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1. INTRODUCTION

We study a class of new methods for the calculation of zeros.

In Sections 2 to 8 we treat the case of a polynomial with all distinct
zeros and one zero of largest modulus. We studied this case in detail
in [16]. Here we give a simplified treatment and also obtain some new
results. In Sections 9 and 10 we treat the case of a zero of smallest
modulus.

In the remaining sections we discuss the calculation of multi-
ple zeros and equimodular dominant zeros of polynomials and zeros of anal-
ytic functions. Detailed analysis of these matters as well as material
concerning the calculation of subdominant zeros will appear elsewhere.

2. DESCRIPTION OF THE BASIC ALGORITHM FOR

THE DOMINANT ZERQ OF A POLYNOMIAL

Let
(2.1) P(t) = .}: ajtn'j ,a =1
be a polynomial with complex coefficients and with zeros P17 Poseecs Py
In Sections 2 to 8 we assume the zeros are distinct and |pl| > Ipil s
i>1 . We generate a sequence of polynomials as follows. Let B(t) be
an arbitrary polynomial of degree at most n-1 such that B(pl) £ O
Define
G(0,t) = B{t) ,
(2.2)
G(M1,t) = tG(N,t) - ao(?\.)P(t) s
where ao(h) is the leading coefficient of G(A,t) . Then all the

G{»,t) are polynomials of degree at most n-1 .
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We generate the G(M,t) until we have calculated, say, G(A,t)
We use G(A,t) to construct an iteration function. (In the remainder of
this paper we do not distinguish between the running index A and a fixed
value of A equal to A .) We choose an initial approximation t, and

generate a sequence {ti} by

(2.3) ti,g = @(ht)

where
@ (\)P(t)

(2.’4) p{h,t) = t = m)—
The ti form the approximating sequence for Py -
We have described a two-stage algorithm,

8. Preprocessing stage: This is specified by the recursion

for the G polynomials given by (2.2).

b. Iteration stage.: This is specified by (2.3) and (2.L4).
5. A NUMERICAL EXAMPLE

For illustration we calculate the dominant zeroc of
3 2
P(t) = (t+1)(t-2)(s+3) = t° + 2t° - 5t - 6

We choose

3

G(0,t) = t° - P(t) = -2t° + 5t + 6

(The reason for this choice of G(Qt) is explained in Section 4.) Then

9t2 -4t - 12

It

G(1,t)

G(9,t)

]

5341765 - 52052t - 105468



We now iterate using

a_(9)
0(9,%) =t - P(t) zrggy >

and choosing to = 100000 as our initial approximation. We calculate
the sequence of approximations exhibited in Table L. The sequence is
converging alternatingly towards the zero at -3 which is the largest
zero in modulus. In the righthand column we exhibit the ratics of suc-
cessive errors. After the first iteration these ratios are constant.
This is as expected because the method used here is first order. (The
extension to higher order is described in Section 4.) Observe that all
the ratios are small and that the initial ratio is particularly small.
These facts are characteristic of the method and are quantitatively

explained 1in Section 7.



TABLE 1. SEQUENCE OF APPROXIMANTS

100000,

-2.97

-3.0001

-2.99999%

-3, 000000003

~2.99999999998

-5 . 0G00C000000009

(ti+1'

L6X10"

L1X10~

01/ (t;-py)

.ox1077

.1X1072

.1X1072

.1X1070



Note that the rate of convergence of the iteration "looks"
numerically quadratic over the entire range of the iteration even though
it is asymptotically a first order process. The explanation for this lies
in that the error at each step is the product of two small errors, one
of which is the error at the previous step. See Section 7. This should
be contrasted with the behavior of, say, the Newton-Raphson iteration
which is asymptotically quadratic but which behaves linearly when the
approximations are far from the zeros. (The reader is referred to
Forsythe [6] for an example of this.) |

4L, COMMENTS ON AND EXTENSIONS OF THE

BASIC ALGORITHM

Note that the recursion for the G polynomials defined by (2.2)
is easily performed by hand or machine. The multiplication by t is only
a shift. All that is then required is a scalar-vector multiplication at
each step. Another method for generating the G{A,t) which calculates
G(en,t) diiectly from G(A,t) , G(M1,t),..., G(Mn-1,t) 1is described
in Traub [16, pp. 126-129].

From (2.2) it follows that ¢(A,t), which is defined by

a ()

(h.1) e(ht) =t - P(t) o)

may alsc be written as.

G(A+1,t
(4.2) p0,1) = Shlt)



.Since, as we verify in Section 6, ao(h) does not vanish for A suf-
ficiently large, (4.2) exhibits the iteration function as the ratio of

- ﬁolynomials of degree exactly n-1 . This form is used when t 1is large.
Equation (k.1) exhibits ¢{\,t) in incremental form.

i It may be shown that if any of the zeros of P have magnitude
greater than unity, then the coefficients of G(A,t)} increase without
limit. On the other hand, if all the zeros lie within the unit circle,
G(A,t) converges to the zero polynomial. This difficulty is taken care
of as follows: Let h(t) denote a polynomial h(t) divided by its

leading coefficient. We show in Section 6 that

lim G(A\,t) = B(t)

Ao t-0y

Hence G(\,t) has well-behaved coefficients. The G(h,t) satisfy the

recursion

G(n+1,%)

tG(n,t) - P(t), if aO(h) £ o

(L.3) _ _
G(M1,t) = ta(N,t) if ao()\.) =0

We can write the iteration function as

(5 .4) q><>\,t>=t_§§;—gy .

We turn to the guestion of choosing the arbitrary polynomial
B(t) that appears in (2.2). Recall that B(t) can be any polynomial

of degree at most n-l1 such that B(pl) £ O . Two natural choices




for B(t) are B(t) =P'(t) and B{t) =1 . If B(t) =G(0,t) =1,

n

it is easy to show that G(n,t) = t - P(t) . Hence we might as well

take B(t) = G(0,t) =t - P(t) and this was done in the numerical ex-
ample of Section 3. Additional discussion of the choice of B(t) may
Pe found in Section 11.

The iteration function o¢(X,t) 1s first order. From g{i\,t)
and its derivatives and P(t) and its derivatives one may construct
iteration functions of arbitrarily high order. A general treatment is
presented in Traub [16, pp. 116-119].

Because of the rapidity of convergence of this type of method

we would generally not use an iteration function of order greater the

two. The second order iteration function is given by

P(t)G(N,t)
Pp(t) =t - P (L)G(N,t) - P(t)G” (N, 1)

We give a simple numerical example of a second order iteration.

L

et P(t) =t - L6t + 528t2 - 1090t + 2175 . The zeros are Py = 29,

= 15, yp =1x2i . We take B{t) = 1, A =16 and choose our ini-
2

P35
tial approximation as to = 100000 . We calculate

Po

ct
I

1 28.9996

(—'.
1]

» = 28.9999999999997 .

The other iteraticn functions discussed in later sections of
this paper could also be made of arbitrary order. For the sake of sim-

plicity of exposition we shall confine ourselves to the first order case.
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5. GLOBAL CONVERGENCE

We state without proof the theorem of global convergence for the
iteration functions @(A\,t) . A proof of this theorem in a form which
covers the extension to iteration functions of arbitrary order may be

found in Traub [16, pp. 121-122].

THEOREM. Let the zeros Py of the polynomial P be distinet with-

lpll'> |pil, i=23...y . Let to be an arbitrary point in the

extended complex plane such that to # Py 95,..., Py and let

ti+1 = m(&,ti) . Then for all sufficiently large but fixed A, the

sequence ti is defined for all i and ti =Py -

The phrase "global convergence"” is used in the following sense,
For any polynomial whose zeros are distinct and which possesses a largest
zero and for any choice of to which does not coincide with a subdominant
zero,‘wé can conclude that for all sufficiently large A the sequence ti

defined by t, ., = Q(K,ti) exists and converges to p The size of A

10
depends on P and to“ It is determined primarily by the ratio of the
magnitudé of the largest subdominant zero to the magnitude of the dominant

Zero.

6. PROPERTIES OF THE ¢ POLYNOMIALS

We obtain the principle properties of the G polynomials from

the defining recursion

(6,1) , G(O,t) B(t)

G(A + 1,t)

(M) - a (M) B(t),

where GO(K) is the leading coefficient of G(A,t) .
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The G polynomials can be introduced in a number of different
ways. 1In [16, p. 11k4], we define- G(M\,t) as the remainder of the diviéion_
of B(t)tk by P(t). The G polynomials can also be defined as the
sequence generated by a Bernoculli recurrence with initial conditions which
depend on the choice of B(t).

From (6.1) it follows that G(N + 1, pi) = piG(A,pi).
Hence

(6-25 G(N,p,) = sz(O,pi) = p;B(pi) .

Since G(A,t) is a polynomial of degree at most n-1, we conclude from

Langranée's interpolation formula that

n B(p, )

(6:3) GOvt) = T oeppy §22, o =i
i=1 : i P'(pi)

Since B(pl) £ 0O by hypothesis, ¢ £ 0.

Let B(M) be the weighted power sum

(6.1) B0) - B oif)
From (6.3)
(6.5) e () =8(A)

Hence for A sufficiently large, ao(l) £FO.
From (6.3), (6.4) and (6.5) we obtain immediately the most
important property of G(Mt), ramely

(6.6) lim G(A,t) = 1im e(nt) _ B(t)

Ao Ay 00(7\-) t - Py

2

for all finite *t.



-10-
Furthermore the rate of convergence depends on the ratio of the magni-
tude of the largest subdominant zero to the magnitude of the dominant
Zeroc.

To see the importance of (6.6), consider a general iteration

function,

where V(t) is some function which is yet to be specified. If

: Pit
(6.7) v(t) = 'ti_l
. p
1
then () = Py and we always - obtain

the answer in one step. In the Newton-Raphson method, V{t) = P’(t)

and (6.7) is satisfied only at t = Equation (6.6) shows that

Py
when V(t) = G(\,t) , then (6.7) is satisfied for all finite t as A
goes to infinity and is satisfied arbitrarily closely for A sufficiently
large.

We obtaln an interesting interpretation of the recursion for _
the G polynomials by considering the Laurent expansion of G(A,t)/P(t).
Let
(6.8) a0ut) _ o LW

P(t) RE% tk+1

Clearly, do(h) = ao(k) = 8(\) . Write the recurrence for G(n,t) as

GO1,t)  ta(n,t)
(6.9) P?t) = TP(t)

- o (M)
‘Then we conclude that

(6.10) dk+l(h) = dk(k+l)
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Hence the right side of (6.9) may be viewed as the operation of performing

a left shift upon the vector of coefficients of the Laurent expansion.

From (6.10),
a, (\) = d (k) = B(Mk)

a result which could also have been obtained directly from the partial
fraction expansion of G(A,t)/P(t) .
Hence

cnt) A {BE) NS B(k)

(6-11) S onb [PJ&‘% - LS
k=0 t

Thus, except for a factor of ™ , G{nt)/P(t) is just the remainder of
the series for G(0,t)}/P(t) after A terms.

Finally we mention that the recursion for the G polynomials
may be cast as a matrix-vector multiplication where the matrix is the
companion matrix of P . We do not pursue this here. The interested
reader is refemed to the papers by Bauer in the bibliography.

T. THE BEHAVICR OF THE ERROR

In the numerical example of Sectioﬁ 3 we noted that the ratios
of successive errors were small, and that the initial ratio was particu-

larly small when to was large. We now study the behavior of the error

quantitatively.
Let
cp(}\‘)t)-pl
E(\t) = ——
t-pl

From (%.2) and (6.3),

5 a,(o./p M. -01)
. i'*"4 L i "1
1=2 BT

Py

b

(7.1) E(A,t) = - d; =c;/e;
SPIRHCVEN TN

t-pi
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This result is exact. We draw a number of conclusiocns.
. A . .
E(h,t) is of order (pe/pl) and can be made arbitrarily small.
For the remainder of this section we strangthen our assumption to

lo;l > ol > 1ol , 3>2 . Then
1 2 J

. (p,=pq )
(7.2) i:“;J—'—LE At = - dg“_"“'_i-pl .
(py/p;) 2

The asymptotic error constant (Traub (14, p. 9]} is defined by

¢(n\) = 1im E(\,t) .
t— QL
We conclude

E(t)  P1imPp
c(n) t-p, )

lim
Ao

(7.3)

This result explains why the initiel error ratio in the example of

Section 3 is so small. For that example, P = 5, p, =2, t = 100000

2
and the initial ratio should be smaller than the asymptotic ratio by about
-5><10"5 . This is indeed the case in the example. ’

If B="P we can draw an additional conclusion from (7.2).

In this case dE =1, Tet P(t) and Q(t) be two polynomialé with
the same dominant zeros Py and Py We calculate two approximating
sequences for Py both starting at tO but with one sequence calcu-
lated from P and the other from Q . On a computer, for A suf-
ficiently large, the two sequences are essentially identical. To

put it andther way, the sequence of approximants depends only on the two
dominant zeros of P and is essentially independent of the remaining

Zeros.
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8. 1IWO VARIATIONS OF THE BASIC ALGORITHM
—_—_—_—_—e e ——

In the following two variations the same sequence of approximants
ti » except for roundoff, is calculated as in the basic method described
in Section 2. However the way in which the ti are obtained is different.
Both variations are based on the following analysis. In Section 6

we showed that

(8.1) G(0,t) _B(t) v px)
: P(t) P(t) oo $EH1
Pl opeded
Let B(t) = I:i=0 bt . By comparing coefficients in (8.1), we conclude

that for B(t) given, B(0), B(1),..., B{n-1) are determined by

(8.2) . iarB(j-r) =b., J=01,..., n-1
r=0 J
For j>n the PB(j) satisfy
n
(8.3) a Bj-r) =0 .
r=0

We can now associate B(0) , B(1), ..., B(n-1) with B{t) 1in either of

two ways. We can choose either the set B(0) , g(1),..., B(n-1) or B(t)
arbitrarily and determine the other by (8.2) . 1In either case B(j) y J>n,
is calculated using (8.3). (We might add parenthetically that if B = P’

then (8.2) are Newton relations for the power sums B(A).)

We now turn to variation one. Define aj(h) by

n-1 1-7
a(ht) = Y o ()Y
SR
It follows from (6.3) that
(8.4) ozj(K) = i aj_rB(Mr)

r=0



-

=1h-
This variation may now be described as follows. Compute the B(j) wup to
B(A+n-1) wusing (8.2) and (8.3) and compute aj(K) using (8.4). This
gives an explicit formula for G(x,t) and hence for p(n,t) .

Cbserve that this variation consists of a Bernoulli . calculation

followed by iteration.

The second variation is based on the fact that in the 1teration

ti+l = q)(;\,ti)

only the numbers G(h,ti) , not G(h,t) itself, are required. We form
the B(j) up to B(A-1) wusing (8.2) and (8.3). Then form the sequence

of numbers
(8.5)  G(3*l,t_) = t.G(I,t ) - BUIIP(s ) 5 § = 0L, ey AL,

and use G(h,to) to calculate ¢, . Then use (8.5) with t, replaced

by tl s and sc on.
9. AN ITERATION FUNCTION FOR THE SMALLEST ZERO
The iteration function @(A,t) is used to calculate the largest
zero of P . To calculate the smallest zero, we could calculate the largest
zero of tnp(%)., We introduce a sequence of polynomials H(A,t)

which may be used to construct iteration functions for the smallest zero
directly.

Tt is convenient in this section to assume that p(t) , the poly-
nomial whose smallest zero we seek to calculate, is normalized so that

p(0) =1 . Let the zeros of p(t) be a reey @ with

l}aeﬂ
lall < lai| ,i>1 . ' Tet b(t) be an arbitrary

polynomial of degree at most n-1 such that b(al) £ O.
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Define
H(0,t) = b(t)
(9.1) H(x, £)-5_(Mp(t)
H(M1,t) =
t.
where
' 50(%-) = H(X\,0)
An approximating sequence is defined by
(9.2) i = 00nut,)
where
‘ 1
(9.3) o(n,t) = o)
H(x,t)
with

HOn,t) = BN t)/8 (V)

From (9.1), we also have

(9:4) 0(01) = grkitds

10. PROPERTIES OF THE H POLYNOMIALS

From the defining recusion for the H polynomials,

H(D,t) = b(t)
H(A, )-8 (M )p(t)
. t ! ' 2

(10.1)

H(M1,t) =
we obtain the representation

n
. N bla
(10.2) BN e) = 1oaen T BE) 9 = oY
i=1 t-ai i
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It follows that

(10.3) ' 5,(N) = - .§: g™t

and hence thét Bo(k) does not vanish for A sufficiently large.

From (10.2) and (10.3) we conclude that

(10.4) lin Oy, t) = 1im BE0at) _ p(t)
& (N) t

A Ao Oo 12

el

for all finite +t .
The H polynomials possess a property Which is analogous to
a G polynomial property discussed in Section 6. We expand H(N\,t)/p(t)

into a Taylor series around the origin. Let

[= -]
HiA,t k
(10.5) = r e (Mt
plt k=0 k
Let
‘n
A

Clearly, eo(h) = 60(h) = —y(A+1) . Write the recurrence for H(A,t)

as

0.6 - 3 st - o)

Then we conclude that

(10.7) (N) = ek(k+l)

S+l

Hence the right side of (10.6) may be viewed as the operation of performing

a_left shift upon the vector of coefficients of the Taylor series.
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From (10.7)
EK(K) = EO(K+k) = -y{(Mtk+l)

Hence
' A=1
HOLt) LA [b%t; k
=1t + Eﬂmnt] .
pit PLY) 2
Thus, except for a factor of &~ s, H(\,t)/p(t) is just the remainder
of the series for H(0,t)/p(t) after A terms.
11. CALCULATICN OF MULTIPLE ZEROS
b
Until now we have restricted ourselves to polynomials all of
whose zeros are simple. We turn to the case where the polynomial has
multiple zeros. There are no essential difficulties. If the dominant

zero is multiple, P{t) can only be evaluated to a certain accuracy but

this 1s common to all iterative methods which require the evalustion of

P(t) .
We first prove a fundamental
THEOREM. ILet P have n distinet ;eros Py where ?he miltiplicity
of p, is m, . Then for all A
i i
n m A
(11.1) G\, t iP5
) Pt t-p
i=1l 1

PRCOF. We proceed by induction on A . If A =20 , the result is well
known. Assuming it holds for A and substituting (11.1) into the re-
cursion formula for the G polynomials yields the result immediately. 7

Observe that (11.1) implies that for all A , G{A,t) has zeros
of multiplicity m, - 1l at p; - Furthermére,

1im G(r,t) = £(&)

At t-py
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Hence, for A sufficiently large, the remaining ﬁ-l zeros of a(k,t)
lie arbitrarily close to the subdominant zeros of P . Thus the iteration
function will have no peles in the neighborhood of ey

Observe that the theorem is based on the choice B(t) = P'(t) .
This shows that the restriction B(pl) £ O is not the appropriate con-
dition in the case of a multiple zero. The reason for this is apparent if
one compares the partial fraction expansion of G(A,t)/P(t) in the simple
and multiple zero cases.

A detailed asnmalysis of the multiple zero case will appear
elsewhers.

12, CALCUIATION OF COMPLEX CONJUGATE ZEROS

8o far we have dealt with polynomiasls which hafe a zero of largest
modulus or a zero of smallest modulus. We turn to the case of equimodular
dominant zeros. Fortunately in the case of polynomial zeros it is suf-
ficient to consider the case of either cne zero of largést moduius or of
a pair of complex conjugate zeros of largest modulus for the following
reascn.

A translation in the <t plane replaces zeros of equal modulus
by zeros of unequal modulus. In the case of a polynomial with real coef-
ficients, a real translation will remove all zeros of equal modulus except
for a pair of complex conjugaete zeros. Hence only the two cases mentioned
need be considered,

A discussion of how to effect the translation so as not to
damage the zeros of P will appear elsewhere.

We turn to the calculation of a pair of complex conjugate zeros.
In [17} we recently announced a theorem on global convergence of an iterative

method for calculating complex zeros. In this section we describe one



-19-
method for calculating complex zeros and state the theorem of global con-
vergence. Variations on and extensions of this method as well as proofs
of our results will be published in a forthcoming paper.

The theory holds no matter what the relation between Py and Po
requiring only lpll > lpil and lpgl > Ipil s, 1 >2 , Here we restrict

ourselves to and Py complex conjugate.

.l
It lpll = lpzl , then the normalized G polynomials do not

converge. Let

I(nt) = (NGO, t) - BOMLIG(A,t)
(12.1)
J(n,t) = pAMG(M2,8) - B(A+2)G (N, t)
Then
- P(t)
10t —a(t-pl)(t-oe) ’
-J—(K,"c.) - P(t)

(t-p, ){t-p,) .

Recursions involving only the I and J polynomials and not
depending on the G polynomials have been developed. These recursions
may be of advantage in numerical calculations.

From the I and J polynomials an iteration function may be
constructed as follows. We define a polynomial which is gquadratic in u

and hag coefficients which are polynomials in t of degree at most n-2,
2
Fg(u,k,t) = I{(N,t " - J(n,t)u + I(A+1,t)

Let X be a fixed integer and let to be an arbitrary point in the
extended complex plane not equal to a subdominant zero. Define an iteration

by

FE(ti+l s N, ti) =0 .,
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It can be shown that for all ti , and for A sufficiently large, this
quadratic has a zero in the upper half plane and a zero in the lower half
plane. Chhose ti+l as the zerc in the upper half plane and define
by by = w(x,ti)'. Lebel p, as the zero in the upper half plane.

Then we have the following.

THEOREM. Let the zeros Py of the polynomial P be distinct with Py

and Po complex conjugete and lpll > |pi| s 1>2 . Let to be an

arbitrary point in the extended complex plane such that to ﬁ pj”"’ pn

and let t,. . = w(h,ti) . Then for all A sufficiently large but fixed,

1

the sequence ti is defined for all i and ti =P -

13. A NUMERICAL EXAMPLE

For illustration of the method discribed in the previocus section

we calculate the dominant zero of

3

P(t) = tl+ - Lot + 8.7125t2 - 9.025t + 4.625 .

Its zeros are

pl =1.1 + 1,051

p2 = 1.1 - 1.051
=1+ 1

P3

p].].-:l-l o

Note that the zeros are pairwise quite close together.

We choose B(t) = P'(t), A = 96, and choose our initial ap-
proximation as to = 1000 . We obtain the sequence of approximations
exhibited in Table 2. In the right hand column we exhibit the ratios of

the moduli of the errors. As in the example of Section 3 we observe
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TABLE 2. SEQUENCE OF APPROXIMANTS

by ltgyq-ep /18500 |
1000,
1.10009 + 1.049971 | 9.5><1o'8
1.10000005  + 1.049999921 9.o><1o'”
1.09999999997 + 1.049999999921 9-0>‘10"LL
= 1.1 + 1.051

Py
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that all the ratios are small and that the initial ratio is particularly
small. Again this can he quantitatively explained.

14, CALCULATION OF ZEROS OF ANALYTIC FUNCTIONS

Let

=]
£(t) = Y aJ.tJ , 8 =1
3=0

be a power series which converges in a circle about the origin. Suppose
that (%) has a zero of smallest magnitude. Then we can define
analytic functions H(\,t) by the recursion of (9.1). Results analogous
to those in the polynomial case can he developed here.

Since we cannot actually form the analytic functions H(h,t) 3
we cannot use the basic method. There are a number of cther possibilities
and we merely sketch two of them.

The first takes a section of the power series of degree n  and
uses 1t instead of f itself. A section of degree 1000 would offer
no difficulties. The size of A which is needed to separate out the
effect of the dominant zerc depends on the ratic of dominant tc subdominant
zero and not on the degree of the section one takes. Hence guite a modest
choice of A , much smaller than the degree of the section, should be
sufficient. Since G(A,t) can be formed in An multiplications and
since each iteration takes about 2n multiplications, the process is
reasonably economical even for large values of n .

Alsecond possibility is to use the second variation of the
basic method as described in Section 8. The variation is used with the
H recursion rather than the G recursion. The constants appearing in
the H recursion can be precomputed by an appropriate generalization of

(8.2) and (8.3) which amounts to calculating the coefficients of the
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Taylor series for H(0,t)/£{(t) . This last mentioned process is just

the computation required for the application of Konig's method [10].

15. COMPUTER IMPLEMENTATION

In the computer implementation of the type of methods described
here, the program should decide automatically on the value of A at which
to start iteration, and as to whether or not there is a zero of largest
modulus. Such decisions should be made by monitoring the numbers produced
during the calculation of the G polynomials. A number of strategies are
available and will be discussed elsewhere.

16. BIBLIOGRAPHIC REMARKS

Schroder [12] in his classic 1870 paper introduced certain sym-
metric functions of zeros. These symmetric functions are just the deri-
vatives of the rational functions G(An,t)/P(t) . He derived a number of
the properties of these functions. Since Schroder restricted himself to
low values of X for which explicit formulas could be obtained,he did not
find globally convergent iteration functions.

In 1941, Sebastiac e Silva [13] defined G polynomials as the
remainder of the division of th by P(t) and gave a long proof that the
normalized G polynomials converge to P(t)/(t-pl) . His work has been
continued by Aparo [1], [2].

G polynomials are used by Bawer [3], [4] in an important series
of papers which appeared in the mid-1950's. H polynomials appear in a
paper by Bauer and Samelson [5].

Sebastiso e Silva, Aparo, and Bauer are concerned with quad-
ratically convergent versions of Berhoulli—Jacobi—Aitken type methods
for the factorization of polynomials. Thus they continue the first

state of our two-stage process to the limit.



=oh -

Underlying many of the methods for calculating zeros are theoréms
concerning the coefficients of a function which has poles on its circle
of convergence. Papers by Konig [10] and Hadamard [7] are classic. A
perceptive account is given by Householder [9, Chapter 3]. The method
we have discussed here may be incorporated in this framework.

Our work has links with the QD algorithm (Rutishauser [11],
Henrici [8]) which will be explored elsewhere.

Finally we note a different application of G polynomials.
Traub [15] uses G polynomials with the variable t replaced by the
translation operator E , to give a new derivation of the formula for
the general solution of a linear inhomogeneous difference equation with
constant coefficients.

Additional bibliographic references may be found in Traub [1€]

and in the papers by Bauer.

Acknowledgement

I would like to thank my colleague Professor W. Kahan of the
University of Toronto and Stanford University for many stimulating

conversations.



-25-

REFERENCES

APARC, E., Applicazione di Un Nuovo Metodco per la Risoluzione Numerica
delle Equazioni Algebriche. Bol. Soc. Portuguesa Mat., Sér. A, 1
(1948), 49-57.

, Un Procedimento Iterativo per la Risoluzione Numerica delle

Equazioni Algebriche. Ricerca Seci. 2k (195%), 1005-1005.

BAUER, F. L., Beitrage zur Entwicklung numerische Verfahren fur programm-

gesteurerte Rechenanlagen. I. Quadratisch konvergente Durchfﬁhrung
der Bernoulli-Jacobischen Methede zur Nullstellenbestimmung von

Polynomen. Bayer. Akad. Wiss. Math. -Nat. K1. S.-B. (1954), 275-303.

ITI. Direkte Faktorisierung eines Polynoms. Bayer. Akad. Wiss. Math.

-Nat. Kl1. S. -B. (1956), 163-203.

, Das Verfahren der abgeklUrtzen Iteration fur algebraische
Eigenwertprobleme, inbesondere zur Nullstellenbestimmung eines

Polynoms. Z. Angew. Math. Phys. 7 (1956), 17-32.

BAUER, F. L. and Samelscn, K., Polynomkerne und Iterationsverfakren.

Math. Zeitschr. 67 (1957), 93-98.

FORSYTHE, G. E., Singulsrity and Near Singularity in Numerical Anal-

ysis. Amer. Math. Mo. 65 (1958), 229-240.

HADAMARD, J., Essail sur l'étude des functions données rar leur

dévelopment de Taylor. J. Math. Pures Appl. (4) 8 (1892), 101-186.

HENRICI, F., The Quotient-Difference Algorithm. NBS Applied Mathe-

matics Series 49 (1958), 23-46.

HOUSEHOLDER, A. S., Principles of Numerical Analysis, McGraw-Hill

Book Company, Incorporated, New York, 1953.



-26-

References (Cont'd)

10.

11.

12.

13,

1k,

15.

16.

17.

KBNIG, da, Uber eine Eigenschaft der Potenzreihen. Math. Ann. 23

(1884), 4h7-hh9,
RUTISHAUSER, H., Der Quotienten-Differenzen-Algorithmus. Mitteilung

aus dem Institut fur Angew. Math., No. 7 Birkhauser Verlag, 1957.

SCHR&DER, E. Uber unendlich viele Algorithmen zur Auflgsung

der Gleichungen. Math. Ann. 2 (1870), 517-565.

SEBASTIAQ e SILVA, J., Sur une méthode d'approximation semblable &

celle de Graffe. Portugal. Math. 2 (1941), 27 1-279.

TRAUB, J. F., Iterative Methods for the Solution of Equations,

Prentice-Hall, Incorporated, Englewood Cliffs, New Jersey, 1964.

, Solution of Linear Difference and Differential Equations.

Bull. Amer. Math. Soc. 71 (1965), 538-541.

, A Class of Globally Convergent Iteration Functions for the

Sclution of Polynomial Equations. Math. Comp. 20 (1966), 113-138.

, Proof of Global Convergence of an Iterative Method for

Caleulating Complex Zeros of a Polynomial. Notices Amer. Math. Soc.

15 (1966), 117.


http://celle.de

