CS13

COMPUTATION OF THE -PSEUDOINVERSE OF
A MATRIX OF UNKNOWN RANK

BY
VICTOR PEREYRA and J. B. ROSEN

TECHNICAL REPORT CS13
SEPTEMBER 1, 1964

COMPUTER SCIENCE DIVISION
School of Humanities and Sciences
STANFORD UN IVERSITY




COWPUTATI ON OF THE -PSEUDOINVERSE OF

A MATRIX OF UNKNOWN RANK x¥/
by

*/
Vi ctor Pereyra—~ and J. B. Rosen
Abst ract

A programis described which conputes the pseudoinverse, and other
related quantities, of an mX n natrix A of unknown rank. The pro-
gram obtains | east square solutions to singular and/or inconsistent
linear systems Ax = B, where m< n or m> n and the rank of A may
be less than mn(mn). A conplete description of the program and its

use i s given, including conputational experience on a variety of problems.

¥/ On leave from Dept. of Mithematics and Conputation Center, Buenos Aires
University, Argentina.

x¥/
Reproduction in Wole or in part is Permtted for any Purpose of the
United States Covernment. Prepared under NASA Grant Ns G 565 at Stanford

University. Stanford California




[ ntroduction.

A nethod for the conputation of the pseudoi nverse, and ot her
related quantities, corresponding to an mxn matrix A of unknown
rank r, has recently been described [5 1. The nethod determ nes the
pseudoi nver se A" of Aand arelated mtrix A% The pseudoi nver se
has the property that given the linear system Ax = b, the solution
X = A'b satisfies HAxm - b|| < ||Ax - b|]| for all x, and llxmll < |l
for all x such that HAxm - b|]| = |lAx - b]l. The m ni mum basic sol ution
X, = A has the property that Ileb - b|| < llax - p|| foranl x, and
X, has at nost r non-zero el enents.

Theconputational difficulty for this problem arises prinarily
because the rank r is not known. In particular, it may be difficult
to assign the correct rank if one or nore of the singular values of A
are small but non-zero [3 ]. Several other recent papers [1],[2],
(4], on the conputation of the pseudoi nverse have not considered this

inportant practical question.

The approach used here to handle this difficulty can be sumari zed

as follows. The desired matrices Af and AY are formed froma matrix

B, which consists of linearly independent colums selected fromA'".




VW would like to determine B so that it spans the sane space as A
in which case B will contain r colums. Suppose we have a matrix
Bq with g linearly independent columns selected from A (where q < r)
and the correspondi ng approxi mation A; to A+. Adding another linearly

i ndependent colum of A to B4, giving B__ shoul d give an impwoved

q+l’

. . + .
approxi mation Aq+ to the pseudoinverse. However, due to roundoff error

1

in the calculation it may turn out for an ill-conditioned systemthat the

+

new approximation is actually worse in the sense that HAAq+l - I > IIAA'(; - I

.

Such a test is nmade in the pseudoinverse determnation with the result that

the effective-rank of A (the nunmber of colums in B) is the maxi mum

possi bl e consistent with mnimzing the error IIAA+ - I
A closely related aspect of the nethod used here to conpute the
pseudoi nverse is what mght be called its "smoothing" property. In many

practical situations one would like to obtain a solution to a linear
system which is stable in the sense that small changes in the matrix

el enents do not cause large changes in the solution vector. In general,
the solution x = A'd, where A" is the true pseudoinverse, will not
behave smoothly. In fact, the normof x will increase w thout bound

as a singular value of A approaches zero. This difficulty can be
elimnated by inposing a predeternined upper bound on the norm of (B'B)'l.
This is acconplished by estimating the effect of adding a new col um of

A to Bq and only adding this new colum to Bq if it does not cause

any el ement of A++ to exceed the bound. Details of this selection

qt+l
procedure and the manner in which it depends on the choice of the bound

SUPER i s discussed in the next section.
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In Section 3 the use of the Algol program witten to performthis
algorithm is described and suggested values for the input paraneters
are given. The programuse is illustrated by means of a sanple problem
A large nunber of problens have been solved using this program
Several different kinds of tests have been perforned:
a) Very ill-conditioned matrices |ike the segnents of the Hilbert
matrix [6] have given a clear exanple of the snoothing property of the
nmet hod.
b) Random rectangul ar matrices of random sizes have been generated and
the pseudoi nverse have been conputed. The sizes were allowed to vary
between 1 and 25. In all the cases the results were satisfactory.
c) Sane as in b) but with randomranks. In every case the rank was
correctly determned by the program
a) Random matrices of specified size covering a range of values of m
and n were run in order to obtain tine estimates for different size
probl ens.
e) A nunmber of |east-square problens, i.e., with ©>>n and only one
right-hand side.
f) A variety of matrices for which an independent check on the
accuracy of the solution was available.

Tests b) through f) showed that in reasonable problenms in which

~the rank is well determned the programw ||l work very well, while a)

has shown that in very ill-conditioned cases the snoothing property of

the method is effective.

These test results are discussed more fully in Section 4. The
notation used in [5] will also be followed here.
Details of storage requirenents are given in Section 5.

A copy of the program appears in the Appendi x.



[, Program Descri ption.

The nmethod used to conpute A" and A" fromB is essentially that
given in Section 2 of [5]. For convenience we will repeat the key relations

here. The pseudoinverse of the mx r matrix B of rank r is given by
(2.1) B = (3B)”! B

The non-zero rows of the n x mmatrix A’ then consists of the corre-
+
sponding rows of B. Anr x n matrix of rank r is also obtained from

B accor di ng to
(2.2) ) C = B+A

Note that, if B contains all the independent colums of A then A = BC

Finally, A" is obtained fromC and B' by

(2.3) a" = ¢ (cc)t B
The determ nation of B is based on the algorithmof Section 3 in [5],
using the nmore sophisticated selection procedure described bel ow

The program consists essentially of two parts. One part has all the
i nput-output and the other is a PROCEDURE called PSEUDOINVER which may al so
be used separately as a part of other prograns'. The program solves the

matricial probl em
(2.4) AX=RHS

where RHS is a matrix containing several right hand sides.
a) The first part of PSEUDO NVER normalizes the matrix A by scaling

each colum so that its Euclidean normis equal to one. The normalization
constants are saved in order to get back to the original problem
I




The search for independent colums of A is then nmade to determne
the matrix B, according to the formulas described in section 3 of [5].

At this stage, the condition for a vector to be accepted as independent of
the ones already included in the basis is that «, the square of the norm of
the projection on the orthogonal subspace to that basis, be less than a
quantity ORTP, which is an input parameter. Later we will discuss the
appropriate choice of ORTP and the other paraneters appearing in the
program

As the colums chosen in this fashion mght not necessarily be the
first colums of A a record is kept of the colum nunber of the accepted
vectors,

After all the colums have been inspected two situations can arise;
either all the n colums of A have been accepted or some have been
rejected. In the first case we have finished and the conputations indicated
at the beginning of this section are perforned to get A+, A#‘, X and
X . Oher conputed quantities are the residuals, NXM = |LAXm - rus||
NXB = lleb - RuS|| corresponding to X, end X, and EST = IlIsc - all.

EST woul d be zero if the conputation were performed exactly; in
general EST will be very small for well-conditioned matrices and will

increase with the ill-conditioning or if an alnost dependent colum is

. added to B.

If only q < n colums of A are selected for inclusion in B then
the basis thus constructed is called Bq and the second part of PSEUDO NVER
is called.

b) The projections on the subspace orthogonal to Bq are conputed for

all the rejected colums. The Euclidean norm of each projection is conputed,




(2.5) o = I - 3 B)) aju2

and the colum corresponding to the maximum on. (the nost independent one)

is stored in SAV.

c) A test is now performed which is based upon an estinmation of the norm

1 '1 . . . .
t hat (Bq+1 Bq+l) woul d ha\llqe if we were to include SAV in the basis,,
The normused is||f = max } Iaijl and the estimate is derived from the
i j=1
f ormula,
(B’ B )'l 0 u
(2.6) (8 )} : e P P PR
* a+l q+22 = o I o a+l -1 q'

wher e uy = B:; SAV and a. is the square of the norm of the projection

g+l
of SAV on the orthogonal subspace to that spanned by Bq, Then

1

1B g Byu)ll < ESTIM= (B B)7H| + og,) (1 + Ve

If ESTIMis larger than SUPER (an input paraneter) then SAV is re-
jected and Bq is taken as the final B .

This test avoids large elenents in the pseudoinverse and gives the
snoot hing property discussed in the introduction.
d) If the test in c) is passed then the PROCEDURE GARBG which conputes
all the matrices and quantities nmentioned at the beginning of this section,
is called and a second test is made. GARBG is used again, now with the
basi s Bq plus the colum SAV . The test consists in conparing the
val ues of |lax -rHs||, |lax, -rus|| and |[Bc-all obtained with one basis, with
the corresponding ones obtained with the incremented basis. |f all these

val ues for Bq+l are smaller than for Bq then SAV is definitely

6




accepted. After shifting all the useful quantities, part (b) is repeated
for the new basis Bq+l and so on, until either an exit is provided for
one of the tests or the colums of A are exhausted. Al the scalar
products are perforned in double precision. The block diagramin Fig. |
shows the nost essential parts of the program

It is worth noting that this strategy has been dictated by the
problemitself and achi eves the best numerical pseudoi nverse possible
using the method of [5] and taking into account the numerical roundoff
error of the conputer being used. This strategy takes advantage of the
step by step algorithm for determining B, and constructs an independent
basis, the degree of independence being determned by the paraneter ORTP.
By picking the nost independent vector anong the renaining ones, and
checking to see if this decreases the residuals (by taking this vector in
the basis) we are answering in a direct manner the two questions: how
many colums of A do we need to mnimze the residual ? and, anong all

the possible sets of independent colums,which set gives the best rep-

resentation of the pseudoi nverse?
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Program Use.

As described in the previous section, several paraneters are

needed besides the matrix A. Nowwe will explain the use and pos-

sibilities of these paraneters.

| nput .

M (integer) nunber of rows in A .

N (integer) -nunber of colums in A .

T (integer) number of right-hand sides.

OPC (Boolean) If OPC is equal to 1 then the programwill conpute

SUPER (real)

the matrices A and A" | and the right-hand side
RHS = I(mx m wll be automatically, provided.
Moreover, OPC decides if in the test described
in Section 2,d) the quality of the representation
(A =BC is controlled. That test is done only if
OPC =TRE. |If OPCis equal to FALSE then
RHS an Mx T matrix has to be provided and the
programw || conpute X = A#.RHS, and Xy = A+.RHS,
matrices that will be printed out instead of A*
and A"

It is the SUPER of Section 2,c). |If an upper
bound for the elenents of A" i's known then SUPER
can be set to this bound to take advantage of the
snoothing property of this method;, otherwise it is

b

suggested that 10 be used. It should be

noted that, in general, a larger value than 1014



wi |l increase conputing tine by throw ng unnecessary
decisions into the test of Section 2,d), On the
other hand, much smaller values may conpletely
elimnate from further consideration some colums
which could be used to decrease the error,

ORTP (real) This parameter was described in Section 2, a). Snall
val ues for ORTP (around 10'4) in general will accel-
erate the process because the first part (construc-
tion of a basis of strongly independent colum) is
the fastest and as many colums as possible should be
accepted there. Nevertheless, there are at |east
two cases in which a nore careful choice of ORTP may
be inmportant. If higher precision in the answers
Is desired (atthe cost of increased conputing tine),
then a larger value of ORTP should be used, say
0.05. This will allow the second part of the program
to choose "better" col ums.

The other delicate case occurs when the matrix is

very ill-conditioned and the rank is therefore not
wel | defined. Here the use of a relatively'large

ORTP is inportant. Again values around 0,05 are
reconmended.

Summarizing, in a reasonable, well behaved problem a recomrended

set of parameters is:

SUPER = 1014 . ORTP = 10'4 ‘
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If the representation becomes very bad (|| - Bc|| too large), the probl em
is not well behaved and nore burden shoul d be passed on to the second and
safer test by increasing SUPER and decreasing ORTP .

If the user has information that certain variables are nore sig-
nificant than others,this information can be used by ordering the matrix
A so that the colums of A corresponding to these variables appear
first. This will insure that these colums are considered first for
inclusion in the basis B .

|f the complete programis used, then only the nunerical data have
to be punched,, This is done in the follow ng way.

As all the read statenents are in the FREE FIELD form avail able
in the EXTENDED ALGOL for the B5000 at Stanford, no special format is
necessary. Nunbers can be punched in any format, needing just one space
in between to separate them
1st. card: M N T OPC SUPER ORTP
for instance 10 10 10 1 @lh 0. 001

Next cards will contain the matrix A punched by rows. As each
READ asks for a whole row, care nust be taken not to mix different rows
in the same card.

Finally, if 0O PC =0 the right-hand sides (RHS) have to be
provided and are read by colums. Each new col um nust be started on a
new card, so that there will be at least T cards required for the RHS .

If the PROCEDURE is used separately, then all these quantities

are input parameters (with the same names as above).

11




A conplete sanple input is given by,

3 3 1 Y @1k 0. 001
1.3 2 -5
A 4 1 0
-1 -1.3 @3
RHS { 1 2 2.1

out put

Al the matrices printed out by the programwill have the fol | ow
ing format:

Ei ght colums per line, each number in floating point with 6 sig-
nificant digits. If the matrix is more than eight colums wide, then
successive blocks will be printed in new pages. Al the rows are
printed together.

The output is described now in the order in which it wll occur.

First the matrix Ais printed out.

Then, if O PC=0, the right-hand sides are printed out.

Norm of (BC - A) .

The residual s HlAX(;) - RHS(i)” HAxbi) - RHS(i)” .

If OPC =1, then the matrix pseudoinverse is printed out wth
the format explained above; also in this case the non-zero rows of the

matrix A¥ are printed, each of themwth a heading: ROW NUMBER ...

12



If oPC =0, then instead of these two last matrices,

m ni mum and basic solutions are printed out.

output for the problem

9 21 1
X =
21 kg 0

PSEUDOINVERSION OF THE MATRI X A .

g. 00000 @ + 00
2.10000 @ + 01
[ PAGE]
NORM OF (BC - A)
RESI DUAL FOR XM
9.19145 @ - 01
RESI DUAL FOR XB
9.19145 @ - O1
[ PAGE]
MATRI X  APSEUDO NVERSE
2.67532 @ -03
6.24381 @ - 03
[ PAGE]
MATRI X ADAGGER
ROW NUMBER 1
1.72461 @ - 02

END OF THE RUN

AIS2x 2.

+

2.10000 @ + 01

Lk, 90000 @ + 01

2.37582 @ - 12
3.93919 @ - Ol
3.93919 @ - 01

6.24314h @ - 03
1.4579% @ - 02

4,02332 @ - 02

K X K K KX N KKK KKK KK KX KX
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The PROCEDURE PSEUDA NVER

The call for this PROCEDURE is,
PSEUDO NVER (M N, TI, OPC, SUPER, ORTP, A, RHS, EST, NXM NXB,
APSEUDO, ADAGER, COF, XM XB);
The first 8 parameters are input parameters and they have been des-
cribed before. The only detail needed is: A(double real array
[OM ON), RHS[OGM QTI];
QUTPUT PARAMETERS:

EST (real) Contains |Bc - 4| .

NXM, NXB (single real arrays [0:TI]) . They contain the residuals
lax - rus|| and ||ax, - Rus|| respectively.

APSEUDO, ADAGER (Doubl e real array [0:N, 0:M])

They contain the pseudoinverse of A and the matrix A"

COF (Single integer array [0:N]) .

If cor[I] = O then both, the |th row of A* and X, are dif-
ferent from zero, otherwise they are zero and that neans the program has
decided that the corresponding colums in A were linearly dependent
with respect to-the current basis.

XM, X8 (doubl e real arrays, [0:N, 0:TI])

They contain the mninmm and basic sol utions.

14




a)

Test Probl ens.

Square segnments of the Hilbert matrix have been tried, sizes
varying between 3 and 10.

For 5< n < 10 the rank found in each case was 4 . The norm
of the pseudoinverses remained bel ow 10° while for the true
pseudoi nverse (the inverse in these cases) the norns ranged be-
tween 10° for n=5 and 10%> for n=10 . The norm A - Bc||
was around 1077 for all cases.

As is well known, the ill-conditioning of the Hlbert matrix seg-
ments increase with their dinension. However, because of the
snoot hing property of the nmethod a bounded and reasonably accurate
representation for the pseudoinverse was always obtained.

Ei ght een random matrices with random di mensi ons varying between

1 and 25 were generated and pseudoinverted. The norm ||a - Bc|
was al ways bel ow 1072 and the ranks vere al ways found to be
equal to mn(mn).

Gven three randomintegers m n and r in the interval [1, 25]
a routine generated two random matrices, L (mxr) and

R(rxn) . Miltiplying themwe obtained a matrix A (mx n) with
rank at nost equal to r(l) . Wth 20 matrices generated in this
way, the results were simlar tob) . 1In every case the rank r
was correctly determned. For nost of these cases the rank r was

less than mn(mn), and of course was unknown for the program

(1) This test was suggested by Professor Gene H Golub.

15




d)

For each pair of values (mn) several random matrices were

generated and pseudoi nverted. Average val ues of la-Bc|| for these
matri ces wth m=10,20,30 and n=10,20,30 are shown in Table I.
For the sanme problens, average computation time on the Burroughs

B5000 at Stanford Conputation Center are shown in Table Il

In all these matrices the rank was the maxi mum possible, i.e., rank =

min (mn) and it was properly determned by the program.

e)

TABIE | TABIE | |

N o 20 30 | 20 30

10 | 5x10-9|  9x20™9 k.5x1078| | 10 | 7.6 13.9 | 20.7

20 | 3x207° hx10® 2 ]ox10-7 20 | 16.5 49 91

30 [5.8x107°] 6.9x107 | 2.6x1077 | 30 |ers 2.5 | 180.6
|A - B Conp. time in seconds

For a 40 x 40 matrix the answers were:
t = 413 sec. | |a-5c|| =27 x107

rank = 40 .

A comon problem in nmany branches of applied sciences is the |east
squares fit, and is therefore one of the nost inportant applica-
tions for this program A related feature of the programis that
by ordering the variables, the user will be able to test their

i ndependence and eventually to decide if his nodel is appropriate

to the phenonena being investigated. This is done by ordering

16




the matrix A so that the first coefficients correspond to the
nore inmportant variables. The programwill attenpt, to use these
colums first to formthe basis B . The necessity for such an
ordering is clear fromthe fact that if we have n colums in

A and the subspace spanned by these colums has di nension

(n-p) then we can construct with these colums as many as

(nBp) 1inearl y independent sets.

In Figures Il and Il are shown the results obtained by running
the programwith |east squares type problems. Again the elenents
of the matrices were generated randomy. Fig. Il shows conputa-
tion tines on the B5000 for different values of m and n=5, 10.
Fig. 111 shows the norm|a - Bc|| for the same probl ens.
Matrices with exact known inverses were tried obtaining good re-
sults and accuracy. O course this program should not be used to
invert a matrix which is known to be nonsingular and well-

condi tioned, because it will be around four tines slower than an
efficient matrix inverter. The program has also been used to
obtain the pseudoinverse of singular and almost singular matrices
stemng from the discretization of integral equations of the first

kind, and problenms in pattern recognition.
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v, Storage Requirenents.

As all the array declarations are dynam cal, the amount of
storage depends on several paraneters. If M N T are as before, and
Ris the final rank (nunmber of accepted colums) then an estimate for

the storage used in the PROCEDURE PSEUDO NVER is,
¥ 2
Storage ¢ + 5MN + MR + 2NR + 2NT + max (R®, MN, MT)

the last termis present because in the PROCEDURE GARBG we have several
i ndependent bl ocks, and the storage corresponding to certain arrays is
not simultaneously used.

If, as usual, R is not known,then it can be replaced by
mn(nnm . If the conplete programis used then additional storage is
needed,

Addit. storage E3MN + MI + 2NT

Conputer time rapidly increases when abusive use of the drumis nade.
From the experience obtained with the test problens, it is suggested

that the total storage be less than 40,000 words.

19
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APPENDI X

AN EXTENDED A1gor PROGRAM TO COMPUTE THE
PSEUDOINVERSE OF AN M x N REAL MATRI X
AND orHER REIATED QUANTI TI ES.
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BEGIN COMMENT PSEUDOINVERSE OF A MxN MATRIX OF UNKNONN RANK;
INTEGER M»N»TIs1»J J REAL SUPER,EST»TPO,ORTP }
BOOLEAN 2PC } LABEL OVER,FIU}
COMMENT DRIVER PROGRAM. FIRST PARAMETERS ARE READ IN,
AND USED FOR FURTHER_DYNAMICAL ARRAY DECLARATIONS;
OVERS READ (MsN,TI1,0PC,SUPER,ORTP) [FIUJ}
BEGIN INTEGER ARRAY COF[Os$N133 )
ARRAY ACO3MsO3NI,RHSLOSMsO8TII»XMpXBLOINsOSTII»NXMsNXBLOSTI],
APSEUDO, ADAGER[OIN,OSM) 3 LABEL NOPR, NOPRY J
FORMAT PRMAT(C BEL445)///)»
TITIC"PSEUDDINVERSION OF THE MATRIX A"™///%"A IS"»13,"x"»13/)»
TIT7("NORM OF (BC=AX"//X3,E15.5/"RESIDUAL FOR XM"/(BE154:5/))»
TITBC"MATRIX A PSEUDOINVERSE"/)»TITO("MATRIX A DAGGER™/),
TITL0CX6» XM/ ) TIT20C//X65"XB"/)»TITL3B(/"RON NUMBER"»13/)»
TIT?77C/"RESIDUAL FOR XB "/(BE1545/))»S0L(BE15.6/)>»
ENDEC//"END OF THE RUN™//X15,"* % # & % & % « » ¥" ////)}
PROCEDURE PRT(A,MsN) }
INTEGER M»N3 ARRAY AL0,013
COMMENT PRT PRINT OUT THE MxN MATRIX A;
BEGIN ForwAT TITL46C/ 8E14+5)3 INTEGER SEsK»R}
S€ + N DIV 8 3 K ¢« N MOD 8
FOR R«0 STEP 1 UNTIL SE-I DO
BEGIN FOR Ie€l STEP 1 UNTIL M DO
WRITE (TITL46,FOR Jet STEP 1 UNTIL 8 DO A(1,8 XR+J]1)J
WRITE ([PAGE])
"END J3 IF K0 THEN FOR Iei1 STEP 1 UNTIL M DO
WRITECTITLU6,FOR Jet STEP 1 UNTIL"K DO Al1,8 XSE+J])}
WRITE ([PAGE))

END PRT 3}
PROCEDURE PSEUDOINVER (MsNsTIsSUPER,OPCr»A»RHS»ORTPSESTHNXM,
NXBsAPSEUDO,ADAGERSCOF»XM»XB) 3
INTEGER MsN»TI 3 INTEGER ARRAY COF{O0)} BOOLEAN OPC;
REAL SUPER, EST,ORTP 3
ARRAY A»RHS,APSEUDDs,ADAGER,XM,XBLO»0)s NXM,NXBLO])}
COMMENT PSEUDOINVER COMPUTES THE PSEUDOINVERSE OF A MXN MATRIX A,
AND DTHER RELATED QUANTITIES. THE ESPECIAL WAY OF ROUNDINGe=OFF
AFTER DOUBLE PRECISIDN OPERATIONS IS DUE TO
MR, PETER RUSINGER AND PROF. GENE GOLUB;
BEGIN INTEGER J»CONT,QsK,T»BUENOSR,I»PEsMA} BOOLEAN SUITCHJ
ARRAY BQ,AN[COSMsOSNI,» INVOLOSN,OINI,NRHS»UPI»DOPILOSTI)»
GoUQ»SAVIOINI»X1oX2LO0N»03TI)»BPS»API»ADILOINSOIMY}
REAL CLUF,ALFAQ,BEQsAL»SUPALF»BINXBLaNXM12»AAA»BBBs(CCC»
UPIL1,D0PI1,ESTI»ASO»SUMIES)PERTUBSESTIMsTPOLMINIRS
MA t IF M<N THEN N ELSE M 3
BEGIN ARRAY TRUC,TU,VQ,TEMPLOSMAYS LABEL SECND,RFIN,
NONESsLLOPs TRES,CUATRO,MAIS,CAS,FINI,OTRA,FORCEDS
COMMENT TRMAVC»MATRIMUL,MULTIVEC»ESC» TRANSP AND VECSUM ARE
PROCEDURES PERFORMING MATRIX AND VECTOR OPERATIONS,
SOME OF THEM IN DOUBLE PRECISION;
PROCEDURE TRMAVC (CA»VslaJaMsN)}
ARRAY AL0»03,VL033 INTEGER lsJsMsN 3}
BEGIN INTEGER K3
IF I=0 THEN FOR Ke¢i STEP 1 UNTIL M DO VIKI¢ ALK»J]
ELSE FOR Kei STEP 1 UNTIL, N DO V(Kle¢ ACI»K]
END TRMAVC 3
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PROCEDURE MATRIMUL (AsBsC»sP»Q,R) 3
ARRAY A,B»C[0»0] JINTEGER P,Q,R 3
BEGIN INTEGER 1,J,X 3REAL AC,BC3}
FOR I«¢{ STEP { UNTIL P DO FOR Je¢! STEP 1 UNTIL R DO
BEGIN ACe¢BCe0} FOR K¢{ STEP 1 UNTIL @ DO
DOUBLECALI,K)»0,BIK»J1»0sx%sACsBCr+s¢»AC»BC)3
Ctl,J) + AC+BCRACL128128)/5,497558138919811
END
END MATRIMUL
PROCEDURE MULTIVEC (A»V1»V2sP,Q))
ARRAY A(0,031,V1,V2L0) JINTEGER P»Q}
BEGIN INTEGER 1!»J3 REAL AC,BC3
FOR 1«1 STEP 1 UNTIL P 00
BEGIN AC+#8C«03 FOR J¢i STEP 1 UNTIL @ DO
DOUBLE (ACL15J)50,V1iCJ)»0sXsACsBCr+,¢»AC»BC))
V2{1le AC+BCRACL13138)/5,49755813801811
END
END MULTIVEC 3
PROCEDURE ESC(CA»B»CsP)}
ARRAY A,B8t03) SJREAL C 3 INTEGER P}

BEGIN INTEGER 1 3
Ce0) FOR I¢i STEP 1 UNTIL P 00 CeACl)x SLIl+C
END ESC

PROCEDURE TRANSP (CAs»B,PsQ)
ARRAY A,B t0,0] 3 INTEGER P»Q 3}
BEGIN INTEGER 1,J3
FOR le¢i1 STEP 1 UNTIL P DO
FOR Je1 STEP 1 UNTIL @ DO BLJ,1] « All,V0)
END TRANSP
PROCEDURE VECSUM (A»ByCoALF»BETHN) J
ARRAY A,B,C[0)} REAL ALF»BET JINTEGERN
BEGIN INTEGER I}
FOR 1«1 STEP 1 UNTIL N DO C{IlealrIxA_F+B(IIx BET
END VECSUM }
PROCEDURE PSEUDO (NQsALFQ,UQ,»Q)
ARRAY NQ[0,03,UQC033 REAL ALFQ3} INTEGER Q@ }
COMMENT GIVEN (BQ"BQ) INVERSE, PSEUOO CONSTRUCT (B¢(Q+1)"B(Q+1))
INVERSE;
BEGIN REAL A; INTEGER 1»J }
ALFQ « 1/ALFOQ;
FDR 1«1 STEP 1 UNTIL @ DO FOR J¢! STEP 1 UNTIL @ DO
DOUBLECALFQ»O0,URLII»0sXsUQLJI»0s%XsNALL»JIs0stse,
NQCI»JIsAY3 QeQ+1l 3 UQ[Q)e =1}
FOR J¢1 STEP 1 UNTIL Q@ DO
NQLJ,Q1e NRLQ,JY ¢ =ALFQ x UQLJ]
END PSEUDO 3}
PROCEDURE GARBG(MsN»T»TI»COF»BQsGsRHSsBPS»AsNRHS,AAA,
NXMsNXB2NXM1,NXB1, APSEUDO» ADAGERSXMs XBLEST))
REAL NXM1,NXB1,EST,AAA} INTEGER N,MaT,TI1}
INTEGER ARRAY COF(O01]3
ARRAY XM»XB, APSEUDO»ADAGERsSBQsRHS»BPS»AL[0»01))
NXBsNXM»GoNRHSLO}
COMMENT GIveN THE BASIS BQ3APSEUDOINVERSE, A DAGGER, XMs XB»
NXMs, NXB, AND NORM OF (A=BQC) ARE COMPUTED)
BEGIN INTEGER 1sQsJsRoMA 3 REAL BsPER,ALFAQ )
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COMMENT

COMMENT

COMMENT

COMMENT

COMMENT

ARRAY C(O:T,0:N3)» BQILOtM,0tTY,UQLOSN] 3
IF M$N THEN MAeN ELSE MA eM 3
BEGIN ARRAY ANCOIT,08NY
BEGIN ARRAY INVQICLOtT»O0sTI»TU,TEMPLOSMAYS

A DAGGER IS CALCULATEDS
FOR I¢1 STEP 1 UNTIL N DO
BEGIN. Q@ ¢« COFLI) 3

IF @0 THEN FOR Je¢} STEP 1 UNTIL M 00
BEGIN BR1lJ,Q) ¢ BQLJ,QI/GLII
ADAGERCI»Jt)e BPSCIQsJle BPSIQ,JIX GL1))
END
END;

C AND C=PSEUDOINVERSE ARE CALCULATEDS
MATRIMULC(BPS,A»CrTrMoN)}
TRMAVCCC»TU»121»ToNY3 ESC(TU»TU»BAN)J
INVQIC1,1]e 1/B;

FOR Q@+« 2 STEP 1 UNTIL T DO
BEGIN Re Q=13 TRMAVC(C»TU»QrQsToN)}
MULTIVECCC»TUTEMPIRIN)S
MULTIVECCINVQLI,TEMP»UQ»R,R)3
- FOR I«1 STEP { UNTIL N DO
BEGIN PERe 03
FOR J¢i STEP 1 UNTIL R 0O
PER+ PER+C[J»1] X UQCJIS TEMP([1] ¢ PER
END 3
VECSUMCTUSsTEMP»TEMP»1o=1sN)}
ESC(TEMP,TEMP,ALFAQsN)}
PSEUDDOCINVQL,ALFAQsUQ,R)
END 3’ MATRIMULCINVQLI,CoAN»T»TaN) 3
END;
BEGIN ARRAY BQCCLOSMA,OQOIN] }
NORM OF (A=B8C) 1S COMPUTED;
TRANSPCANS»BQC» THN) 3
MATRIMUL(BQCsBPS,APSEUDDINSTAM)}
MATRIMUL(BQ1»CrBOCIMsToNY} EST ¢ O;
FOR el STEP 1 UNTIL M DO
BEGIN PER+ OF
FOR J+1 STEP 1 UNTIL N DO
PER+ PER+ABS(BQAC[I»JI=AL1»J]1)}
IF PER2 eST THEN EST ¢ PER
END
END
END;
EST « EST/AAAS
THE MINIMUM AND BASYC SOLUTIONS ARE COMPUTED]
MATRIMULCAPSEUDOARHS»XMaNsM»TI )}
MATRIMULCADAGERIRHS»XBsN»M»T1)3
BEGIN ARRAY ANCOSM, 0TI
THE RESIDUALS FOR THESE SOLUTIONS ARE COMPUTED!
MATRIMUL (AsXMpANsM,N,T1)3
FOR Je¢1 STEP 1 UNTIL TI DO
BEGIN NXMie 0}
FOR l«¢i STEP 1 UNTIL M 00
NXMI ¢CANCI,JI=RHS[I»JIIWN2+NXMLS
NXM1ie SQRTENXM1)3 NXMEJ) + NXMI/NRHSCJ]
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END3

MATRIMULCA,XBs ANIM,N,TI)

FOR Je¢i1 STEP 1 UNTIL TI DO

BEGIN NXB1¢0;
FOR Te1 STEP 1 UNTIL M DO
NXBle(ANTI,J)=RHS[1,J])%2 + NXB1 }
NXBle SQRT(NXB1)3 NXBLJIe NXBL1/NRHSI[J]

END 7 NXB1 ¢ NXM1 ¢ 0)

FOR Ie«1 STEP 1 UNTIL TI DO

BEGIN NXB1 ¢ NXB1l+ NXBLI1)*2
NAML & NXMLI+NXM{T] #2

END 7 NXMie SQRT(NXM1)3 NXBile SQRT(NXB1)j

END}
END GARBG 3

COMMENT PROCEDURE PSEUDDINVER BODY 3}

HINIR «8=20; AAA«CCCe0 3

COMMENT NORM OF A AND NORM OF THE RHS}

FOR J¢1 STEP 1 UNTIL N DO FOR I¢1 STEP 1 UNTIL M DO
BEGIN 8B8¢ AB8SCA[I,J1); ITf BBB>AAA THEN AAA+#BBB
END 3 FOR Jei STEP 1 UNTIL TI! Do
BEGIN CCCe¢0j FOR lei STEP 1 UNTIL M DO
CCC” CCC+RHS[I»JI% 2 3 CCCe SQRT(CCC)HS
—-—— NRHS[JJe IF CCC>y THEN CCC ELSE 1 3
END3 IF AAA<1 THEN AAAel 3
FOR 1¢1 STEP 1 UNTIL N DO
BEGIN COF[1le 03
FORJel STEP 1 UNTIL M DO ADILI»JI«ADAGER(I»J)e 0OJ
END 3
COMMENT THE MATRIX A IS NORMALIZED AND STORED ON AN »
G CONTAINS THE NORMALIZING COEFFICIENTS
FOR Jet STEP 1 UNTIL N DO
BEGIN TRMAVCCA»TU» 02 JaMIND}
ESCCTU»TUSCLUFAM)}
GLJIeIF CLUF > 1.0 THEN 1.,0/SQRTC(CLUF) ELSE 1,0/
END 3 FOR I¢1 STEP 1 UNTIL M DO
BEGIN FOR J¢1 STEP 1 UNTIL N DO
ANCI»J)Y ¢« ALL,UlXx GLJ]
END 3
COMMENT THE CONSTRUCTION OF A BASIS 0OF STRONGLY
INDEPENDENT VECTORS IS STARTED;
CONTel} SUPALFe 0O 5 Q¢ Ke Te 13
COFC1)e1 INVQ[1,»1le 13 SUITCHe FALSE 3
FOR Ie¢1 STEP 1 UNTIL M DO BQCLIs1l¢ ANCI»1)}

COMMENT SEARCH FOR INDEPENDENT COLUMNS Of A+ WHEN THE COLUMNS

LOP 1

ARE EXHAUSTED AN EXIT IS PROVIDED To LABEL FINIe+ IN CONT
A RECORD IS KEPT ON THE WAY IN WHICH COLUMS ARE ACCEPTED1
If =N THEN Go T0 FXNI 3}
TeK 3 QeQ+13 KeK+1

COMMENT PROJECTION OF A COLUMN OF AN QON THE ORTHOGONAL

CAS a

SUBSPACE OF BQ;
TRMAVCCAN»VQs0sQsMsN)}
FOR I¢1 STEP 1 UNTIL T DO
BEGIN ALFAQeé 0
FOR Je¢i STEP 1 UNTIL M DO
ALFAQe ALFAQ+BQLJ,IIXVALJIS TEMPLI)e ALFAQ
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END
MULTIVECC{INVQ,TEMP,UQs»TH» T}
MULTIVEC(BQ,UR,TEMP,M»T)}
VECSUMCVO,TEMP, TEMPs1s=1,M)}
ESCC(TEMP,TEMP,ALFAQsM)}
If SUITCH THEN GO TD TRESS
COMMENT FIRST TEST FOR ACCEPTANCE AS AN INDEPENDENT COLUMN;:
IT ALFAQ € ORTP THEN GO T0 NONES;
IT CONT=2 THEN CONTe¢ 3 3
COMMENT CONSTRUCTION OF B(QR+1)3
PSEUDO CINVQs»ALFAQ,UQ,»T)}
FOR le¢1 STEP 1 UNTIL M DO BQ[I,KJe VQLI3J
COF t@)e¢ K 3 GO YO LOP 3
NONES ¢ COFCQ) « 03 Ke K-1 3
1T CONT # 3 THEN
BEGIN CONTe2 3} GO TO TRES 3
END 3 GO TD LOP
COMMENT IT CONT¥2 THEN THE REJECTED COLUMNS ARE REVISED IN ORDER
TO TAKE THE MOST INDEPENDENT WITH RESPECT TQ THE BASIS BQ,
CONT=1 MEANS THAT ALL THE COLUMNS HAVE BEEN TakEn IN THE
FIRST SWEPT, CONT=3 YEANS THAT A COLUMN HAS BEEN REJECTED
AND LATER ON»ANOTHER HAS BEEN ACCEPTED;
DTRA t Qe 2 SUPALFe O; BUENDe O;
MAIS 3 IT Q=N+l THEN GO TO CUATRD
IF COFLQ)# O THEN
BEGIN Re Q+1 3 GO TO MA1S 3
END 3 GO TO CAS 3
TRES IF ALFAQ 2 SUPALF THEN
BEGIN SUPALF # ALFAQ
FOR ¢l STEP 1 UNTIL M DO TRUCCLI)e VQL[IJY}
FOR I+l STEP 1 UNTIL T DO
SAVIIle yQCI) 3 BUENO ¢ @
END 3 IF CONT=2 THEN GO TO LOP 3
IT @=N THEN GO TO CUATRO 3}
Q¢ Q+15 GO TO MA1lS;
COMMENT If THE PROJECTION OF THE SELECTED COLUMN 1S LESS THAN @=20
THEN SAV IS REJECTED AND WE FINISH;
CUATRD ¢ If SUPALF S MINIR THEN GO TO RFIN J
AL ¢SUM ¢« 03
COMMENT THE NORM OF (B(Q+1)"B(Q@+1)) INVERSE IS ESTIMATED,AND 175
VALUE IS8 CONTROLLED;
FOR 1¢1 STEP 1 UNTIL T DO
BEGIN FOR J¢1 STEP 1 UNTIL T DO
SUM ¢SUM+ ABSCINVALI»JY)}
IF SUM>AL THEN AL«SUM
END 3
ESTIM & AL+(SQRT(T)+1.0)/SUPALF 3}
If ESTIM 2 SUPER THEN GO TO RFIN 3}
COMMENT SAV HAS PASSED THE TESTS OFf SECTION 2sC)+ NOW 1S USED
TENTATIVELY IN B(Q+1) TO SEE If THE RESIDUALS DIMINISH;
FORCED ¢ PSEUDOCINVQ,SUPALFsSAV,T)}
COFLBUEND)e T 3
FORI¢1 STEP 1 UNTIL M DO BQ[I»,Tle TRUCLI)S
COMMENT WE CONSTRUCT NOW B=PSEUDO,C,A~PSEUDD AND ADAGGER}
FIN1 ¢ FOR Ie¢1 STEP ¢ UNTIL T DO FOR Je¢l STEP { UNTIL M DO
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BEGIN ES«03 FORPE«f{ STEP 1 UNTIL T DO
ESe¢ ES + INVQRULI,PE] x BQCLJ,PE) 3 BPS[I»J] ¢ES
COMMENT AS WE WANT TO COMPARE RESULTS FOR TWO DIFFERENT BASES,
SUITCH PROVIDES A WAY TO DECIDE THE CALL OF GARBG;
END 3 IF SUITCH THEN GO TO SECND 3#
GARBG (MsN»T»T1»COF»BR5GoRHS»BPS,»ANRHS»AAA,
NXMsNXBaNXM1,NXBL1,APSEUDD,ADAGER,XMsXB»EST) 3
If T=N THEN GO TO RFIN 3 SUITCH ¢ TRUE 3
If CONT = 2 THEN
BEGIN CONT ¢ 1; GO TO CUATRO 3
END 3 G0 TO OTRA 3
SECND ¢ GAR3G (MsNsT»TIs»COF,BR»GsRHSsBPS»A»NRHS»AAA»
UPI,DDPI,UPIL1,D0PI1,APLI,ADI»X1,X2,ESTI)}
COMMENT NOA THE TEST OF SECTION 2,0) IS MADE;
1T NXB12z DOPI AND NXMi2UPI1 THEN
BEGIN IF NOT OPC OR EST2 ESTI THEN
COMMENT If SAV IS ACCEPTED THEN ALL THE USEFUL QUANTITIES
ARE SHIFTED3
3EGIN NXMi{eUPI13 NXBl¢ DOPII; ESTeESTI ;
FOR l«t STEP 1 UNTIL N DO
BEGIN FOR Jet STEP 1 UNTIL M DO
BEGIN APSEUDOL I» J)e¢ APILINJ) 3
ADAGER[I,JI€ADILI,J]
END; FOR Je1 STEP § UNTIL TI DO
BEGIN XMUI,JYeX101,J)3 XBLIsJde X2015J)3
NXMIJJeUPICJUI? NXBLJIeDOPILJIS
END3S

ENDS} IFTeN THEN

BEGIN BUEND«O 3 GO TO RFIN

END 3 GO TO OTRA

END
END 3
RFEIN COFCBUEND)¢ 03
END
END PSEUDOINVER 3
COMMENT BODY OF THE DRIVER PROGRAM, THE INPUT-OUTPUT AND THE CALL
OFf PSEUDOINVER ARE INCLUDED;
FOR I«1 STEP 1 UNTIL M DO
READCFOR Jel STEP 1 UNTIL N DO Atl,Jl);
WRITEC [PAGE))} WRITECTITL,MsN)3 PRT(A,MsN)J
IF NOT OPC THEN FOR I+«1 STEP 1 UNTIL TI D_O
READ{ FOR J¢! STEP 1 UNTIL M DO RHSCLJ»I1)
ELSE FOR I«1 STEP 1 UNTIL M DO FOR J*i1 STEP 1 UNTIL M DO
RMSCI»JY¢ IFf I=J THEN § ELSE 0 3
PSEUDDINVER(MINSTI»SUPERSOPC»AsRHSSORTPIESTANXM»

NXB» APSEUDD» ADAGER,COF »XMs XB) 3
WRITECTIT7S,EST,FOR le1 STEP 1 UNTIL TI DO NXML11))3
WRITECTIT7?» FOR I¢4 STEP 1 UNTIL TX DO NXBCLI))Y}

If 0PC THEN
BEGIN NRITECIPAGE])) 3 WRITECTITS8)S
PRTCAPSEUDD,NsMIS WRITE (TIT9)3
FOR le1 STEP 1 UNTIL N DO
BEGIN IFCOF(IY¥=0 THEN GO TO NOPR 3
WRITE (TITL38:1)3
WRITE (PRMAT,FOR Jei STEP 1 UNTIL M DO ADAGER(I,J1) ;




NOPRt END
END ELSE
BEGIN WRITECIPAGE))? WRITECTITIO) J
FOR Tei STEP 1 UNTIL N DO
WRITE(SOLsFOR Je1 STEP 1 UNTIL TI DOIXMII»JI1)}
WRITE (TIT20)-3 FOR I«1 STEP 1 UNTIL N DO
BEGIN IF COF (Il=0 THEN 6O TO NOPR13
NRITECTITL38,1)}
NRITECSOL»FOR Je1 STEP 1 UNTIL TI DO XBCI,»Jl)}
NOPRY ENDS
COMMENT JUST BY AoDING NEw SETS OF DATAS MORE PROBLEMS CAN BE RUNJ
END 5 WRITECENDE)S GO TO OVER J
END 3
FIU ¢
END
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