
oubtask Deadline Assignment for Complex Distributed Soft
Real-Time Tasks

Ben Kao” Hector Garcia-Molina!

Abstract

Complex distributed tasks often involve parallel execution of subtasks at different nodes.

To meet the deadline of a global task, all of its parallel subtasks have to be finished on time.

Comparing to a local task (which involves execution at only one node), a global task may
have a much harder time making its deadline because it is fairly likely that at least one of

its subtasks run into an overloaded node. Another problem with complex distributed tasks

occurs when a global task consists of a number of serially executing subtasks. In this case,

we have the problem of dividing up the end-to-end deadline of the global task and assigning

them to the intermediate subtasks. In this paper, we study both of these problems. Different

algorithms for assigning deadlines to subtasks are presented and evaluated.

Keywords: soft real-time, distributed systems, parallel systems, deadline assignment,

scheduling.

1 Introduction

In traditional soft real-time applications, a task is considered a single unit of work with a given

deadline — the time by which the task should be completed. The system usually schedules

tasks according to their deadlines, with more urgent ones running at higher priorities. Over

the years, researchers have developed real-time scheduling algorithms for different real-time

system components, including the communication network [7, 14], database [1], disk I/O [2],

and processor [8]. One common tacit assumption made by these algorithms is that the deadline

of a task truly reflects the urgency of completing the task. As real-time systems evolve, how-

ever, “tasks” become “bigger”, more complicated, and more frequently possess subtasks to be

executed on various system nodes or components. In a distributed environment, local sched-

ulers find themselves scheduling subtasks, or “segments” of global tasks instead of complete,

integrated tasks. In most situations, a single value of an end-to-end global deadline fails to

capture the sense of urgency of each individual subtask. This severely hampers the efficacy of

the well-designed real-time scheduling algorithms.

“Princeton University Department of Computer Science. Current address: Department of Computer Science,

Stanford University, Stanford, CA 94305. e-mail: kao@cs.stanford.edu

'Stanford University Department of Computer Science. e-mail: hector@cs.stanford.edu

1

As an example of a complex distributed task, let us consider stock market analysis and

program trading. In this application, information on stock prices is gathered through multiple

sources and is piped through a series of filters for refinement. The information is then used

by an expert system that spots trading opportunities. This latter stage may involve extensive

database operations and processing knowledge rules. A profit may then be realized by the

appropriate buy and sell actions. While the deadlines for high-level tasks are usually given

as a part of the system specification (e.g., a buy-sell action should be implemented within 2

minutes from the time when the information is gathered), we lack a methodical way of assigning

deadlines to the individual subtasks (e.g., how much time should we give a database search? a

disk access? a network transmission?). In this paper, we study the subtask deadline assignment

problem (SDA), and suggest guidelines on how subtask deadlines are derived from a global task’s
end-to-end deadline.

To study the SDA problem, first of all, we need to understand the structure of global tasks.

A global task can be very complex, with arbitrary precedence relationships among its subtasks.

Many global tasks, however, fall into the category of serial-parallel tasks, which have a simpler

structure (we will define serial-parallel tasks later). For this type of tasks, we can generally

reduce the SDA problem into two simpler sub-problems: one deals with serial subtasks, and

another one with parallel subtasks. To illustrate the concept, let us consider the following

example:

(5)T:¢ .. To deadline of T' = 10.

11s

Here, we have a global task T' which consists of two serial stages: {T11,..,7T15}, and T5. The

first stage is a parallel task with five subtasks. Each of the six subtasks is to be scheduled at

a different system component (e.g., disks, networks, processors). Assuming task 7 arrives at

time 0 and has a deadline at time 10, what deadlines should we assign to the six subtasks? If

we use the end-to-end deadline (time 10) as the subtasks’ deadlines, a scheduler will be fooled

to believe that it has 10 time units to complete the first stage {711,..., 715}. This may leave

very little or no slack for subtask 75, and a missed deadline may ensue. An earlier deadline for

the first stage should therefore be used instead, but how early should it be? What happens if

we have three serial stages instead of two? We refer the problem of breaking up an end-to-end

deadline into earlier ones for serial subtasks as the serial subtask problem (SSP).

Now suppose we figure out that we should reserve at least b seconds for 75 in order to have

a good chance of making the deadline. In this case, we would like the first stage be done by

time b. It seems natural to assign 5 as the deadline for each of 7, ..., T15. However, this turns

out to be inadequate. As an analogy, consider a group of friends agreed on meeting at a theatre

for a movie. If that is a small group of one or two people, they will probably all arrive before

2

the show. However, if the group consists of 10 members, chances are that someone will show

up late and the whole group misses the movie. A similar problem occurs in our example: when

a real-time task is being divided up into a number of subtasks for parallel processing, it is very

likely that at least one of the subtasks run into a busy component and become tardy. This will

cause the whole global task (in our example, the first stage) to miss its deadline (time 5). The

parallel subtask problem (PSP) deals with assigning deadline to parallel subtasks.

The serial subtask problem has been studied previously in [6]. We will present a summary

of the results later in Section 8. The goal of this paper is to study the parallel subtask problem

and the combined effect of PSP and SSP. Specifically, we suggest and evaluate two heuristic

scheduling policies for dealing with PSP. Working together with the subtask deadline assignment

strategies proposed in [6], we show that the real-time behavior of complex distributed tasks can

be significantly improved. Before we proceed, we state some premises our study is based on:

¢ We focus on soft real-time systems. In such systems, a primary performance goal is

to meet as many deadlines as possible, but unlike hard real-time systems, there is no

absolute guarantee that all deadlines will be met. There are two reasons why we look

at soft (instead of hard) real-time systems. Firstly, the kind of distributed tasks we are

looking at are quite complex, involving multiple stages and parallel processing. This

means it is generally hard to get a reasonably accurate running time estimate for hard

real-time scheduling. Secondly, in many applications it is undesirable or impossible to

place an upper bound on the load. This makes hard real-time scheduling impossible to

achieve.

e¢ The scheduler at each component is independent of the others. There is no global scheduler

that instructs each scheduler what to do. Each scheduler makes decisions based solely on

the subtasks (and their deadlines) that have been presented to it for execution, without

consulting other schedulers. We believe that large systems are built out of preexisting

components. Each component will have its own scheduling policy and will be unable or

unwilling to coordinate or subordinate its scheduling decisions with (or to) others.

e We look at on-line scheduling, as opposed to a-priori when the tasks are defined or first

submitted. On-line assignment is superior in soft real-time systems, where the types of

tasks or their durations may be unknown in advance. Also, when the system provides dis-

tribution transparency (e.g., whether a piece of data item is available locally or remotely),

the subtasks to be created is unknown until run-time and thus off-line pre-analysis is not

appropriate.

eo Each system component is unique. If a task must be executed at a particular component,

it must run there. There is no load balancing, i.e., an overloaded component cannot ship

3

tasks to other components.

We start in Section 2 by surveying some related work. Section 3 describes our distributed

system model and task model. In Section 4, we take a closer look of the parallel subtask

problem, and suggest some possible solutions. Section b contains the details of our simulation

model, while Sectins 6 and 7 present the results of our simulation study on PSP. Section 8

summarizes the results found in [6] on SSP. We also combine the PSP and SSP strategies and

study their performance benefit by applying them to a typical distributed application. Finally,

we conclude our paper in Section 9.

2 Related Work

The problem of scheduling real-time distributed tasks has been studied mostly in a hard real-

time environment (e.g., see |b, 11, 4, 12, 13, 3|). Some of these works concentrate on the task-

allocation /load-balancing strategies, and on the schedulability of tasks. The communication

overhead between subtasks with precedence relationship is considered when a task allocation

decision is made. For example, subtasks that communicate a lot are usually scheduled to be

executed at the same node. Information about tasks, e.g., their (worst case) execution time,

is assumed known in advance. In these studies, system nodes usually have similar capability

and they share the load. Scheduling is done in an orchestrated fashion. On the other hand,

our study focuses on open systems which are built out of pre-existing components of different

nature. A database server, for example, will not spare its cycles to help out an image processing

node. Global scheduling and load balancing are therefore not appropriate in this environment.

There are relatively few studies on the SDA problem [6]. However, in [10], a problem related

to SSP is addressed. In their study, Pang et. al. investigate the problem of “bias” against longer

transactions under “earliest-deadline-based” scheduling policies in real-time database systems.

The study shows that long transactions miss more deadlines compared to short ones because of

their “further-in-the-future” deadlines. Long transactions thus compete unfavorably with short

transactions in accessing system resources. Their approach to the problem is to assign virtual

deadlines to all transactions. A transaction with an earlier virtual deadline is served before one

with a later virtual deadline. The virtual deadline of a transaction is adjusted dynamically as

the transaction progresses and is designed to eliminate the bias phenomenon. The SSP problem

can be seen as a discrete version of the one studied in [10]. A global task with a number of serial

subtasks can be considered as a long transaction. Their method of assigning virtual deadlines

can also be used to assign the subtask deadlines.

4

3 The Model

In this section, we describe the task model and the system model we use to study PSP and

SSP. We will first define global tasks, and then describe a simple model of a distributed system

on which tasks are mapped for execution. We will also define some terms that will help us in

our discussion.

3.1 The Task Model

We consider two types of tasks in our system: locals and globals. A local task is one that is

executed at one and only one node. A global task, on the other hand, can be quite complex and

may involve work at multiple components in the system. In this paper, we only consider global

tasks that are serial-parallel. As shorthand, we use the notation T' = [T1T5...T,,| to represent a

global task T' that consists of n subtasks, 74, T49, ..., T,,, to be executed in series. A subtask 7;

(2 > 1) cannot execute before subtask 7;_; finishes. We also use the notation T' = [T1||T%s||...||T%]

to represent a global task T' consisting of n subtasks 74, 7%, ..., I}; to be executed in parallel.

The n subtasks arrive at the same time and task 7 is considered finished only if all n subtasks

finish. Composition of these notations is possible. For example, [T}|T51||T22]T3) represents a

global task that has three subtasks to be run in series, and the second subtask is itself a global

task of two parallel subtasks (7%; and 753).

Formally, we define the class of (serial-parallel) global task by the following recursive rules:

GT1: A single task which is part of a larger task and which is to be executed at one and

only one node is called a simple subtask.

GT2: If T = [T1T,...T,] where T;’s are either simple subtasks or global tasks, then 7 is a

global task.

GT3: If T = [T1||T%]|...||Tn) where T;’s are either simple subtasks or global tasks, then T is

a global task.

For rules GT2 and GT3, if T; is itself a global task, we say that T; is a complex subtask of

task T'. Figure 1 illustrates the various terms and concepts.

A task X (whether it is a local task, a simple subtask, or a global task) is associated with
the following attributes:

ar(X) = arrival (or submission) time of X,

dl(X) = deadline of X,

sl(X) = slack of X,

ex(X) = real execution time of X,

5

Ce ee ee ee ee ee eee eee A complex subtask

O - Simple subtask Ts O _
0 -synchronization point

Ts « Ty « Ts .

7, O—— O—0O0—0- —QO

ERE A . Ts

~ON

Nord A complex subtask
Figure 1: A global task example: [T1|Ts|||T3T4Ts]|||Te||T7]]|Ts].

() global task source

oS process manager

itask loc task itaskmun@ mun@ “TIO | nodes

local scheduler

Figure 2: The System Model.

pex(X) = predicted execution time of X.

We do not assume the value of ex(X) be available, but some of our SDA strategies do take

advantage of an estimate (pexz(X)), which is an approximation to ez(X). These attributes are

related by:

di(X) = ar(X) + ex(X) + sl(X).

Furthermore, if X is a simple subtask, we denote node(X) as the execution node (or component)

of X. That is, X is destined to be executed at node(X).

3.2 The System Model

Our model of a distributed real-time system consists of a number of nodes representing different

processing components of the system (Figure 2). These nodes manage different resources like

database, expert system, number crunching computation, etc. Even the communication network

is considered as one or more of the resources and is subsumed as one or more of the processing

6

Figure 3: A global task that consists only of simple subtasks executing in parallel.

nodes. For example, a direct link between two sites is considered as one resource, while a LAN is

considered another. Each node services both local tasks (which are generated at each node) as

well as simple subtasks of global tasks. Task service order is scheduled by a real-time scheduler

residing at each node. These schedulers are all independent and they do not collaborate. The

only things that influence the schedulers decision are the real-time attributes associated with

each task submitted to them.

Newly created global tasks are first processed by the process manager. The major functions

of the process manager is to assign deadline to simple subtasks, submit the simple subtasks to

the appropriate nodes for execution, and enforce the precedence constraints among the subtasks

of a global task. The resource requirement of the process manager is charged to the tasks it

manages. We do not model this requirement explicitly.

4 The Parallel Subtask Problem (PSP)

In this section, we take a closer look at the parallel subtask problem (PSP). We first identify

the problem and then suggest some possible solutions. These solutions will be evaluated using

simulation (Section 5), and the results of the analysis will be presented in Section 6.

To study PSP, we only consider (in this section) global tasks of the form: T' = [T}||Ts||...||T%]

where the T}’s (1 < © < n) are all simple subtask (See Figure 3). For the global task T to meet

its deadline (dI(T')), all T;’s have to be finished before dI(T), their natural deadline.

In a soft real-time environment, when a task is submitted to a node for execution, there is no

guarantee that the task will be completed before its deadline. Missing a deadline occasionally

is, although undesirable, possible. There is thus a probability that a task becomes tardy due to

a transient overload at its execution node. This “missed deadline” probability gets amplified in

the case of global tasks with parallel subtasks. As a quick example, if an average node in the

system misses 5% of the tasks’ deadlines, then the probability that a global task of 6 parallel

[

|r prv-e| | prv-. UD
A oO 1 2 3 4 5 6 7 8 9

f ar(T) f dl(T)
Figure 4: Example on the various PSP strategies applied to T = |[T1||T%||T3].

subtasks misses his would be 1 — (1 — 0.05) = 26.5%.! Comparing to a local task, or one that

involves execution at only one node, a global task consumes more system “effort” to complete

and yet it faces a much higher miss rate.? In firm real-time systems where tardy tasks are of

no value and the resource invested in them wasted, the problem of missing global tasks simply

because “they are big” is particularly costly. We will shortly look at several heuristics with

varying degree of aggressiveness in helping global tasks to meet their deadlines.

4.1 Heuristics for PSP

To give global tasks a better chance of completing, we can assign their subtasks virtual deadlines

before they are submitted to their execution nodes. These virtual deadlines are usually earlier

than the tasks’ real deadlines to give the nodes a sense of urgency of finishing the subtasks.

With our example global task T' = [T1||T3]|...||Ty], our goal is to set a virtual dI(T;) from

d(T). Figure 4 illustrates the various strategies listed below. In the example, time is relative

to the arrival of T'. The deadline of T is time 9.

As a base strategy for comparison, we set dI(T;) = dI(T"). That is, the subtasks inherit the

deadline of their global task. We call this the Ultimate Deadline strategy (UD):

UD: dl(T;) = d(T).

To make the simple subtasks of global tasks more competitive, we need to set their virtual

deadlines earlier. Here, we look at a class of strategies called DIV-z:

DIV-x: dlT;) = d(T) — ar(T)]/(n*xz) + ar(T). (1)

Here, z is a parameter we can adjust. The DIV-z strategy simply divides the amount of

time that a global task has by z times its number of subtasks. The larger the value of z is, the

Here, we assume that all the nodes in the system have similar miss rate, tasks have similar real-time con-
straints, and the queueing time at the nodes are independent.

In this paper, we use the terms “miss rate” and “missed deadline probability” interchangeably.

8

earlier are the virtual deadlines assigned to the subtasks, and thus the higher the priority of

the subtasks. As shown in Figure 4, DIV-1 assigns a deadline of (9-0)/(3*1) + 0 = 3 to d(T),

while for DIV-2, it is 9/6+0 = 1.5.

One issue with the DIV-z strategy concerns task abortion. If the local schedulers abort

tasks whose (virtual) deadlines have already passed, the idea of pushing the virtual deadlines

of subtasks early runs the risk of having the subtasks aborted by the schedulers. Going back to

the example shown in Figure 4. Suppose the execution time of the subtasks are all 4 time units.

If DIV-1 is used, the virtual deadlines of the subtasks will be set to time 3 (see Figure 4). In

this case, all three subtasks will be aborted at time 3 when the scheduler figures out that their

(virtual) deadlines have already been missed. For the time being, we focus on non-aborting

systems. Task abortion and its impact on the strategy performance is further discussed in

Section 7.

One may notice that with the DIV-z strategy, the virtual deadlines assigned to the subtasks

are, however big z is, later than the tasks’ arrival time. A subtask therefore, may still have a

lower priority than a local task if the local task has an early enough deadline. A strategy that

is even more aggressive than DIV-z would always serve subtasks before locals. We call this

strategy Globals First (GF). To implement GF on a pure earliest-deadline-first scheduler, we

subtract a big number A from the deadline of a global task and take the result as the subtasks’

virtual deadline:

GF: d(T; =dl(T)- A.

With GF, the earliest-deadline-first servicing order is preserved individually within the

classes of globals and locals. However, global subtasks are always scheduled before local tasks.

5 Simulation Model

To study the performance of the PSP strategies proposed in last section, we simulate the task

and system models discussed in Section 3 with the various PSP strategies implemented into the

process manager. This section describes the specifics of our simulation model.

As mentioned before, our soft real-time system consists of a number of nodes representing

different processing components of the system. In general, these nodes can have vastly different

characteristics: They may use different real-time scheduling policies (e.g., earliest-deadline first

for CPU scheduling, shortest-seek-time first for disk scheduling, etc.) and task service time

would follow different statistical distributions. If we model all this complexity, our results will

be obscured by many intricate factors which impair our understanding of the basic tradeoffs of

9

the PSP strategies. Instead, we chose to model a relatively simple and homogeneous system so

that the observations made are more comprehensible.

Our simulator is written in the simulation language DeNet [9]. Each simulation experiment

(generating one data point) consists of two simulation runs, each lasting one million time units

(at least 100,000 tasks are generated per run, many more for high load experiments). The 95%

confidence interval is + 0.35 percentage point (much smaller for high load experiments) for the

missed deadlines figures shown in later sections.

Our simulation model follows the basic construct as described in Section 3 (see Figure 2)

with the following specification.

Nodes: There are k nodes in the system. Each node services their tasks using the earliest-

deadline-first® scheduling algorithm.

Local Tasks: Local tasks are being generated at each node according to a Poisson distribu-

tion with mean interarrival time 1/Ajocq; time units. Since there are k nodes, the total average

arrival rate is kAjocq per unit time. Execution times of local tasks are exponentially distributed

with mean 1/pocq; time units. The rate of work due to local tasks is thus kAjocai/fiocar- In this

paper, we set Ujoeqr = 1, other time measures are thus relativized to the average execution time

of a local task. Slack of local tasks is uniformly distributed in the range [Smin,Smaz]-

Global Tasks: Similar to local tasks, global tasks are being generated as a single stream

of Poisson process with mean interarrival time 1/Agopqi- In order to simplify our discussion, we

hold a simple view of the world that global tasks are homogeneous. In particular, we assume

that a global task 7" consists of n subtasks 74,75, ...,T), to be executed in parallel at n different

nodes (we use the same value n for all global tasks). The execution times of the subtasks all

follow the same exponential distribution with mean equal to 1/psuptask time units. The rate of

work due to global tasks is therefore nA iopai/tsubtask- Slack of global tasks is also uniformly

distributed in the range [Sy.in,9maz]- The deadline of a global task is set by the following

formula:

d(T) = maxiez(T;)} + slack + ar(T). (2)
where max;{ex(T;)} is the execution time of the longest subtask among the T;’s, and slack is

the the slack chosen (from the uniform distribution) for this particular global task. We note

that even though the slack of global tasks and local tasks is generated from the same slack

distribution, on average, a subtask of a global task has more slack than a local. This is because,

© 3Tasks in a scheduler queue are ordered in increasing deadlines; The task with the earliest deadline is served
first.

10

| Overload Management Policy No Abortion |
| Local Scheduling Algorithm Earliest Deadline First |
| Mehta | LO |
Mew| LO
| § (7 of nodes) 6
| n (# of subtasks of a global task) | 4 |
adas
reeled| 0m |
| [Smin, Smaz) [1.25,5.0] |

Table 1: Baseline setting

for a subtask T’;, we have,

si(T;) = d(T) — ex(T;) — ar(T) = max{ex(T;)} + slack + ar(T) — ex(T;) — ar(T) > slack. (3)

System Load: We define the normalized load (or load for short) to be the ratio of the rate

of work generated to the total processing capacity of the system. That is,

n-Aglobal k-Aiocal
— Gromer + 2hiocat

load = teubtask Hlocal
oa

For a stable system, we have 0 < load < 1.

We also define frac_local to be the fraction of load that is contributed by local tasks, i.e.,

k . Alocal
— —Hlocal

frac_local = — py— CkVE
Hsubtask Hlocal

If the system does not have any local tasks, frac_local = 0; a frac_local of 1 means no global

tasks. As another example, if simple subtasks and local tasks have similar execution time, then

a fraclocal of 1/2 means that there are the same number of local tasks and simple subtasks.

However, since it takes n subtasks to make a global task, when frac_local is 1/2, there are n

times more local tasks generated than global tasks.

Table 1 shows the parameter setting of our baseline experiment. To study the effect of these

parameters on system performance, we will vary the parameters from their base settings. This

is discussed in the following section. Finally, we note that although real-time systems should

operate at a light load with few missed deadlines, it is the occasional experience of transient

overload that accounts for most of the missed deadlines, testing the system’s resiliency to

emergency situations. We will therefore study the various deadline assignment strategies in an

intermediate to high load environment, to highlight their performance differences.

11

0.6 Pl

0.5 M Dyoear,up 0 - 7
MDgiopat,up H—

0.4 M Dgyptask,UD —— /

MD 03 (0.5,0.25) /

> fl
0.2 = x

0.1 Cie +
_ REEF

et RESRA

oEE
0.1 0.2 0.3 0.4 0.5 0.6 0.7

load

Figure 5: Performance of UD in baseline experiment.

6 Results

In this section, we show and discuss the results obtained from our simulation experiments. We

will compare the performance of the various PSP strategies based on how well they can meet

task deadlines.

To aid our discussion, we use the notation MDZ (or MDyp in graph) to represent the

fraction of missed deadlines of task type A under PSP strategy B. For example, MDeal =
0.4 means that 40% of the global tasks miss their deadlines when DIV-1 is the PSP strategy

employed.

6.1 Baseline Experiment

UD. Figure 5 shows the performance of UD in our baseline experiment. The x-axis is the

normalized load to the system while the y-axis shows the fraction of missed deadlines of the

various task types. The MD of three task types are shown for local tasks (dotted 0), simple

subtasks of global tasks (4), and global tasks (solid O) (Recall that a global task consists of 4

simple subtasks to be executed in parallel).* As the load increases, the waiting time of tasks

increases and more tasks (of all kind) miss their deadlines.

*Tn this paper, we will consistently use dotted lines for M Dj,cq1 and solid lines for MD giopa1 with different
point styles representing different strategies.

12

Comparing local tasks and simple subtasks, we notice that simple subtasks have a slightly

higher chance of meeting their deadlines (the + line is lower than the dotted O line). This

is due to the way we generate global task deadlines. As discussed in Section 5, even though

global tasks have the same average slack as local ones, their subtasks, on average, have slightly

more slack than locals’ (see Equation 3 on page 11). This accounts for the difference between

MD3g, qo and MDiz.

For a global task to meet its deadline, all four of its subtasks have to be finished by the

deadline. From Figure 5, if the load of the system is 0.5, the probability that a subtask misses

its deadline is about 7.1%. If subtasks miss their deadlines independently,” we would expect

about 1 — (1 — 7.1%)* ~ 25.5% of the global tasks miss their deadlines. This number is not far

from what we obtained from our experiment (25%), and is about 3 times as much as MDZD,

(8.9%). In general, it is inadequate to assign the deadline of a global task to its subtasks and

let them compete fairly with local tasks.

DIV-x. From our previous discussion, we can deduce that the more subtasks a global task

has, the poorer is its chance of meeting its deadline. By dividing up the amount of time that a

global task is allowed to finish (see Equation 1), DIV-z effectively promotes the priority of the

subtasks and thus reduces global task miss rate. One nice property of DIV-zis that the amount

of priority promotion grows with the number of subtasks of the global task. It therefore, adjusts

automatically to the need.

Figure 6 compares the performance of UD (0) and DIV-zforz = 1 (¢) and 2 = 2 (X). Let

us first focus on UD and DIV-1. By giving subtasks higher average priority, DIV-1 manages to

keep the miss rate of both locals and globals at similar level (the two < lines are close to each

other). Since only the subtasks are given earlier virtual deadlines for a raise in their priority,

local tasks suffer from this unfairness with a higher miss rate than under UD. However, under

our baseline setting, this increment is marginal compared with the improvement achieved on

global tasks. For example, at load 0.5, M Djyeq; goes up from 9% to 11.7% while M Dgiopar is

reduced almost by half from 25% to 13%.

The relatively small increment on MDj,.q; resulted from a switch from UD to DIV-1 may

be accounted for by the fact that only 25% of the workload is due to global tasks (frac_local =

0.75). The disturbance made to local tasks by subtasks with heightened priority is therefore

mild. One may argue that since the majority of the work is due to local tasks, and the miss rate

of locals is increased using DIV-1, will we end up missing more local tasks than the number of

globals saved? The answer is yes, i.e., the overall number of missed deadlines is actually higher

~ 5They don’t. For example, if every global task generates subtasks for every node in the system, and there are
no local tasks, then the subtask missed deadline probability will be highly co-related. We make the independent

assumption here just to lustrate the problem.

13

0.6 Pl

0.5 M Dyoear,up 0 - 7
MDgiopat,up H—

0.4 MDioear,p1v1 204 } v,
MD giopat, Divi — A
M Diocat,p1vz -X- - 2)

MD 0.3 M Dgiopat, Diva >— Sa
A 3 a } . - |

0.2 _~ Ao

0.1 0.2 0.3 0.4 0.5 0.6 0.7

load

Figure 6: Performance of UD and DIV-z in baseline experiment.

for DIV-1than UD. However, if we count the work done on tardy tasks as the amount of missed

work, DIV-1 does have an advantage in this category. In fact, at a load of 0.5, our experiment

shows that the fraction of missed work is reduced from 0.75 x 0.09 + 0.25 x 0.25 = 0.13 to

0.75 x 0.1174 0.25 x 0.13 = 0.12. Recall that our main goal is to lower the unacceptably high

global task miss ratio. In this respect, as Figure 6 shows, DIV-1 is quite an effective strategy

for the baseline setting. We will look at the effect of having a different job mix on the PSP

strategies later.

Figure 6 also shows M Djycqr and MD giope; for DIV-2 (x). By pushing the virtual deadlines

of subtasks further earlier, DIV-2 raises the priority of subtasks even higher than does DIV-1.

The difference between their performance, however, is hardly noticeable except at very high

load. Setting > 1 in our baseline experiment is therefore not necessary to provide a low level

of missed deadlines for global tasks. We will further discuss the question of how to set the value

of x for the DIV-z strategy in a later section.

GF. The minute difference between DIV-1 and DIV-2 as shown in Figure 6 may suggest

that one should not look further for even more aggressive strategies. GF, which represents

the ultimate one in raising subtask priority, may not be expected to provide any significant

improvement over DIV-z in reducing global task miss rate. Surprisingly, our experiment shows

that GF does further reduce MDgiopa; by a significant amount. This is shown in Figure 7.

Figure 7 is basically the same as Figure 6 except that we replace the curves for DIV-2 (x) by

those of GF (A).

14

0.6 Pl

0.5 M Dyoear,up 0 - 7
MDgiopat,up H—

0.4 MDioear,p1v1 204 } v,
MD giopat, Divi — &
MDiocat,cr IN - 2 |

MD 03 M Dgiobat,gF “— a
= AO

0.2 = AA
— = pr LL A A

0.1 0.2 0.3 0.4 0.5 0.6 0.7

load

Figure 7: Performance of UD, DIV-1, and GF in baseline experiment.

dl(Ts) under GF [(Ts) under DIV-100

Leartier Ligter Time

ar(Ts)

Figure 8: Queueing position of 7; under DIV-100 and GF

Comparing DIV-1 with GF in Figure 7, we notice that both of them miss approximately the

same number of local tasks while G F' misses significantly fewer number of global tasks than DIV-

1 does, particularly under high load situation. To understand how GF can meet more global

task deadlines without losing on the local side, let us situate ourselves as a particular subtask,

Ts, just submitted to a node, i.e., ar(T;) = current time. We are interested in comparing

the queueing position of 7, under DIV-z and GF strategies. From Figure 6, we see that the

performance difference between DIV-1 and DIV-2 is quite small (and as will be shown later,

the performance of DIV-z flattens out as # increases). To make the contrast more dramatic, we

will consider DIV-100 (or any z that is excessively big). Now, under DIV-100, T, will see two

types of local tasks in the waiting queue of the node: those with deadlines later than di(7) and

those with earlier deadlines.® We call these two sets of locals Ljgter and Legrier respectively.

Figure 8 illustrates the queueing position of T,. Loosely speaking, since we use a very big x

(100) in DIV-z, dI(T}) is set very close to ar(T}), which is also the current time. Any local tasks

in the set Legri;er Would thus have deadlines that are either very close to the current time, or

®Here, dl(Ts) is the virtual deadline assigned to 75.

15

which have already been past. In other words, these are the tasks that are very likely to miss

the deadlines. Now, by switching from DIV-z to GF, we are setting the priority of T; higher

than any locals. 7, is therefore cutting the line and gets itself ahead of any locals in Legriser-

We make three observations over this switch of priority:

1. Queueing time of locals in Lj4ter 1s not affected.

2. Queueing time of locals in Lggpiier 1s lengthened.

3. Queueing time of T; is shortened.

Since the locals in Legriier are going to miss their deadlines no matter whether DIV-100 or GF

is used, prolonging their queueing time will not affect the miss rate of local tasks. On the other

hand, shortening the queueing time of subtasks (such as 7’s) does significantly reduce the miss

rate of global tasks. Furthermore, the higher the system load is, the more local tasks will there

be in Legriier, and the queueing time for the subtasks will be reduced further. This explains

why MDG oar is much smaller than MDeal especially under high load.

As a conclusion, our baseline experiment shows that the PSP problem can be corrected at

the expense of losing some local tasks. Two simple strategies DIV-z and GF are shown to be

effective under our baseline setting.

7 More on DIiV-z and GF

Now that we have shown that DIV-z and GF are two viable solutions for PSP, in this section,

we study when they are most effective. In particular, we will study the impact of the following

factors on their performance: (1) The value of # for DIV-z. (2) The relative proportion of local

tasks in the system. (3) Abortion on tardy tasks. (4) Global tasks with different number of
subtasks.

7.1 Choosing z

In last section, we compared DIV-1 and DIV-2 and showed that the performance difference is

not significant. So, is DIV-z sensitive to the value of £7? Referring to the DIV-z formula:

dl(T;) = [dl(T) — ar(T)]/(n* x) + ar(T),

we see that two important factors are affecting the value of the virtual deadlines set to the

subtasks: (1) the number of subtasks (n) of a global task, and (2) the value of . The larger the

16

0.3

0.25 F XK On=2

0.2 | Omg

MD 0.15 oN FFF]
LL in Fa an) < oc = A) pr 43 PREP &r5 SEE TIER

0.05

0

0 0.5 1 1.5 2 2.5 3

T

Figure 9: MDPIVz 45 functions of z under different value of n. (Dotted lines for M Djyeq1; Solid
lines for M Dgiobai.)

product n * z is, the smaller is the virtual deadline and thus the higher is the subtask priority.

This, in turn, results in a lower M Dgopq; and a higher M Diy. Now, if n is small (e.g., 2), a

global task has only a small number of subtasks and PSP is not a serious problem. Therefore,

we may not need a very large z or a large boost in subtask’s priority to keep MDjopq1 low. On

the other hand, if n is large, even though PSP is serious, the n xz product is already large, and

again, we do not need a really big z. In fact, through extensive experiment, we find out that

setting £ = 1 is usually adequate. As an example, Figure 9 shows MDL and MDPive as
a function of z for the cases where the number of subtasks of a global task (n) is 2, 4, and 6.

From Figure 9, we see that all MD curves flatten out as z increases. The values of MDj1opq

and MDjyeq; stablize at a smaller value of z as n becomes larger. Since 2 is the smallest number

of subtasks that a global task can ever have, and the curves for n = 2 ({) almost reach their

stablized points when z = 1, setting # = 1 is therefore sufficient.”

7.2 Local Task Population

In our baseline experiment, we set frac_local, the fraction of work in the system that is due to

local tasks to 75%. The performance of GF and DIV-z depends on this parameter. For example,

if there are no local tasks in the system (i.e., frac_local = 0), GF will perform exactly the same

as UD because the deadlines of all subtasks are reduced by exactly the same amount (A) by

"There is no harm for setting z larger for the no-abortion case, but see Section 7.3 for the abortion case.

17

(a) (b)

0.35 MDy,callDIv1 0.35 MDj,dat,cF /\
MD 415bal,DIV1 == MD g1obal,GF 2

0.3 MDjseat,up [1 - 0.3 MDjseat,up [1 -
MD g160bal,UD == MD 4160bal,UD =

0.25 EE pl EIS
0.2 VIN 0.2 A.

MD Oro Sg MD INA
0.15 COL ET 0.15 ATA

0.1 CS 0.1 Mee A AN

0.05 0.05

0 0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

frac_local frac_local

Figure 10: Performance of (a) DIV-1 and (b) GF as functions of frac_local.

GF. Figures 10(a) and 10(b) show M DPTV1 and M DEF as functions of frac_local respectively.

MDUP is also shown for comparison.

From the figures, we see that as frac_local increases, both MDYD and MDIL increase
slightly. This is due to the way we generate global task deadlines. Again, a global task deadline

is generated as the arrival time plus a random slack plus the execution time of the longest subtask

(see Equations 2 and 3 in Section 5). In other words, on average, the deadline of a global task

is slightly larger than that of a local that is generated at the same time. Therefore, global tasks

have slightly lower priority than locals and are thus slightly less competitive. As a result, as

frac_local increases, more competitive local tasks are introduced to the system replacing some

less competitive global tasks, and higher MD values are observed for both classes of tasks.

On the other hand, when either DIV-z or GF is used, the subtasks are given early vir-

tual deadlines. This raises their priority and makes them more competitive than local tasks.

MDPVe and MDF thus drop as frac_local increases. As shown in Figure 10, DIV-z and

GF are most effective when the system has a relatively large population of local tasks.

7.3 Abortion

We consider two different ways of aborting tardy tasks: (1) abortion by process manager and

(2) abortion by local scheduler. For case (1), we assume that the local schedulers do not initiate

any abortion. They will keep working on a task even though its (virtual) deadline has already

18

0.6

0.5 M Dyoear,up 0 -
MDgiopat,up H—

0.4 MDioear,p1v1 Or -
MD giopat, Divi —

MD 03 ol

0.2 FE
= <P

= > 2K

0.1 0.2 0.3 0.4 0.5 0.6 0.7

load

Figure 11: Performance of UD and DIV-1 in baseline experiment with abortion.

expired. We implement this type of abortion using timers. When a task (global or local) is

generated, an associated timer is set to run off at the task’s real deadline. If the task is not

finished before the timer expires, it is aborted®. Figure 11 shows the performance of UD and

DIV-1 when process manager abortion is implemented.

Comparing Figure 7 and Figure 11, we see that abortion helps reduce all miss rates by not

wasting resources on tardy tasks. DIV-1 again is very effective in keeping M Dipper low (e.g,

at load = 0.5, MD35 = 15.0%, while MDL = 7.8%). The performance of GF in this case
is very similar to DIV-1 and whose curves are omitted from the graph for legibility.

For the second type of abortion, namely, abortion by local schedulers, a subtask is aborted if

its virtual deadline is missed. A local scheduler thus takes an active role and aborts tasks based

on the deadlines presented to it. This causes a serious problem in the implementation of GF

and DIV-z. Recall that under GF, the virtual deadline of a subtask is set by deducting a big

number from its global task’s deadline. The virtual deadline is thus always less than the arrival

time of the subtask, and the subtask will be aborted right away. GF is therefore inapplicable

in this situation. Similarly, DIV-z also pushes the virtual deadlines early. If x is set too big,

the virtual deadlines will be too close to the arrival time and subtasks will be aborted before

they finish even though their real deadlines are not expired.

Unnecessary abortions by local schedulers bring about two adverse effects. First, resource

invested in aborted subtasks is wasted. Second, an aborted subtask has its slack consumed

® For a global task, all its subtasks are aborted.

19

0.35 MD [1 Locals
[] n=2
[] n=30.30

] n=4

[1] n=>50.25

I n=6

0.20

0.15

0.10

0.05

0.00

UD DIV1 GF

Figure 12: MD of different task classes under the various PSP strategies.

mostly by its former unsuccessful trial. The subtask thus has little slack left when it is resub-

mitted and will very likely miss its deadline. Results of experiments not shown here indicate

that DIV-z performs poorly with local scheduler aborts. This is particularly so in a moderate

to tight environment (i.e., high load, small slack). In this situation, special directives should be

given to nodes specifying that subtasks are non-abortable locally.

7.4 Non-homogeneous Global Tasks

In our baseline experiment, we assume that all global tasks consist of exactly four parallel

subtasks, and the execution time of the subtasks are all generated from the same exponential

distribution. In this subsection, we generalize our base model to cover a non-homogeneous

system. Due to space limitation, here we only consider systems in which global tasks may have

different number of subtasks.

We modified our baseline experiment such that the number of subtasks of a global task is

chosen uniformly from the range [2..6]. There are thus six classes of tasks (locals + 5 classes of

globals). Figure 12 shows the fraction of missed deadlines of each class of task under different

PSP strategies.

As expected, UD has trouble meeting the deadlines of global tasks, especially those of the

large ones. For example, a global task with 6 subtasks has an one-third chance of missing its

deadline, and which is about 4 times as likely as that of local tasks. On the other hand, at the

expense of missing some more local tasks, DIV-1 manages to keep the MD of all task classes

at roughly the same level. Finally, by hoisting the priority of global tasks, GF further reduces

20

global tasks miss rates to even lower values.

This concludes our discussion on the parallel subtask problem. We will look at the serial

subtask problem next.

8 SSP + PSP

In this section, we will briefly discuss the serial subtask problem and mention some of the results

presented in [6]. We will also show how to integrate our PSP and SSP strategies.

To recapitulate, SSP concerns global tasks that consist of a number of serial stages, or

subtasks. Consider a global task 7" = [1173...7,,]. The ultimate deadline (dI(T)) fails to

represent the tightness of each individual subtask. For example, if 7; is scheduled with the

deadline dI(T'), the scheduler will consider the time that should be reserved for the other

subtasks as slack to 77. Task 74 will be running at a low priority because of its excessive slack.

As a remedy, earlier virtual deadline should be assigned so as to reserve enough amount of time

for the subtasks to follow.

In [6], several ways of breaking up an end-to-end deadline into intermediate virtual deadlines

that can better reflect the urgency of each subtask is studied. Here, we consider one of them,

called Equal Flexibility (EQF). In words, EQ F tries to estimate the total amount of slack that

a global task has and divides this slack among the subtasks proportional to their execution

times. Each subtask thus has the same slack-to-execution-time ratio (flexibility). Using our

example, before a subtask 7; is submitted for execution, EQ)F' assigns a virtual deadline to Tj

according to the following formula:®

slack assigned to T;
et ——————————————

dl(T;) = ar(T;) + pex(T;) + (d(T) — ar(T;) — > pex(T;))] x [pex(T3)/ >) pex(T;)] :
SE —A

total amount of slack left pex() fraction

Note that EQF requires an estimate on task execution time. This estimation, however, need

not be very accurate. As shown in [6], EQ F delivers good performance even when the estimate

can be off by a factor of 2.

The performance of EQ F' is studied extensively using the same model discussed in Section

3. It is shown that EQF significantly reduces serial global task miss rate over the policy of

assigning the ultimate deadline as subtask deadline (UD). This improvement is particularly

"Recall that ar() and pex() represent the arrival time and the predicted execution time of a task respectively.

21

FUNCTION SDA(X :task; D:deadline)
BEGIN

IF (X is a simple subtask) then
di(X):=D

ELSEIF X = [X;X;41...X,] THEN
assign virtual deadline to task X; according to the SSP strategy.
SDA(X;, di(X;));

ELSE IF X = [X;|[X3[...||Xn]THEN
PAR : = 1 FOR n

assign virtual deadline to X; according to the PSP strategy.

SDA(X;,dl(X;));
ENDIF

END

Figure 13: SDA algorithm for integrated SSP and PSP.

marked in cases when global tasks have (1) a non-trivial number of subtasks (e.g. > 3), and

(2) sufficient amount of slack (e.g. when the miss rate of globals under UD is less than 50%).

The PSP strategies discussed in this paper and the SSP strategies (such as EQF) can be

integrated nicely and be applied to serial-parallel tasks: A global deadline is broken down into

virtual deadlines using either the SSP or the PSP strategies depending on whether the global

task is serial or parallel. If a subtask is itself a complex serial-parallel task, the virtual deadline

assigned to it is further decomposed. Figure 8 shows an algorithm which breaks down an end-

to-end deadline (D) of a global task (X) into sub-deadlines for the executable simple subtasks'®.

To study the relative importance of the SSP and PSP strategies and how they affect complex

distributed tasks, we ran an experiment with different SSP /PSP strategies applied to a specific

class of serial-parallel global tasks. Table 2 shows the deadline assignment combinations, and

Figure 14 shows the task graph of the global tasks generated in this experiment. Each global task

has b serial stages. Stages 2 and 4 are complex subtasks each with 4 parallel simple subtasks.

Using our stock trading application example, the 5 stages can represent (1) initialization, (2)

distributed information gathering, (3) analysis, (4) action implementation, and (5) conclusion

of the trading task.

The experiment follows the same baseline setting as shown in Table 1 except that global

tasks are replaced by those shown in Figure 14 and the slack of global tasks is chosen uniformly

from the range [6.25,25]. This slack distribution is equal to that of local task ([1.25,5]) scaled

up by 5 (because our globals have 5 stages). Figure 15 shows the MD of locals and globals

104 subtask Iz executable If It Is not preceded by any other.

22

[SDA [550 [PoP |
op-up | ub | up |
| UD-DIV1 DIV1 |
EQF-uD |EQF| UD |
| EQF-DIV1 DIV1 |

Table 2: Combination of SSP /PSP strategies.

O—~L304 3 30
Figure 14: Task graph

0.5

MDycavp-vp 0 -
0.45 MD gioba1,uD-UD H—

MDyecaup—pivi -

0.4 MD giobat,up-DIV1 S—
MDiocat, EQF-DIV1 *- -

MD giobat, EQF—DIV1 ~*— y
0.35 M Diocat, EQF-UD LN -

MD giobat, EQF-UD 2
0.3 /

MD 0.25 Vi

2)

0.2 /X

0.15 SN AA

in A Pls

0.1 0.15 0.2 0.25 03 035 04 045 0.5 0.55 0.6
load

Figure 15: Performance of different SDA strategies.

23

with different SDA strategies applied.

From the figure, we see that under low load, global tasks have a slightly lower miss rate.

This is because of their much larger slack. However, as load increases, the UD-UD strategy (O)

misses vastly more global deadlines than it misses local ones. The application of either EQF

(A) or DIV-1(o) significantly reduces M D g1opq; With a mild increment in MDjoeq;. Nonetheless,

they are not quite adequate if applied singularly, particularly under high load situation. The

two strategies compliment each other and together (x) they are able to keep MDjopq1 close to

MDjoeal, even up to a load of 0.6 in our experiment.

Although the results we presented in this section is limited to one particular type of serial-

parallel task, they do clearly suggest that the SSP and the PSP policies can be combined, and

that their benefits are “additive.” As soft real-time applications get larger and more complex,

our results show that a good SDA strategy becomes a very crucial part of the system design.

9 Conclusion

This paper studied the problem of assigning deadlines to subtasks of complex distributed global

tasks in a soft real-time environment. We showed that a single end-to-end global deadline often

fails to represent the right priority of individual subtasks. This results in a very large global

task miss rate. As curative measures, two different algorithms for assigning virtual deadlines to

subtasks were presented and evaluated. These virtual deadlines are earlier than the end-to-end

global deadlines so as to speed-up the progress of global tasks. Our results showed that a good

subtask deadline assignment strategy can significantly reduce global task miss rate without

severely jeopardizing local tasks.

For the class of serial-parallel tasks, the SDA problem can be divided into two sub-problems:

SSP and PSP. While EQF is a good strategy for SSP [6], this paper showed that two strategies:

DIV-z and GF are quite effective for PSP. These two strategies are most outstanding under

high load situation and when there is a non-trivial population of local tasks in the system.

Between DIV-z and GF, GF usually holds an edge if tardy task abortion is not supported by

the system. Otherwise, DIV-z is a better choice because it evens up the miss rate of global

tasks with different number of subtasks.

References

[1] R. Abbott and H. Garcia-Molina. Scheduling real-time transactions. In ACM SIGMOD
Record, pages 1-12, 1988.

24

[2] R. Abbott and H. Garcia-Molina. Scheduling I/O requests with deadlines: a performance
evaluation. In Proceedings of IEEE Real-Time Systems Symposium, pages 113-124, 1990.

13] R. Bettati and J. W. S. Liu. Algorithms for end-to-end scheduling to meet deadlines. In
Proceedings of the 2nd IEEE Conference on Parallel and Distributed Systems, 1990.

[4] S. Cheng, J. A. Stankovic, and K. Ramaritham. Dynamic scheduling of groups of tasks
with precedence constraints in distributed hard real-time systems. In Proceedings of IEEE
Real-Time Systems Symposium, pages 166-174, 1986.

[5] C. Hou and K. G. Shin. Allocation of periodic task modules with precedence and deadline
constraints in distributed real-time systems. In Proceedings of IEEE Real-Time Systems
Symposium, pages 146-155, 1992.

[6] B. Kao and H. Garcia-Molina. Deadline assignment in a distributed soft real-time system.
In Proceedings of the 13th International Conference on Distributed Computing Systems,
pages 428-437, 1993.

[7] J. F. Kurose, M. Schwartz, and Y. Yemini. Multiple-access protocols and time-constrained
communication. Computing Survey, 16(1):43-70, 1984.

8] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard
real-time environment. Journal of the ACM, 20(1):46-61, 1973.

[9] M. Livny. DeNet user’s guide. Technical report, University of Wisconsin-Madison, 1990.

[10] H. Pang, M. Livny, and M. J. Carey. Transaction scheduling in multiclass real-time
database systems. In Proceedings of IEEE Real-Time Systems Symposiuim, 1992.

[11] K. Ramamritham. Allocation and scheduling of complex periodic tasks. In Proceedings
of the 13th International Conference on Distributed Computing Systems, pages 108-115,
1990.

[12] K. Ramaritham, J. A. Stankovic, and P. Shiah. Efficient scheduling algorithms for real-
time multiprocessor systems. IEEE Transactions on Parallel and Distributed Systems,
1(2):184-194, 1990.

[13] J. Stankovic, K. Ramamritham, and S. Cheng. Evaluation of a flexible task schedul-
ing algorithm for distributed hard real-time systems. IEEE Transactions on Computers,
34(12):1130-1143, 1985.

[14] W. Zhao and K. Ramamritham. Virtual time CSMA protocols for hard real-time commu-
nication. IEEE Transactions on Software Engineering, 13(8):938-952, 1987.

25

