of main storage, secondary storage,

and the pure I-O devices. To do this, various techniques and devices,

such as I-O buffering, interrupts, channels, and I-O processors, may

be employed.

This chapter briefly examines some of the methods used to schedule

and organize I-O. One multiple buffering scheme is presented in detail.

IV-2, @mediate I-O

Many of the earlier computers and some of the smaller modern computers

have immediate I-O instructions; by "immediate", we mean that the com-

plete I-O operation is handled directly by the central processor imme-

diately upon receiving the I-O instruction. This includes initiating

the I-O, specifying the I-O areas, maintaining a count of the number

of characters transmitted, and testing for errors.

49

IV-2.1 No "Busy" Flag----

The most primitive implementation of immediate I-O instructions

has no provision for testing, by program, the status of the I-O units.

If a unit is busy when an I-O command is given for it, program execution

cannot continue until the unit is free and the command is accepted. Care-

ful spacing of I-O operations can minimize this waiting time. Often,

output instructions to a console typewriter are of this type.

Many computers have hardware buffering for pure I-O devices with

fixed record lengths, such as card readers and printers, An input (out-

put) instruction empties (fills) the buffer into (from) storage and acti-
-v.

vates the device to automatically refill (empty) the buffer while the

program proceeds, The device is always one I-O operation ahead of (behind)

the program. The advantage here is that, with cardful spacing, the I-O

instructions are completed at electronic speeds while many pure I-O de-

vices actually operate at electro-mechanical speeds.

IV-2.2 "Busy" Flag-

e A program-addressable flag bit is automatically set when an I-O

unit becomes busy and is reset when the unit becomes free, For a simple

computer with I - O b u f f e r s , _in and out, an I-O instruction produces the

following hardware actions:

50

Input
' I

2%flag = 1

0&Jinarea := in

flag := 1

+
Initiate Device

output

0

:= outarea

+

flag := 1

Initiate DeviceL-T-
where inarea and outarea are storage areas for input and output. Since

the flag or ((busy" bit is addressable, the programmer may use it to branch

to routines involving no I-O while waiting for the unit to become free:

I
flag =. 1 ,Compute-Only

4 Routines
I

This requires much programming

of the flag and computing when

of an administrative nature for testing

the I-O unit is busy0

IV-~. Indirect I-O

Most computers presently available have some form of indirect I-O.

The central processor only initiates the operation; the operation is

performed by an independent unit, such as a channel or I-O processor.

Once an I-O operation has been initiated correctly, the computer can

continue processing concurrent with the execution of the I-O command.

IV-3.1 Channels

A data-channel is a control device which acts as an interface between

the processor and memory on the one hand and one or more I-O devices

on the other:

.

--. CPU 4 b Memory

Data
Channel

4

I-O Devices

An I-O command from the processor consists of a request for an I-O

operation and control information (or an address containing control in-

formation). The control information usually includes the device address,

I-O area address, and number of units of data to be transmitted. The

channel performs the work of initiating the I-O device, counting the

data units transmitted, and testing for errors. With concurrent computing

52

and I-O, there is competition for memory cycles; the channel "steals"

its cycles when needed. "

Two methods of communication between a data channel and central pro-

cessor are possible:

(1) The CPU may interrogate the status of the channel, e.g., Is the

channel busy? or

(2) The channecl can interrupt the CPU on termination of the I-O

operation or on an error condition.

,A simple example of an input-output routine written in FAP for the

IBM 7090 with one channel is presented. In this program no use 4s made

of the channel as a separate independent unit since the CPU is held up

until the input or output is finished. A typical call of LINE is:

TSX LIm,4

PZE COUNT

P!ZE BUF

.

.

COUNT DEC 20

BUF BSS 20

1 To allow overlap of I-O with computing, a simple software buffering

scheme may be used; LINE moves the information from the I-O area to a buf-

fer and the channel works on the buffer area. The IBM FORTRAN system on the

7090 handles I-O in this way. The call of the modified LINE given below

is the same as in the previous example:

53

Simple Example of Input-Output Routine

Where CPU Interrogates Channel

+

I
0

F-AP
C O U N T 100
LBL CRLN
ENTRY CARD
ENTRY L I N E
TAPENO A 2
TAPENO A 3

+
CARD

+

LIhE

l

ETT

- +
101
100

CLA
STA
RTDf
RCHI
T C O I
TEFI*
TRCI*
TRA

CLA*
A L S
STD
CLA
STA
WTDO
HCHO
TCOO
ETTO
TRA
TRA

RUN0
HTR

IORT
I O R T
END

--.

b4
101

1131

;r4
3 0 4
4r4

194
18
100
2~4
100

too
I)

ET7
3r4

L I N E

+*,rlY
+*)#**

54

Buffered Input-Output Routine Where CPU

Interrogates Channel

* FAP
CMNT 2 0 0

* C A H 0 R E A D E R A N 0 ;‘ I N E P R I N T E R
L B L CRDLIN
ENTRY CARD
ENTRY L I N E

+ C A L L I N G S E Q U E N C E l o
* C A R D (B U F F E R , EOF E X I T , REDUN E R R E X I T)
I TAPENO A 2

CARD

Cl

C2

Xl
x2

*.
‘EOF

ERR

100
INBUF

CLA
SXA
SXA
PAC
TXH
T R C I
TEFI
RTDI
RCHI
CLS
ST0
AXT
T C O I
TEFI
TRCI
AXT
CLA
ST0
TX1
TX1
TXH
R T D I
RCHI
AXT
AXT
THA

BS@I
TRA+
BSRI
RTDI
RCHI
TIX
TRA+
IORT
BSS

--.

lP4
x1,1
X2r2
0 9 2
C2,OIO
+ +.1
++l

100
Cl
Cl
51

;OF
ERR
Od
INBUFI 1
OD2
++1#2Pl
++lrlPl
+“4r b-14

IOD
**p 1
+*r2
4r4

2~4

IQD
C2+lrlrl
3P4
fNBUF10el4
14 -

E N D [1F F I L E E X I T

REOUNDANCY E R R O R E X I T

55

+ C A L L I N G SEQUENCE IS,. L I N E WORDCOUNTI B U F F E R)
0 TAPENO A 3

L N E S T HOOL
L N C N T ROOL
LIhE C L A *

SXA
SXA
SXA
PAX
T X L
AXT
SXD
CLA
PAC
AXT
TCOO
ETTO
TRA

L 2 CLA
ST0
TX1
TX1
TIX
WTOo
RCHO
CAL
A N A
ADD
STA
SUB
T P L

Sl AXT
S2 AXT
s 4 AXT-

TRA
*

Q U I T C A L
STP

i
TSX

ETT WEFO
RUN0
HTR

10X I O R T
O B U F c3SS

END

77
1 4 1
184 WORD COUNT
SlDl
S2r2
s4,4
Or1
*+2r 1822
22r 1
IQXI 1
2~4 O U T P U T A R E A
082
O r 4
*

ETT -
Or2
06uF14
++lc49-1
*+lr2,-1
+-4’0 lr 1

10x
L N C N T
13077777
=l
LNCNT
LNEST
Q U I T
*+p 1
**r2
**,4

3r4 E X I T rcLINEw

~NEST
T O O M A N Y LI'NES P R I N T E D

$EXITp4

L 2
OBUFIO,++
2 2

56

This scheme begins to take advantage of the ability of the channel

to function independently of the CPU; for example, in LINE, the CPU may

perform any non-I-O operation as the buffer is emptied by the channel

to the I-O device. However, an inherent limitation exists when the

CPU is required to interrogate the status of the channel. If bursts of

I-O occur at infrequent intervals during a program, the CPU would often

be idle while these bursts were taken care of. Interrupts allow the I-O

to be scheduled more uniformly over the processing time.

IV-3.3 Channel Interrupts CPU

Interrupts are automatic hardware transfers and "saves" that occur

when unusual or infrequent conditions result during program execution.

For example, if an overflow occurred during the execution of "a : = b+c",

most machines would automatically reset the instruction counter to a fixed

location in the machine where an error routine resides, Without this

facility, at each add, the careful programmer would have to write the

equivalent of:

.
a := b + c; if overflow then goto error;

where overflow is a Boolean variable set by the add operation when an

overflow occurs and error is the error routine entry. In the same way,

interrupts occur on termination of I-O and I-O errors.

By using interrupts in conjunction with several buffers, channels

can operate almost completely independently of the CPU. The degree of

parallelism obtained depends on the number of buffers, the number of

channels, and the amount of IF0 called for. With a reasonable number

of buffers, the processor should rarely be in a ttwait" loop waiting for

57

a channel to be free. Buffer handling by interrupts by an output routine

can be organized as follows: I

/c-----------------_----_---------------------).1

Empty
Buffe

v
Channel

=.(or I-O
processor)

r

Buffers

A detailed description of such a multiple buffering output routine using

interrupts is given on the following pages. The FAP program also includes

a similarly constructed input routine.

Multiple Buffer Output System Using Interrupts

1. Program, Buffer, and Pointer Organization

ccI--- --__---- -----------------\.

/
/

0 Wrap Around -
0

$B[l] follows $B[n] -\,
/ \

/ \
/ I

Q:

58

&l : next free buffer, or

buffer that will be available first

. .

Q2 : buffer being emptied by channel

The CPU fills buffer Ql and the channel empties buffer Q2 . The

program is organized so that Ql chases Q2 . An interrupt occurs after

a buffer Q2 has been emptied by the channel; the interrupt program

adjusts the Q2 pointer and initiates another output if the- new OB[Q2]

is full. The routine LINE is called from the main program whenever out-

put is required. LI_NE fills OB[Ql] and increments Ql .

2. Flow Charts

LINE : Activated by Main Program

Get word count and block address

Y

c

.

.Move info into $B[Q$
I

T

l nitiate I$;

6Exit
59

Ifi: Initiate I# (subroutine)

ISet up channel command1

Write

--_ Mark output busy
I

6Exit
T2: Output Termination

Activated by a channel interrupt when channel terminates an

output instruction.

Mark output free
I

IMark $N&,l empty 1

60

3. FAP Program

cc I N P U T
I TAPENfl
CAGO S X A

c2

l

c4

C5

+
a CEX

*
I I

Cb

11

S X A
CLA
STA
LXA
CLA
TM1
ZET
TRA
NZT
TSX
ENR
TRA

A2
CEXr2
CEX+l,f'
lr4
C5
P#4
T04
c4
END
QUIT
BUSY1
1104
MSK
c2

I S RUFFL’R F U L L
YES

.

PAC 012 T R A N S F E R I N P U T D A T A
AX7 x,4
CLA OP2
ST0 +*,4
TX1 ++102#“1
TX1 ++l,YPI
TXH i-4r40-14

LXA
ZAC
STP
TIX
AXT
SXA

PB4

T04
*+2r4rl
N*4
Pr4

MOVE POINTER Pl

NZT
TSX

BUSY1
11~4

AXT
AX7
TRA

**,2
**,4
0414

SXA
LX0
CLA
‘TM I
STA
R T O I
R C H I
CLA
ST0
STCI
AX7
TRA
EJECT
TRA
SXA
STQ
LGR

Cb4
PI4
Tr4
C6
ICOM

I N I T I A T E I N P U T

ICOM

Tl
11
BUSY1
++,4
1?4

*+1 IYPUT I N T E R R U P T
T12r4 -
MQ
2

61

ST0
STZ
LX0
TXH
TXH

T 1 3 C L A *
SUB
TZE
LX0
CLA
SSM
ST0
71X
AXT
SXD
CLA
TM1
TSX --.

Tll CLA
LGL
LDQ

T 1 2 AXT
RCT
TRA+

*
ENCF STL

STZ
TRA

RED AXT
BSRI
RTDI
RCHI
T C O I
THCI

* TRA
T I X
STL
THA

*
Q U I T L X A

ZET
TRA*
TRA+

AC
BUSYI
1 0 . 4
EWDFIYG?
REOr4,l
ICOM
F I N I S
ENDF
PI4
TIY

. .

Tr4
*t2rY*l
NP~
P14
T14
*+2
II,4
AC
2
MQ
+*,4

M A R K S U F F E R F U L L

10

END
BUSY1
Tll
3r4

ICOM
*
it2
T 1 3
RED+lr4,1
ERR
ENDF

CEX+b4
ERR
2~4
3r4

I S N E X T B U F F E R E M P T Y
YES

E N D O F F I L E

REIJUNOANCY C H E C K E R R O R

62

* O U T P U T
0 TAPENO
L I K E S X A

L 2

*
L 4

L 5

+

l

.

*

SXA
SXA
CLA+
ALS
ST0
CLA
STA
LXA
CLA
TPL
NZT
TSX
EN9
TRA

PAC
CLA
ST0
POX
AXT
CLA
ST0
TX1
TX1
TIX

LXA
CLS
ST0
T I X
AXT
SXA

NZT
TSX

LEX AXT
AXT
AXT
TRA
EJECT

IO SXA
LXQ
CLA
TPL
STA
STD
WTOO
RCHO
CLA
STO

ST0

B3
LEXr 1
LEX+lr2
LEX+2,4
lD4
18
WC
2r4
L5
0~4
SP4
L 4
BUSY0
1014
MSK
L2

012 T R A N S F E R O U T P U T D A T A
WC --'
S#4
011
0#4
es,4
012
*+1r2r-1
i+1,4r-1
*-4,1,1

9~4 M O V E P O I N T E R Ql
S84
S?4
*t2r4rl
MR~
Q&4

BUSY0
1014

+*,l
r*,2
**,Y
3r4

L684 INITIATE OUTPUT
Q14
SB4
Lb
OCOM
OCOM

OCOM
T2
13
BUSY0

,

63

Lb AXT
TRA

*.
T 2 TRA

SXA
STQ
LGR
ST0
STZ
ETTO
TRA
LX0
ZAC
STP
71X
AXT
SXD
CLA --.
TPL

T 2 1 TSX
CLA
LGL
LDQ

T 2 2 AXT
RCT
TRA*

*
ETP RUN0

H T.R

+*,4
1@4

l +1
T22~4
MQ
2
AC
BUSY0

ETP
414

s14
++2r4,1
M14
Q#4
SPY
*+2
10~4
AC
2
MQ
**,4

12

T 2 1

. .

OUTPUT IN T E R R U P T

M A R K RUFFEK E M P T Y

I S N E X T BUFFER F U L L
YES

64

N EQU
M EQU
WC PZE
ERR PZE
P P Z E
Q PZE
ENC PZE
BUSY I ‘PZE
B U S Y 0 P Z E
ICOM IORT
OCOM I O R T
MSK PZE
F I N I S WI
MQ
AC

*

T
*

S
+

191
192
193
194
091
092a
093
094

PZE
PZE

PZE 151
PZE 102
PZE 1 0 3
PZE 184
SYN +

PZE QBlP4
PZE 062rrO
PZE 083~~0
PZE OB4r00
SYN t

BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
EN0

14
14
14
14
2 2
2 2
2 2
2 2

4
4

N?PN
MPBM

++,,14
+*pp*t
3rd
1rFINIS

N U M B E R O F I N P U T B U F F E R S
N U M B E R O F O U T P U T WFFERS
L E N G T H O F O U T P U T R E C O R D
F L A G S E T BY R E O U N O A N C Y E R R O R
I N P U T T A B L E P O I N T E R S

*O U T P U T T A B L E P O I N T E R S
F L A G S E T B Y E R R O R C O N D I T I O N
F L A G O N I F I N P U T C H A N N E L B U S Y
F L A G O N I F O U T P U T C H A N N E L B U S Y

I N P U T B U F F E R T A B L E

T A B L E O F O U T P U T B U F F E R S

65

For computers with several channels, there is the possibility of

interrupts from different sources occurring simultaneously. To handle

this, there must be hardware or software provision for determining

priorities of interrupts and storing pending interrupts in a priority

queue. It is the task of monitor or supervisory programs to administer

these interrupts correctly.

Iv-k. I-O Processors

The next level of sophistication after channels is the use of sepa-

rate I-O processors to process I-O. In this context, a channel is

a crude I-O processor. With I-O processors that approach the power

of a computer, I-O data can be edited, checked, and manipulated before

it reaches the central processor; that is, all the I-O housekeeping

tasks can be delegated to the I-O processor. An I-O processor can

be a specifically designed unit for a particular machine, as in the DEC

PDP-6 system, or it may be another computer attached to the main machine,

as in the IBM 7090-7040 direct-coupled system.

IV-~. Experimental Comparison of Several Methods

of I-O Organization

Several methods of organizing I-O for the scanner portion of an

experimental ALGOL compiler on the IBM 7090 were examined by N. Wirth.

The basic problem is illustrated below:

66

b Scanner
*

ALGOL Source
Code

. . Input Copy
plus some

w generated
1 f

ALGOL
information

Compiler
c

*
Compiled

code Core

--.

For the experiment, 630 card records were put on tape as the input and

then compiled into core producing an output tape (5,5508 machine lan-

guage instructions were compiled). Four I-O schemes were investigated:

A: No Buffers

1 Channel

CPU interrogates channel

B:a 1 Buffer

1 Channel

k:

CPU interrogates channel

1 Buffer

2 Channels (one for input, other for output)

CPU interrogates Channel

D: 4 Buffers

2 Channels (one for input, other for output)

Channel interrupts CPU

(FAP program of section IV-3.2.)

67

Test Results

Method

Compile Time
(Seconds)

*Comparison

Length of
I-O Program

Total
Buffer
Length

A B C

16.11 12.12 7.05

1 1033 2.29

268 518 5r8

0 448 448

D

6.31

2a55

2448

* The comparison gives the ratio of the Compile Time of A to that of
B, c, and D e

For this particular application, the greatest gain is for method C where

separate channels are used for input and output. The multiple buffering

scheme is marginal here. However, the I-O occurs uniformly over the

processing time in this experiment. It is predicted that D would show

a greater gain for applications where the I-O occur in bursts.

IV-~. I-O and Systems Programming
.

Today the applications programmer seldom worries about the detailed

scheduling and programming of I-O. In fact, it is very difficult, if

not impossible in some instances, for the user to gain access to the

machine I-O commands. Monitor programs carry out the details of the

'I-O tasks requested, even at the assembly language level for some sys-

tems. Therefore, most I-O programming for computer systems is carried

out "centrally" by the systems programmer.

68

v. SUPERVISORY PROGRAMS (MONITORS)

V-l. Monitor Tasks

Historically, monitor or supervisory programs were developed to en-

sure the continuous operation of computer systems with little or no human

intervention. As systems became more complex,monitors assumed the respon-

sibility of scheduling and allocating computer resources, such as storage,

channels, I-O units, and processors. To accomplish these tasks, it is

necessary that ultimate control within and among user jobs resides in the

monitor.

Monitor systems perform the following general functions:

--.
1. Job-to-Job Control

This consists of the automatic termination and initiation of

jobs. Jobs may be terminated "naturally" or on error conditions;

termination tasks include sign-off accounting, closing of files,

and compilation of job statistics. Job initiation includes sign-

on accounting and interpreting user monitor control commands for

opening files and program loading.

2. Accounting*

Records of use of the computer system components during a job

are kept and the user is charged accordingly.

3. Program Loading and Merging .

Prior to or during execution, user programs and subroutines must

be loaded into storage and linkages established among them. The

monitor allocates storage to the programs, loads them into storage

performing the necessary address relocations, and sets up linkages

among the programs so-they may communicate with one another.

69

4. Accessing and Maintenance of Library Programs

Most monitors maintain a library of systems and applications

programs that may be "called" by a user; these include compilers,. .

assemblers, I-O routines, and common mathematical functions. Load-

ing and merging, and inserting and deleting library programs are

handled by the monitor.

5. I-O Processing

In order to maintain job-to-job control and to obtain optimum

use of I-O facilities, most modern systems delegate all I-O to

the supervisor-m. These systems often have hardware supervisory and

problem modes of operation. Hardware I-O instructions are "super-

visory" type, that is, only the monitor is permitted to use them.

To perform an I-O operation, the user issues an I-O request to

the monitor which does the actual execution.

6. Error Checking and Recovery

Run-time errors, such as overflow, use of illegal or "privileged"

instructions (e.g., I-O instructions), exceeding run time limit,
.

memory-protect violations, etc., result in interrupts or calls on

the supervisor; the supervisor determines the cause of the error,

- decides whether to terminate execution or not, and produces diag-

nostic information for the user.

7* Interrupt Handling

Monitors are responsible for the analysis and disposition of

all interrupts that may occur during systems operation; this may

include maintenance of pending interrupt queues and priority sched-

uling of interrupt handling.

70

8. Scheduling and Allocation of Resources

When computer resources are insufficient to satisfy the total

demand on them or when it is desired to maintain a high degree of

parallel operation of the system components, resource allocation and

scheduling routines are necessary. These become part of the monitor

program.

This chapter outlines the three basic types of monitors and discusses

some general methods of allocation and relocation which are central to

the above tasks. A separate section describes some approaches to solving

an important control problem for parallel processes.
--.

v-2. Types of Monitors

V-2.1 Batch Processing Monitors

This is the simplest and oldest type of monitor. In this type of

systems, jobs arrive sequentially in "batches" usually from one input

source. Normally, one job at a time is processed; where multiprogramming

is possible, several jobs may be in storage simultaneously and the moni-

tor controls the switching among jobs. Typical conventional monitors
.

are the IBM 7090/70$ IBSYS System1 and the B5500 Operating System2

(multiprogramming).

V-2.2 Real Time Monitors

Interrupts from external devices command the attention of the system

and must be processed within a given time interval. Interrupt times are

unpredictable but several ma.y occur during the processing of another

interrupt. Airlines reservation systems3 and computer control of physics

experiments 4 are applications of this type.

71

The major task of a real time monitor is the handling of interrupts.

In addition, most systems batch process "background" programs while there

are no interrupts pending; on an interrupt, the real time monitor transfers

control from the "background" program to the particular interrupt proces-

sing routine.

V-2.3 Time Sharing Monitors

A time-shared digital computer system5 is "a system from which many

people (or machines) may demand access and expect to receive responses

after short enough delays to satisfy them." Batch processing and real--.

time operations may be included as part of the capabilities of a general

time-sharing system.

The most common method of implementing a time-sharing system is through

multiprogramming where> "several programs are maintained in an active state

(with others probably waiting in a queue), and at various times each is

given control of some part of the computer, until one or another of them

is finished, or until a new task is brought in to replace an older one,

according to some scheduling algorithm. Fast response by the computer

to many users (e.g., 150 to 200 or more) requires that each task be given

a "time slice", and if the task cannot be completed during its "time slice",

that it must be interrupted to allow another task its turn."

A time-sharing monitor has the following demands and requirements: 5

"(1) At any moment in time one may expect to find a great many partially

completed programs, each waiting for a turn at the central processor, an

input-output processor or some other part of the computer.

72

(2) Very effective use must be made of high speed storage, since many

programs must have access to it, but usually only a fraction of these

programs can reside there at any one time.

(3) The overhead incurred in keeping track of the programs which are

partially completed or not yet begun and the overhead incurred in switch-

ing control among them (while protecting each from the others), must be

reduced to a minimum; otherwise, it will quickly become intolerable."

Methods for allocating high speed storage and satisfying requirement

(2) for any type of monitor are discussed in the next section. The papers

on the MLJLTICS system' contain a good discussion and bibliography on time-

sharing.
--.

v-3 . Storage Allocation Methods

Storage may be allocated to a program at the time it is translated,

before execution, or during execution. In the first case, a translator,

such as an assembler, generates absolute addresses for data and instruc-

tions and the entire program including subroutines must be translated at

the same time; merging of independently translated programs can only be
.

done with great difficulty since address conflicts easily occur.

Because storage is allocated after translation in the latter two

cases, the translation must result in a program with relocatable addresses;

e.go, instruction addresses, data addresses, and operand addresses may

all be translated relative to a given base address, commonly 0 . Loading

of programs , parts of programs, or subroutines into storage is done before

or during execution by adding relocation constants to the addresses.

Relocation performed before execution is called static relocation; tieloca-

tion performed during execution is called dynamic relocation.

73

V-3 .l Static Relocation

Static relocation is performed by a relocation loader as the program

is loaded into storage. A number of programs comprising a job may be

translated independently; the relocation loader allocates storage to the

programs, relocates addresses to reflect this allocation, establishes

linkages between programs, and places them in storage ready to be executed.

During translation, flags can be set for each instruction to indicate

which addresses in that instruction are relocatable and which are absolute

(ge. ., immediate type addresses); calls on "external" programs and program

entry points are tabulated so these correct addresses may be inserted at

load time.

The IBM 7090 FAP 7system relocates statically as illustrated below:

Name Address ,

jll Table of entry Points

Name

P:
.

PI+

P2+

TSX 4,

TSX 4,

Exit List (External
or

Transfer Vector

Program

Call on SIN

Call on Ce(S

Call on SQRT

programs)

This is the input to the relocation loader. The loader reads P

and merges the library programs SIN, COS, and SQRT into storage per-

forming the required address relocations; linkages are made using the

. .
transfer vectors:

Program P and Library Programs after Loading

Transfer Vectors

SQRT
D0

SIN Routine

C$S Routine

SbRT Routine

The use of entry and exit point tables and transfer vectors is the most

common method for performing the loading task,

Loading with a relocation loader is a complex and time consuming

job. If a fast assembler or compiler is available, it is sometimes more

efficient to translate and load all programs required by a job each time

the job is run. This is the approach taken in the B5500 operating system.

Conceptually, a computer with base addressing, such as the IBM360,

can perform relocations very- easily. For example, an IBM 360 address is

75

formed from the contents of a specified base register and a displacement

(ignoring indexing):

address = (b, d), where b - base register

d - displacement

effective address := R[b] + d where R[] - register

Translation could occur with respect to the displacement; in loading, a

relocation constant would be inserted in RbD] l This scheme requires that

certain registers be-unavailable for use by the programmer and that the

displacement cover a large address range.

V-3.2 Dynamic Relocation

When a program is too large for main storage and auxiliary storage

is available, some method for dividing the program into manageable se@;-

ments and administering the swapping of these segments between main and

auxiliary storage is necessary. One static technique that has been used

i's the following:

The monitor or translator, at translation time, (or the programmer

when -he codes the problem) divides the program into segments which will

fit into main storage and inserts "segment calls" to bring in new segments;

all segments are relocated statically before execution of the program

begins. This requires that the system (or programmer) know how much stor-

age will be available for program and data at execution time; when several

programs reside in core simultaneously as in a multiprogramming or time-

sharing environment, or when data can be dynamically declared, this -

76

knowledge is not available in general. A more satisfactory method is to

divide the program into fixed or variable size segments, each of which

can be dynamically relocated during execution.

A description and evaluation of this technique as used for the GIER

ALGOL system is given by P. Naur in Reference 8. A typical picture of

the allocation during execution is:

Program
Segments'

Main Storage

Administration
of Program Storage

--_

Data Area

Auxiliary Storage

The data area is dynamically allocated by the program during execution

using a stack mechanism. Programs are divided into small segments so that

there is room for several segments in main storage at any time; segment

to segment transfers are controlled by the Program Storage Administration -

if the required segment is in core, (a table is kept of all segments in

core) the transfer is made; if not, then the segment is brought into main

storage from auxiliary storage. Segments which are unused for the longest

77

times are the candidates for replacement. Naur's conclusions were that

the simple segment administration method used yielded satisfactory results

in terms of run time efficiency and that a significant performance in--.

crease could be achieved by adding a hardware instruction to perform seg-

ment to segment transition (and thus reduce the segment table searching

time).

This ability to insert segments anywhere in main storage during exe-

cution requires that all addresses be dynamically relocatable; addresses

take the form of a pair (s, i) where s is a segment number and i

represents the address within s . (This form of address was originated--.

in the Ferranti ATLAS computer.) During execution of a segment, the pair

(SY i> is translated to the correct absolute address, usually by hard-

ware (however, the GElIRALGOL system does this by software). Some of the

hardware methods for implementing dynamic relocation are described next.

Reference 9 gives a good general discussion of these methods.

V-3.2.1 Ferranti ATLAS Method

. The upper part of the 20 bit machine language address is interpreted

as the page number (page is synonymous with segment here) and the low order

part as the address within the page or line number:

Address

S i
.

+n-++mbits+ n = 11
m=9

The addressing structure thus allows a program of up to 2n pages, each

page consisting of 2m words. -However, in general, main storage consists

.

78

only of 2m+k words, where k<n. Associated with each of the 2k

pages that may be in main storage is a hardware page register. Generation

of the actual address from the relocatable address (s, i) proceeds as
. .

follows:

1. Search all page registers for s.

2. if value(Register[j]) = s then

address := j XZm+ i

(i.e., page is in core)

3. Otherwise, fetch page from drum;

Steps 1 and 2 are performed by the hardware; a hardware interrupt to the
--.

supervisor occurs if the page is not in core.

Example

k=2,m=3
(SJ) = (3796)

Page Registers

ml

RCll

Main Storage

0 x 23:

1x23: ’

2 x 23:

address=2%2 +63 3~2~: .

79

Administration hardware keeps track of page usage; when a new page

is required from the drum and core is full, the page with the least usage

is replaced. The relocation method applies both to data and program.

The programmer sees a "virtual" memory of 2
m+n

words and does not have

any control over the segmenting and dynamic relocation processes.

i

V-3.2.2 Burroughs B5500:

B5500 ALGOL is compiled so that segments consist of ALGOL blocks,

data, and control information. A program reference table (PRT) contains

block and array "descriptors" which point to the core area containing the

segment. Addresses of the form (s, i) are translated by:

Physical address := M[b+s] + i

M: memory

b: base of PRT

Segments are not of fixed length but contain a size limit entry that

enables an automatic check, e.g., if subscripts exceed their declared

bounds. The advantage of making blocks equivalent to segments is that

segments (or blocks) can then only be entered from the top and left either

from the bottom or by a go to statement (ALGOL requirements).

V-3.2.3 Arden, et al. Scheme 5

The scheme developed by Arden, et al., (and implemented on the General

Electric 645 and IBM 360/67 computers) considers a machine address to be

a triplet (s, p, i) rather than a pair (s, i) . Physical address gen-

eration can be illustrated by the following diagrams:

80

Segment Number Page Number Line Number
Address: i I

Segment.L----f
Table

Register

Segment
Table

Page
Table

Memory M

Physical Address := M[M[M[STR+S] + p] + i]

I and R
P i

indicate page table lengths and page lengths so that auto-

matic error checks occur if p > I or i>R
P i'

In this scheme, which is proposed for time-sharing systems, each

user has his own segment table and the STR register contains the segment

table base for the user currently in control; the page and segm.ent table

entries also have an availability bit to indicate whether the page or

segment is in memory or not. The triplet is used since it is anticipated

that pages and page tables will be shared by many users (see section on

Invariant Programs).

81

To save storage references through page and segment tables, several

associative registers containing (s, p, physical page base) can be used.

Address generation then consist of a parallel hardware search through the

associative registers; if a match is found, the line number is added to

the physical page base stored in the register; otherwise, the segment

and page tables must be searched, as before. The associative registers

are controlled by the monitor so that the most frequently used page ad-

dresses are stored there. It appears that this method will be in common

use in the future.

V-3.3 Memory Protection

When user programs run under the control of a monitor, it is impera-

tive that there be hardware and/or software to also control and restrict

the blocks of memory that are available and unavailable to a particular

user. A block, page, or segment of memory may have one of four types of

access allowed:

1.

.

.

2.

3.

Read and Write

This is the "classical" type of access; the block may be

read from or written into - both loads and stores are

allowed. Program data blocks are usually read and write,

Read only

A block may be read but not written into - loads but no

stores. When several programs share the same procedure,

the shared procedure is read only.

Write only

Only stores are allowed to the block.

82

4. Neither read nor write

Both read and write access are prohibited. This protects

independent programs and data from access by other programs.

The IBM 360 provides read write, read only, and neither read nor
-.

write access. A &-bit "key" identifies each memory block; each program

is also given its own "key". For read-write access, program keys must

match memory block keys: an additional fetch protect bit is used for

read-only protection, on the 360/67. Hardware interrupts occur on pro-

tection violations.

Segment and page table entries have length indicators indicating

the segment or page size; these are checked during physical address com-
--_

putation to further check for memory protect violations.

V-3.4 Invariant Programs

In the early days of computer programming, there was much emphasis

on computer instruction codes that modified themselves during the compu-

tation. For example, to compute a sum, the following self-modifying in-

struction sequence in MAP could be used:

Initialize
.

LOOP CLA *+3
ADD =l

ST0 *+1

ADD A

ST0 SUM

-end test-

TRA LOOP

SUM BSS 1

A BSS 1

BSS 100

83

Later, the use of index registers to store and compute addresses made

instruction self-modification unnecessary. Looping and subroutine trans-

fers, the two principal areas where programs might have to change them-

selves, can be accomplished easily with index registers:

1.

CM> 1)-

Looping:

The loop: "for i := 1 step 1 until M do S"

can be written in MAP as:

CLA M

ALS 18
STD B

AXT 1, 1 --'

L

S

A TX1 *+1, 1,l

B TXL L, 1,*

2. Subroutine Transfer and Return

TSX SUB,4 SUB SXA
.

L AXT

TRA

LA

-x*,4

0

The current trend is to eliminate self-modifying programs. In multi-

programming and time-sharing systems, invariant procedures, that is,

procedures that do not modify themselves, are shared by many programs

(page and segment tables of several programs point to the same area for

these procedures). The invariant procedures may be library programs of

several different types - evaluation of mathematical functions, sorting

routines, editing and formating routines, etc. It is these invariant pro-

cedures that must be read-only protected.

84

v-4. Loosely Connected Parallel Processes 10, 11, 12, 13

To achieve faster speeds and allow computer-to-computer communication,

computer systems designers connect several independent processors to common

memory banks and control circuitry, and run these in parallel. This in-

cludes central processors, I-O processors, data channels, and special

purpose processors, such as a floating point arithmetic processor. With

this type of arrangement, more than one program and parts of a single

program can be executed in parallel and communicate with each other.

In general, we have many processes operating in parallel and communi-

cating with one another by means of common variables. In such a situation

it is necessary to ensure that no conflicts arise in accessing these vari-

ables. Two examples of these loosely connected processes should clarify

these ideas:

1. I-O processing

An I-O area in storage (or buffer area) ma.y be filled or emptied

by the central processor or by I-O processors. The system must be

programmed so that the common variables, the I-O area, are not accessed

by more than one processor at a time. One special method for this case
.

is the multiple buffer system described in chapter IV.

2. General file Processing

When several central processors have access to a common file, such

as a payroll, accounting, or inventory file, access must be restricted to

one processor at a time in order to maintain accurate files; if not, it

is possible for the same item to be updated simultaneously by more than

one processor and only one of the updates would then be recorded instead

of all of them.

85

V-4.1 Programming Conventions for Parallel Processing

Following Wirth, 10 the parallel execution of two or more ALGOL state-

ments will be indicated by replacing the -semicolon separating the statements
N

by the symbol and . For example, to compute xa.b.
i=l ' l

in two parallel

parts, the program (minus declarations) is:

sl := s2 := 0;

for i := 1 step 1 until N + 2 do

sl := sl + a[i] X b[i]

and
--.

for j :=Ni2+1 step 1 unt,il N da

S := sl + s2

10A matrix multiplication program computing A := B X C, where all

elements of A can be computed simultaneously is:

integer array A[l:m, l:n], B[l:m, l:a], C[l:l, l:m];

procedure product(i, j);

value i, j; int,eger i, j;

begin

integer k; real s;

S := 0;

for k := 1 step 1 until & do

S := s + B[i, k] X C[k, j];

A[i, j] := s

end product;

86

procedure column(i, j);

value i, j; integer i, j;

product(i, j) and

if j > 1 then column(i, j - 1);
. .

procedure row(i);

value i; integer i;

column(i, n) and

if i > 1 then row(i - 1);

row(m)

V-4.2 The Control Problem for Loosely Connected Processes

The problem and its environment can now be stated more precisely.

We are given several sequential processors which can communicate with

each other through a common data store. The programs executed by the

processors each contain a "critical section" (CS) in which access to the

common data is made; these programs are considered to be cyclic. The

problem is to program the processors so that, at any moment, only one of

the processors is in its critical section; once a processor, say A,

enters its critical section, no other processor may do the same until A

has left its CS .
-

The following assumptions are made about the processors:

1. Writing into and reading from the common data store are each

undividable operations; simultaneous reference to the same location

by more than one processor will result in sequential references in

an unknown order.

2. Critical sections may not have priorities associated with them.

3. The relative speeds of the processors are unknown.

There are two possible types of blocking which the solution to the

problem must prevent:

1. A program operating well outside its CS cannot then be blocking

another program from entering its CS .

2. Several programs (or processors) about to enter their CS's can-

not, by an "after you" - "after-you"“ type of intercommunication,

postpone indefinitely the decision on which one actually enters.

We will now try to develop solutions to the problem and illustrate

some of the pitfalls that exist.

V-4.3 Solving the Problem

The problem will be restricted to 2 processors, each with its own

Processor 1 Processor 2

1. Example 1

begin integer turn; turn := 2;

Pl: begin Ll: if turn = 2 then=& Ll;

CSl: turn := 2;

program 1; _go to L1

end and

P2: begin L2: if turn = 1 then go to L2;

cs2; turn := 1;

program 2; go to L2

end

end

88

Unfortunately, neither Pl nor P2 may enter its CS twice in succession;

the program insists that they enter alternately.

2. Example 2
. .

An attempt is made to avoid the mutual blocking in example 1 by

defining two common variables, Cl and C2 .

beginB o o l e a n

Pl: begin

--.
end

P2: begin

end

end

Cl, C2; Cl := C2 := true;

Ll: if 1C2 thenEt Ll;

Cl := false; CSl;

Cl := true; program 1;

and

L2: if 1Cl thenEt L2;

c2 := false; CS2;

c2 := true; program 2;

When Cl or C2 is false (true), the corresponding process is inside- -

- (outside) its critical section. The mutual blocking of example 1 is now

not possible but both processes may enter their CS's together; the latter '

can occur since both.programs may arrive at Ll and L2 together with

Cl = c2 = true.

3. Example 3

The mutual execution of example 2 is avoided by setting Cl and

C2 false at Ll and .L2 respectively:

89

begin Boolean Cl, C2; Cl := C2 := true;

Pl: begin Al: Cl := false;

Ll: if 1C2 then _go

CSl; Cl := true;

program 1; Al

end and

P2: etc. . . .

end

The last difficulty has been resolved but mutual blocking is now possible

again. Cl may be set false/ at Al at the same time that C2 is set

false at A2:/ in this case, both Pl and P2 will loop indefinitely

at Ll and L2 .

true after testing whether they are false at Ll and L2 .

--.

The obvious way to rectif'y this is to set Cl and C2

4. Example 4

begin Boolean Cl, C2; Cl := C2 := true;

Pl: begin Ll: Cl := false;

if 1 C2 then begi,n Cl := true;

end;

CSl; Cl := true;

program 1; E to Ll

end and

P2: etc.----

end

Unfortunately, this solution may still lead to the same type of blocking

as in the last example; if both processes are exactly in step at Ll

and L2 and their speeds are exactly the same for each succeeding

instruction, the same loop as before will develop around Ll and L2 .

90

The above attempts

problem. The following

begin integer

Cl := c2

PI: begin

.

illustrate some of the subtleties underlying this

solution was first proposed by Th. J. Dekker: . .

turn; Boolean "Cl, C2;

:= true; turn := 1;

Al: Cl := false;

Ll: if 1 C2 then

turn = 1 then go to Ll;

Cl := true;

Bl: if turn = 2 therqoo Bl;

end

--.

end

CSl; turn := 2;

Cl := true; program 1;

and

P2: etc. ---

end

Cl and C2 ensure that mutual execution does not occur; "turn" ensures

that mutual blocking does not occur.

Dijkstra
11

. has developed a solution to the more general problem where

there are n processes, instead of only 2, operating in parallel. If

it was further stipulated that no individual process be indefinitely

blocked, both the above solution and Dijkstra's solution would fail; for

example, if in Dekker's program, the speed of processor 2 is much greater

than that of processor 1, it is possible for processor 1 to loop inde-

finitely at .Ll while processor 2 executes its cycle continuously. This

problem is considered in Reference 13.

91

V-4.4 The Use of Semaphores

While Dekker's and Dijkstra's programs solve the given problem,

there are, nevertheless, two unappealing features of them:

1. The solution is mystifying and-unclear in the sense that a

simple conceptual requirement, mutual exclusion, leads to cumber-

some additions to programs.

2. During the time when one process is in its critical section,

the other processes are continually accessing and testing common

variables; to do this, the waiting processors must "steal" memory

cycles from the active one. The result is a general slowing down

of the activeprocess by other processes that are not doing any

useful work.

An improved solution can be obtained by adding two new primitive

or basic operations (Dijkstra 12). These primitives, designated V and

PY operate on integer non-negative variables, called "semaphores"; it

is the semaphores that perform the communications among processes. The

V and P operations are defined as follows:

1. V(S) (S a semaphore variable). S is increased by 1 . This

is not equivalent to S := S+l . eggs, If s=5 and 2 proces-

ses call V(S) simultaneously, both V-operations will be performed

. (in some order) with the result that S = 7; however, if the ALGOL

S := S+l is executed by each process, it is possible for each

process to fetch S when it is 5, increment it by 1, leaving

S 6 - i.e.,= S has only been incremented once instead of twice.

V(S). does the fetch, increment, and store as one operation.

92

2. P(S) (s

if possible.

and remain in

a sema.phore variable). P(S) decrements S by one,

If s = 0, then it is not possible to decrement S

the domain of non-negative integers; in this case, the

P-operation waits until it is possible.

Let us apply these primitives to the mutual exclusion problem with

n processes:

begin integer mutex; mutex := 1;

Pl: begin . . . enda n d

P2: 0.. . l--r.

Pi: begin Li: P(mutex); CSi; V(mutex);
--. program i; go to Li

end and

.

.

Pn: , .

end

mutex = 0 when one of the processes is in its critical section; other-

wise, mutex = 1 . Mutual execution of CS's cannot happen since mutex

. can't be decremented below zero by the P-operation. It should be noted

how much simpler and clearer the solution is when the V and P-operations

are employed. Some more general applications of semaphores will be illus-

trated next.

V-4.4.1 2-Processes Communicating via an Unbounded Buffer

a A "producer" process produces information for the buffer and a

"consumer" process consumes information from the buffer; this is analo-

gous to the situation where-a CPU fills an output buffer and a data

93

channel consumes or empties the buffer contents. The following two sema-

phores are used:

.

n = number of queued portions of output of the producer and input

to consumer,

b =
0 indicates adding to or taking from buffer is occuring

1 indicates buffer access routines are not active.

The critical sections are the buffer access routines, "Add To Buffer"

and "Take From Buffer".

--.

begin intege,r n, b; n := 0; b := 1;

producer: begin L : produce next portion of data;

PTb); Add To Buffer; V(b);

v(n); g-to L
-P

end and

consumer: begin L : P(n);
C

P(b); Take From Buffer; V(b);

Process Portion; go

end
. end

The %wo most common methods of organizing a buffer are the cyclic method

(Chapter IV) and the chaining method, where each portion of the buffer

is an element in a linked list or chain. In the latter case, adding or

taking from the buffer simultaneously can disturb the linkages; the

semaphore b ensures the mutual exclusion of the critical sections,

Add To Buffer and Take From Buffer.

In general, it is always possible to replace a general semaphore

(taking all non-negative integer values) by one or more binary semaphores

(taking 0 or 1). Below, the last example is programmed using binary

semaphores only; the simple integer variable n and the binary semaphore

d are used instead of the general semaphore n :

begin integer

producer:

--.

consumer:

end

b, n, d; b := 1; n := d := 0;

begin: L
P
: produce next portion;

P(b); Add To Buffer; n := n+l;

if n = 1 then V(d);

V(b); e& Lp

end and

begin integer oldn;

Lc: P(d);

Lx: P(b); Take From Buffer; n := n-l;

oldn := n; V(b); Process portion;

if oldn k 0 then go to Lx

end

.
Another solution, called "The Sleeping Barber", presents the actions

of the producer and consumer more clearly:

begin _integer b, n, d; b := 1; n := d := 0;

producer: be,gin L
P
: produce next portion;

P(b); Add To Buffer; n := n+l;

if n = 0 then V(d);

V(b); E to L
- P

end and

95

consumer: begin L : P(b); n := n-l;
C

if n= -1 then

begin V(b); P(d); P(b) end;

Take From Buffer;

V(b); Process portion;

go to Lcw-
end

end

When n= -1 outside of CS execution, the buffer is empty and the

consumer, having noted this, is waiting. The "sleeping barber" story

goes as follows:
--_

Barber's

4
Chair

r-- -9 -c
Waiting Room Barbershop

Customers enter the waiting room and the Barber's room through a

sliding door that only admits entrance to CE of the rooms at a time

(mutual exclusion of customer producer and consumer); the entrances are

designed so that only 1 customer may come into or leave the waiting

room at a time. When the barber finishes a haircut, he inspects the

waiting room by opening the door (P(b) at Lch if the room is not

empty, the next customer is invited in (n k -0; if the room is empty

(n = -l), the barber goes to sleep (waiting at P(d)) . When a customer

enters and finds a sleeping barber, he awakens him.

96

v-4.4.2 Processes Communicating via a Bounded Buffer

The general semaphore is applied to the last problem in a. more

realistic setting - a bounded buffer. N is

and is a global variable in the program. Two

the buffer size, in portions

general semaphores are used:

n = nmber of empty poktbns in buffer

m = number of queued portions

b is a binary semaphore ensuring mutual exclusion of critical sections.

begin integer m9 n,
producer: begin

consumer: begin

end

b; m := 0; n := N; b := 1;

L
P
: produce next portion; P(n);

P(b); Add To Buffer; V(b);

V(m) ; Eta Lp
and

end

Lc: p(m);

P(b); Take From Buffer; V(b);

V(n); process portion;

v-5. References

1. Noble, A. S., Jr. Design of An Integrated Programming and Operating

System. Part I: System Considerations and the Monitor. IBM

Systems Journal 2, (June 1969, 153-161.

2. Master Control Frogram Characteristics, B5500 Information Proces-

sing System. Bulletin 5000-21003-D, Burroughs Corp. May 1962,

97

3. Desmonde, W. H., Real-Time Data Processing Systems: Introduc-

tory Concepts Prentice-Hall, Inc.;N. J., 1964.

4. Clark, R., Miller, W. F., Computer-Based Data Analysis Systems.
. .

Methods of Computational Physics, 5 (1966). Academic Press.

PP. 47-98.

5. Arden, B. W., Galler, B. A., O'Brian, T. C., and Westervelt, F. H.,

Program and Addressing Structure in a Time-Sharing Environment.

J. ACM 13 (January 1966), l-16.

6. A New Remote Access Man-Machine System. AFIPS Conference Pro-

ceedings Fall 1965 Part 1 Spartan Books. pp- 185-247.

7. IBM 7090/7094 Programming Systems, FORTRAN II Assembly Program

(FAP). Form C28-6235-b. IBM Corporation, 1963.

8. Nauer, P., The Performance of a System for Automatic Segmentation

of Programs Within an ALGOL Compiler (GEIR ALGOL). Comm. ACM,

8, 11 (Nov. 1965) 671-676.

.

94 McGee, W. C., On Dynamic Relocation. IBM Systems Journal, 4,

3 (1965) 184-199.

10. Wirth, N., A Note on "Program Structures for Parallel Processing."

Comm. ACM 9, 5 (May, 1966), 320-321, (letter to the editor).

11. Dijkstra, E. W., Solution of a Problem in Concurrent Program-

ming Control. Comm. ACM 8, (September, 1965), 569e

12. Dijkstra, E. W., Cooperating Sequential Processes (Preliminary

Version). Mathematics Department, Technological University,

Eindhoven, The Netherlands, September, 1965.

98

13 l Knuth, D. W., Comm. ACM 9, 5 (May, 1966), 321-322, (letter to the

editor).

14. Dennis, J. B., Segmentation and the Design of Multiprogrammed Com-
. .

puter Systems. J. ACM 12, 4 (Oct. 1965) 589-602.

v-6. Problem

"Prove" that Dekker's solution, to the mutual exclusion problem is

correct.

99

VI. COMPILIZRS - AN INTRODUCTION

The next 3 chapters are devoted to the description of the main

techniques and formal methods that are useful for designing mechanical

languages and their compilers.
. .

VI-l. Tasks of a Compiler

A translator whose input is a language with some "structure' will

be called a compiler; most interpretations of the word "compiler" are

included in this definition. Specific examples will be restricted to

compilers of algebraic languages - ALGOL and FORTRAN being the two most

common ones. L

To understand the meaning of 'structure" in the above definition,

solutions to the same problem are coded in MAP, FORTRA,N, and ALGOL:

Problem

Given: a; 3 bi
i = 1, 100

LOOP

m&

BUMP

EQ

a. if
compute: ci =(bl if

i

MAP Solution

AXT

CLA

CAS

TRA

TRA

ST0

TX1

TXL

HTR

CLA

TRA

L1

A,1

B,l

WEQ

EQ

w

*+1,1,1

L00P,1,101

b7

WQ -

ai > bi

ai 5 bi

i = 1, 100

FORTRAN Solution

DO 100 I = 1, 100

IF (A(1) - B(1)) 10,10,20

10 cm = B(1)

GO TO 100

20 cm = A(1)

100 CONTINUE

100

ALGOL Solution

begin real array A,B,C[l:lOO]; integer i;

for i := 1 step 1 until 100 doP -

C[il := if' A[i] > Bc'i] then A[i] else B[i]

end

The most significant feature that distinguishes these three solutions

(and the languages) from each other is the degree of structure in the

programs. The logical flow of the MAP solution is indicated through

the extensive use of labels and transfer instructions. The statements
--.

are simple, almost independent of each other, and it is easy to decom-

pose them into component parts. In contrast, the ALGOL solution is

highly structured; the structure itself exhibits the logical flow. Each

ALGOL statement must be analyzed into component statements and parts;

for example, in the above solution there is a Boolean expression which

is part of an

ment which is

solution lies
.

arithmetic expression which is part of an assignment state-

part of a block which constitutes the program. The FORTRAN

somewhere between these two extremes.

The basic tasks of a compiler are:

1. ; Recognition of the Basic Parts of the Source or Input Language.

The source program must be exhaustively scanned to recognize and con-

struct its primitive components; these may include identifiers, numbers,

delimiters, and other basic units.

101

2. Analysis of the Structure of the Language.

The scope and constituent parts of the input statements are deter-

mined. This is a recursive process since statements may consist of

sets of other statements each of which again must be analyzed for scope

and constituents. Output reflecting this structure is produced.

3. Processing of Symbolic Names.

The declaration and use of symbols must be linked; this is very sim-

ilar to the symbol processing performed in an assembler.

4. Transformation of Arithmetic Expressions Into a Sequence of Simple

Operations.
I

Arithmetic expressions are analyzed to transform them into sequences

of elementary arithmetic operations. Structure in arithmetic expressions

was a feature of most of the early algebraic languages and many techniques

were developed to analyze them.

5* Storage Allocation.

When the output language is a machine language, real or "virtual"

storage must be allocated for programs and data.

Expressions compilation methods are briefly surveyed in the remain-

der of this chapter. The environment is relatively simple, yet it pro-

vides insights and clues to compilation methods in general.

VI-2. Heuristic Techniques for Expression Compilation'

VI-2.1 Rutishauser (1952)

The expression is repeatedly scanned, each time extracting the

innermost subexpression; elementary arithmetic operations are generated

for the selected subexpression and it is replaced by a single operand

in the original. The first scan, from left-to-right, assigned level

numbers to each element of the expression - operands and
11 fl(increment

level numbers while operators and ")" decrement them. The innermost

subexpressions are defined by the highest level number; the numbers are

updated as subexpressions are replaced.

Example =

Level numbers

Scan No.

1 (Al -:

012 1

appear under the expression elements.

Expression After Scan Generated Operations4

CA2 + A3 >> - (Al x A2 x A31

23 2 3 21 0 12 i 2 1 2 10

4

(A1 + Rl) - (A1 x A2 x A31 Rl := A2 + A
3

012 1 2 1 0 12 1 2 1 2 10

R2 - (Al x A2 x 5’

01 0 12 1 2 1 2 10

R2 - R3
01 010

.+$-
R

010

R2 := Al t Rl

R3 := Al x A2 x A3

R := R2 - R
3

103

VI-2.2 FORTRAN Compiler (1954 +)

The emphasis in the first FORTRAN compiler was placed on producing

efficient code for the 701 computer. Expression compilation was a y-pass

task with the following functions: -*

PASS 1 : Replace all constants and subscripted variables by simple

variables. -go, A + B?3/Y(6) becomes A + BtC!/D

PASS 2 : Insert all parenthesis in expression so that operator

precedences are explicit. e.g*, A + BtC/D becomes

(((A))) + (((Bb(C))/((D)))

PASS 3 : Break expression into subexpressions or "segments." e.g.,

the expression (((A+B) - C)&Dx(E+F)/G) - H+J)) (extra

parentheses are omitted for simplicity) breaks into 6 segments:

1. (A + B)
2. ((A + B) - C)
39 (E + F)
4. (D x (E + F)/G)
5.
6.

((D x (E + F)/G - H + J)
(((A + B) - C)/((D x (E + F)/G) - H f J))

PASS 4 : Triplets of the form (segment no., operator, operand) are

compiled from each segment. The segments of pass 3 are trans-

lated into the triplets:

(1, +, A) (1, +, B)

(2, +, 1) (2 J -> Cl

(3, +, E) (3, +, F)

(4, xt D> (4, x, 3) (4, /t G)

(5 J +, 4) (5 9 'Y HI (5, +., J)

(6 > x, 2) 6 /, 5)

PASS 5 : Repeated scans of the triplets are made-deleting redundant
.

parenthesis, removing triplets corresponding to common subex-

F...,.
104 .

pressions, re-ordering triplets to minimize fetch and stores,

and finally, generating assembly code.

VI-2.3 NELIAC (a dialect of ALGOL 58)2 ..

A tabular technique was used in which pairs of operators, the

current operator (COP) and the next operator (NOP), are used to generate

code in a single scan from left to right.

Example

-C.

> CLA CLA LDQ .

+ ADD ADD ADD ST0 T
LDQ

-+ ST0

X MAY (ADD T)
XCA MPY

. XCA

,AxB+C+D,

ST0

generates UQ
MPY
XCA
ADD
STO

A
B

C
D

The method is very fast but expressions are severely restricted so that

only 1 temporary storage cell T is needed--no parenthetical nesting

of expressions is allowed and only 2 levels of operator hierarchy exist.

The pair (COP, NOP) actually acts as a 2-dimensional switch to branch

to an appropriate subroutine. *

105

VI-2.4 Samelson and Bauer (1959j3

Two symbols at a time were compared as in the NELIAC method but

Samelson and Bauer introduced the push-down store (stack or cellar) for

saving operators and temporary results:' Symbol pairs were used to access

an element of a two-dimensional "transition matrix" which selected the

appropriate action.

Example: (a x b f c x d)/(a - d) is translated into:

Rl := a; R2 := b; Rl := Rl x R2;

R2 := c; R3 := d; R2 := R2 x R3;

--. Rl := Rl + R2; R2 :z a; R3 := d;

R2 := R2 - R3; Rl := Rl/R2;

where Ri are the stack elements.

VI-2.5 Dijkstra (1.960)~

Dijkstra used an extension of the stack techniques of Samelson and

Bauer in his implementation of the first ALGOL 60 compiler. He demon-
-

&rated that the cellar principle is also appropriate for other construc-

tions of ALGOL beyond expressions. Dijkstra's method and modifications

of it form the basis for many algebraic compilers; the next section

presents a general description of it.

VI-~. Compilation of Expressions Using a Stack'

An arithmetic expression can be easily converted to a reverse or

postfix Polish string with the aid o.f a stack. This string can be viewed

106

as the sequence of elementary

original expression.

The process is analogous

arithmetic operations represented by the

to a "T-shaped" railway shunting system with

the shunting or re-ordering performed in-the vertical bar of the "T":

Outgut (Reverse polish s Input (Expression)

--.

Operands take the direct route to the output while operators pass through

the stack. Priorities are defined for the operators to reflect their

precedences; for example:

priority("t") > priority("~") > priority("+") .

Assuming the input string is an arithmetic expression consisting of

operators and operands, conversion to reverse Polish goes as follows:

1. if nextsymbol(input) = operand then pass it through to the output

else

2a. if priority(operator at top of stack) > priority(incoming operator)

then pass stack operator to output else

2b. move incoming operator to top of stack.

w

Example 1

Priority Table

?pFrator 1 -Priority

+ 1

X 2

t 3
I -QO (expression termination operator)

f
1 Stack initialized to L

The termination symbol 1 at the end of the expression is not put into

the stack (a special case); its use is to cause total unstacking at the

end of the expression.

&le 2

108

Parenthesis may be handled by modifying the algorithm. Two kinds

of priorities are defined for operators - a stack priority which holds

when the operator is in the stack and a compare priority which holds with

the operator is the incoming symbol. The priorities are determined so

that a "(" is automatically stacked and remains there until its corres-

ponding ")" arrives; the '1 11")" then causes unstacking to its (.

Step 2a. must b.e changed to:

2a'. if stackpriority(operator at top of stack) > comparepriority

(incoming operator) e l s ethen pass stack operator to output

Example 3

--_

Operator Stack Priority Compare Priority

(0 4

+ 1 1

X 2 2

t 3 3
> 1
1 -0 -03

. Wabc+Xd+~ I

109

11 11
> is never stacked; after unstacking down to 11 11(, both "(" and

If I'
> are deleted. Disecting the operation of the method in this example,

we have:

Incoming Symbol

S

a.

X

(
b

+

C--.
>

+

d

1

. .

After Processing S

Stack output

1

1X

IX(

lX(

IX(f

Lx(+

IX

1+

1+

a

a

a

ab

ab

abc

abc+

abc+X

abc+Xd

abc+Xd+l

Relational operators (5 5, 2, . ..). Boolean operators ("9 "7 -A

and the remaining arithmetic operators can be included by adding their

priorities to the table. Subscripted variables can be handled by treat-

I' 11 11 11
a ing the subscript brackets, [and I, and the commas separating

the subscripts in a similar manner as parentheses. Finally, conditional

expressions, simple statements, conditional statements, and compound

statements can all be transformed into a meaningful sequence of reverse

Polish operations by establishing priorities for the delimiters and using

the shunting algorithm.

The transformed,expression - the reverse Polish representation of

the input string - can directly correspond to a sequence of instructions

for a stack computer (see the stack interpreter in Chapter III).

VI-b: Phrase Structure Methods

These methods use the formal definition of the language directly.

Expression compilation - and compilation in general - is based on a

mechanical parse of the input program which exhibits its structure.

These parses may be conveniently represented as trees:

Expression

a X b + c X d

a + b X c

a X b + c

--.

Tree Representation

I 7

a C

1

\

05
X

/4
+

I
5

a b C

The numbering of the tree elements is performed by a left-to-right and

top-to-bottom systematic count. If the elements are ordered according

to number, the result is their reverse Polish representation. This is

111

not an accident. Precedences are implicit in the formal definition of the

language and the parse automatically produces the reverse Polish.

Present production compilers are based on the heuristic and stack

methods. The more formal phrase strud'ture schemes are of recent origin

and have been applied to several successful experimental systems. They

appear to offer great promise for changing compiler writing from an art

to a science, The next chapter develops the main ideas of Phrase Structure

Programming Languages and their translators.

n-5. References

1. Randall;' B., and Russell, L. J., ALGOL 60 Implementation.

Academic Press, London and New York, 1964.

2. Halstead, M. H., Machine-Independent Computer Programming.

Spartan Books, Washington, D.C., 1962.

3. Samelson, K., and Bauer, F, L., Sequential Formula Translation.

Comm. ACM, Vol. 3, pp. 76-83 (Feb. 1960)~

4. Dijkstra, E. FT., Making a Translator for ALGOL 60. Annual

Review In Automatic Programming, Vol. 3, pp. 347-356 (1963).

k-6. Problems

1. Produce the reverse Polish representation of the following

arithmetic expressions:

0)

(2)

(3)

a + b X ct(d+e)/f

(((aXb+c)Xd-+e)Xf+g)t2

a + 3 X (b-c+d) - i X (j/et2X(b+jXi)+c)

112

2. Expand the priority tables to include the Boolean operators

(3, 3, 1, “, and A), the relational operators (>, >,, 5 5, =I

and b>, and all the arithmetic operators (+, -$ /, +, X, f) .

Note: special cases must be made for the unary operators. Use the

shunting algorithm to translate:

b < - c - (d+e) z eXf+gth>iAIj into reverse Polish.

113

VII. PHRASJ3 STRUCTURE PROGRAMMING LANGUAGES

VII-l. Introduction

Intuitively, a language is a set of sentences or word sequences;

each sentence is formed by concatenating some words in the language vocab-

ulary according to given composition rules. The composition rules are

called the syntax of the language and define its structure. An analysis

of a sentence that produces its structure or syntactical components is a

parse of the sentence. A language is ‘ambiguous if there exist sentences

to which more than one structure can be assigned.

Example 1

--. WE GO TO TOWN

proloun vjrb)repdsitional.

I \ Thrase.. subjsItencTdlcate

A possible set of rules or syntax which underlies this parse is:

pronoun *WE

pronoun + YOU

noun -+ CHILDREN

verb -+GO

verb -+DRIVE

prepositional---+TO TOWN
phrase

subject +pronoun

subject -+noun

predicate +verb

predicate +verb prepositional-phrase

sentence --t subject predicate

114

Examr>le 2

I CAN'T SEE FLYIN FITES
u-1 II 1

I-------------J L---J

The sentence is ambiguous since it can have either of the two indicated

structures.

Usually, a set of rules and a string are given and the question

"Is the string a sentence of the language?" must be answered; if the

string can be parsed, the answer is "Yes". It is rarely required to do

the opposite - i.e ., generate a sentence from a given set of rules.

(In computing, programmers generate strings of code; compilers analyze

them.) A syntactic analysis can be used to help determine the meaning

or semantics of sentences; for example, given the meaning of the subject

and predicate in Example 1, the meaning of the entire sentence can be

determined. Meaning is obtained by associating a semantic or interpre-

tation rule with each syntactical rule. Semantic rules can also indicate

when "meaningless" sentences have been successfully parsed.

These notions will now be formalized, extended, and applied to

* programming languages and compilers.

VII-2. Representation of Syntax

The most common method for expressing the syntactical rules of a

language is by a straightforward list of productions, each of the form:

X4 Y

where x and y are strings over the vocabulary of the language. The

vocabulary consists of non-terminal symbols, such as (term) or (factor),

and basic or terminal symbols, such as begin, else, or + .

115

Example:

(if clause) -+ if (Boolean expression) then

(term) -* (termrX (factor)

ADC 3 XC

The representation used in the ALGOL report, the Backus Normal Form

(Bm), is an abbreviation of the above which allows several productions

to be given on one line and uses : := instead of 4 .

e.g.9 --.(term) : := (factor)\ (term) X (factor)

Both will be used where convenient.

A graphical specification of syntax can be very useful, especially

when writing a compiler. B5500 ALGOL syntax is expressed in a chart'

using the following graphic symbols:

S.ymbol

aNT

clNT

0T

Meaning

symbol definition

reference to smbol

terminal

T: terminal symbol

NT: non-terminal symbol

ExamDle

(term) ::= (factor)~ (term) X (factor)

116

is expressed:

.

)3c Factor
t)

* gives a "coordinate" reference to the point of definition of the sym-

bol in the box.

Another graphical method replaces the coordinate references by dotted

lines pointing to the occurrences of the symbol:
2

I

---------4-------c* Term
I
I

1 b

l X *

A
I v

I-,-- ------- Factor
4

Here the directions of the arrows have been reversed to indicate

reductions rather than productions. A complete specification for ALGOL

using this method is given on the next page.

117

,m - - - ----J

I nmr I!fl
?I+---f .I ; . .

L- l

L ---- _-_ - - -- l

1 ;---e--J I

118

v-n-3. Notation and Definitions3

Capital letters and letter sequences enclosed in l,(ff and (OH

denote symbols; e.g., (term), A, U, (sentence), T . Small letters de-

note strings of symbols. The empty string is designated A . Script

letters are used for sets; e.g., x, Y, 0.

The set 1/ of symbols is called the vocabulary. Y* is the set of

strings generated over If ; formally:

V* = [sls = A or (s = s's with s'E~*, &v))

Example: y = (A, B')

If* = (A, A, B, AB, AA, AAB,....)

@ is a set of syntactic rules of the form:

X + y; x, ya* .

- A string x directly generates y if and only if there exist strings

u, UJ (possibly emtpy) such that x = uvw, y = uzw and v4ze 63 .

This is denoted x j y . e.g., Using Example 1 of section 1,

(verb)(prepositional phrase) j (verb) TO TOWN

x generates y (x 1; y) if there exists a sequence of strings

X = x0’ Xl’ X*‘““’ xn = y such that xi /' xi, i = l,..., n . e.g.,

(verb)(prepositional phrase)2 GO TO TCMN

(sentence) Z WE GO TO TOWN

119

A phrase structure system is a pair
w,@> l A phrase structure

language (v, Y,,a, S) is defined:

‘(b ‘T’9’ s> =

and S z s)

If
T'

the set of basic or terminal symbols, is the subset of 'V such

that no element of VT occurs as the left part of any production,

Example 1
--.

If = [A, B, C, S]

yT = CA, B, C]

8 = (S -+ ABC}

Example 2

If= cs, A, B, c, DJ El

@ = [S 3 AB, B -) CD, C + E)

*a
l �T

= CA, D, El

The generation of 1: from S is

S i AB 4 ACD i AED

l *'L = [AED)

120

Example 3

'If = [S, A, B, C, D, E]

VT = (A, D, El . .

@ = [S --, AB, B -, CD, B 4 DC, C -) E)

&rl 1: = [AED, ADE)

Example 4

Y E cs, A, B, cl

VT = b, Cl

@=[S "A, A "B, A" CA)
--.

l L = ('B, CB, CCB, CCCB, . ..). . or

1: = Cn n=O, 1, ..]c Bl

A is defined recursively here, that is, in terms of itself.

The language derivation or generation can be represented as a tree:

&le 5 Replacing the rule A 4 CA by A + CAC in Example 4,

1: becomes:

1: = [B, CBC, CCBCC, ..)

= iCnBCnln=O, 1, . ..)

121

VII-4. Chomsky's Classification of Languages
4

Chomsky has classified languages according to the type of productions

used to generate them:

Class 0: No restrictions.

Class 1: All productions are of the form:

uAv 4 uav
(u, v may be A);

This is sometimes called context-dependent

only in the context of u, v .

Class 2: Productions are restricted to the form:

A4a

since A + a

CJass 2 languages are also called context-free.

Class 3: Productions are severely restricted to either of the forms:

A 3 B or A 4 BC

with A, C& - VT

BEYT

This class of languages is also called finite-state.- -

There are class i languages which are not in class i+l

(for i = 0, 1, 21, so that the class to which a language belongs is

a some indication of its power. Most programming languages can be (almost)

formulated as members of Class 2.

h-5. The Parsing ProbleJ

A direct reduction of b into a, designated b L a, is an ap-

plication of the production X 4 y, where b = uyv and a = uXv for

*
some u, vd . A reduction of b into a, b La, is a sequence of

direct reductions xi 3 xi+1 for i = O,..., n-l, such that x0 = b,

X n
= a; this is also called a parse.

122

Example 1 A -, BC

B 4 DE

C-)FG

.

,. /

. .

Parsing or reducing the string DEFG gives:

(a) DEFG &BFG &BC &A

or

(b) DEFG LDEC &BC AA

.'.DEFG k A

These reductions may be expressed as trees:

Circled numbers indicate the order of the reduction; the resulting
.

trees areridentica.1. The above difference in parsing, due to the order

of application of the reductions, is trivial and can be eliminated by

introducing a canonical ordering to parses. The canonical parse is the

one that proceeds from left to right in a sentence and reduces a left-

most part of a sentence as far as possible before proceeding further to

the right. Thus, if x = x1x2 and x
1

&&S 1, x2 lS2, then the re-

duction x1 A s1 is performed first. In this example (a) is the can-

onical parse.

123

Example 2 A"X

A"AX

Parse

. . A

The sequence of X's is defined using a left-recursive definition.

Example 3 A"X

A"XA

x x x x
--_ A”

1

We have run into a dead end by

starting the parse from the left.

x x x x
A”

starting from the right.
A

l---i?

A successful parse is obtained by

I I
A

a Here, the sequence of X's is defined by a right-recursive defini-

tion.

Example 4 A"X

A'XAX

x x x x x The parse must start at the middle

A"
I 1 of the string at each stage.

A

A

Example 5 A 4 BYlCZ

B -) XlBX

C 3 xlxc

(>a. . . b)
XXXY x x x z
u
B 5

B c
J I

B c
1 J

A A

This example illustrates how the input string determines the direction

and position of the reductions.
--.

Example 6 A "wx

B -) AY

c 4 BZIWD

D'XE

E 4Yu

(>a.
WXYZ

A

B
I J

C

b >
WXYU WXYU

A E
1 1

B D

L-?;---. c

In (b), the first try leads to a dead end. The second, and suc-

cessful, parse starts with the next reducible substring from the

left, namely YU .

125

The parsing problem is to analyze sentences efficiently; the ideal

system would have a llrecognizer' that recognizes productions and deter- c

mines the correct reduction to be made at any stage.

~11-6. Irons' Classification of Languages According to Parsing

Difficulty>

Irons suggests that languages be classified "according to the com-

plexity of interaction between parses or disjoint subs-kings of a parsed

string." Several examples will illustrate the basic idea of his scheme.

Example 1 =. A 4 XlAX

In the string X X X X X, each X is immediately reduced to A without

any need to examine its surrounding symbols.

Example 2 A --) XB

XZZY
u
B

1 I
B

B

Preceding symbols must be stored until

Y is reached but each reduction can

be made, e.g., ZB L.L B, without

I 1
A examining any symbols not in the re-

duction itself.

126

Example 3 A4 BYlCZ

B + XlBX

c + xlxc

XXXY . . x x x z
U
B 7

B c.

B. c

A A

To reduce X it is necessary to look ahead to the end of the string

to see whether the reduction should be to a B or to a C .

Example 4 --

(>a

A " wx

B -, AY

C --) BZIWD

D' XE

E"YU

The substring WX. cannot be reduced to an A until we have looked

2 symbols to the right of it. This language is then classified as

OSL,2SR . (SL - symbols left; SR - symbols right.)
. SGenerally, Irons classifies a language as n@, m(,]R, where

s = symbol in input string

B = "bracketed" string, meaning a string that has already been

reduced

L = left

R = right

n, m are numbers.

This defines "the extent to which syrfbols surrounding a string

determine its parse. "5 Example 1 and 2 are both OSL,OSR (or "uncon-

nected") languages. Example 3 is OSL but it is impossible to fix m

since one must always look to the end-of the string, whatever its length

may be.

Example 5 A --) WX

B -) AY

C 4 BZlUD

D' XE

E -) YZ

--.
(>a

W YZ

\$I
I
b

(b)““V
I \ E

d

cl

Here, YZ cannot be reduced in isolation. One must first look two

symbols to the left - if a UX is found, YZ can be reduced to E;

otherwise it cannot. This language is then 2SL,OSR .

By classifying a language in terms of its parsing difficulty, we

gain a clearer understanding of what is needed for its automatic analysis.

Some general parsing methods are discussed in the next section.

VII-?. Parsing Methods

VII-7.1 A "Top Down" Method6

A "bottom up" parse of the string s of the language s(Y, vT@,S)

starts with s and looks for a sequence of reductions so that s h;

the parses in the examples of the last few sections have been implicitly

128

of this type. A "top down" parse starts with S and looks for a sequence

of productions such that S z s . The same parsing trees are produced but

they appear with the root at the top in the latter case and at bottom in
. .

the former. The tree of Example 5(a) of the last section

bottom up top down

is:

W YZ

dl
B
\IC

/

,/i\lx Y z '

*

Given the syntax the following ALGOL procedures, in

conjunction with some symbol pointer and storage administration which have

been intentionally omitted, will perform a "top down" analysis:

Boolean procedure E;

E := if T then (if issymbol ('+') then E else true) else- - - -

f a l s e (issymbol (arg) is a Boolean procedure which com-

pares the next symbol in the input string with its argument, arg.)

Boolean procedure T;

T := if F then (if issymbol ('Xl) then T else true) else- - P-P

false

Boolean procedure F;

F := if issymbol ('A') then true else--I
if issymbol ('(') then (if E then- -

(g issymbol (')') then true else false)- - - -
else false) else false- - - -

If the last production in the syntax were changed to E ::= T(E+T, a

straightforward application of the general method will yield the new pro-

cedure for E :
129

Boolean procedure E;

E := if T then true else if E then . . .v--w

For the string, A + A, the procedure E will call T which calls

F which tests for 'A' and gives the result true; E then is true,

but only the first element of the string is in the analysis; i.e., the

analysis stops before completion!

--.

A+ A
u
F
u
T
u
E

If the input string is not a member of the language, T is false and we

can easily get into an infinite loop on E . (The problem is that E&(E) -

see next section on precedence grammars). The usual solution to the prob-

lem is to replace the recursive definition of E by an iterative definition:

True

False

A possible extension of BNF that replaces iterative definitions by

recursive ones is

E ::= T[+T) ,

where the quantity in the braces can be repeated any number of times,

including 0 .

This method has been implemented on several compilers, for example,

the B5000 EXTENDED ALGOL compiler. It has the advantage of being concep-

tually simple. However, it has some severe disadvantages:
--.

(1.) Many false paths can be tried before the correct one is found;

a failure on any path requires backtracking to the last suc-

cessful recognition.

(2.) It is difficult to insert semantic rules, such as code

generators, into the system.

(3.) There is no systematic way to determine the success or failure

of the method, except by exhaustion.

In general, we can classify the "top down" method as being a heur-.

istic solution to the parsing problem.

7
VII-T.2 Eickel, Paul, Bauer, and Samelson

This method deals with productions whose right sides are of length

1 or 2; i.e., U ::= R and U ::= ST are the only forms allowed. No

generality is lost with this restriction since the production

U . .-. .- s1s2 . . . sn can be replaced by the equivalent set (U ::= SIUl,

u1 ::= s2"2' . . ., U
n-l

::= Sn]* . A stack is used to store symbols and

131

reduced. substrings; at any point, only the top two elements in the stack

need be examined. A table of possible symbol triples is built from the

syntax; each element of the table has the form (SlS2S3) n N, with the

interpretation:

If s1s2 are the top two elements of the stack and S
3

is

the incoming symbol of the input string, then we are in case n

and action N is performed.

case
n =I u::= SlS2E @

action
Pop stack and replace SlS2 by U l

n=2 U::=Se@
2 Replace S2 by U in stack.

--.
n = 3 No production exists. Push down stack, insert S

3
in stack,

and read next input symbol.

This is a systematic mechanical method for parsing strings; the

authors claim that the method can handle any unambiguous class 2 language.

Semantic rules could be easily included in the parsing algorithm at the

points where the triples and action are determined. The method should

be able to easily "recover" from syntax errors (an important consideration

- for programming languages). The main disadvantages are the large storage

requirements for the tables and the relatively long time it takes to

scan the table of triples for matches.

VII-7.3 Precedence Methods

Floyd
8

has developed a method of syntactic analysis for class 2

languages, which is based on the use of "precedence" relations between

pairs of terminal symbols. Productions are restricted so they cannot be

of the form:

132

U' 9J2Y9 where U1' v,4’ - 'T) ;

the resulting language is called an operator language. The beauty of
. .

Floyd's method is that it admits a very simple and efficient parsing

algorithm which produces the unique parse.
-
3Wirth and Weber have generalized Floyd's results and shown how

efficient compilers for practical non-trivial programming languages may

be implemented using precedence methods in conjunction with semantic

rules. Wirth and Weber's precedence grammars and their application to

compiler writing is discussed in the remainder of the chapter.
--.

~11-8. Precedence Phrase Structure Systems

~11-8.1 Precedence Relations and the Parsing Algorithm

For all SiSj&, it is either possible or impossible for the string

s.s
lj

to appear in a successful parse. When they do appear, there are

only 3 ways in which they may be reduced:

1.. . . . s. s. . . .I I
reducible

. substring

S.
3

is the first or left most symbol of a reducible substring. Using

Floyd's notation, this is indicated by Si 4 S.
3

2.
I

si s. . . .
1

s .s
lj

is part of a reducible substring.

133

3. . . .
b

si s. . . .
13

I.

'i
is the last or rightmost part of a reducible substring

-% k 4 are 3 precedence relations that may exist between ordered pairs

of symbols.

Example 1 ='

Input String Sl S2 ‘3 ‘4 ‘5 ‘6

Given Relations Q 'G ,+ 3
L-J

Since S2 4 S3’ s3 G S4’ s4 3 S5’ there must exist a symbol up

such that

ul + S,S,f @ .

Reduced String Sl S2 Ul ‘5 ‘6

Given Relations 4 & & .>

:A U2ev such that U 8
2 4 S2UlS5E .

The reduced string then is SlU2S6 l

Let p be any input string, where p = PlP2 . . . Pn ; enclose p'

by the terminating symbol L so that PO = Pn+l = 1; for any symbol

134

i . .

‘>

‘. ,

S&, I < S and S * I . Given one precedence relation between any two

symbols that may occur together, p may be parsed using the following

algorithm:

L
i + i+l

j-i

si + Pk

Reduce
S
J 'i

i+j

i
-U

'-r

S is a stack which contains the partially reduced string at any stage.

P is copied into S until the relation * is encountered, Then, we

retreat backward through S until the beginning of the reducible sub-

string is found. We are then guaranteed (if the string is in the lan-

guage) that there is a production whose right side is S .,"',
3 si l

"Reduce S.,..., S "
3 i replaces the substring by'the left side of that

production.

An ALGOL-like program for the algorithm is:

i := 0; k := 0;

while Pk ,&.'l' do

begin

while Si 3 Pk do

begin

whileS l s

j-l= j do j := j-l;-

$4 := Leftpart(S,.,.. S);
J J I

i := J

end

i := 3 := i+l; S. := P l

1 k'
k := k+l

end

Note that the algorithm involves no backtracking.

Example 2

(entire string) ::= I(string)l

(string) ::= (head)'

(head) ::E ‘1 (head) h I (head)(string)

136

The precedence relations may be described in a precedence matrix M:

The elements M..
13

represent the relation between the symbols Si and

s ;
3

e.g., (head) L 7~

h 3 (head)-m.

(a) Parse using algorithm:

I (head) (head) ' ' I
e 4

.= -> 9

.= &ring) 9
1 I

0 (head) A

(string)

(b) Parse using algorithm:

I 6 A G A A 9

by)ea- thy)ec&
I-
(head) (head)

(head)

(string)

(string)

? I

The parse terminates while the stack contains &tring)Q instead

of &tring)~ This indicates that the string is not a member of the

language.
137

~11-8.2 Finding the Precedence Relations

The precedence relations definitions are first formalized:

1. si k s.
3

if and only if there is a rule U -) xS.S.y .
1J

2. si 4 s.
3

if and only if there-'is a rule U 4 xSiUjy and

3. si + s .
J

if and only if there is a rule U 4 XU S y
kj

and

'k z zs or U+i- Xukuly and uk z zsi

The strings w, x, y, z may be empty in the above definitions.

Example 3

--.
A -+ BC

B "wx

c -) YZ

From definition 1. : B k C, W & X, Y k Z

From definition 2. : BGY

From definition 3. : X~C, X>Y

- The leftmost symbols of a non-terminal symbol U are defined

x(u) = Csl3z(u 5 sz)] .

The rightmost symbols of a non-terminal smbol U are

fqu) = [sl3z(lJ z zs)] .

138

The precedence relations can now be alternately defined:

1. si k sj f) 3F(p: u --) XSiSjY)

PC@

2. Si ~ sj f, ~(p' ' ~ xsiupY)

A s j d(up)

3. Si ~ Sj f) 3p(P' U ~ X”ksjY) A Si’R(uk)

v 3p(p: u +xukuJy) A S@(U,)

The use of these definitions directly leads to an efficient mechanical

algorithm for finding the relations. The sets X and 6% may be found

by using their recursive definition:

L(u) = {sl3z(u 4 sz) v

3z, u’(u -) u’z A Sd(U’>>]

R(u) = [sl3z(u -+ zs) v

3z, u'(u 4 zu' A S&U')))

These are easier to work with than the original definitions; however,

some complex administration is needed to ensure that the program does

not fall into an infinite recursion, for example, in the case where

A4B,B +Aarein .P

Example 4

S 'E

E 4 E + TIT

T 4 T * FIF

F' 4 (E)
139

U vJ> vJ>

S E, T, F, A, (E, T, F, A, >

E E, T, F, A, (5 F, A, >

T T, F, A, (F, A, >

F A, (A, >-.

Precedence Matrix

1 Pi +I *i A iS E T, (>

S

E
. .= =

TI I, I 4 .= II 1 I 1 I
Is

--.

.

(4 4

> l > 9 3

Note that there are 2 relations for the ordered pair (+, T) and

for the pair ((, E) . i.e.,

+ AT and +-GT

(SE and (+E .

A syntax is a simple precedence grammar (or simple precedence syntax)

if and only if at most one of the relations G, 4, and b holds between

any ordered pair of symbols. Thus, example 4 is not a precedence grammar;

it can be made into a precedence grammar by modifying the syntax as fol-

lows:

140

S 4 E, E 4 E', E' -) E' + TIT, T 4 T' ,

T' -) T' * FIF, F -) Al(E)

If none of the relations holds between a-.given ordered symbol pair, then

the appearance of this ordered pair during a parse indicates a syntax

error, i.e., the input string is not a member of the language.

For a practical language, the number n of symbols in the vocabu-

lary is very large (ALGOL has n - 220, - 110 symbols in VT and - 110

symbols in v - v T) . A precedence matrix then has n2 elements. To

compact the precedence information, Floyd' introduced "precedence func-

tions". --.

~11-8.3 Use of Precedence Functions

We try to find two functions, f and g, such that for any ordered

symbol pair ('i' '.>'
3

f(Si) =

f(Si) '

f(Si) '

) *si 5 s.
) tis. e s:
) f) s= 9 sJ

i j

At least 2 functions are required since 2 symbols Si and S. may be
J

related S.R Silj and S.R S
J 2 i' where Rl, R2&, k, Q, 9) and Rl b R2

(see Example 1). If f and g exist, then only 2n elements are nec-

cessary to store the precedence relations and the relations can be found

much faster.

141

Example 5

U,

E

E'

T

T'

F

F'

P

\E' f TIE' - T

E -) E'

E'"T

T 4 T'

T'-'F

F -) F'

IT' X iIT' / F

F' --) PIF' * P

P"A EI(1

VT = CA, (, >, *, x, I, 3-J -3

Y -YT = [E, E', T, T', F, F', P)

. .
c (u) 4

E' T T' F F' P A (

E' T T' F F' P A (

T ' F F ' P A (

T' F F' P A (

F'PA(

F'PA(

A (
I

n(u) P
E' T T' F F' P A)

T T ' F F ' P A)

T' F F' P A)

F F ' P A)

F'PA)

PA)

A >

l’+2

g

\
f

8 >

8A

7p
7*
6 F'
6~

51
5x
4 T'

4T

3-
3+
2 E'

1E

1(

Precedence Matrix

88766 5444 3222 11
(A P* F'F/ X T'T - + E')E

I . .
I
I
9 3 4 3 P *

19 3 9 b 9 +
I
13 3 3 5 9 l >

- - - -
7 .

‘-------

e e I=
I
I

The functions exist when we can permute the rows and columns of the pre-

cedence matrix so that it is divided into 3 areas, only one relation
d
holding per area. This has been done in the above example. If the ma-

trix division is of the form 9 f and g function values

can be assigned starting from the bottom left corner of the array. An

algorithm for determining f and g, if they exist, is published in

the Algorithm section of the Communications of the ACM. 9

Unfortunately, f and g do not always exist; however, it is

often possible to make minor changes to the syntax that allow f and

g to be found.

143

Example 6

T 4 m

P' C

B -, xx\xTITxjTT

This grammar generates list structures,

e.g., Clxxlx3

U

--.

Lo n(v>
PC 3
C c
xT(P XT1

Precedence Matrix

The entry designated by * is empty; therefore, the f and g functions

may be found. However, if we add T 3 () to the production in order

to allow the empty list, the relation (r) holds and * becomes 5 .

f and g then do not exist even though the syntax is still a prece-

dence syntax. If we change the first rule to T + PB)IP), the empty

string is allowed but f and g can be found.

144

A comparison of these results with Dijkstra's priority methods dis-

cussed in the last chapter leads to the following important connection:

The f and g functions for precedence grammars are

exactly equivalent to the stack and compare priorities used. .

for the transformation of expressions into reverse Polish

form.

The contribution here is a formalization and extension of the early

priority ideas so that the following compilation problems can be handled

by general algorithms:

1. determining whether a given syntax is a precedence syntax

2. finding the precedence relations--.

3. computing the f and g functions, if they exist

4. parsing strings in a precedence language in an efficient manner.

An open problem is how to transform a syntax so that it is a prece-

dence grammar. As shown after example 4, it is presently necessary to

add some "artificial" productions to a grammar to make it a precedence

grammar.

. ~11-8.4 Ambiguities

An unambiguous syntax is a phrase structure syntax (the ordered

quadruple ,& = (Y, VT,@, S)) with the property that for every string

x&(c?J) there exists only one canonical parse.

145

Example 7

z -) ucpv

U -) Al3

V 4 BC _.

P ' A

A B C A B C
k-4'

U PV
I I I I

z z

ABC has 2 canonical parses and is therefore ambiguous. A local ambi-

guity occurs where a substring may have more than one canonical parse:

Example 8
--.

z + UClPB

U 4 AB

P ' A

A B C A B C
1) u
U P

1 I

Z
z ?

i.e., local ambiguities lead to backtracking.

Theorem: The parsing algorithm described in this section yields the

canonical form of the parse for any sentence of a precedence

phrase structure language if there exist no two syntactic rules

with the same right part. Furthermore, this canonical parse

is unique.

Proof:

This theorem is proven, if it can be shown that in any sentence its

directly reducible parts are disjoint. Then the algorithm, proceeding

strictly from left to right, produces the canonical parse, which is

146

unique, because no reducible substring can apply to more than one

syntactical rule.

The proof that all directly reducible substrings are disjoint is

achieved indirectly: Suppose that the string Sl . . . Sn contain two

directly reducible substrings Si . . . Sk (a.) and S. . . . S1 (b.),
3

where 1 < i < j < k < ! < n . Then because of a. it follows from thea - - - -

definition of the precedence relations that S 5s
j-l j

and Sk + S
k+l'

and because of b. S G S
j-l j

and S LS Therefore this sentence
k k+l '

cannot belong to a precedence grammar.

Since in particular the left most reducible substring is unique,

the syntactic rule--to be applied is unique. Because the new sentence

again belongs to the precedence language, the next reduction is unique

again. It can be shown by induction, that therefore the entire parse

must be unique.

By associating semantic rules with the syntactical rules of a pre-

cedence phrase structure language, the meaning is also unambiguous.

~11-9. Association of Semantics with Syntax
d
VII+l Mechanism for Expressing Semantics

An environment e is a set of variables whose values define the

meaning of a sentence. T is a set of interpretation rules each of which

define an action (or a sequence of actions) involving the variables in

e . A phrase structure programming language Lp(y, y,,', ', ', '> is

a phrase structure language X(Y, VT,@, S) where 7' is a set of inter-

pretation rules in one-to-one correspondence with the elements of @ and

e is an environment for the elements of T . The meaning m of sentence

147

Xd
P

is the effect of the execution of the sequence of interpretation

rules tl, t2,.*., tn on the environment &, where P 9 P 7**'91 2 P,

is a parse of x into s and t
i

corresponds to pi for all i .

The fact that the precedence grammar parsing algorithm never back-

tracks allows us to attach semantic rules to each syntactical unit or

reduction. It will therefore be assumed that we are dealing with pre-

cedence grammars. Corresponding to the symbol stack S used in the

algorithm, we maintain a value stack V . At the same time the syntac-

tical reduction U 4 S . . . Si is made, a similar semantic "reduction"
3

or rule is obeyed for the elements V. l . l 'i
in the value stack.

3

Example 1 =.

Syntactic Rules Semantic Rules

S"h:=E vv
j
c vi

E -) TIE + T
‘lVj 7 + '*1

T -+ FIT X F

F"h EI(1 V.
J
+ v (Vj - vj+l
2

'i
represents the value associated with the stack symbol Si . The

semantic rule V
3
* Vj + V. corresponding to E 4 E + T can also be

I.

written "value(E) + value(E) + value(T)". The first way makes explicit

reference to the parsing algorithm block "reduce S
j

. . . Sir' . In the

rule V."V , V.
3 Vj J

originally holds the address of the particular vari-

able used. h is a representative for all possible variable identifiers.

148

--
---._ -1- -.

Example 1 gives semantic rules for an interpreter. The next example

shows how semantic rules for a compiler for a stack machine may be asso-

ciated with the same syntax as above.

ExamDle 2

--.

A B
lr:L

Syntax

X'h := E

E 'T

E "E+T

T 'F

T ' T X F

F'h

F'(E)

+ C
4-J

7t-L

Ll
T

. .

Semantics

store h

A

add

A

multiply

load h

A

X

LJ

The numbers indicate

the order of the re-

10 L; ductions.

F

14
T

Obeying the semantic rules, the statement compiles into:

Reduction Step

load B 3

load C 7
load D 10

multiply 11

add 12

store A 13

149

In these examples, it has been assumed that the specific variable

names and values are available. (V
2

of the interpreter, h in the

compiler.) We now show how this may be accomplished,
-.

VII+.2 Handling of Declarations

A common way of putting declaration lists CDL) and statement

lists MJ) into the syntax is illustrated by the following simple

example:

Example 3

--b_
P -+begin DL; SL end

DL -+DIDL, D

SL +SISL, s

begin D, D, D; S end
J

1 L
I ilLI

1 1

The difficulty here is that when the parse reaches the statement S,

the stack contains "begin DL;". What is needed is to retain the

declarations D in the stack so the semantic rules for S may refer
s

to them for addresses or values of specific variables.

Example 4

P +beginP B e n d

PB' --+D; PB'ISL

SL +SjSL, s

PB + PB'

Cm
I

must be included to make the syntax a precedence grammar.)

150

begin D; D; S, S end

SL

55Y
PB'

1
PB'

1

I
PB'

I

PB
--

P

Syntax and semantics for declarations D and variables V are:

Syntax Semantics

D + real I Vj t Cn, I3

V+I Search Stack for I

R (undefined) is the initial value of I .

After reducing to D, the value stack contains a value (Q) and a name;

when the statements S are reduced, they may refer to the values and

names in the stack. In a compiler, the declarations would produce

"reserve storage" instructions.

VII-g.3 Conditional Statements and Expressions

d For a first try, the syntax for a condition statement is defined

in an obvious way:

(conditional statement) ::= if (Boolean expression) then

(statement 1) else

(statement 2)

The reduction to (conditional statement) occurs when the symbol stack

of the parse contains:
if
(Boolean expression)
then
(statement 1)
else
(statement 2) * top of stack

151

If code is being generated by the semantic rules, it is then too late

to compile "jumps" around the statements. The semantic rules should

compile:
. .

code for (Boolean expression)

conditional jump (CJ

code for (statement

unconditional jump (UJ

code for (statement

The AIXOL definition of conditional statement is:

(cond-itional statement) ::= (if clause)(statement 1)

else (statement 2)

(if clause) ::= if (Boolean expression) then

Here, we may attach the semantic rule for (if clause):

Generate CJ R

Set V((if clause)) = Pointer to Generated code CJ Q .

This will take care of the first part of the conditional statement.

Unfortunately, the else is not reduced in time for a UJ; (statement 2)

has been reduced and its semantics obeyed before the entire (conditional

statement) with the else is recognized.

To allow the syntax to correspond with the desired semantics and

vice versa, the conditional statement is further divided:

152

(conditional statement) ::= (if clause)(true part)

(statement 2)

(if clause) ::= if (Boolean expression) then

(true part) ::= (statement 1)..els:e

The desired meaning can then be attached; for example,

V((if clause)) = Pointer to Generated code CJ Q.

V((true part)) = Pointer to Generated code UJ Q

V((conditiona1 statement)) = Insert Jump addresses

in CJ and UJ commands

--.

Conditional expressions can be treated in a similar manner.

VII-9.4 GO TO and Labelled Statements

It is difficult to give a clean set of interpretation rules for the

GO TO statement, GO TO (label) for an interpreter since the (label)

might not have a value at that point. However, a compiler can use:

. Semantics (GO TO (label)) = Search Symbol Table for (label)

and emit UJ instruction

"Chaining" (see Chapter II-4 on One-Pass Assembly) or indirect addressing

can be used to solve the forward reference problem.

The ALGOL definition of (basic statement) is:

(basic statement) ::= (label) : (basic statement)

153

A problem similar to that in conditional statements exists here;

(basic statement) must be recognized and compiled before the label

definition "(label) :" is detected. The syntax is therefore changed

to:
. .

(basic statement) ::= (label definition)(basic statement)

(label definition) ::= (label) :

The location counter can then be assigned to the (label) before the

(basic statement) following it is compiled:

--_

Semantics ((label definition)) =

VII-9.5 Constants

Conversion of catenated symbols representing constants to their

Enter (label) together with

the location counter into the

Symbol Table.

numerical values can be handled by rules of the following type:

Syntax Semantics

(integer) ::= (digit)1 A

(integer)(digit V.

(digit) ::G 01
c lo ' '3 + 'i

vJ + 0

11
3

V ' 1
. j

9 V
j

‘ 9

154

The important point to note in the preceding examples is that it

is both desirable and feasible to explicitly exhibit the natural rela-

tionship that exists between the structure and the meaning of a program-

ming language. An unambiguous syntax then guarantees that every sentence

(program) in the language has one and only one well-defined meaning.

Precedence grammars offer a powerful framework in which to design, ex-

periment with, and implement programming languages. The reader should

consult reference 3 for an example of a language more general than AIXOL

that has been implemented using these methods.

--_
VII-lo. References

1. Taylor, W., Turner, L., Waychoff, R., A syntactical Chart of ALGOL 60.

CO~IIIL ACM 14, 9 (Sept. 1961) 393.

2. Anderson, C., An Introduction to ALGOL 60.

3. Wirth, N., Weber H., EULER - A Generalization of ALGOL, and its

Formal Definition: Part I, Part II. Comm. ACM, Vol. 9, pp. 13-25,

89-99, (Jan/Feb. 1966).
.

4. Chomsky, N,, Schutzenberger, M. P., The Algebraic Theory of Context-

- Free Languates. Computer Programming and Formal Systems, North-

Holland, Amsterdam, 1963.

5. Irons, E. T., Structural Connections in Formal Languages. Comm.

ACM, Vol. 7, pp. 67-71 (Feb. 1964).

6. Leavenworth, B. M., FORTRAN IV as a Syntax Language. Comm. ACM,

vol. 7, pp. 72-80 (Feb. 1964).

155

79 Eichel, J., Paul, M., Bauer, F. L., Samelson, K., A Syntax-controlled

Generator of Formal Language Processors. Comm. ACM, Vol. 6, pp. 451-

455 (Aug. 1963 >.
. .

8. Floyd, R. W., Syntactic Analysis and Operator Precedence. J. ACM,

vol. 10, pp. 316-333 (July, 1963).

9. Wirth, N., Find Precedence Functions. Algorithm 265. Comma ACM,

8, 10 (Oct. 1965) 604-605.

Additional References
--.

1. Brooker, R. A., Morris, D., A General Translation Program for Phrase

Structure Languages. J. ACM, Vol. 9, pp. l-10 (Jan. 1962).

2. Knuth, D. E., On the Translation of Languages from Left to Right.

Information and Control, (1965).

3. Irons, E. T., The Structure and Use of the Syntax-Directed Compiler.

Annual Review of Automatic Programming. Vole 3, pp* 207-227 (1963).

s 4. Floyd, R. W., The Syntax of Programming Languages - A Survey. IEEE

Trans on EC, Vol. ECl3, pp, 246-353 (August, 1964).

VII-11. Problems

CS 236a Feb. 24, 1966
Problem Set III N. Wirth

1. Given is the following set @, of productions:

S-+A
A -+BIBCB
B +DIE

156

Which are the sets of terminal and nonterminal symbols?

Which is the language Ll(vl, q, @$ SP

B
. .

2. Add to the set 1 the production

B" FBG

obtaining I92 . Which are the symbol sets 2 and 2,lfN VT and which is

Tthe lw3w3e L2(y2, $,B,, S >?
L

Use the notation Xn for the n-fold concatenation of the symbol X,

and indicate which values n may assume.

-m_

3. Instead of B -) FBG, add the production
.

B -) FAG

to q, thus obtaining B3 l

(and v3).

Is the string

F F E G G C F D G

a sentence of 1: (V3 3’ q, B7’ S>?

Is it also a sentence of L2 ?

Does 1:
. 3

differ from x2 ?

If so, construct a string which belongs to one language (indicate which)

but not to the other; if not, show that they are equal.

4. Find a grammar which defines a language x such that a string con-

sisting of any even number of B's with any number of A's between

two consecutive B's, is a sentence of the language.

5. Find a grammar defining a language whose sentences have the form

XnYnZn (n = 1,2,...)

157

6.

Starting out at "BEGIN" you choose a path according to the arrows in

the above notework, each time appending the encountered letter to a

letter string, until you reach the "END" point.

Define the set of all strings you can construct in this way, and

call them a language. Which is this language? Use the same notation
--.

as in problem 2.

7. Construct a set of productions which generate the language of prob-

lem 6. YOU shouldnot need to introduce more than 6 or 7 nontermipal

symbols.

8, Consider an arithmetic expression to be defined by the following

syntax:

(expression) -) (term)l(expression) + (term)l(expression) - (term)

(term) 4 (factor)l(term) X (factor)l(term) / (factor)

(factor) --) (primary)l(factor) * (primary)

tprimry) 3 (letter)l((expression))

(letter) -+ AIBICIDIEI~IGIHII~J~K~L~M~N~O~P~Q~R~S~T~U~V~W~~~Y~Z

Which are the values of the priority functions used in the "railway

shunting yard" algorithm for producing a polish postfix notation of

such an expression.

158

Symbol
Stack
priority

Compare
priority

9, Write in B5500 ALGOL and test on the computer a program performing

the following tasks:
--.

a. Read from a card an expression as defined in problem 8. (The

correctness of the input need not be checked).

b. Print this expression.

‘2. Use the "railway shunting yard" algorithm to produce polish

postfix notation of the read expression, and print it on one line.

d. From the result of step c., compile a sequence of "machine instruc-

tions" representing the read expression, and print it (one instruction

. per line). The underlying machine is supposed to be a multi-register

computer, where all its 9 registers are alike. The form of those

printed machine instructions shall be

(result) + (operand)(operator)(operand)

where

(operator) ::= +I-IX//l*

(result) ::= (register)

(operand) ::= (letter#register)

(register) ::= ~1213l415l6171819

159

The sequence shall be such that the result is left in register 1.

Does your compiled code represent the minimum number of instructions

necessary to evaluate the expression, and is your code such that the

minimum number of registers is used necessary to evaluate the expres-

sions on this machine? Use the following expression as test cases:

AXB+C

A+BXC-D

AXB+C-D

AX(B+C)/D*E

A+B-CXD/PF

((AXB+C)XD+E)XF+G

A+ (B+ (ct(D+ @+F) > > >

10. Is the syntax of problem 2a (simple) precedence syntax? The one

of problem 3? For both syntaxes, construct the sets of leftmost and

rightmost symbols and the matrix of precedence relations.

11. Replace in the syntax of problem 2 the symbol G by the symbol F .

Is the resulting syntax (and language) unambiguous? Explain. Make

d the same replacement in the syntax of problem 3, and given the answer

to the same question.

160

Problem Set III: Solution to Problem 9

REG!N CObiMhJT CS 236, NoWINTH. EXAMPLE OF AN fXPRESSIOIJ COMPILER)
INTEGEH I~J,KBU,VBX@RI

. .

INTECEH ARRAY b8C01311, stO291~ F;C[0163lJ
FORMAT FO C32Al)l
LABEL LM.2)
Ft"+"l + 3; Ft "-"I t 3J F["%"] t 5 1 F["/"l + 5) FC"+"l + 7)
Gt"+"l + 21 GC "-"I t 24 GC"W) t 4 ; G["/"l 4 41 GC"+"l + 61
F[“(“l + 1) G[“(“l + 81 GC”)“] + 1 ; G[” “‘I + II

Cl: READ <fO, FOR I + 0 STEP 1 UNTIL 31 DO AtI]) CL21I
WRITE: (Fop F O R I + 0 SrEP 1 UNTIL 31 D O ACI))J

COMMENT PART 11 6 + POLISH POSTFIX (A) i
1 + J + K + X + St01 + 0)
WHILE SCKI f " " DO
BfGIN X + A[114 1 + !+ii

IF,Gt)o * 0 THEN

8EGIN WHILE FtSCt(lJ) GCX) DO
BEGIN BCJI + StKJ) J + 34; K + K-1
END i
IF FCSCKI) = GCXJ THEN K + K-l ELSE
BEGIN K + g+lJ S(K) t X
END

END
END ;
B(J) + " ";
W R I T E (FO, FOR I + 0 STEP 1 UNTIL J Do B[II)J

COMMENT PART28 GENERATE MACHINE INSTRUCTION SEQUENCE)
J+K+RtO)
WHILE 8tJJ # w " DO
BEGIN X t 8[311 3 + J+

I F GCXI I 0 THEN
BEGIN K t K+i) S(K) t X
EN0 ELSE
l3EGIN U t StKII 1F U < 10 THEN R t R-li K t Km11

V t S[KJi lF V < 10 THEN R t R-l; S[KJ t R t R+li
WHITE (<X3,Al 8" +"r3(Xl,Al)>r R~bx,tJ)

END
END ;
WRITE ([D8LJ)i GO T3 41,

L28
END e

161

Ax6+C
AAxC+

1+4x0
l+l+C

A+BxC-0
ABC-D-
1tsxc
1 .- A + 1
l&l-0

AxR-CxD
AQxCDx-

1 t A x 9
2 t C x 0
1 + 1 - 2

AxCB+C)/D*E
--.

AaC+xDE+/
l+B+C
1 + A x 1
2+ D+E
l@-112

A+B"CxD/E*P
AS+CDXEF*/~

ltA+B
2tCxD
3 t E + F
2 t 2 / 3
l+l-2

UAxB+CbD+E)xF+S
AfwC+DxE+FxG+

l&Ax8
l+l+C
1 + 1 x 0
1 + 1 + E
1tlxF
1 t 1 + G

A+CB+fC+CD+(E+F))))
ARCDEF+++++

ltE+F’
1 6 0 + 1
l*C+l
1 + I3 + 1.
1 6 A + 1

162

Problem Set A c.s. 236b
N. Wirth April, 1965

1. Devise grammars G(V,T,P,S) which generate strings according to the
following specifications: . .

a. ab&b) , where x (1n signifies a string of n x's for arbitrary n.

b. strings consisting of a's and b's, such that there is always an
even number of b's in the string, and there are either 0 or more
than 1 a's between any two b's.

c. a(d,b)@

2. Devise a set of ALGOL procedures which analyse strings generated by
the following grammar:

S ..= A
A ii= AaB --_
A : : =B
B ::= BbC
B . .=. . C
C :: = cAc
C l -= d. .

Assume the presence of a Boolean procedure "issymbol(‘x')", which tests
the next symbol of the input string. Choose the names of the procedures
in correspondence with the nonterminal symbols of the vocabulary.

3a Consider the grammars given below. Determine whether they are precedence
grammars. If so,. indicate the precedence relations between symbols and
find the precedence functions f and g; if not, indicate the symbol pairs
which do not have a unique precedence relationship. Also, list the sets
of leftmost and rightmost symbols L and R. .

.
a. S::=E

E :: =F
E ::= FcF
F :: =x

- F ::= GEz
F ::= Gz

G ::= GE,
G : : =a

b. S ::= A
A : : =B
A : : = x,A
B ::= B,y
B : : = Y

Froblem Set A, Solutions

la. S+A
A+aAb \I\

lb. S 3 U 1 aU 1 Ua 1 aUa

u+v 1 w

V+WIbWb

W+A IA
A+Aa I aa

lc. S+A

A-+abBAc I C

bBa + abB --_

bBC -+ Cb

aC 3 a.

2. Boolean procedure S; S := A;

Boolean

A :=

Boolean

B :=

d

c. s. 23611
May, 1965
N. Wirth

procedure A;

if B then

is symbol ('a') then A else true) else false;__1- I _ -
procedure B;

if C then

is symbol (lb') then B else true) else false;- - - -
Boolean procedure C;

C := if is symbol ('c') then

en is symbol ((c') else false) else is symbol ('d');- - -

Problem Set A, Solutions - C.S. 236b

3a.

S

E

F

G

x,
EF Gx a

F Gx a

G x a

G a

9?
E F xs

F x z

x z

3 a

I S E F G c x z a,

= =

= > >

= < <
< = <

I_

= < <
<

> > >

> > >

> > > > > >

> > > > > >

S E F G c x z a,

f 1 1 2 1 2 3 3 4 4

g 1 1 2 3 2 3 1 3 1

G3a is a precedence grammar.

3b:

S

A

B

R
ABXY ABY

BW ABY

BY Y

G3b is not a precedence grammar, since

) <* Y and , G y

1-65

VIII. ALGOL COMPILATION

VIII-l. The Problems of Analvsis and Svnthesis

The tasks of a compiler can be divided into two distinct phases-

the analysis of the source program and the synthesis of an equivalent

object language program. It was argued in the last chapter that these

phases may occur in parallel by obeying semantic rules as the input is

reduced to its syntactic components. Some production compilers for

ALGOL generate object code as the source program structure is analyzed'

but most perform several analysis passes first; the analysis passes

check for errors and transform the input into a more convenient form.

For example, --Naur's GEIR ALGOL compiler2 consists of 9 passes--the first

6 analyze the input and the last 3 synthesize object code:

Pass

1.

2.

30
d

4.

I5*

6.

8.

GEIR ALGOL COMPILER

Task

Check and convert input to ALGOL symbols.

Associate each identifier with an integer.

Analyze and Check delimiter structure.

Collect declarations and specifications.

Rearrange procedure calls.

Allocate storage for variables.

Check operand types. Convert strings to

reverse Polish notation.

Generate machine instructions for expressions.

Final program addressing and drum allocation.

Rearrange drum segments.

166

Much of the complexity (and challenge) in ALGOL compilers lies in

the allocation of storage for handling block structure, especially

recursive procedures and dynamic arrays. The latter two features make

it impossible to compile pure machine language addresses for variables.

Instead, what is needed is the generation of calls to run time adminis-

tration routines (RTA) that allocate storage and compute addresses.

Assuming a stack computer, this chapter discusses one particular RTA

scheme that correctly reflects the dynamic behavior in an ALGOL program;

most of the material may be found in Reference 1. The reader should

review the discussion of assembler block structure in Chapter II.
--.

VIII-2. Run Time Storage Administration

Execution of an ALGOL (block) requires that storage be allocated

for its declared variables and temporary results. Temporaries present

no problem since they are automatically created and destroyed in the

run-time stack. During compilation, reduction to a (block head) causes

the generation of the code BLOCKENTRY(bn, n), where n is the amount

of space to be assigned for variables (obtained from the variable declara-.

tions), bn is the block number, and BLOCKENTRY is a RTA subroutine

that performs the storage allocation. An address for a variable is

produced as a pair (bn, on), where on is the order number or address

relative to the base of the variable storage area for block bn . The

block number bn indicates the level or depth of nesting of the block.

A call to the RTA subroutine BLOCKEXIT is produced at the end of the

block to release the storage.

167

Example 1

Program Skeleton Generated Code

A: begin real al9 a2.'..q9 an; BLOCKENTRY(1, n).

B: begin real bl,.. .,b,;
. .

.-

end B; BLOCKEXIT

C: begin real cl' c2,...,cp;
.

& begin dl'. . .,dq;
.

BLOCFNTRY(2, p)

BLOCKENTRY(3, q).

end D

end C

end A --
.

BLOCKENTRY(2, m)

BLOCKEXIT

BLOCKEXIT

BLOCKEXIT

%
has the address (3, k) 9

(a) During execution of the block labeled B BLOCKENTRY(1, n)

and BLOCKENTRY(2, m) have been invoked and the storage is

allocated as follows:

I 1 n block mark

block mark

Variable Storage

168

(b) After entry into block D, the variable storage has been

re-allocated:

Variable Storage

mark for A

mark for C

mark for D

- Note the space for B has been released. The dotted arrow indicates

the change in I after BLOCKEXIT for D . To locate a symbol,

ak = (1, k), while in block D, we chain back through the block marks

until the bn in the block mark agrees with the bn in the address,

i.e., at the block mark for A; ak is then at the kth location following

the block mark.

Variables may be located more efficiently by adding a block mark

pointer array or display to the scheme described above. Then the address

(bnj on> is translated immediately to display[bn] + on . Example 1 (b)

can be redrawn to indicate the display:

169

--.

i . .
a’
n

2 I P I *

?

+3 I q t

VIII+ Treatment of Procedures

The RTA scheme of the last section must be expanded in order to

handle procedure calls correctly. Ignoring parameters for the moment,

storage for procedure variables can be allocated in the same way as that

for blocks; however, when a procedure is called, two types of information

- are needed:

(1) what variables are accessible to the procedure, and

(2) the return address of the procedure.

The first is given by the static block structure of the program, regard-

less of where the procedure was called from. The second is given by the

dynamic behavior of the program at execution time; both are complicated

by the possibility of recursion. The solution is to maintain two sets

of pointer chains, a static chain or display of the last section, and a

dynamic chain. The static chain determines which variables have currently

170

--

..,

valid declarations; the dynamic chain points to the blocks that have

been activated and not yet completed. Calls to the RTA routines

BLOCKENTRY and BLOCKEXIT are produced for both procedure declarations

and blocks; procedure calls are compiled into transfers to the procedure

BLOCKENTRY . At run time, the RTA's allocate storage, update static and

dynamic pointers, and keep track of procedure return addresses (W .

ExamDle 1

A: begin real alj- .) an;

--.
procedure r;

begin real rljo.oj rm;.

R: rl := 0

end r;

B: begfn real bl,..., bp;

Bl: r

end B;
.

Al: r

end A

171

t Storage Allocation at R when r is called at Bl

Display
or

Static
Chain

*1 n I

al'
,..*..* +n

2 P

bl,.......,b
P

l 2 I m
IN l

RA: return address
of r .

The variables of block B are inaccessible since B and r are at the

same level.

Storage Allocation at R when r is called at Al

c . . , ,

L

Storage allocation for recursive calls are correctly administered by the

same method.

172

ExamDle 2

A: begin real alJ...9 an;

procedure r;

begin real rlj..~j rm;
.

R: r

end r;

Al: r;

end A

r is called at AJ; after r is called recursively for the first time

at R, storage and pointers appear as follows:

2 I m

'Y***.""m

I first call of r

2 I m RA 1

rl'r
m

recursive call at R

The.dynamic chain gives the correct linkage upon return from r; the

static chain makes inaccessible the original set of variables for r l

An additional mechanism is needed for procedure parameters:

173

Example 3

begin procedure P(a); real a;

a := a+l;

B: begin real b;PW

P(b)

end

end-

Normally, the variable b is inaccessible to procedure P since B

and P are on the same block level. However, in this case, b is called

by name and is <herefore known in P .

On entering a procedure, storage is reserved for parameters as well

as the variables declared in the procedure body. The parameter locations

(called (for,mal locations) contain transfers to implicit subroutines which

compute the value or address of the actual parameters; at each use of a

formal parameter inside a procedure, a transfer to the formal location is

compiled (or the formal location could be indirectly addressed). Declara-

tions which are valid at the place, C, of the procedure call are made
-

accessible by regarding the implicit subroutine as a block inserted at C .

Example 4

begin real x;

procedure g(t); real t;

Pegin x := x+t; x := x/(1-t)

end g;

begin real y;

Y := 0.5; x := 1.0;

g(y-0.2 x x)

end.

end

174

- -.

During the execution of g(y-0.2 x x), storage allocation is as follows:

1 1 eI I I

displayb
& x -.

2 I 1 I f

Y

2 I 1

formal location

3 I RA -

>

>
i

*t\
block marker
for implicit
procedure to
compute y-O.2 Xx.

When the program is in the implicit subroutine, the pointers labeled i

are in force; inside g, the i pointers are deleted and display [2]

contains the g pointer.

It is apparent that a great deal of housekeeping must be done at

run time to cope with the full generality of ALGOL. The administrative.

work can be reduced by eliminating the implicit subroutine for some types

of name parameters, such as constants and simple variables, and inserting

their value or actual address in the formal location. Value parameters

can also be compiled in a simple manner so that they appear in the formal

location. To avoid copying arrays, it is generally more efficient to

pass them as name parameters. Arrays have been neglected in the precced-

ing discussion; they present some special problems in storage allocation

and addressing, and are examined next.s

175

VIII&. Arrays

For each array declared in a block, a storage location with address

(bnJ on> is reserved in the variable storage area. The RTA allocates

array storage in a separate area and inserts both a pointer to that area

and some mapping data in (bn, on) . Reference to a subscripted variable

generates a call to a mapping function that computes the physical address

of the element at run time.

One method for organizing array storage is to allocate a separate

area for each row or column. The B5000 ALGOL compiler stores each row

of an array as a linear string. For example, the declaration

real array- - A[l:m, l:n] results in the following run time organization:

bn, on) :

Block or
variable
storage

length field
for bound
testing

Row
Pointers

I

�I n
I

Array Element
Storage

The contents of element A[i, j] is then (((A) + i> + j> .

A second method is to completely linearize the array and store it

in one contiguous area. A[l:m, l:n] is stored All, A12,- ., Aln, A
21'

. . . , A2n,-, Am19 Am2,-,Am (by row). The element A[i, j] has

176

the address (i-l) x n + j - 1 relative to the base of A's storage

area. The general case is treated as follows:

array AILl:ul, a2:u2,. '., J!,:u$

Let A i =ui-Ii+1

The address of A[nl, n2,..., n,] is then:

ll>a2 + b2 - a,))a3 ' '** + bkwl - pk-l))4, + nk - lk

= ((-(nlA2 + l .- + nk 2)Ak 1 + nk l)Ak + nk

- ((.*.(LlA2 + 0.. + Pk 2)Ak 1 + lk &I, + lk

=a-p.5.

B can be computed by the RTA when storage is allocated for A;

a is computed by the mapping function when the element is accessed.

Storage allocation after run time processing of the array declaration is:

Storage of elements of A

. bn, on) :

Block or
variable
storage

A t b-B

mapping
I constants

177

b is the physical address of the first element of A, i.e.,

A[+ 12,***, 'k] l

b - 8 is the address of the (fictitious) element A[O, O,..., 0] .

The physical address of an element is then a + b - @ l

The storage allocation problem for ALGOL compilers has been solved

by a run time interpretive scheme (the RTA's). There is a similarity

between this solution and that of the dynamic relocation problem described

in Chapter V. The paging and segmentation .methods can be conveniently

employed to handle the dynamic allocation problems in an ALGOL compiler
--.

--in fact, the B5000 ALGOL compiler does this.

VIII-5. References

1. Randall, B. and Russell, L. J. ALGOL 60 Implementation.

Press, London and New York, 1964.

2. Naur, P. The Design of the GEIR ALGOL Compiler. BIT 3

x24-140, 145-166.

~111-6. Problems

Academic

(1963 >

C$ 235 B March 31, 1966
Problem Set I Prof. N. Wirth

The purpose of this problem set is to draw your attention to certain

facilities and problems of ALGOL 60 which must be clearly understood

before one discusses the implementation of ALGOL 60 on any computer.

For each of the problems list the output produced by the Hwrite

178

statements". Not all of the programs are correct ALGOL 60, and even

fewer can be handled by the B5500 system. Along with the numeric results,

state in a brief comment what, if anything, is incorrect or at least

controversial. Indicate where the B5500 system deviates from ALGOL 60.

You may do so, but you are not expected to use the computer for

this problem set. If you had to resort to the computer, indicate for

which problems. Give the answers on a separate paper.

1: begin integer i, j, m, n;

i := 3; j := -2; m := 8 + Zti; n := 8 + 2tj;

write (m-j,; write (n)

end

2: begin integer procedure f(x); value x; integer x; f := x + 0.25;

write(f(l.3))

end

3: begin integer i; array A, B, C[l:l];

integer procedure j; begin j := 1; i := i+l end;
.

i := 0; B[l] := 1; C[l] := 3;

for A[j] := B[j] step B[j] until C[j]d o ;

write(i)

. end

begin integer i, k, f;

p r o c e d u r einteger n; begin n:= 5; k := k+l end;

procedure P(n); value n; integer n;

for i := 1 step 1 until n do f:= fxi;

k := 0; f := 1; P(n); write(f,k);

k := 0; f := 1; Q(n); write (f,k)

end

179

5: begin integer i, s; integer array A[O:n];

i := n; 1---3--------
while iz 0 A A[i] # s

comment anything wrong with this?;

end . .

6: begin real x;

procedure g(t); value t; real t;

be,gin t := x+t; x := t/(1-t)end;
X := 0.5;

begin real x; x:= 0.5;

g(x-o.2); write(x)

end;

write(x)

end

7: begin inte,ger array A[1:5], B[1:5, 1:5];

integer i, j;

integer procedure S(k,t); integer k, t;

begi,n integer s; s := 0;

for k := 1 step 1 until 5 do s := s+t;

S := s

comment initialize A and B to:

A = ‘:
3

-2

0

4

-1

2

-3
-1

0

0

write(S(i, A[i]));

writ&&j, A[jl x B[j, jl));

write(S(i, S(j, B[i, j])))

end
180

0 0

1 0

1 0

6 3

-5 9 1

;

8: begin

procedure p(r,b); value b; Boolean b; procedure r;

begin integer i;

procedure q; i := i+l;
. .

i := 0;

if b then p(q, -$I) else r;

write(i)

end;

Phtrue)

end

9: begin procedure C(x); value x; integer x;

begi‘il own integer k;

if i=O then k := x else begin k- - := kx2; write (k) end;

if x > 1 then C(x-1)

end;

i ;integer

for i := 0, 1 do C(5)

end

10: begin integer i;

. real procedure P(k, xl, ~2, x3, x4, x5); value k; integer k;

Q ;begin real procedure

begin k := k-l; Q := P(k, Q, xl, x2, x3, x4)

end Q;

P := if k < 0 then x4 + x5 else Q

end P;

for i := 1 step 1 until 4 do write(Pi, 1, 2, 3, 4, 5))

end

181

11: TERM PROBLEM

You are to write an interpretive program for a simple programming language
to be described presently. The language is designed for simple computa-
tions of the desk-calculator type with immediate response. The computer
to be used is the Burroughs B5500, using a programmed character-input
routine simulating characterwise input from a typewriter. The language
is by no means a complete and very useful tool, but exhibits the basic
features upon which extensions could easily be built.

Description of the Language

The elements are numbers, variables and operators. The numbers are
decimal integers denoted in standard form. The variables are named by
the letters A through Z. Thus there exist exactly 26 variables which
do not have to be declared. There exist the following operators; listed
in order of increasing priority:

--.
$ logical OR

& logical AND

< < = >>z, relational. - (resulting in 1 or 0)

" @ min, max

+ - add, subtract

x/

*

multiply, integer divide

exponentiate

These operators can be followed by a period (*) and are then to be under-
stood as unary operator-s with the following meanings:

$.a = a

8~. a = a

<. a = O<a (same for other relational ops.)
It

l a = a

@. a = a

+. a = a

-. a = 0 - a

x. a = a

/ .a = l/a
*. a = 2*a

182

The standard precedence rules can be over-ruled by use of parenthetical
grouping in the conventional way. Using numbers, variables, operators
and parentheses expressions can be formed , whose resulting value can
then be assigned to any variable through an assignment statement of the
form

. .
v+-Exp;

The multiple assignment shall be admitted and is of the form

~1 tv2 t tvn t&p;

The interpreter shall upon each execution of an assignment print the
name of the variable and the value to be assigned. (This constitutes
the output of the program.) Every assignment statement shall be termi-
nated by a semicolon (;)*

So far we have described Subset ,A of the language.

The language is able to handle vectors (linear arrays), represented as
follows:

[E, F, H]

where E, F through H are expressions. A vector can be assigned to a
variable, but only if this variable has been previously declared as vector.
A vector declaration takes the following form:

v : Exp;

and means that the variable v shall consist of as many elements as the
value of the expression Exp indicates. Upon assignment, the vector to
be assigned must be compatible, i.e., of equal length, with the variable
v . A multiple vector declaration is written as

Vl : v2 : : Exp;

All existing operators are now extended to apply to vectors (c.f. Iverson's
notatiorj,

183

according to the following definitions:

Let a, b be scalars, ,x, y vectors, and 0 a binary operator, then

a 0 x = [a 0 lflt a 0 x2' . l ., a 0 x]- -n

x 0 b = [xl 0 b, x2 0 b, l “'., 2, 0 b]

xoy= h,OY- - -1' $9 l **9 sn O Ynl

Let 2 be a vector and 0 an operator, then

0. x = [o. fEl 0 .If2 0 0 XJ (reduction of x)

where 0. is the unary operator corresponding to the binary 0 .

Expressions involving vectors may, of course, also use parenthetical
groupings. _,

Examples of statements:

X+A+BxC;

Y +--A + [1. 4. g. 16]

z c+. (xxz> (scalar product)

X +*. ([1, A + B 1 + [*. Z, 55]).+ 1

Hints
The implementation of this interpreter requires a combination of what

. usually is called a translator and an interpreter of sequential code.
Instead of having the translator produce a list of code and then have
the interpreter process it after termination of the translation process,
the interpreter immediately processes an instruction when it is issued
by the translator. The implementation of this method is greatly facili-
tated by the absence of conditional and go to statements.- -

Vectors must be created dynamically. The interpreter shall be written
in such a fashion that after the execution of an assignment statement
all storage used for temporary vectors is released again. Upon termina-
tion your program should print out a message indicating how much total
vector storage space has been used up (through permanent vector declara-
tions). This space shall initially include 1000 cells.

An example of a character-input routine is listed below and makes use of
the following declarations:

184

INTEGER CC, WC;

ARRAY cARD[o:141;

LABEL EXIT;

STREAM PROCEDURE CLEAR (D); -.

BEGINDItD;DS-8LIT"";SItD;DS-14WDS END;

STREAM PROCEDURE TRCH (S, M, D, N); VALUE M, N;

BEGIN DI +D; DI tD1 + N; SI + S; SI + SI + M; DS + CHR END;

PROCEDURE INSYMBOL (5); INTEGER S;

BEGIN INTEGER T; LABEL L;

L: IF CC = 7 THEN

BEGIN IF WC = 8 THEN

BEGIN READ (CARDFIL, lo, CARD [*I) [EXIT];

END

ELSE

cc 6

END

WRITE (PRINFIL, 15, CARD[*]; WC + 0

WC +WC + 1;

0

ELSE CC t CC + 1;

TRCH (CARD[WC], CC T, 7);
IF T = " " THEN GO TO L ELSE S + T

END

At the due date, submit

A: A.
B. A

C. A

statement whether you implemented Subset A or the entire language;

syntactic description of the language you implemented;

block diagram indicating the main principles of the system, (this

diagram should not exceed one page);

D. A table of the basic characters of the language and their priorities

(if you used such);

E. A B5500-ALGOL listing of the system followed by

F. The output produced by your system and a test program to be issued

one week before the due 'date. (One will be issued for Subset A; one

for the entire language.)

185

Solution To TERM PROBTLEM

BEGIN COMMENT CLEVE’? TYPEWRI TEH. N.WIHTH hJ4RCt-l 196%
INTEGER R,X, NUMBER;
INTEGER CCr tiCi COMMENT INPUT i'OINTEHSi
INTEGER I; COMMENT TRANSL.AtOR STACK POINTER;
I N T E G E R Ji COMMENT ARRAY STORE POINTER;
I N T E G E R Ki COMMENT wORKSTACK POINTER;
I N T E G E R A R R A Y CARD CO:lYli COMMENT INPUT BUFFER;
I N T E G E R A R R A Y T CO:313; C O M M E N T TRANSLATOR STACK;
A R R A Y SPV tW1273i COMMENT THE WORKING STACK;
A R R A Y A Cm1022J; COMMENT SECt3NOARY ARRAY STORAGE;
I N T E G E R A R R A Y F,G 103633; C O M M E N T PRIORITY F U N C T I O N S ;
L A B E L LlrL2rL3, NEXT, EXIT;

LABEL DIG, NIL, MAX, ARY, GTR, GEO, ADD, VAR, DOT, LBK, LAN, LPA,
LSS, ASS, MUL, LC)R, UIN, S U B , RPA, SCL, LEO, OVD, CMA, NE3, EQL,
RBK, PWR, uMX, UGR, UG[3, UAD, UAN, ULS, UML, UC!R, UMN, USB, ULb
UDU, UNQ, uEL, UPRi

S W I T C H EVALUATE +
DIG, DIG, DIGI DIGI DIG, DIGI D I G , OIG,
OI;, DIGI NIL, MAX, NIL, ARY, GTR, GEQ,

l VARI VAR., V4Rr VAR, VAR, VAR, VAR,
VAR, VAR, DOT, L B K , L4N, LPA, LSS, ASS, _
MUL, VAH, vAW, VAR, VAR, VAR, VAR, VAR,
VAR, VAR, LOR, PWR, SUB, RPA, SCL, LEQ,
NllL, GvD, VAR, VAR, VAR, VAR, VAR, VAR,
VAR, VAR, CMA, RRK, NEQ, FQL, NIL, MINI
NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL,
NIL, NIL, NIL, UMX, N I L , N I L , UGR, UGQ,
UAD, NIL, N I L , NIL, NILI NILr NIL, N I L ,
UADI N I L , N I L , N I L , UAN, N I L , ULS, N I L ,
UML, NI L, N I L , N I L , NILI NxLr NILI NIL,
NIL, NILI UOR, UPH, USB, N I L , N I L , ULQ,
NIL, UQU, NIL, NIL, N I L , N I L , N I L , N I L ,
NIL, N I L , NILI NIL, IJNQ, UEL, NILI UMNi
DEFINE T Y P E = Cl:23 #, LOk = flO~l03 #P UP = [20t103 #i
D E F I N E F L A G = 13811 #, ADR = f30110J at;
D E F I N E VALTYPF = 1 #, AORTYPE 3 2 #, ARYTYPE = 3 #i

= S T E P 1 UNTIL #i

S T R E A M P R O C E D U R E C L E A R CD);
BEGIN DI + 0; OS + 8 LIT” “; SI f I?;, OS a= 14 WCS END i

S T R E A M P R O C E D U R E TRCH (S,M*D,N)i V A L U E M,Ni
: BEGIN DI t 0; DI + DItN; SI + S; SI + SItMI DS + CHR END J

P R O C E D U R E INSYMBOL(I N T E G E R SI
;3”:; ;;TEGE” Ti LABEL L;

= 7 THEN
BEGIN IF WC = B THEN

BEGIN REAO (CARDFIL, 10~ CARDt*l~CEXITlJ
W R I T E (PRINFIL, 15, CARDI*l)J WC + 0

END
ELSE WC + WC+li
cc + 0

END
E L S E C C + CCtli
TRCH (CARDLWCI, CC, T, 7);

186

IF 1 = ” ” THEN GO TO L ELSE S 6 T
EN0 i

P R O C E D U R E ERROR(N); V A L U E h; I N T E G E R Ni
BEGIN LABEL L; COMMENT PRINT M E S S A G E AND RESUME P R O C E S S I N G ;
S W I T C H F O R M A T T E X T +
("PARENTHESES 00 N O T MATCH”)r
C”INCOMPATIRL~ ARRAYS’%
("INCOMPATIBLE ASSIGNMENTwh
("ASSIGNMENT TO UNKNOWN QUANTITY”)r
("ILLEGAL LIST E L E M E N T ” 1 c
(“ILLEGAL oPfRATOR’%
("ARRAYSPACE EXHAUSTEO")r
C"DIVISION BY ZERO");

W R I T E (TEXTtNl)i
FOR K c K S T E P -1 U N T I L 6 4 0 0
I F SCKI,TYPE = AWYTYPE A N D StKl.FLAG = i THEN J + SLKl,LOW;

t: IF R % ";" T H E N B E G I N INSYMROLCR)i G O T O L E N D I
I * 0; GO TO Lli

E N D i
P R O C E O U R E FETCH;--'

BEGIN VtK] + VLSCKl,ADRli SLKI 6 SCSIKl,AORl EN0 i
P R O C E D U R E UNARY (FCTr NULL);

R E A L P R O C E D U R E FCTi R E A L NULLi
B E G I N I N T E G E R L..UIX; REAL E; E * NULL;

I F SCKl,TYPE = AORTYPE T H E N F E T C H ;
IF SCKl,TYPE = A R Y T Y P E T H E N
B E G I N L c SLKl,LtlWi U a- SLKl,UPi

IF StKl.FLAG = 1 THEN J + Li
FOR X * L THRU U 00 E * FCT CEI ACXl)I
VIK] * Ei SCKl,TYPE c VALTYPEi

E N D E L S E
VCKI 4 FC'f (NULL9 VtKl)i

E N D UNARY ;
P R O C E D U R E HINARY CFCT)i

R E A L P R O C E D U R E FCTi
B E G I N

. I F SCKl,TYPE = A D R T Y P E T H E N FETCH;
K + K-1;
I F StKl,TYPE = AoFTYPE T H E N FETCH;
I F S[Kl,TYPE = A H Y T Y P E T H E N
B E G I N I F SIK+lI,TYPE = A H Y T Y P E T H E N

B E G I N I N T E G E R LlrL2dld20XdI.
Ll + StKl.LOWi Ul * SIKl.lJPi L2 + StK+ll.tOW;
UT f SCK+ll,UPi Y * L21
I F Ul-Ll % U2-L2 T H E N ERRORC 1);
Ic’ S[K+lI.FLAG = 1 T H E N J + L2i
IF StKJ,FLAG = 1 T H E N J * Lli
SLK'I,LOW + JI SfK].UP + J+Ul-Lli SLK],FLAG + ii
FOR X l Ll THRU Ul D O
B E G I N A C J l + FCTtACXl, ACYI); Y + Y+li J * J+l EN0 f

E N D E L S E
B E G I N I N T E G E R LIUIX~ R E A L Yi

L 6 SCKl,LOWi U + SCKl,UP; Y e- VCK+l]I
IF SIKlrFLAG = 1 THEN J l Li
StKl,LOW + Ji- SCKl,UP + J+U”LI SLKl,FLAG * 1;

FOR X + L THRU U D O
BEGIN AI Jl + FC'I CACXlr Y); J 6 J+l END

END
E N D E L S E
B E G I N I F SIK+lI.TYPE = r\RYTYpE T H E N

B E G I N I N T E G E R i.dhXi R E A L Y :
L + SIK+ll.~O!di U + SCK+ll,UPi Y + V1V3;
IF SIK+ll .FLAr, = 1 THEN J + L; SCKl.FLAG * 1;
S[K],TYPE c ARYTYPE; SCKl,LOw’ + Ji SIKI.IJP + J+lJ-Li
FOR X a- L THRU U 00
BEGIN AIJI ,- FCT (YI ACXW J + J+l END i

E N D E L S E
VCK] e FCf(VCKl,VlK+ll)

E N D i
E N D HINARY ;

R E A L P R O C E D U R E S U M CXrY); V A L U E X,YI’ R E A L XrYi SUF(+ x + vi
R E A L P R O C E D U R E DIFFCXIY); V A L U E XrYi R E A L XrYi DIFF + X - YJ
REAL P R O C E D U R E ?ROD(XIY); V A L U E X,Yi R E A L X#Yi PRCD + X x Yi
R E A L P R O C E D U R E QUOTCXrY)i V A L U E XpYi R E A L XIY~

IF Y = 0 THEN ERRORC-7) E L S E 3UOT 6 X D I V Yi
R E A L P R O C E D U R E EXPQCXrY); V A L U E XrYi R E A L XpYi E X P D * X + Y;
R E A L P R O C E D U R E LESSCXIY); V A L U E X#Y; R E A L X#YJ L E S S + REALCX<Y)i
R E A L P R O C E D U R E LWLCXrY); V A L U E XpYi R E A L XpYi LEGL + REALCX5Y);
R E A L P R O C E D U R E EQULCX*Y)i V A L U E X,Yi R E A L XIY; EGUL + REALCX=Y)i
R E A L P R O C E D U R E NEQL(XIY); V A L U E X,YJ R E A L XrYi NEQL + REALCXI’Y);
R E A L P R O C E D U R E GEQLo(pY); V A L U E XrYi R E A L XIYI GEQL * REAl.(X?Yli
R E A L P R O C E D U R E GRTR(XrY)i V A L U E XIY; R E A L XrYi G R T R + REALCX>Y)I
R E A L P R O C E D U R E INFICX,Y)i V A L U E XrYi R E A L XrYi

INFI + !F X < Y THEN X ELSE Yi
R E A L P R O C E D U R E SUPRCX,Y)i V A L U E XrYi R E A L X#Yi

SUPR + IF x) Y THEN X ELSE Yi
R E A L P R O C E D U R E UNONCXIY>; V A L U E XIY; R E A L XIY;

U N O N + R E A L C B O O L E A N C X) O R BOOLEANtYll;
R E A L P R O C E D U R E INSC(XIY); VALUE X.Y; R E A L XrY3

I N S C + R E A L C B O O L E A N C X) A N D BOOLEAN(Y)>;

C O M M E N T I N I T IA LI Z E P O I N T E R S AND TABLES;
WC + 8; cc + 7; CLEAR (CAf?DIOl I;

. I 6 J + NUMBER c 0; T103 c **~'*j
F O R K c 0 THRU (33 D O S[Kl.TYPE + VALTYPE; K 4 63;

COMMENT PRIORITY F?ItdCTIONS QF PAS’IC SYMROLS,
SYMBOL F’ G # (OCTAL)

C 1 19 35I
c 20 19 33
x: 1 1 9 73
$ (OH) b s 52
8, (AND) A 7 34
<5=#?? 10
tt @ (MIN MAX) 12

1: 36 57 75 74 17 16
77 13

+ - 14 13 20 54
x / 16 15 40 61
*
LETTFR
DIGIT

18 17
20 19
23 19

53

188

1 20 1 5 5
1 20 3 76

~EMICULON 2 1 19 0 ::,
? 20 3 72

i (FILEMARK) 20 -1 19 0 _. 32 12
(ARRAY) 2 19 15 i

F ILL F:*l WITH
20~20,2~,20~20~20r20,2Qr20,20r”lri2r OI 2r10110r
14,20,20,20~20r20~20r20r20,20r20,20, 8, 1~101 2r
16~20r20,20r20~20r20,20r20,20, 6,18r14,20r 1rlOr
0~14r20r20~20,20,2~r20,20,20,20r lrlO~L0~20~52;

FILL Gt*l W I T H
19r~9~19,19r19r19~19~19~19~19~ Odl, Or199 9r 9 ,
13,19#19,19r19,19,19r19,19ri0,19r19r frl9r 9119r
15?19r~9,19~19r19r19119,19,19r 5*17913r 1, on 9r
0015~19,~9?19?19r19r19~19~19~ 349, 9, 90 1811;

C O M M E N T R E A D AN D REoRDER B A S I C SYWOLS. BRANCH TO INTERPR,RULES;
Lit INSYMBOLCWi
L21 IF FV;;~';t42:"11 s GCRI T H E N

* I+li TtIl + Ri GO TO Ll END i
L3: IF ~~;;~-;J.[42:631 = GtTC11.~42:613 THEN

+ I-1; GO TO L3 END i
G O T O EvALUATE~TCI~+~~~ ’

NfXTa I + 1-i; GO TO L2r’

ADD: B I N A R Y CSUM 1; G O TO YEYTi
sue : B I N A R Y (DIFF); G O T O NEXTi
MUL : BINARY (PROD); G O T O N E X T ;
DVC : B I N A R Y COUOT).: GO TO NEXTi
PWR : SINARY (EXPO); G O T o NEXTI
MIN: BINARY CIYFI); GO TO NCXTi
MAX: R I N A R Y CsuPR); G O T O NEXT;
LSS : B I N A R Y (L E S S) ; G O T O N E X T ;
LEG : B I N A R Y (LEQLV GO TO NEXT;
EQL: B I N A R Y (EQUL); G O t0 NEXT;

. NEG : B I N A R Y (NEQLJJ G O TO NEXT;
GEG : B I N A R Y (GEQL); G O T O N E X T ;
GTR: R I N A H Y (GRTR); GO TO NEXT;
LA&a BINARY (INSC); GO TO NEXT;
LOR a RINARY CUNONK G O T O N E X T ;
UAC : U N A H Y (SUW, 01; G O T O N E X T ;
‘US8 : U N A R Y CDIFFI 0); G O T O N E X T ;
UML : U N A R Y (PROD0 1); G O TO N E X T ;
u o c : U N A R Y ((3uDTr 1); G O T O N E X T ;
UPR : UNARY (EXPOI 21; GO TO NEXT;
UMh: UNARY CINFI P I); GO TO NEXT;
UMX: UNARY (SUPR, -2); GO TO NEXT:
ULS: UNARY CLESSt 0); GO TO NEXT;
ULG! UNARY (LEQLr 0); GO TO NEXT;
UEL: U N A R Y CEQUL, 0); GO TO NEXT;
UNC : UNARY (NEaLp 0); GO TO N E X T ;
UGC a U N A H Y (GEQLp 0); G O T O N E X T ;

189

m mzr cnx D ox r- DO CYCCCC
z x*4-u 0-u (9 3a 33 I: i -DOD!3
0 HI- b r-D rJl DX x -c-l tln337n

z 4** l . .* l

2
(r-
”
. .

Z
m
X
4

aJw%XCCC
mic zzz

cs 236 B

Problem 2

April 5, 1966

N. Wirth

Design a simple programming language for complex arithmetic and imple-

ment it on the B5500 computer. The implementation shall consist of a

translator based on a precedence syntax analyzer, and an interpreter of

the compiled code.

I. The language.

The language should include facilities to express arithmetic opera-

tions on complex numbers and variables, such as addition, subtraction,

multiplication, division, taking absolute value, sign inversion, compari-

son and possibly others. On the statement level there should exist the

assignment operation, an output operation, and facilities for conditional

and repeated execution of statements. Variables are designated by identi-

fiers in the usual sense. A program shall be preceded

declaration of those identifiers.

II* The translator.

The translator should consist of three main parts:

1. A routine reading basic symbols from the input

recommended that this routine reads entire identifiers

numbers) which are considered in the syntax as a basicd
program should be listed by the printer.

by some form of

source. It is

(and possibly

symbol. The source

2. A set of interpretation rules, corresponding to the syntactic

rules of the language.

3* The algorithm for syntactic analysis.

The compiled code should be printed in a readable form upon completion

of the compilation.

III* The Interpreter.

The interpreter executes the program compiled by the translator.

The computer represented by-this interpreter should consist of an instruc-

tion register, an instruction counter, a set of arithmetic registers,

and a memory, divided into a program-, and a data-part. The interpreter

shall not include a stack mechanism.

In order to determine the precedence relations and functions, a

syntax processing program is available on the I35500 computer. This

program accepts a sequence of syntactic productions, one per card,

punched in the following format: Each card consists of 6 fields, each

12 characters long, each representing a symbol (blank spaces count!).

The first field represents the left part symbol of the production; if

it is left entirely blank, then the left part symbol from the previous

production is copied into it.

The syntax processor is called in the following way:

a. In the "system" field of the type-II card write "DISKIO".

b. The type-11 card is followed by a card containing

? EXECUTE SYNTAX/PROCl

where ? is a 2-8 punch in column 1.

"Green card", followed by the data.

Use a time estimate of 2 minutes.

The total available machine time for this

On April 19, submit the output produced by the

the syntax underlying your language. day 6 is

you should submit:

This is followed by a

problem is 30 minutes.

syntax processor from

the final due date, when

1. your tested compiler and interpreter program,.
2. a clear and systematic description of your language, and of the

organization and the instruction code of your interpreter, and

3. an output produced from a sample program. This sample program

should demonstrate the main features of your language, and the correct-

ness of your translator.

192

cs 236 B N. Wirth

WY 1966

A SOLUTION TO PROBLEM 2

Introduction

A description is given of a simple programming language to express

computational processes involving complex numbers. The structure of the

language is defined by a syntax (described in BNF). To each syntactic

construction corresponds a certain operation which is systematically

described by the processor. This processor has been chosen to consist

of two parts:

1. a translator (compiler), and

2. an interpreter, closely reflecting the design and capabilities

of a present-day computer.

The Language

The basic constituents of the language are complex numbers and vari-

ables. They can be used as operands in expressions, containing the dyadic

operators of addition, subtraction, multiplication and division, and the

monadic operators of sign inversion, exponentiation (eX), selection of

the real or imaginary part of a complex number (real x, im x), taking

the absolute value (modulus), and of identity.

Expressions are constituents of assignment statements, which specifyd
that the value of the expression be assigned to a variable. Statements

can be executed conditionally, depending on whether a relation between

two complex numbers holds or not. In the same fashion, a statement may

be' executed repeatedly as long as (while) a relation is satisfied.

Sequences of statements may be bracketed and thus be subjected to condi-

tions as a unit. Relations on complex numbers are understood as the

ordering relations taken on their absolute values.

Variables are denoted by freely chosen names, so called identifiers,

i.e. sequences of letters and digits the first element being a letter.

All identifiers must, however, be declared in the heading of the program.

Since, due to the limited character set of the equipment available,

193

certain operators and delimiters are represented by sequences of letters,

the following such sequences may not be chosen as identifiers:

NEW, BEGIN, END, IF, THEN, ELSE, WHILE, DO, OUT, EXP, ABS, REAL, IM

Numbers are denoted as follows (they are treated as basic constitu-

ents of the language and are therefore not described in the general

syntax):

Syntax of numbers:

(number) ::= (real part)I(imaginary part)[(real part)

(real part) ::= (real number)

(imaginary part) ::= (real number)l-(real number)

(real number) ::= (digit sequence)1

(digit sequence) . (digit sequence)

(digit sequence) ::= (digit)I(digit sequence)(digit)
--.

Examples of numbers:

1 12.5 g1.5123.8 01-0.75 0 . 8 3 1 1

The Processing System

The processing system is given as a By500 Extended Algol program.

It utilizes the techniques of precedence syntax analysis as discussed

in class and as described in Wirth and Weber [l].

The syntax of the language is analyzed by a program which deter-

mines the precedence relations (printed below in the form of a matrix)
. and the precedence functions (F and G) of the symbols of the language.

These functions, along with tables representing the productions of the

syntax (KEY and PRTB), occur in the program of the compiler. The

organization of the two latter tables is as follows:

KEY[i] represents for the i'th symbol the index in the production

table PRTB, where those productions are listed whose right part string

begins with the i'th symbol. For each production, the right part is

listed without its leftmost symbol, followed by the identification number

of the listed production and the left part symbol of the production.

The end of the list of productions referenced via KEY[i] is marked with

a 0 entry in PRTB.

This representation of the productions was chosen to speed up the

table lookup process. Clearly, even more efficient methods could be

devised.

A program listing the compiled code in mnemonic form is activated

before execution of the code.

The fictitious computer, represented by the interpreter, consists

of the following elements:

1. A(program storage area (PROGRAM), into which the code is compiled.

2. A data storage area (DATAR, DATAC), into which constants (numbers)

are compiled.

3. A set of 16 "registers" (REGR, REGC), upon which aritmnetic

operations can be performed.

4. An instruction register (IR), holding the currently executed

instruction.

5. An instruction counter (IC), holding the address of the next

instruction in sequence.

6. A condition register (TOGGLE), holding the result of a comparison.

The instruction formats are the following:

a. jOPI RI A
I OPf3

b. 3 lop 1 Rl 1 R2

In case (a), the OP field designates the operations of a fetch, a store,

or a branch, involving the register specified by the R field and the

storage cell addressed by the A field (in the case of a branch, the R

field determines whether the branch is taken unconditionally or depending

on the value of the condition register). In case (b), the OP field spe-

cifies the operation to take place on the registers specified by the Rl

and R2 fields.

Two Examples

Two examples of short programs are given below. The first is inten-

ded to illustrate the main features of the language. The second example

was executed with a modified output operator, providing a primitive

I graphic representat,ion of the complex plane.

Reference:

1. "EULER: A Generalization of ALGOL and its formal definition," Comm. ACM
g/1,2 (Jan. Feb. 1966)

- -

195

PROOlJCTIONS

1
2
3

:
6
?
0
9

10
11
12
13
14
15
1J
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38.
39
40
41
42

4 3
I 44

45
46
47
40
49

<PQf)GQAM>
<HEADING>
<OECLAR>

<coup STAT>
<CQMP ST H>

<STAT,
<STAT&>

<CON0 STAT>

<IF CLAUSE>
<TQ1JE PART,
<ITER STAT,
<WHILE CL,
<WHILE IiD>
<RELATION,

--.

<SIM STAT%

<OUT STl\T>
<ASS ST 4T>

<EXPR,
<EXPR*>

<FAcTIlR>

<PRfMARY>

<VARIABLE>

c

*

+

+

+

*

+

c

e

c

+

*

+

+

e

*

4.

+

t

f

+

+

4.

+

*

t

t
t

t

.t
t

c
t

t
t
t
t
l

4.

4

*
t
*
t
t
t
+
t
*

d
<nECLAQ>
NEW
<DECLAQ>
<Ccl~f! ST H>
REGIh!
<COtdP ST H>
<STAT*>
<SIcI(STAT>
<CON0 STAT>
c]lTcR STAT,
<IF CLAUSE,
<IF CLAUSE>
IF
tSV4 STAT>
<WHILE Cl.,
<WHILE wq,

<HFAOING> (CIIIMP STAT, 5
;
<In>

lND
<IO>

<STAT> t

<STAT+>
<TRiJE PART> <STAT+>
tRFLATION> THEN
ELSE
<STAT+>
~QELATIOW 00

wwx
<EXPQ> <
CF.XPQ> s
<FIXPQ> P
<EXPR> z
<EXPQ> \L
<EXPR> >
<ASS STAT>
<COMP ST.!T>
<T)lJT STAT>
01J T <EXPQ>
WARTARLFB *
<VARIARLF> 6
<EXPR+>
<TERM>
<EXPR*> +
<EXPR*> "
+ <TERW
I <TERW
<TEQ’.I*>
<VACTOR>
<TEF(Y+>
<TERM*> ;
<PRIMARY>
FXP <FACTOR>
ARS <FACTOR>
REAL <F ACTOR,
IM <FACTOR>
< N U 1.1 H F: R >
<VARIARLF>
(<‘E XPR>
<IO>

<EXPR>
<EXPQ>
<EXPR>
<EXPR>
<EXPR>
<EXPQ>

<EXPQ>
<ASS STAT>

<TERM>
<TERM>

<FACTOR>
<FACTOR>

NONBASIC SYMROLS

1 <Pf?T)CSA+4>
6 <STAT>

11 <ITrti STAT>
16 <OUT STAT>
21 <TERM+>

BASIC swmLs

25 t
30 01JT
35 REAL
4 0 l

45 ;
50 +
55 1

2 <HEAI)IM>
7 <STAT*>

12 <WHILE CL>
17 <ASS STAT>
22 <FACTOR>

26 N E w
31 +
36 IM
41
46 :
51 x

3 eOECLAR> ! 4
R <cnNO STAT> 9

13 <YHILE HD> 14
18 <EXPR> 19
23 <PRIMARY> 24

27 BEGIN
32 -
3t <NUMBER>
42 EVO
o? %
52 1

29
33
3s
43
4R
53

XCQMP STAT>
cff CLAUSE>
<RELATION>
<EXPR+>
<VARIARLE>

If
EXP
f
ELSE !
1
THEN

5 <C(JMP ST l-4,
10 <TRUE PART>
15 <SlM STAT,
2@ <TpM>

2 9
34
39
44
49
5 4

PRECiEOFNCE M A T R I X

1
2
3

:
6
7
0

Ix
11
12
13
14
15
16
17
10
19
20
21
22

::
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
93
44
45
46
47
48
49
50
51
52
53
54
55

PRECEOENCE FUMCT J(lNS

1
3
3
4
5
4
7
8
9

10
11
12
13
14
1 5
1 6
1 7
16
19
20
21
22
23
24
25
26
27
219
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
4 8
49
50
51
52
53
54
55

--

<Pfjr’))CIRA,d>
<HFA@IN1C>
<IrECLAR>
<COVP STAT>
C~L’IMP Sl’ Ii) -*
<STAT>
<Swr+~
<CON;n STATS
<IF CLALlSF>
<TQUI: P/\9T>
<fTfU STAT,
<wilLF: Cl..>
<WHILE un>
< R E 1, A 7 1 t-l td >
cSfM STAT,
<OUT STAT>
rAsS STAT,
eEXPR>
<EYPQ*c,
cTERpA>
eTFRM*>
cFACTQH>
<PYTHAHY>
cVARIARLF>

1
3
1
3
I
1
?
7
3
2
3
2
1
1
3
3

:
4
5
5
6
t5
6

;ND
ELSf’

3
8
#
L
>
f

;
THEN
On
1

1
4
7
1
7
3
4
4
5
5
5
5
6
3
7
7
6
4
7

i:
3
3
3
3
3
5
5
7
7
6

1
1
2
9
4
1
3
3
3
2
3

:
1
3
3
3
3
4
4
5
5
4
6
3
2
4
3
3
3
4
4
6
6
6
6
6
4
6
1

:
2
3
3
3
3
3
3

i
5
1
1
3

199

BEGIN C O M M E N T C O M P I L E S CS ?36 tj. SWUNG 1966 . N,WIRtHI
I N T E G E R L E N G T H ; C O M M E N T L E N G T H O f T H E PRfMAW C O M P I L E D :
INTEGER A R R A Y P R O G R A M tOG?551; C O M M E N T PRCGRAM S T O R E :)
REAL ARRAY DATAQ, OATAC CO:25511 COMMENT f?ATA STflRt REALjIM PART)
DEFINE ONF = C3214ltr Two = C3614lh T H R E E = 140:4)#, FOUR +[4h:4.]#i
D E F I N E A D R = t4Ot61#: . .
L A B E L ALLTHRL’;

Em!
I
I
I
I
I
B
I
I
I
A
I

I
I
I
I
I
0

u COM
UTEGE
UTEGE
YTEGE

::%

%:
UTEGE
UTEGE
?RAY
UTEGE
UTEGE
UTEGE
UTEGE
UTEGE
UTEGE
UTEGE
EFINE

IENT TclIS BLOCK I S T H E T R A N S L A T O R ;
I I’,Jr’bLi COMMENT I N D I C E S !JSf:D RY SYNTAX-ANALYSERI
I LOCI C O M M E N T INMX flF DATA-STORE1
I PLOC? C O M M E N T INJDEX O f PROGRAM+TOREZ
I NXI COMMENT INnEX O f N4ME LISTr

I CH4RI C O M M E N T L A S T C H A R A C T E R RKAO R Y “NEXTCHAR”;
I LOROt C O M M E N T “Cu4R” IS A LETTER OR A DIGITI
I wc,cct COMMENT WORn- ANO C H A R - C O U N T E R I1N INWT-RUFFERJ
’ SYMBOL,$YMBOLVAL~JE~ COMMENT L4ST SYWffL REAO BY “tNSYMBOL”J
I Rf C O M M E N T REGISTKH NT), LAST, USED RY CODE;
1UFFERCOt 1411 C O M M E N T INPUT SUFFFRI
I A R R A Y WflROflLLIMITERr OfLIuIT~RNUMHER [Oti2);
I A R R A Y OPERATnR, OPCOOE IOtiSV
I A R R A Y FrG CO:5511 COMMENT W?InRITY F U N C T I O N S O F S Y M B O L S)
I A R R A Y K E Y COt553i COMMENT KEY INOEX TO PROOUCTION TABLE;
I A R R A Y PQTR [0!2OSJJ COMMENT PWJ~UCTION TARLE)
I A R R A Y S,V IO:49T1; COMMENT SvW3OL’ AND V A L U E - S T A C K S)
I A R R A Y NAMEI L O C A T I O N 1019933
ENDFILE = 2S 8)

STREAM PROCEDURE C(,EAr? (. D);
BEGIN 01 + Of ls(nS + 9 LIT ” “)
EN0 i

BOOLEAN STREAM P R O C E D U R E 4LF4 CS,NJ,D); VALUE Nf
BEGIN TALLY t 1; SI + SJ SI + SI+Nt 01 + 03 I31 + OI+li

I F SC = ALPHA THEN 4LFA + TALLY; n s t CHR
. END J

PROCEDURE ERRilR (Nli VALUE Ni INTEGER Nf
C O M M E N T MARK POSITION! Qf INPUT POlNTfR ANO PRINT E R R O R YESSAGE,

N O A T T EM P T ‘I’0 COtJTIYUE CnMPtLATION I S MADE;
BEGIN INTEGER KbMI

S W I T C H F O R M A T M E S S A G E *
(“SYNT4CTIC ERQQR fN PROGRAM”),
("ILLEGAL CHAFACTEH TN PRNiRAM"),
(“UNDECLAQED IDE~TIFIFR”),
(“TOO MAVY PEGISTEQTj RE(3~JfRED”),
(“ P R O G R A M IS TOO LONG’%
(“Too Y A N Y V A R I A B L E S OR CiWSTANTS”)t

M + WCxR + CC:
hRITE (<80Ai>, F O R Y + 1 STEP 1 UNTIL M DO ” “p “*‘Of
W R I T E (MESSAGEtNl)i
G O To ALLTHRLJ

EN0 E R R O R ;

200

PROCEDURE NEXTCdAR;
C O M M E N T ASSJWJS T H E h’EXT CYARACfFR IN THE S O U R C E STRING T O “ C H A R ” ,

A S S J GYS “Tl?lJf.” T(1 “LORD” e IF THE CH4RACTER I S A LETTER A R DIGJTJ
BEGIN IF cc f; 7 THEN

BEGIN IF A(: = H THEN
BEGIN QcAn (ckwm,P !OP qt~EfEQtd1; W C + 01

dRITF WfW+JFIb 1!51 RUFfER[*l)
END ELSE
WC 6 WC+lI
cc 6 0

END ELSE
c c * CC+li
LORD t ALFA (RUFFERtbClr C C , C H A R)

END J

PROCEDURE READNUMHERI
C O M M E N T QE~DS A Cn,lPLFx vJlJFdn\F:R ANI) A L L O C A T E S I T IN T H E OATA STORE,

“SYMHOL V 4LIJF:” I S AS.SlC;YFD fTS I N D E X I N ThF: OAf4 STilfw;
BEGIN OWN REAL vrNt OWN I N T E G E R 1; BOOLEAN SfWt
PROCEDURE READINTFGF~:

WHILE CHA9 c. 10 DO
BEGIN N + Nxl0 + C11ARf I + 14; NEXTCHAR
END J

M + N + 0; I + 0;
REAOINTEGFRt M + hi;
IP C H A R = “,” T H E N
BEGIN N 6 0; I + 0; NC:XTCHAR1 REAnINTEGER;)r + lO+IXN+M
END i
DATARCLCICI a- Mi
IF C H A R = “I” THEN
BEGIN M * N + 0; 1 +. 0; NEXTCHAR?

SIGN + C H A R = “‘=“; If S.Ic,N THEN NEXTCHARJ
READINTEGER; M + Ni
I F C H A R = “.” THEN
BEGIN h! e 0; I + Of NEXTCWARJ READINTEGER) .M + lD+IxN+M
END i.
OATACILIICI + IF S I G N THfN “M ELSE M/

END ELSE
OATACILC)Cl + 01
SYMROLVALUE (. LOCI LOC * cm+1

E-ND READNUMBER ;

PROCEDURE INSYMROL;
COMMENT A S S I G N S T H E hIUMERIC CDfK OF THE NEXT SYMBOL IN THE SOURCE

S T R IN G To *‘SYMROLno IDENTIFIEf% A N D N U M B E R S ARE CONSIDERED AS
SYMROLSI A N D A R E Nflt FURTHER DECOMPTISED B Y T H E SYNTAX)

BEGIN INTEGER 111; LABEL WITi
WHILE CYAR = ” ” DO NEXT.CHA91
IF C H A R < 10 THEN
B E G I N READNUMRER; SYMRCIL + 3 7
END ELSE
IF ImORn THEN
B E G I N T + CHARi NFXTCHARf

WHILE LORO DO -

2 0 1

BEGIN T c C H A R 8 T[1'~19:303: NWTCHAR
E N D f
FDf? I + 0 STEP 1 UNTIL 1’ DO
IF iqm!mELIMITERIIY = T THEN
B E G I N SYMr;flL 4~ DFLI~ITER~~UMP~RIII; G O TO EXIT
E N D ; -.

SYMROLV4LVE + Tt SYw?r)L + 398 C O M M E N T IDEwTIFIERI
END ELSE
BEGIN FOR I + 0 STEP 1 UNTIL IS DO

IF OpERATnRtIJ = C H A R THEN
BEGIN SYMROL + OPC~~~CII; 'WXTCHdRi GO TO FXIT
END i
ERRnRtl)

END :
EXIT8
E N D INSYMleoL ;

PROCEDURE EfUTX (CLASSdFGrADDRJi
VALUE CLASSdE!bAnDRI INTEGER CLASSIREGIADDRI
BEGIN INTEGER CnMl Cr)M + 0;

COM,ONE + CLASS; CQM,TlrlT) + St-G; COM.ADR + AOOR;
P R O G R A M [Pl,CK 3 + CON; elm + ec_nc+i.; IF P~oc B 255 THEN ERROR(b)

END ;

PROCEDURE E D I T 3 (QPrRlrR?)i
VALUE OP,Rl rR2i INTEGER CIPIH~,R~;
BEGIN INTEGER CoMt C0M + 01

COM,QNE c 3 ; Ccv4,TWrl t OP: SOM.THREE + f?ll Ct’JM,vQuR ct R2;
PROGRAM fw?cf + CDM; PlLoC + PLOC+lt I F PLOC > 255 THEN ERROR(Y)

END ;

PROCEDURE FIXUP (WHERE,WWAT)t
VALUE WHfRE,WHAT; INTEGER WHERbWHATI
PROGRAM[WHERE],ADR + W H A T ;

PROCEDURE INTERPRET(N); VALUE r\ili INTEGER Ni
COMMENT EXECLITES T H E N”fti IMTEYPRET4TIsnN RULEI
CASE N Olr BEGIN
;

i&GIN NAMECNXI * Vt13 i NX + NX+li LOC + COC+l EN0 ;
BEGqN NAMEINXI + VCIli NX + NX+1j L O C + LOC+l END t
I
i
I
i
i
)
i
FIXUp (VCJlrpLOC);
BEGI! FIXup (VtJldCJ+11+1)1 FIXUP (VcJ+llrPLOC) E N D i
BEGIN VfJl + PLOCi mITX (2,OdU E N D t
WGIN VC 31 t= PLCtCi EoITx (2rbO) E N D i
B E G I N EDITX (2~1rVtJ~.[16~161~t FIXUp (VCJld32~1610PLOC~ END I
B E G I N V~.Jl,t32~161 + PL3r.i EOITX (%rOrO) EN0 i

202

V[J].ClE~161 + PL’lc;
B E G I N E D I T 3 (5rR-ld); R a- R - 2 E N D i
B E G I N EDIT3 UbR-1rH)i R * R - 2 E N D i
B E G I N E D I T 3 (70P10R)i R + R-2 END i
8EGIN E D I T 3 (R,R-bR)i R + P-2 E N D i
B E G I N EQIT3 (9~R=l,P1; R * R - 2 E N D I
B E G I N EQIT3 (10,R-l~R)) R + Q-Z? END ;
;

AIN E D I T 3 (150~0Olt R * H-l END i
B E G I N EDITX (ld?rVCJI)I R + Q - 1 E N D ;
EOIlX (lrR+ldtJl)i
.

B E G I N E D I T 3 (O,f?-1,R)i P t P-1 E N D ;
B E G I N EQIT3 (l,R-Id?); R + P-l E N D i
.

iDiT (12,RrO);
i
.

kIN E D I T 3 (2i.R’1,R)i R + P-1 END ;
BEGIN EDIT3 Ud?-i,R)$ R + R-1 END j
I
EDIT3 (U,R,O);
E D I T 3 ~ll,R,Q)i
E D I T 3 (13,R,O)i
E D I T 3 C14,Q,O)i
B E G I N R + Q+lt I F R > 1 5 T H E N ERRnR(3);

EOITx (O,R,V(Jl);
E N D ;
B E G I N R + Q+li If R > 1S T H E N ERQnQ(3)1

EDITx CO,Rd/tJl~i
E N D i

LEGIN INTEGER XPIO; K + NX; I D + VcJlf
W H I L E NAMFIKI # In D O
B E G I N If g = 0 T H E N Ef?YOR(2) E L S E K + K=l
E N D i
VIJI * Y

END
E N D I N T E R P R E T J

C O M M E N T INITIALIZf: T H E TAPLFS AND R E A D T H E F I S T S Y M B O L)
FIL~I~~RDD~LIMITE~I+l WITH

,“~H~N”,“~~S~“,“WH~~E”,“DO”,“A8S”,r”OUT”,”R~A~”,“IM”,“C:XP”,
“BEGfN”,“END”,“NEY”i

FILL ~ElJ4ITERNlJWEPC*~ WITH
20,53,43,29,54,34,3Q,35,36,33,27,42,26~

FILL OPERATORC*l W I T H
“e”, ” + tt , w - tt

(, **) tt , w , tt :
tt x 0 , 1’ / w) w ; tt 0 t* (tt , w<o, “r”, “lr”, “l”, “>“,

0 w ” 3 “ ;
FILL Of’CODEI+l W I T H

50,3~,32,5~,52,40,44,45,66rY7r4R,47,4b49,3fb55,41,25~
FILL Ft*l W I T H

203

0 . . lr 3, 19 3, lr 1, ?# 2, 2r 2, ?#
2, 1, 1* 2, 3r 3r ?r 4r 5, 5r 6, b
6, 1, A, 7. 1, 7r 3, 4 ? 4, 5r SD 5,
5, 6, 3r 7, 7, $0 hr 7r 3, 3, 3r 3,
3, 3, 5,

Fry*1 19 wrrz I* 2,

5, 7r 7, hi

3r Qr -. l@ ?R 3, 3, 29 3r
3, 30 I* 3, 3, 3t 7, 40 4, 5 , 3r 6,
6, 3, ?r 4, 3t 3, 7, 4, 4r 6r 60 b
6, 6, 60 60 1, 1# I* 2, 3, 30 3, 30

F*L:‘KEY::l w;;,
5* St 19 lr 3;

0, 1, 2r 3, 110 140 23r ~7, 26. 298 37, 38,
41, 145, 50, 51, 57r 6cJr 6?* Hq* 99, 102, 113, 116,.

119, 130, 136, 1400 143, 1480 151r 155, 159* 163, 167, 17b
175, 1 7 9 , 1~2, le7, 190, 191r 193, lo?, 194, 19% 196~ 197,
19RI 1 9 9 , 2C)o* 201, 302, ?r?3, 204, 205i

FILL PW8t*l W I T H
00 00 Or 4 0 , "2, 30 41, 39, "4, 3, 00 -26,

15, Or 43, -5, 4 t 6r 40, -7, 5r OI 90 'Rp
6, 00 -IQ-j 7, 0, 7, ‘I?@ 80 100 7D -13, 80
0, Or “11, 7, 0, 7, -16t 11, oe 140 54, *17r

12, 00 0, -9, 7, 4 3 0 ‘150 101 0, -27 , 1% Or
-25, 15, n0 44, 1nr -19, 14, 45, 1 8 l -2Or 14, 46,

18, *21, 14, 47, 18, -22, 14, 4s, 18, -23, 141 49,
18, ‘24, ~4, or -31, 18, 31, 20, -33 , 10, 32~ 20~

-34, 19, O* -33, 19, 0, -37r 20, 51, 22, -39, 21@
52, 22r -40, 2 1 , 0, -38 , 21, 0, -41, 22, 0, 5%
18, -29, It, 50, 1 7 , -30, 17, -47, 3 3 , Or 2, 4 ,
25, -1, 1, 0, 39, - 3 , 30 ot -6, 5r 01 14r
538 -14, 9, o, -13, 13, 0, 18, -28 , 16, 0, 20,

-35, 19, Or 200 -36, 19, 01 23, -42 , 22, 0, 22,
-43, 22, 00 32, -44, 22, 00 22, -4% 220 08 -46,
230 0, 180 55r -48c 3.3, Or -49, 24, 0, 0, OP
0, 0, (I), 0, 0, 00 00 or 00 0, 0, 0,
O? 0;

. C L E A R (RUFFEQL93);
cc t 71 WC t 8; NEXTCHAR; INSYMSOL:
J * I; SC11 + FM’IFILG
NX t LQC t PLOC + 0; R + -1; !

COMMENT ALGORIThM FflQ PPECEOFNCF S Y N T A X ANACYSISt
‘WHILE SYW3flL % EWFILF Do
BEGIN 1 6 .J c J+l; SCJI + SYMYOL; VtJl * SYMROLVALUE; 1NSYMROt.i

WHILE FCSCJU > r,tSYM~T)I..l 00
B E G I N WHILE FCSCJ-111 = GtSLJIl AND J) 1 00 J + J-1;

C O M M E N T StJl 0.0 HI3 IS THF RcOUCIRLE S T R I N G , N O W FIND
THE CI]RRESP~TN~?ING LFFTPART FRntJ T H E PRfXHJclION TARE;

L + KEYCSfJIl1
W H I L E ~QTRt!,3 % 0 00
B E G I N 4 + .J+l;

WHILE KC1 AND SIKI=PQTnCL1 00
BEGIN K + K+li L * L+t.
EN0 I
IF IC>I AN0 PfhlJ < r> T H E N

204

B E G I N I N T E R P R E T (‘PQTQCL)); S[JJ + PF?lft[L+~j) L * 0
EN0 E L S E
B E G I N W H I L E PRTJWJ > 0 0 0 L + L+li L + 02
END

EN0 i
If L I 0 T H E N F.QQOP(O)i . .
! + J

END
EN0 i
L E N G T H * PLCIC; FnITx (4,000);

LNO C O M P I L E R i

BEGIN COMMENT I,IST THE CQEIPILEI! YRc’rGR4Y U S I N G SYMROLIC CODES)
INTEGER KJ ARRAY MNE:WWC t6:1511
FILi M N E M O N I C Cd W I T H

A00 “P” SUR “#” MUL “,.’ n1v “ 0 ” EXP “,
w L s s ” P ” LFQ “8“ F’QL “c” NEQ “#” GEO “R” GTR “R
98 A B S ” p ” N F G ” 0 ” REAL”c r, WAG”,” OUT “i

W R I T E (<//“COMtiJLEO CQnE:“/,);
F O R K * 0 S T E P 1 U N T I L LVJGW 00
C A S E f%lGR4MCKJ.@NE +I OF BEGIN

.WRITE (~!clc” /0A~“,!4,“,“,13>,
KI PRoGQAMCK)rTWO, PQOGRAM[Kl,AOR)I

W R I T E (<Ihi,” STilQ% 14,w,9*, 13>,
K , PR~GRAMCK),TWOP PQ~GRAM[K],AQR)~

WRJTE (<18,A6,!8h K,
” JU:#” ELSE ”

IFBB;LEAN CPQOGRAMCKY,TWO) THEN
“, PROGQAMCKI.AORSI

W R I T E (~19,AbrI4,“,“,~3~, KI M N E M O N I C tPROGRAM[K),TWOl,
PR%RA~[Kl,THREF, PR~GRAYtKI,FOUQ);

W R I T E (<I&” HALT”>, #K)
EN0 1

EN0 LISTER i

BEBIN COMMENT THIS RLOCK I S THF: INTERPRETER;
* BOOLEAN TOGGLF~

INTEGER IRdCt C O M M E N T INSTRUCTION REGISTER AN0 ‘COUNTER)
REAL ARRAY REGR, R E G C IO!!511 COMMENT R E G I S T E R S : REAL/M PARTI
LABEL CYCLE, FINIS;

REAL- PROCEDURE 4QSVl J 1; VALUE It INTEGER it
BEGIN R E A L XIYJ X 6 QEGRCIlt Y e REG;C(IJj

ARSV + IF Y = 0 THEN 4BSfX) ELSE
I F x = 0 THEN ARS(Y) E L S E SQRT (x*~+Y+z?)

E N D A8SV I

W R I T E (<//“~XECUTION”/>)f
IC * 0;

CYCLE 8
IR + PROGRAM[IC3; IC + IC+l;
CASE IRJINE t1 OF BEGIN

B E G I N REGQCIH.TWfll + PATARtIR,ADR]l
REGCCIH.TWOl + I)ATACCIR.ADR]j

N E W AdbhDJ
BEGIN A 6 SIS1 B o= -3I-&,51 c + AxCB+A)-2.S) OUT CI

OUT CABS B - REAL A + fM 8))
IF A > 0 THEN OUT -A ELSE OUT A)
A * 0; D 6 010,78S39816341
WHILE A c 10 DO BEGIN OUT EXP Al A * A+DJ EN0 J

COMPILE0 COOE:

6 LOAD
I STOR
2 LOAO
3 NEG
4 STOR
5 LOAD
6 LOAO
7 LOAD
8 ADO
9 WL

10 LOAO
11 SUB
12 STOR
13 LOAD
14 Out
15 LOAD
16 ABS
17 LOAD
18 REAL
19 SUB
20 LOAD
21 IMAG
22 ADD
23 OUT
24 LOAD
25 LOAO
26 GTR
27 IFJP
28 LOAD
29 NEG
30 OUT
31 JUMP.
32 LOAD
33 OUT
34 LOAD
35 STOR
36 LOAO
37 STOR
38 LOAD
39 LOAD
40 LSS
41 I F J P
4 2 LOAO
4 3 EXP

OD 4
or 0
0, 5
0, 0
or 1
0, 0
I@ 1
28 0
18 2
or 1
ir 6
08 1
OI 2
or 2
or 0
08 1
0, 0
1, 0
10 0
0, 1
lr 1
10 0
or 1
08 0
OI 0
1, 7
0, 1

32
0, 0
0, 0
or 0

34
08 0
or 0
0, a
08 0
or 9
0, 3
Or 0
1, 10
0, 1

SO
OI 0
0, 0 ’

44 OUT 0, 0
4 5 LOAO 0, 0
4 6 LOAD lr 3
47 A00 OI 1
4 8 SfOR 0, 0
4 9 JUMP 3 8
50 WALT

fXeCUTION

a6,0000000000Q+Ol I 7,7500000000Q+01
4,0138781887Q+oo I 8,5000000000Q+00

"5,ooooooooooQ+oo I ~5,0000000000@+00
tr0000000000Q+00 I 0.0000000000~+00
7,0710678~19Q-01 I 7,0710678119~-01

-1,4551915228~-11 I l,OOOOOOOOOOhdO
-7,0710678120Q-01 I 7,0710678118@-01
~1,OOOOOOOOOOQ+OO 1 -i,4551915228Q-11
-7,07fl678tl8Q-01 I -7rO710678120~-01
1,4551915228@'-11 I -~,0000000000@+00
7,071067812OQ-01 1 -7,0710678118Q-01
1,OooOOoooooQ+Oo I 1,4551915228Q-11
7,0710678116Q-01 I 7,071067812OQ-01
o,ooooooooooQ+oo I i~OoooOoooooQ+oo

-7,0710678~25Q-01 1 7,0710678116Q-01
-~,ooooooooooQ+oo I o,ooooooooooQ+oo

COMPICEO CODE:

0 I.040
1 STOR
2 LOAn
3 LDAD
4 LSS
5 IFJP
6 L(?A@
7 LOAD
8 MlJL
9 SlO!?

10 LOA!?
11 flu T
12 JUMP
13 HL,C 7

2 0 8

x

X --.

X K

X

X

X
x

X

X

X

X

X

X
X

X
X

X
X

X

X

X

X

X

: X

:
X

X
I X
8 X

:
X

X
I X
I x x

X
X

X

X

X
X

X

%

X

