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INTRODUCTION AJiD PRELIMINARIES

1.0 Introduction.

The central problem considered in this peper 1s the follow1nS= Given

an n by n matrix A ot complex elements, find those normal matrices

(called ~-m1nimal matrices) of order n which are closest to A in the

sense of a metric defined in terms cf a norm ..... A related problem i8

that of determining the distance d (A)
v between A and the subset

of all normal matrices of order n. The historical background and precise

definition of these problemo are given in Section 1.2. The distance

problem mentioned above was first studied by Mirsky1 who offered Conjecture

1. 35 as the general solution for all unitarily invariant norms.

After a proof tha't \I-minimal matrices always exist (Section 1.5) 1

it is shown in Chapter 2 that the property of v-minimelity and ce~,aln

other quantities are invariant under certain transformations of matrlc

space. An inequality of Mirsky is sharpened In Chapter 3. A Q\UIl'ter of

important necessary conditions for E-minimal matrices (€ der'otes the

familiar Euclidean norm) are derived in Chapters 4 and 7. In Cli.apter 9

it is shown that all eigenvalues of an E-m1nimal matrix lie in the field

of values F(A) of A; these eigenvalues are shown to be sJ'.ec1al ex-

treme points of F(A) in the case n > 2. In the final Chapter 10 an

iterative computational procedure for finding dE(A) or an (-minimal.

matrix i8 proposed, but its convergence is not proved.



Probably the moat 1aportaDt results ot the paper are the tollowins:

1) A characterization ot &Il¥ €-lIl1nimal matrix in tel"ll8 ot the Max1aull

Problea 5.11 (Theerem 5.1').

2) A detemination ot all E-mn1mal matrices of order 2 (Theorem 6.24'.

,) Mirsky' c ConJecture 1.'5 11 shown to be true for ". E and n. 2

(~eorem 6.80), tal.e tor ". E and n 2: 3 (Theorem 8.5) and talse tor

Il ~ 2 and ". "p (2 < P ~ ), where "p i. detined b1 (1.15) (Theorem 8.9).

[Bote: The tact that Mirsky's conjecture 1s talse tor \I. E and n ~ ,

vas tirst proved by P. J. Eberlein.]

All results stated fluein whicb are not ~~1ticalg labeled as known

or tor vh1ch no reterence is aiven are believe:i to be neve
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1.1 Notation and Preliminary Definitions.

Let R and C denote respectively the real lnd complex f:umber

fields and let 717n denote the algebra of all n by n matrices over £,

where n is H positive integer. If X E J??n we denote its complex con-

* * *jugate transpose by X. A matrix X is called normal if X X • XX j in

* *particular X is called hermitian if X • X, ~-hermitian if X • -X,

*and unitary if X X = I, where I denotes the identity matrix of the same

order as X. Let n , 7-1 , U ,
n n n

and ,<f)
n

denote respectively the

subsets of all normal, bermitiun, unitary and diagonal matrices in ~n.

(We shall sometimes omit the subscript n, if the value of n need not be

spec if1ed. )

For the mebning of terminology or notation not explicitly defined in

this paper, the reader Is referred to one of the standard textbooks on the

theory of matrices (e.g., Perlis [2l]t).

A real valued function 11 defined on 'J?l is called a !!2!!! if the con-

ditions

(1.1) v(A) > 0 if AI:O ,

(1.2) v(cA) • lei ~(A) ,

(1. 3) v(A + B) S v(A) + v(B)

are satisfied for all A, B e ""7 and for all c € Q.. A norm " is said

t
Numbers in square brackets refer to references listed. in the bibliog­

raphy. at the end of this paper.
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to be QIl1tarUl 1nvar1an't 1t, 1n addition to (1.1) - (1.'),

"(OA) • ,,(AU) • ,,(A)

bold. tor all A € ~ and tor all U € U . Moreover, a DOn ., 1. .a14

to be IIU1tlpllcaUve if, tor arbltraZ'J' A, B € 1'17,

v(AB) S veAl v(B) •

Un1tarU7 invariant nol'llll were characterized by von Neumnn [19] (.ee

al.o ran and Bortl8D [9 J) ., tollow.. A real-valued tunct ion

cp(u) • ~(~'~1 ••• , Un) defined tor 811 real a-vectors u· (~,~,••• ,'\t)

11 called. !y!!!tric.J!Ul! function it 1t 8att.ties, for arbitrar,r real

'VeCton u, y and real .calars l.J, the tollovlDi cor.d1tiona

(1.6) ~(U) > 0 1t U" 0 ,

(l.T)

(1.8)

lp(au) • Ial lp(u) ,

where cr1 CaD be either ot tbe 81B;n1 ! 1 (1· 1,2, ••• I n) and where

(-ll~' ••• I -n) 18 a~ permutation ot (1,2, ••• , n).

1.10 Detinit1on. Let A € 'Pl. The nonnegative .quare root. of the ef.&en­

*'ftlue. ot A A are called the 11ngul&r value. or A.

* *bark. S1Dce the .pectnuD ot ItA coincide. with tbat ot A A, the

•• 1nplar ftlue. of A are 'tile ... .. thOlie of A.



1.1l.:. 'l'heorelll (von Reumann [1911. A no!'lll '" on 7'ln is unit&rUy invariant

1t and only if there exists a symmetric gauge function CI'" of n real

var1ables such that

for all A € 1'?n

where a 1,"2' ... ,an are the singular values of A.

As examples of symmetric gauge functions we may cite

(1.13) for 1 S p <. .

As p ....., the function in (1.13) converges to

(1.14) •

which is also a syaaetric gauge function. Thus, tor 1 S p S .,

(1.15)

is a unitarily invariant norm, where ~, .•• ,an are the sinsular values

of A. The nonn ". is known ae the spectral norm ot A and is some­

times denoted by the s71llbol a, l.e. , C7(A)... CA) tor all A E 7'11 •• n

For p. 2 "'p(A) in (1.15) coincides with the tam1liar Euclidean norm.

E(A) defined by

(1.16)
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wbere A - (a
1J)

€ 'J'1ln and where by' i
2 (A) we _an [C(A)]2. It can be

lhown (lee e.g., Faddeev and radd~eva [7] pp. 105-111) that both a e.Dd

C are multiplicative n~rm8.

It il Yell known that 7Yln 18 a Banach algebra w1th respect to the

DOra (1.16), that 1., m: 18 a Banach space when considered as a linear

qIlICe vith norm ~, and the multiplication operation (transtorlmtion)

(A,B) -. AB 1. a continuoua mapping trom the product space "1'1ln x ''In
onto 711n • (Ct. Rllle and lblll1ps [13), p. 22.)

1.11 Defin1tion. Let the eigenvalues ot M €:ntn be denoted bY'

~(N), ~2(M), ••• , ~n(K) in some order. Then OeM) is def1ned b.Y'

For aD7 M· (a
1J

) € '1rln the~ of M Is defined b.Y'

(1.18) treK) - f
1-1

Wit DOte the follovins well-known propert1es ot the trace functional:

(1.20)

(1.21)

tr(AB) • tr(lA) i

tr~aA + ~B) • a tr(A) + ~ tr(B) ;

*treK ) • ti-'OO ;

2 * *c (M) • treK x) • tr(JlI) •

lien A, I,. are aJV matrices in "l and a, ~ are ~ cOlllplex nu:iberl.
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1.23 Definition. Let M· (miJ)

by

1Yln' The diagonal of M is defined

(1.24)

Likewise the off-diagonal of M is defined by

(1.25) offdg(M) = M - dg(M)

1.2 Distance Problems; Mirsky's Conjecture and Bound.

Let A '17'/J let \I be any norm on 'l11, and let ~ be any subset

of 71? • By a distance problem we mean the problem of determining the

"distance"

(1.26) Inf .I \I(A - X)
X E 4

between A and ./ with respect to the norm \I. In any case in which t&e

infimum (L26) is attained by a matrix in J we may consider the related

minimum problem of finding (at least one mstriY and prefera~l¥ all) matrices

X
o
E'/ such that

~(A - X ) = Min v(A - X)
o X E J

Several such problems have been considered and solved 1n the past. We nov

describe some of these results.

T



1.21 Theorem (Fan and Bottlll8D [ill. Let A E »l, let "N denote the

lublet ot all hermitian _trices in 1?t, and let " denote 8117 unitarily

invariant norm on 71'l. Then

(1.28) 1 * 1 *Min yeA - X) • \I(A - 2' (A + A » • 2' v(A - A )
X E 11

1.29 Theorem (Fan and Hottman [,2]). Let U denote the subset ot all

unitary _trices in "'? and let v denote any unitarily invariant norm

on 7":'";. Let A E ."" and suppose A· UH wher:! H € 11 is JY.)s1tive

..1Il1de~1nit. and U € U. Then

Min v(A - X) • v(d1aa.(~, ••• , an) - I) • v(A - U)
X € U

where ~, ••• , an are the singular values at A.

The next result is apparently new, although its interpretation (see

A1Il1r-Moez and Horn (2) and (9) regarding a well-known analOQ between

_trices and comp1ex l1".unbers) and the method ot proof are strictly analogo\\S

to.those associated with Theorem 1.27.

1.31 Theorem. Let A € '!'t, let'/ denote the subset ot all skew­

hermitian _tricel 1:! '7"17, and let v denote any unitarily invariant

DOrII QI1 )1z. Then

(1.32) 1 *» 1 *X :snJ v(A - X) • v(A - i<~ - A • 2' v(A + A ) •

l!22!. Let S be ~ Ikev-hel'll1tian matrix. We have

8



whence

v(A - l(A - A*» < 1 V(A - s) + 1 v«A - S)*)
2 - 2 2

By Theorem loll and the reJrlsrk following Definition 1.10,

*v«A - S) ) = v(A - S); consequently

(1.33) 1 *v(A - -(A - A » < v(A - S)2 -

holds for all S E./. This proves (1.32).

Let k denote an integer such that 1::: k ::: n. In [15J Mirsky solved

distance problems for the subsets (X j X E 111n and rank(X) :s k) and

(X ; X E 'n1n and rank (X) = k}, As in the above results, the formula

for the distance can be put in the same form for all unitarily invariant

norms.

In this paper we shall be primarily interested in distance and extremum

problems associated with the subset n of all normal matrices in "nt.

Tee distance problem was apparently first studied by Mirsky [15]. Let A

be any fixed element of 'J?7 , let v be any norm on 717 and define

d/A):: inf
X € n

v(A - X)

Mirsky was Wlable to determine d,,(A), even for special choices of v,

but he obtained an upper bound for d,(A) (see Theorem 1.37 below) and

9



oftered the tollowing cOnJecture tor the general solution when v 1s

unitarily invariant.

1.35 COnjecture (Mirsky). Let " denote any unitarily invariant norm on

1'10. Then

holdl tor all A € mn l where d~(A). [dv(A)]2, ,,2(A)" [v(A»)2 and

vhere n\..~) 11 deftned in Definition .•17.

~. B.Y' (1.9) the right side of (1.36) iE! independent of the order

ot the A.'s in n(A). The singular values of A are the eigenvalues ot

* !. *the positive semidefinite square root (denoted by (A A)2) of A A;

conlequently v(A). \I(n( (A*A)t». A further interpretation of Mirsky's

conjecture 11 contained in Chapter 2 where the oonnegat1vity of the right

aide of (1.36) is proved (Le1llDl8 2.4).

1.31 Theorem (Mirsky). Let A € J'1t. We bave

1.39 Definition. Le~ A € '7I'ln and let \I be any norm on 111n • A

_tr1x R € n 0 such that

v(A - N) • d,,(A) = tnt \I(A - X)
X € 7ln

11 called a v-minimizing normal matrix (for A) or B 1s laid to be

v-m1nimal (tor A) •

10



1.3 Differentiable Curves in Matric Space.

Let A(t) = (aij(t» bp. a matrix function of the real variable t

which is defined for - ~ ~ a < t < b ~~. In the sequel we shall assume

that each of the scalar functions aiJ(t) is sufficiently differentiable

throughout its domain of definition. We define the derivative of A(t)

by

(1.41) dA d )dt = dt A(t
da i j

= ( dt )

higher order derivatives are defined in a similar fashion. The exponential

function er.p(A)

(l.lt2)

is defined by the power series

A _ :ID 1 k
e = ... + [ -k' A

k=l •

which converges for all A E 'n1..

1. 43 Lemma. Let A(t) I B( t) be any differentiable matrices 1n "1 and

let C be any constant matrix in 711.. We have

(1.44)

(1.46)

(1.47)

d [A(t) B(t)] .. dA(t) B(t) + A(t) dB{tl
~ ~ ft I

:t tr[A(t)] = tr(~~t» I

d~ dg(A(t» = dg(~~t» I

11



(1.48)

* *where A (t) • [A(t)] and where dg is defined by (1.24).

The proof of LeIllll8 1.43 will be omitted since each equation is either

very elementary or well known.

1.49 Definition. Let ,J be any subset ot 711. A matrix function ACt)

whose range i8 in ,J and which is differentiable in somel~terval . a < t < b

(a < b) i8 called a differentiable curve in ~.

For any differentiable curve ACt), the tangent vector to A(t) at

8n¥ to € (a,b) i. defined to be the matrix [dA(t)/dt]t-t'
o

Let lJ(t) be an arbitrary differentiable curve in the subset U of

all unitary _trice. in ~. Then U*Ct) U(t} • I and U(t) U*(t) • I

are identities in t. Differentiating these identities and using the

rule (1.44) we obtain

(1.50)

(1.51)

"*dU (t) U(t) + U*(t) dU(tl 0
dt dt • ,

J'roIa either ot the la.t tva eqlatioD8 we obtain

(1.52) *dU'.:].• _ U(t) dU 't). U(t)
dt dt'

1.53 Lellllllll. Let U(t) be any differentiable curve in U and let

s,.(t), ~(t) be given by the equatiolW

12



(1.54)

Then Sl(t) and 82(t)

tangent vector to U(t)

*
S (t) = _ U(t) dU (t)
2 dt

are skew-hermitian for every t € (a,b) and the

at to is given "oy

(1.56)

~. Using (1.48) and the definitions of 81(t) and 52 (t ) we see

* *from (1.50) and (1.51) that Sl(t) + S1(t) = 0, 52(t) + 52(t) • OJ i.e.,

81 and 52 are skew-hermitian for each value of t. The expression

(1. 56) follows immediately from (1. 52 ) •

Let S be any skew-hermitian matrix. It is easy to see that

exp(tS) is unitary for all finite values of the real variable t. In fact,

*from the definition of the exponential function, [exp(tS») • exp(-tS)

and, since tS cODlllUtes with -tS, we have

( tS)* tS -tS tS tS-tS 0 Ie e =e e =e =e = •

Thus, lett1ng U(t) =exp(tS), we see from (1.45) that

d~tt) • U(t) S • S U(t) ;

13



conaequent17 &D¥ skev-hel'lll1t1an _trix 8 can occur 10 place ot 81(to)

am ~Cto) 10 (1.56) (tor 1018 difterentiable curve U(t) 10 U.)

am tor 8n1' 'ftlue ot to.

1.4 NorMal Matrices.

In the next theorem we list .everal known characterizations ot normal

matrices, already detined in. Section 1.1.

1.57 Theorem. Let the eigenvalue, of • E: 7"1D be denoted b7

).l'~' ••• , ).n· Then R 18 normal if and only if &D7 one ot the toUow1ng

proposit10D8 1s true:

Ca) • - ~ + ~ vbere ~ and ~ are hel'lll1t1aD and

~~ -~~.
(b) 11. bas a complete orthonormal set of e1genwctore.

(e) (Toeplitz [23) It 1s un1tar1l7 l1m1lar to a d1qonal matrix:

*R • V DJ (u € U, D € /3) •

(4) (Vintner and J6u0nagbaD [26] aDd WWia_on [25], see also Balm.

[11), pp. 169-170) There 18 & poeitive semidetloite herm1tiaD

_trix B and a unita17 matrix U such that

It·ua-BU •

(e) (Parker (20), p. 522) 'tl1ere exists a unita17 _trix U such

** l\ ** ~that V(R + R )U E IG and U(I - It)U E ~.

14



(f) (Parker [20], Theorem 1) The eigenvalues of

2 2 2
1>'1 1 , 1>'21 , ••• , IAnl •

*NB are

(g) *(Parker [20], Theorem 2) The eigenvalues of N + N are

>'1 +~, >'2 +}:2' ••• ,An +}:n·

1.59 Theorem (Toeplitz [23] and Parker [20Jl. A triangular matrix in m
is normal if and only if it is diagonal.

We shall be interested later in utilizing differentiable curves in

»t. . One way of constructing such curves is to use Theorem 1.51 (c) and

differentiable curves U(t) and n(e) in U and ~ respectively. Then

*N(t) =U (t) D(t) U(t) is a differentiable curve in Ti. Furthermore we

can construct differentiable c.urves in '7l which pass through a given

normal matrix No" U: Do Uo (Uo E U, Do E JS) for some value of t

(say t .. 0) by merely requiring that U(O). Uo and D(O) = Do. For

curves U(t) in t( we shall use the formula

(1.60) u(t) .. U e i t H
o

where H is hermitian. There is no loss of generality in res~rictlng

ourselves to ~he formula (1.60) since w~ shall be concerned with evaluations

of the derivative of ':J( t ) at t .. O. Note that, as H runs through "11,
iH runs through the set of all skew-hermitian matrices, so, by Lemma 1.53,

all possible tangent vectors to a differentiable curve U(t) in ~ at

t .. 0 can occur for curves of the type given by (1.60)

We shall have a need later on for the following result concerning

differentiable curves in ~.

15



1.61 Lemma. If net) 11 8.D¥ d1fterentiable curve in A>, then

O(t)/dt I 18 in RJ. J'urthermore eve17 A E I:J can occur as
t-o

O(t)/dtl tor lome ditterentiab1e curve D(t) in Al.
t-o

l£22t. Let D(t). diag(~(t), ••• , Qn(t». Bach ot the 8calar

tunctione Q1(t) has a 8calar derivative 80 dD(t)/dt i8 in ~ tor

eYel'7 value ot t. Let zi (1 • 1, ••• , n) be an,y complex numbers. Then

the derivative ot D(t). t d1ag{zl,z2' ••• , Zn) eQUal8 d1ag(zl, ••• ,zn)'

an arb1tr&17 _trh in ~, tor all t.

1.62 Theore.. Let %, l' € n. Then •• X + Y E 'Tl it and onl7 it

*. • *n -1'X+D: -X1'·O •

~. Since X and Y are nonal and have

* * • * * *II - 11 11 - (X + 1')(X + l' ) - (X + l' )(X + r)

• * * • • • • •
- XX + Xl' +!X + yy - (X X + X l' + l' X + l' r)

*. • *-u ·1'X+!X -Xl'

whence 11 18 normJ. it and ~ 1f (1.63) bold8.

1.64 Corollary. Let z be ~ tixed coarpJ.ex number. Then :N € '1 it

and onl7 it 11 + zl E71.
~. Clear17 zI € 7l tor all z E 2,. Betting X II: 5, Y = zI ....e

t1D4 that (1.63) 18 8atistied tor all z:

*. * * - - * *n -YX+!X -X1'-z1I-d+zB -zlf -0.

J.6



Thus, by Theorem 1.62, N E n implies N + zI € n. The converse

implication is clear since (N + zI) - zI ~ R.

1.65 Theorem. Let X E >1. Then X + tY E 71 for all values ot t in

a real in'terval of positive length if and only if YEn ar.d (1.63) holds.

Proof. Let N = X + tY. A short computation, using the fact that

t 1s real and X En, yields

A polynomial of second degree can have at most two zeros unless all of its

coefficients vanish. Thus the assumption that N E n for more than two

* *values of t implies 1mmediately (1.63) and YY - Y Y • 0 i.e.,

Y E 71.. Conversely Y E '7l and (1.63) imply via (1.66) that X + tY E rt.
for all real values of t.

k 1
1.67 Theorem. Let Pk(X) = zoI + r: z1X denote a polynolll1al ot

i=l
degree k( ~ 1) 1n a matrix X E 7'7 with arbitrary complex coefficients

z1. Then N € '7. implies Pk(N) E 72·
~. If N E '77. then by Theorem 1.57 (e) it has a decomposi't,iCltl

*. L\ i *.N = U DU (U € U, D €~) and clearly R • U Dl.U for all positive

integers i , Thus Pk(N):: U*Pk(D)U, Pk(D) € Ii) so by Theorem 1.57 (e)

Pk(N) 1s normal.

1.68 Corollary. Suppose N E '71. Then ~ E 7l fc,r k '" 2, 3, 4,

Furthermore if N-
1

exists then N-k E'7 for k =1,2, 3, .••.

l!:22!. That ~ E 7l. far k ~ 2 is obvious from Theorem 1.67. It

-1 1N exists then, by the Cayley-Hamilton Theorem, N- is a polynomial in

N whence B-
1

is normal. Applying Theorem 1.67 again we see that
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·-It • (lI-l)1t 11 nonal tor It ~ 2.

J..§9 Theorem. Let A € "t and let a and ~ be cOlllplex nUlllberB. It

A 1. normal then CIA + ~* € n tor all a,~; it A 11 not normal,

CIA + ~* € 71 1t and only it lal· I~i

*.l£22t. Setting 19· aA + ~ we find that

(1.70) {" * 2 2 * *• - II II • (Ial - I~I )(AA - A A) •

!be conclud,;m. ot the theorem tollow 1DIDed1ately frOlll the relat10n (1.10).

1.n CorollarY. It A €1'( aDd a,~ € £ with lal· I~I, then

')t(aA + ~.) € n where Pit 1. an arb1trary polynOlll1al. ot desree It with

coeffic1ent. 10 £.
Proof. Tbl. 1. an obvl~ coa.equence of Theoreu 1.67 and 1.69.-

J..12 Theorem. Suppal. Q E £ Ca ; 0), z c £, and U € U are fixed.

"0 eacb ot the traDsfm-.atlonl

(1.1~)

.tiDe. • one-to-one -wins ot "7l aato 1tlelt•

l£s!:2!. Let II be any DOraU _trix. Then troll ibeoreaa 1.67,

Coro1.1al7 1.64, and Theorem 1.57 (e) we lee that Q-", II - zI, and

..,* respectively are 10 "1'l. Thu8 II· TaCa-') • Tz(lI- r.I ) • Tu(mm*)

vh!eIa Jll'oves that each ot the transtor.tlQDI (1.13), (1.7-'), and (1.15)

18



is onto. Letting N1, N2 denote any pair of normal matrices, one sees

easily that any one of the equations Ta(I~l) '" Ta(N2), Tz(Nl) = Tz(N2),

TU(N1) '"' TU(N2) implies Nl" N2; whence each of the transformations is

one-to-one.

1.5 Existence of v-Minimal Matrices.

The definition of a "'-minimal (or ",-minimizing normal) matrix has al­

ready been given in Section 1.2 (Definition 1.39). Let '" denote any

norm on ""1. Suppose first that A E 77. Then there is a unique "'­

minimal No, namely No" Aj for if A € 7( then d",(A) .. 0 and the

infimum in (1.34) is assumed if and only if X .. A. O~ main purpose in

the present section is to show that, for any A € 7'1 and any norm tt,

there exists a v-minimal matrix.

~. Any two nonned linear spaces (over £) of the same finite

dimension are topologically isomorphic (see e.g., [13], p. 13). This

implies that the norm topologies induced in 7?7n I'Y any two norms are the

same; consequently there 1& only one norm topology tor ~ and we refer

to it as ~ norm topology of "'?n.

1.76 Lemma. The set n n at all normal IIIBtrices (1n 'TItn> 1s closed in

the norm topology of '"7n'

l!:22!.. Matrix multiplication is continuous in the norm topology

since it 1s cont1nuous with respect to the ~-norm topology (er, Section

1.1). Let It be any matrix 10 the closure 7f of 71.. Then there 1s

a sequence (Ni) (Hi € 1'l for 1· 1, 2, 3, ••• ) such that Ni .... R.

SinCe each Ni is normal we nave
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(1-1,2, ••• ) •

_ v1rtue of the ~ont1nuit7 of multiplication we -7 pass to the limit in

* *(1. 77) and obtain NN • B B, 1.e., B 18 normDJ.. This implies 1'/ c n
vhlch proves that n 111 clolied.

1.78 Th~orem. Let " be any norm on 7'7n and let A be any fixed

_trix in 7'1ln' Then there 1s a \I-m1n1mal matrix No (for A).

Proof. We alSume d (A) > 0 (see (1.34» 8ince otherwise the theorem.
- \I

is trivial. By the definition of d\l(A) J there is a sequence (Bi ) of

normal matr1ces such that \I(A - B1) -. d\l(A). The subset

~ • (X ; X E 'Pln and d\l(A) S \I(A - X) S 2d\l(A)} 1s closed and bounded,

hence compact"in ''''In. Clearly there ls an index ko so that H1 E 6?
for i ~ ko' ThUl, since 6i ls compact (and therefore countably caapact),

there 18 a subsequence (B~) (~~ ko tor k· 1, 2, 3, ••• ) whlch

converges to • matrix Bo E ~. This Bo ls. point of closure of ~

so, by Le.- 1.16, it 18 normal. P1nally

(1.79)

and, since

d CA) < (A - B ) < \I(A - B1.. ) + \1(11. - I) ;
\I - 0- A A 0

¥here ~ -. 0 83 k -. '10. Thus, 81ven C > 0, there ls an lndex ~ such

that the right slde ot (1.79) is less than d\l(A) +' tor k ~~. Since

20



i is arbitrary we have d (A) < v(A - If ) < d (A) which completes the
" 0 - \01

proof of Theorem 1.78.

Theorem 1.78 Elhows that the distance problem of finding dv(A) is

actually a minimum problem for all v an1 for all A. This suggests tbe

possibility of finding d,,,.(A) by determining a v-minimal matrix. We

shall investtsate this aspect of the distance problem in subsequent sections

of this paper•

Since .,., is not a convex set (the sum of two normal matrices is'Cn

not necessarily normal), we naturally expect that there might exist

uatrices A € 'l1'ln fer which there is no unique V-minimal matrix. We shall

sbow, at least for ,,= i and n. 2, that this i8 the case.
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CHAPl'ER 2

EQUIVALENCE Tlm::>R1M3 CON~ING MIBSKY'S CONJlX:TURE, v-MINIMAL

MATRICm, AND DISTANCE F01MJLAS.

Bow that the existence of v-minimal matrices has been established, it

is of interest to determine what transformations of I'?n leave the

property of minimality invariant. In this section we shall give three

results of this t;ype and we shall also p:l'OYe three closely parallel results

ccncerning distance formulas resembling :.u.rsky' s formula (1.36). We begin

with an examination of the meaning of Mirsky's conJecture.

2.1 Mirsky's Conjecture.

2.1 Definition. A norm v on

(2.2) v(A) • Yen(A»

v(A) > v(O(A»

7J7n such that

for all A E nn

for all A E "1'7, A ,n ,n n

vbere O(A) 18 defined in Definition 1.11, is said to have :property S.

2.4 LeDma. The Euclidean norm ~ ha. property S. Furthermore, for any

un1tar~ invariant norm v, we bave

tor all A E ~n

with equality holding in (2.5) for all A E 'l'ln.

22



Proof. B.Y a well-known theorem of Schur [22] (see e.g., [16], p.

307) every A E 71I.n 1s unitarily similar to a triangular matrix:

(2.6) *VAV =n(A) + M

where in M only elements above the principal diagonal may be different

from zero. Thus, by (1.16), we have

so

(2.7)

B.Y 'theorem 1. 59 M = 0 if and only if A E 71ni hence from (2.7) we see

that ( has property S.

In order to prove (2.5) we shall need the following two results.

2.8 Theorem (Fan [8], Theorem ~l. Let al ~ ~ ~ ••• ~ an ~ 0,

bl ~ b2 ~ ••• ~ bn ~ O. Then

holds for all symmetric ga~ functions ~ of n real variables it and

only if

(2.l0)

23
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2.11 Theorem (Werl ~, p. 409). Let the eigenvalues ).i and singu1ar

values a i of A € lJln be arranged 80 that ().ll ~ 1).21 ~ ,•• ~ I).nI,
Q.. > a, > ••• > a. Then, fOl' any real exponent s > 0,
-~ - -c: - - n

k
r' 'Jos

i':'.1. 1
(l ~ k ~ n) •

Since n{A) is diagonal (and therefore nonal) its singular values

are I~I, ... , I).nl {see Theorem 1.57 (f». The inequality (2.5) now

follows 1mmediately by combining Theorem 1.11, Theorem 2.8 (here we set

a1 • 1).1 1, bi • a1 ) , and Theorem 2.11 (use s • 1). It A 1s normal it

11 unitarlly I1m1lar to n{A) whence equality holds in (2.5) for all

A E '1ln '

The question of which unitar1.l.y invariant no1'lll8 ,,~, have property

S (i.e., which ones satisfy (2.3» is apparently open. We shall presently

show that the spectral norm C1 does not have property S.

2.13 Definition. Let \II be any norm on 1'fn 'trhich bas property S.

Then we define

(2.14)

Per any v with property S we see from. the definition of d,,{A)

aDd (2.3) that p (A) il a vell-defined pol1tive quantity 80 that",n
d,,(A) can be expreese<t 1n the form
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some convenient finite value for A € nn'If we assigned to p" (A)
r ,n

then (2,15) would be valid for all A €'J?ln'

same general form as Mirsk.y' s formula (1. 36) •

Note that (2.15) has the

We now prove the following

characterization of Mirsky's conjecture for a particular norm ~,

2.16 Theorem. Let \I be a norm on 'J1ln' Mirsky's conjectured formula

(1.36) for d\l(A) holds for all A E ~n if and only if \I has property

S and

(2.17)

for all A E11t, A rt nn and for n = 2, 3, ....

_Proof . Since n is closed as a subset of '7Y/, we see fromn n

(1.34) that d\l(A) is zero when A Ertn and strictly positive when

A "nn • Thus, if (1. 36) holds for all A ElJ?n' " has property S

and (2.17) holds. The converse is obvious.

Let the II by n matrix A (n ~ 3) be given by

(2.16)

The nanzero singular values of A are 2, V2 and the nonzero singular

values of n(A) are 2, 1. From (1.14) and (1.15) we have

O'(A) .. a(n(A» IE 2 while, by Theorem 1.59, A is not norual. '!bus (2.3)

does not hold for \I = 0'; consequently a fails to have property S

tor n ~ 3. We have proved
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2.19 Theorem. The spectral norm (f does not have property S for

n > 3. Mirsky I s ~vnJecture 1. 35 is tali3e tor v· cr and for n > 3.- -
In Chapter 8 where we discuss some other counterexamples we shall

prove that M1rs~'s cOnJecture also fails tor v· cr and D· 2. (See

Tbeorem 8.9).

2.2 Invariance of v-Minimal Matrices.

The content of the next three theorems is, roughly speaking, the

following: \I-m1nimality 1s generally invariant under the transformations

(1.13) - (1.75). The accompanying corollaries show that uniqueness of a

v-minimal matrix is also invariant under the same transformations.

2.20 Theorem. Let \I be a~ norm on 71'ln and suppose a € £,

Cll ~ O. Then No is v-minimal for A € 71l if and only if aN Isn 0

V-m1n1aal tor aA. Purthermore

!!22!. B,y Theorem 1.72 aN runs through n as N runs through ~.

Consequently ,,(A - N) assumes ita minimum tor N· No it and only if

pl· v(A - N) • vCaA - aN) assumes 1ts m1nimua tor R· No. It CllBo

1s v.m1n1mal for aA theJ"l

2.22 Corollm. Let " be aD¥ norm on ""tn and suppose Cll € £,

a ~ O. A € ~n has. unique lI-m1n1mal atrix it aDd only it aA has a

unique v·m1n1-1 atrix.



Proof. If No is the unique "-minimal mat!"ix for A and if N
l,

N
2

are \I-minilDB.l for aA, then by Theorem 2.20 No = a-~J. .. a-~2 whence

Hl == N2• The converse is proved in a similar manner.

2.23 Theorem. Let v denote any norm on 77(. If No Is \I-minimal for

AE "7 then No + zI is v-minimal for A + zI for all z E C. Conversely,

if No + zI is v-minimal for A + zI for one value of z € .Q then No

is \I-minimal for A. Furthermore , for all z € £, we have

(2.24)

~.

(2.25)

d (A + zI) = d (A)\I v

Ouviously

v(A - N) .. v[(A + zI) - (N + zI)]

holds for f!ny norm v, for all A, N E J1?, and for all z € .Q. By

Theorem 1.72 Tz{N) = N + zI runs through ~ in a one-to-one manner as

N runs through /1. Thus, as N runs through n. the left and right

sides of (2.25) assume their minima simultaneously. This proves the first

two statements of Theorem 2.23. The relation (2.24) follows immediately

from (2.25) if one assumes that N is ~-minimal for A.

2.26 Corollary. Let v be any norm on 7Yt and suppose z € £. Then

A E '7'Yl has a unique v-minimal matrix if and only if A + zI has a

ur.ique v-minimal matrix.

~. The proof is strictly analogous to that for Corollary 2.22.

~1 Theorem. Let v denote any unitarily invariant norm on 7?f and

let U € U by fixed. Then No is v-minimal for A€ '»tit and only it
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(2.28)

l!:22!. Since 10' 1s un1tar1ly invariant

* *v(A - N) • ~(U AU - U BU)

bolds for ell A, 11 E ""1 and for all U € U. By Theorem 1. '72

Tu(II) • U*NU runs through n in a one-to-one manner as N runs

through n. 'nlerefore, as 11 runs through 71, the left and right

lide. of (2.29) assume their minima simultaneously. This proves the first

assertion in Theorem 2.27. Equation (2.28) tollow. from (2.29) if it 1s

allumed that 11 1s v-minimal tor A.

2.30 Corollary. Let v be any un1tar1ly invariant norm on )?[ and let
~

U € "'- • Then AE "t bas a unique v-minimal uatrix it and only 1t U AU

bas a unique \I-minimal matrix.

The proot i. analosoue to that tor Corollary 2.22 and 1s therefore

omtted.

2.3 Invar1ance of Distance Pormulas.

2.31 Definition. A transformation T vhose domain space 18 "'tn and

yh~. ruse space 18 contained in '1'fn 18 said to be d1Bcrlm1nat1na it
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and

T(M) E 71n

We have already seen that, for any norm

can be represented by the formula

v with property 5, d (A)
Y

where p (A) is defined by (2.14). The question neturally arises asY,n

to what happens to p (A) ~hen A is subJected to various di8criminating\I,n

transformations. The next three theorems provide some answers to this

question for the discriminating transformations (1.73) - (1.75).

2.33 Theorem. Let Y be any norm on i'?n which has property S.

Let a E £, a /: a and let A E "7n' A ~ ?'In' Then

(2·34) P (aA) ~ p (A)
y,n ",n

If ~l' X2, ••• , ~n are the eigenvalues of A then

axl , ax2 , ••• , aXn are the eiger.values of aA; consequently (cf.

Definition 1.17) n(aA) = anCA). Using that fact, (2.32), and (2.21) we

obtain

d
2

(aA ) = 1012
d
2(A)

\I \I

= P.. (A)( l(aA) - ,,2(an(A»)r,n

= P (A)( l(aA) - l(n(aA»)
\I,n
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'!he flr.t t.~;tor In the last 11ne must be p (aA) whIch prove. (2.3J+).",n
g.35 Theo!'!!. Let C denote t.he Euclidean no1'lll (1.16) on '1"1n • Let

A be any nonnorlllll atrix in .."" and let z € C. Then,rC
n

_

~. Let ),,1 (1 • 1,2, ••• , n) denote the eiaenvalue. ot

A • (sIJ). 7r0ll (1.16) we have

D n
Ud, 81nca r ),,1· I: aU' ve obtain

1 1

fUrtbelWOre, 81nce ()"l + s) (1. 1, ••• , n) are the eiaenvaluel of

A + &I,

2 D D 2
• C (O(A» + i r ),,1 + z r t'1 + nl-I •

1~ l=J.



Combining (2.37) and (2.)8) we find that

Applying (2.24) in the case v = ~ and using (2.39) we obtain

2 2= p~ (A)(~ (A + zI) - ~ (O(A + zI») •
"""n

The relation (2.36) now follows from the last equation.

2.40 Theorem. Let )I 'be any UflJ.tar,.t:',JT invariant norm on 7?'tn which

has property S. Let A be any nonnormal matrix in "'1N7 and let"Cn

U € U .n Then

~. The eigenvalues of a matrix are invariant under a unitary

*similarity transformation so n(u AU) • neAl. Consequently, since v i8

unitarUy invariant, we have

From (2.28) we have

and, combining this with (2.~) we obtain (2.41).



CHAPrER 3

IMPROVDmNTS OF MrnSKY I S 1lOOND

3.1 A New Bound.

In thls sectlon we shall obtain an upper bound tor d~(A) whlch ls

sharper than the bound (1.38) obtained by Mirsq. Before doing thls we

prove & letllllll. which sheds some light on Mirsky'. result (Theorem 1.37).

Thll le_ furnishes at lea.t a partial answer to the question: given

A € "?n' what normal matrices l.ie at the distance troa A whlch ls

given by M1rsq I S bound2

3.1 Definition. Por any A € ~ we defiDe

(z ; ~ € C and Izl. 1) it tr(A2). 0 ;

•

~. ,,(A) 1& a set of complex numbers ot unlt lIIOdulus. It

,r(A2) ., 0 then "CA) containl a s1n6le well-detined nullber but, it

tr(A2) • 0, ,,(A) consists ot all complex number. on the bouDdary of tile

\Mit dlak. AD analOSO\W relll8rk applies to the .et MoCA).

3.4 z.e-. Let A be any _tr1x 111 "?n. '!'hen evelT _tr1x in the s.t

~(A) 1& D01WJ.. I'urtbel"llC)re



Proof. The fact that M (A) C n follows immediately from Theorem
- 0 n

1.69. Assuming that I~I =1 and using the properties (1.20) and (1.22)

of the trace, we obtain

21 * 1 * - *£ (A - 2 (A + ~A » = ~ tr[(A - ~A)(A - ~A »)

(3.6)
1 * ~ - 2 *=4 [tr(A A) - ~ tr(A ) - ~ tr{A ) + tr(AA )] •

Using (1.22) agairc snd (1.21) we see that the last equation becomes

21 * 12 1 2 - 2
E (A - 2 (A + ~ » =2 ~ (A) - 4 (~ tr(A ) + ~ tr(A» •

If tr(A2)~ 0 and ~ E ~(A) then (3.2) implies ~ tr(A2) =~ tr(A2) =

Itr(A2)I, whence (3.7) implies (3.5). If tr(A2). 0 then the last term

on the right side of (3.7) vanishes for all ~ E "l(A) find the right sides

of both (3.5) and (3.7) reduce to (1/2) C
2(A) . This proves Lemma 3.4.

Remark. The author believes that the set Mo(A) contains all

*matrices of the form aA + ~ (with lal = I~I> which satisfy

2 * 1 2 2
E [A - (aA =~ )] =2 (E (A) - Itr(A )1) •

However, no attempt will be lIII.de here to prove that assertion.

3.8 Definition. For ~ A E "tn we definE;
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teA) •

(tr(A2) _ (1/n)(tr(A»2)/ltr(A2) - (1/n)(tr(A»2 IJ
if tr(A2) ~ ! (tr(A»2

n

(z; z € £ and lzl -1) if tr(A
2). *(tr(A»2 ;

(3.10) 11(1..) - {i (A + CA*) +~ tr(A - tA*)I ; ~ € teA») •

~. The I1tuation with teA) and M(A) is exactly the same ••

that for ,,(A) and Mt')(A) (.ee the note follav1ne Definition 3.1). If

tr(A2 ) ~ (1/n)(tr(A»2 we use the ._01 N(A) to denote the (.1nSle)

_tr1x in M(A). In the .lIlbiSUOUI c••e tr(A2) - (1/n)(tr(A»2 of (3.9)

we .ball use the notation -8(1..) (or lit (A) ) to denote the particular

_tr1x in M(A) which corre.pond_ to the element t - exp(i9) of teA)

(here B 18 real).

3.11 Theorem. Let A € "'tn and let C denote the Euclidean norm (1.16)

on "'D. Then eTe17 _tr1x 1n the .et M(A) 18 DO~. Furthermore

tor all X € M(A) •

!!:22!. The tact that 11(1..) c:"n
D

tollove 1Iaed1ate17 troa Corollar7

1.11. Let

.-A.!!i!lI.
D



Then

whence

A comparison of the definitions of the sets (3.2) ~nd (3.9) reveals that

'l(B) • teA) •

Furthermore

1 *\ 1 *)• 2 (B - tB J • B- 2 (B + tB ;

consequently, from (3.5) and (3.:i4), we obtain

for all t € teA) •

Now
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Caabin1ng (3.13) - (3.16) we obtain (3.12) and this prove. Theorem 3.11.

An obviOUI consequence of Theorem 3.11 is

3.17 Theorem. We have, tor all A € "tn'

(3.18)

We shall show that the boWld (3.18) 1s sharper than M1rsq'. bound

(1.)8). We tirst prove

3.19 LeIma. It A € 1Y/n then

(3.20)

It tr(A). 0 we have equal1t7 in (3.20) aDd, it tr(A) ~ 0, equal1t7

holda iD (3.20) it and onl7 u

n tr(A2 l
2 ~ 1. •

(tr(A»

!2!!. !I.'be 1nequal1ty (3.21) 1. to be iDterpreted a. tallon: 1t 1.

ati.t1ed it and 0D17 it the lett band .14e ot (3.21) 1. both real and

createi' thaD or equal to un1t7.

Proot. !be 1Dequallt7 (3.20) and the cond1t10D1 ot equalit7 iD it tor-
'the cu. tr(A) ~ 0 are an ta.41ate cODlequeDCe of tile tr1an8le :lDequalit7

aDd ita c0n41t10D1 ot equal1t7 (.ee e.8., (1) pp. 8-9).

Vhlle x.e- 3.19 provides, iDa certa1D ••Dle, • cOllJPlete &DIVer to

tile que.t1OD1 of equal.1t7 and 1Dequa11t7 ot the upper bound_ in (1.)8)

aDd (3.18), there main tbe .on 1Dtereltq que_tlOJ18 ot ¥bat relatlaaahlp



these bounds have to the actual distance dE and to the conjectured

distance (1.36) 1n the case v =~. We shall discuss the former question

1n connection with some counterexamples in Chapter 8. The next three

results delineate a partial answer to the latter question.

3.22 Lellllll&. Let >"1' >"2' ••• , >"n denote complex numbers. Then

n n
I E >..~ I s E I>"k 1

2
with equality holding if and only if all non-

k=l °k=l

zero >"'s lie on a single straight line through the origin in the complex

plane.

~. B,y the triangle inequality (see [1], p. 9) the desired

inequality holds with equality holding if and only if the ratio of the

squares of any pair of nonzero A'S is positive:

Obviously (3.23) holds if and only if Ak/A
j

is real so that, if

~ • r k exp(i9k ) (k. 1,2, ••• ,n) where r k ~ 0 and ~ is the

principal value of arg(~), exp[:i( 8k - 9J)] .. + 1 vhe.1ce either

9k - 9
J

.. 0 (mod 2:11:) or 9k - 9
j

• 1t (mod 2.) i.e., either ak .. 9
J

or 9k• (3. + :11:.
J -

3.24 Corollary. Let A E 7'1?n. We have

with equality holding it and only it all nonzero eigedvalues of A lie an

a linsle Btra1ght line through the origin in the complex plane.
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~. Let ),1' ••• ,Aon denote the eigenvalues of A. Then by

~3·22

(3.26)

w1th equality bolding .s stated in Corollary 3.2q.

3.21 Lemma. Let A E ''In 'be given. It, tor this particular matrix A,

MirSq-'8 bound in (1.)8) is equal to the conjectured di8tance (1.36)

(with v. e), 1.e., it

then the boUDd 10 (3.18) 18 al80 equal to the conjectured di8tance, 1.e...

ftere Jl(A) U defined in Defin1tion ,.8. .
l£gg£. _ CoroUar;r 3.24 (3.28) holds it aZJ4 only it the eigenvalue.

ot A caD be wr1tten in the tOI'll ~. r k exp(I(S + PJt)] (k • 1,2, ..... n)

wbu'e JOk ~ 0, ap[1pt) • .:t 1 (k. 1, 2, ••• , n) and S 1. a real

CCII8taU. 1'tN.I



C1early

B,y Lemma 3.19 and (3.28), (3.29) holds if tr(A) a O. If tr(A) r0,

then at least one r k is positive and, from (3.31), (3.32), and (3.33),

ve have

Therefore, if tr(A) ~ 0, (3.21) holds so that equality holds in (3.20).

This proves (3.29). Equation (3.30) then fo11ows immediately from (3.12).

This comp1etes the proof of Lemma 3.21.

Remark. The equality (3.29) can hold also in III8.nY cases in vhich

(3.28) is not satisfied; furthermore the bound in (3.18) can lie betveen

the bound in (1.38) and the conjectured distance (1.36) (vith ". s)

as the following examples shOVe Suppose A is of order 4 and bas

e1genvalues -1 + i, -1 + i, -1 + 1, and 2 + 61. Then straightforward

cOIIIpUtations show that
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Apin, it A 18 ot order 4 and bas eigenvalues 1, 1.. 1, and -1,

tben

We ahall show later (LeDIIIIB 6.5) that (3.2~) and (3.30) hold tor all

3.2 Methodl tor Obtain1ng Other Br~.

Another upper bound tor dc(A) v1ll be obta1ned in Chapter 5

(!beorea 5.24) in connect1on with a -x11m.t1l problem wh1ch 1s cl.Q8e17

nlated to C-'lII1nial .tr1ces.

We sball nov delcribed lome problelllS whose .olut10Dl, U the)' were

beND, vould Slft rile to upper bounda for dc(A).

r.t A E "'. Por eech natural number k > 1 we define the tollow-"Cn -

1Ds 8Ub8ets of ~n:

~k{A) • hoI +k Zo(A + tA*)Q; t E £, It I • 1, lex E £

(a • 0, 1, ..... k» ,

k *0
~k{AJU • (zoI + k Zo(A + tA ) ; Zo E £ (0. 0,1, ..... k»



where in (3.35) we require t E Q and It I = 1. From Theorems 1.67

and 1.69 we obtain

Also, obviously,

(k 2: 2) •

From the Cayley-Hamilton Theorem one may deduce

where A E "l71. ,
n

k> n •-
3.40 Problem. Let A E "'nt. Findn

(1 ~ k ~ n - 1)

and find all IIIltrices in ..;ck(A) for which the minimum in (3.41) is

assumed.

A simpler problem is the following

3.~ Problem. Let A E ~n and let t be a fixed complex number

satisfying It I • 1. Find

(1 ~ k S n - 1)
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am t1Dd all _t,rlce. in ~(A;t) tor which the minll11W1l in (3.43) is

...WII84.

__ virtue of (3.36) and (3.37) a solution to either of the above

ltrOb1nl would y1eld an upper bound tor dE(A).

8eMrk. The author believe. that the set W:(A) defined in Definition

3.8 provide. • complete solution to Proble'!l 3.40 for k· 1. No attempt

'to prove that .'Iertion vUl be Jade here.



NECESSARY CONDITIONS FOR €-MlNIMAL MATRICES

4.1 Primary Results.

In this section we shall derive a number of conditions which 8

matrix No IIll.lst satisfy if it is e-minimal. One method which we employ

involves the notion of a differentiable curve N{t) in '1. If .0 i8

\I-minimal for A then, by elementary calculus, we know that

(4.l) d~ ~(A - N{t»1 • 0 or it ~2(A - N(t»1 • 0
t~ t~

must hold for every differentiable curve N(t) such that .(o). No,

provided the derivatives indicated in (4.1) exi8t in an interval containing

t ~ 0 in its interior. ibis brings up the (poes1bly difficult) question

of how to differentiate an arbitrary (unitarily invariant) norm or 801M!

other function whose minima coincide with those of ~(A - N(t» (.uch

as ..}{A - N{t»). In the ease where }I i8 the Euclidean norm, the

derivatives of all orders can easily be computed. Indeed, trom (1.22),

we have

~ (~(A - B{t» =£.t tr[(A - B(t»· (A - B(t»]

(4.2)

d·· · *• dt tr[A A + R (~)B{t) - AR(t) - • (t)A]

U8ing (1.20) and (1.116), we have

"
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In the proot ot the next theorem we shall need the tollow1ns three

element&r7 le_s.

*4.4 Lellllllll. Let B(t). U (t) DoU(t} where Do 1s any tixed element ot

J9n aDd U(t) 18 ~ d1tterentiable curve in 'Un' Then

(4.5)

~. Thie tollowl 11D111ediately trom (1.22) and the unitary

lnftl"1aDce of c.

4.6 Le_. (von .~Ullann [19], p. 290) Let A € "'D' Then tr(AH). 0

tor all B €"'1'1n it an4 only it It.. o.

4.7 x.e-.. Let A· (a1,,) € "'D' Then Ie tr(A A) • 0 tor all

A € ISn 11 aDd onl7 1t

(1 • 1,2, ••• , n) •

1!:22!. Lett1D& A· d1aa(~~, ••• , an)' the lutt1clency ot (4.8)

18 obYi0U8 trGla

... tIw ~."1:;r". ..t A• d1q(Bll'~,I ••• , aDD>' obta1nlDl

.. tr(M) • I 1&1112 • 0 which :l.mpliel (4.8).
11111.



4.10 Theorem. r.et A € '7?7 and define.. for all X € i1l.. the operator

LA(X) by

(4.11) * * * *LA(X) =XA - A X + X A - AX

It No· U: Do Uo' where Uo € II r...nd Do € ~.. 1s E-m1n1mal for

A then

(4.12)

and

(4.13)

where the function dg is defined by (1.24).

~. We first utilize different1able curves ot the torm

*R(t) =U (t) Do U(t).. where U(t) is given by (1.60) and H i8 any

matrix in IV. For every H E 1-1 we have N(0) = No and

(4.14)

(4.15)

dUet) = lU H itH dU(t) , • iU H
dt 0 e , dt taO 0

*dNCt} =dU (t) D U(t) + U*(t) D dUCt)
dt dt 0 0 dt ..

dNdt(t) I • i(N H - HR) •
t-o 0 0

UBing (4.3), Le_ 4.4.. (1.!t8), and (4.15) we obtain



(".16) * * * *= 1 tr(A HI • A B B + HR A - E SA)o 0 0 0

where, in the lut step, we uaed (1.19) tvice. Aceo~Jin8 to (4.1) the lalt

expre.l1aa in (4.16) mat vanish tor all B £ ?I. Theretore, by Le_

".6, we obta1D

1••• , (4.12) bol4••

*lext let R(t). Uo D(t)Uo where net) 1. A differentiable curve

in ~ aatlltJ1nC »(0). Do. In uains (4.1) vith th1B typ8 ot curve

.(t) we are concerne4 onl.7 with the derivative at D(t) (evaluated at

t • 0) and DOt D(t) it.elf. B7 lAt_ 1.61 we obtain cOlllplete seneralit;r

@(t)'1 • A
dt t-o

1Ibeft A denote. an arbitraJ7 4iaconal .tr1x. we define ~ 'b7

•
~ • Vo A Vo and note tbat



~us, by' (1.44),

(4.20)

and, using (4.3), (4.19), and (4.20), we obtain

* * ** * *=tr(A D + D A - U A U A - A UoAUo)o 0 0 0

(4.21)
* * * * *=tr{A (D - U AU ) + (A (D - U AU )] }

000 000

* *.. 2 Re tr(A (D - U AU )]
000

It follows from (4.1) that (4.21) must vanish for all A € AO; conse-

*quently, by Le1lllll8. 4.7, all diagonal ele.nts of the matrix D - U AUo 0 0

vanish, i.e., (4.13) holds.

(4.1)

U(t)

s

Remark. It is instructive to investigate the result of applyinc

*in the more general situation in which N(t) • U (t)D(t)U(t), where

is again given by (1.60) and D(t) 1s any differentiable curve in

such that D(0) • Do. The computations can be sUlllllarized •• follows:

(4.22)
*dlf(t} • U*(t) clD(t} U{t) + dU (tl D(t)U(t) + U*(t)D(t) dUCt)

dt dt dt dt '

(4.23) ~~.11t-*o • 51 + i(IoR - ";'0) ,

were -1 i. given by (4.19), and
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(4.24)

Of coune the r1ght .14e ot (4.24) 1IIWIt van11h tor all A € I;J and tor

all B € 11; but, troaa (4.16) and (4.21), we lee that this 1, implied

b7 the ••rate argument. U8ed in the proot ot 1beorem 4.10. 1beretore

DOtb1D8 new can be obtained b7 -ins the IIOre aeneral type ot difterentiable

cum. 1ft '7{.

".25 1'be0l'el!. Let A € 11'/. It .0 11 C-lI1nila1 tor A then

an-rk. 'lbe reader vUl DOte trom the tollow1as proof that both

(".26) aDd (4.27) are conaequence. ot (4.13), .. are abo the tollov1Da

equalltle. which are -.qulvaleat with (4.27)&

I!:!!!!. 81Me tr(Do)· W(lo)' ('.26) 1. aD s.-41ate cODIequeDCe

•of ('.13)· 1flo1t1D& 10 • UoDoUo .. lM!ton, - haw



*By (4.13) all diagonal elements of the matrix UoAUo - Do are zero,

* *cOIlsequently the same holds for the matrix Do(UoAUo - Do) hence

* *tr[Do(UoAUo - Do)} • O. Thus, trom (4.30), we bave

(4.31)

*The last equality implies that tr(Bo(A - .0)] is real; consequent 17

the rest of (4.27) follows from (1.21).

Remark. Let A, B € 7'11n • The set 7I1n can be considered a. a

cOllp1ex Hilbert space with respect to the inner product

*(A,B) ... tr(AB )

Co!lIpadna (4.32) with (4.27) we see that, if .0 is l-m1ni.-l tor A,

(4.33)

that 2JI, .0 II orthogonal to A - .0' Th1s geometrical retol'lll.11ation of

the neeellary condition (4.27) 18 not too surprising. Indeed, if Xo

18 C-lI1nial, then it II18t allO be l-lIl1nlmal among all memberl of the

cme-e1u.Mlonal linear subspace (ot ""1n ) :



which 18 conta1ned in '11 n. .J il precisel,. the "ItraiSht line" through

.0 and. the null atrix. Since no point on J can be closer to A

than .0' we lee that .0 IlUst be the point of intersection ot " and

the line throusb A which i8 perpendicular to J. Thi. giveI

"dietel,. the relult (4.33) so we have proved (4.27) a .econd time w1th­

out ul1ug differentiable curves and calculus. One can allO prove (4.27)

d1J'ectly (Without W1in1 (4.13» by using (4.1) and the particular

difterentiable Curvel It(t). (1 - t).o and N(t). (1 - it)No• 'l'b.e

latter proof1 which will not be worked out in detail here 1 appearl to

be •••ent1alJ.y an anal7tic retormulation of the geometriC considerations

Jut Mntioned.

We sball prove later (TIlearea 5.13) that (4.13) and another condition

CIft Uo constitute nec••I&r7 and sufficient conditions for c-lIl1nbality.

It appeaN that (4.13) 11 a ECh more Itringent condition than (4.12);

howeYer, the latter is much ealier to check than (4.13) and thil tact

enhancel its value. we now describe Ie. consequences ot the necessary

condition (4.12).

4.]It Theore.. Let A E "1'11, .0 E '11t. Then the tollovinS ltate.ntl

an equ1'Ya1ent.

(a) LA(Wo) · 0 J

(e)

(4)

ee)

(.0 - GA)A* + (.0 - ~)*A E "11 tor ~ a,~ E ! J

* +.0(1. - Qlo) + .0(1. - .0) E"'N tor &IV a,fl E !! J

* * *. *
.0(1. - do) + .0(1. • do) • [Jo(A - vIIo) + ·0(1. - "0)]

lao14a tor.." a, v E g prori.4ecl .0 E ?f.



l!22!. Statement (a) is equivalent to (4.17) and we shall show that

(b), (c), (d), and ee) are equivalent to (4.17). First note that (4.17)

can be rewritten in the form

* * * *XA +XA-AN +AD •o 0 0 0

* * *The right side of the last equation obviously equals (D A + X Al whicho 0

shows that (b) is equivalent to (4.11). For any real numbers a and ~

we note that

* * * * * * *RA -CXRX ·AN +~XX +HA-~B -AB +QlfH -0 ,o 00 0 00 0 00 0 00

* * * * * * *H A - aM - A X + ~A A + X A - ~A A - Aft + aAA - 0o 0 0 0

are equivalent to (4.17). Clearly the last two equations are equivalent

respectively to

* * * *N (A • aN) - (A - ~ ) N + X (A - ~ } - (A - ax)H - 0 Io 0 000 0 00

* * * *(X - aA)A - A'(N -~) + (N .~) A - A(N - al) - 0
000 0

which are equivalent respectively to statements (e) and (d). It we

a88UJDe that Bo 1s normal and let z and w 'be any complex numbers,

we obtain trOll (4.17)

* - * * -* * * * *BoA -dB -AN +z.RR +BA-vNN -AN +wNN-O
00 0 00 0 00 0 00

* * * *• (A - zJI) - (A - loB ) B + 11 (A - wi ) - (A - vB)5 • 0o 0 000 0 00

vhlch 18 equivalent to (e). This provel 1'beoreli 4.34.
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In te~ Of the operator (4..U) we ob.erve the tollov1D8 rather

ObviOUll conaequencee of ~eorem 4..34.. It A,.o €.."" then the tollavlns

.tawment. are equivalent to (4.12):

(4.35)

(4..)6)

(4.31)

tor~ QE!,

tor aD¥ a € ! ,

4..38 Lemma. Let .A E ""t and .uppase the operator L,,(X) 1. det1r.ed

b7 (4..11). Then, tor all X, Y € '71, we have

tor all a E:.! ,

* * - * *LA(alt) • a(XA - A x) + a(1 A - AX )

1IbeDce (4.39) holds 11: ex 18 real. The verUication of (4.40) 18 eQ.U&ll7

8111ple aid need not be pven bere.

le!!rk. BquatlOD1 (4.39) and (".IaO) mow that, BJven~ A € »7,

(X ; X E: 7J? and L.(X). OJ

. s. • nal ltDear .ub']laCe of "." 1.e.,. lSMar IIUb~. Of I'll OYer

... tleU I or rM1 .c~.
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'the re.ult (4. 39) cannot 1n general be extended to all complex scalar&;

c .. the fc:·ll0ll1ng .1l1lple example shovs-

at course, 111 certain special situation.,

Suppose A ~ "77. Then from ... ..
but LA(iA)" 21(AA • A A) ~ c.

(4.39) can hold for all a € g.
.alllples ot tn. latter can be deduced from the following easily ver1fied

re8Ultl1 which are val14 tor any A e 7'fn:

(4.~) LA(d) -0 tor all z € C ;-
(4.43) LA(eA) =0 for all a € !

(4.44)
.. k

LA(z(A ) ) = 0 for all z € £ and for k .. 1, 2, ... .,
(4.45) Lt(zA2 + z(AA* + A"A» :10 0 t.:>~ all z € s j

(4.Jt6) *LA(aA + zA ) • 0 for all a € !, z € £ i

(4.47) LA[z(A + ~ A*)2) .. 0 for all z € Q with
z " 0

.

~. The content of the next lemma 18 that every matrix in the let

M(A) defined in Definition 3.8 sat1sfies (for any value of n) all at

the necessary conditionE 81'ren in 'l'heOl-eme 4.10 and 4.25 with the possible

exception of (4.13).

Remark. While condition (u.13) is apparently the most cruc1al test

ot a candidate tor C-minimality of all the necessary conditions derived

10 far, it carmot be checked unless the normal matrix 10 question 11

first diasonalized b.1 a unitary transformation.

53



4. Jt8 LeIlllll8. Let A (7tln and let M(A) be defined •• in Detin1t1oa

3.6. Then the necessary cond1t1oM (4.12), (4.26), and <-.21) are

latt.tied "hen .0 115 replaced 'by 8f11 raatrix in M(A).

~OOI' Let

1 • 1 •'e(A) • 2' (A + (A ) + 2ii tr(A • ~)I •

1'!ae tact tbat ~,(A) l.tlltiel (4.12) tor all t E £ tollowl ll11ec11ately
~

trea (Ii. ItO), (4.~), and (4.'-6). Thls 1l11pl1el that ."'I'1.tr1z 111

II(A) ..tUfte. (4.12). Purtheraore

tr('t(A» • i tr(A) + t Ctr(A*) + i tr(A • ",*) • tr(A)

tor au 'E £ bene. eftl7 _tru ill M(A) _tuu.. (4.26). Let

1 *
& • - tr(A - CA) •Il

..
!MIl i. (lID) U(A- - CA), 't(A). (1/2)(A + f,A* + sI), aDd

•A • ',(A) • (1/2)(A - tA - &1). Con8equent~, tor It I • 1,

*) ) 1 * - - •'e(A (A - ',(A) • 4 (A + tA + &I)(A - ~ - s1)

2
1 * * T.2 • * - - .) - )• t (A A - '" +~. - ItA . - s(A·· + CA) + s(A - tA - &&1



• 2.2•
II tr('t(A)(A .. P~(A»1 • '{ t.r(~ ) .. Ctr{A ) .. & tr(A + fA)

• i tr(A - tA*) .nzz , ,(ttl • 1) •

Udns (4.50) in the last. t.erm of equation (4.51) we see that 'the laat

two teJ'lll8 on the right aide of (4.51) cancel. Using (4.50) again we find,

tor I~ I • 1,

Combining (4.51) and (4.52) we obtain

If tr(A2)
z (1/n)(tr(A»2 then the right side of (4.53) vanishes for

all t € teA). On the other hand, if tr(A2) # (1/n)(tr(A»2 then by

(3.9) the right side of (4.53) becomes

2 1 2 2 1 2
Itr(A ) - n (tr(A» I - Itr(A ) - n (tr(A» I = 0 •
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~ every atrix in M(A) ..ttdle. (~.27) aDd t.b1t prove. I.e.- 4.118..

In the Upt ;)( Lelara. ll.Je8, ~.t 111 MtunJ. to ..k vhet.he1' the _trice.

ill the Nt M(A) can ner be ~-lWal_l. We.hall .naver tbla t\\8.t1Oft

111 tbe ett1rM.t.1ft 1D Bect1cm 6.2 belovo

....:
....2 U.e of Lagrange -.ut i»11e1" in

'1nd1~!81arxCond1t1ons.

.. M va olMerw4 in SecUe>n l.S, the problem of t1nd1n& a ~-Il1n1ml

_trlx can be conl1dered a. a problem at lD1nim1z1ng a real valued tunct10n

of .everal cOlllp1ex variable.. '!'be II1nlmum IllU8t be taken over noraal
...

_trice. only, .0 certain con.tralnt. 011 the variables are inevitable.

!hi. point at new IUge.t. that the _thodof Lagrenp multipliers III1ght

'be \lMtul 1D 4eriV1n8 DeC• .,ary c<mditlolU1 tor a v-ll1nlal _tr1Jc. Since

the variable. and conetralnt. are complex, it tirlt appear. that the

initial computational labor ot derIving such co~itlolU1 would be prohibi­

tive. However, by ua1na conjugate cOlllp1ex coordinates (see e.g.,; (18)

pp. 16-21) and the complex (_trix) dlfteorent1al calculus, the alpbrll1c

.-nlpulations can be ade alllOllt inconsequential. In the next two para­

p"8phe we outline brietly the aathematIcal basis ot the technique we

.hall uae in deriving neeesear" conditions tor ~-m1nimal matrices. !he

equatiena which v111 be derived appear to be very dlttlcult to 801ve in

ceneral, primarily becauae they involve a large numbel" ot auxiliary

unknown variables (Lagrange multipliers). As a consequence the.e

equatioD8 are not of l11111ediate value in t1nd1na (-minimal matriee••

leverthele•• , the equat10D8 thelUelvee and the technique ot derivina
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them teem'interesting. Furthermore as byproductt we obtain alternative

derivations of the primary necessary conditions (4.12), (4.13) and alao

add1tional nece••ary conditione for (-minimal matrices involving theoreti-

cally interesting interpretationa of certain Lagrange multlplie~e.

Let x and y denote a pair of real variables (coOrdinates).

Following Nehari [18] ve define z ~ x + iy and i,. x • 1y to be the

corresponding pair of ct.mjugate cOm,plex variables (coordinates). We

define formally a pair or "partial differential operators" by the

expre8Bl~ns

As shown by Nehari, these operations can be carried out, at least tor a

vide class of functions of x and y (or eq,uivalently of z and z),

b.r treating z and z as independent variables and differentiating by

tbe usual rules of calculus. As a simple illustration of the method,

suppose g(x,y):a r(z,i) is a r'eal valued function for which the

stationary points are desired. The standard methoa. of elementary calculus
o

involves solving the simultaneous pair of eq,uat1ons

~ = 0 ,

whereas in the conjugate variable9 method one merely works vith the

single (complex) equation
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at
-·0
Oi

"'h1eb 18 equ1V6lent to the pa1r of eq\lat1one (".56). It 111 ob'riOWl !LOW

one 'tIJA1 extend th1s procedure to the problem ot Undine .taU0JUU:7 palata

ot real vallied tunct10ns ot 2k real varlablee where k. 2,3, ••••

AD altei'Dllt1ve teebn1qU4t, which is often .ader to .~ in _trix

problems, ~ baled CD the use of d11ferentiab. ..bad _bowed that the

openton (4.54) and (4.55) 'behaft like pnulne partial aerl..tbe. 1D

tbt' aenae tMt the dUfe:rent1al ot • real tunct1an S(X,7}. t(a,i) 1a .,

.. • 4t • ~ d.a + !! eli
G& ai

... .. ... + 1 _ ad 4&. ax • t 47. In elnntu7 calCNlu tile

etdft1eDt toNDlation of (".56) 111 wn. of clifferent1al. 18 tbe 8tate•

..nt tbat de· (~)4x + (?JaI~)ely vant.he. tor all -.lues of the

1D4epencleJrt 41tter-1tnt1&l. dx and ~. 'l'hla doe. not correq0n4

exact1¥ to the atatement tbat (4.58) vant.hea for all ds and 41

cond4ered all 1nde»endent differential.. Por, trora that .tate.nt, ODe

voW.4 obtain both Ot/~. 0 and 0:/"&. 0 which would 11lp17 (4.56)

tvice .inCe Ot/?Jr.. 0 1t and only it "«/01.. O. It 111 .utt1e1ent to

cOIplte the cOlllplex "halt cllfterent1al-



anet .ay that it -.t 1Ian1.h tor dl die In tbe e.,. of functions of

~ tMn two rHl variablu, th1e rule tor deriviJ14:J nece..,.al')'" concUt1onl .

can be general1sed a. tollows.

4.59 Ttleorem. Let. &. (zl'~' ... , *k) denote a 'ACtor vital cc.pla

COIIpOnent. and suppaIe t(z,i). '(&l'~, ••• J Z,k' ~,~, ••• , ~)

1. a real 'I&lued d1tferentlable !'unction ot toe 2k nal variables

10,10 (a • 1, ••• , It) were Za· Xa .+ 1 7a (a • :J.1 ••• , k). Let the

ball dlfterenttal (4.t be defined by
z

(Je..60)

It • bas an extreme value at the point 1
0•

(zi!'), ••. , 4k», then

(4'L(10.'-0) II18t vani.h tor all values of the hlllependent ditferent1aJ.s
I

elii,cl~, ••• , d~.

we refrain from g1vlns a proof of Theorem 4.59.

Let A. (a13) € »r. and B· (n1J) € 7'Jtn• We first consider the

.tra1shtforvard problem of IIl1n111l1zing ~2(. - A) subJect to the conatra1Dt

(4.61) • *BB-IN -0 •

* * .Since the IIIltrix If 11 - RR 18 hendtian, the matrix equation (4.61)

amounts to: (1) at !lOst (1/2)n(n - 1) 1ndependent complex constra1l~t8

on the n
1J

(these correspond to all elements of (4.61) which lie on

one s1de of the eliagonal), and (2) at !DOst n indeJ,lendent real constraints

(theee correspond to the n (real) d1agonal elements of (4.61». Thus
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.,

(4.61) 1IIVolvea at IIO'~ n2. real c:~u..:11'1t. on tbe ,.2 ca.ple)t

tuMttt1e. 01J. Cle':J.J'17 tIlen, ". need at 80IIt 0
2

.reel~

aalt1p11el'e. llewrthel...., it 1. eonftftleDt 111 4e1'1v1na the nece.1U7

c0a41ttone to 1raUOduce at 10be hec1m1.nl 2112 Nal Le8l"8ft&lt .w.tlp11en,

aM tor each of tu real cODItra1nu

• *
8IUW • - • >1Jl • 0 ,

' ..

viae,. 1 S 1. S 0, 1 S J S n. !be introduction ot lupertluoua Lq:ranp

lUlt1pllen caua•• no 4:1tt1Cult)' .ina. the .upertluoul one8 either drop

CNt or c_1ne autoatleal17 with othen to rona the .-xl_l mabel' ~

1nlIepea4ent IIIltip11era. we let ~1J' 1&1.1 be Z'MJ. LaCl"llftP amltlpl1er.

wtuch cone.pond (1ft that order) to tr.e c0D8tra1nt. (4.62). We DOW detiDe

(1 S 1, .1 S Il)

.... aa11 t.be 'r1J c_ex L!F'!!l3" .u.t1»11era. Pol" later u.e we alAo

4et1Dl 'tile _trs.x

In the clasdcal .., of applJ1.ns the _thod of Lasran&e IIU1.t1pl1en

one would coua14er thetuaet10n
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tt.nd 41tterent1ate It part1all'y vitb re8p1rCt to the real variable.

Ie(~), 1&(Arc) (l.s: r, e S u). Aa va, 1U8P8ted above, tblll proceclUft

18 unnec•••arlly c0lll»l1::ate4 and em be great1¥ .:t.pllUed and ab.,rtenecl

IIot. that

80 that the sum on the right 81ele ot (4.65) can be written in th~ tOl'lll

(4.66) 1 * ..... * **• 2 (~r [(. N - Im )T ] + tr(II • - D )1' ])

1 * * *• 2 tree. R - • )(T + l' )]

Vbere If 1s given by (4.64). In v1ew ot the t01"lll of the constraint

equat10Jl8 (4.61) the tactor (1/2) in (4.66) can be OIII1tted upon BUb­

stitution ot (4.66) into (4.65). Thus, writing ~2(11 - A) •

*tr[(l1 - A) (R - A)11 we consider the problem ot m1Jl1mizins: the tunet1ClD

•* *. * *'(N,N ) • trCC. - A )(19 - A)l + trIeR N - NR )H)

were H is 81wn by

(4.68)



are concerned, it 18 the _trix B which baa • det1nite IIIIH.ning (i.e.,

which bas to be 4l!termine4 ua1nS (4.61» and not T. Clearly the~

multipliers ~11 (i. 1, ••• ,n) which correspond to nonexistent

constraints 1n (4.61) ban droppecl out and the other. have cQDb1ned to

form the n2 -aetual Lasranae lIIU1t1pller.-:

2A.
U

~ij + A.j 1 , ~1j - ~Jl

Differentiating (4.67) we obtain

(i • 1, ••• I n) I

(1 5 1 < J S n) •

* * *(dt) * • tr[dN (D - A) + (dN N - NdN )B]
It

*• t~{(N - A + KH - HR)dB ]

IV Theorem 4.59 • bal a lI1n1mum at the point (matrix) It only if

*(dt) * vaui.hee tor aU ..trices cUI. It 18 easy to show from von
~ *

.et1h'\ltU1' n t.e1lllllll 4.6 tbat (4.69) vanisheJ tor all d1'I € 71ln · if and

oa4r it

~
It we rewr1te the last equation and the con8traint (4.61) .and note that

(4.68) 1111p11es H E rI I we obtain the :following. set ot t.hreen .

,t-.ut&neous 1Il&trix equations tor the unknown _trice, Ii and B.



(4.71) *u-u ,

* *N N - 1m z 0

4.13 Theorem. Let A € 7Jtn. If No is i-minimal for A then there

exists a matrix Ho € 7'ln such that (4.10), (4.11), and (4.72) are

satisfied when N and H are replaced respectively by Nand H.o 0

~. If No is E-minimal it minimizes the functional ~2(N - A)

and satisfies (4.72). Consequently No is a stationary point of

E2(N - A) which implies the existence of complex Lagrange multipliers

Ti j such that No is also a stationary point of (4.67). B,y the above

derivation of equation (4.70) there exists a hermitian matrix Ho such

that N + N H - H N =A. This pr~ve~ Theorem 4.73.
00000

Remark. It should be noted that the hermitian matrix H of Lagrange

multipliers need not necessarily be of the form of the most general

hermitian matrix. Fo:C' example in the case n = 2 the diagonal elements of

the left side of (4.72) differ only in sign (cf. Lemma 6.1 below) 50 one

additional real Lagrange multiplier can be eliminated, allowing H to

assume the form

where Al, A, and ~ are real. It should also be noted, however, that

U III.Y be assumed to be a general hermitian matrix. There is no harm

in repeating constraints in the method of Lagrange multipliers.



SiDe. at l.eut one Iol.ution ot the neee.s&l7 eondition delcribe4

in Theorem 4.73 11 c-m1n1mal, it i. natural to investigate the problem

of 101v1ng the IYltem (4.70) - (4.72). In theory one could carr,y out

the tollowing procedure. AfI8um1ng that R is hermitian, solve (4.70)

tor • .. a tunctlon of A and R, i.e., find

(4.74) B • r(A,R)

!hen lubstitute (4.74) into (4.72) and solve the latter equation tor the

hermitian matrix R. Once B vas determined it "ould be eliminated

by substitution into (4.74) which "auld yield a normal matrix.

Actually, it 11 possible to solve the system (4.70) - (4.72)

tormally, although not explicitly, by a method "hich runs somewhat along

the lines ot the procedure outlined in the previous paragraph. Since the

_trix B of Lagrange multipliers is heI'lll1tian it can be d1agonalized

by a unitary tran.tormation:

*UHU • D (u E -U , D E .(Q)
n n

vbere D 11 real. By means at (4.75) we replace the unknown hermitian

.trix B by two other _tricel, namely an unknown unitary _trix U

and an unknown diagonal matrix D. Row let

(4.76)

Where U 11 the same matrix "hich occurs in (4.15). By prellU1t1plj catlon

*b)' U and poltlllUltipllcation by U we lee that the equatlonl (4.70) and

(4.72) are equivalent respectively to
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(4.77)

and

(4.78)

M+MD-II(aB

* *MM-MM =0.

Note that N 1s normal if and only if M is normal.

4'19 Definition. Let the matrix (4.75) be given by D· diag(dl,d2, ••• ,dn),

let 6 i j = dj - di (1 S i, j S n), and let ~ = (~ij; 1 ~ 1 < j ~ n).

Then M(A,U,6) is defined to be the matrix

(4.80) M(A,U,~}

where B = (bi j) is defined by (4.76).

Using the notation of (4.76) and the preceding definition we see

that (4.77) (which can be rewritten in the ferm M(I + D) - DM = B)

amounts to a set of scalar equations:

or

(1 ~ ill j ~ n)

If we choose tIle di's in such a way that 1 + dj - d1 = 1 + ~ij I 0

for all pairs (i,j) then we can solve (4.81) for the mi j• From (4.80)

we obtain M = M( A,U,6) , a known function of A, U, and ~. The set

~ is determined by D so the matrix (4.90) is actually a fUI\ction of

A, U, and D. Thus, if we choose U and D so as to make the II\!ltrix

(4.80) normal then
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(4.88)

and

2 * ·2*
€ (tJoAUo - TU 6 {A)} .. Min e (UAU - ToU A{A»

0' 0 ,"

where the minimum is taken over all U, D such that TU,6{A) € 71n

and where A and ~o are determined res~ct1vely by D and Do at" in

Definition 4.79.

In order to examine this problem we note that tbe transformt1on

(4.86) is tbe cOtllposition TA • T * where the transformation on the
U

right is to be carried out first, where Tu 1s defined by (1.75), and

wbere

(4.90)

Thus TU A(A) • T~(T *(A». If I is not norMl, then ne1ther 18
, U

B .. T *(A); bence the second transformation TA p18ye an in41spensable
U

role in achieving the normality of TU,A{A). On the other hand, it can

be shown by examples that TI,6(A);' n n can hold tor all A'. which

arise from real diagonal matrices D. Thus we have gained Bome insight

into the meaning and role of the matrix H of Lagrange multlplierll:

The possibility that

(4.91)
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tor'..!.2!! 6 depends on the ehetee 01' Vi the actual realization at

(4.91) depends on the choice 01' 6 and not on U. If we translate back

into the coordinate IYltem at the let ot equations (4.10) - (4.72), we

can sUlllllU"1ze those observations in the tollowing manner.

4.92 Theorem. Let A E: "1?1n' A t. '1'ln and let H E: ;Yn. Then the

pollibUity that (4.70) hal a normal solution N (tor.OIDI choice 01'

the e16envalue. 01' H) depends on the eigenvectorl of H. The choice

or the e1genva.1.ues (and not the eigenvectors) of H determines ..rnether

or not (4.10) has a normal solut10n N.

J'root. We need only observe trom (4.75) that the eigenvectors 01'

*I are the colUDllUl 01' U and that 6 is determined by the eigenvalue.

/'-

InItead 01' Problem 4.81 we may consider the simpler

4.93 Problem. Let A € "ln' A t '1'?n and define

J'1Dd. V € J(A). Then, for thi. U, tind. Do € ~n 8uch that

Tu 6 (A) € "11 n
, 0

where the lJlinimum. 18 taken over all D such that Tu ,6(1.) € 7?n end

where 6 and Ao are deterDl1ned respectively by D and Do 8S in

Definition 4.79.



~e explicit determination of solu~1ons to either Problem 4.87 or

Problem 4.93 appears to be difficult to carry out for n ~ 3. The author

has found solutions to Problem 4.93, for all A € "W/2 and, on the basis

of the results in Chapter 6 be1ov, these have all been ~-minima1. No

further investigation of Problems 4.87 or 4.93 will be made here except

for the following simple observation.

4.94 Lemma. Let U € Un and let tJ. = (tJ.i j ) ( 1 :s i, j ~ n) where

~j f - 1 for all 1 and j. Then the transformation TU,~(A) defined

by (4.86) Is a linear ~ransformation on ~n.

Proof. The transformations TU of (1.75) and T~ of (4.90) are

both obviously linear. Thus TU,~' being a composition of linear trans­

formations, is linear too.

Note. We shall find another application for equation (4.70) in

Chapter 7 be1ov.

We consider next another approach to the use of Lagrange multipliers.

*By Theorem 1. 57 (c) N = U DU runs through n n as U and D run

independently through 'Un and ~n respectively. Thus we can find

an ~-m1nlmal matrix for A by minimizing

2 * * * * *~ (U DO - A) = tr[(U D U - A )(U DO - A)l

subject to the constraints

*U U • I

D E ~n

,



A8 in the case of the constraint (4.61) we introduce com,plex l.agranse

*multipliers t 1j correspondtns to the (l,J) elements (U U - I)1J of

tbe constraint equation (4.96) and write T = (ti J ) as before. If we

merely keep in mind that D is diagonal, we need not introduce any

Lagrange lIu1tlpl1ers for the constraint (4.97). We have

* * * *2 Re tr(U UT ) =~r(U U(T + T )]

Here, a8 In the previous constrained minimi7.atlon problem, it 1s not T

*which has to be determined but the hermjt1an IllBtrlx H = If + T. Therefore

the function we wish to minimize in the method of Lagrange multipl1ers

1.

* * ** * * *'(U,U ,D,D ) • trl(U D U - A )(U DU - A) + U UKI

Ditterent1attns this we obtain

** * ** * *(d.) * *. tr[dU D U(U DU - A) + (U D U - A)aU DO + dU UK]
U ,D

* * *+ tr[U dD U(U DO - A)l

* * * * * *• tr([D U(U DU - A) + DU(U D U - A ) + UH]dU )

* * *+ tr[dD C(U DO - A)U ]

B.r Theore. 4.59 • bas a minimum at the point U*nu only if (dt) * *
U ,D

* * ~ *vanishes tor all dU € 7?ln and dD € ttY n" Setttns dU • 0..

.....rying dD* in lin.. and us1n8 Le_ 4.7 we obtain (4.99) below.

10



* *Setting dD = 0 and varying dU we obtain (4.100) below. If we

write down all the relevant constraints with these equations we obtain

the following complete set of five simultaneous matrix equations for the

unknown matrices U, D, and H.

* *dg[U(U DU - A}U ] o ,

(4.100)

(4.101)

* * * *D U(U DU - A) + DU(U IlJ - A) + UH = 0

*U U :: I

(4.1~) *H :: H ,

(4.103) offdg(D) = 0

4.104 Theorem. Let A E '71ln •

Do E ~n is ~-minimal for A,

*If No:: U D U
000

then there exists

where Uo E 'U nand

a III<I.trix H E 711.o n

such that (4.99) through (4.103) are satisfied when U,D, anc Hare

replaced by UO' Dol and "0 respectively.

Proof. The proof of Theorem 4.104 follows along the same lines as

the proof of Theorem 4.73.

Remark. We can use Theorem 4.104 to derive again the necessary

conditions (4.12) and (4.13). *Let N = U D U be i-minimal as ino 000

Theorem 4.104 and let H be a hermitian matrix of Lagrange multiplierso

which corresponds to it. Then using the conclusion of Theorem 4.104 we

*can immediately combine (4.99) and (4.101) to obtain dg(D - U AU ) =0
000

*which is the same as (4.13). Premultlplying (4.100) by Uo and again



* * * *NoNO+NN +8 =NA+NAo 0 0 0

The last equation shows clearly that * *NA+NAo 0
is hermitian so, b,y

Theorem 4.34, we have again derived the necessary condition (4.12).

Still another approach to the use of Lagrange multipliers is

.~sted by the representation of normal matrices given by Theorem

1.57 (a). Here we set

( L. .10, ) N = H + 1K

By Theorem L 57, (4.105) runs through "'?? as H and K run through

the set of all pairs of commuting hermitian matrices. ThUrl we try to

minimize £2(H + 1K - A) subject to the constraints

( 4.1(6) *a-H *K = K , and HK=KR

We introduce lII8trices Z, n, and T of complex Lagrange multipliers

which correspond respectively to the matrix constraints (4.106). Without

golug through the computational deteils we simply give here the results

of the differentiations, which again turn out to be matrix equations:

(4.107) * * *H + 1K - A + TK - K T + (Z - Z ) =0 ,

(4.108) * * *-i(H + 11 - A) + H T - TH + (n - n ) • 0

Here, by analogy with what happened in the previous derivations, it i8

not the _trices Z and n which have to be determined but the
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* *skew-hermitian matrices S = Z - Z and p. n - n instead. Note,

hovever, that no combinations of elements of T occurs so that ever'/

element of T is an "actual Lagrange multipller". This vas to be

expected, since the equation HK = KH invol~es no duplications.

* *If ve rewrite (4.107) and (4.108)J replacing Z - Z and n - n
by Sand P respectively, and vrite dovn all the relevant auxiliary

equations ve obtain the folloving set of simultaneous matrix equations

for the five unknovn matrices H, K, T, S, and P.

(4.109)

(4.110)

* *H + iK - A + TK - K T + S = 0 ,

* *-iH + K + 1A + H T - TH + P • 0

(4.111)

(4.112)

*H • H

*K=K

,

,

( 4.114)

(4.115 )

*S + S = 0

*P + P = 0

,

As in the previous constrained minimization problems (cr. Theorems 4.73

and 4.104) ve can prove

4.116 Theorem. Let A € "'n· If No· Ho + 1J{o where Ho' Ko € '"Nn

and HoKo = KoHo is E-m1nima:. for A then there exist matrices To, So'

Po € 7?(n such that (4.109) through (4.115) are satisfied when

H, K, T, S, and P are replaced '..Jy Ho' ICo' To, So' and Po respectively.
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CHAPl'ER 5

CHARACTERIZATION OF E-M:i:NIMAL MATRICES

We begin the present chapter by proving the following simple

5.1 Lemma. Let \I denote any norm on, /?"t. We have
\

*d~~A) = inf \I(A - U DU)
U € U.
D E JS

*inf ( in! v(A - U DU»
U €'"t< D E~

Proot. Let--

*= in! ( in! v(A - U nu»
DEtJ UEU

d' - int ( in~(A'. U"W» ,
U E-r.<' D € 1\)1

•( ) ( *.a U = in! \I A - U DU)
'-JJ E iY

We want to show that d' =d\l(A). Clearly d'.:s Cl(U) and

d(A) < o(U)
\I. -_

hole! tor aU U E"U.. Taking the infimum over -u. on the right side

ot (5.3) we obtain d (A) < d'. Suppose d (A) < d'j then there 1s •
\I - \I

pair o~ matrices Uo E L(, Do E II such that ,\I(A - U: DoUo ) < d'.

But this implies Cl(Uo) < ~' •. which eontradicts ~he inequality

4' ::s;a(uo) . 'rhus d\l(A)·. d' "hic~. proves the second equality in (5.2).

A .1m1lar argument w111 establish the laat equality in (5.2).
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By very much the same arguments used in proving Theorem 1. 78 I It can

be shown that any of the infima over tJ in (5.2) are asaumed for some

:&.€ ~. Furthermore, since 'II is continuous and U is compact in the

norm topology of 711, all infima over U are likewir,e assumed. Thus,

in (5.2), we can replace "mr" by "Min" in every instance. We shall use

this fact in proving

5.4 Theorem. Let A E "TJ? and let E denote the Euclidean norm (1.16)

on '711- Then

~. Since ~ is unitarily invariant we have

From Definition 1.23 and (1.16) we can easily deduce the feHewing

equalities which hold for any ME 7Jt.:

where, in (5.7), the minimum is assumed if and only if D· dg(M). Thus,

for every U E U, we have

2 * 2 * *M1n~E (UAU - D) = £ (UAU - dg(UAU »
D E.Q
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whence.. using (5.2),

Boting that £2(UAU*) = £2(A) and combining (5.8) and (5.10) we obtain

•

which proves (5.5).

5.U Maximum Problem. Let A E 71f.n. Find a Uo € Un such that

,. *
£<: (dg(TJAU» •

5.13 Theorem (Characterization Theorem). ~t A E ~n and let

Ito • U: DoUo where Uo E '-<n and Do E IOn' Then No is €-min1mal

tor A if and only if Uo satisfies (5.12) (i.e., Uo solves the

Maximum Problem 5.11) and

Proof. Let U be any unitary 1II8trix which aatuties (5.12) and
- 0

let Do be given by (5.14). Then.. from (5.5), we have



so that No is ~-minimal for A. This proves the sufficiency of the

conditions (5.12) and (5.14). For their necessity we first note from

Theorem 4.10 that the necessity of (5.14) has already been established.

Thus, if No is ~-minimal for A, we have

Comparing the last equation with (5.5) we see that U satisfies (5.12).o

This completes the proof of Theorem 5.13.

An immediate corollary of Theorem 5.13 is the following result which

indicates the imrortance of the Maximum Problem 5.11 in so far as

£-minimal matrices are concerned.
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5.15 Thecrem. Let Uo be a solution of the Maximum Problem s.ai , Then

(5.16)

18 ~-m1nimal for A.

Let u and v denote complex column n-vectors. The (Euclidean)

inner product ot u and v 1s detined by

*(u,v) .. v u

*where v denotes the conjugate transpose of v , We call u and v

orthogonal if (u,v). O. A set of ve~tors ~,~, ... , ~ (k.:s n)

i8 called orthonormal if

1 , i • J

5.11 . Maximum Problem. Let A € ~n. Find an orthonormal set ot

cclumn n-vector8 ... , un such that

where the maximum 1s taken over all orthonormal sets vl,v2' ••• , vn

of column n-vectorl.

Suppose U f:""n and let VI' ••• , vn denote the columns ot the

*_tr1x U. Clearly U 18 unitary it and only 1t vl' ••• , vn 1,

*orthonormal. Since v Au • (Au,v) tor all vectors u,v, we lee troll



(1.24) that

whence, by (1.16),

From (5.12), (5.18), and (5.19) one can immediately deduce

2..:£Q... Theor~m. The Maximum Problems 5.11 and 5.17 are equivalent in the

sense that a solution of one yields immediately a solution of the other.

*From the decomposition No = Uo DoUc one finds that the columns

*of Uo are eigenvectors of No. Therefore, by Theorem 5.13, we have

*5·21 Theorem. Let A C 'i11.n and let No = Uo DoUo where Uo € 1A. n

and Do E 1& n ' Then No is €-minimal for A if and only if it has

an orthonormal set of eigenvectors which solves the Maximum Problem 5.17.

The next result exhi»lts the relationship between the maximum

(S.12) and distance formulas of the t~~e (2.32).

5.22 Lemma. Let A E 71l, A f. 71 and let p., (I.) be defined byn n ~,n

Definition 2.13 in the case }I = €. Then

Proof. Since E has property S (see Definition 2.1), (2.32) holds

far ~. €. That equation and (5.S) yield immediately (5.23).

Remark. Theorem 5.4 opens up B new avenue for obtaining estimates

of d~(A). Thus, a lower bounc for the maximum (5.12) will yield an
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upper bound for d€(A) and an upper bound for (5.12) will furnish a

lower bound for deCAl. The next theorem is a result ot this type.

5.24 Theorem. Let A E 71ln and let A = WH where H is positive

semidefinite hermitian and W E Un· Furthermore let 11,12, ••• , Yn

be an orthonormal set of eigenvectors of H, 1.e., By1· a1Yi

(1 S 1 ~ n) where at are the singular values of A and (Yi'YJ ) · &1.1

(1 S i, J S n). Then

!!:22!. We have

for 1. 1,2, ••• , n •

Since Y1' ••• , Yn 11 an orthonormal set, we see from (5.18) and (5.19)

that

1s • lover bound for the maxllDU11l (5.12). As vas observed in section 1.1,

-(A) coincides with (l.lS) for p" 2; consequently

'l'berefore, frOll (5.5), (5.26), and (5.27) we obtain
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which is the same as (5.25).

The next result provides a slight simplification of' the problem of'

finding a solution to the Maximum Problem 5.11.

5.28 Lemma. Let 71. ~ denote the set of all unitary matrices of order

n which have nonnegative lUagonal elements. Then, for any A E: '7?1 ,
n

we have

Proof. Let U be any unitary matrix of order n and let

'itk. = r k exp(i9k) be its k-th diagonal element where r k ~ 0 and 8
k

is real. ~ factoring out exp(i9k) from the k-th row of U

+(k = 1,2, ••• I n) we can vrite U = AV where V € 'U n and

A = diag(exp(i91), ••• ,exp(iBn» is a diagonal unitary matrix, i.e.,

an element of ~n n u.n. Noting that dg(A."fA*) = dg(M) holds for

all M € "1n and for all A € A9n n Un ~e find that

2 * 2 * * 2 *E (dg(UAU » = ~ (dg(AVAV A » = ~ (dg(VAV »

The last equation shews that, in computing the maximum (5.1.2), it

suffices to consider only unitary matrices in -u.:. The proof' of' Le1lllll8

5.28 1s now complete.
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CHAPl'ER 6

E: -MINIMAL MATRICES OF CBDER 2

6.1 Preliminaries Concerning 2 by 2 Matrices.

6.1 Lemma. Let B € "12 be given by

Then B is normal if and only if

(6.4)

l£2g!. We have

(

I 12 + 1 12* ~ ~
lIN • - -

~~ + ~n4

* ( \~ 1
2

+ \n3 \2
BB-

- -
~~ + n304

• *whence D - I I • 0 if and only it (6.3) and (6.4) bold.



6.5 Lemma. Let A E »12 , Let neAl and M(A) be defined as in

Definitions 1.17 and 3.8 respectively. Then

Proof. Let the eigenvalues of A be denoted by Al ,A
2•

Then the

222
eigenvalues of A are "'1 and "'2 so we have tr(A) .. "'1 + "'2 and

222
tr(A ) = "'1 + A2• Thus

or

(6.7)

Furthermore

or

(6.8) 2) 1 2 1 2
tr(A - 2' (tr(A» =2 ("'1 - A2) •

From the last equation we obtain



2 1 21 1 12Itr{A ) - 2 (tr(A» = 2 1~1 - ~2

or

Combining (6.7) ancl (6.9) we find that

(6.10)

The equation (6.6) now follows immediately from (6.10) and Theorem 3.11.

The next lelllllB shovs hov the simplification provided by Lellllll&

5.26 works out in the case n· 2.

6.11 Lel!llll8. Let A E '71?2' Let I! € £ and let

Then W{~) € -et.2 for all I! € £ and

(6.13)

~. It was shown in (3) (see also (17] for another parametrization

ot 2 by 2 unitary matrices) that every U € 'U2 CQn be obtained

troll the tormula
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(6.14)
_eif> sin 6 )

ifle cos 9

where 9 € ! and where a, ~, 7, 5 are real numbers satisfying

(6.15) a - ~ - 7 + &- 0 (mod 2:11:)

By factoring out exp(:1a) and exp(i&) respectively from the first

and second rows of (6.14) and using (6.15) we see that (6.14) can be

written in the form

(6.16)
-e-i(7-~) sin 9) =

cos 9

where A = diag(exp(ia), exp(i5» and where W(~) is given by (6.12)

with ~ = exp[i(r-8)]tan e. Since the real quantities e, a, ~, 7, 5

in (6.14) are arbitrary except for the constraint (6.15) which vas used

in obtaining (and which is automatically satisfied by) the product

~(~) in (6.16), one sees easily that (6.16) furnishes a parametrization

of all U €"'U2 in the following manner. If we consider 9, a, 5,

and ~ = 7 - 5 as independent real variables, or, alternatively, if we

consider a and 5 as independent real variables and ~. exp(i,)tan 6

as an independent complex variable, then, as ~ runs through £. and

as a, ~ run through !!, U = AW(~) runs through ~2' As vas shown

in the proof of Lemma 5.28, the factor A in (6.16) can be disregarded
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in cOm.Putins (2(dg(UAU~». Therefore only the complex parameter '"

matters and we have (6.13).

6.17 Lem;na. Let A £'71(2' A t 722 • Then A is unitarily similar

either to ~ matrix of the form

(6.18)

or to • matrix of the form

(6.19)

~. By Schur's theorem [22] (or see [161 p. 307) every A

11 unitarily similar to a triangular tll8tr1x:

2

(6.20)
'\-> (b b)VAV* = B = ,1 2.o b,.

ancl. 11' A ~ 7?2' we have b2 ~ O. If b1 = b4, i.e., it the t.vo

e1&envalue8 at A are equal, then (6.20) is already of the form (6.18).

It re_in_ only to show that, 11' b1'; b4, A 18 unitarily similar to

• _tr1Jt ot the torm (6.19). '1'0 prove the latter 8tatemenli we consider

(6.21)

vbere VelA) 18 given by (6.12) and where lA £ £. We have

86



The last equation vill be~atisfied if

(6.22) and

(6.23)

Thus, if ~ is chosen to satisty (6.22) and (6.23), al = a4 holds in

(6.21). Furthermore, for this choice of ~1 neither a2 nor a3
in (6.21) can vanish since otherwise the eigenvalues of A, namely b

i

and b4' would have to be equal. This completes the proof of Lemma

6.17.

6.2 Determination of all 2 by 2 €-Minimal Mairicee.--
6.24 Theorem. Let A E 7f2 and let M(A) be defined as in Definition

3.8. Then the set M(A) represents the tota11t~ of all €-minimal

matrices for A•

.f!:22!. Suppose first that A E '712 • Then by Lemma 2.4

i{A) =£2(O(A» whence Lemma 6.5 implies

2
£ (A - X) ,.. 0 for all X € M(A) where A €"112



The meaning of the last equation is that every matrix in the set (3.10)

is equal to A:

(6.26) MeA) = {A}

that is, if A E '12 , then the set (3.10) contains exactly one matrix,

namely A it~e1f! This proves Theorem 6.?4 in the case A € /12'

We assume henceforth in this proof that A t ~2' The principal

tools we shall employ in the case A t"712 are Theorem 5.13 and Lemma

6.ll. In order to keep the computations manageable we shall employ a

change of coordinates defined by a unitary matrix which transforms A

into one of the torms (6.18) or (6.19). This procedure is Justified

in the next paragraph. The general outline of our proof is as follows.

We shall first show that every matrix in the set MeA} is E-minimal.

Following this we show that there are no other E-minima1 matrices.

From (3.9) and the invn1ance of the trace under unitary similarity

we have

(6.27) *~(A) • t(UAU ) (A € "tn' U € Un) •

In like manner we obtain the identity

(6.28) * *P~(UAU ) • UPt(A)U (A € ~n' U € "Un)

tor all t € £ where Pt is defined by (4.49). In view of (3.10),

(6.28), and Theorem 2.27 it will suffice to prove the conclu.sion of

!heorem 6.24 for lIome unitary transform of A. As mentioned in the
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preceding paragraph we shall use the forms (6.18) and (6.19) for this

purpose.

We first observe from (6.8) that the case in which A is unitarily

similar to (6.18) corresponds to the ambiguous case of (3.9). Similarly

the case in which A is similar to (6.19) corre"lponds to the non-

ambiguous case of (3.9) where ~(A) contains exactly one number. As

stated in the note following Definition 3.8, we use the notation Ne(A1)

to denote one of the matrices in M(~) and N(~) to denote the

(single) matrix in M(~). Straightforward calculations based on

Defintion 3.8 yield

(9 € l!) ,

(6.30)

In order to prove that N9(-\) is E-m.inima1 for 0\ for all 9 € R

and that N(~) is ~-minima1 for ~, we shall diagona1ize (6.29) and

(6.30) by unitary matrices of the form. (6.12) and verify the sufficient

conditions of Theorem. 5.13.

Let

and let W(~) be given by (6.12); then



In order to diagonalize Ne(Al ) and N(~) it will suffice, by Theorem

:.59, to tr1angu!arize them. ThUG, from (6.29) and (6.31) we see that

*Similarly, li(~)N(~)W (~) is diagonal if and only if

For notational simplicity we shall usually omit t~e subscr:lpt (} from

~(} and write only tll. However, it should always be understood that

tll depends on the parameter 8. Clearly, each of equations (6.32) and

(6.33) has two solutions and we are at liberty to choose either solution

in dlagona1izing N9(~) or N(~). In what follows it will not matter

which solution is chosen, so we use the symbols ~l and ~2 to denote

!Sl solutions of (6.32) and (6.33). We note from (6.32) that

(6.34)



From (6.33) we have

(6.36)

and, from (6.30), (6.33), and Lemma 6.1 (equation (6.3», we obtain

1~21 = 1 •

By stra1ghtfouard ciUculations we find that

(6.40)

(6.41)
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From (6.32) and (6.34) we obtain ~l~ = ;;182 exp(i6) whence, using

(6.38) and (6.40),

Using (6.37) we can write

and, by (6.30) and (6.36), we have

so that

Combining (6039), (6.41) and (6.43) we obtain

W(~)N(~)W*(~2) • ~ diag[2al - (~2a2~a3)' 2al + (~a2";2a3)]

(6.44)

Iquations (6.Jt2) and (6.44) merely express the fact that the decomposi­

tions ot N6(~) and N(A..2) implied in (6.38') and (6.39) satisty the

aomit1on (5.14). of Theorem 5.1'.
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In order to show thl.Lt every matrix in the set M(A) is €-minilllBl

tor A, it remains only to prove that W(lJ.i) solves the Maximum

Problem 5.11 tor Ai (1 = 1,2). By Lemma 6.11 it will suff ice to prove

that

(6.45) (i • 1,2)

bold for all ~ € .£ where

(1 .. 1,2) •

Straightforward calculations using (6.12), (6.32) through (6.37), (6.40),

and (6.41) yield

where

(6.51)

and
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(i = 1,2) •

After further calculations we find tbat

(6.53)

(6.54)

(6.56)

(1 • 1,2) ,

(i • 1,2) .

Rewriting (6.45) using (6.47) and (6.48) we obtain

(6.57)

(6.58)

tor all A € C •

We wish to show that (6.57) and (6.58) hold for all ~ € £. One see.

trOlll (6.53) that (6.51) holds it and only 11' 21~112 /0
2 S 1/2 that 1_

1~112
~l

(1 + At)2

lurtbermore equality belds in (6.57) 11' arA only if equality holcl. in

(6.59). From (6.34) and (6.31) we have 1~11· 1 (1. 1,2);

...



consequent1)'

(i '"' 1,2)

so, from (6.56) and the last inequality, we see that

(6.60) (i • 1,2)

hold for all >.. E f.. Equality holds in (6.60) if and only if _ ~A2

-22
is real and nonnegative, 1.e., - ~i>" ~ O. By the triangle inequality

(6.61)

with equality holding if and only if

we have

From (6.51), (6.54), and (6.61) we obtain

,,:onsequent1y, by (6.60) and (6.62), (6.58) is valid for all A E C

with equality if and only if
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and

(6.64) -22
- ~>.. ~ 0 •

Furthermore, from (6.60) and (6.59), ve see that (6.51) holds for all

>.. ~ .£ vith equal1ty if and only if

(6.65) -2 2- ~l(l ~ 0 •

This completes the proof of the fact that every matrix in the s~t M(A)

1s (-minimal for A.

In order to determine all (-minimal matrices for A it will suffice,

by Theorem 2.27 and Lemma 6.17, to determine all i-minimal matrices for

*B1 • W(~i)AiW (~i) (1. 1,2). The follOWing lemma will provide help

10 making that de~ermlnation.

6.66 Lemma. Let B E 7'712 and let

and Do E At)2' be (-minimal for B.

8uch that

*No • Uo DoUo' where

Then there eXists a

~. By the parametric representation of U 2 developed 1n the

proof or Lemma 6.11 there exist A0 € JD2 n 11.2 and >"0 € £ such

*that Uo • AoW(>..o)' Thus, recalling that dg(Ao~o)· dg(M) for any

M € "1112 , we have

.,



consequently by Theorere 5.13 and the fact that diagonal matrices commute

* *:: W(~) dg(W(~)BW (~ »W(~ )a 000

as desired.

Since W(~l) solves the Maximum Problem 5.11 for Ai (1 = 1,2) we

see from Lemma 6.66 that, if we determine all ~ E C such that.o

then we will have determined all i-minimal matrices for Bi (i. 1,2).

B.Y the definition (6.46) of cri(A) this amounts to determining all

cases of equality in (6.57) and (6.58). We shall do this by using the

next tvo lemmas.

6.67 Lemma. The inequalities

(6.68) (k '"' 1,2)

hold it and only if

(6.69)

where p 1s real.

(k :: 1,2)

~. Let ~ = r exp(lcp) where r ~ a and cp is real. Since

11\.1 • 1 (k = 1,2) we can set ~ = exp( lcpk)' Thus
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(6.70)

Obviously (6.68) holds if r = O. It r > 0 then, trom (6.70), we see

that (6.68) holds It and only it exp[i 2(~ - ~)] = - 1 i.e., if and

only 1f exp(1cp) a .! 1 ~ or )" =1: r i~. Setting p • .:!: r we see

that (6.68) holds it and only if )" has the form (6.69) where p is

~ real number.

6.n Lemma. The inequality (6.63) holds it and only if

(6.12)

¥ten a 1s real.

Proof. Straightforward calculations us1118 (6.37) yield-

'l'be first term in square brackets on the right of (6.73) 1& rea1 wllUe

the second suell term 1s pure 1maginary. 'lhere~ore in order that (6.63)

hold 1t 18 necessary and sufficient that

(6.74)

) 2 4 2-e
t()",~ =1-41),,1 + 1),,1 +2Be(),,~)~O •

OW1ouely (6.74) holds it and only it either I)" 1 • 1 or ~r. - ~~.

It f). f • 1 then



whence (6. 75) bolds if and only if equal!ty holds in the last inequality,

i.e.,

(6.76)

If IAI ~ 1 then (6.74) bolds if and only if ~r. ~A, i.e.,

A. '" ~. Let A. '" r exp{ 1cp) where r ~ 0 and cp is real. We need

consider only the case r > 0 since (6.63) holds if A. O. Thus

2 2
r exp( icp) = ~ r exp{ -lCP) or exp( 12cp) "" ~ or exp{ 1cp) • .! ~.

Consequently

(6.77)

Substituting this into f(A,lJ.2) defined in (6.75) we bave

for all r. setting a = .! r and combining (6.76) and (6.77) we see

that (6.74) and (6.75) bold simultaneously if and only if >. bas tbe

torm (6. 72) where (1 is any real number. This completes the proof of

Le1IIaa 6. 71.

Consider first the case in which M{A) contains exactly one .trix,

i.e., the case 1n which A 18 unitarily similar to ~. Here we w1sh

to detel'll1ne al.l eases of equal!ty in (6. 58) • We have previously
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observed that equality holdB in (6.58) it and only if (6.63) and (6.64)

hold aimultaneously. Therefore by Lemmas 6.67 and 6. n we must have

~ • cr~ and A. = Qi~ where p and a are real. &1t the last two

equations represent straight lines in the complex plane which intersect

only for p = a = 0, i.e., only for A. = O. Thus equality holds in

(6.58) only tor \ = O. Since W(O) = I we see from Theorem 5.13 and

Lemma 6.66 that

18 the only ~ -minimal matrix for ~. By Corollary 2.30 A has exactly

one £-m1nimal,matrix, namely R(A).

Now consider the case in which A Is unitarily similar to ~.

Here M(A) contains infinitely many matrl~es and we wish to determine

all cases of equality in (6.57). We observed previously that equality

In (6.57) it and only if (6.65) holds. By Lemma 6.67 equality holds in

(6.51) it and only if \ = pi~l9 where p 18 real and ~l9 is defined

b1 (6.32). Using (6.34) and (6.12) V'~ obtain

(Pli t-1. Pl~l) (~lV(A)W(~) • ?:Y 2
2 1 + Q

.~)

(

1 + pi

~l(l+Ql)

o \..L, ( -- (l+Pl»)

1 _ P1/~ "J.1i~~ "J. ~-P1
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where

A ::
p

and where

1 + pi

-V 1 + p2

o

o

From (6. 32) we have

i8/2
e P == 1 + pi

1 - pi

8+8
i --R.

2
e :: ~l 8+8 •

, p

Therefore by Lemma 6.66 every €-minimal matrix for ~ is of the form

which is Just another one of the matrices in the set M(~) no matter

¥bat the value of p is. Thus M('L) contains all the l-minimal

-.trjces for ~. This completes the proof of Theorem 6.24.

Scme immediate consequences of Theorem 6.24 are the following.
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6.78 Corollary. If A ~ ~2 then the set (3.10) contains exactly one

matrix, namely A.

6.79 Theorem. Let Al and A2 denote the eigenvalues of A € 7'/2.

U A t 712 then there is a unique ~-minimal matrix for A if and

only if Al ~ A2 ; it Al = A.2 there are infinitely many ~-minimal

_trices for A.

~. By Theorem 6.24 A has a unique £-minimal matrix if and

2 2only if tr(A) - (1/2)(tr(A» i 0 (cf. Definition 3.8). By (6.8)

this happens if and only if A.l ~ A.2 • Similarly, if A.l =A.2, M(A)

contains an infinite number of matrices.

6.80 Theorem. ~rsky's Conjecture 1.35 is true for ~ =E and n =2.

Proof. This follows immediately from Theorem 6.24, Lemma 6.5, and

the definition (1.34) of dE{A).

6.81 Theorem. The set M(A) of (3.10) provides a complete solution

to Problem 3.40 for n = 2 and k· 1.

Proof. Clearly M(A) C DCl (A) en2 so by Theorem 6.24 we have

the desired conclusion.

For any subset vi of "11ln we denote the set of all real matrices

in J by ""/R (read: J restricted to R). Theorem 6.24 provides- -
a eomplete solution to the distance problem (and associated minimum

problem) of finding (1.26) where ~ = E, A € 'J'Jt2/! and where ,I 18

replaced by "J72/! . For, if A € 7f'2/! has eigenvalues \1'A.2, then

the 8et M(A) contains all matrices in 7?2 which are ~-minimal for

A. U Al f A2 (er, (6.8» then by (3.9) t(A) contains exactly one

number and that 1s real; consequently by (3.10) M(A) contains exactly

one _trix and that 18 real. U Al 0= A2 then t(A) contains all
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complex numbers of unit modulus and by (3.10) Nt(A) is real if and only
I

if either ~ = + 1 or t = - 1. We have proved

6.82 Theorem. Let A € 7'1l21'! , A" 772 and let the eigenvalues of

A be denoted by A.l ' A.2 ' If A.l I: A.2 there is a unique real '-minimal

matr1x for A given by <3.10), If' ).,1 =).,2 there are exactly two real

i-minimal matrices for A, namely

1 * 1 - *~ (A! A ).+ i tr(A + A)1 •

6.3 The Maximum Problem 5.11 in the Case n. 2.

6.83 Theorem. Let A € '7'1{2' The identity matrix I solves the

Maximum Problem 5.11 for A, i.e., A satisfies

(6.84)

it and only if

(6.85) A + tJ.* € A9
2

tor some t in the set teA) defined by (3.9).

l!:9.2!. It (6.85) holds for t € teA) then by (3.10) -teA) € /)2

whence I d1agonalizes Nt(A). By Theorem 6.24 Nt(A) is c-1Il1n1mal so

by Theorem 5.13 I solves the Maximum Problem 5.11. Suppose nov that

(6.84) holds. Then by Theorem 5.13 dg(A) 1s €-m1nimal tor A whence

dg(A) € M(A) by 'l'beorem 6.24. Thus there 1s a t € teA) such that
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Nt(A) '" dg(A), i.e., Nt(A) E ~2' and this- implies (6.85).

6.86 Theorem. Let A E 7112 • Uo solves the Maximum Problem 5.11 for

A if and only if Uo E 71. 2 and

(6.87)

tor some t in the set teA) defined by (3.9).

~. Every V E "'-2 can be written uniquely as V· W o and

V runs through tf2 if and only if U runs through 'ti2' Thus

(6.88)

*whence U'lAU
O

satisfies (6.88) if and only if Uo solves the M!lximum

Problem 5.11. By virtue ot \0.27) Theorem 6.86 follows immediately

from Theorem 6.83.

Remark. The s1gn1flcance of Theorem 6.86 lies in the fact that it

eharacterizes any solution of the Maximum Problem 5.11 (for n· 2) in

terms of an algebraic condition which is very easy to check.

~. A more precise determination of the values of t tor whieh

(6.85) and (6.87) hold in the ambiguous case of (3.9) will be made in

Chapter 7 (Theorems 7.24 and 7.26).
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CHAPl'ER 7

FURrHER NECESSARY CONDITIONS FOR ~-MINIMAL MATRICES

According to Theorem 5.13 all ~-minima1 matrices are determined

by solutions to the Maximum Problem 5.11. Therefore a necessary condition

on a unitary matrix solving this maximum problem will, indirectly, be

a necessary condition on ~n E-minimal matrix. B,y working thro~h the

Maximum Problem 5.11 we shall be able to derive some additional necessary

conditions in the present chapter.

The identity matrix I solves the Maximum Problem 5.11 for

B € 71'f
n

if and only if B satisfies the condition

It B satisfies (1.1) then, by Theorem 5.15, dg(B) is €-minimal for

B and, by Theorem 4.10, dg(B) satisfies the necessary condition (4.12),

i.e. ,

* * * *dg(B)B - B dg(B) + dg(B )B - B dg(B ) = 0

Letting B = (b i j) we can express the last e~uatlon In terms of the

elements of B as follows

(1 S i, J S n)

In like manner we find from Theorem 4.73 that there is a hermitian _trix

H such that
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dg(B) + dg(B)H - H dg(B) = B = dg(B) + offdg{B)

or

offdg(B) = dg(B)H - H dg(B)

Writing H = (h
i J)

lie can express the last equation 10 terms of the

elements of B and H as follows

(i ~ J) •

Since H is hermitian lie have hJ 1 = h1J so bJi• hiJ(b
J J

- bii) •

- hiJ(b i 1 - b
J J

>. Therefore lie find that every 2 by 2 principal

lubmatrix B
i J

of B 1s of the form

hiJ{bU-bJJ»)

b
JJ

(l S i < J S n).

Consider nov unitary DIltrices U = (u ) €..,~ of the follovingrc IA.n

special type. For any pair (i,J) of row cnd column indices satisty1ng

1 .:s 1 < J .:s n we let the 2 by 2 principal submatrix

be unrestricted (foXCept for the requirement U E U D) and spec11'y that

all other elellll!nt8 of U .at1af;y
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=" [; " rr:: •ur c = 6r c r ...

One may easily verify that U is unitary if and only if U
i J

is

unitary. If B satisfies (7.1) then certainly i
2(dg(B» ~ €2(dg(USU*»

holds for all U of the speCial type Just de6cribed. The effect of

*the transformation UBU on the submatrix Bi j 1s that of replacing

Bi j by U
i J

B
1J

U
i J*;

therefore, since U1j can be any matrix in 'tl21

we see that B
i J

itself satisfies (7.1) with n replaced by 2:

(1 S i < j S n) •

We now find from Theorem 6.83 that

(1 S i < J S n)

holds for some ~iJ E: ~(BiJ). Expressed in terms of elements, the

condition (7.5) states that

(1 S i < j S n) •

Since It1JI· 1 the last equation implies IbiJI = IbJil.

We can obtain some information about the complex Lagrange IIlU1tlpllers

h1j in (7.4) as follows. From (7.3) and (7.4) we obtain

- 2 2
-h1J(b1i - bj J> + h1J Ib11 - bjJI • 0
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10, unlesl bi i ~ bJ j (in which case the value of h
I J

1n (7.4) does

not matter at all) or h1J = 0, we have

or

Stra1ghtforward computations us1ng (7.4) show that

It (7.7) does not vanIsh we see from (3.9) that t
i J

in (7.5) must have

the value

(1.8)

where

aDd where tor a € ! sgn(s) denotel the sign ot a:

{

+ l
_gn(a) •

- 1
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Using (7.4) and (7.8) we obtain

whence (7.6) holds if and only if either hi j & 0 or Sij e 1. Clearly

2
8 i j e 1 holds if and only if (1/2) - 21hijl > 0, i.e.,

The other possibility is that hi j e 0 in which case (7.9) still holds.

In the ambiguous case of (3.9) where (7.7) vanishes we obtain

(1.10)

(r.ai)

It we disregard the uninteresting case bi i = bj j then obviously (7.1)

vanishes it and only if Ihijl = (1/2). Thus, from {7.10} and (7.11),

(7.6) holds if and only if

We now summarize the above results in the following

1.12 Theorem. Let B = (bi j) € 7"ln satisfy the condition (1.1).

For each pair of indices (i,j) satisfying 1 ~ 1 < j ~ n the following

statements are true.
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Then exists a complex number ( ;: complex Lagrange un..lt1plier) h
i J

auch that

hij(bU-bjJ) )

b
JJ

(1.16)

*" pnc1sely, it

(1.11)

...., it

(1.19)
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(1.20)

Furthermore, if bl1 ~ bJJ J there is a uniquely detel'1ll1ned complex

number t
1J

satisfying It1jl. 1 such that

It (1.11) holds t
i J

e. t(Bi j ) where the set t(Bi j ) i8 defined by

(3.9). If (1.19) holds then

b - b
, = 11 JJ
~iJ - -

b11 - bJ j

Specializing Theorem 1.12 to the case n· 2 we can improve Theorems

6.83 and 6.86 as follows.

1.24 'D1eorem. Let A· (ai j) € '7?12 satisfy (6.84). If 8 11 • ~2

then A = allI and (6.85) holds f or all t € t (A) • If all ~ ~ aDd

" 2and it tr(A~) - (1/2)(tr(A» • 0 then (6.85) holds only for

III



1.26 Theore1ll. Let A € 71t, let U 80lve the MaxllDU11l Proble1ll 5.11
- c: 0..
tor A, and let B = (b

1J
) :: UoAUo• It b1l • b22 then B· bUI and

(6.87) hold. tor all t € teA). It b11 , b22 and 1t

tr{A2 ) - (1!2)(tr(A»2 =0 then (6.87) hold. only tor

1.28 '!'beore1l. Let A E~n' let Uo 801ve the Maxll1U11l Problem 5.11..
tor A, and let B· (b1j) • UoAUo• Then all the conclu81onll ot

'l'beorell 7.12 hold.

~. If Uo .olvu. the Max1mua Proble1ll 5.11 for A then, by'

an argument I111L1lar to t}-.41o U8~ in the proof ot Theorem 6.86, B

.at1.t18. (1.1).



CHAPl'ER B

COUR'l'ERElCAMPLm TO MIRSKY IS CONJI£TURE

In the present chapter we shall present some selected examples which

flhed lome light on the distance problem of finding d..(A) and whicl-. also

show that N1rs~"s Conjecture 1.35 1s tncorrect in a number of instances.

Consider first th~ following class of matrices of order n. We

deftne A = (~.t) E 7'ln as iollows: ak l = 0 (1 S k, 1 S n) with the

following exceptions

(B.l) (k =1,2, ..• , n - 1)

where the 8t are arbitrary real numbers. Now define Rep = (bkl) E ~

by

(B.2) b = e1cp ,
nl

where ep is any real number. Clearly the rows and columnr. of Rep form

orthonoral sets so that N~ is unitary (for all 8
1,

•• , , 8n_l , cP € .!)

and therefore normaL (Actually Ncp is the product of a diagonal unitary

..tr1x with a permutation matrix.)

... , 8n-J
we have 2

~~~ € (A) = n - 1 so

(8.3)

An elementary calculation shows thet t( c) .. ~2 (A - CR.), where e il

real, .I.U.. it. ablolute IlinilllUll if alld onl7 it C" (n - 1)/0.

113



hrtherlllOre.. by (8. 3)

(8.4)

bolds tor all 91, ..... 9n_l .. q) ~ !. Th1s proves (ct. Theorem 2.16).

8.5 Theorem. Mir.ky's Conjecture 1.35 1s false tor ¥., and n ~ 3.

'!'bere exllt _trices A in 71/n such that

(8.6) (A) < 1
PE..n - ii (n ~ 3)

vIlere P. (A) i. detined (tor ¥. c) by (2.14) •
....n

~. An example of order 3 s1m1lar to the palr A.. (n - l)/n lIep

1D the ca.. n· 3 1. cSue to Eberlein [6]. She al.o obtains counter­

exuaples to M1rsq's conjecture tor n > 4 by bordering })er 3 by 3

example with zeros.

Conaider next the class of 2 by 2 matrices ot the torm

(8.1) where ~ .. m E £.. • "0 •

Let • be aQ7 E-1I1n1Ml. _trlx for A.. that ii, &n7 one ot the .trice.

(8.8) (t E t(A»

~. '.

vbere t(A) 11 detined by (3.9) (ct. Theorem 6.24). ODe find. eu117



whence, by Definition 1.10, the singular values of A are

and the singular values of A - N are

~ Iml , ~ Iml •

Us1nS the defining formulas (1.13) - (1.15) for the unitarily invariant

n01'lll8 \I, we find that the following hold for all p (1 < P < .):
p - -

so

or

\I (n(A» '" 1>..1 ,p

222v (A) - .. (n(A» '" Iml ,p p

,

low 22/p-2 < (1/2) it and only it 22/p < 2 and th1s bappena 1f &Del

oal7 it 2/p < 1, I.e. I P > 2. Thus the pea A,. pNvldea a
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.... v (2 < p < .)
P -

counterexample to Mirsky'. conjecture for n· 2 and tor all p > 2.

B;1 bordering the matrices A, N with zeros and by carrying out the

relevant cOlllputaticTlS \11th (1.13) - (1.15) for higher values ot n, we

then obtain counterexamples to the conjecture tor all n ~ 3- We have

proved

8.9 Theorem. Mirsky's Conjecture 1.35 is false for

and n ~ 2 where lip 18 given by (1.15).

Be_rk. Since lI,." f1 we have again proved the second statement

ot Theorem 2.19.
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CHAPl'ER 9

THE FIELD OF VALUES AND EIGENV".LUES OF ~-MINIMAL MATRICES

~e field of Vft~ (or numerical range) of a matrix A E 'J1!n is

defined to be the following set of complex numbers.

(9.1) F(A) = (Ax,X)i (x,x) =1 and x is a complex column
vector}

The following are known facts concerning F(A):

9.2 Theorem. (Toeplitz [23] and Hausdorff [12]) For any A E "71?,n
F(A) iG a closed, bounded, connected, convex subset of £.
9.3 Theorem. (Toeplitz (23]) Let A E '71ln ' All eigenvalues of A

are in F(A). If A E 17n then F(A) coincides with the convex hull

C(A) of the eigenvalues of A.

9.4 Theorem. (Hausdorff [12]) The field of values is invariant under

a unitary similarity transformation:

F(A) = F(UAU*) where A € "77t., U€ U .n n

A 6imple consequence of Theorems 9.2 and 9.3 1s the following
,

9.6 Theorem. Let A E 7f1n ' Then the convex hull C(A) of the

eigenvalues of A is contained in rCA);

C(A) C rCA)

An elementary computation usi.ng Theorem 9.4 and result. or Toeplitz

[23] and Donoghue [5] yields the following result whose proof i8 omitted.
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9.8 Theorem. Let A € 7112 and let

be a Scbur triangular form for A. It A is not normal, i.e., it

Ii 1 0, and it Al ~ A,2' then F(A) is the interior and boundary at an

ellipse whose foci are Al and A,2' .....hose minor axis has length Iml,
and whose major axis has length (1m12 + IAl - A,2 12)]/2 j it A

l
= A

2

then FCA) is the interior and boundary of a circle with center at Al

and diameter Iml. It A is normal, i.e., if m· 0, and if Al ~ A,2'

then lCA) is the straight line segment connnecting Al and A
2

j it

~ • ).2' then F(A) reduces to a single point, namely Al •

Our tirst objective in the present chapter is to prov~

9.10 Theorem. Let A € 7'1(2' A i 712 and let (9.9) be a Schur form
"

tor A. It ).1 ~ A2 then the eigenvalues ot the (unique) E-minimal

..trix for A are the end points of the major axis of the ellipse which

18 the boundary ot F(A). It A,l =).2 and it !fe(A) (see the note

tollowing Definition 3.8) i8 one ot the ~-m1nilllBl _trices for A, then

the eigenvalues ot N9(A) are

stven ~ diameter at th, circle ¥bich 1. the boundary at r(A), there

i. a 6' € Ii sucb thst the eigenvalue. at N6(A) are tbe endpoints ot

that d1Ueter.
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~. In view of Theorem 9.4, (6.27), and (6.28) we need only

prove the result for some unitary transform of A. We shall use the

form (9.9) for this purpose. Consider first the case ~l = ~2. Then

by putting al '" ).1' a2 = m in (6.29) and (6.40) we see that

= ( A
l

1 - i9
2'me

~ m )

A
l

furthermore, by Theorem 5.13, the eigenvalues of He are the diagonal

elements of (6. 40), namely

where, by (6.35),

i9/2
~ m = + Imlele -

Whatever sign is chosen in (9.13) we see from (9.12) that the eigenvalues

of He are given by (9.11)'. By Theorem 9.8 the boundary of F(A) 18 a

circle with center ~l and radius (1/2) Iml. As 9 increases from 0

to 2K it is clear from (9.11) that the eigenvalues of "e are the

endpoints of a diameter of that circle which rotates through au angle

of n. That is, every diametel· of the circle which is the boundary of

F(A) is included as one of those which can occur as the line segment

connecting the eigenvalues of some £-minimal matrix for A.

we now consider the case ~l /: \2· Straightforward cODlputat10N1
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bued on Definition 3.8 show that

(

A1

.(VAV*) Z

1 ­2' tm

~ m ) I where

~2

and, accordins to Theorems 6.24 and 6.79, this is the only €-mini_1

*_tr1x tor (9.9). The e1genvalues ~1' ~ of N(VAV) are the roots

2 2
ot the quadrat1c equation ~ - (~l + A2)~ + ~lA2 - (1/4)lml t =o.

Ul1ng the quadratic formula and the expression for t 1n (9.14) we find

I

¥benee

arg( Vt> • arg( ~1 - ~2) •

According to Theorem 9.8 the bounda17 ot peA) 1s an ellipse with toci

~, "'2' center (1/2)(~1 +~) and _jor axis of length

(1_12 + 1~1 - "'212)1/2. From (9.15) and (9.16) we t1nd
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Relations (9.17) and (9.18) show that Al, A2, ~l' end ~2 all lie on

the same straight line through the center (1/2)(Xl + A2) ot the ellipse.

Sinee Xl end A2 lie on the major axis, s1nce It I =1, and since

the length ot the major axis is (Im12 + 171.1 - X212)1/2, ve aee from

(9.15) that ~ and ~2 are the endpoints of the _Jar axi,. Th18

completes the proof of Theorem 9.10.

2.l~ Corollary. Let A E '7'J12 ' A;' "772 " If F(A) is a circular

disk, then given auy diameter of that disk there is a 9 ~ !! such that

F(N8(A» coincides with that diameter. It F(A) Is the interior and

boundary of an ellipse (not a circle) then F(N(A» coincides with the

_jor axis of tha.t ellipse.

l!22!.. This follOtils i1lllllediately from Theoreu 9.8 and 9.10, since

every matrix in M(A) i& normal.

9.20 Corollary. Let A € '7?12 ' A t 172 and let No be t-m1nimal

tor A. Then the eigenvalues ~l' ~ ot No are extreme points ot

r(A). Furthermore

2.21 Theorem. Let

every eigenvalue of

I~l - ~21 = dlam(r(A»:: sup Iz - vi·
z,w E r(A)

A E "?'H and let N be E-minimal for A. The!'."(n 0

No be.. 'ngs to F(A) and

Proof. Let N = u*n U where U € "Z( and D EA). Accord-
----- 000 a 0 non

ing to Theorem 5.13 the eigenvalues of No are the diagonal elements

* *of the matrix UoAUo• If Uk is the k-th column of Uo then the k-th
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*d~~ e~t ,(4 lJoAUO JoS Biven by (A,,\,'it) and, by (9.1), this
.• •. ~.; ":". ".:t.. '

18..1ft'·peA)•. ,'Sfnce P(A)' 1s convex and since F(N
o)

is the convex

hull of the e1gel)'ralues of No've obtain immediately (9.22).



CHAPrER 10

A GENERALIZATION OP nm JACOBI AND GOLDST!NE-HOllWrrZ METHODS

Long ago Jacobi [141 devised a method. for diagonalizUlg a real

symmetric matriX. The method utUized coordinate-plane rotations and

vas essentially dependent onl;r on an elementary t~:chniqu. for d1agcnal1z1ng

a. real symmetric matrix of order 2 using an orthogonal similarity trane-

.formation. Since 1950 Jacobi's method has "'een extensively .tudiel1 aDd

generalized (see e.g., [3], [41). In the present chapter we .hall describe

still another generalization ot Jacobi's method vhicb amount! to a.

computational technique tor lolving the Max:1llllm Problem 5.11. This D8V

technique al80 general1&e1 and d.lllpliti•• a method devised by- Qold.ttne

and Horvitz [10).

COl'181der tbe tollov1n& COllpUtat1on8l. a1soritbll. Let. A E "'Ill aDd

let ~. A. ODe calculate•••equenc. of _trice. ~,~, ••• ,

A.k .. (.~:» I ••• vh1cb are unltar11¥ .1II11ar to A 'b7 the rea\IZT8DCe

relati~

(10.1) (ll • 0,1,2, ••• )

The Uk· (u~» are special unitary _trices ot order n, For every

value or k there 11 specified a pair ~k· (~,jk) =(i,j) of Iodice.

(we olll1t the subscript k in the sequel for notational simplicity)

.atllfying 1 ~ i < j ~ n such that the 2 by 2 matrix
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(10.2)

which is a principal submatrix of Uk." 18 un1tll17. All other elements

of Uk satisfy

U(k) . e • {1
rc re 0 , r -; c

•

The matri.ces Uk an completely c1eterm1n\~d by the p.in ~ and the

2 by 2 unitary 1lI8trices Vk• We sball alvays ta1t~ Vk to be a

_tl'1X ot 'the torlll (6.12).

Arq let (It rulel tor choosing the eequel1Qe (Uk) wID be called a

method of Jacobi tYl)!. '!'he tollov1ng example which is defined onl7 tor

J. E"'n aDd vhlch 11 • straightforward extension of Jacobi's original

1IIIIthod to hermitian matrices will be referred to as the _cl__a_8_8_1c_8_1.......Ja~cobi

.tbod (ee. (4». Here one cboo"ea ~ such that !I

i,

(10.3)

and chooses Vk to be a matrix of the form (6.12) such that

(3.0.4) (k+l) - 0a
i j

- •

The new generalizat10n of Jacobi's method which vas announced in

the first paragraph of this chapter is a method of Jacobi type wIth the
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following Bet of ruleu tor determining the Uk ot (ao.a). Let

(1 <: r <: c <: n)- -

and define

(10.6)

Choose ~

(10.7)

eo tbat

and cbooee Vit to be a III!1trtx ot the torm (6.12) wh1ch solve. the Nllximua

ProMell 5.11 tor .A~~). We ,how in tbe next paragraph bow to calculate

ea81lJ ~(r,c) end Vt .

By 'l'beore_ 5.13 and 6.24 • unitary matrix Uo solves the Maxi..

Problell 5.11 tor A E ~2 it and only if Uo N~(A)U: 18 diagonal and,

* .~
by (3.10), that happens if and only it Uo{A + ~ )~o is diagonal where

t € C(A). Therefore all we need to do ~"l order to solve the Maximum

Problem 5.11 for any of the submatrices A(k) is to find a ~(k) € C
rc rc -

such that

(10.8)

where C is any number in t(A~~». Thus fr~m (10.6) we have

125



and we set

(10 .. 10) ~r _ W( (k»
wk - ~ij •

We nov show that if A € 'Nn the set of rules (10.7) and (10.10)

coinci6.e respectively with (10.3) and (lO.4). This will show that our

new method Is a generalization of the classical Jacobi method. If

A€ 7Yn then, frolll (10.1), -'It £ '1In (k • 0,1,2, •• ,) "hich iJ11l':'1ea

~} € 1/2 for 1:S r < e S n and tor all k. S1nce A~~) 11

hermitian it; CaD be diasonal1zecl bt a unitarJ transformation ~ the

value or the _x~.. in (J.O.6) is giftn by C2{A~:». 1'bua we t1D4 that

(1 < r < c < n )- -
whence the rule (10.7) "",uee. to (10,3). IUl"the1"l101'e, by Corollary

6. 78, M(~». (A~)) . whence the VIt liven b7 (10.10) diaaomU1ze8

(k) )'13 1.e., (10.4 hold••

SlDce the claall1cal Jacobl method d1agonal1zes any A E: 71n ve

have proved that the method ot Jacobi tne (lO.T), (10.10) will diagonal1ze

any hendt1an matrix. By a silll1lar argument we could show 'that the

_thod "ill also diagonalize an;, sltev-bermltian .tru.

In [10) Goldstine and Horwitz devi.ed a _thad ot Jacobi type which

vu applicable to Iln7 normal I118trlx A E: ~. At each stage they -O\1Iht,

bJ' a very cOlllp11cated procfld.ure, to determine a Vk of the ton (6.12)
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such that

was minimized. It 18 easy to see that this 18 the same II' deteMl1n1ng

2 (k) *)Vk 60 that C (dg{VkA1j Vlt ) 1s maximized Le" solving the Max1mum

Problem 5.11 tor At~). ThU8 our technique provides a &imple .oluUon

to the problea .tudied by Goldstine and Horwitz and at the 8" tiM

akell its appl1cation to arbitrary A € 7fn meaningful 1n the context.

of eolvins the Mllx1aum Problem 5.11 tor A.

Of course the _in q\lelJtion here is whether or not the 1IIethod ot

Jacobi type (10.1), (ro.ro) w111 actually 801ve the Max111W1l Problem

5.11 tor an,y A € "'tn' Le., vbethe:- or not ~(dS(~» converge.

to the -.xi_ (5.12). A related question 18 whether or not the 1ntinite

product ... UkUk_l ••• U1Uo or unitary _trices converges to a unltaJ'7

_trix which loh... t.he M8x1lllum Problem 5.11 (ct. [4]). It the anever.

to theee que.tions were attn-tive then we would have a conatruetive

_thod of computing €-mn1_l matrices for any A € 71'f
n

' If the anewer

to the first question were affirmative then, by Theorem 5.4, we would

have a constructive method of cOllputing dE(A). These convergence

questions appear to be rather difficult and we content ourselves here by

prov1ns only the following

10.11 Lemma. Let A € 71fn and let the matrices Uk of (10.1) be

determined for each k by the rules (10.7) and (10.10). Th~n

(10.12) ~(i,j) .... 0
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l!:2.0t. Let ak = ~c: (dg( '\) ) to!' k =0,1,2, •••• Since each ~

is unitarily similar to A, we have

(10.13)
2ak ~ ~ (A) (k ~ 0,1,2, -•• ) •

The only diagonal elements of ~ effected b~f the transtonatlon (10.1)

are the ones 1n the 1-th and J-th rows. Moreover, 810ee the tl'lUUl-

(k+l) (k) * 2( »)formation AiJ = VkAj .J Vk increases the fUnction e: dS(A1j by

the amount -\.(l,J), ",e have

(10.14) for k. 0,1,2, •••

The relations (10.13) aDd (10.14) ehow that (at) 18. a:motonlcall7

1nCreu1ng sequence of poeltlft numbers whicb 18 bounded from above.

acneequewtly O"lL ~ 0" S ~2(A) .. It .. " and troll (10.14) we obta1D tM

4eslftd conclusion (1(1.1.2).
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