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I. Introduction.

A method for the computation of the pseudoinverse, and other

related quantities, corresponding to an mxn matrix A of unknown

rank r, has recently been described [5 1. The method determines the

pseudoinverse A' of A and a related matrix #A . The pseudoinverse

has the property that given the linear system Ax = b, the solution

X
m

= A+b satisfies [IA", - b/ < Il~x - b/ for all x, and ~~~m~~ 5 IlxII

for all x such that VIA", - bll = Il~x - bll. The minimum basic solution

xb = A#b has the property that IjAxb -4 bll < Il~.x - bll forall x, and_

*yb has at most r non-zero elements.

Thecomputational difficulty for this problem arises primarily

because the rank r is not known. In particular, it may be difficult

to assign the correct rank if one or more of the singular values of A

. are small but non-zero [3 ]. Several other recent papers [ 11, [2 1,

WI, on the computation of the pseudoinverse have not considered this

. important practical question.

The approach used here to handle this difficulty can be summarized

as follows. The desired matrices #A and A+ are formed from a matrix

B, which consists of linearly independent columns selected from A'.



, . .

We would like to determine B so that it spans the same space as A,

$b which case B will contain r columns. Suppose we have a matrix

B
9

with q linearly independent c&umns selected from A, (where q < r)

and the corresponding approximation A+ to A+.
q

Adding another linearly

independent column of A to B ' '
4'

QlVlwz Bq+p should give an impwved

approximation A+
s+l

to the pseudoinverse. However, due to roundoff  error

in the calculation it may turn out for an ill-conditioned system that the '

new approximation is actually worse in the sense that /AA+q+l - Ill > ll$ - Ill*
Such a test is made in the pseudoinverse determination with the result that

the effective-rank of A (the number of columns in B) is the maximum

possible consistent with minimizing the error IIAA+ - 111.

A closely related aspect of the method used here to compute the

pseudoinverse is what might be called its "smoothing" property. In many

practical situations one would like to obtain a solution to a linear

system which is stable in the sense that small changes in the matrix

elements do not cause large changes in the solution vector. In general,

the solution x = A+b, where A+ is the true pseudoinverse,will not

behave smoothly. In fact, the norm of x will increase without bound

as a singular value of A approaches zero. This difficulty can be

. eliminated by imposing a predetermined upper bound on the norm of (B'B)-'.

This is accomplished by estimating the effect of adding a new column of

A to B
Q

and only adding this new column to B if it does not cause
q

any element of A+
s+l

to e.xceed the bound. Details of this selection

procedure and the manner in which it depends on the choice of the bound

SUPER is discussed in the nelxt section.
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In Section 3 the use of the Algol program, written to perform this

algorithm, is described and suggested values for the input parameters

are given. The program use is illustrated by means of a sample problem.

A large number of problems have been solved using this program.

Several different kinds of tests have been performed:

4 Very ill-conditioned matrices like the segments of the Hilbert

matrix [6] have given a clear example of the smoothing property of the

method.

b) Random rectangular matrices of random sizes have been generated and

the pseudoinverse have been computed. The sizes were allowed to vary

between 1 and 25. In all the cases the results were satisfactory.
--.

4 Same as in b) but with random ranks. In every case the rank was

correctly determined by the program.

d) Random matrices of specified size covering a range of values of m

and n were run in order to obtain time estimates for different size

problems.

4 A number of least-square problems, i.e., with O>n and only one

right-hand side.

f> A variety of matrices for which an independent check on the
.

accuracy of the solution was available.

Tests b) through f) showed that in

: the rank is well determined the program will

has shown that in very ill-conditioned cases

the method is effective.

reasonable problems in which

work very well, while a)

the smoothing property of

These test results are discussed more fully in Section 4. The

notation used in [5] will also be followed here.

Details of storage requirements are given in Section 5.

A copy of the program appears in the Appendix.

3



II.

given

here.

(2.1)

Program Description.

The method used to compute #A and A+ from B is

in Section 2 of [53. For convenience we will repeat

The pseudoinverse of the m x r matrix B of rank

B+ = (B'B)'~ B'

The non-zero rows of the n x m matrix #A then consists

+

essentially that

the key relations

r is given by

of the corre-

sponding rows of B'. An r x n matrix of rank r is also obtained from

B+ according to

(2.2) --' C = B+A

Note that, if B contains all the independent columns of A, then A = BC.

Finally, A+ is obtained from C and B+ by

(2.3 > A+ = Cd(CC')-' B+

The determination of B is based on the algorithm of Section 3 in [5],

. using the more sophisticated selection procedure described below.

The program consists essentially of two parts. One part has all the

input-output and the other is a PROCEDURE 'CTalled PSEUDOImR, which may also

be used separately as a part of other programs'. The'sprogram'solves,  the

matricial problem,

(2*4) AX=RHS

where RHS is a matrix containing several right hand sides.

4 The first part of PSEUDOINVER normalizes the matrix A by scaling

each column so that its Euclidean norm is equal to one. The normalization

constants are saved in order to get back to the original problem.
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The search for independent columns of A is then made to determine

the matrix B, according to the formulas described in section 3 of [5].

At this stage, the condition for a vector to be accepted as independent of

the ones already included in the basis is that a, the square of the norm of

the projection on the orthogonal subspace to that basis, be less than a

quantity ORTP, which is an input parameter. Later we will discuss the

appropriate choice of ORTP and the other parameters appearing in the

program.

As the columns chosen in this fashion might not necessarily be the

first columns of A, a record is kept of the column number of the accepted

vectors, ='

After all the columns have been inspected two situations can arise;

either all the n columns of A have been accepted or some have been

rejected. In the first case we have finished and

at the beginning of this section are performed to

'm*
Other computed quantities are the residuals,

m.B = llA$ - Rdl corresponding to
%l and ,>%

the computations indicated

get A+, and

NXM = Axm - RHs(III
and EST = I(BC - ~11.

EST would be zero if the computation were performed exactly; in

general EST will be very small for well-conditioned matrices and will

increase with the ill-conditioning or if an almost dependent column is

- added to B.

If only q < n columns of A are selected for inclusion in B then

the basis thus constructed is called B
q

and the second part of PSEUDOINVER

is called.

b) The projections on the subspace orthogonal to B
q

are computed for

all the rejected columns. The Euclidean norm of each projection is computed,
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(2.5) a. =
3 IK I - Bq Bi) aj/12

and the column corresponding to the maximum a.
3

(the most independent one)
. .

is stored in SAV.

d A test is now performed which is based upon an estimation of the norm

that (B'
q+l Bq+l 1

-1
would have if we were to include SAV in the basis,,

The norm used is A =II II max f Iaiil and the estimate is derived from the

f om-ula,

(2.6) (B
-1

;+1 Bq+l =>
--.

where
u9

= Bi SAV and Q!
s+l

is the square of the norm of the projection

of SAV on the orthogonal subspace to that spanned by B
q'

Then

\I(B' q+l Bq+l )I1 5 ESTIM = il(B' q Bq)-'ll + ait1 (1 + fi )

If ESTIM is larger than SUPER (an input parameter) then SAV is re-

jected and B is taken as the final B .
q

This test avoids large elements in the pseudoinverse and gives the

smoothing property discussed in the introduction.

d) If the test in c) is passed then the PROCEDURE GARBG, which computes

all the matrices and quantities mentioned at the beginning of this section,

is called and a second test is made. GARBG is used again, now with the

basis B
q

plus the

values of I~AX~-RHS

column SAV . The test consists in comparing the

I, II~-RHsJI and IIBc-A~I obtained with one basis, with

the corresponding ones obtained with the incremented basis. If all these

values for B
cl+1

are smaller than for B
q

then SAV is definitely
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accepted. After shifting all the useful quantities, part (b) is repeated

for the new basis B
s+l

and so on, until either an exit is provided for

one of the tests or the columns of A are exhausted. All the scalar. .

products are performed in double precision. The block diagram in Fig. I

shows the most essential parts of the program.

It is worth noting that this strategy has been dictated by the

problem itself and achieves the best numerical pseudoinverse possible

using the method of [5] and taking into account the numerical roundoff

error of the computer being used. This strategy takes advantage of the

step by step algorithm for determining B, and constructs an independent

basis, the degree of independence being determined by the parameter ORTP.

By picking the most independent vector among the remaining ones, and

checking to see if this decreases the residuals (by taking this vector in

the basis) we are answering in a direct manner the two questions: how

many columns of A do we need to minimize the residual? and, among all

the possible sets of independent columns,which set gives the best rep-

resentation of the pseudoinverse?
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Fig. 1 - BLOCK DIAGRAM

t
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III. Program Use.

As described in the previous section, several parameters are

needed besides the matrix A . Now-we will explain the use and pos-

sibilities of these parameters.

Input.

M (integer) number of rows in A .

N (integer) -number of columns in A .

T (integer) number of right-hand sides.

OPC (Boolean) If OPC is equal to 1 then the program will compute

--. the matrices A+ and A# , and the right-hand side

RHS = I(m x m) will be automatically,provided.

Moreover, OPC decides if in the test described

in Section 2,d) the quality of the representation

(A = BC) is controlled. That test is done only if

OPC = TRUE . If OPC is equal to FALSE then

RHS an M x T matrix has to be provided and the

.

program will compute XB = A#.RHS, and XM = A'.RHS,

matrices that will be printed out instead of A+

and A# .

SUPER (real) It is the SUPER of Section 2,~). If an upper

bound for the elements of A+ is known then SUPER

can be set to this bound to take advantage of the

smoothing property of this method; otherwise it is

suggested that 10
a4

be used. It should be

noted that, in general, a larger value than 1014
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will increase computing time by throwing unnecessary

decisions into the test of Section 2,d), On the

other hand, much smaller values may completely. .

eliminate from further consideration some columns

which could be used to decrease the error,

ORTP (real) This parameter was described in Section 2, a). Small

values for ORTP (around 10
-4

) in general will accel-

erate the process because the first part (construc-

tion of a basis of strongly independent column) is

the fastest and as many columns as possible should be

accepted there. Nevertheless, there are at least

two cases in which a more careful choice of ORTP may

be important. If higher precision in the answers

is desired (atthe cost of increased computing time),

then a larger value of ORTP should be used, say

0.05. This will allow the second part of the program

to choose "better" columns.

The other delicate case occurs when the matrix is

very ill-conditioned and the rank is therefore not

well defined. Here the use of a relatively'large

ORTP is important. Again values around 0;05 are

recommended.

Summarizing, in a reasonable, well behaved problem a recommended

set of parameters is:

SUPER =lO
14

, ORTP = 10
-4

.
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If the representation becomes very bad (11~ - BCII too large), the problem

is not well behaved and more burden should be passed on to the second and

safer test by increasing SUPER and decreasing ORTP .

If the user has information that certain variables are more sig-

nificant than others,this information can be used by ordering the matrix

A so that the columns of A corresponding to these variables appear

first. This will insure that these columns are considered first for

inclusion in the basis B .

If the com,plete program is used, then only the numerical data have

to be punched,, This is done in the following way.

As all the read statements are in the FREE FIELD form, available

in the EXTENDED ALGOL for the B5000 at Stanford, no special format is

necessary. Numbers can be punched in any format, needing just one space

in between to separate them.

1st. card: M N T OPC SUPER O R T P

for instance 10 10 10 1 6214 0.001

Next cards will contain the matrix A punched by rows. As each

READ asks for a whole row, care must be taken not to mix different rows

in the same card.

.
Finally, if 0 P C = 0 the right-hand sides (RHS) have to be

provided and are read by columns. Each new column must be started on a

new card, so that there will be at least T cards required for the RHS .

If the PROCEDURE is used separately, then all these quantities

are input parameters (with the same names as above).
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A complete sample input is given by,

3 3 1 0 a14 0.001

i

1.3 2 -5“

A 4 1 0

-1 -1.3 @3

2.1

output --.

All the matrices printed out by the program will have the follow-

ing format:

Eight columns per line, each number in floating point with 6 sig-

nificant digits. If the matrix is more than eight columns wide, then

successive blocks will be printed in new pages. All the rows are

printed together.

The output is described now in the order in which it will occur.

First the matrix A is printed out.

Then, if 0 P C = 0 , the right-hand sides are printed out.

Norm of (BC - A) .
.

The residuals II ( >, -RHSiII .

If OPC=l, then the matrix pseudoinverse is printed out with

the format explained above; also in this case the non-zero rows of the

matrix A# are printed, each of them with a heading: ROW NUMBER.... .

12



output for the problem:

( 9 21

21 49

If OPC=O, then instead of these two last matrices, the

minimum and basic solutions are printed out. As an exaqple, we give the

PSEUDOINVE%ION OF THE MATRIX A . A IS 2 x 2 .

g. 00000 @ + 00 2.10000 @ + 01

2.10000 @ + 01 4.90000 @ + 01

[PAGE] k

NORM OF (BC - A) 2.37582 a - 12

RESIDUAL FOR XM

9.19145 @ - 01 3.93919 @ - 01

RESIDUAL FOR XB

9.19145 @ - 01 3.93919 @ - 01

[PAGE]

MATRIX APSEUDOINVERSE

. 2.67532 a - 03

6.24381@ - 03

6.24314 @ - 03

1.45794 @ - 02

[ P A G E]

MATRIX ADAGGER

ROW NUMBER 1

1.7246168 - 02 4.02332 @ - 02

END OF THERUN

********************
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The PROCEDURE PSEUDOINVER.

The call for this PROCEDURE is,

PSEUDOINVER (M, N, TI, OPC, SUPER, -CRTP, A, RHS, EST, NXM, NXB,

APSEUDO, ADAGER, COF, XM, XB);

The first 8 parameters are input parameters and they have been des-

cribed before. The only detail needed is: A(double real array

[O:M, O:N]), RHS [O:M, O:TI];

OUTPUT PARAMETERS:

EST (real) Contains I[BC - AJI .

NXM, NXJ3 (single real arrays [O:TI]) . They contain the residuals

IIAXE - RHS~[ and IIAx, - RHSII respectively.

APSEUDO, ADAGER (Double real array [O:N, 0941)

They contain the pseudoinverse of A and the matrix A#

l

COF (Single integer array [O:N]) .

If COF[I] = 0 then both, the I
th row of #A and 33

are dif-

ferent from zero, otherwise they are zero and that means the program has

decided that the corresponding columns in A were linearly dependent

a with respect to-the current basis.

XM, XB (double real arrays, [O:N, O:TI])

They contain the minimum and basic solutions.
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IV. Test Problems.

a> Square segments of the Hilbert matrix have been tried, sizes

varying between 3 and 10. -.

For 5 < n < 10 the rank found in each case was 4 . The norma -

of the pseudoinverses remained below 103 while for the true

pseudoinverse (the inverse in these cases) the norms ranged be-

tween 105 for n=5 and 1013 for n=lO . The norm, l/A - B.c[(

was around 10-5 for all cases.

As is well known, the ill-conditioning of the Hilbert matrix seg-

ments increase with their dimension. However, because of the

smoothing property of the method a bounded and reasonably accurate

representation for the pseudoinverse was always obtained.

b) Eighteen random matrices with random dimensions varying between

1 and 25 were generated and pseudoinverted. The norm IIA - ~~11

was always below 10-9 and the ranks were always found to be

equal to min(m,n).

4 Given three random integers m, n and r in the interval [l, 251

a routine generated two random matrices, L (mxr) and

R (r x n) . Multiplying them we obtained a matrix A (m x n) with

rank at most equal to r (1) . With 20 matrices generated in this

way, the results were similar to b) . In every case the rank r

was correctly determined. For most of these cases the rank r was

less than min(m,n), and of course was unknown for the program.

(1) This test was suggested by Professor Gene H. Golub.
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d) For each pair of values (m,n) several random matrices were

generated and pseudoinverted. Average values of IIA-BCII for these

matrices with m=10,20,30  and n=10,20,30 are shown in Table I.

For the same problems, average computation time on the Burroughs

B5000 at Stanford Computation Center are shown in Table II.

In all these matrices the rank was the maximum possible, i.e., rank =

min (m,n) and it was properly determined by the program&

TABU I TABI I I

10 20 30

10 5x10-9 --' 9X10-9 4.5xlo-8

20 3xlo-1o 4x10°8 2.9x10-7
,

30 5.8~10’~’ 6.9~10’~ 2.6~10~~

IIA - BCll

10 7.6 13.9 20.7

20 16.5 49 91

30 27.3 92.5 180.6
c

Comp. time in seconds

For a 40 x 40 matrix the answers were:

. t = 413 sec. I IA- BCll = 2.7 X loo7

rank = 40 .

.d A common problem in many branches of applied sciences is the least

squares fit, and is therefore one of the most important applica-

tions for this program. A related feature of the program is that,

by ordering the variables, the user will be able to test their

independence and eventually to decide if his model is appropriate

tothe phenomena being investigated. This is done by ordering
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the matrix A so that the first coefficients correspond to the

more important variables. The program will attempt, to use these

columns first to form the basis B . The necessity for such an

ordering is clear from the fact that if we have n columns in

A and the subspace spanned by these columns has dimension

(n-p) then we can construct with these columns as many as

(nep) linearly independent sets.

In Figures II and III are shown the results obtained by running

the program with least squares type problems. Again the elements

of the_,matrices were generated randomly. Fig. II shows computa-

tion times on the B5000 for different values of m and n=5, 10.

Fig. III shows the norm IIA - BC[( for the same problems.

Matrices with exact known inverses were tried obtaining good re-

sults and accuracy. Of course this program should not be used to

invert a matrix which is known to be nonsingular and well-

conditioned, because it will be around four times slower than an

efficient matrix inverter. The program has also been used to

obtain the pseudoinverse of singular and almost singular matrices

steming from the discretization of integral equations of the first

kind, and problems in pattern recognition.
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v. Storage Requirements.

As all the array declarations are dynamical, the amount of

storage depends on several parameters. If M, N, T are as before, and

R is the final rank (number of accepted columns) then an estimate for

the storage used in the PROCEDURE PSEUDOINVER is,

Storage s 8 + 5MN+MR + 2NR + 2NT fmax (R2, MN, MT)

the last term is present because in the PROCEDURE GARBG we have several

independent blocks, and the storage corresponding to certain arrays is

not simultaneously used.

If, as usual, R is not known,then it can be replaced by

min(n,m) . If the complete program is used then additional storage is

needed,

Addit. storage z 3MN + MT + 2NT

.

Computer time rapidly increases when abusive use of the drum is made.

From the experience obtained with the test problems, it is suggested

that the total storage be less than 40,000 words.
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APPENDIX

AN EXTENDED AIGOL PROGRAM TO COMPUTE THE

PSEUDOINVERSE OF AN M x N REAL MATRIX

AND OTHER REX&TED QUANTITIES.
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BEGIN C&MEN1 PSEUDOINVERSE OF A tiXN MATRIX OF UNKNorJN RANK;
INTEGER YrN,TI,I,J  t REAL SUPEbEST,fPO,ORTP  f
BOOLEAN DPC i LABEL OVER,FIU;

COMMENT DRIVER PROGRAM. FIRST PARAMETERS ARE READ IN,
AND USED FOR FURTHER DYNAMICAL ARRAY DECLARATIONS;

OVER3 READ (M,N,TI,OPC,SUPER,DRTP)  CFIUlt
BEGIN INTEGER ARRAY COFtOlNJ;

ARRAY A[OzY,OZNJ,RHSCO~~~,OtfIl,XM,XBtO~N,OITT3,NX~,NXBCO~T~~,
APSEUDO,ADAGERtO;N,O1M3  J LABEL NOPR, NQPRI i ,

FORMAT PRYAT(( BEl4,5)///),
TIT1(“PSEUDDINVERSIDN  DF THE MATRIX A’///“A ISn,13,nxw,13/),
fIT7(“YDRY  OF (BC-A)“//x3,El5,5/“RESIDUAL  FOR xv/(8E15rS/)),
TITB("'4ATRIX  A PSEUDOINVERSE"/hTIT9("MATRIX  A DAGGERvW,
TITlO(X6,"XM"/),TIT2O(//X6, "XB"/),TITL38(/"ROW  NUMBER",IJ/),
TIT77(/“RESIDUAL  FOR XB "/(8El5r5/~~,SOLC8El5r6/),
ENDE(//"END  DF THE RUN"//Xl5, "* * * f * * * * * +" ////))

PROCEDURE PRT(A,M,N)  ;
INTEGER M,N; ARRAY AtO,OI;

COMMENT PRT PRINT OUT THE MxN MATRIX A;
BEGIN FORMAT TITL46(/  8El4,5); INTEGER SE,K,R;

S& + N DIV 8 ; KtNMOD8  ;
FOR R+O STEP 1 UNTIL SE-I DO

BEGIN FOR I+1 STEP 1 UNTIL M DO
WRITE (TITL46,FOR  $+I STEP 1 UNTIL 8 DO At108 xR+JW
WRITE ([PAGE])

* END i IF K%O THEN FOR I+1 STEP 1 UNTIL M DO
KRITE(TITL46,FOR  J+l STEP 1 UNTIL'K DO AC!,8 xSE+JJ);
WRITE (CPAGEI)

END PRT i
PROCEDURE PSEUDOINVER (M,N,TI,SUPER,OPC,A,RHS,ORTP,EST,NXM,

YxB,APSEUDO,ADAGER,COF,XB)) I
INTEGER M,N,TI ; INTEGER ARRAY cOFco1; BOOLEAN OPC;
REAL SUPER, EST,ORTP  ;
ARRAY A,RHS,APSEUDD,ADAGER,X’4,XBcO,O~,NXM,NX~CO~~

COMMENT PSEUDOINVER COMPUTES THE PSEUDOINVERSE  OF A MXN MATRIX A,
AND OTYER RELATED QUANTITIES. THE ESPECIAL WAY OF ROUNDING*OFP

AFTER DOUBLE PRECISIDN OPERATIONS IS DUE TO
YR, PETER RUSINGER AND PROF. GENE GOLUB;

BEGIN IVTEGER J,CONT,Q,K,T,BUENO,R,I,PE,MA;  BOOLEAN SUITCH;
ARRAY BQ,ANCO1M,OaNl,INVQtO~N,O~N~,NRHS,UPI,DO~ICO:TIl,

G,UQ,SAV[O1Nl,Xl,X2tO)N,Olff3rBPS,API,ADICO~N,O~~~~
REAL CLUF,ALFAQ,BEQ,AL,SUPALF,B,NXBl,NXMl,AAA,B8B,CCC,

uPIlrDOPIl,ESTI,ASO,SUM,ES,PERTUB,ESTIM,TPO,MINIR~
YA t IF M<N THEN N ELSE M i
BEGIN ARRAY TRUCrTU,VQ,TEMPtD;MAl;  &ABEL SECND,RFIN,

NDNEs,~OP,TRES,CUATRO,MAIS,CAS,FINI,OTRA,FORCED~
COMMENT TRYAVC,MATRIMUL,MULTIVEC,ESC,TRANSP  AND VECSUM ARE

PROCEDURES PERFORMING MATRIX AND VECTOR OPERATIONS,
SOqE OF THEM IN DOUBLE PRECISION;

PROCEDtlRE  TRMAVC (A,V,I,J,M,N);
ARRAY AC0,01,V~011  INTEGER I,J,M,N I

BEGIN INTEGER K;
IF I=0 THEN FOR K+l STEP 1 UNTIL M DO V[rO+ AtK,JI
ELSE FOR K+i STEP 1 UNTIL, N DO VCKl* ALI,KI

END TRMAVC ;
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.

PROCEDJQE MATRIMUL  CA,B,C,P,Q,R)  ;
ARRAY A,B,C[O,Ol  IINTEGER  P,Q,R i

BEGIN INTEGER I,J,Y  iREAL AC,BCI
;$;+l STEP 1 UhlTIL P DO FOR J+l STEP 1 UNT1L.R DO

AC+BC+OI F-OR g+l STEP 1 UNTIL Q DO
DOUBLE(ACI,Kl,O,BtK,Jl,D,~,AC,BC,+,~,AC,BC~~
C[I,Jl + AC+BC&ACL1~1~81/5,49755813891~11

END
END MATRIYUL  ;

PROCEDiJRE MULTIVEC (A,Vl,V2,P,Q)I
ARRAY At00030'/1,V2t03  iINTEGER  P,Qi

BEGIN INTEGER 1,Jf REAL AC,BC;
FOR I+1 STEP 1 UNTIL P 00
BEGIN AC+BC+O; FOR J+l STEP 1 UNTIL Q DO

DOUBLE ~AtIrJl,O,V1CJ3,0,~rAC,BC,+,+,AC,BC~~
V2[Il+ AC+BC&ACt1~1t81/5,49155813891~11

END
EVO MULTIVEC i

PROCEOURE  ESC(A,B,C,P)t
ARRAY A,BtOl lREAL C i INTEGER P)

BEGIN INTEGER I i
C+OJ FOR I+1 STEP 1 UNTIL P 00 C+ AtIP BtIWC

EVD ESC I
PROCEDURE TRANSP (4,B,P,Q) i

ARRAY A,8 lb,03 i INTEGER P,Q I
BEGIN INTEGER 1,J;

FOR I+1 STEP 1 UNTIL P DO
FOR J+l STEP I UNTIL Q DO BCJ,Il * AIIrJ3 /

END TRANSP f
PROCEDURE VECSUM (A,B,C,ALF,BET,N)  i

ARRAY A,B,CCOl) REAL 'ALF,BET  IINTEGER  N i
BEGIN INTEGER II

FOR I+1 STEP 1 UNTIL N DO ClIl+AtIWALP+BW~  BET
EN0 VECSUM i

PROCEDURE PSEUDO (NQ,ALFQ,UQ,Q)  i
ARRAY NQtO,03rUQtOl;  REAL ALFW INTEGER Q I

COMMENT GIVEN (BQ"BQ) INVERSE, PSEUOO CONSTRUCT CBCQ'I)"B(Wi))
INVERSE;

BEGIN REAL A; INTEGER I,3 ;
ALFQ + l/ALFQ;
FDR I+1 STEP 1 UNTIL Q DO FOR J+l STEP 1 UNTIL Q DO

D0UBLE~ALFQ,O,UQfII,O,~,UOCJl,O,~,NQCI,aJ~,O,~,~,
NQtI,JlrA); Q+Q+l I UQ[Ql+  ml t

FOR J+l STEP 1 UNTIL 0 DO
NQtJ,Ql+  NQtQ,Jf + -ALFQ x UQCJ3

EN0 PSEUDO t
PROCEDURE GARBG~M,N,T,TI,COF,BQ,G,RHS,BPS,AINRHSIAAA,

NXM,NXB,NXMl,NXBi,APSElJDO,ADAGEf?,XM,XB~~ST~J
REAL NXMl,NXBl,EST,AAA;  INTEGER N,W',TIl
INTEGER ARRAY COFtO3I
ARRAY XM,XB,APSEUDO,ADAGER,BQ,RHS,BPS,ACO,Ob

NXB,NXYrGrYRHSt0lJ
COMMENT GIVEN THE BASIS BQ: A PSEUDOINVERSE, A DAGGER, XH, X8,

NXv, NXB, AND NORM OF (A*BQC) ARE COMPUTED)
BEGIN INTEGER I,Q,J,R,MA  I REAL B,PER,ALfAQ  i
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ARRAY CCO;TrO:Nl,  BQ1t0W4,O;Tl,UQ[O;N1  ;
IF M$N THEN MA+N ELSE MA +M J
BEGIN ARRAY ANCO1TrO:Nl  ;

BEGIN ARRAY INVQICO;T,O:Tl,TU,TEMP~O;'4Al;
COMMENT A DAGGER IS CALCULAT~.Di

FOR I+1 STEP I UNTIL N DO
BEGIN. Q 4 COFCIJ i

-IF Q%O THEN FOR J+l STEP 1 UNTIL M 00
BEGIN BQltJrQl + BQtJ,Q3/G~Il  ;

ADAGERCIrJl+  BPSCQrJl+  BPSCQ,Jlx  GCIII
END

END;
COMMENT C AND C-PSEUOOINVERSE  ARE CALCULATEO;

MATRIMUL(SPS,A,CrTrY,N>;
TRMAVCCC,TU,l,l,T,N);  ESC(TU,TU,B,N);
INVQltlrl3+  l/B;
FOR Q+ 2 STEP 1 UNTIL T DO
BEGIN R+ Q-1) TRMAVC(C,TU,Q,Q,T,N)I

MULTIVEC(C,TUITEMP,R,N)~
MULTIVEC(INVQl,TEMB,UQ,R,R);

--. FOR I+1 STEP 1 UNTIL N DO
BEGIN PER+ Oi

FOCl J+l STEP 1 UNTIL R 00
PER+ PER+CLJ,Il  x UQCJI;  TEMPCII + PER

E N D  I
VECSUM(TU,TEMP,TEMP,l,~l,N~;
ESC(TEMP,TEMP,ALFAQ,N)i
PSEUDO~INVQI,ALFAQ,UQ,R~

END i MATRIMUL(INVQlrC,AN,T,T,N)  i
END;
BEGIN ARRAY BQC[O;MA,DZNI  I

COMMENT NORM OF (A-BC)  IS COMPUTED;
TRANSP(AN,BQC,T,N)  ;
MATRIMULtBQC,BPS,APSEUDO,N,T,M);
MATRIMUL(BQl,C,F3QC,M,T,N~;  EST + 0;
FOR I+1 STEP 1 UNTIL M DO
BEGIN PER+ Of

FOR J+l STEP 1 UNT$l,  N DO
PER+ PER+ABS~BQCtI,Jl-AtI,$l)j
IF PER2 EST THEN EST + PER

END
END

END;
EST + EST/AAA;

COMMENT THE MINIMUM AND BASIC SOLUTIONS ARE COMPUTED~
MATRIMUL(APSEUDO,RHS,%M,N,M,TI>;
YATRIMUL(ADAGER,RHS,XB,N,M,TIII
BEGIN ARRAY ANIOtM,OtTI3;

COMMENT THE RESIDUALS FOR THESE SOLUTIONS ARE COMPUTED!
MATRIMUL (A,XM,AN,M,N,TI);
FOR J+l STEP 1 UNTIL TX DO
BEGIN NXMl+ 0;

FOR I+1 STEP 1 UNTIL M 00
NXMI +~ANCI,JJLRHStI,Jl~*2~NXMl;
NXMl+ SQRTWXMI);  NXMEJI + NXMl/NRHSCJl
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ENDi
~ATRIY~L(A~XB~AN~MI~~TI);
FOR J*l STEP 1 UNTIL TI Do
BEGIN YXBl+O;

FOR 161 STEP 1 UNTIL M 00
~XB1~~ANt1~J3”RYSI1~$3)+2  + NXBl t
NXBl+ SORT(wXBl);  NXBtJl+  NXBliNRHStJ3

END i NXBI  + NW1 + 0;
FOR I*1 STEP 1 UNTIL TI DO
BEGIN NXBI t NX81+ NXBtI3+2  ;

NXYI  + NXMl+YXMCIl  *2
END i NXMl+ SQRTWXMI);  NXBl+ SQRt(NXBl)t

END;
E.VD GARBG i

COMMENT PROCEDURE RSEUDOINVER  BODY i
HINIR *a-20; AAAtCCCtO  I

COMMENT NORM OF A AND NORM OF THE RHSl
FOR J*l STEP 1 UNTIL N DO FOR It1 STEP 1 UNTIl, M DO
BEGIN 8BB+ ABS(AtIrJl)J  If BBBBAAA THEN AAA*BBB
E'JD I FOR $4 STEP 1 UNTIL TI Do
BEGIN CCC*OI FOR I*1 STEP 1 UNTIL M D O

CCC” CCC+RHSWJJ*  2 ; CCC+ SQRT(CCC)l
--- tiRHSLJl+  IF CCC,1  THEN CCC ELSE 1 ;
EVD; IF AAA<l  THE N AAAq i
FDR I”1 STEP 1 UNTIL N DO
BEGIN COFtIl* 01

foR  J*l STEP 1 UNTIL M DO ADICI,JjtADAGERtI,J1a  0;
END f

COMMENT THE nATSIX A IS NORMALIZED AND STORED ON AN t
G CONTAINS THE YORMALIZING  CDEffICIENTS  I

FOR J+l STEP 1 UNTIL N DO
BEGIN TRMAVCCArTU,O,J,M,N)i

ESC(TUITU~CLUF,M);
GtJ3tIF CLUF ) 1.0 THEN I,O~SQRTW,.UF)  ELSE LOi

END ; FOR I+1 STEP 1 UNTIL M DO
BEGIN FOR J*l STEP 1 UNTIL N DO

ANlIrJl + ACbJW GtJl
END i

COMMENT THE CONSTRUCTION OF A BASIS OF STRONGLY
INDEPENDENT VECTORS  IS STARTEDI

CDNTtli SUPALF + 0 ; Qt K+ Tt li
COftll~li INVQllrll+  Ii SUITCHt FALSE )
FOR It1 STEP 1 UNTIL M DO BQCXIII+  ANCIdJI

COMMENT SEARCH FOR INDEPENDENT COLUMNS Of A* WHEN THE COLUMNS
ARE EXHAUSTED AN EXIT IS PROVIDED To LABEL FINI,  IN CONT
A RECORD IS KEPT ON THE WAY IN WHICH COLUMS ARE ACCEPTED1

LOP t If Q=h( THEN Go TD FXNI ;
T+K ; Q+Q+l; K+K+lt

COMMENT PRDJECTION  OF A COLUMN OF AN DN THE DRTHDGD~AL
SUBSPACE  OF BQ;

CAS a TRMAVC(AN~'QIOIQ~MIN)I
FOR I+1 STEP 1 UNTIL T DO
BEGIN ALFAW 0)

FOR Jtl STEP 1 UNTIL M DO
ALfAQt ALfAQ+BQtJ,I3~VQCJli  TEMPCIJt  ALFAQ
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END i
MULTIVEC~INVQITEMPIUQ~~,T);
MULTIVEC(BQIUQITEMP~M,T))
VECSUY(VQ,TEMPITEMP,~~=~~M~;
ESC(TEMP,TEMPrALFAQ,M)i
If SUITCH THEN GO TD fRES;

COMMENT FI?ST TEST FOR ACCEPTANCE AS AN INDEPENDENT COLUMN;
If ALFAQ S ORTP THEN GO TO NONES;
If CONT=2 THEN CDNTt 3 i

COMMENT COYSTRUCTION  OF B(Q+l);
PSEUDO (INVQ,ALFAQ~QIT);
FOR ItI STEP 1 UNTIL M DO BQtIdl* VQIIJ;
COF tQl* K f GO TO LOP ;

NONES : CDFCQI t 0; I(* K-l ;
If COVT % 3 THEN
BEGIN CONT+2 ; GO TO TRES ;
EVD ; GO TD LOP ;

COMMENT If CDNTZZ THEN THE REJECTED COLUMNS ARE REVISED IN ORDER
TO TAKE THE MOST INDEPENDENT WITH RESPECT TD THE BASIS BQ,
COVT=l MEANS THAT ALL THE COLUMNS HAVE BEEN TAKEN IN THE
FIRST SWEPT, CDNT=3 YEANS THAT A COLUMN HAS BEEN REJECTED
AND LATER ONrANDTHER  HAS BEEN ACCEPTED;

DTRA t Q+ 2 i SUPAL- 0; BUENDt 0;
MAIS I If Q=N+l THEN GO TO CUATRD ;

IF CQftQl% 0 THEN
BEGIN Qt Q+l ; GO TO MAIS ;
END ; GO TO CAS ;

TRES t IF ALFAQ L SUPALF THEN
BEGIN SUPALF * ALFAQ ;

PDR 161 STEP 1 UNTIL M DO TRUCCIJ*  VQCIJ;
FOR I*1 STEP 1 UNTIL T DO
SAVCIP UQCII ; BUENO + Q

END ; IF CONT=2 THEN GO TO LOP ;
If Q=N THEN G-D TO CUATRO ;
Qt Q+li GO TO MAIS;

COYMENT If THE PROJECTION OF THE SELECTED  COLUMN IS LESS THAN B-20
THEN SAV IS REJECTED AND WE FINISH;

CUATRD t If SUP&F S MINIR THEN GO TO RfIN ;
AL +SUM * 0;

COMMENT THE NORM OF (B(Q+lPB(Q+l))  INVERSE IS ESTI+tATtD,AND  ITS
VALUE JS CONTROLLED;

FOR I+1 STEP 1 UNTIL T DO
BEGIN FOR J”1 STEP 1 UNTIL T DO

S U M  *SUM  + ABSW4VQtIrJ3)1
IF SUMBAL THEN ALeSUM

END ;
ESTIM  * AL+(SQRT(T>+l,O)/SUPALF  ;
If ESTIM L SUPER THEN GO TO RFIN ;

COMMENT SAV HAS PASSED THE TESTS Of SECTION 2,C).  NOW IS USED
TEVTATIVELY  IN E(Q+l) TO SEE If THE RESIDUALS DIMINISH;

FORCED t PSEdDD(INVQ,SUPALFrSAVIT)I
CDF[RUENDlt  T ;
FOR 1~1 STEP 1 UNTIL M DO BQCIrTl*  TRUC[I3;

COMMENT wE CONSTRUCT NDK B-PSEUDOrbA*PSEUDD  AND ADAGGER;
FIN1 : FOR ItI STEP 1 UNTIL T DO FOR St1 STEP 1 UNTIL M DO.
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BEGIN ES*O;  FOR PEtI STEP 1 UNTIL T DO
E S  + ES + INVQIIIPEI x BQCJpPEl ; BPSthJl  &ES

COMMENT AS wE WANT TO COMPARE RESULTS FOR TWO DIFFERENT BASES,
SUITCH PROVIDES A WAY TO DECIDE THE CALL OF GARBG;

END i IF SUITCH THEN GO TO SECND ;
GARBG (MIN~T~TI,COF,BQ~G~RHS~BPS~A~NRHSIAAA,

NXMrNXBrNXMlrNX5l,APSEUDOIADAGER,XM,XB~EST~  ;
If T=N THEN GO TO RFIN ; SUITCH * TRUE ;
If CONT = 2 THEN
BEGIN CONT t 1; GO TO CUATRO ;
END i G3 TO OTRA i

SECND 8 GARSG (MIN~T~TIICDF~BOIGIRHS,BPSIAINRHSIAAAA~
UPI~DDPIIURI~~DOPI~~API,ADI,X~~X~,ESTI);

COMMENT NDd THE TEST OF SECTION 2rD)  IS MADE;
If YXBl1:  DOPII AND NXMIZUPII  THEN
8EGIN IF NOT OPC OR EST? EST1 THEN

COMMENT If SAV IS ACCEPTED THEN ALL THE USEFUL QUANTITIES
ARE SHIFTED)

9EGIN NXMI~URII;  NXBlt DOPII; EST+ESTI ;
FOR 161 STEP 1 UNTIL N DO

--. BEGIN FOR J+l STEP 1 UNTIL M DO
BEGIN APSEUDDt  Ir J3 + APIII,Jl ;

ADAGERCIrJ3~ADIII,Jl
END; FOR J*l STEP 1 UNTIL TI DO
BEGIN XMtI~Jl~XlCIrJl;  XEIIrJ3+  X2tbJ3;

NXMcJl+UPICJl;  NXBtJl~DOPItJl;
END;

E N D  i IF T=N THEN
BEGIN BUENO*O ; GO TD RFIN
END ; GO TO OTRA

END
END ;

RFIN t CDFtBUEN03t  01
END

END P S E U D O I N V E R  ;
COMMENT BODY OF THE DRIVER PROGRAM, THE INPUT-OUTPUT AND THE CALL,

Of RSEUDOINVER  ARE INCLUDED;
FOR It1 STEP 1 UNTIL M DO
READ(fDR  J*l STEP 1 UNTIL N DO ACIrJlN
WRITE( tPAGE3);  WRITE~TIT~,YIN);  PRTCAdbY);
IF NOT OPC THEN FOR I*1 STEP 1 UNTIL TX D-0
READ{  FOR J"1 STEP 1 UNTIL Y DO RHSCJdJ)
ELSE F3R It1 STEP 1 UNTIL Y DO FOR J*l STEP 1 UNTIL M DO

RMSCIrJlt  If I=J THEN 1 ELSE 0 ;
PSEUDDINVER(M~N~TIISUPERIOPC~A,RHS,QRIPIEST~NXM~

NXBrAPSEUDD~ADAGfR,COFIXMIXB);
WRITE(TITbEST,FWR  I*1 STEP 1 UNTIL TI DO NXMCII);
WRITE(TIT77,  FOR It1 STEP 1 UNTIL TX DO NXBtIJ);
If DPC THEN
BEGIN WSITE~IRAGEI~  ; WRITE(TIT8);

PRT(APSEUDOIN,M);  WRITE (TIT9);
FOR I’1 STEP 1 UNTIL N DO
B E G I N  I F  cDfCIl=O  THEN GO TO NDPR ;

WRITE (TITL38rI);
WRITE (PRMAT,FOR  J+l STEP 1 UNTI&. M DO ADAGERtI,JJ)  ;



NOI’ END
END ELSE

BEGIN WRITE~CPAGEl~i  WRITE(TITlD)  i
FOR It1 STEP 1 UNTIL Y DO
WRITE(SOL,FOR  J*l STEP 1 UNTIL TI 03 XMCbJJ)I
WRITE (TIT20y.t FOR 161 STEP 1 UNTIL N DO
BEGIN IF COF [IbO THEN GO TO NOPRI;

dRITECTITL38,I  1;
_

~RITEMOL~FDR  J+l STEP 1 UNTIL TI DO XBtIrJl)f
NDPRI  : END;
COMMENT JUST BY ADDING NEW SETS OF DATAS MORE PROBLEMS CAN BE RUNI

END i wRITE(ENDE1;  GO TO DVER i
END i
FIU :

END o
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