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CHAPTER 1

INTRODUCTION AND FRELIMINARIES

1.0 Introduction.

The central problem considered in this paper is the following: Given
an n by n matrix A of complex elements, find those normal matrices
(cailed v~minimal matrices) of order n which are closest to A in the
gense of a metric defined in terms ¢f a norm v. A related problem is
that of determining the distance dv(A) between A and the gsubset 2C
of all normsl matrices of order n. The historical background and precise
definition of these problews are given in Section 1.2. The dlstance
problem mentioned above was first studied by Mirsky, who offered Conjecture
1.35 as the general solution for all unitarily invariant norme.

After a proof that v-minimal matrices always exist (Section 1.5),
it 18 shown in Chapter 2 thet the property of veminimelity and certain
other quantities are invariant under certain transformations of matric
space. An inequality of Mirsky is eharpened in Chapter 3. A numter of
important necessary conditlons for €-minimal matrices (€ derotes the
familiar Euclidean norm) are derived in Chapters 4 and 7. In Chapter 9
it is shown that all eigenvalues of an €-minimal matrix lie in the field
of values F(A) of A; these eigenvalues are shown to be srecial ex-
treme points of F(A) 1in the case n =2. 1In the final Chapter 10 an
iterative computational procedure for finding d_(A) or an €-minimel

matrix 1s proposed, but ite convergence 1s not proved.



Probably the most important results of the paper are the following:
1) A characterization of any e-minimal matrix in terms of the Maximum

Problem 5.11 (Thecrem 5.13).
2) A determination of all ¢-minimal matrices of order 2 (Theorem 6.2W).
3) Mirsky's Conjecture 1.35 is shown to be true for v=¢ and n = 2

(‘heorem 6.80), talse for ve ¢ and n >3 (Theorem 8.5) and false for

n>2 and v = v (2<p< ), where v is defined by (1.15) (Theorem 8.9).
[Note: The fact that Mirsky's conjecture is false for v=¢ and n >3
was first proved by P. J. Eberlein.]

All results stated herein which are not specifically labeled as known

or for vhich no reference is given are believel to be new.



1.1 Notation and Preliminary Definitions.

Let R and C denote respectively the real ind complex i-umber
fields and let 772“ denote the algebra of all n by n matrices over g,
vhere n 1s a positive integer. If X € /777 n ve denote its complex con-
Jjugate transpose by X*. A mutrix X 1is called normal if x*x = xx*; in

* »
particular X 1is called hermitian if X =X, skew-hermjtian if X = -X,

and unitary if X*X =1, where I denotes the identity matrix of the same
order as X. Let 7'Zn, 77/ n’ Z‘n’ and '(On denote respectively the
subsets of all normel, hermit{iun, unitary and diagonal matrices in ?’/n'
(We gshall sometimes omit the subscript n, if the value of n need not be
specified. )

For the meaning of terminology or notation not explicitly defined in
this paper, the reader 1s referred to one of the standard textbooks on the
theory of matrices (e.g., Perlis [21]1).

A real valued function v defined on 777 is called a norm if the con-

ditions

(1.1) v(A) > 0 if A#0 ,
(1.2) v(cA) = |e| v(a) ,
(1.3) v(A + B) < v(a) + v(B)

are satisfied for all A, B € ) and for all ¢ € C. Anorm v is eald

1.

Numbers in square brackets refer to references listed.in the bibliog-
raphy at the end of this paper.



to be unitarily invariant if, in addition to (1.1) - (1.3),
(1.4) v(UA) = v(AU) = v(A)

holds for all A € 7’( and for all U € W{. Moreover, a norm v 1is said

to be multiplicative if, for arbitrery A, B € 777,
(1.5) v(AB) < v(A) v(B)

Unitarily inveriant norms were characterized by von Neumann [19] (see
also Fan and Horfman (9]) as follows. A real-valued function
o(u) = tp(ul,u.z, cee un) defined for all real n-vectors u = (ul,ua,...,un)
is called a symmetric gauge function if it satisfies, for arbitrary real

vectors u, v and real scalars &, the following corditions

(1.6) ou) >0 it ugo ,
1.1 olau) = |a| o(u) ,
(1.8) ®(u + v) < o(u) + o(v) ,

(1.9)  o(w,uy, oee 5 uy) = °(°1“xl’ "2“:2’ cee s unu-n) .

where o, can be either of the signs +1 (1 =1,2, ... , n) and vhere

p |
(‘1’“2’ cee xn) is any permutation of (1,2, ... , n).

1.10 Definition. Let A € 7%7. The nonnegative square roots of the eigen-

values of A’A are called the singular values of A.
Remark. Since the spectrum of AA. coincides with that of A'A, the
singular values of A' are the same as those of A.

b



1.11 Theorem (von Neumann [19]}). A noru v on F]n is unitarily inveriant
if and only if there exists e sMetric gauge function ®, of n reel

variables such that

(1.12) v(A) = °v(a1’a2’ cee an) for all A € 7)?“

where °‘1'°2’ cee an are the singular values of A.

As examples of symmetric gauge functions we may cite
n P 1/p
(1.13) ¢p(ul, cer s un) = (igl |u1| ) for 1<p<= .
As p -, the function in (1.13) converges to

(1.14) q:m(ul,ua, oo un) = Max (Iuii) .

i=l,...,n

vhich is aleo a symmetric gauge function. Thus, for 1 <p <=,
(2.15) VP(A) = Qp(al’ see an)

is a unitarily invariant norm, where al y +oe an are the singuler values

of A. The norm v, is known ag the spectral norm of A and is some-

times denoted by the symbol o, 1i.e., o(A) = v (A) for all A € Mn.

For p=2 vp(A) in {1.15) coincides with the familiar Euclidean norm

€(A) defined by

2 L 2
(1.16) €“(A) = 15-1 Iaijl



vhere A = (.i.i) € mn and vhere by Ga(A) we mean [e(A)]a. It can be
shown (see e.g., Faddeev and Faddeeva [7] pp. 105-111) that both o end
€ are miltiplicative ncrms.

It is vell known that »?n is a Banach algebra with respect to the
porm (1.16), that 1is, 7'?“ 1s a Banach space when considered as a linear
space vith norm €, and the multiplication operation (transformation)
(A,B) - AB 1s a continuous mapping from the product space 7’Zn X 7’2n

onto mn. (Cf. Hille and Fhillips [13], p. 22.)

1.17 Definition. Let the eigenvalues of M € 77(n be denoted by

xl(n). xa(n), ces ).n(u) in some order. Then {(M) 1s defined by
a(M) = aieg(r, (M), ... , A (M) .

For any N = (n“) € mn the trace of M 1s defined by

L] a =
(1.18) tr(M) :Igl m,

We note the following well-known properties of the trace functional:

(1.19) tr(AB) = tr(BA) ;

(1.20) tr(GA + B) = a tr(A) + g tr(B) ;
(1.21) tr(') = TFH

(1.22) M) = tr"n) = tr(w’) .

Bere A, B, M are any matrices in 7)( and a, p are any complex numbers.



1.23 Definition. Let M = (mid) 77, The diagonal of M is defined

by
(1.2’-&) dg(M) = diag(mll, e g mnn) .

Likewise the off-diagonel of M is defined by

(1.25) offdg(M) = M - dg(M) .

1.2 Distance Problems; Mirsky's Conjecture and Bound.

Let A 77, let v be any norm on 777, and let P be any subset

of 7?? By a distance problem we mean the problem of determining the

"distance"”

(1.26) Int , v(A - X)

xed

between A and J with respect to the norm v. 1In any case in which tkre
infimum (1.26) is attained by a matrix in d we may consider the related
minimum problem of finding (at least one mestrir and preferably all) matrices

XOE J such that

v(A-Xo)= Min _ v(A - X) .

X € o

Several such problems have been considered and solved in the past. We now

describe some of these results.



1.2] Theorem (Pan and Hoffman [9]). Let A€ 722, let A denote the

subset of all hermitisn matrices in m, and let v denote any unitarily
invariant norm on ”? « Then

(1.28) : éun;'/ WA -X) = vA-2 (A+A)) =5 v(a-4") .

1.29 Theorem (Fan end Hoffman [9]). Let 2¢ dencte the subset of all

unitary matrices in 7’? and let v denote any unitarily invariant norm
on /7. Let A € 7’[ and suppose A = UH wher> H € 7/ is positive

semidefinite and U € Z . Then

(1.30) Min  ¥(A - X) = v(aiag(a, -.. , @) - I) = v(A - U)
X € U
vhere By eoe , @ are the singular vaiues of A.
The next result is apparently new, although its interpretation (see
Amir-Moez and Horn (2] and [9] regarding a well-known analogy between
matrices and complex numbers) and the method of proof are strictly analogous

to ,those associated with Theorem 1.27.

1.31 Theorem. Let A € /77, 1let & dencte the subset of all skew-

hermitian matrices in 777, and let v denote any unitarily invariant

norm on 7’[ Then

@.z) M WA -X) = vA-Ha-a))=EvA+AT) .

Proof. Let 8 be any skew-hermitian matrix. We have



whence

VA -HA-A)) < WA-58) + 3 u(a-8)") .

By Theorem 1.11 and the remark following Definition 1.10,

»*
v((A - 8) ) = v(A - 8); consequently

(1.33) WA - 3(A - &) < v(A - 8)

holds for all S € df. This proves (1.32).

Let k denote an integer such that 1 < k < n. In [15] Mirsky sclved
distance problems for the subsets (X ; Xtiinfn and rank(X) < k] and
(X ; X € 7, and rank(X) = k). As in the mbove results, the formila
for the distance can be put in the same form for all unitarily invariant
norms.

In this paper we shall be primarily interested in distence and extremum
problems assoclated with the subset 721 of all normal matrices in 27C.
Tre distance problem was apparently firet studied by Mirsky [15]). Let A

be any fixed element of 7’?, let v be any norm on 7?71 and define

(1.34) dv(A) = inf v(A - X) .
X € 2

Mirsky was unable to determine dv(A), even for special choices of v,

but he obtained an upper bound for de(A) (see Theorem 1.37 below) and

9



offered the following conjecture for the general solution when v 1is
unitarily invariant.

1.35 Conjecture (Mirsky). Let v denote any unitarily invariant norm on

7", Then

(1.36) a2(a) = 30P(2) - P(a(a))

holds for all A €770, wnere d2(A) = [a(A))%, VB(a) = (v(a) ena
where f{,) is defined in Definition . .17.

Note., By (1.9) the right side of (1.36) ie independent of the order
of the A's in Q(A). The singular values of A are the eigenvalues of

b Y
the positive semidefinite square root (denoted by (A A)2) of A'A;
*ayk

consequently v(A) = w(Q((A A)2)). A further interpretation of Mirsky's
conjecture is contained in Chapter 2 where the nonnegativity of the right

side of (1.36) is proved (lemma 2.4).

1.37 Theorem (Mirsky). Let A € 77%. We have

0.8 W=t Eh -0 SHEW - )

1.39 Definition. Let A emn and let v be any norm on mn. A
matrix R € 72n such that

(1.40) v(A - X) =a (a) = inf  v(A - X)
14
x et
n
1s called a v-minimizing normsl matrix {(for A) or N is said to be
v-minimal (for A).
10



1.3 Differentiable Curves in Matric Space.

Let A(t) = (aiJ(t)) be & matrix function of the real variable ¢t
which is defined for - »<a <t < b < ». In the sequel we shall assume
that each of the scalar functions a { J(t) is sufficiently differentiable
throughout its domain of definition. We define the derivative of A(t)
by

da
= 5 At) = ()

(1.41) It

&ls

higher order derivatives are defined in a similar fashion. The exponential

function exp(A) is defined by the power series

(1.42) eA =3I+

thag I

=
ol Ly
>

vhich converges for all A€ 7.

1.43 Lemma. Let A(t), B(t) be any differentiable matrices in 7] and

let C be any constant matrix in 7?]. We have

(1.44) & [(a(t) B(t)) = d—‘d‘{ﬂ B(t) + A(t) %}2 ’
(1.45) % etC - etC . c=c . e® ,
(1.46) L eriae)] - (@A)
(1.47) £ ag(a(t)) = ag(hitd)

11



*
a ,* - dA‘t)
* *
where A (t) = (A(t)] and where dg 1s defined by (1.24).
The proof of Lemma 1.43 will be omitted since each equation is either

very elementary or well known.

1.49 Definition. Let od be any subset of 77{. A matrix function A(t)

whose range is in .J and which is differentiable in some interval -a < t <b

(a < b) 1is called a differentiable curve in J .

For any differentiable curve A(t), the tangent vector to A(t) at
any t, € (a,b) 1s defined to be the matrix (aa(t)/at) . -
o
Let U(t) be an arbitrary differentiable curve in the subset Z{ of
+*
all unitary matrices in 7. Then U (t) U(t) = I and U(t) U (t) =1
are identities in t. Differentiating these identities and using the

rule (1.44) we obtain

(1.50) g;‘_gl u(t) + U*(t) d—g{ﬂ =0 ,
(1.51) ﬂ’-&%’- Ut (t) + U(t) 9"—“?)- -0 .

From either of the last two equations we obtain

(1.52) ) .« - y(e) LEd oe)

1.5 lemma. Let U(t) be any differentiable curve in ({ and let
Bl(t), Sz(t) be given by the equations



dU*
(1.54) 5,(t) = - SR u(y)

»*
du (t
oy )

(2.53) 5,(t)

Then Sl(t) and Sa(t) are skew-hermitian for every t € (a,b) and the

tengent vector to U(t) at t, 1s glven vy

(1.56) 92%32' = U(to) Sl(to) = Se(to) U(to) .

t=t

Proof. Using (1.48) and the definitions of Sl(t) and S2(t) ve see
grom (1.50) end (1.51) that S,(t) + 81(t) = 0, SH(t) + 8,(t) = 0; 1.e.,
Sl and 82 are skew-hermitian for each value of t. The expression
(1.56) follows immediately from (1.52).

Let S be any skew-hermitian matrix. It is easy tc see that
exp(tS) 1is unitary for all finite velues of the resl variable t. 1In fact,
from the definition of the exponential function, [exp(ts)]* = exp(-t§)
and, since tS commutes with -tS, we have

* - -
(e¥8) o¥S . 78S ¥S _ t5-t8 _ o _ 1

Thus, letting U(t) = exp(tS), we see from (1.45) that

quit

T " u(t) s = 8 U(t) ;

13



consequently any skew-hermitian matrix 8 can occur in place of sl(to)
and 8,(t ) 1n (1.56) (for some differentiable curve U(t) in W)
ard for any value of to. '

1.4 Normal Matrices.

In the next theorem we list several known characterizations of normal

matrices, already defined in Section 1.1,
1.57 Theorem. Let the eigenvalues of N € 77]  be dencted by

).1,).2, ces Ln. Then N 1is normal if and only if any one of the following

propositions is true:
(a) N=H +1K, vhere H, and H, are hermitian and
Byl = B,
(b) N has a complete orthonormal set of eigenvectors.

(¢) (Toeplitz [23])) N 4s unitarily similar to a disgonal matrix:
K=0'mu (vel, p e D) .

(4) (Wintner snd Murnaghan [26] and Williamson [25], see alsc Halmos
(11], pp. 169-170) There is a positive semidefinite hermitian
patrix H and a unitary matrix U such that

(1.58) N =UE =HU .

(e) (Parker (20], p. 522) There exists a unitary matrix U such
%, % %,
that UN+ XN )0 €D and UN-N)U € D,

b L1



+*
(£) (Parker [20], Theorem 1) The eigenvalues of NN are
2 2 2
|x1| s |x2| s ves s |xn| .
(g) (Parker [20], Theorem 2) The eigenvalues of N + N are
SRR PR L VAR D e
1.59 Theorem (Toeplitz [23] and Parker [20]). A triangular matrix in 772
is normal if and only if it is diagonal.
We shall be interested later in utilizing differentiable curves in
72.. One way of constructing such curves is to use Theorem 1.57 (c¢) and
differentiable curves U(t) and D(t) in & and D respectively. Then
*
N(t) = U (t) D(t) U(t) is a differentiable curve in 7. Furthermore ve
can construct differentiable curves in '7? which pase through a given
*
normal matrix N, =U D, U, (Uo€ U, D, € IS) for some value of t
(say t = 0) by merely requiring that U(0) = U, eand D(0) = D . For

curves U(t) in ¥ we shall use the formula

(1.60) u(t) = er“H

where H 1is hermitian. There is no loss of generality in restricting
ourselves to the formula (1.60) since we shall be concerned with evalustions
of the derivative of '(t) at t = O. Note that, as E rune through A/,
iH runs through the set of all skew-hermitian matrices, so, by Lemma 1.53,
all possible tangent vectors to a differentiable curve U(t) in U at
t = O can occur for curves of the type given by (1.60)

We shall have a need later on for the following result concerning

differentiable curves in r@ .

15



1.61 Lemma. If D(t) 1s eny differentiable curve in A, then
ap(t)/at| is in A, Purthermore every A € A can occcur as
=0

ap(t)/at|  for some differentisble curve D(t) in A.
t=0

Proof. Let D(t) = aiag(a(t), ... , a (t)). Each of the scalar
functions ai(t) has a scalar derivative so daD(t)/dt is in A tor
every value of t. Let gz, (1 =1, ... , n) be any complex numbers. Then

the derivative of D(t) = ¢ dleg(z,,2,, o« zn) equals diag(zl,...,zn),

an arbitrary matrix in & s for all ¢t.

1.62 Theorem. Let X, Y€7(. Then N =X +Ye 7] if and only if

(1.63) xr -Yx+ox' -xvr=0 .
Proof. Bince X and Y are normsal and have

W -FN=X+)X +Y) -+ )X+ Y)
% % % % % »* * %
=XX +XY +¥X +YY - (XX+XY+YX+YY)
axy -YX+ XX -XY

vhence N 1is normsl if and only if (1.63) holds.
1.6k Corollary. Let = be any fixed complex number. Then N € 7] if
and only if N +zI €7].

Proof. Clearly zI1 € 7] for all z € C. Setting X =N, Y = zI wve
£ind that {1.63) is satisfied for all z:

X -YX e+ -XY =N -EN+ 2N - <0 .

16



Thus, by Theorem 1.62, N € 7] implies N + zI € 77. The converse

implication ie clear since (N + 2I) - zI = N.

1.65 Theorem. Let X € )'z Then X + tY € 77 for all values of t in
a real interval of positive length if and only if Y € 77 ard (1.63) holds.
Proof. Let N =X + tY. A short computation, using the fact that

t is real and X € 77, ylelde

(1.66) NN -NN=t3(YY -Y¥)+txy -¥Yx+x -x7%) .

A polynomisl of second degree can have at most two zeros unless all of its
coefficients vanish. Thus the assumption that N € 7? for more than two
values of t implies immediately (1.63) and YY - YY =0 fi.e.,

Y € 71. Conversely Y € 77 and (1.63) imply vie (i.66) that X + t¥ € 7

for all real values of t.

1.67 Theorem. Let Pk(x) =21+ Zl;l zixi denote & polynomial of
degree k( >1) in a metrix X € 7)? with arbitrary complex coefficients
z,. Then N € 7] implies Pk(N)€72.

Proof. If N € 7] then by Theorem 1.57 (c) it has a decomposition
N = U*'DU (u eu, D€ 1@) and clearly Ni = U*DiU for all positive
integers 1. Thus P, (N) = U*Pk(D)U, P(D) € A s by Theorem 1.57 (c)

Pk(N) is normal.

1.68 Corollary. Suppose N € 7. Then e 70 for k=2, 3, 4, ... .
Furthermore if N © exists then N°° ¢ 2 for k=1,2,3, ... .

Proof. That N e 7]l for k >2 is obvious from Theorem 1.67. If
N-l exists then, by the Cayley-Hamilton Theorem, N-l is a polynomial in

N whence N1 is normal. Applying Theorem 1.67 again we see that

17



¥k . (F1H%  ig normal for k > 2.
1.69 Theorem. Let A €77{ and let O and P be complex numbers. If
»*
A ds normal then aA + BA € 7T for all a,8; if A 1s not normal,
* .
QA+ PA € 7] if and only ir |a| = |B|

Proof. Setting N =QA + BA' we find that

(1.70) o - NN = (fa]? - |8[2) (A" - a"2) .

The conclusions of the theorem follow immediately from the relation {1.70).
1.71 Corollsry. If A €77 amd q,8 € C with |x]| = |8|, then
Pk(GA * u*) € 7( vhere P, 1is an arbitrary polynomial of degree k with
coefficients in C.

Proof. This is an obvious consequence of Theorems 1.67 and 1.69.
).T2 Theorem. Buppose @ € C(a £0), z € C, and U €U are fixed.

hen each of the transformmtions

(2.73) T,(K) = ,
(1.Th) rz(n) =%+ I ,
(1.75) T, (K) = V"N

defines a one-to-one mapping of 7] onto itself.

Proof. Let N be any normal matrix. Then from Theorem 1.67,
Corollary 1.64, and Theorem 1.57 (c) we see that G™°N, N - zI, and
wu' respectively are in 7. Thus N = T(071N) = T (N-21) = n (uo")
vhieh proves that each of the transformations (1.73), (1.74), and (1.75)

18



is onto. Letting Nl ’ N2 denote any pair of normel matrices, one sees
easily that any one of the equations Ta(lil) = Ta(NR)’ Tz(Nl) = Tz(Nz),
TU(Nl) = TU(Na) implies N, = N,, whence each of the transformations is

one-to-one.

1.9 Existence of v-Minimal Matrices.

The definition of a v-minimal (or v-minimizing normal) matrix has al-
ready been given in Section 1.2 (Definition 1.39). Let v denote any
noria on 7?]. Suppose first that A € 7(. Then there is a unique v-
minimal N_, namely K =A; for if A € 7/ then d (A) =0 and the
infimum in (1.34) is assumed if and only if X = A. Our mwain purpose in
the present section is to show that, for any A € 7’? and any norm Vv,
there exists a v-minimal matrix.

Note. Any two normed linear spaces (over C) of the same finite
dimension are topologically isomorphic (see e.g., [13], p. 13). This
implies that the norm topologies induced in mn -y any two norms are the
same; consequently there is only one norm topology for 77,";! and wve refer
to it as the norm topology of mn'

1,76 Lemma. The set 7?n of all normal matrices (in 77(“) is closed in
the norm topology of 777 .

Proof. Matrix multiplication is continuous in the norm topology
eince it is continuocus with respect to the €-norm topology (cf. Section
1.1). Let N be any matrix in the closure 77 of 7{. Then there is
a sequence [Nil (Nie7z for i=1,2, 3, ...) such that N, »N.
8ince each N, is normal we nave
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Q.77) NN =NN (1 =1,2, «a0) .

By virtue of the continuity of multiplication we may pass to the limit in
(1.77) and obtein NN = N'K, i.e., N is normal. This implies 77 C 27
which proves that 7? is closed.
1.78 Theorem. lLet v be any norm on 7’?n and let A be any fixed
matrix in 7?In. Then there is a v-minimal matrix N_ (for A).

Proof. We assume dv(A) > 0 (see (1.34)) since otherwise the theorem
18 trivial. By the definition of dv(A) s there is a sequence (N,) of
normal matrices such that v(A - Ni) -.dv(A). The subset
K . (X;Xe€ 7'7:1 and dv(A) < vA-X)< 24 (A)} 1s cloeed and bounded,
hence corpact, in 77]”. Clearly there is an index ko 80 that N1 € @
for 1>k . Thus, since @ is compact (and therefore countably compact),
there is a subsequence [Nik) (1k >k, for k=1,2,3, ees) which
converges to a matrix K_€ A. mis ¥ , 18 & point of closure of n

80, by Lemma 1.76, it is normal. PFinally

(1.79) a4 (A) <(A-N)<v(A-F )+vNn -1) ;

2" o

and, since v(A - n‘x) -pdv(A), we have

v(A - ni_k) = dv(A) +3, 2 a,(a)

where bk-.o @3 k -+ w~. Thus, given € > O, there is an index kl such

that the right side of (1.79) 1s less than 4 (A) + € for k> k. Bince
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€ 1is arbitrary we have dv(A) < V(A - No) < dv(A) which completes the
proof of Theorem 1.78.

Theorem 1.78 showes that the distance problem of finding dv(A) is
actually & minimum problem for all v and for all A. This suggests the
possibility of finding dv(A) by determining a v-minimal matrix. We
shall investigate this aspect of the distance problem in subsequent sections
of this paper.

Since 77n is not a convex set (the sum of two normal matrices is
not necessarily normal), we naturally expect that there might exist
matrices A€ 7%&1 fcr which there 1s no unique v-minimal matrix. We shall

ghow, at least for v =€ and n =2, that this 1s the case.
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CHAPTER 2

EQUIVALENCE THEOREMS CONCERNING MIRSKY'S CONJECTURE, v-MINIMAL

MATRICES, AND DISTANCE FORMULAS.

Now that the existence of v-minimal matrices has been established, it
is of interest to determine what transformations of »?n leave the
preperty of minimality invariant. In this section we shell give three
results of this type and we shall also prove three closely parallel results
ecncerning distance formilas resembling lirsky's formula (1.36). We begin

with an examination of the meaning of Mirsky's conJjecture.

2.1 Mireky's Conjecture.

2.1 Definition. Anorm v on 777 such that

(2.2) v(A) = v(a(a)) forall A € 77_
and
(2.3) v(A) > v(R(A)) forall A €77, A ¢77 ,

where 0(A) 1is defined in Definition 1.17, ie seid to have property S.
2.4 Lemma. The Buclidean norm € has property S. Furthermore, for any

unitarily inveriant norm v, we have

(2.5)  Wa((AMD) = A) > WaA))  rorall A €77,

with equality holding in (2.5) for &11 A € 77 .
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Proof. By a well-known theorem of Schur [22] (see e.g., [16], p.

307) every A 677zn is unitarily similar to a triangular matrix:
%
(2.6) VAV = a(A) + M v e W)

where in M only elements above the principal diagonal may be different

from zero. Thus, by (1.16), we have

ez(A) = ea(VAV*) = ea(n(A)) + ez(M)
§0

(2.7) 2(a) - (a(a)) = E(m)

By Theorem 1.59 M = O if and only if A €77 ; hence from (2.7) we see
that € has property S.
In order to prove (2.5) we shall need the following two results.

2.8 Theorem (Fan [8], Theorem ). Let &, >a,> ::->8 >0,

by 2 by > +es>b >0. Then

(2'9) 0(31,821 AR an) _<_ m(bl!bax AR bn)

holds for all symmetric gauge functions ¢ of n real variables if and

only if

|2
1.3

(2.10) a

]
)
IA
[
L
[
(-3
o~
[
IA
=
A
=]
S’
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2.11 Theorem (Weyl [24], p. 409). Let the eigenvalues ).1 and siugular
values Q, of A€ /% Dbe arranged so that [A > A, ]3>0 A [,
@ 20 2 - 2a . Then, for any real exponent & > 0,

k

k
(2.12) 12-:1 I 1% < 12-:1 af (<k<n) .

Since 0(A) 1is diagonal (and therefore normal) ite singular values
are |\ |, ..., |xn| (see Theorem 1.57 (£)). The inequality (2.5) now
follows immediately by combining Theorem 1.11, Theorem 2.8 (here we set
a = Ilil, b, = ai), and Theorem 2.11 (use 8 = 1). If A 4s normal it
is unitarily similar to §(A) whence equality holds in (2.5) for all
Ael],

The question of which unitarily invariant norms v § € have property
8 (i.e., vhich ones satisfy (2.3)) 1s apparently open. We shall presently
shov that the spectral norm o does not have property 8.

2.13 Definition. Let v be any norm on 77]n vhich has property 8.
Then we define

aS(a)

2.14) -
( ? ¥(a) - v2(a(a))

(A) =

v,n

tor A ¢77 .

For any v vith property 8 we eee from the definition of d (A)
and (2.3) that P, n(A) is a well-defined positive quantity so that
2

dv(A) can be expressed in the form

(2.35) @A) = p, (W(FA(A) - F(2(A) for ald A€, A G, .
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If we assigned to pv’n(A) some convenient finite value for A € 77n,
then (2.15) would be valid for all A e)rzn. Note that (2.15) has the
same general form as Mirsky's formula (1.36). We now prove the following
characterization of Mirsky's conjecture for a particular norm v.

2.16 Theorem. Let Vv be a norm on mn' Mirsky's conjectured formula
(1.36) for 4 (A) holds for all A€ mn if and only if v has property

S and

(2.17) (A) = 3

Py,n
for all A eWZ}, A q 7?n and for n =2, 3, ... .

Proof. Since nn is closed as a subset of mn’ ve see from
(1.34) that 4 (A) is zero when A e??n and strictly positive when
A d ﬂn. Thus, if (1.36) holds for all A e7?7n, v has property S
and (2.17) holds. The converse is obvious.

Let the n by n matrix A (n > 3) be given by

B O

o

(2.18) A

where B =

c o P

C

o v O
.

c 0

The nonzero singular values of A are 2, V-2- and the nonzero singular
values of Q(A) are 2, 1. From (1.14) and (1.15) we bave

o(A) = c(Q(A)) = 2 while, by Theorem 1.59, A is not normel. Thus (2.3)
does not hold for v = 0; consequently o fails to have property S

for n > 3. We have proved
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2.19 Theorem. The spectral norm o does not have property S for

n > 3. Mirsky's vunjecture 1.35 1s false for v =g and for n > 3.

In Chapter 8 where we discuss some other counterexamples we shall
prove that Mirsky's conjecture also fails for v =o and n =2, (See
Theorem 8.9).

2.2 Invariance of v-Minimal Matrices.

The content of the next three theorems is, roughly speaking, the
following: v-minimality 1s generally invariant under the transformations
(2.73) - (1.75). The accompanying corcllaries show that uniqueness of a
ve-minimal matrix is also invariant under the same trensformetions.

2.20 Theorem. let v be any normon 7%, and suppose & € C,
@ 4 0. Then N, is v-minimal for Aemn if and only if oN_ s

veminimal for GA. Furthermore
(2.21) d (ca) = laldv(A) .

Proof. By Theorem 1.72 ON runs through 7? as N runs through 77
Consequently v(A - N) assumes its minimum for N = N, if and only if
x| « W(A - N) = v(GA - ofi) assumes its minimm for N = N, If aN,
is v-ninimal for GA ther

av(am) = v(GA - omo) = la] v(A - R) = la] a,(a) .

2,22 Corollary. Let v be any norm on ?’2“ and suppose @ € C,
@ £0. A€ basa unique v-minimal matrix if and only if @A has a

unique v-minimal matrix. p
2



Procf. 1If N° is the unique v-minimal matrix for A and if N., N

1’ 72

are v-minimal for GA, then by Theorem 2.20 N = a"]'N.J = a']'Ne whence
Nl = N2. The converse is proved in a similar manner.

2.23 Theorem. Let v denote any norm on 77? If N, is v-minimal for

A€ /7] then N_ +2I i v-minimal for A +zI for all z € C. Conversely,
if No + 21 1is v-minimal for A + zI for one value of z € C then No

is v-minimal for A. Furthermore, for all 2z € C, we have
(2.24) d (A +z2I) =4, (A) .

Proof. Ouviously

(2.25) v(A - N) = v[(A + 2I) - (N + zI)]

holds for =2ny norm v, for all A, N ¢ »?, and for all 2z € C. By
Theorem 1.72 Tz(N) = N + zI runs through 77 in a one-to-one manner as
N runs through 7( Thus, as N runs through 7?, the left and right
sides of (2.25) assume their minima simultaneocusly. This proves the first
two statements of Theorem 2.23. The relation (2.24) follows immediately
from (2.25) if one assumes that N 1is v-minimal for A.

2.26 Corollary. Let Vv be any norm on 7’? and suppose z € C. Then

A€ 7)? has a unique v-minimal matrix if and only if A + 2zI has a
urilque v=minimal matrix.

Proof. The proof is strictly analogous to that for Corollary 2.22.
2.27_ Theorem. Let v denote any unitarily invariant norm on 77 and

let U €7 by fixed. Then N, is v-minimal for A€ 77{ 1f and only if
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* *

U NOU is v-minimal for U AU. Furthermore

(2.28)  a(UTAu) =4 () .
Proof. Since v 1is unitarily invariant

(2.29) WA - N) = U AU - u*mJ)

holds for e11 A, N€ 77] and for all U € Z{ . By Theorem 1.72
TU(N) =UNU runs through ?? in a one-to-one manner as N runs
through 77. Therefore, a8 N runs through /7, the left and right
sides of (2.29) sssume their minima simultaneously. This proves the first
assertion in Theorem 2.27. Equation (2.28) follows from (2.29) if it is
assumed that N i1s v-minimal for A.
2.30 Corolliary. Let v be any unitarily invariant norm on 77{ and let
U € U. Then A€ 7)( bhas a unique v-minimal matrix if and only if v au
has a unique v-minimel matrix.

The proof is analogous to that for Corollary 2.22 and is therefore

omitted.

2.3 Invariance of Distance Formulas.

2.31 Definition. A transformation T whose domain space is 777, and

whose range space is contained in 7?{1,‘ is said to be discriminating if

(M) e’)?n for M ¢ nn
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and

(M) € 7 for M e 2T

We have already seen that, for any norm v with property S, dv(A)

can be represented by the formula
(2.32)  d(a) =p, (W(FA) - F(aA), (ae 7, A ¢ 7T)

where pv,n(A) is defined by (2.14). The question necturaliy arises as

to what happens to pv,n(A) when A 1s subjected to various discriminating
transformations. The next three theorems provide some answere to this
question for the diserimirating transformaticns (1.73) - (1.75).

2.33 Theorem. Let Vv be any norm on 777n which has property S.

Let @ € C,af0 andlet A€M, Af 7). Then

(2.34) P

v,n

(ch) = p, (A) .
Proof. If kl, xz, vee » xn are the eigenvalues of A then

axl, axe, vee akn are the eigervalues of OA; consequently (cf.

Definition 1.17) Q(xA) = aQ(A). Using that fact, (2.32), and (2.21) we

obtain

(o) = fof? a(a)

p, A(8)(V(@a) - v¥(aa(a)))

p, (AGF (@) - Fla@)) .
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The first fa-tor in the last line must be bp n(aA) which proves (2.34).
2
2.35 Theorem. Let € denote the Euclidean norm (1.16) on mn' let

A be any nonnormal matrix in 7)[n and let 2z € C. Then
(2.36) Pon(A +21) =2, (A) .

Proof. Let A, (1 =1,2, ... , n) denote the eigenvalues of

A= (a From (1.16) we have

‘.
157

Caven) =L la B+ 3 |ag, +2f
1§J 4 1§1 11

2 - < 2 - 2
-e(A)+z£a11+zR|u+n|zl ;
i=} =

n n
end, sirnce z M= z ve obtain
1

N ®41? S~
(2.37) ca(A + 2l) = CZ(A) + 1{1 Mot i 'ii + ulzl2 .

Purthersore, since (11 +3g) (1 =1, ... , n) are the eigenvalues of
A+13l,
CZ(Q(A +21)) = ﬁ (l.,_ + z)(xi +3)

(2.38) .
- n -
= ¢2(a(A) + % 1& Ay 42 F. X, +alsf® .



Combining (2.37) and (2.38) we find that
(2.39) E(a) - E(a(a)) = (A + 21) - E(aa + zI)) .

Applying (2.24) in the case v = € and using (2.39) we obtain

di(A +2I) = dE(A) =p n!_A)(ez(l\) - €€(a(a)))

€,

= b (A)(%(a + 21) - <*(a(a + 21)))

The relation (2.36) now follows from the last equation.

2.40 Theorem. Let v 'be any upifarilv invarient norm on 777 which

has property S. Let A be any nonnormal matrix in 7)7“ and let
U € ‘L(n. Then

(2.42) P, n(U*AU) (A) .

=
Py,n

Proof. The esigenvalues of a matrix are invariant under a unitery
*
similarity transformation so Q(U AU) = Q(A). Consequently, since v is

unitarily invariant, we have
(2.%) P(A) - v2(a(a)) = P(u'a) - B(a(u*an))
From (2.28) we have

E(u'a) = &(a) = p, (GAR) - P(ala)))

and, combining this with (2.42) we obtain (2.41).



CHAPTER 3

IMFROVEMENTS OF MIRSKY'S BOUND

3.1 A New Bound.

In this section we ghall obtain an upper bound for d‘z(A) vhich is
sharper than the bound (1.38) obtained by Mirsky. Before doing this we
prove & lemma which sheds some light on Mirsky's result (Theorem 1.37).
This lemma furnishes at least a partiel answer to the question: given
A€ 7)?", vhet normal matrices lie at the distance from A which 1s

glven by Mirsky's bound?

3.1 Definition. For any A 67’4 we define

(er(82)/ Jtx(82) |} 1z tr(a%) § 0

(3.2) n(A) =
(z;2€ C and |z| =1) 1f tr(A?) =0 ;

(3-3) M (A) = (5 (A+nh) 50 € q(A)) .

Note. n(A) 1s a set of complex numbers of unit modulus. If
'r.r(Aa) #0 then n(A) contains a single well-defined number but, if
tr(Aa) =0, 7(A) consists of all complex numbers on the boundary of the
unit disk. An analogous remark applies to the set HO(A).
j.b_Lemma. Let A be any matrix in 777 . Then every matrix in the set
l(o(A) is normal. PFurthermore



(3.5) (A - X) = (2(A) - |tr(A%)]) forall X € M (A) .

Proof. The fact that MO(A)C 7 n follows immediately from Theorem
1.69. Assuming that |n| =1 and using the properties (1.20) and (1.22)

of the trace, we obtain

(A -3 (a+0A)) = § trl(A" - FANA - A")]

(3.6)
= £ (r(a"8) - £0(a"%) - T () + tr(aa’)) .

Using (1.22) agair and (1.21) we see that the last equaticn becomes

(3.7 A-Z(a+a)) =2 ) - (0 er(A) + 7 (A .

It tr(Aa)f 0 and 7 € 1(A) then (3.2) implies 1q tr(Ae) =7 tr(Aa) =
|tr(A2)|, whence (3.7) implies (3.5). If tr(Aa) = 0 then the last term
on the right side of (3.7) vanishes for all 1 € n(A) end the right sides
of both {3.5) and (3.7) reduce to (1/2) ta(A). This proves Lemma 3.L.
Remark. The author believes that the set MO(A) contains all

»*
matrices of the form @A + BA {with |a| = |B|) which satisfy

(A - (0a = ga")] =3 (F(a) - (D)) .

However, no attempt will be made here to prove that assertion.

3.8 Definition. For any A € 777 we define
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((er(8) - (1/n)(tr(a))®)/[tx(A®) - (1/n)(tr(a))2])
(3.9)  ¢(a) = 17 ex(a) 43 (ex(a))?

(252 €C and |z =2} 1r w(a®) =2 (x(A))® ;

(3.20)  M(A) = (3 (A + ¢A") + 5 tr(A - CAT)I 5 § € ¢(A))

Note. The situation with {(A) and M(A) is exactly the same as
that for n(A) and HO(A) (see the note following Definition 3.1). If
tr(a%) # (1/n)(tr(A))2 we use the symbol N(A) to denote the (single)
matrix in M(A). In the ambiguous case tr(Aa) = (:L/n)(t.r(A))2 of (3.9)
we shall use the notation l!e(A) (or N;(A)) to denote the particular
matrix in M(A) which corresponds to the element { = exp(10) of g(A)
(here 6 is real).

3.1l Theorem. Let A€} and let ¢ denote the Euclidean norm (1.16)

on 7’?n. Then every matrix in the set M(A) is normml. Furthermore

n

(312) (-1 =} (Ew) - AL | ) L G,

for a1l X € M(A) .

Proof. The fact that M(A) C 77:1 follovs immedistely from Corollary
1.7, Let

n-A-i‘l&-‘lx .
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Then

2
32 = A2 - 2 tr{A A+ ;tr§A22 I
n 2
n
whence

(3.13) tr(8) = tr(Aa)-% (tr(a))?

A comparison of the definitions of the sets (3.2) and (3.9) reveals that

(3.13) n(B) = ¢(a)
Furthermore
*
A- A+ vk urla- a1 =3 (a-EA ) Lot oA g,
=-21-(B-g3*) -B--al-(3+;1a*) ;
consequently, from (3.5) and (3.il4), we obtain

(3.15)  €lA - (3 (A +¢A) + 3 tr(a - QAD) = 5 (E(8) - [er(F)])

for all ¢ € {(A)

Now
*
E(B) = trl(a” - A 1)(p - 1) 4y,
» 2
(3.16) = tr[A"A - trﬁA) At trr(lA ) a o Ltz

n

- 2(A) . Itrn‘Ana
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Combining (3.13) - (3.16) we obtain (3.12) and this proves Theorem 3.1l1.

An obvious consequence of Thecorem 3.1l 1s

3.17_Theorem. We have, for all A €77?n,

2 2
(318)  a2(A) < (B - L= | 2y - LxO)F

We shall show that the bound (3.18) is sharper than Mirsky's bound

(1.38). We first prove

3.19 Lemma, If A €] then

(3200 ) - LEAE _per?y - @ 20 | sy

If tr(A) = O we have equality in (3.20) and, if tr(A) # O, equality
holds in (3.20) if and only if

(3.21) n_E@ >1

(tr(a))° =

Note. The inequality (3.21) is to be interpreted as follows: it is
satisfied if and only if the left hand side of (3.21) is both real and
greater than or equal to unity.

Proof. The inequality (3.20) and the conditions of equality in it for
the case tr(A) O are an immediate consequence of the triangle inequality
and ite conditions of equality (see e.g., [1] pp. 8-9).

While Lemma 3.19 provides, in a certain sense, a complete answer to
the questions of equality and inequality of the upper bounds in (1.38)

and (3.18), there remain the more interesting questions of vhat relationship
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these bounds have to the actual distance de and to the conjectured
distance (1.36) in the case v = €. We shall discuss the former question
in connection with some counter:xamples in Chapter 8. The next three
results delineate a partial answer to the latter question.

3.22 Lemma. Let Xl,kz, ves kn denote complex numbers. Then

n n
T ] < ¥ InI® vith equality holding if and only if all non-
k=1 k=1

zero MA's lie on a single straight line through the origin in the complex
plane.

Proof. By the triangle inequality (see [1], p. 9) the desired
inequality holds with equality holding if and only if the ratio of the

squares of any pair of nonzero A's 1s positive:

ol 1o

2
(3.23) =(%) >0 , (0 £ 0, xjfo) .

A

e

Obviously (3.23) holds if and only if S y 1s real so that, if
M =Ty exp(iek) (k = 1,2, ... , n) where r, >0 and 6 1is the
principal value of arg(xk), exp[i(ek - 93)] = + 1 wheace either
Ok-GJEO(modzx) or 6, -8
or Ok = Gj + n.

# 1 (mod 2x) i.e., either 6, =0

J J

3.24  Corollery. Let A 677?,,- We have
(3.25) ltr(a%)| < €2(a(A))

wvith equality holding if and only if all nonzero eigervalues of A lie on

a single straight line through the origin in the complex plane.
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Proof. Let kl, sen xn denote the eigenvalues of A. Then by

Lemma 3.22

2 S 2 & 2 2
(3.26) ()] = 1L 21 s 3 Iy P = Elata)
k=1 k=l
wvith equality holding as stated in Corollary 3.24. .
3.27 Lemma. Let A€ 7}zn be given. If, for this particular matrix A,
Mirsky's bound in (1.38) is equal to the conjectured distance (1.36)

(‘tith yv= ‘)’ i-e-, ir
(3.28) [er(42)| = E(a(a))
then the bound in (3.18) ia also equal to the conjectured distance, i.e.,

?

2
(29) AL, jera?) - LEAD%) L 20y

and

(3.30)  fa-x) =3 () - E(a(A) for a1 X € MA)

vhere M(A) 1s defined in Definition 3.8. .

Proof. Ry Corollary 3.2k (3.28) holds if and only if the eigenvalues
of A can be written in the form A _=r, exp[i(6 +p )] (x =1,2, ... , n)
vhere r, 20, up[ipk] =41 (k=1,2, oo , n) and 6 1s a real
constant. Thus '

n

2 2 _ 126
(3.31)  tx(a) k}:_'l».k C

ey 126 2

2
r,e =e e s

5
-
w
)

®



2 & 2 ,16 & 2 409 B Ip2
(3.32)  (tr(A))° = (kz--l M) = (e L e ) =e (k; re ).
Clearly
n ipk 2 n o no,
(3.33) (kz=1 re ) < (k; r) <n k};l r .

By Lemma 3.19 and (3.28), (3.29) holds if tr(A) =0. If tr(A) #0,
then at leaet one r, is positive and, from (3.31), (3.32), and (3.33),
we have

2 2
n tr(Aa) - nz Tk > n Zrk

=]
(1‘.r(A))2 (Z . exp(ipk))2 " n Zri

Therefore, if tr(A) # O, (3.21) holds so that equality holds in {3.20).
This proves (3.29). Equation (3.30) then follows immediately from (3.12).
Thie completes the proof of Lemma 3.27.

Remark. The equality (3.29) can hold also in many cases in which
(3.28) is not satisfied; furthermore the bound in (3.18) can 1ie between
the bound in (1.38) and the conjectured distance (1.36) (with v s'e)
as the following examples show. Suppose A 18 of order 4 and has
eigenvalues -1 + 1, -1 +1, -1 +31, and 2 + 6i. Then straightforward

computations show that

2 2
L@ o jera?) - L) 2 Reaqa)) = 16
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vhile
36.71 < |tr(A2)| < 36.72 .

Again, if A is of order 4 and has eigenvelues 1, 1, 1, and -i,
then

2 2
Ean)) = b, LEA , jor(?) - LW Lo ()] -0 .

We shall show later (Lemma 6.5) that (3.29) and (3.30) hold for all

A€ 7y

3.2 Methods for Obtaining Other B.wnds.

Another upper bound for dc(A) will be obtained in Chapter 5
(Theorem 5.24) in comnnection with a maximun problem which is closely
related to €-minimal matrices.

We shall now described some problems whose solutions, if they were
known, would give rise to upper bounds for d‘(A).

Let A€ 7] . For each natural number k > 1 we define the follow-
ing subsets of 7’{n:

k
(3.38) L (A) = (21 P NEXCR wi¥tee Bl=2eg

(@=0,1, ... ,k)} ,

k ®
(3.35)  Zy(it) = (51 + T 2(A + (A * 2, € ¢ (@=0,1, ... , k)



where in (3.35) we require { € C and |{| = 1. From Theorems 1.67

and 1.69 we obtain
(3.36) L A c n, for A€, ,

(3.37M) L, (as8) ¢ X, (A) foreann [g| =1

Also, obviously,

(3.38) X e X, X L) LK) (k3 e2)
From the Cayley-Hamllton Theorem one may deduce

(3.39) X, (8) ¢ X__ (&), L, (A8) © X (A;t) wvhere A € 77,

k>n

3.40 Problem. Let A e?’(n. Find

0 Mi 2(A - X l1<k<n-1)
(3.4) xefk(A)e( ) (1<kg<n

and find all matrices in xk(A) for which the minimum in (3.41) 18
assumed.

A simpler problem is the following
3.42 Problem. Let A € 7){n and let { be a fixed complex number
satisfying |{| = 1. Find

(3.43) (A - x) (1<k<n-1)

Min
x € X, (A;0)

L



and f£ind all matrices in xk(A;;) for which the minimum in (3.43) is
assumed .

By virtue of (3.36) and (3.37) a solution to eitner of the above
problems would yield an upper bound for de(A).

Remark. The author believes that the set W(A) defined in Definition
3.8 provides s complete solution to Problem 3.40 for k = 1. No attempt

to prove that assertion will be made here.



CHAPTER &

NECESSARY CONDITIONS FOR €-MINIMAL MATRICES

4.1 Primary Results.

In this section we shall derive a number of conditions which a
matrix No must satisfy if it 1s €-minimal. One method which we employ
involves the notion of & differentiable curve N(t) in 7[ If No is

v-minimal for A then, by elementary calculus, we know that

(b1)  Fva-NE)| =0 or £ V(A -Nt))| =0
t=0 t=0

must hold for every differentiable curve N(t) such that N(O) = N,

provided the derivatives indicated in (4.1) exist in an interval containing

t = 0 in ite interior. This brings up the (possibly difficult) question

of how to differentiate an arbitrary (unitarily invariant) norm or some

other function whose minima coincide with those of v(A - N{t)) (such

as v2(A - N(t))). 1In the case where v is the Euclidean norm, the

derivatives of all orders can easily be computed. Indeed, from (1.22),

we have

& €a - 8(8)) = & erl(a - B(E))" (A - ¥(2)))
(4.2)

- a"? tr(A®A + B (2)N(t) - A'R(t) - X (t)A]

Using (1.20) and (1.46), we have

k3



%

a 2 - R * an(t) . an (t

(5.3)  F A - K(E)) = g tr(N(£IR()) - tr(A "&1‘;‘1 . _d_g_l A .
In the proof of the next theorem we shall need the following three

elementary lemmas. .

L4 Lemas. Let N(t) =U'(t) DU(t) where D 1s any fixed element of

@n and U(t) is any differentiasble curve in Z(n. Then

(4.5) tr(8"(¢)n(t)) = ()

Proof. This follovs iumediately from (1.22) and the unitary
invarience of ¢.
4.6 Lemms. (von Neumsnn (19], p. 290) Let A € 77,. Then tr(AH) =0
forall B € 7, if and only if A = 0.
4.7 Lems. Let A = (a,,) €7%,. Then Re tr(A A) =0 for all
A € A, if ana only 1f

(4.8) a, =0 (1 =2,2, .e. ,n) .

Proof. letting A= dug(al,q,‘,, e an), the sufficiency of (k.8)
1s obvious from

(s.9) Re tr(AA) = Re 121 o8, g Re(ailu) .

Jor the recessity ve set A = “‘8(:11’:22 s see s :m), obtaining
n

Re tr(M) = ¥ |‘u'2 = 0 which implies (4.8).
1=}

bh



4,10 Theorem. Let A € 7?7 and define, for all X € 77? » ‘the operator
Ly(X) by

(4.11) L,(X) = XAY - AX + XA - &X° .

*
it B =U D U, vhere U_ € U =nd D, € @, is €-minimal for

A then
(4.12) L,(N,) =0
and

9%
(h.13) D, = dg(U_AU_)

where the function dg 1is defined by (1.24).
Proof. We first utilize differentiable curves of the form
#*
R(t) = U (t) D, U(t), where U(t) is given by (1.60) and H 4is any

matrix in A/. For every H € * ve have N(O0) =N, eand

.
»

dt (o) dat £=0 1)

*
(e) . WLL) p y(e) + u*(e) D, Wt

o dat ’
an(t)
(b.15) Tt ‘tso = i(FH - HN ) .

Using (4.3), Lemma 4.4, (1.48), and (4.15) we obtain

b5



& E- N(t))lt--c = - tr(A"1(N H - HN) - 1(EN] - N_H)A]

» * * *
(4.16) =1 tr(A Hi -AKNH+HNA - NonA)

* * * *
=1 tr[(NoA -AN +NA- ANO)HI

vhere, in the last step, we used (1.19) twice. According to (L.l) the last
expression in (4.16) must vanish for all H € 7. Therefore, by Lemma

k.6, we obtain

* * % *
(4.17) BA -AN +NA-AN o,

i.e., (4.12) holds.

Next let N(t) = U, D(t)U, where D(t) is a differentisble curve
m A satisfying D(O) » D_. In using (4.1) vith this type of curve
¥(t) we are concerned only with the derivaiive of D(t) (evaluated at
t =0) and not D{t) itself. By lemmm 1.61 we §btlin complete generality
by setting

(.18) o)) .o
t=0

vhere A denotes an arbitrary disgonal matrix. We define LY by
[ ]
'1 - Uo A Uo and note that

an(t -yt 2(t) -t -
(b.29) -‘T“"_'llt-o U —dt u°|t-o Uoh U, = H .



Thus, by (1.44),

(k.20) L eme)Il - NN+ NN
t

=0

and, using (4.3), (4.19), and (4.20), we obtain

a 2 #* * *
o e (A- N(t))|t-° = tr(NN, + NN - AN

*A)
1 - Ny

»* * * * *
tr(AD, +DA -UAUA -A UOAUO)
(4.21)

tr[A*(Do - quU:) + [A*(Do - UOAU:)I*}

% +*
2 Re trla (D, - UOAUO)] .

It follows from (4.1) that (4.21) must vanish for all A € A; conse-
quently, by Lemma 4.7, all diagonal elements of the matrix D, - UOAUZ
vanish, 1.e., (4.13) holds.

Remark. It is instructive to investigate the result of applying
(4.1) in the more general situation in which N(t) = U'(t)n(t)u(t), vhere
U(t) 4s again given by (1.60) and D(t) 4s any differentiable curve in
‘9 such that D(0) = Do' The computations can be summarized as follows:

(h22) S8 L gf(e) 28 yio) o WL pejuce) + ui(e)n(e) U,

an(t _
(4.23) —“‘Lllt-'.o =N +4NH-:V) ,

vhere N, is given by (4.19), and

b7



(4.24) £ - u(t))lt-O -2 Re tr[l;(Do - y_au})]

%* * * L ]
+1 tr[(NoA -AKN +NA - Auo)n] .

Of course the right side of (4.24) must vanish for all A e»@ and for

a1 H € %A; but, from (4.16) and (4.21), we see that this is implied

by the separate arguments used in the proof of Theorem 4.10. Therefore
nothing new can be obtained by using the more general type of differentiable
curves 1n 77. |

b.25 Theorem. Let A € 7. If N  is ¢-minimal for A then

(4.26) tr(A) = tr(N)) ,
(h2r) | u-u;u =K )] =trl(A-u)"8]=0

Remark. The reader will note from the following proof that both
(4.26) ana (4.27) are consequences of (4.13), as are also the following
equalities which are equivalent with (4.27):

(4.28) () = tr(a’n)) = tr(wia) ,

(4.29) L) = éa-n) - En) - Em) .

Proof. 8ince tr(D ) = tr(N ), (b.26) 1s an 1mmediate consequence
of (h.13). Writing K, = U,DU, as before, ve have



% 9% % %
tr[No(A - no)] = tr[uonououo(a - no)uol

(4.30) . .
= tr[D (U AU, - Do)] .

»*

By (4.13) all diagonal elements of the matrix UAU - D, are zero,
* *

consequently the same holds for the matrix DO(UOAU o =D o) hence

tr(D,(UAU] - D_)] = 0. Thus, from (4.30), ve have
9%
(4.31) tr(N (A - N )] =0

The last equality implies that tr[N:(A - No)] is real; consequently
the rest of (4.27) follows from (1.21).
Remark. Let A, B € 7% . The set 7’In can be considered as a

complex Hilbert space with respect to the inner product

(4.3) (A,B) = tr(aB') .
Comparing (4.32) with (4.27) we see that, if N, 1s ¢-miniml for A,
(4.33) (A-F_,K) =0 ;

that is, llo is orthogonal to A - l!o. This geometrical reformulation of
the necessary condition (4.27) 1s not too surprising. Indeed, if L
is S-minimel, then it must also be ¢-minimal among all members of the

one-dimensional linear subspace (of 7?[“):

J-(X;x-do vhere z € (]

9



vhich is contained in 77n. ,J is precisely the "straight line" through
lo and the null matrix. 8ince no point on J can be cloger to A

than Ro, ve see that No must be the point of intersection of J and
the line through A which i¢ perpendicular to J + This gives
immediately the result (4.33) so we have proved (4.27) a second time with-
out using differentiable curves and calculus. One can also prove (4.27)
directly (without using (4.13)) by using (4.1) and the particular
differentiable curves N(t) = (1 - t)No and N(t) = (1 - 1t)N_ . The
latter proof, which will nqt be worked out in detail here, appears to

be essentially an analytic reformulation of the geometric considerations
Just mentioned.

We shall prove later (Theorem 5.13) that (4.13) and another condition
on uo constitute necessary and sufficient conditions for €-minimelity.
It appears that (L4.13) is a much more stringent condition than (4.12);
however, the latter is much easier to check than (4.13) and this fact
enhances its value. We now describe some conseguences of the neceasary
condition (4.12).
b,3p Theorem. Let A € 77, N € 77]. Then the following statements
are equivalent.

() L,(¥) =0 ;

<%
(v) noA“ +3h € H ;

I
.

(c) (m, -an” + (N -BA)A €H foramy ape

(@) Wy(A-oN) +N(A-pB)€N foray ape R ;

(o) M(a-an)" oW (A - )= (N(A - )" + 0 (A - )"
holds for any 3, v € C provided X € 77.
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Proof. Statement (a) is equivalent to (4.17) and we shall show that
(v), (c), (), and (e) are equivalent to (4.17). First note that (4.17)

can be rewritten in the form
»* * * *
NOA +N°A-AN°+AN° .
* % *
The right side of the last equation obviously equals [non + NOAI wvhich

showa that (b) is equivalent to (4.17). For any real numbers a and B

we note that
* * * * *A * *
NOA -OMONO-ANO-I-BNONO'fNO -ﬁNONO-ANO-fmoNO-O )
* * * »* * * *
NA -QAA -AN +BAA+NA-PAA-AN +QAA =0
o) o o (¢]
are equivalent to (4.17). Clearly the last two equations are equivalent
respectively to

N (A - d )" - (A - BN )N+ N(A - BN ) - (A - NN, =0 ,
(v, - aA)A” - AM(N_ - BA) + (N_ - BA)'A - A(N, - aa)" = O

vhich are equivalent respectively to statements (¢) and (d). 1If we
assume that N o is normal and let 2z and v De any complex numbers,

we obtain from (L4.17)
NA" - 2NN -A'N +INN_+ K. "N - AN + W N =0
o T %o " ) oo * BA - vB N, - AN, + WN N,
L » » *
N (A - zno) - (A - zllo) N, + N (A - wllo) - (A - ""o)“o =0

which is equivalent to {e). This proves Theorem 4.3k,

5



In terms of the operator (4.11) we observe the following rather
cobvicus consequences of Theorem 4.3k, If A, lo € 77, then the following
statements are equivalent to (4.12):

(4.36) I‘A-mlo(no) =0 forany G € R ,
(4.37) I'A-zllo(no) =0 for any z € C provided ¥ € 77.

b.38 lemms. Let A ¢ 7’[ and suppose the operator LA(X) is defined
by (4.11). Then, for all X, Y € 7){. ve have

(k.39) LA(ﬂ) = oL, (X) for all @ € R ,
(4.40) L*(x +Y) = LA(X) + LA(!) .

Proof. Forany O € C we have

(h,h) 1,(cx) =a(xa” - A'x) + ax'a - ™)

wvhence (4.39) holds if & 4s resl. The verification of (U4.LO) 1s equally
simple and need not be given here.

Bemark. Equations {4.39) and (4.h0) show that, given any A € 77,
(X;X € 727 amd L,(X) = 0)

~48 & real linesr subspace of 277, 1.e., & linear subspece of 77 over
the field R of real scalars.
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The result (4.39) cannot in genersl be extended to all complex scalers
G as the following simple example ahows. Suppose A ¢ 77 Then from '
(8.11) and (4. 41) ve £1nd thet L,(A) = O but L,(1A) = 21(AA" - A"A) £ O
Of course, in certain special situations, (4.39) cen hold for sl a € C.
b:amplgs of the letter cen be deduced from the following easily verified

results which ere valid for any A € 77:1’

(4.42) L“(zI) =0 forall z € € ;

(5.43) Ly(ca) =0 for all a € R ;

(b bhb) LA(z(A')k) =0 for ell z € € and for k=1,2, ... ;
(4. 45) L(zA + (A" +8°A)) =0 forall z EC ;

(4. 46) Ly(oA + 287) = 0 forall @ €R z€C ;

(k.b7) Lla(a+ A1 =0 forall z € g with z40 .

-

Note. The content of the next lemma is that every matrix in the set
M(A) defined in Definition 3.8 satisfies (for any value of n) all of
the necegsary conditiong given in Theorems 4.10 and 4.25 with the possible
exception of (k.13).

Remark. While condition (4.13) is apparently the most crucial test
of a candidate for €-minimality of all the necessary conditions derived
80 far, it cannot be checked unlees the normel matrix in question is

first dlagonalized by a unitary transformation.
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L, 48 lemme., Let A € Mn and let M(A) be defined ms in Definition
3.8. Then the necessery conditions (4.12), (4.26), and (k.27) are

- satisfied when N, 1s replaced by any matrix in M(A).
Proof. let

(4.19) B(A) =3 (A + GA) + 3= tr(A - QAT .

The fact that P,(A) satisfies (4.12) for all { € C follows immediately |
from (4.50), (4.42), and (L.46). This implies that every matrix in
M(A) satisfies (4.12). PFurtherwore

B (a)] - Ter(a) + 3¢ tr(a”) + § tr(a - A") = x(a) |
tor all { € C hence every matrix in M(A) satisfies (L4.26). Let
(4.50) e ~dur(a- )

Then s = (1/n) tr(A' - EA;, P;(A) = (1/2)(A + u’ + 2I), anmd
A~ P‘(A) = (1/2)(A - ;A. - 2I). Consequently, for [¢| =1,

Fo(A)(A - B(A)) = (A" + TA + ZD)(A - A" - 22)

2
sd A" 2T - M- s(A" +TA) +T(A - EA) - eE)



(s.51) & tr(l’z(A)(A -VP;(A)N e Ttr(a®) - g tr(A" ) -z tr(a” + TA)

Av* z tr{A - ;ﬂ’) - n2z , el =2} .

Using (4.50) in the last term of equation (4.51) we see that the last
two terms on the right side of (4.51) cancel. Using (4.50) sgain we find,
tor |4} =1,

z tr(A” + Ta) = 2 [tx(A) - ¢ tr(a”) 1 r(a®) + T tr(A))
(h.52) =3 (e + Ter(a)? - gar(a)P - ()P
=L Eer(as)? - g(er(a™)?)

Combining (4.51) and (4.52) we obtain

(.53) b t-r[PZ(A)(A - B (A))]

= Ter() - & (x(a))?) - g(ex(d) - L (er(a)P) .
1r tr(A?) = (l/n)(tr(A))2 then the right side of (4.53) vanishes for
all { € {(A). On the other hand, 1f tr(A%) # (1/n)(tr(A))> then by

(3.9) the right side of (4.53) becomes

er(82) - 2 (er(a))?] - [ex(A%) - 2 (tr(a))P| = 0 .

25



THhus every matrix in M{A) sstisfies (4.27) and this proves Lemems 4.L8,
In the light of Lemms 4.48, 7t is natursl to ssk vhether the matrices
in the set M(A) cun ever be ¢-minimsl. We shall snswer this question

in the affirmetive in Section 6.2 below.

4.2 Use of Lagrange Multipliers in
Finding Kecessary Conditions.

As was observed in Section 1.5, the problem of finding & v-miniwal
ﬁun can be considered as a problem of minimizing a8 real valued function
of several complex variables. The minimum must be taken over normesl
-tricei only, so certain constraints on the variables are inevitable.
This point of view suggests that the method of Lagrange multipliers might
be usseful in deriving necessary conditions for & v-minimal matrix. Since
the variables and constraints sre complex, it first appears that the
initial computational labor of deriving such conditions would be prohibi- |
tive. However, by using conjugate complex coordinates (see e.g., [18]
Pp. 16-21) and the complex (matrix) differential calculus, the algebraic
manipulations can be made almost inconsequential. In the next two para-
graphes we outline bdriefly the mathematical basis of the technique: we
ghall use in deriving necessary conditions for €-minimal matrices. The
equations which will be derived appear to be very difficult to solve in
general, primarily because they involve a large number of auxiliary
unknown variables (Lagrange multipliers). As a consequence these
equations are not of immediate value in finding €-minimal matrices.

Nevertheless, the equations themselves and the technique of deriving
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thenm seem'interestiﬁg. Furthermore as byproductes we obtain alternative
derivations of the primery necessary conditions (4.12), (L4.13) and alao
additional necessary conditions for €-minimal matrices involving theoreti-
¢ally interesting interpretations of certain Lagrange multipliers.

Let x and y denote a pair of real variables (coordinates).
Following Nehari [18] we define 2z = x + iy and z = x - iy to he the

corresponding pair of conjugate complex variables (coordinates). We

define formally 4 pair or "partial differential cperators” by the

expressions

(b.54) R IR S
d 1,9 3

(b.55) gg =5(x+1 5;) .

As shown by Nehari, these operations can be carried out, at least for a
wide class of functions of x and y (or equivalently of 2z and E),

by treating z and z @s independent variables and differentiating by
the usual rules of calculus. As a simple illustration of the method,
suppose g(x,y) = £(z,2z) 4s a real valued function for which the
stationary polnts are desired. The standard method of elementary calculus

[
involves solving the simultaneous pair of equations

(4.56) %-o, ggso;

whereas in the conjugete variables method one merely works with the

single (complex) equation
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(h57) | 2.0

dz

whieh is equivalent to the pair of eguastions {4.56), It is obvious hov
one may extend this procedure to the problem of finding stationary points
of real valued functions of 2k real variables vhere k = 2,3, ... . |

An alternative technique, which is often easier to apply in matrix
problems, is based on the use of differentials. Nehari showed that the
operatora (U4.54) and (4.55) behave like genuine partisl derivatives in
tho sense that the differential of a real function g(x,y) = £(s,z) 1s
given by
8 o searaFaeda
vhere “,.&““& snd 4T = ax - 1 dy. Inclmntuyeﬂeululﬂnl
equivalent formulation of {4.56) in terms of differentials is the state-
went that dg = (dg/Ax)dx ¢ (3g/dy)dy vanishes for all values of the
independent differentials dx and dy. This does not correspond
exsctly to the statement that (4.58) vanishes for all 4z and A4z
considered sz independent differentials. For, from that statement, one
would obtain both Of/dz = 0 and 3£/dz = 0 which would imply (4.56)
tvice since df/Oz = O if and only if 3f/dz = 0. It is sufficient to
compute the complex "half differential®

‘ a -



and say that it must vanish for @11 d4z. In the case of functione of
wore than two real variables, this rule for deriving necessary conditions
can be ge;ieralised ag follows.
4.59 Theorem. let z = (‘1”‘2’ ree s "k) denote & vector with complex
components and suppose #(z,z) ® 0(2),25) <on 5 2 21,22, ave s 'ik)
is a resl valued differentiable function of the 2k real variables
W (@ =1, ... , k) where Zy " Xg *t 1Yy (¢ =1, ... , k). Let the
half differential (40)_ be defined by |

z

) (a0 (sD) é'g%il a5, i‘ééf.l AR Q%fl 4z,

If & has an extreme value at the point 2z = (z§°), vee zl((k)). then

0

(d.)__(zo,;o) must vanish for sll values of the irdependent differentials
]

d‘;l’d—%’ LN ’ d:ko

We refrain from giving a proof of Theorem 4.59.

Let A = (.1.1) € mn and N = (nu) € 7)(n. We first consider the
straightforwvard problem of minimizing ea(N - A) subject to the constraint

(b.61) NN-NN =0 .

Since the matrix N'N - NR® is bermitian, the metrix equation (4.61)
amounts to: (1) at most (1/2)n(n - 1) independent complex constraits
on the Dy (these correspond to 8ll elements of (4.61) which lie on

one side of the diagonal), and (2) at most n independent real constraints

(these correspond to the n (real) diagonal elements of (4.61)). Thus
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(4.61) involves at wos< 4% real constreints on the n° cowplex
quantities n, 3 Cleusrly then, we need at most ua .real lagrange ,
multipliers. Nevertheless, it ie convenient in deriving the necessary
conditions to introduce at the heginning 2n2 real Lagrange multipliers, |

one for sach of the real constraints
» * % %*
(b.62} Rel(RN'K - NN )1.)] -0 , Inm{(NX - BN )1.1] =0

vhere 1<1<n, 1<J<n. The introduction of superflucus Lagrange
muitipliers causes no difficulty since the superfluous ones either drop
out or combine sutomatically wvith others to form the maximal mumber of
independent multipliers. We let Li.)’ u“ be real Lagrange miltipliers
which correspond (in that order) to the constraints (4.62). We now define
the scaler quantities

(4.93) Tyt tiey (<, 3gn)

and call the tid complex Legrange multipliers. For later use we also
defins the matrix

(.68) ? (v, .

In the classical way of applying the method of Lagrange multipliers

one would cousider ths function

(4.65) <2(n - &) + , n-l(xn ae[(n'n-ml')ul + gy n[(n’n-m’)“n
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md differentiate it partislly with respect to the real nrublﬁt
ae(%), In(nrc) (1 €7, ¢ < n). As wvas suggested above, this procedure
1s \mnecnurily complicated and can Ge greatly simplified and shortened
'  0y using complex analydis.

Note that

L.J % * * % %
My Re[(N N - NN )“1 *Hyy In((NK - NN )ul -_neﬁ“(n N - NN )ul
80 that the eum on the right eide of (4.65) can be written in the form

a _ » » » " »
Mi,);-l 113(11 N - NN )1.1] = Re tr{(N N - m )rl

(4.66) =3 (bel(W'F - W0 )r )+ e [(NF - W )T))
=2 tr[(N'N - W )(T + 7))

vhere T 1s given by (4.64). In view of the form of the constraint
equations (4.61) the factor (1/2) in (4.66) can be omitted upon sudb-
stitution of (4.66) into (4.65). Thus, writing €>(N - A) =

trl(N - A)*(N - A)], we consider the problem of minimizing the function

’
(4.67)  O(F,E) = tr{(N" - A")(N - A)] + tr[(N'N - 38")H)

vhere H 1s given by

(4.68) H=T+T .



Bquation (4.67) shows that, as far as the Lagrange multipliers (4.63)

are concerned, it is the matrix H which has & definite meaning (i.e.,
which has to be determined using (4.61)) and not T. Clearly the Lagrange
miltipliers i, (£ =1, «eo , n) which correspond to nonexistent
constraints in (4.61) have dropped out and the others have combined to

form the n2 "actual Legrange multipliers™:

2, (1=1, ... , n) ,

Nyg +thgy o Hyy - gy (AL<t<ygn) .
Differentiating (4.67) we obtain

(a¢) , = tr[dN (K - A) + (aN'N - Nan' )H]
N

(4.69)
= t¢[(N -A+NHE - HN)aN"] .

By Theorem 4.59 @ hes @ minimum at the point (matrix) N only if
(a¢) , vanishes for all matrices dn*. It is easy t0 show from von
leun::nn'r; Lemma 4.6 that (4.69) vanishes for all an’ € mn 4f and
only 1t

N-A‘FM"“‘O.

’
If we revrite the last equation and the constraint (4.61) and note that
(4.68) implies H € Wn, we obtain the following set of three

slmultaneous watrix equations for the unknown matrices N and H.

(&.70)  N+KH-HN=A ,

]



(4.71) H=H ,

(4.72) NN-IF =0 .

L. 73 Theorem. Let A € 77 . If KN, 1is €-minimal for A then there

exists a matrix H € 7'[n such that (4.70), (4.71), and (4.72) are

satisfied wvhen N and H are replaced respectively by No and Ho.
Proof. If N_ is €-minimal it minimizes the functional €2(N - a)

and setisfies (4.72). Consequently N, ie a stationary point of

62(N - A) which implies the existence of complex Lagrange multipliers

T such that N_ is also a stationary point of (4.67). By the above

1
derivation of equation (L4.70) there exists & hermitian matrix H, such
that N  +NH - HN =A. This proves Theorem 4.73.

Remark. It should be noted that the hermitian metrix H of Lagrange
multipliers need not necessarily be of the form of the most general
hermitian matrix. For example in the cese n =2 the diagonal elements of
the left side of (4.72) differ only in sign (cf. Lemma 6.1 below) so one
additional real Lagrange multiplier can be eliminated, allowing H to

assume the form

A A+ oip

o
]

A-dp -Xl

where xl, A, and u are real. It should also be noted, however, that
H mey be assumed tc be a general hermitian matrix. There is no harm

in repeating constraints in the method of Lagrange multipliers.
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S8ince at least one solution of the necessary condition described
in Theorem 4.73 is €-minimal, it is natural to investigate the problem
of solving the system (4.70) - (4.72). In theory one cculd carry out
the following procedure. Assuming that H 4is hermitian, solve (4.70)

for N as a functionof A and H, {i.e., find

(4.74) N = F(A,H) .

Then substitute (4.74) into (4.72) and solve the latter equation for the
hermitian matrix H. Once H was determined it would be eliminated
by substitution into (4.T4) which would yield a normal matrix.

Actually, it is possible to solve the system (4.70) - (4.T72)
formally, although not explicitly, by a method which runs somewhat along
the lines of the procedure outlined in the previous paragraph. Since the
matrix H of Legrange multipliers is hermitian i1t can be diagonalized

by a unitary transformation:

¥*

(4.75) VR = D (v e, be

vhere D 1is real. By means of (4.75) we replace the unknown hermitian
matrix H by two other matrices, namely an unknown unitary matrix U

and an unknown diagonal matrix D. Now let

(4.76) U = M = (m UAU" = B = (v

where U 4s the same matrix which occurs in (4.75). By premultiplication
by U and postmuiltiplication by U we see that the equations (4.70) and

(4.72) are equivalent respectively to
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(4.77) M+MD -DM=3B

and

(4.78) ¥M-m =0 .

Note that N 1is normal if and only if M is normal.

4.79 Definition. Let the matrix (4.75) be given by D = diag(dl,da,...,dn),
let &, =d‘1 - d, (1<i, y<n), and let A= [Aij; 1<i<j<n).
Then M(A,U,A) is defined to be the matrix

b
(4.80) M(a,0,8) = (=4—)
l+4
1)
vhere B = (bij) is defined by (4.76).

Using the notation of (4.76) and the preceding definition we see
that (4.77) (which can be rewritten in the fcrm M(I + D) - DM = B)
amounts to a set of scalar equations:

mid(l + dJ) -4, m, = bid

or

(4.81) mm(l +d, - d4,) = miJ(l +AU) = b, (L<4, 3<n) .

If we choose the d,'s in such a way that 1 +d, - d, =1+ Aid #0

J

for all pairs (1,j) then we can solve (4.81) for the m From (4.80)

13°
we obtain M = M(A,U,A), a known function of A, U, and A. The set

A 1is determined by D so the matrix (4.90) is actually a function of

A, U, and D. Thus, if we choose U and D so0 &s to make the matrix
(4.80) normal then
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[¢]

(3
and

(4.89) (v au’ - Ty_,a () = Min uav® - Ty,a(A))

where the minimum ie teken over all U, D such that TU, AlA) € A
and vhere 4 and &, are determined respectively by D and Do as in
Definition 4.79.

In order to examine this problem we note that the transformation
(4.86) is the composition T, - TU* where the transformation on the
right 1s to be carried out first, where T; is defined by (1.75), and

where

' m
(4.90)  T,(M) = (TT%;) y M=(m)e 77, ,8,F-1) .

Thus T. .(A) = (T ,(A)). If 2 4s not normal, then neither is
U,A Aty
B=T *(A); hence the second transformation TA pleys an indispensable
U
role in achieving the normality of T A(A). On the other hand, it can
>
be shown by exemples thet Ty A(A) ¢ 79 can hold for all A's which
» n

arise from real diagonal matrices D. Thus we have gained some insight

into the meaning and role of the matrix H of Lagrange multipliera:

The possibility that

(4.91) TU,A(A) € 7ln
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for some A depends on the choice of U; the actual realization of
(4.91) depends on the choice of A and not on U. If we translate back
into the coordinate system of the set of equations (4.70) - (4.72), we
can summarize those observations in the following wmanner,
k.92 Theorem. Let A€ 7%, A £ 7] andlet He Wn. Then the
possibility that (4.70) has & normal solution N (for some choice of
the eigenvalues of H) depends on the eigenvectors of H. The choice
of the eigenvalues (and not the eigenvectors) of H determines wnether
or not (4.70) has a normal solution N.

Proof. We need only observe from (4.75) that the eigenvectors of
H are the columns of U* and that A is determined by the eigenvalues
a, oz H. e

Instead of Problem L4.3T7 we may consider the simpler
4.93 Provlem. Let A €77, A ¢ 7?n and define

JA) =U;UveW am Ty,a(8) € 77, for some admissivle &} .

rMmda U ¢ J(A). Then, for this U, find a Do € &n such that

T!IJ,AO('A) € 7’11

E(uan® - Ty o (A)) = Min E(ua” - Ty,a(A))
[}

where the minimum is taken over all D such that ’1‘“, A(A) €77, o™
wvhere A and Ao are determined respectively by D and Do as in

Definition 4.T9.
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The explicit determination of solutions to either Problem 4.87 or
Problem 4.93 appears to be difficult to carry out for n > 3. The author
has found solutions to Problem 4.93.for all A € 757é and, on the bagis
of the results in Chapter 6 below, these have all been €-minimal. No
further investigation of Problems 4.87 or 4.93 will be made here except
for the following simple observation.

L. Lemma. Let U € Z(n and let A = {Aij] (1<14, J<n) wvhere
&y 4 #-1 forall i end Jj. Then the transformation Tu, A(A) defined

by (4.86) is & linear iransformation on 7H7n.

of (1.75) and T, of (4.90) are

being a composition of linear trane-

Proof. The transformations TU

both obviously linear. Thus T ’
U,o

formations, 1s linear too.

Note. We shall find another application for equation (4.70) in
Chapter 7 below.

We consider next another approach to the use of Lagrange multipliers.

*

By Theorem 1.57 (¢) N = U DU runs through }??n as U and D run
independently through -Z(n and ADD respectively. Thus we can find

an €-minimal matrix for A by minimizing
3
(4.95) EU'w - A) = tr{(UDU - A")(U"DU - A)]

subject to the constraints

(4.96) vu=1 ,
(4.97) ped .



As In the case of the constraint (4.61) we introduce complex lLagrange
multipliers T4 corresponding to the (i,J) elements (U*U - I)ij of
the constraint equation (4.96) and write T = (Tij) as before. If we
merely keep in mind that D 1s diagonal, we need not introduce any

Lagrange maltipliers for the constraint (4.97). We have
2 Re tr(UUT") = trlv’u(r + V)] .

Here, as in the previous constrained minimization problem, it is not T
3*
which has to be determined but the hermitian matrix H =T + T . Therefore

the function we wish to minimize in the method of Lagrenge multipliers
is

(4.98)  o(u,u",0,0") = tr[(U'D'U - ") DU - A) + v'tm] .
Differentiating this we obtain

* *
(a0) , , = trlau"D'u(u"Dy - A) + (U'D'U - Adau"pu + au'um)
U

]

+ tr[Uap U(U" U - A)]
= tr([D'U(U'L - A) + Du(U"D'Y - &) + mlar™)

+ trlapv(v v - A" .

By Theorem 4.59 @ bhas & minimum at the point U'DU only if (a8) ,

’

vanishes for all dU ¢ 777 ama A € AQn. Setting duU = O,
varying dD* in AQn’ and using Lemma 4.7 we obtain (4.99) below.
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* »*
Setting dD = O and varying dU we obtain (4.100) below. If we
write down all the relevant constraints with these equations we cbtain
the following complete set of five simultanecus matrix equations for the

unknown matrices U, D, and H.

(4.99) aglu(u'pu - a)u*] = 0

(4.100) pu(u'Du - A) + pu(U'Du - &) + =0 ,
(4.101) vu=1 ,

(4.102) H=1° ,

(4.103) offdg(D) =0 .

4.104 Theorem. Let A € an. If N = U: DU, where U_ € un and
D, € /‘on is €-minimal for A, then there exists & matrix H, 6'777n
such that (4.99) through (4.103) are satisfied when U,D, ané H are
replaced by Uo ’ Do’ and Ho respectively.

Proof. The proof of Theorem 4.104 follows along the same lines as
the proof of Theorem 4,T3.

Remark. We can use Theorem 4.104 to derive again the necessary
conditione (k.12) and (k.13). Let N_ = UZ DU, be ¢-minimal &s in
Theorem 4.104 and let H  be a hermitian matrix of Lagrange multipliers
which corresponds to it. Then using the conclusion of Theorem 4.104 we

*
can immediately combine (4.99) and (4.101) to obtain dg(Do - UOAUO) =0

*
which is the same as (4.13). Premultiplying (4.100) by U, and again

T1



*
using (4.101) we find, upon setting N, =U,DVU,, that
* » kA et
NONO + NONO +H = NO NO .

The last equation shows clearly that N:A + NOA* 1s hermitian so, by

Theorem L4.34, we have again derived the necessary condition (4.12).
Still another approach to the use of Lagrange multipliers is

suggested by the representation of normal matrices given by Theorem

1.57 (a). Here we set

(L.105) N=H+iK .

By Theorem 1.57, (4.105) runs through 77 as H and K run through
the set of all palrs of commuting hermitian matrices. Thus we try to

minimize ez(ﬂ + 1K - A) subject to the constraints

KH .

(4.106) H=H , K=K , and HK

We introduce matrices 2, II, and T of complex Lagrange multipliers
which correspond respectively to the matrix constraints (4.106). Without

going through the computational detezils we simply give here the results

of the differentiations, which again turn out to be matrix equations:
*

(4.107) H+iK-A+TK -KT+(2-2)=0 ,

(4.108) A(H+1K -A) +HT-TH + (I -1T) =0 .

Here, by analogy with what happened in the previous derivations, it is

not the matrices Z and Il which have to be determined but the
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skew-hermitian matrices § =127 - zf and P=1I - H* instead. Hote,
however, that no combinations of elements of T occurs so that every
element of T 1s an "actusl Lagrange multiplier”™. This was to be
expected, since the equation HK = KH involves no duplications.

If we rewrite (4.107) and (4.108), replacing 2 - z ema n-1"
by S and P respectively, and write down all the relevant auxiliary
equations we obtain the following set of simultaneous matrix equations

for the five unknown matrices H, K, T, S, and P.

(4.109) H+1K-A+TK -KT+S=0 ,
(4.110) H+K+4A+HT -TH +P=0 ,
(4.111) H=H |,
(4.112) K= |,
(4.113) HK = KH ,
(4.114) s+8 =0 ,
(4.115) P+F =0 .

As in the previous constrained minimization probleme (cf. Theorems 4.T3

and 4.104) we can prove

L.116 Theorem. Let A €77,. It N =H, +1K where H, K €A/,

and HOKO = KOHO is €-minima’. for A then there exist matrices To’ So,
P, € 7%, =uch that (4.109) through (4.115) are satisfied when

H, K, T, S, and P are replaced Ly Ho, Ko, To’ So’ and P° regpectively.
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CHAPTER 5

CHARACTERIZATION OF €-MINIMAL MATRICES

We begin the present chapter by proving ;he following simple

- 5,1 Lemma. Let Vv denote any norm on 77? We have
\

4 €A) = inf w(A-UDU) = dnf ( inf_ w(A - UDU))
v UeW VeWU pel
(5‘2) D ¢ B

inf_ ( inf v(A - U'DU))
pehl veW

Proof. Let :
d' = dnf if\«(A ~uvw)) ,
veuUDE D

’

: * .
a(U) = inf_ viA-UDU) .
~D €

We '\nnt to show that 4' = dv(A). Crearly d' < a(U) and
(5.3) da.(4) < a(v)

hold for all U €%f. Taking the infimum over ¢ on the right side
of (5.3) we obtain dv(A) < a'. Suppose dv(A) < d'; then there is a

> ¥
pair o} matrices U € U, D € A such that v(A - U, DU) <4,
But this implies a(uo) < u'* vhich contradicts the inequality
a' < a(uo). Thus dv(A)' = d' which proves the second equality in (5.2).

A similar argument will establish the last equality in (5.2).
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By very much the same arguments used in proving Theorem 1.7¢, it can
be shown that any of the infima over AD in (5.2) are assumed for some
p-€N. Furthermore, since Vv 4s continuous and {{ is compact in the
norm topology of FZVC all infime over ¢{ are likewice assumed. Thus,
in (5.2), we can replace "inf" by "Min" in every instance. We shal® use

this fact in proving

5.4 Theorem. Let A € 77 and let € denote the Euclidean norm (1.16)

on . Then

(5.5) a2(a) = #(A) - Max  *(ag(uar’)) .
U el

Proof. Since € 1is unitarily invariant we have
* *
(5.6) (A - U'DU) = (uar” - 1) .

From Definition 1.23 and (1.16) we can easily deduce the fcllowing

equalities which hold for any M € 27(:

(5.7) Min . €(M - D) = €2(offdg(M)) ,

pedd

(5-8) (M) = €(orrag(M) + dg(M)) = €2(orag(M)) + €2/ g(M))

where, in (5.7), the minimum is assumed if and only if D = dg(M). Thus,

for every U € 75(, we have

(5.9) Min . €2 (UAU" - D) = 2(UAU" - ag(uau™))
D€,

™



whence, using (5.2),

. 2 2 * *
<10 = - d -
(5.10) 4 (a) ’ Meinu < (uau g(UAU )

Foting that £2(UAU*) = €2(A) and combining (5.8) and (5.10) we obtain

A = wn_ (F(uar’) - E(aguav’))]
U e U

= Min  [2(A) - (aa(uat’))]
U e W

« (a) - Max  *(ag(uav™))
U et

vhich proves (5.5).

5.11 Maximum Problem. Let A € 7)‘(n. Finda U € ‘un such that

(5.12) (ag(v Av))) = ez & (agluav™)) .

U€n

5.13 Theorem (Characterization Theorem). Let A € 77{n and let

9%
N, =U, DU, wvhere U, e‘l{n and D € /On. Then N 1s €-minimel
for A if and only if U, satisfies (5.12) (i.e., U, solves the

Maximum Problem 5.11) and

%
(5.14) D, = ag(U_AU)) .

Proof. Let U  be any unitary matrix vhich satisfies (5.12) amd

let D, be given by (5.14). Then, from (5.5), we huve



aZ(a) = €%(a) - <*(ag(u auy))

2 * 2 »*
€ (UOAUO) - € (dg(UoAUO))

2 ¥*
€ (offdg(UoAUo))

2 * ¥* 2 %
€ (UOAUO - dg(UoAUo)) = € (UOAUO - Do)

2 * 2
(A - U, DOUO) = € (A - No)

so that No is €-minimal for A. This proves the sufficiency of the
conditions (5.12) and (5.14). For their necessity we first note from
Theorem 4.10 that the necessity of (5.14) has already been established.

Thus, 1if No is €-minimal for A, we have

aS(a)

2 _ 2 *
(A - No) =€ (UOAUO - Do)

2 * *
€ (UOAUO - dg(UOAUO))

¢?(of£ag(U_AU)))

2 * 2 *
€ (UOAUO) - € (dg(UoAUO))

€®(a) - (ag(uan))) -

Comparing the last equation with (5.5) we see that Uo satisfies (5.12).
This completes the proof of Theorem 5.13.

An lmmediate corcllary of Theorem 5.13 is the following result which
indicates the importance of the Maximum Probiem 5.11 in so far as

€-minimal matrices are concerned.



5.15 Thecrem. Let Uo be a solution of the Maximum Problem 5.11. Then

% ¥*
(5.16) Uo dg(UOAUO)Uo

is €-minimal for A.
Let u and v denote complex column n-vectors. The (Euclidean)

inner product of u and v 1s defined by
»*
(u,v) =vu

*
vhere v denotes the conjugate transpose of v. We call uw and v

orthogonal if (u,v) = O. A set of vectors WUy see s W (k < n)
is called orthonormal if

l , 1=

(ui’ud) =8, = .
0, 14

5.17  Maximum Problem. Let A € 7’?n. Find an orthonormal set of

cclumn n-vectors “1’“2’ ese un such that

S 2 & 2
121 |(Auy u, )| = Max izl [(Av,,v) ]

where the maximum is taken over all orthonormal sets VerVps see 5 Y
of column n-vectors.

Suppose U € 777, and let Vy> +es 5 v, denote the columne of the
matrix U*. Clearly U 1is unitary if end only if v., ... , v {18

1 n
*
orthonormel. Since v Au = (Au,v) for all vectors u,v, we gee from
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(1.24) that

* /
dg(UAU = 4iag((Av,,V e Av_,v o
8( ) 8(( vyo l)" » ( Vn: n)) L .,

”

wvhence, by (1.16),

n

2 * 2
(5.29) “(dg(uau’)) = igl [(avy,v 25 .

From (5.12), (5.18), and (5.19) one can immediately deduce

5.20 Theorem. The Maximum Problems 5.11 and 5.17 are equivalent in the

sense that a solution of one ylelds immediately a solution of the other.
*
From the decomposition No = Uo Douo one finds that the columne
»*
of U° are elgenvectors of No. Therefore, by Theorem 5.13, we have

1 U 3/
5.21 Theorem. Let A € 7?7n and let N, =U DU  where U n

end D, €A . Then N is c-minimal for A 1if and only if it has

an orthonormal set of eigenvectors which solves the Maximum Problem 5.17.
The next result exhibits the relationship between the maximum

(5.12) end distance tormulas of the t;pe (2.32).

5.22 Lemma. Let A € 77{n, A ¢77n and let p¢ n(;.) be defined by
’

Definition 2.13 in the case v = €. Then

2 *
(5:23)  Max = €(ag(UaU’)) = (1 - p, (A))€%(8) + b, (A) (a(n)) .
Uel ’ ’
Proof. Since € has property S (see Definition 2.1), (2.32) holds
for v = €. That equation and (5.5) yield immediately (5.23).
Remark. Theorem 5.4 opens up a new avenue for obtaining estimates

of de(A)’ Thus, a lower bound for the maximum (5.12) will yield en
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upper bound for de(A) and an upper bound for (5.12) will furnish a
lower bound for dE(A). The next theorem is a result of this type.
5.2k Theorem. Let A € 7% and let A =WH where H 1is positive
semidefinite hermitian and W € ‘un. Furthermore let Yy5¥ps so0 2 ¥y
be an orthonormal set of eigenvectors of H, 1i.e., Hyi = “1"1

(1 <1< n) where @, are the singular values of A and (yi,y.,) = biJ

(<1, J<n). Then
n
(5.25) (n) < L A - |y v )P .
Prcof. We have

(‘wi,yi) = (Wi’yi) = ai(Wi’yi) for i = 1’2, veeo g3 n .

Since y,, ... , ¥, 18 an orthonormal set, ve see from (5.18) and (5.19)
that

n n
(5.26) PRI % o |(wy v ) IR

is a lover bound for the maximum (5.12). As was observed in Section 1.1,

€(A) coincides with (1.15) for p = 2; consequently

2 8 2
. A = .
(5.27) €“(a) igl oy

Therefore, from (5.5), (5.26), and (5.27) we obtain



n
o |(wy )2

4 < f:_°§ -
= 1=
vhich is the same as (5.25).
The next result provides a slight simplification oé the problem of
finding a solution to the Maximum Problem 5.11.
5.28 Lemma. let 2L’ denote the set of all unitary matrices of order
n which have nonnegative diagonal elements. Then, for any A €'7°7n,

we have

(5.29) bex *(ag(ua™)) = max , P(aguar™)) .

N +
Ue n n

Proof. Let U be any unitary matrix of order n and let
Yy = Ty exp(iek) be its k-th diagonal element where r, >0 and 6
is real. By factoring out exp(iek) from the k-th row of U
(k =1,2, «.. , n) we can write U = AV where V e'tl; and
A= diag(exp(iel), . exp(ien)) is a diagonal unitary matrix, i.e.,
an element of ‘gn n Z(n' Noting that dg(AMAf) = dg(M) holds for

sl M€ 7% andforall A€ A N we find that
<*(ag(uau”)) = 2(ag(avav"a")) = E(ag(vav™)) .

The last equation shows that, in computing the maximum (5.12), it
suffices to consider only unitary matrices in ‘Z{;. The proof of Lemma

5.28 is now complete.
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CHAPTER 6

€-MINIMAL MATRICES OF CRDER 2

6.1 Preliminaries Concerning 2 by 2 Matrices.

6.1 lemma. Let N € Zﬂ% be given by

("1 na
(6.2) N = ) .

Then N is normal if and only if

(6.3) Ing 1% = Ing|?
and
(6.4) (n, - n)7; = ny(&, - 7,)

Proof. We have
. [Pl mEy e am,
NN = ’
mag s amy,  IngP e I
. |n1l2 + |n3|2 ;1n2 + ;3nh
RN =
- - 2
miy + oy, I l® 4 Iny ]

vhence m!' - n’n =0 1if and only if (6.3) and (6.4) hold.



6.5 Lemma. Let A e??za. Let 0(A) and M(A) be defined as in

Definitions 1.17 and 3.8 respectively. Then

(6.6) €2(A - x) =% (2(A) - (a(A))) for all X € M(A) .

Proof. Let the eigenvalues of A be denoted by A, ,A Then the

1’72°
eigenvalues of A° are ki and kg 80 we have tr(A) = A + A, eand
2, .2 .2
tr(A”) = A + ;. Thus

%(lxl |x|+x>. +).x)

or
(6.7) 2 lr(a)? = 3 E(a(a)) + Re(AX,) .
Furthermore

tr(a%) - % (tr(a))? = xi +x -2 (A, + >.2)2

= xi + xg - % (x? + xg +2a),)

or
(6.8) er(a%) - 3 (4r(A))® = 3 O - 2,)°

From the last equation we obtain
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ler(a®) - % (ex(a)?] =3 v, - 2,12

1 - -
=5 (4 - )0 = %)

1 2 2 = =
=5 (1T Pl = Ay = hny)

or

(6.9)  [tr(a®) - £ (tr()®| = 2 E(a(A)) - (V) .

Combining (6.7) and (6.9) we find that

(6.10) LM | o2y - @) L o))

2

The equation {6.6) now follows immediately from (6.10) and Theorem 3.11.
The next lemma shows how the simplification provided by Lemma
5.28 works out in the case n = 2,

6.11 lemma. Let A€ 777,. Let u € C and let

(6.12) W) = e (t E) :
[*17Y

Then W(u) € 'Z(2 for all p € C and
(6.13) Max  €2(dg(UAU")) = Max  €(ag(W(u) AW"(w))) .
U e, neECg

Proof. It was shown in [3]) (see also [17] for another perametrizstion
of 2 by 2 unitary matrices) that every U € 1{2 can be obtained

from the formula
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e:u:l cos @ -eia sin @
(6.14)

a
[}

iy 18

e sin @ € cos @

vhere @ € R 'and vhere a, B, 7, b are real numbers satisfying
(6.15) A -pP-y+8=0 (mod 2x) .

By factoring out exp(ia) and exp(id) respectively from the first
and second rows of (6.14) and using (6.15) we see that (6.1k4) can be
written in the form

e 0 cos 6 -e'i(7'b) sin 0

(6.16) U= = AW(p)
Q18 ei(7-5) .

sin 6 cos B

wvhere A = diag(exp(ix), exp(id)) and where W(u) is given by (6.12)
with u = exp(i(y-8)]ltan 6. Since the real gquantities 6, a, B, y, &

in (6.14) are arbitrary except for the constraint (6.15) which was used
in obtaining (and which is automatically satisfied by) the product

M(p) in (6.16), one sees easily that (6.16) furnishes a parametrization
of all U €‘Z(2 in the following manner. If we consider 6, &, 5,

and ¥ =7y - B @as independent real variasbles, or, alternatively, if we
consider & and ® as independent real variables end u = exp(iv)ten @
as an independent complex variable, then, as p runs through C and

ee @, 5 run through R, U =AW(u) rune through 795. hs wes shown

in the proof of Lemma 5.28, the factor A in (6.16) can be disregarded
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&
in computing Ez(dg(UAU }). Therefore only the complex parameter u
matters and we have (6.13).

6.17 Lemma. Let A €77,, A ¢ /72, Then A is uniterily similer

either to 2 matrix of the form

Oal

(6.18) A = (31 ae) vith &, f 0

or to & metrix of the form
a

(6.19) A2=a1 2 with a, £0, a #0 .
- a3 a, 2 3

Proof. By Schur's theorem [22] (or see [16] p. 307) every A

is uniterily similar to a triesngular matrix:
N
b, b
* .0 2 .
(6.20) YAV = B (0 bu) o VeTU,)

and, if A d)?z, we have b2,4 0. If b =1, i.e., if the two
eigenvalues of A are equal, then (6.20) 1s already of the form (6.18).
It remains only to show that, if b, £ b,» A is unitarily similar to

a matrix of the form (6.19). To prove the latter statement we consider

(6.21) W) B () =(:; :i)

vhere W(u) is given by (6.12) and where u ¢ C. We have

s -a = (1 + u;)-ll(bl - b,)(2 - u) - 2“1,2)



hence a, =8, if and only if 2ub, = (bl - bh)(l - uu) or

iargh i arg(b.-b;) .
iar 2 1L 2
2ule’ 8T8 H (b, e = |b, - b, |e (- |ul) .
2 1 I
The last equation will be s:atisfied if
(6.22) arg y = arg(bl - bh) - arg b, (mod 2x) and

-1b, | *.\/lba‘a + loy -, [°
(6'23) ll-ll = 1b - b I .
1 4

Thus, if u 1s chosen to satistiy (6.22) and (6.23), 8, =&, holds in
(6.21). Furthermore, for this choice of u, neither 8y nor ag

in (6.21) can vanish since otherwise the eigenvalues of A, namely b,
and bh’ would have to be equal. This completes the proof of Lemma

6.17.

6.2 Determination of all 2 by 2 €-Minimal Ma:rices.

€.24 Theorem. Let A € 74, and let M(A) be defined as in Lefinition
3.8. Then the set M{A) represents the totality of all €-minimal
matrices for A.

Proof. Suppose first that A 6'772. Then by Lemma 2.4

ez(A) = EQ(Q(A)) whence Lemma 6.5 implies

(6.25) ee(A -X) =0 for all X € M(A) where A e7?2 .
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The meaning of the last equation is that every matrix in the set (3.10)

is equal to A:

(6.26) M(a) = (a) (4 € 77,)

that is, 1f A € 772 , then the set (3.10) contains exactly one metrix,
nemely A itself! This proves Theorem 6.24 in the case A € 772.

We assume henceforth in this proof that A ¢ 7{,. The principal
tools we shall employ in the case A ¢772 are Theorem 5.13 and Lemma
6.11. In order to keep the computations manageable we shall employ a
change of coordinates defined by a unitary matrix which transforms A
into one of the forms (6.18) or (6.19). This procedure is jJustified
in the next paragraph. The general outline of our proof is as follows.
We shall first show that every matrix in the set M(A) is €-minimal.
Followirg this we show that there are no other €-minimal matrices.

From (3.9) and the invariance of the trace under unitary similarity

we have

(6.27) 6(a) = L(vav’) (e, ve W) .
In like manner we obtain the identity
(6.28)  py(uav") = UR, (AU (Ae?%,, Ve,

for all § € C where P; is defined by (4.49). In view of (3.10),
(6.28), and Theorem 2.2T it will suffice to prove the conclusion of

Theorem 6.24 for some unitary transform of A. As mentioned in the
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preceding paragraph we shall use the forms (6.18) and (6.19) for this
purpcse.

We first observe from (6.8) that the case in which A is unitarily
gimilar to (6.18) corresponds to the ambiguous case of (3.9). Similarly
the case in which A is similar to (6.19) corresponds to the non-
embiguous case of (3.9) where {(A) contains exactly one number. As
stated in the note following Definition 3.8, we use the notation Ne(Al)
to denote one of the matrices in M(Al) and N(A2) to denote the
(single) matrix in M(A2). Straightforward calculations based on

Defintion 3.8 yield

p -t % a
2 = »
9) Ng(4,) L 16 (6 € R)

3 %° 8

l -

b ! 3 (8 + §°3) a.a
6.30 - a = .
(6.30) N(AE) . _ wvhere { TE;&;T

5 (a3 + §a2) a,

In order to prove that N,(A)) is €-minimal for A, for all 6 € R
and that N(A2) is €-minimal for A,, we shall diagonalize (6.29) and
(6.30) by unitary matrices of the form (6.12) and verify the sufficient
conditions of Theorem 5.13.

Let
h(ml "'2)
m3 mu

and let W(u) be given by (6.12); then
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»* 1 ml'“mz‘:m3+“;mu ;m1+m2;;2m3;:mh
(6.31) W(u)M¥ () = —— > - _

1+ up \pm-u m2+m3-umh MAI, +um, 3,
In order to diagonalize Na(Al) and N(A2) it will suffice, by Theorem
1.59, to triangularize them. Thus, from (6.29) and (6.31) we see that

W(ule)Ne(Al)H*(ule) is diagonal if and only if

2 = ———
(6.32) Mg =~

Similarly, U(ua)N(AZ)U#(u2) is diegonal if and only if

(6.33) o 8y +la, a8y laa,| + |32|2 a.la, |
33 Yo 7 o * :;3 ) 8 . |32a3| + |a3|2 ;gTE;T

For notational Qimplicity we shall usually omit tpe subscript 6 from
P and write only Hye However, it should aiways be understocd that
u, depends on the parameter 6. Clearly, each of equations (6.32) and
(6.33) has two solutions and we are at liberty to choose elther solution
in diagonalizing Ny(A;) or N(A,). In what follows 1t will not matter
which solution is chosen, so we use the symbols My and By to denote

any solutions of (6.32) and (6.33). We note from (6.32) that

(6'3“’) I“lél =1 ?

(6.35) W gaa = lay[° et? .



From (6.33) we have
2 = _ =2 _ .
(6.36) HoBaB3 = HyBy8y = |aaa3| >0
and, from (6.30), (5.33), and Lemma 6.1 (equation (6.3)), we obtain

(6.37) gl =12

By strajghtforward calculations we find that

1 - = 18
* 1 2a) - 5 (maywaye) 0

2
0 2a, + 3 (plaamlaae )

2a, - %[“2(8‘2";;3) + :2(a3+§22)] 0
(6.39) W(uz)N(Aa)w*(ue) = (

=

C 2a, + %[p2(32*§;3) + 32(a3+§:2)])

. L 2a1 - M8, 8,
(6.40) Wu AW (b)) =5 ’
- i 8 28y + K8,
. L (o + Mp83) 8, - ‘-‘22"3
(6.81)  W(w)ANW (w,) =3 .
a3 - p:aa 2al + “‘2‘2 + ;2113
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From (6.32) and (6.34) we obtain M8y = :132 exp(18) whence, using
(6.38) and (6.40),

(6.42) W(ul)Ne(Al)V*(ul) = % diag(2a,-p,a,,2a,+,8,) = ds(V(ul)Alw*(ul)) .

Using (6.37) we can write
(a, + ta,) + n(ay + £8,) = W luoe, + uota, + s, + {a,]
Hol82 3 2\93 2/ T Holhpfpy T HaS85 T 8g 2
and, by (6.30) and (6.36), we have

f;z =u233 L a, =48
2°°3 223|a2a3|3 3 ?

T .. 2% 1,2
o, = 8, Toa 8 ~5 T Hofp
273 Ko

80 that
(6.43) u2(32*§33) "‘:2(33"‘;;2) = 2:2(;1282-#&3) = 2(;;2&2-&'233)
Combining (6.39), (6.41) and (6.43) we obtain

Wiy (AW (1y) = 3 dtsgl2n) = (ye,0p8,), 28y + (hy8yoiiye,)]
(6.14)

= ag(W(uy )ALV (1))

BEquations (6.42) and (6.L44) merely express the fact that the decomposi-
tions of Ne(Al) and N(A,) 1mplied in (6.38) and (6.39) setisfy the

condition (5.14) of Theorem 5.13.
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In order to show thut every matrix in the set M(A) is €-minimal
for A, it remains only to prove that W(pi) solves the Maximum
Problem 5.11 for A, (1 =1,2). By Lemma 6.11 it will suffice to prove

that

(6.45)  o,(0) < < lag(WCuy AW ()] (1 =1,2)

hold for 211 A € C vhere

(6.46) o,(A) = ¢ [ag(WOW(W AW (W W ON] (1 = 1,2)

Straightforward calculations using (6.12), (6.32) through (6.37), (6.40),

and (6.41) yield

(6.47) eztds(w(ul)Alw*(ul))] -2 l'al!2 +% Ia212 ’

(6.18) € [a(Wluy)A W ()] = 2 |y ¥ + 3 (lay| + [a 12
(6.49) o, (A) = ? (loa; +p8,[% + |oa, - 8, P)

1 = 2 - 2
(6.50) o (2) = Z (loa, +Byay + Byas]" + fam) - Boa, - Bra,l%)

where

(6.51) a =2(1 + %)
and
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(6.52) B, = Wk + u % - u, - A (1 =1,2)
i i 1 i

After further calculations we find that

(6.53) o, (A) = 2la, |7 + _z_;_lf |ay 2,
(6.54) o,(A) = 2]a, | + 52- B8, + Byeg 2,
(6.55) By = - uyluy + M)y - %) (1=12) ,
(6.56) Iyl = 1§ - 2% (1 =1,2)

Revriting (6.45) using (6.47) and (6.48) we obtain

(6.57) o,(0) < 2la; |2 + 5 [ay |2

(6.58) o, () <2la; 1% + 3 (lay| + lag )P

We wish to show that (6.57) and (6.58) hold for all A\ € C. One sees

trom (6.53) that (6.57) holde 1f end only if 2|s1|2/02 < 1/2 tmat is
2

I8, |

6. s
(6.59) (1 + W)

<1 forall A€ C .

Furthermore equality hclds in (6.57) if ard only if equality holds in

(6.59). From (6.34) and (6.37) we have |u1| =1 (1 =1,2);

-
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consequently

I - 2%) < Jugf? + A2 =1+ (1 =1,2)

so, from (6.56) and the last inequality, we see that

2 2 22
I h‘i'xl

| )2
i PR CILEY M) (1 =1,2)

6.60 =
(6.60) (1 +2%)° (1 +35)° T (1 +)°

hold for all \ € {. Equality holde in (6.60) if and only if - Tifxz

is real and nonnegative, i.e., - Hikz > 0. By the triangle inequality
- 2 2 2
(6.61) I, + Byasl” < Iy 1° (lay] + [ay)

with equality holding if and only if a§a223 > C. From (6.36) and (6.55)

we have

(6.62) a§a2:3 = u§a233(,12 PG, - %) = laje |Gy + 2(, - ¥

From (6.51), (6.54), and (6.61) we obtain
I8, I°

2 1 2
o,(r) <2la | + — - 5 (la,| + [a,])
2 1 a2 2% 3|

consequently, by (6.60) and (6.62), (6.58) is valid for all A € C

with equality if and only if

(5.63) (hy + M, - D)2 2 0
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and

(6.64) - :22}? >0

Furthermore, from (6.60) and (6.59), we see that (6.57) holds for all

A€ C with equality if and only if
(6.65) - s0 .

This completes the proof of the fact that every matrix in thke set M({A)
is €-minimal for A.

In order to determine all €-minimal matrices for A it will suffice ’
by Theorem 2.27 and Lemma 6.17, to determine all €-minimal matrices for
B, = V(pi)Aiw*(ui) (1 = 1,2). The folloving lemma will provide help
in making that de*ermination.

6.66 Lemma. Let B € 777, and let N_=U DU, where U € T4,
and Do € /\02, be €-minimal for B. Then there exists a A, €C

such that

N, =W (h) dg(w(r )B (A )WL)

Proof. By the parametric representation of Z(a developed in the
proof of Lemma 6.11 there exist A€ /02 Nl 712 and A € C such
that U_ = AW(h ). Thus, recalling that dg(ADMA:) = dg(M) for any

M€ 7’]2, we have

ag(UBUs) = ag(Wr ) (A ) ;
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consequently by Theorem 5.13 and the fact that diagonal matrices commute

U: dg(w(xo)nu*(xo))uo

VM)A ag(WO )BT (AN )

W) ag(WO B (0 )W)

as desired.
Since H(ui) solves the Maximum Problem 5.11 for A, (1 =1,2) we

see from Lemma 6.66 that, if we determine all xo € C such that.
2 ' 2 *
¢“(ag(B,)) = «“(de(wr )B,W (1)) ,

then we will have determined all €-minimal matrices for B (i =1,2).
By the definition (6.46) of cri(x) this amounts to determining all
cases of equality in (6.57) and (6.58). We shall do this by using the
next two lemmas.

6.67 Lemma. The inequalities

(6.68) - Ei)@ >0 (k = 1,2)

hold if and only if
(6.69) A= pi By (k = 1,2)

where p 1is real.
Proof. Let M =r exp(ip) where r >0 and ¢ is real. Since

|p,k| =1 (k =1,2) we can set M = exp(i(pk). Thus

97



(6.70) - ;Ekka - ei 2(0-%()

Obviously (6.68) holde if r =0. If r > O then, from (€.70), we see
that (6.68) holds if and only if expli 2(9 - @ )] = -1 i.e., if and
only if exp(19) =+ 1w or A =+ri . Setting p=+r we see
that (6.68) holds if and only if A has the form (6.69) where p 1is
any real number.

6.73 Lemma. The inequality (6.63) holds if end only if

(6.72) ™

vkhere o 1is real.

Proof. Straightforward calculations using (6.37) yield

(6:13) (g Py R0 = -k Prrf* + 2 BeOFRE)Ist2( A R1 ) F-0 )]

The first term in square brackets on the right of (6.73) is real while
the second such term is pure imaginary. Therefore in order that (6.63)

hold it ie necessary and sufficient that

(6.7) (P - 1)WY = Bp) - 0
ond
(6.75) r(x‘,ue) =1 - h|x|2 + |x|" +2 ae(xaﬁg) >0 .

Obviously (6.74) holds if and only if either |A| =1 or wX =)

I |A] =1 then
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(0 m,) = 2(Re (VD) - 1) <0

vhence (6.75) holds if and only if equality holds in the last inequality,

i.e.,

(6-76) A=+ By -

If |A| #1 then (6.74) holde if and only if pa'i = ;2>., i.e.,
u:f Let A =r exp(ip) where r> 0 end @ is real. We need
consider only the case r > O since (6.63) holds if X = O. Thus
r exp(19) = 15 r exp(-19) or exp(i20) = ua or exp(ip) = * u,-

Consequently
(6.77) A=tru, .
Substituting this into f().,uz) defined in (6.75) we have

f(x,pe) =] -»‘l&rz +rb+2r2 =rh- 2r° +1 = (r2 - 1)220
for all r. Setting o = + r and combining (6.76) and (6.77) we see
that (6.74) and (6.75) hold simultaneocusly if and only if A has the
form (6.72) vhere ¢ is any real number. This completes the proof of
Lemma 6.T1.

Consider £irst the case in which M(A) contains exactly one matrix,
i.e., the case in which A is unitarily similar to A2 Here we wish

to determine all ceses of equality in (6.58). We have previously
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observed that equality holds in (6.58) if and only if (6.63) and (6.64)
hold zimltaeneously. Therefore by Lemmas 6.67 and 6.71 we must have

A = OHy and A = piua vhere p and o are real. But the last two
equations repreeent straight lines in the complex plane which intersect
only for p =0 =0, i.e., only for A = 0. Thus equality holds in
(6.58) only for A = 0. Since W(0) = I we see from Theorem 5.13 and
Lemma 6.66 that

N(Ay) = W (1y) aa(W(inn JAN (1) W(1s;)

is the only €-minimal matrix for Ae By Corollary 2.30 A has exactly
one €-minimal matrix, namely N(A).

Now consider the case in which A 1s unitarily similar to Al.
Here M(A) contains infinitely many matrices and we wish to determine
all cases of equality in (6.57). We observed previously that equality
in (6.57) if and only if (6.65) holds. By Lemma 6.67 equality holds in
(6.57) 1f and only if \ = pip,, where p 1s real and p,, 1s defined
by (6.32). Using (6.34) and (6.12) w2 obtain

HAW(sy) = ey s |
11 2 V1 +p piu.l 1 “y 1

1+pi Hl(-l + pi)

1
va V1 + p! (pl(hpi) l-p1

. lept 0\, [ 1 -Kl(i—:'%)

ql+p! 0 l-pivg “1%% 1l
10 /2

-Apﬂ(ulep)
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where

1+Ei o
A vl+92 ‘@n
I € 2 ua
0 1 - pi

vl-i-pe

and where
i6 /2
e P = 1+pl .
1l -pi
From (6.32) we have
6+0
] —L

i8 /2
e P
16

-Ve /e, e e .
2/%2 “1,9+ep ’
Therefore by Lemma 6.66 every €-minimal matrix for A, is of the form
* * * *
w (ul)W (») ds(W(X)W(ul)AlW (ul)W (2) )W(")W(ul)
% * * »*
=W (“1,e+9 )Ap dS(pr(“l,aw AW (“1,9+9 )Ap)ApV(ul,9+9 )
P o Y] P
-v a )AL W )W )
=Wy g, ) a8y o0 IAW (uy o0 MWk 5.0
p p P [
= N6+ep(A'.L)

which is Just another one of the matrices in the set M(Al) no matter
what the value of p is. Thus M(Al) contains all the €-minimal
matrices for A,. This completes the proof of Theorem 6.24,

Scme immediate consequences of Theorem 6.24 are the following.
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6.78 Corollary. If A € 772 then the set (3.10) contains exactly one

matrix, namely A.
6.79 Theorem. Let M and )\, denote the eigenvalues of A € 7?2.
It A ¢ 772 then there is a unique €-minimal matrix for A if and
only if A, F N, if A, =), there are infinitely many €-minimal
matrices for A.

Proof. By Theorem 6.24 A has & unique €-minimal matrix if and
only 1f tr(A%) - (1/2)(tr(A))° # 0 (cf. Definition 3.8). By (6.8)
this happene if and only if M # My. Similarly, if Ay =)y, M(A)

contains an infinite number of matrices.

6.80 Theorem. Mirsky's ConjJecture 1.35 is true for v =€ and n = 2.

Proof. This follows immediately from Theorem 6.24, Lemma 6.5, and
the definition (1.34) of de(A).

6.81 Theorem. The set M(A) of (3.10) provides a complete solution
to Problem 3.40 for n =2 and k = 1.

Proof. Clearly M(A) C & (A)C 77, so by Theorem 6.2k we have
tﬁe desired conclusion.

For any subset J of Mn we denote the set of all real matrices
in J by / /R (read: ,/ restricted to R). Theorem 6.2L provides
a complete solution to the distance problem (and associated minimum
problem) of finding (1.26) where v =€, A € 7’(2/_3 and where J 1s
replaced by 722/3. For, 1f A € 77,/R has eigenvalues M shy, then
the set M(A) contains all matrices in 7[2 which are €-minimal for
A. I N # My (ef. (6.8)) then by (3.9) ¢(A) contains exactly one
number and that is reaml; consequently by (3.10) M(A) containes exactly

one matrix and that is resl. If XA, =), then L(A) contains all
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complex numbers of unit modulus and by (3.10) N;(A) is real if end only

if either { =+1 or { = - 1. We have proved

6.82 Theorem. Let A€ 7’{2/5, A ¢ 772 and let the eigenvalues of
A Dbe denoted by A M. If A # A, there is a unique real €-minimal
matrix for A given by (3.10). If M\ =), there are exactly two real

€-minimal matrices for A, namely

1 #* 1 .
E(A:A)..+utr(A+A)I .

6.3 The Maximum Problem 5.11 in the Case n = 2.

6.83 Theorem. Let A € 77[2. The identity matrix I solves the

Maximum Problem S5.11 for A, i.e., A satisfies

(6.84) e2(dg(A))= Max ea(dg(UAU*)) s

U e‘u2

if and only if
(6.85) avie B,

for some { in the set {(A) defined by (3.9).

Proof. If (6.85) holds for { € {(A) then by (3.10) N;(A) € a@a
whence I diegonalizes Ng(A). By Theorem 6.24 N;(A) is €-minimal so
by Theorem 5.13 1 solves the Maximum Problem 5.11. Suppose now that
(6.84) holds. Then by Theorem 5.13 dg(A) 41e €-minimsl for A whence

dg(A) € M(A) by Theorem 6.24. Thus there is a { € l(A) such that
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N(A) = ag(a), f.e., Wy(A) € A, and this implies (6.85).

6.86 Theorem. let A € 7772. U, solves the Maximum Problem 5.11 for

A 1f and only 1if UQ € uz and

(6.87) U(A+ QAU € /|92

for some { in the set {(A) defined by (3.9).
Proof. Every V € "Z(Q can be written uniquely as V = UU_ and

V runs through 'Z[2 if and only if U runs through Z(Q‘ Thus

(6.88) €®(ag(UAv’)) = Max  <E(ag(u(u_au))u*))

U € "Z.(z
whence U,‘AUZ satisfies (6.88) 1if and only if U, solves the Maximum
Problem 5.11. By virtue of \5.27) Theorem 6.86 follows immediately
from Theorem 6.83.

Remark. The significance of Theorem 6.86 1ies in the fact that it
characterizes any solution of the Maximum Problem 5.11 (for n =2) 1in
terms of an algebraic condition which is very easy to check.

Note. A more precise determination of the values of { for which
(6.85) and (6.87) hold in the ambiguous case of (3.9) will be made in

Chapter T (Theorems 7.24k and 7.26).
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CHAPTER T

FURTHER NECESSARY CONDITIONS FOR €-MINIMAL MATRICES

According to Theorem 5.13 all €-minimal matrices are determined
by solutions to the Maximum Problem 5.11. Therefore & necessary condition
on a unitary matrix solving this maximum problem will, indirectly, be
a necessary condition on an €-minimal matrix. By working through the
Maximum Problem 5.11 we shall be able to derive some additional necessary
conditions in the present chapter.

The identity matrix I solves the Maximum Problem 5.11 for

B € 7?7n if and only if B satisfies the condition

(7.1) (ag(p)) = Max  &(ag(um’)) .
U eW

If B satisfies (7.1) then, by Theorem 5.15, dg(B) is €-minimal for
B and, by Theorem 4.10, dg(B) satisfies the necessary condition (4.12)},

i.e.,

(7.2) ag(B)B - B dg(B) + dg(B )B-B ag(8’) =0 .

Letting B = (bij) we can express the last ecuation in terms of the

elements of B as follows
(7.3) bdi(bii - bJJ) + biJ(bii - bJJ) =0 (1<14i,J<n) .

In like manner we find from Thecrem 4.73 that there is a hermitian matrix

H such that
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dg(B) + dag(B)H - H ag(B) = B = dg(B) + offrdg(B)

or

offdg(B) = dg(B)H - H dg(B) .

Writing H = (hi J) we can express the last equation in terme of the

elements of B and H as follows

b1J = hij(b11 - bJJ) (1 £3) .
Since H 1is hermitian we have h,ji = hij 80 b,ji = hi.j(b,j,j - bii) =
- Hi J('b11 -b 3 J)' Therefore we find that every 2 by 2 principal

submatrix Bi 3 of B 1is of the form

b

11 Pyy Py4 hyy(byy=dyy)
(7.4) B, = =1 _ (1g1<Jy<n)
bJJ -h“(bi

1) _
Pys 17043) Py

Consider nov unitary matrices U = (urc) eun of the following

special type. For any pair (1,3) of row cnd column indices satisfying

.

1<1<)j<n welet the 2 by 2 principal submatrix

Y41 Y4y

UiJ =

Yss Y33

be unrestricted (except for the requirement U € Z(n) and specify that

all other elements of U satisfy

106



One may easily verify that U 1s unitary if and only if U is

ij
unitary. If B satisfies (7.1) then certainly «-(dg(B)) > €>(ag(Umu"))

holds for all U of the special type just described. The effect of

¥*
the transformation UBU on the submatrix Bi 3 is that of repiacing

B by U therefore, since U can be any matrix in 1(2,

¥*
14 1y Byy Vsy 13
ve see that B, itself satisfies (7.1) with n replaced by 2:

2 2 »
€ (dg(BiJ)) = " lelanx_“2 € (ag(uB, U )) (1<i<ygn) .

We now find from Theorem 6.83 that

*
(7.5) Byy *+ 413313 € ‘92 <1<y

holds for some §13 € §(B:LJ)' Expressed in terms of elements, the

condition (7.5) states that
(7.6) bm«» ;iJ‘in=bJ1+ ;me =0 (1<i<3gn) .

Since |§13| = 1 the last equation implies |[b b

13l = oyl
We can obtain some information about the complex Lagrange multipliers

h in (7.4) as follows. From (7.3) and (7.4) we obtain

13

¢ =0

- 2
-hu(b11 - b“) + hiJ |‘:>11 - bu
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80, unless by, = b,j,j (in which case the value of h in (7.4) does

iJ
not matter at all) or hi.‘j = 0, we have

2
hij

|n

2
_(byy - by0)

P 3
151 [o4 - y4l

or

By Pyg = Py

=+
{hi.][ - rbii = bjﬂ

Straightforward computations using (7.4) show that

2 .

(1) e, - % (ex( ) = & - 2ng, )by, - by,

It (7.7) does not vanish we see from (3.9) that ;m in (7.5) must have

the value
by - b
(7-8) 4y =8, 2
S
117 74
wvhere

1 2
84y " 860(5 - 2"‘13' )

and vhere for & € R sgn(a) denotes the sign of a:

+1 it a>0
sgn(a) = .
-1 if a <O
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Using (7.4) and (7.8) we obtain

biJ + ;ijbji = hij(l - sij)(bii - bJJ) ’

byg * 8ygPyy = hyylegy - 1)(byy - Byy)

vhence (7.6) holds if and only if either hij =0 or 84y = 1. Clearly

syy =1 holds if and only if (1/2) - 2|hiJ|2 >0, f{i.e.,

1
(7~9) |hi'jl < )

The other possibility ie that hij = 0 1in which case (7.9) still holds.

In the ambiguous case of (3.9) where (7.7) vanishes we obtain

(7.10) b13 + ;ijbji = hij[(b11 - bJJ) - ;iJ(bii -'B}}?] ,

(7.11) bji + 513b13 = -hij[(b11 - bJJ) - giszii - bJJS]

If we disregard the uninteresting case bii = bjj then obviously (7.7)

vanishes if and only if Ihij| = (1/2). Thus, from (7.10) and (7.11),

(7.6) holds if and only if

§ ,-=_1_i__._l|1
U5 -3,
ii 33

We now summarize the above results in the following

7.12 Theorem. Let B = (bid) e‘797n satisfy the condition (7.1).

For each pair of indices (1,)) satisfying 1 < i < j<n the following

statements are true.
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(1'13) bidﬁii - ij) = bji(bii = bJJ)

(7-14) b b

1,11 = 31'

There exiats a complex number ( = complex Lagrange m.ltiplier) hi

J
such that
by Py i1 hyy(bgydy,)
(7-15) Bu = ) =
R TRRET "By 5(044-0y4) ®5
p ¢ 4 b, = b"'1 taen b” = b‘11 =0, If b,y f bJJ then
1
(1.16) 'hijl < 3
More precisely, if
(7.17) tr(!!i)) -3 (tr(Bu))e 0,
then
1
(7.18) 'h13| <3
and, 3if
1 2
(7.19) er(8,) - 3 (tx(8,,))? = 0

+apd -'11 * bJJ’ then

10



=%
(7.20) Ihyyl =3

If b, £0 and b, # b,y then

b,, - b
(7.21) By 14
gyl =% oy oy,

Furthermore, if b there is a uniquely determined complex

1 # Py
number {,, satisfying |;1J| = 1 such that

(7.22) Byy ¥ BygPyy = Dyy * ‘13b13 =0 .

It (7.17) holds € ;(Bid) where the set ;(Bij) is defined by

913
(3.9). If (7.19) holds then

(7.23) 85 = S
P11 7 Py

Specislizing Theorem 7.12 to the case n =2 we can lmprove Thecrems

6.83 and 6.86 as follows.

7.24 'Theorem. Let A = (aiJ) € 7?72 satisfy (6.84). 1If 8, = &y

then A =a,,I and (6.85) holds for all ¢ € ¢(A). 1If a # a,, and

1
and ir tr(A?) - (1/2)(tr(A))2 = 0 then (6.85) nolds only for

(7.25) R



T.26 Theorem. Let A € 7)[2, let U, solve the Maximm Problem 5.11
%

for A, and let B = (bid) =UAU. If b, =Db,, then B =D,,I and

(6.87) nolds for all §{ € {(A). If b, # b,, and if

tr(A%) - (1/2)(tx(A))® = 0 then (6.87) holds omly for

b, = b
(1.27) (- =2
11~ P22

7.28 Theorem. Let A E'?f[n, let U, eolve the Maximum Problem 5.11

for A, and let B = (b“) = UOAU:. Then all the conclusions of
Theorem 7.12 hold.

Prooft. If Uo eolves the Maximum Problem 5.11 for A then, by
an argument similar to trat used in the proof of Theorem 6.86, B

satisfies (7.1).



CHAPTER 8

COUNTEREXAMPLES TO MIRSKY'S CONJECTURE

In the present chapter we shall present some selected examples which
shed some light on the distance problem of finding dv(A) and wvhich also
show that Mirsky's Conjecture 1.35 is incorrect in a number of instances.

Consider first the following class of matrices of order n. We
define A = (ak‘) € 7)7n as jollows: & , =0 (1 <k, £<n) with the

following exceptions

19k
(8.1) &, k41 = © (k =1,2, ... , n=-1)

where the ek are arbitrary real numbers. Now define “q: = (bk z) € 7z

by

(8.2) b, =e® , b, =a othervise

k£
vhere @ is any real number. Clearly the rows and columns of N‘P form
orthonormal sets so that Ncp is unitary (for all 8.5 +on s 9n_l, ® € R)
and therefore normal. (Actually Ncp is the product of a diagonal unitary
matrix with a permutation matrix.)

For all 91, cee Gn_.' wve have Q(A) = 0 ez €2(A) =n-=-1 80

(8.3) e2(A) - ea(n(A)) an=-1 .

An elementary calculation shows that f{c) = ez(A - cllv), where c¢ is

real, sssumes its absolute minimum if arnd only if ¢ = {(n - 1)/n.
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Furthermore, by (8.3)

(8.4) a2y ) =22 -2 () - Faa)

holds for all 6,, ... , O _;, @ € R. This proves (cf. Theorem 2.16).
8.5 Theorem. Mirsky's Conjecture 1.35 is false for v =€ and n > 3.

There exist matrices A in 77/ such that

(8.6) Pe,n(A) <3 (a23)

vhere p. n(A) is defined (for v = ¢) by (2.14).
2
Note. An exemple of order 3 similar to the pair A, (n - 1)/n llv
in the case n = 3 is due to Eberlein [6]. She alsoc obtains counter-

exsmples to Mirsky's conjecture for n > 4 by bordering her 3 by 3

example with zeros.

Consider next the class of 2 by 2 matrices of the form

A m
(8.7) As=| vhere A\, m € C , mfgO .
C QO

lat K Dbe any €¢-minimal matrix for A, that is,any one of the matrices

1 2A n
(6.8) - . (¢ € ¢(a))
fm O

wvhere {(A) 1s defined by (3.9) {cf. Theorem 6.24). One finds easily

A" < atag(hf2 ¢ m2,0) , (A - WA - W) =1 ares(nf?, nf?)
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whence, by Definition 1.10, the singular values of A are

2 2
AT+ ==, 0

and the singular values of A - N are

Tl , 2iml .

Using the defining formulas (1.13) - (1.15) for the unitarily invarient

norms v, we find that the following hold for all p (1 <p < =):
1/p
vp(A) = [(\/p.F + |m|§)P1 = \lmz + |m12 ,
vo(@a) =

1
vy(A - F) = [2(112‘1)1’1 . 21/P L 1

8o
2 2 2
2 - Baw) =
vi(A -N) = 22/p-2 |n|2
or

'vi(A - = 22/p'2(v§(A) - vi(n(A,.) i

Now 22/P2 ¢ (1/2) if and only if 22/P ¢ 2 and this happens 1f and

only if 2/p <1, i.e., p>2. Thus the pair A, ¥ provides a
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counterexample to Mirsky's conjecture for n =2 and for all p > 2.
By bordering the matrices A, N with zeros and by carrying out the
relevant computaticne with (1.13) - (1.15) for higher values of n, we
then obtein counterexamples to the conjecture for all n > 3. We have
proved

8.9 Theorem. Mirsky's Conjecture 1.35 is false for v = A (2 <p < =)
and n>2 vhere v is given by (1.15).

Remark. Since vV, =0 we bhave again proved the second statement

of Theorem 2.19.



CHAPTER 9

THE FIELD OF VALUES AND EIGENVALUES OF €-MINIMAL MATRICES

The field of values (or numerical range) of a matrix A € 77“ is

defined to be the following set of complex numbers.

(9.1) F(A) = ((Ax,x); (x,x) =1 and x is a complex column
vectorj

The following are known facts concerning F(A):

9.2 Theorem. (Toeplitz [23] and Hausdorff [12]) For any A € 757;
F(A) ic a closed, bounded, connected, convex subset of C.

9.3 Theorem. (Toeplitz [23]) Let A 677[!1. All eigenvalues of A
are in F(A). If A€ 7?n then F(A) coincides with the convex hull

C(A) of the eigenvalues of A.
9.4 Theorem. (Hausdorff [12]) The field of values is invariant under

a unitary similarity transformation;

(9.5) F(A) = F(UAU") where A € J”zn, v U .

n

A simple consequence of Theorems 9.2 and 9.3 is the following
9.6 Theorem. Let A€ Zﬁ?n. Then the convex hull C(A) of the

eigenvalues of A 1s contained in F(A):

(9.7) C(A) C F(A)

An elementary computation using Theorem 9.4 and results of Toeplitz

[23] and Donoghue [5] yields the following result whose proof is omitted.

117



9.8 Theorem. Let A e»fa and let

* A';;_ B
(9.9) vav = (Ve U,

° A
be a Schur triangular form for A. If A is not normal, i.e., if
m#0, and if M # Ay, then F(A) 1s the interior and boundary of an

ellipse whose foci are A, and X,, wvhose minor axis has length |m],

2./
and whose major axis has length ([n* + [A - &, [)V%; 12 A =,

then F(A) is the interior and boundary of a circle with center at Ay

and diameter |m|. If A 1s normal, i.e., if m =0, and if M £,

then F(A) 1is the straight line segment connnecting M

M =My, then F(A) reduces to a single point, namely A

and ).2 HEES § 4
1

OQur first objective in the present chapter is to prove
9:10 Theorem. Let A € 77, A £ 77, eand let (9.9) be a Schur form
for A. If M # A, then the eigenvalues of the (unique) €-minimal
matrix for A are the end points of the major axis of the ellipse which
is the boundary of F(A). It A =), and if Ne(A) (see the note
folloving Definition 3.8) is one of the €-minimal matrices for A, then

the eigenvalues of _Ne(A) are
(9.11) | A\ 2% [mle

given any diameter of the circle which is the boundary of F(A), there
is a 6 € R such that the eigenvalues of NO(A) are the endpoints of

that diameter.



Proof. In view of Theorem 9.4, (6.27), and (6.28) we need only
prove the result for some unitary transform of A. We shall use the
form (9.9) for this purpose. Consider first the case M =X, Then
by putting a; =X, 8, =m 1in (6.29) and (6.40) we see that

we

»
Ne(VAV ) =

OV Lo
=4 ]
[ ]
>

furthermore, by Theorem 5.13, the elgenvalues of Ne are the diagonal

elements of (6.40), namely
1

vhere, by (6.35), (w g)° = |n|® exp(16) or

(9.13) High = * |m|eie/2 .

Whatever sign is chosen in (9.13) we see from (9.12) that the eigenvalues

of N, are given by (9.11). By Theorem 9.8 the boundary of F(A) 1is a

e

circle with center A and radius (1/2)|m]. As © increases from ©

to 2n 1t is clear from (9.11) that the eigenvalues of N, are the

]
endpoints of a dismeter of that circle which rotates through ea angle
of x. That is, every diameter of the circle which is the boundary of
F(A) 4s included as one of those which can occur as the line segment
connecting tﬁe eigenvalues of some €-minimal matrix for A,

We now consider the case X\, # \,. Straightforward computations
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based on Definition 3.8 show that

(9.14) N(vav') = (

and, according to Theorems 6.24 and 6.79, this is the only €-minimal
matrix for (9.9). The eigenvalues Hys By Of N(VAV") are the roots
of the quadratic equation u2 - (>.l + ka)p t A, - (l/h)lml?‘; = 0.

Using the quadratic formula and the expression for ¢ 1in (9.1l4) we find

1 1 1/ 2 "3
“1=-2-(x1+).2)+-2- Vg [m] +[>.1-x2| ’

(9.15)
My =3 (A + 1) -,‘1;-\/;'wm|9+ Y
Now
2
: - )‘1"'2 ;9_1"‘2)
D VR T W
wvhence
(9.16) erg( VL) = arg(r, - 1)) .

According to Theorem 9.8 the boundary of F(A) 1is an ellipse with foci
Mo My center (1/2)().1 + xe) and major axis of length
(j? + Iy = 2,212, From (9.15) and (9.16) we £ina

(9.17) arg(, - %-(\l +2)) = arg(r) - ),) = arg(n, - -;- ( +2)) ,
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(9.18) ara(n, - %(’"1 +\y)) = argl-(A) - A,)] = arg(u, - % (g +2,0) .

Relations (9.17) and (9.18) show that Ajs 55 by, 8nd W, ell lde on
the same gtraight line through the center (1/2)(7Ll + 12) of the ellii)ée.
Since M, e&nd xe lie on the major axis, since |{] =1, and since

the length of the mejor axis 1s (Im]2 + le - X, |2)1/2, wve see from
(9.15) that u, and 4, are the endpoints of the major exis. This
completes the proof of Theorem 9.10.

.19 Corollary. Let A € 7%,, Af¢ 70, If F(A) 1s a circular

disk, then given any diemeter of that disk there is a 6 € R such that
F(Ng(A)) coincides with that diameter. If F(A) 1is the interior and
boundary of an ellipse (not a circle) then F(N(A)) coincides with the
major axie of that ellipse.

Proof. This follows immediately from Theorems 3.8 and 9.10, since

every matrix in M(A) is normal.

9.2C Corollary. Let Ae772, Af 722 and let N, be €-minimal
for A. Then the eigenvalues Hys By of No are extreme points of

F(A). Furthermore |u, - u,| = diam(F(A)) =  sup|z - v][.
z,w € F(A)

9.21 Theorem. Let A € 77!1 end let N be €-minimal for A. Then

every eigenvalue of N bel nge to F(A) and

(9.22) F(N) C F(A) .

Proof. Let N =UDU where U €2/ ena D € A . a
oof . o—oc’owere ° nan oe 0 ccord-

ing to Theorem 5.13 the eigenvalues of No are the diagonal elements

+*
of the matrix UOAUO. If u

»
x is the k-th column of U° then the k-th
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v ™
disgonal element of UOAUO 18 given Ly (Auk,uk) and, by (9.1), this
is m“r(“A). Bince F(A) 1is convex and since F(No) is the convex

bull of the eigenvalues of N, we obtain immediately (9.22).



CHAPTEF. 10

A GENERALIZATION OF THE JACCBI AND GOLDSTINE-HORWITZ METHODS

Long ago Jacobi [14] devised a method for dlagonelizing a reel
symmetric matrix. The method utilized coordinate-plane rotaticns and
was essentially dependent only on an elementary t:uconique for dlagonalizing
a real symmetric matrix of order 2 using an orthogonel similarity trans-
formation. Since 1950 Jacobi's method has Leen extensively studied and
generalized (see e.g., [3], [4]). In the present chapter we shall describe
s$t1ll another generalization of Jacobi's wethod which amounte to a
computational technique for solving the Maximum Problem 5.11. This new
technique 2lso generalizes and simplifies a method devised by Goldstine
and Horwitz [10].

Consider the following computational elgorithm. Let A € 777 and
set Ao = A. One calculates a sequence of matrices Al’ A.‘,, coe o
A = (.ﬁ‘e‘)), «.. vhich ere unitarily similar to A by the recurrence

relation

(10.1) A, = ukaku; (k = 0,1,2, ...) .

The Uk = (ug)) are special unitery matrices of order n. For every
value of k there is specified a pair =x, = (1k,.jk) = (1,)) of indices
(we omit the subscript k in the sequel for notational simplicity)

satisfying 1 <1< J<n such that the 2 by 2 matrix
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o{E) (k)

i1 13

(10.2) vk=( . ())
k k
b PR B

vhich is & principal submetrix of U,, I1s unitsry. All other elements

of Uk satisfy

~
3%

4
1 rec
u&).b = ’

re 0 , T#ec

L ]

The matrices Uk ars completely determin:d by the peirs LN end the
2 by 2 unitary metrices Vk. VWe shall always take Vk to be a
watrix of the form (6.12).

Any set ¢f rules for choosing the =equence (Ukl vill be called &
pethod of Jacobi type. The following example which is defined only for
A€ Wn and which is e straightforward extension of Jacobi's original

method to hermitian matrices will be referred to as the classical Jacobi

method (cz. [4]). Here one chooses %, such that

k X
(10.3) "ij)l = Max |a1(,c)|
rfce
and chooses V, %o be a matrix of the form (6.12) such that
(k1) _

The new generalization of Jacobi's method which was announced in

the first paragraph of this chapter is a method of Jacobi type with the
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following set of rules for determining the VU, of (10.1). Let

oK) (x)
rc¢
(10.5) NI B " (l<r<e<n)
SR OIS
cr ce

and define

(10.6)  flre) = ueuu;?(eg(mg:)u*)) - Plag(alEhy) .

Choose £ 80 that

(20.7) 8, (1,9} = L | Max & (r,e)

<r<eg

and choose Vk

Problem 5.11 for Ag). We ghow in the next parsgraph how to calculate
casily Ak(r,c) and vk.
By Theorems S.13 and 6.24 a unitary matrix U, solves the Maximm

to be a matrix of the form (€.12) which solvea the Maximum

*

Problem 5.11 for A € 7%, 1f end only if U N(A)U, 18 diagonal and,
*, *

by (3.10), that happens if and only if UO(A + LA )’Jo is diagonal where

¢ € C(A). Therefore all we need to do in order to solve the Maximum

Problem 5.11 for any of the submatrices Ai_lc{) is to £ind a pf_’;) € C

such that

(10.8) W)@+ ¢ AWk € B,
wvhere { 4s any number in Q(Af_::)). Thus from (10.6) we heve
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(10.9) 4 (r,e) = ea(dg(w(uﬁz))Ait)V*(ugt)))) - Ez(ds(Af.l;)))

and we set

(10.19) v, = w(uf;)) .

We now show that if A € Hn the set of rules (10.7) and (10.10)
coincide respectively with (10.3) and (10.4). This will show that our
nev method 1s a generalization of the classical Jacobi method, If
A € 7Y, then, from (10.1), A € A, (x =0,1,2, ...) which impiies
Ag)e ﬂe for 1<r<c<n and for all k. 8ince Ag) is
hermitian it can be diagonalized by & unitary transformation and the
value Of the maximum in (10.6) is given by te(Ag)). Thus we find that

Ak(r,c)-alag)l (1<r<cgn)

vhence the rule (10.7) reduces to (10.3). Purthermore, by Corollary
6.78, M(%(_:)) = [Af,t)l _whence the V. given by (10.10) disgonalizes
Ai’;) 1.e., (10.4) nolds.

Since the clasaical Jacob! method diagonalizes any A ¢ /7Y Ve
have proved that the method of Jacobi type (10.7), (10.10) will diasgonslize
any hermitian matrix. By a similar ergument we could show that the
method will also disgonalize any skew-hermitian matrix.

In {10} Goldstine and Horwitz devised a method of Jacobi type which
wes applicable to any normal matrix A € 77,. At each stage they sought,

by & very complicated procedure, to determine a V, of the form (6.12)
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such that

te(Ag_l‘;ﬂ)) = €2(offdg(VkA§§)V;))

wes minimized. It 18 easy to see that this is the same as deteranining
Vk 55 that ea(dg(VkA?;)V:)) is maximized i.e., solving the Maximum
Problem 5.11 for Ag). Thus cur technique provides a simple solution
to the problem studied by Goidstine and Horwitz and at the same time
mekes its application to arbitrary A € Wn meaningful in the context
of solving the Maximum Problem 5.11 for A.

0f course the main guestion here ie whether or not the method of
Jacobi type (10.7), (10.10) will actually solve the Maximum Problem
S.11 for any A € ”n’ i.e., whethe:r or not ta(dg(Ak)) converges
to the maximum {5.12). A related question is whether or not the infinite
product - Ukuk-l voe Ulvo of unitary matrices converges to a unitary
matrix which solves the Maximum Problem 5.11 {cf. [L4]). If the answers
to these questions were affirmative then we would have a constructive
method of computing €-minimal matrices for any A € 7’[”. If the enswer
to the firet question vere affirmative then, by Theorem S.h4, we would
have a constructive method of computing de(A). These convergence
questions appear to be rather difficult and we content ourselves here by
proving only the following

10.11 lemma. Let A € 77/, and let the matrices U_ of (10.1) be

k
determined for each k by the rules (10.7) and (10.10). Then

(10.12) Ak(i,J) -0 as k= » .
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Prook. Let o, =e¢ (dg(A)) for k =0,1,2, ... . Since each A

is unitarily similar to A, we have

(10.13) < €(a) (k = 0,1,2, 00 ) .

%%
The only disgonsl elements of A effected by the transformaticn (10.1)
arve the ones In the i-th and j-th rows. Moreover, since the trans-

(k+1)

k %*
formation Au = vag_ J)vk increases the function tz(dg(Ai J)) by

the amount Ak(i,,j), wa have

(10.14) ey =0t %(1,3) >0y for k =0,1,2, ... .

The relations (10.13) and (10.14) show that (0} 1s a monotonically
increaeing sequence of positive numbers which is bounded from above.
Consequently o, -0 < ca(n) 88 kK -+ and from (10.14) we obtain the
desired conclusion (1C.12).
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