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1. INTRODUCTION 

We study a class of new methods for the calculation of zeros. 

In Sections 2 to 8 we treat the case of a polynomial with all distinct 

zeros and one zero of largest modulus. We studied this case in detail 

in [ 16] . Here we give a simplified treatment and also obtain some new 

results. In Sections 9 ar*d 10 we treat the case of a zero of smallest 

modulus. 

In the remaining sections we discuss the calculation of multi­

ple zeros and equimodular dominant zeros of polynomials and zeros of anal­

ytic functions. Detailed analysis of these matters as well as material 

concerning the calculation of subdominant zeros will appear elsewhere. 

2. DESCRIPTION OF THE BASIC ALGORITHM FOR  

THE DOMINANT ZERO OF A POLYNOMIAL 

Let 

(2.1) P(t) = £ a..tn-J , a = 1 
3=0 3 

be a polynomial with complex coefficients and with zeros p^, p ^ . c , 

In Sections 2 to 8 we assume the zeros are distinct and |p^| > |p^| > 

i > 1 . We generate a sequence of polynomials as follows. Let B(t) be 

an arbitrary polynomial of degree at most n-1 such that B(p^) f= 0 

Define 

G(0,t) = B(t) , 
(2.2) 

G(\+l,t) = tG(\,t) - a (\)P(t) , 

where a (\) is the leading coefficient of G(\,t) . Then all the 

G(\, t) are polynomials of degree at most n-1 . 
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(2-3) t i + 1 =q>(X,t.) 

where 

( 2 A ) - x - ° 

The t^ form the approximating sequence for . 

We have described a two-stage algorithm. 

a. Preprocessing stage: This is specified by the recursion 

for the G polynomials given by (2 .2) . 

b. Iteration stage.: This ± s specified by (2.3) and (2.h). 

3- A NUMERICAL EXAMPLE 

For illustration we calculate the dominant zero of 

p(t) = (t+l)(t-2)(t+3) = t 5 + 2 t 2 - 5t - 6 . 

We choose 

G(0,t) = t 5 - P(t) = - 2 t 2 + 5t + 6 . 

(The reason for this choice of G(0,t) is explained in Section k.) Then 

G(l,t) = 9 t 2 - kt - 12 

G(9,t) = 53^171 2 - 52052t - 105^68 . 

We generate the G(X,t) until we have calculated, say, G(A,t). 

We use G(A,t) to construct an iteration function, (in the remainder of 

this paper we do not distinguish between the running index V and a fixed 

value of ^ equal to A .) We choose an initial approximation t and 

generate a sequence {t^} by 
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We now iterate using 
a (9) 

9(9,t) = t - P(t) , 

and choosing t = 100000 as our initial approximation. We calculate 

the sequence of approximations exhibited in Table 1. The sequence is 

converging alternatingly towards the zero at -3 which is the largest 

zero in modulus. In the righthand column we exhibit the ratios of suc­

cessive errors. After the first iteration these ratios are constant. 

This is as expected because the method used here is first order. (The 

extension to higher order is described in Section k.) Observe that all 

the ratios are small and that the initial ratio is particularly small. 

These facts are characteristic of the method and are quantitatively 

explained in Section 7* 



TABLE 1. SEQUENCE OF APPROXIMANTS 

( t i + 1 - P l ) / ( v 

lOOOOO. 

-2.97 2.6x10 

-3.0001 -5.2x10' 

-2.9999993 -5.1x10' 

-3.000000003 -5. ix 10' 

-2.99999999998 -5.1x10' 

-3.00000000000009 -5.1x10' 
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(4.2) m/\ +\ G(\+l,t)  
9 - ( X ' t ) = o(\,t) 

Note that the rate of convergence of the iteration "looks" 

numerically quadratic over the entire range of the iteration even though 

it is asymptotically a first order process. The explanation for this lies 

in that the error at each step is the product of two small errors, one 

of which is the error at the previous step. See Section 7« This should 

be contrasted with the behavior of, say, the Newton-Raphson iteration 

which is asymptotically quadratic but which behaves linearly when the 

approximations are far from the zeros. (The reader is referred to 

Forsythe [6] for an example of this.) 

k. COMMENTS ON AND EXTENSIONS OF THE  

BASIC ALGORITHM 

Note that the recursion for the G polynomials defined by (2.2) 

is easily performed by hand or machine. The multiplication by t is only 

a shift. All that is then required is a scalar-vector multiplication at 

each step. Another method for generating the G(\,t) which calculates 

G(2\,t) directly from G(\,t) , G(\+l,t),..., G(\+n-l,t) is described 

in Traub [16, pp. 126-129]. 

From (2.2) it follows that cp(X,t), which is defined by 

a (\) 

(^•1) cp(^t) = t - P(t) Q ° ) , 

may.also be written as 



Since, as we verify in Section 6, a
Q ( ^ ) ^oes not vanish for \ suf­

ficiently large, (h.2) exhibits the iteration function as the ratio of 

polynomials of degree exactly n-1 . This form is used when t is large 

Equation (k.l) exhibits cp(\,t) in incremental form. 

It may be shown that if any of the zeros of P have magnitude 

greater than unity, then the coefficients of G(\,t) increase without 

limit. On the other hand, if all the zeros lie within the unit circle, 

G(\,t) converges to the zero polynomial. This difficulty is taken care 

of as follows: Let denote a polynomial h(t) divided by its 

leading coefficient. We show in Section 6 that 

Hence G(\,t) has well-behaved coefficients. The G(\,t) satisfy the 

recursion 

lim G(\,t) = 

(4.3) 

G(\+l,t) = tG(\,t) - P(t.), if cco(\) £ o 

G(\+l,t) = tG(\,t) if a (\) = o . 

We can write the iteration function as 

(4.4) 

We turn to the question of choosing the arbitrary polynomial 

B(t) that appears in (2 .2) . Recall that B(t) can be any polynomial 

of degree at most n-1 such that B(p ) /= 0 . Two natural choices 
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for B(t) are B(t) = P'(t) and B(t) = 1 . If B(t) = G(0,t) = 1 , 

it is easy to show that G(n,t) = t n - P(t) . Hence we might as well 

take B(t) = G(0,t) = t n - P(t) and this was done in the numerical ex­

ample of Section 3* Additional discussion of the choice of B(t) may­

be found in Section 1 1 . 

The iteration function cp(\,t) is first order. From <j(\,t) 

and its derivatives and P(t) and its derivatives one may construct 

iteration functions of arbitrarily high order, A general treatment is 

presented in Traub [16, pp. 116-119]-

Because of the rapidity of convergence of this type of method 

we would generally not use an iteration function of order greater the 

two. The second order iteration function is given by 

m f.\ . P(t)G(\5t)  
C P 2 ( t ) = t " P'(t)G(\,t) -• P(t)G'(\,t) • 

We give a simple numerical example of a second order iteration. 

Let P(t) = t1" - > 6 t 5 + 528t 2 - 1090t + 2175 . The zeros are p = 29, 

p = 15, p.. . = l + '2i . We take B(t) = 1 , \ = 16 and choose our ini-

tial approximation as t = 100000 , We calculate 

\> = 28.9996 

t 2 = 28.9999999999997 . 

The other iteration functions discussed in later sections of 

this paper could also be made of arbitrary order. For the sake of sim­

plicity of exposition we shall confine ourselves to the first order case. 
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THEOREM. Let the zeros of the polynomial P be distinct with • 

|p^| > |p^U i = 2 , 3 , . . . , n . Let t be an arbitrary point in the 

extended complex plane such that t Q p,->, p^,..., p^ and let 

t ^ + 1 = cp(^t^) . Then for all sufficiently large but fixed \, the 

sequence t^ is defined for all i and t^ -» p^ . 

The phrase "global convergence" is used in the following sense0 

For any polynomial whose zeros are distinct and which possesses a largest 

zero and for any choice of t which does not coincide with a subdominant 

zero, we can conclude that for all sufficiently large X the sequence t. 

defined by = <p(\t^) exists and converges to p^o The size of X 

depends on P and t * It is determined primarily by the ratio of the 

magnitude of the largest subdominant zero to the magnitude of the dominant 

zero. 

6 0 PROPERTIES OF THE G POLYNOMIALS 

We obtain the principle properties of the G polynomials from 

the defining recursion 

( 6 - 1) G(0,t) = B(t) 

G(X + l,t) = G(\,t) - a Q(\) P(t), 

where a
Q ( M is the leading coefficient of g(A,t) . 

5- GLOBAL CONVERGENCE 

We state without proof the theorem of global convergence for the 

iteration functions cp(^,t) . A proof of this theorem in a form which 

covers the extension to iteration functions of arbitrary order may be 

found in Traub [16, pp. 121-122]. 
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The G polynomials can be introduced in a number of different 

ways. In [16, p. Ilk], we define G(\,t) as the remainder of the division 

of B(t)t^ by P(t). The G polynomials can also be defined as the 

sequence generated by a Bernoulli recurrence with initial conditions which 

depend on the choice of B(t). 

From (6.1) it follows that G(\ + 1, p i) = q±G(\p^). 

Hence 

(6.2) G ( \ ,p.) = p^G(0,p.) = P N ( p . ) . 

Since G(X,t) is a polynomial of degree at most n -1 , we conclude from 

Langrange1s interpolation formula that 

(6.3) G(X,t) = I, c p T^-f- , c = . 
i=l 1 l t " p i 1 P'(p.) 

Since f= 0 by hypothesis, c^ 0. 

Let P(X) be the weighted power sum 

( 6 . » 0 P ( M = Z ciPi • 
i=l 

From (6.3) 

(6.5) a Q ( \ ) - = p ( \ ) . 

Hence for X sufficiently large, a
QW 0 • 

From (6 .3) , (6.1+) and (6.5) we obtain immediately the most 

important property of G ( \ t ) , namely 

(6.6) lim G(\t) = lim %t^L = J&l $ 

\.->co (x (\) t - p„ o N ' 1 

for all finite t. 
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Furthermore the rate of convergence depends on the ratio of the magni­

tude of the largest subdominant zero to the magnitude of the dominant 

zero. 

To see the importance of (6.6), consider a general iteration 

function, 

where V(t) is some function which is yet to be specified. If 

(6.7) V(t) = ^ 

then t(t) = and we always obtain 

the answer in one step. In the Newton-Raphson method, V(t) = P'(t) 

and (6.7) is satisfied only at t = . Equation (6.6) shows that 

when V(t) = G(\,t) , then (6.7) is satisfied for all finite t as \ 

goes to infinity and is satisfied arbitrarily closely for X sufficiently 

large. 

We obtain an interesting interpretation of the recursion for 

the G polynomials by considering the Laixrent expansion of G(\,t)/P(t). 

Let 
r * fi) G(^t) f d k ( x ) 

( 6 - 8 ) ^ r - ^ — i • 

Clearly, d (\) = a (\) = . Write the recurrence for G(\,t) as 

( 6 . 9 ) ^ = ^ - % M . 

Then we conclude that 

(6.10) dk+i ( x ) = d
k

( x + l ) ' 



-11 -

Thus, except for a factor of t^ , G(X,t)/P(t) is just the remainder of 

the series for G(0,t)/P(t) after K terms. 

Finally we mention that the recursion for the G polynomials 

may be cast as a matrix-vector multiplication where the matrix is the 

companion matrix of P . We do not pursue this here. The interested 

reader is referred to the papers by Bauer in the bibliography. 

7* THE BEHAVIOR OF THE ERROR 

In the numerical example of Section 3 we noted that the ratios 

of successive errors were small, and that the initial ratio was particu­

larly small when t was large. We now study the behavior of the error 

quant itatively. 

Let 
cp(\,t)-pn 

E(X,t) = 

From (k.2) and (6 .3) , 

t - P 1 

n
 x £ d ( p / p )*(p -p ) 

i=2 1 1 •L 

t-p. 
(7-1) E(\,t) = i- > d. -c./c, 

£ \ 1 1' 1 
1 + E d (p„/P )\t-p ) 

i=2 x t-p. 

Hence the right side of (6.9) may he viewed as the operation of performing  

a left shift upon the vector of coefficients of the Laurent expansion. 

From (6.10), 

d k(\) = d Q(\+k) = p(X+k) , 

a result which could also have been obtained directly from the partial 

fraction expansion of G(\,t)/P(t) ° 

Hence 
\-l 
E 
k=0 t* 
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n. E(\ tt) Pl " p 2 

(7.3) i i r a » w 

This result explains why the initial error ratio in the example of 

Section 3 is so small. For that example, p^ = -3 > p^ = 2 , t =100000 

and the initial ratio should be smaller than the asymptotic ratio by about 
-5 • *' -5X10 . This is indeed the case in the example. 

If B = p ' we can draw an additional conclusion from (7*2). 

In this case d^ - 1 . Let P(t) and Q(t) be two polynomials with 

the same dominant zeros p^ and p^ . We calculate two approximating 

sequences for p^ , both starting at t Q but with one sequence calcu­

lated from P and the other from Q • On a computer, for K suf­

ficiently large, the two sequences are essentially identical. To 

put it another way, the sequence of approximants depends only on the two 

dominant zeros of P and is essentially independent of the remaining 

zeros. 

This result is exact. We draw a number of conclusions. 

E(\,t) is of order (prjp-^)*" and can be made arbitrarily small.. 

For the remainder of this section we strengthen our assumption to 

|p x l > I p 2 I > |pj| , j > 2 . Then 

(7 2 ) l i m E ( X ' t } - d ( p g " P l ) 

(p 2 /p 1 ) F 2 

The asymptotic error constant (Traub p. 9 l ) is defined by 

C(\) - lim E(\,t) . 

We conclude 
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(8.3) £ a B(j-r) = 0 . 

r=0 r 

We can now associate p(0) , p(l), ..., p(n-l) with B(t) in either of 

two ways. We can choose either the set p(0) , p(l), e o., p(n-l) or B(t) 

arbitrarily and determine the other by (8.2) • In either case p(j) , j > n , 

is calculated using (8.3) . (We might add parenthetically that if B = P' , 

then (8.2) are Newton relations for the power sums p(\)„) 
We now turn to variation one. Define a.(\) by 

3 

G(X,t) = IT" a.OOt0-1"3 . 

It follows from (6.3) that 

(8.4) a (X) = £ a Ji(X+r) . 
J r=0 J " r 

8. TWO VARIATIONS OF THE BASIC ALGORITHM 

In the following two variations the same sequence of approximants 

t^ , except for roundoff, is calculated as in the basic method described 

in Section 2. However the way in which the t^ are obtained is different. 

Both variations are based on the following analysis. In Section 6 

we showed that 

(8 1) Q f y * > f 

n-1 ± 

Let B(t) = i-o '"̂ i* ' B y comparing coefficients in ( 8 . 1 ) , we conclude 

that for B(t) given, p(0) , p(l), . . • p(n-l) are determined by 

(8.2) £ a B(d-r) = b , J = 0 , 1 , . . . , n-1 . 
r=0 r J 

For j > n the p(j) satisfy 
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This variation may now be described as follows. Compute the fj(j) up to 

p(\+n-l) using (8.2) and (8.3) and compute a.M using ( 8 A ) . This 

gives an explicit formula for G(\,t) and hence for <p(\,t) . 

Observe that this variation consists of a Bernoulli . calculation 

followed by iteration. 

The second variation is based on the fact that in the iteration 

t . + 1 = q»(X,t.) 

only the numbers G(\,t i) , not G(\,t) itself, are required, We form 

the P(j) up to p(\-l) using (8.2) and (8 .3) . Then form the sequence 

of numbers 

(8.5) G(j+l,tQ) = t oG(j,t o) - P(d)P(tQ) , i = 0,l,c.., \-l , 

and use G(\,t ) to calculate t^ . Then use (8.5) with t Q replaced 

by t^ , and so on. 

9. AN ITERATION FUNCTION FOR THE SMALLEST ZERO 

The iteration function cp(\,t) is used to calculate the largest 

zero of P . To calculate the smallest zero, we could calculate the largest 

zero of t np(—) . We introduce a sequence of polynomials H(\,t) t 

which may be used to construct iteration functions for the smallest zero 

directly. 

It is convenient in this section to assume that p(t) , the poly­

nomial whose smallest zero we seek to calculate, is normalized so that 

p(0) = 1 . Let the zeros of p(t) be , , ..<>, with 

l a j < |a.J , i > 1 . Let b(t) be an arbitrary 

polynomial of degree at most n-1 such that b(a^) /= 0 . 
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8 (\) = H ( \ , 0 ) o 

An approximating sequence is defined by 

(9-2) t. + 1 = *(x,t.) 

where 

(9-3) 

with 

H(X,t) 

H(X,t) = H ( \ , t ) / 5 Q ( \ ) 

From ( 9 . 1 ) , we also have 

( 9 - < 0 

10. PROPERTIES OF THE H POLYNOMIALS 

From the defining recusion for the H polynomials, 

(10.1) 
H(0,t) = b(t) 

H(\,t)-6 (x)p(t) 
H(\+l,t) = : r T~ 

we obtain the representation 

n 
(10.2) 

i=l t-a. 
1 

q i = p ^ a 7 T 

b(a.) 
1 

H(0,t) = b(t) 

H(X.,t)-5Q(\)p(t) 
H(\+l,t) = 7 
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It follows that 

(10.3) 
n 

6 ( \ ) = - V q.aT o i i i=l 

and hence that & (\) does not vanish for \ sufficiently large, o 
From (10.2) and (10.3) we conclude that 

( 1 0 A ) lim H(\,t) ,. H(\,t) 
\->°° o v ' 

a i 

for all finite t . 

The H polynomials possess a. property which is analogous to 

a. G polynomial property discussed in Section 6. We expand H(\,t)/p(t) 

into a Taylor series around the origin. Let 

(10.5) 

Let 
n 

?M = £ q,a~' 
i=l 

Clearly, e
Q ( ^ ) = 5

Q ^ ) =
 ~ 7 ( ' K - + 1 ) • Write the recurrence for H(\>t) 

as 

(10.6) 
H(\+l,t) 1 

P(t) ' t P(t) oy 

Then we conclude that 

(10.7) V i ^ = ek^ + 1) 

Hence the right side of (10.6) may be viewed as the operation of performing  

a left shift upon the vector of coefficients of the Taylor series. 
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e k ( M = e Q ( \ + k ) = - r ( \ + k + l ) 

Hence 

. ) , - a . 1 d i x ; . 

u ; k=0 

Thus, except for a factor of t"^ , H(\,t)/p(t) is just the remainder 

of the series for H(0,t)/p(t) after \ terms. 

1 1 . CALCULATION OF MULTIPLE ZEROS 

Until now we have restricted ourselves to polynomials all of 

whose zeros are simple. We turn to the case where the polynomial has 

multiple zeros. There are no essential difficulties. If the dominant 

zero is multiple, P(t) can only be evaluated to a certain accuracy but 

this is common to all iterative methods which require the evaluation of 

p(t) . 

We first prove a fundamental 

THEOREM. Let P have n distinct zeros p i where the multiplicity 

of p i is . Then for all \ 

PROOF. We proceed by induction on \ . If \ = 0 , the result is well 

known. Assuming it holds for \ and substituting (ll.l) into the re­

cursion formula for the G polynomials yields the result immediately. 

Observe that (ll.l) implies that for all \ , G(\,t) has zeros 

of multiplicity m± - 1 at p± . Furthermore, 

lim G(\,t) = P^- . 
t -" pl 
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Hence, for \ sufficiently large, the remaining n-1 zeros of G(\,t) 

lie arbitrarily close to the subdominant zeros of P „ Thus the iteration 

function will have no poles in the neighborhood of . 

Observe that the theorem is based on the choice B(t) = P'(t) . 

This shows that the restriction B(p 1) /= 0 is not the appropriate con­

dition in the case of a multiple zero. The reason for this is apparent if 

one compares the partial fraction expansion of G(\,t)/P(t) in the simple 

and multiple zero cases. 

A detailed analysis of the -multiple ̂ ze^ '• 

elsewhere.. ' ' 

12. CALCULATION OF COMPLEX CONJUGATE ZEROS 

So far we have dealt with polynomials which have a zero of largest 

modulus or a zero of smallest modulus. We turn to the case of equimodular 

dominant zeros. Fortunately in the case of polynomial zeros it is suf­

ficient to consider the case of either one zero of largest modulus or of 

a pair of complex conjugate zeros of largest modulus for the following 

reason. 

A translation in the :t plane replaces zeros of equal modulus 

by zeros of unequal modulus. In the case of a polynomial with real coef­

ficients, a real translation will remove all zeros of equal modulus except 

for a pair of complex conjugate zeros. Hence only the two cases mentioned 

need be considered. 

A discussion of how to effect the translation so as not to 

damage the zeros of P will appear elsewhere. 

We turn to the calculation of a pair of complex conjugate zeros. 

In [17] we recently announced a theorem on global convergence of an iterative 

method for calculating complex zeros, In this section we describe one 
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method for calculating complex zeros and state the theorem of global con­

vergence. Variations on and extensions of this method as well as proofs 

of our results will be published in a forthcoming paper. 

The theory holds no matter what the relation between and p 

requiring only I p J > \p±\ and | p 2 | > \p±\ > i > 2 . Here we restrict 

ourselves to p ^ and p ^ complex conjugate. 

If |pjj = |pg| > then the normalized G polynomials do not 

converge. Let 

I(\,t) = p(\)G(\+l,t) - p(\+l)G(\,t) 

(12.1) 
J(\,t) = p(\)G(\+2,t) - p(\+2)G(\,t) . 

Then 

^ > - (t -^ i(t.p 2) • 

? < ^ > - ( t - p ' ) ( t p 2 ) • 

Recursions involving only the I and J polynomials and not 

depending on the G polynomials have been developed. These recursions 

may be of advantage in numerical calculations« 

From the I and J polynomials an iteration function may be 

constructed as follows. We define a polynomial which is quadratic in u 

and has coefficients which are polynomials in t of degree at most n-2, 

F (u,\,t) = l(\,t)u2 - J(\,t)u+ l(\+l,t) •. 

Let \ be a fixed integer and let t^ be an arbitrary point in the 

extended complex plane not equal to a subdominant zero. Define an iteration 

by 
F 2 ( ti+ 1 > X > t i ) = 0 • 
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the sequence t^ is defined for all i and -> p^ 

13. A NUMERICAL EXAMPLE 

For illustration of the method discribed in the previous section 

we calculate the dominant zero of 

P(t) = t^ - i+.2t5 + 8.7125t 2 - 9..025t + h.625 . 

Its zeros are 

p = 1 . 1 + 1.05i 

p 2 = 1 . 1 - 1.051 

P 3 = 1 + i 

= 1 - i 

Note that the zeros are pairwise quite close together. 

We choose B ( t ) = P ' ( t ) , X = 96, and choose our initial ap­

proximation: as t Q = 1000 . We obtain the sequence of approximations 

exhibited in Table 2. In the right hand column we exhibit the ratios of 

the moduli of the errors. As in the example of Section 3 we observe 

It can be shown that for all t^ , and for \ sufficiently large, this 

quadratic has a zero in the upper half plane and a zero in the lower half 

plane. Chhose a s "the zero in the upper half plane and define if 

by " • Label as the zero in the upper half plane. 

Then we have the following. 

THEOREM. Let the zeros p^ of the polynomial P be distinct with p^ 

and p^ complex conjugate and |p^| > |p^| > i > 2 . Let t be an 

arbitrary point in the extended complex plane such that t Q f= Qj>*^> P n 

and let = ̂ (^t^) • Then for all \ sufficiently large but fixed, 



K 

TABLE 2 . SEQUENCE OF APPROXIMANTS 

i t i l * 1 + l - P i l / I V P l l 

0 1 0 0 0 . 

1 1 . 1 0 0 0 9 + 1 . ( ^ 9 9 7 i 9 . 5 X 1 0 " 

-h 

2 1 . 1 0 0 0 0 0 0 3 + l . ( A . 9 9 9 9 9 2 i 9 . 0 x 1 0 

3 1 . 0 9 9 9 9 9 9 9 9 9 7 + 1 . 0 ^ 9 9 9 9 9 9 9 9 2 1 9 . 0 x 1 0 " ^ 

p n = l . l + 1 . 0 5 1 

- . 2 1 - . 
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that all the ratios are small and that the initial ratio is particularly 

small. Again this can be quantitatively explained. 

Ik. CALCULATION OF ZEROS OF ANALYTIC FUNCTIONS 

Let 
00 

f(t) = r a.t J , a = 1 
3=0 3 

be a power series which converges in a circle about the origin. Suppose 

that f(t) has a. zero of smallest magnitude. Then we can define 

analytic functions H(\,t) by the recursion of (9-l)« Results analogous 

to those in the polynomial case can be developed here. 

Since we cannot actually form the analytic functions H(\,t) , 

we cannot use the basic method. There are a number of other possibilities 

and we merely sketch two of them. 

The first takes a section of the power series of degree n and 

uses it instead of f itself. A section of degree 1000 would offer 

no difficulties. The size of X which is needed to separate out the 

effect of the dominant zero depends on the ratio of dominant to subdominant 

zero and not on the degree of the section one takes. Hence quite a modest 

choice of X , much smaller than the degree of the section, should be 

sufficient. Since G(\,t) can be formed in Xn multiplications and 

since each iteration takes about 2n multiplications, the process is 

reasonably economical even for large values of n . 

A second possibility is to use the second variation of the 

basic method as described in Section 8. The variation is used with the 

H recursion rather than the G recursion. The constants appearing in 

the H recursion can be precomputed by an appropriate generalization of 

(8,2) and (8.3) which amounts to calculating the coefficients of the 
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Taylor series for H(0,t)/f(t) • This last mentioned process is just 

the computation required for the application of Konig's method [10] . 

15. COMPUTER IMPLEMENTATION 

In the computer implementation of the type of methods described 

here, the program should decide automatically on the value of \ at which 

to start iteration, and as to whether or not there is a zero of largest 

modulus. Such decisions should be made by monitoring the numbers produced 

during the calculation of the G polynomials. A number of strategies are 

available and will be discussed elsewhere. 

16. BIBLIOGRAPHIC REMARKS 

Schroder [12] in his classic I 8 7 O paper introduced certain sym­

metric functions of zeros. These symmetric functions are just the deri­

vatives of the rational functions G(\,t)/P(t) . He derived a number of 

the properties of these functions. Since Schroder restricted himself to 

low values of \ for which explicit formulas could be obtained; he did not 

find globally convergent iteration functions. 

In 19^1* Sebastiao e Silva [13] defined G polynomials as the 

remainder of the division of t^ by P(t) and gave a long proof that the 

normalized G polynomials converge to P(t)/ (t-p^) . His work has been 

continued by Aparo [l], [2] . 

G polynomials are used by Bauer [3] , [M in an important series 

of papers which appeared in the mid-1950 Ts. H polynomials appear in a 

paper by Bauer and Samelson [ 5 ] . 

Sebastiao e Silva, Aparo, and Bauer are concerned with quad-

ratically convergent versions of Bernoulli-Jacobi-Aitken type methods 

for the factorization of polynomials. Thus they continue the first 

state of our two-stage process to the limit. 
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Underlying many of the methods for calculating zeros are theorems 

concerning the coefficients of a function which has poles on its circle 

of convergence. Papers by Konig [10] and Hadamard [7] are classic. A 

perceptive account is given by Householder [9, Chapter 3 ] . The method 

we have discussed here may be incorporated in this framework. 

Our work has links with the QP algorithm (Rutishauser [ 1 1 ] , 

Henrici [8]) which will be explored elsewhere. 

Finally we note a different application of G polynomials. 

Traub [15] uses G polynomials with the variable t replaced by the 

translation operator E , to give a new derivation of the formula for 

the general solution of a linear inhomogeneous difference equation with 

constant coefficients. 

Additional bibliographic references may be found in Traub [16] 

and in the papers by Bauer. 
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