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Abstract

We address the grounding of natural lan- i, al al |
guage to concrete spatial constraints, and x ol - ~
inference of implicit pragmatics in 3D en- go NSvironments. We apply our approach to the CHa
task of text-to-3D scene generation. We ye

present a representation for common sense a A N(
spatial knowledge and an approach to ex- Figure 1: Generated scene for “There is a room
tract it from 3D scene data. In text-to- : os

: : : with a chair and a computer.” Note that the system
3D scene generation, a user provides as in- :

infers the presence of a desk and that the computer
put natural language text from which we

. : : should be supported by the desk.
extract explicit constraints on the objects

that should appear in the scene. The main lenges in grounding language and enabling natu-
innovation of this work is to show how ral communication between people and intelligent
to augment these explicit constraints with systems. For instance, if we want a robot that can
learned spatial knowledge to infer missing follow commands such as “bring me a piece of
objects and likely layouts for the objects cake”, it needs to be imparted with an understand-
in the scene. We demonstrate that spatial ing of likely locations for the cake in the kitchen
knowledge is useful for interpreting natu- and that the cake should be placed on a plate.

ral language and show examples oflearned The pioneering WordsEye system (Coyne and
knowledge and generated 3D scenes. Sproat, 2001) addressed the text-to-3D task and is

) an inspiration for our work. However, there are
1 Introduction LL. Co

many remaining gaps in this broad area. Among

To understand language, we need an understanding ~~ them, there is a need for research into learning spa-
of the world around us. Language describes the tial knowledge representations from data, and for
world and provides symbols with which we rep- connecting them to language. Representing un-
resent meaning. Still, much knowledge about the stated facts is a challenging problem unaddressed
world is so obvious that it is rarely explicitly stated. ~~ by prior work and the focus of our contribution.
It is uncommon for people to state that chairs are ~~ This problem is a counterpart to the image descrip-
usually on the floor and upright, and that you usu- tion problem (Kulkarni etal., 2011; Mitchell et al,
ally eat a cake from a plate on a table. Knowledge 2012; Elliott and Keller, 2013), which has so far
of such common facts provides the context within ~~ remained largely unexplored by the community.
which people communicate with language. There- We present a representation for this form of spa-

fore, to create practical systems that can interact tial knowledge that we learn from 3D scene data

with the world and communicate with people, we and connect to natural language. We will show

need to leverage such knowledge to interpret lan- how this representation is useful for grounding

guage in context. language and for inferring unstated facts, i.e., the

Spatial knowledge is an important aspect of the ~~ pragmatics of language describing physical envi-

world and is often not expressed explicitly in nat- ronments. We demonstrate the use of this repre-

ural language. This is one of the biggest chal- sentation in the task of text-to-3D scene genera-
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Figure 2: Overview of our spatial knowledge representation for text-to-3D scene generation. We parse

input text into a scene template and infer implicit spatial constraints from learned priors. We then ground

the template to a geometric scene, choose 3D models to instantiate and arrange them into a final 3D scene.

tion, where the input is natural language and the able to automatically specify the objects present

desired output is a 3D scene. and their position and orientation with respect to

We focus on the text-to-3D task to demonstrate ~~ each other as constraints in 3D space. To do so, we

that extracting spatial knowledge is possible and need to have a representation of scenes (§3). We

beneficial in a challenging scenario: one requiring need good priors over the arrangements of objects

the grounding ofnatural language and inference of in scenes (§4) and we need to be able to ground

rarely mentioned implicit pragmatics based onspa- textual relations into spatial constraints (§5). We

tial facts. Figure 1 illustrates some ofthe inference ~~ break down our task as follows (see Figure 2):

challenges in generating 3D scenes from natural Template Parsing (§6.1): Parse the textual de-

language: the desk was not explicitly mentioned scription of a scene into a set of constraints on the

in the input, but we need to infer that the computer ~~ objects present and spatial relations between them.

is likely to be supported by a desk rather than di- Inference (§6.2): Expand this set of constraints by

rectly placed on the floor. Without this inference, accounting for implicit constraints not specified in
the user would need to be much more verbose with the text using learned spatial priors.

text such as “There is a room with a chair, a com- Grounding (§6.3): Given the constraints and pri-

puter, and a desk. The computer is on the desk, and ors on the spatial relations ofobjects, transform the
the desk is on the floor. The chair is on the floor.” scene template into a geometric 3D scene with a set

of objects to be instantiated.

Contributions We present a spatial knowledge  geepe Layout (§6.4): Arrange the objects and op-
representation that can be learned from 3D scenes ¢imize their placement based on priors on the rel-
and captures the statistics of what objects occur v6 positions of objects and explicitly provided
in different scene types, and their spatial posi- spatial constraints.
tions relative to each other. In addition, we model

spatial relations (left, on top of, etc.) and learn a

mapping between language and the geometriccon- 3 Scene Representation
straints that spatial terms imply. We show that

using our learned spatial knowledge representa-  T, capture the objects present and their arrange-
tion, we can infer implicit constraints, and generate ment, we represent scenes as graphs where nodes
plausible scenes from concise natural text input. are objects in the scene, and edges are semantic re-

5 Task Definition and Overview lationships between the objects.
We represent the semantics of a scene using a

We define text-to-scene generation as the task of scene template and the geometric properties using

taking text that describes a scene as input, and gen- a geometric scene. One critical property which is

erating a plausible 3D scene described by that text captured by our scene graph representation is that

as output. More concretely, based on the input ofa static support hierarchy, i.e., the order in which

text, we select objects from a dataset of3D models ~~ bigger objects physically support smaller ones: the

and arrange them to generate output scenes. floor supports tables, which support plates, which

The main challenge we address is in transform- can support cakes. Static support and other con-

ing a scene template into a physically realizable 3D straints on relationships between objects are rep-

scene. For this to be possible, the system must be resented as edges in the scene graph.



RE timize their layout to satisfy spatial constraints. To
EE inform geometric arrangement we learn priors on

Figure 3: Probabilities of different scene types the types ofsupport surfaces (§4.2) and the relative
given the presence of “knife” and “table”. positions of objects (§4.4).
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Figure 4: Probabilities of support for some most : : LL
likelv child obiect caf four different tionships that can exist in a scene.
fkely © r objec categories given tour di eren We learn spatial knowledge from 3D scene data,
parent object categories, from top left clockwise: basing our approach on that ofFisher et al. (2012)
dining table, bookcase, room, desk. and using their dataset of 133 small indoor scenes

created with 1723 Trimble 3D Warehouse mod-

3.1 Scene Template els (Fisher et al., 2012).

A scene template 7 = (O,C,C;) consists of a 4.1 Object Occurrence Priors
set of object descriptions © = {o1,...,0,} and : : Co

constrai> C or ci) “io reland nd We learn priors for object occurrence in different— ly. Ck .
: scene types (such as kitchens, offices, bedrooms).

between the objects. A scene template also has a types (su ’ ’ )
scene type Cs. ~ count(C, in Cf)
Each object o;, has properties associated with Poce(ColCs) = count (Cs)

it such as category label, basic attributes such as This allows us to evaluate the probability of dif:
color and material, and number of occurrences in

ferent scene types given lists of object occurring
the scene. For constraints, we focus on spatial re- : : : :

: : in them (see Figure 3). For example given input of
lations between objects, expressed as predicates of 3 : : a

the form “there is a knife on the table” then we are

the form supported by(o;, 05) or lefi(o;, 05) where likely t a din ble and) 1 y to generate a scene with a dining table an
0; and o; are recognized objects.” Figure 2a shows other related objects
an example scene template. From the scene tem- jects.
plate we instantiate concrete geometric 3D scenes. 4.2 Support Hierarchy Priors

To infer implicit constraints on objects and spa- We observe the static support relations of objects
tial support we learn priors on object occurrences in existing scenes to establish a prior over what ob-
on scenes (§4.1) and their support hierarchies jects go on top of what other objects. As an exam-
(84.2). ple, by observing plates and forks on tables most

32 Geometric Scene ofthe time, we establish that tables are more likely
to support plates and forks than chairs. We esti-

hy refer to the one geometric presen ton mate the probability of a parent category C), sup-
ord PY a eps re scene. ] ot > X porting a given child category C, as a simple con-
a set 0 model instances — one for cath 0b= ditional probability based on normalized observa-
ject — that capture the appearance of the object. A... +2
transformation matrix that represents the position,

LL . count(C. on C,)
orientation, and scaling of the object in a scene is Paupport(Cp|Cy) = AreyTp)
also necessary to exactly position the object. We count(Ce)
generate a geometric scene from a scene template We show a few ofthe priors we learn in Figure 4
by selecting appropriate models from a 3D model a5 likelihoods of categories of child objects being
database and determining transformations that op- statically supported by a parent category object.

"Our representation can also support other relationships >The support hierarchy is explicitly modeled in the scene
such as larger(o;, 05). dataset we use.



Chair Poster — Relation P(relation)

= inside(A,B) VolAnz)
| — outside(A,B) l- PE)

i right of(A.B) Vol( Af igh of (B)
Moye Kee near(A,B) 1(dist(A, B) < tnear)

ow - faces(A,B) cos(front(A), c(B) — c(A))
= = cm)

o— x li Table 1: Definitions of spatial relation using
bounding boxes. Note: dist(A, B) is normalized

Figure 5: Predicted positions using learned rela- against the asim extent of the bounding box
.. Co of B. front(A) is the direction ofthe front vector

tive position priors for chair given desk (top left), £ A and c(A) is th roid of Aposter-room (top right), mouse-desk (bottom left), ot Aande 5 He centroid of A.
keyboard-desk (bottom right). Keyword | Top Relations and Scores

behind (back _of,0.46), (back side, 0.33)
. adjacent | (front side, 0.27), (outside, 0.26)

4.3 Support Surface Priors below (below, 0.59), (lower _side, 0.38)
To identify which surfaces on parent objects sup- front (front_of,0.41), (front_side, 0.40)

: left (left side, 0.44), (left _of, 0.43)
port child objects, we first segment parent models above (above, 0.37), (near, 0.30)
into planar surfaces using a simple region-growing opposite | (outside, 0.31), (next to, 0.30)

algorithm based on (Kalvin and Taylor, 1996). We on (supported _by, 0.86), (on_top_of, 0.76)
CL. near (outside, 0.66), (near, 0.66)

characterize support surfaces by the direction of next (outside, 0.49), (near, 0.48)
their normal vector, limited to the six canonical under (supports, 0.62), (below, 0.53)
STS : top (supported_by, 0.65), (above, 0.61)

directions: up. down, left, right, front, back. We de (inside, 0.48). (supported.by, 0.35)
learn a probability ofsupporting surface normal di- right (right_of, 0.50), (lower side, 0.38)
rection .S,, given child object category C... For ex- beside (outside, 0.45), (right_of,0.45)

ample, posters are typically found on walls >0 their Table 2: Map of top keywords to spatial relations
support normal vectors are in the horizontal di- (appropriate mappings in bold)rections. Any unobserved child categories are as- PPIOP bp
sumed to have Psy,¢(S, = up|C.) = 1sincemost ~~ observed samples. Figure 5 shows predicted posi-
things rest on a horizontal surface (e.g., floor). tions of objects using the learned priors.

t f; ith . .Par(Sn|Ce) = count(Ce on surface with 5) 5 Spatial Relations
count (C')

] Co ] We define a set of formal spatial relations that we
4.4 Relative Position Priors :

map to natural language terms (§5.1). In addi-

We model the relative positions of objects based tion, we collect annotations of spatial relation de-
on their object categories and current scene type: scriptions from people, learn a mapping of spatial
1.e., the relative position of an object of category keywords to our formal spatial relations, and train
Cop; is with respect to another object of category a classifier that given two objects can predict the
Cre and for a scene type Cs. We condition on the [ikelihood of a spatial relation holding (§5.2).
relationship R between the two objects, whether

they are siblings (R = Sibling) or child-parent S-1 Predefined spatial relations
(R = Child Parent). For spatial relations we use a set ofpredefined rela-

tions: left of, right of, above, below, front, back,Preipos(,Y, 0|Copj, Cres, Cs, R) fof. 5 9 / .
supportedby, supports, next to, near, inside, out-

When positioning objects, we restrict the search side, faces, lefi side, right side.> These are mea-
space to points on the selected support surface. sured using axis-aligned bounding boxes from the
The position x, y is the centroid of the target ob-  viewer’s perspective; the involved bounding boxes
ject projected onto the support surface in the se- are compared to determine volume overlap or clos-
mantic frame of the reference object. The 60 1s the est distance (for proximity relations; see Table 1).
angle between the front ofthe two objects. Werep- ————

h lati n d orientati . We distinguish left of(A,B) as A being left ofthe left edgeresent these relative position and orientation pri- rhe hounding box ofB vs lefi_side(4,B) as A being left of
ors by performing kernel density estimation on the the centroid of B.



Feature # | Description

delta(A, B) 3 | Delta position (x, y, 2) between the centroids of A and B
dist(A, B) 1 | Normalized distance (wrt B) between the centroids of A and B

overlap(A, f(B)) | 6 | Fraction of A inside left/right/front/back/top/bottom regions wrt B: Rett Mak
overlap(A, B) 2 Rk and Re
support(A, B) 2 | supported _by(A, B) and supports(A, B)

Table 3: Features for trained spatial relations predictor.

Please describe the location of the or==n object with respect to the purple object. Above ave " On I

py Neer = Nec =

Be y aT x Nisha

I pi a a T

N Front " Behind "

Figure 6: Our data collection task.

Since these spatial relations are resolved with re-

spect to the view of the scene, they correspond to Fioure 7: High probability regions where the cen-
view-centric definitions of spatial concepts. ter of another object would occur for some spatial

relations with respect to a table: above (top left),

5.2 Learning Spatial Relations on (top right), lefi (mid left), right (mid right), ir
We collect a set of text descriptions of spatial rela- front (bottom left), behind (bottom right).
tionships between two objects in 3D scenes by run-

ning an experiment on Amazon Mechanical Turk.
We present a set of screenshots of scenes in our keywords to an appropriate spatial relation. The 5
dataset that highlight particular pairs ofobjects and ~~ Keywords that are not well mapped are proximity
we ask people to fill in a spatial relationship ofthe ~~ relations that are not well captured by our prede-
form “The is the ” (see Fig 6). We col- fined spatial relations.
lected a total of 609 annotations over 131 object Using the 15 keywords as our spatial relations,
pairs in 17 scenes. We use this data to learn pri- We train a log linear binary classifier for each key-
ors on view-centric spatial relation terms and their ~~ word over features of the objects involved in that
concrete geometric interpretation. spatial relation (see Table 3). We then use this

For each response, we select one keyword from model to predict the likelihood of that spatial re-
the text based on length. We learn a mapping of lation in new scenes.
the top 15 keywords to our predefined set of spa- Figure 7 shows examples of predicted likeli-

tial relations. We use our predefined relations on ~~ hoods for different spatial relations with respect to

annotated spatial pairs of objects to create a binary ~~ an anchor object in a scene. Note that the learned

indicator vector that is set to 1 ifthe spatial relation ~~ spatial relations are much stricter than our prede-

holds, or zero otherwise. We then create a simi- fined relations. For instance, “above” is only used

lar vector for whether the keyword appeared inthe to referred to the area directly above the table, not

annotation for that spatial pair, and then compute to the region above and to the left or above and in

the cosine similarity of the two vectors to obtain front (which our predefined classifier will all con-

a score for mapping keywords to spatial relations. sider to be above). In our results, we show we have

Table 2 shows the obtained mapping. Using just more accurate scenes using the trained spatial re-

the top mapping, we are able to map 10 of the 15 lations than the predefined ones.



Dependency Pattern | Example Text

{tag:VBN}=verb >nsubjpass {}=nsubj >prep ({}=prep >pobj {}=pobj) | The chair ssuij] 1s made yerr] Of prep) WOOd pon; -

attribute (verb,pobj) (nsubj,pobj) | material (chair,wood)

{}=dobj >cop {} >nsubj {}=nsubj | The chair nsubj 1S redraonii-

attribute (dobj) (nsubj,dobj) | color(chair,red)

{}=dobj >cop {} >nsubj {}=nsubj >prep ({}=prep >pobj {}=pobj) | The table nsupj1 1S N€Xt[d0bj1 tO[prep1 the chair pons.

spatial (dobj) (nsubj, pobj) | next_to(table,chair)

{}=nsubj >advmod ({}=advmod >prep ({}=prep >pobj {}=pobj)) | There is a table nsupj] N€Xtradvmod) tO[prep1 @ CAI [pobi] -

spatial (advmod) (nsubj, pobj) | next_to(table,chair)

Table 4: Example dependency patterns for extracting attributes and spatial relations.

6 Text to Scene generation of the desk.” we extract the following objects and
spatial relations:

We generate 3D scenes from brief scene descrip-

tions using our learned priors. Objects | category | attributes | keywords
00 room room

6.1 Scene Template Parsing 01 desk desk

During scene template parsing we identify the 02 chair color:red | chair, red
scene type, the objects present in the scene, their Relations: lefi(o2, 01)
attributes, and the relations between them. The .

: : 6.2 Inferring Implicits
input text is first processed using the Stanford

CoreNLP pipeline (Manning et al., 2014). The From the parsed scene template, we infer the pres-
scene type is determined by matching the words ence of additional objects and support constraints.
in the utterance against a list ofknown scene types We can optionally infer the presence of addi-
from the scene dataset. tional objects from object occurrences based on the

To identify objects, we look for noun phrases scene type. If the scene type is unknown, we use
and use the head word as the category, filtering the presence of known object categories to pre-
with WordNet (Miller, 1995) to determine which dict the most likely scene type by using Bayes’
objects are visualizable (under the physical object ~~ rule on our object occurrence priors Foe. to get
synset, excluding locations). We use the Stanford ~~ P(Cs[{Co}) x Pocc(1C6}|Cs)P(Cs). Once we
coreference system to determine when the same have a scene type Cs, we sample P,.. to find ob-
object is being referred to. jects that are likely to occur in the scene. We re-

To identify properties of the objects, we extract strict sampling to the top n = 4 object categories.
other adjectives and nouns in the noun phrase. We We can also use the support hierarchy priors
also match dependency patterns such as “Xismade ~~ Psupport to infer implicit objects. For instance, for
ofY” to extract additional attributes. Based onthe each object 0; we find the most likely supporting

object category and attributes, and other words in ~~ object category and add it to our scene if not al-
the noun phrase mentioning the object, we identify ~~ ready present.
a set of associated keywords to be used later for After inferring implicit objects, we infer the sup-

querying the 3D model database. port constraints. Using the learned text to prede-

Dependency patterns are also used to extract fined relation mapping from §5.2, we can map the

spatial relations between objects (see Table 4 for ~~ keywords “on” and “top” to the supportedby re-

some example patterns). We use Semgrex patterns lation. We infer the rest of the support hierarchy

to match the input text to dependencies (Cham- by selecting for each object o; the parent object o;

bers et al., 2007). The attribute types are deter- that maximizes Psypport (Co, |Co,).
mined from a dictionary using the text express-

ing the attribute (e.g., attribute(red)=color, at- 6.3 Grounding Objects
tribute(round)=shape). Likewise, spatial relations ~~ Once we determine from the input text what ob-

are looked up using the learned map of keywords jects exist and their spatial relations, we select 3D

to spatial relations. models matching the objects and their associated

As an example, given the input “There isaroom properties. Each object in the scene template is

with a desk and a red chair. The chair is to the left ~~ grounded by querying a 3D models database with



Input Text Basic +Support Hierarchy +Relative Positions

” m Y
“There is a desk and ; il 7 a iya keyboard and a dil SE | aWR mm4 = \
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Figure 8: Top Generated scenes for randomly placing objects on the floor (Basic), with inferred Support

Hierarchy, and with priors on Relative Positions. Bottom Generated scenes with no understanding of

spatial relations (No Relations), scoring using Predefined Relations and Learned Relations.

the appropriate category and keywords. tu ai y, hda

Google 3D Warehouse by prior work in scene syn- 0] i nl dN; we Y Cothesis and containing about 12490 mostly indoor sull | Pp a
objects (Fisher et al., 2012). These models have 1 ETS_— _T
text associated with them in the form ofnames and 3 h yy

tags. In addition, we semi-automatically annotated

models with object category labels (roughly 270 Figure 9: Generated scene for “There is a room
classes). We used model tags to set these labels, with a desk and a lamp. There is a chair to the
and verified and augmented them manually. right of the desk.” The inferred scene hierarchy is

In addition, we automatically rescale models so overlayed in the center.
that they have physically plausible sizes and orient

them so that they have a consistent up and front oo

direction (Savva et al., 2014). We then indexed all of ob) ects within the scene by traversing the SUb-
models in a database that we query at run-time for port hierarchy in depth-first order, positioning the

: children from largest to first and recursing. Child
retrieval based on category and tag labels.

nodes are positioned by first selecting a supporting

6.4 Scene Layout surface on a candidate parent object through sam-

Once we have instantiated the objects in the scene pling of Py, yr. After selecting a surface, we sam-
by selecting models, we aim to optimize an over- ple a position on the surface based on PBrelpos- Fi-
all layout score £ = AoyiLop; + ArerLrel that is nally, we check whether collisions exist with other
a weighted sum of object arrangement L,;; score objects, rejecting layouts where collisions occur.
and constraint satisfaction £,.; score: We iterate by randomly jittering and repositioning

objects. If there are any spatial constraints that are

Lop = > Pours (Sn|Co;) > Preipos(-) not satisfied, we also remove and randomly repo-
Oi 0;€F (03) sition the objects violating the constraints, and it-

Log = > Pei(c;) erate to improve the layout. The resulting scene is
cs rendered and presented to the user.

where F(o0;) are the sibling objects and parent ob- 7 Results and Discussion
jectof o;. We use Ay; = 0.25 and A; = 0.75 for
the results we present. We show examples of generated scenes, and com-

We use a simple hill climbing strategy to find a pare against naive baselines to demonstrate learned

reasonable layout. We first initialize the positions priors are essential for scene generation. We



Ny 71 Generated Scenes

Dy— Support Hierarchy Figure 9 shows a generated
IND ER scene along with the input text and support hier-
Hi I Ee archy. Even though the spatial relation between
jl { HH I iE lamp and desk was not mentioned, we infer that the
1ji! :_m lamp is supported by the top surface of the desk.

PP 2 Disambiguation Figure 10 shows a generated

scene for the input “There 1s a room with a poster

Figure 10: Generated scene for “There is a room ped and a poster”. Note that the system differen-
with a poster bed and a poster.” tiates between a “poster” and a “poster bed” — it

correctly selects and places the bed on the floor,

: while the poster is placed on the wall.

Inferring objects for a scene type Figure 11

) shows an example of inferring all the objects

et present in a scene from the input “living room”.

=] & Some ofthe placements are good, while others can: Wr clearly be improved.
Figure 11: Generated scene for “living room”. 7.2 View-centric object referent resolution

After a scene is generated, the user can refer to ob-

jects with their categories and with spatial relations

also discuss interesting aspects of using spatial ~~ between them. Objects are disambiguated by both
knowledge in view-based object referent resolu- category and view-centric spatial relations. We use
tion (§7.2) and in disambiguating geometric inter- the WordNet hierarchy to resolve hyponym or hy-
pretations of “on” (§7.3). pernym referents to objects in the scene. In Fig-

ure 12 (left), the user can select a chair to the right

Model Comparison Figure 8 shows a compari- of the table using the phrase “chair to the right of
son of scenes generated by our model versus sev- the table” or “object to the right of the table”. The
eral simpler baselines. The top row shows the im- User can then change their viewpoint by rotating
pact ofmodeling the support hierarchy and the rel- and moving around. Since spatial relations are re-
ative positions in the layout of the scene. The bot- ~~ Selved with respect to the current viewpoint, a dif-
tom row shows that the learned spatial relations ferent chair is selected for the same phrase from a
can give a more accurate layout than the naive different viewpoint in the right screenshot.

predefined spatial relations, since it captures prag- 7.3 Disambiguating “on”
matic implicatures of language, e.g., left is only

used for directly left and not top left or bottom AS shown in §5.2, the English preposition “on”,
left (Vogel et al., 2013). when used as a spatial relation, corresponds

strongly to the supportedby relation. In our

trained model, the supportedby feature also has

a high positive weight for “on”.

w —£ Our model for supporting surfaces and hierar-
Emme NEL Fe : chy allows interpreting the placement of “A on

i A Cl B” based on the categories of A and B. Fig-Fw Co ure 13 demonstrates four different interpretations

oo | for “on”. Given the input “There is a cup on the
Figure 12: Left: chair is selected using “the chair table” the system correctly places the cup on the
to the right ofthe table” or “the object to the right of top surface of the table. In contrast, given “There
the table”. Chair is not selected for “the cup to the is a cup on the bookshelf”, the cup is placed on a
right of the table”. Right: Difterent VIEW results supporting surface of the bookshelf, but not nec-
ocifrent chat pene secre for the input “the essarily the top one which would be fairly high.chairto the right of the table”.



4 example cases where the context is important in
H | selecting an appropriate object and the difficulties

TH [ BN of interpreting noun phrases.
| Ba | HN In addition, we rely on a few dependency pat-

i ot eee terns for extracting spatial relations so robustness

ee to variations in spatial language is lacking. We
— only handle binary spatial relations (e.g., “left”,

Ny “behind™) ignoring more complex relations such as
I y, en “around the table” or “in the middle of the room”.

| JF Though simple binary relations are some of the

- most fundamental spatial expressions and a good
/ a first step, handling more complex expressions will
| do much to improve the system.

Figure 13: From top left clockwise: “There is a Another Issue is that the interpretation of Sef”
cup on the table”, “There is a cup on the book- tences such as “the desk is covered with paper”,
shelf”, “There 1s a poster on the wall”, “There is which entails many pieces of paper placed on the
a hat on the chair”. Note the different geometric desk, is hard to resolve. With 4 More data-driven
interpretations of“on”. approach we can hope to link such expressions to

concrete facts.

Given the input “There is a poster on the wall”, a Finally, we use a traditional pipeline approach
poster is pasted on the wall, while with the input ~~ for text processing, so errors in initial stages
“There is a hat on the chair” the hat is placed on ~~ can propagate downstream. Failures in depen-
the seat ofthe chair. dency parsing, part of speech tagging, or coref-

erence resolution can result in incorrect interpre-

7.4 Limitations tations of the input language. For example, in

While the system shows promise, there are still the sentence “there is a desk with a chair in front
many challenges in text-to-scene generation. For of it”, “it” is not identified as coreferent with
one, we did not address the difficulties ofresolving ~~desk” so we fail to extract the spatial relation
objects. A failure case of our system stems from front_of(chair, desk).
using a fixed set of categories to identify visualiz-

able objects. For example, the sense of“top” refer- 8 Related Work
ring to a spinning top, and other uncommon object There is related prior work in the topics of mod-
types, are not handled by our system as concrete ¢|ing spatial relations, generating 3D scenes from
objects. Furthermore, complex phrases including text, and automatically laying out 3D scenes.
object parts such as “there’s a coat on the seat of

the chair” are not handled. Figure 14 shows some 8.1 Spatial knowledge and relations

Prior work that required modeling spatial knowl-

——— edge has defined representations specific to the
\ task addressed. Typically, such knowledge is man-

a ually provided or crowdsourced — not learned from

\ data. For instance, WordsEye (Coyne et al., 2010)uses a set of manually specified relations. The

“>i) | NLP community has explored grounding text to
vTF: 2 physical attributes and relations (Matuszek et al.,

T——— 2012; Krishnamurthy and Kollar, 2013), gener-

Figure 14: Left: A water bottle instead of wine ating text for referring to objects (FitzGerald et
bottle is selected for “There is a bottle of wine on a]. 2013) and connecting language to spatial re-
the table in the kitchen”. In addition, the selected  Jationships (Vogel and Jurafsky, 2010; Golland et
table is inappropriate for a kitchen. Right: A floor a1. 2010; Artzi and Zettlemoyer, 2013). Most
lamp is incorrectly selected for the input “There is of this work focuses on learning a mapping from
a lamp on the table”. text to formal representations, and does not model



implicit spatial knowledge. Many priors on real and how it corresponds to natural language. We

world spatial facts are typically unstated intextand also showed that spatial inference and grounding is

remain largely unaddressed. critical for achieving plausible results in the text-

to-3D scene generation task. Spatial knowledge is

8.2 Text to Scene Systems critically useful not only in this task, but also in
Early work on the SHRDLU system (Winograd, other domains which require an understanding of
1972) gives a good formalization of the linguis- the pragmatics of physical environments.
tic manipulation of objects in 3D scenes. By re- We only presented a deterministic approach for
stricting the discourse domain to a micro-world mapping input text to the parsed scene template.
with simple geometric shapes, the SHRDLU sys- An interesting avenue for future research is to
tem demonstrated parsing of natural language in- automatically learn how to parse text describing
put for manipulating scenes. However, generaliza- ~~ scenes into formal representations by using more
tion to more complex objects and spatial relations ~~ advanced semantic parsing methods.
is still very hard to attain. We can also improve the representation used for
More recently, a pioneering text-to-3D scene Spatial priors of objects in scenes. For instance, in

generation prototype system has been presented by this paper we represented support surfaces by their
WordsEye (Coyne and Sproat, 2001). The authors ~~ orientation. We can improve the representation by
demonstrated the promise of text to scene genera- modeling whether a surface is an interior or exte-
tion systems but also pointed out some fundamen- rior surface.
tal issues which restrict the success oftheir system: Another interesting line of future work would
much spatial knowledge is required which is hard ~~ be to explore the influence of object identity in de-
to obtain. As a result, users have to use unnatural ~~ termining when people use ego-centric or object-
language (e.g., “the stool is 1 feet to the south of ~~ centric spatial reference models, and to improve
the table) to express their intent. Follow up work ~~ resolution of spatial terms that have different in-
has attempted to collect spatial knowledge through ~~ terpretations (e.g., “the chair to the left of John” vs
crowd-sourcing (Coyne et al., 2012), but does not “the chair to the left of the table”).
address the learning of spatial priors. Finally, a promising line ofresearch is to explore
We address the challenge of handling natural ~~ using spatial priors for resolving ambiguities dur-

language for scene generation, by learning spatial ~~ Ing parsing. For example, the attachment of “next
knowledge from 3D scene data, and using it to in- to” in “Puta lamp on the table next to the book” can
fer unstated implicit constraints. Our work is simi- be readily disambiguated with spatial priors such
lar in spirit to recent work on generating 2D clipart ~~ as the ones we presented.
for sentences using probabilistic models learned

from data (Zitnick et al., 2013). Acknowledgments
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focus on linking spatial knowledge to language.
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