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ABSTRACT

Fault-tolerant computer systems have redundant paths connecting their components. Given
these paths, it is possible to use aggressive techniques to reduce the average value and variability of
the response time for critical messages. One technique is to send a copy of a packet over an alternate
path before it is known if the first copy failed or was delayed. A second technique is to split a single
stream of packets over multiple paths. We analyze both approaches and show that they can provide

significant improvements over conventional, conservative mechanisms.

This paper is a revised and extended version of [7]. The main differences from [7] are the inclusion of Section 4 and the
Appendix (containing proofs).
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1. Introduction

In many applications, computer systems have redundant communication paths to improve relia-
bility. At the local level there may be multiple busses or local area networks connecting processors.
For example, a Tandem cluster has a dual high speed local broadcast channel[9]. At the network
level, in most cases there are at least two independent paths between every two points, so that a single
failure cannot partition the network. At the application level, it is also common to have multiple links
between critical components. For example, a bank with two main processing centers may have two
(or more) separate connections, each provided by a different vendor. As the January 15, 1990 failure
of the AT&T network illustrated[10], complete networks may fail, so it is desirable to have a fully
independent alternative. In this paper we deal exclusively with reliable systems, and hence assume

that redundant paths (of one type or another) exists.

Traditionally, redundant paths are utilized by the communication software in a conservative
fashion: Given a particular message or packet to be sent to a destination, the source computer or
switch selects, from the available paths, the one expected to perform best. (Statistics of previous
response times may guide the decision.) The packet or message is sent along the selected path. If
problems arise (e.g., no acknowledgement arrives within a timeout period), an alternate path is
selected and the packet or message is re-transmitted. An even more conservative approach is to keep
one of the paths unused as a hot standby, and to switch all traffic to it when the primary path fails.

This approach is more likely to be used for application level redundant paths.

In this paper we explore more aggressive approaches. One simple idea is to split a stream of
packets over the available paths to improve response time. The goal is to use the extra bandwidth
available in no failure periods. A second, less obvious idea is to send redundant copies of the packet
or message over independent paths at once, without waiting for a failure or a timeout to occur. This
also reduces the expected message delivery time for two reasons. First, since multiple copies are sent,
the probability that one makes it in the first attempt is much higher, thus costly timeout and re-

transmissions may be avoided. Second, if the transmission time over one network is variable (due to



channel collisions, congestion, switch delays, etc.), then the overall delay will be reduced, as the des-
tination only has to wait for the fastest copy to arrive. Note that not only are expected response times

reduced, but the variability in response time is also reduced.

Incidentally, redundancy in data communications is not entirely new. Error correcting codes are
sometimes added to packets to enable reconstruction of lost bits. This type of redundancy improves
response times by making it unnecessary to re-transmit when a few bits are lost. We use the same
principle, except that we send the redundant data over existing independent paths to avoid delays and
failures associated with a single path. Ramanathan and Shin [19] have also studied the use of multi-
ple copies in real-time systems. While their studies focuses on minimizing the expected cost incurred
as a result of messages missing their deadlines, our work addresses the response time speedup obtain-
able through the agressive approaches. Also, we study the case of 100% redundancy (2 full copies of
packet), at least in this initial paper. We will discuss shortly how redundancy can be reduced while

retaining some of the speedup benefit.

In order to convince the reader that aggressive transmissions are a good idea, we must address
three critical questions: (1) Is the cost reasonable? That is, by doubling transmissions or splitting
streams, will we not create more load and cause delays that will offset gains? (2) Why are improved
response time and reduced variability important? (3) What exactly are the gains we can expect in
response time? This last question is the main focus of this paper. As we will see, there are cases
where gains can be very significant, but there are other cases, depending on the communication proto-
col used and the message size, where they are not. Thus, a careful and realistic evaluation of the

potential gains is important. Before going into this topic, we address the first two questions.

To argue that the cost of redundant transmissions is reasonable, we first note that we are not
proposing duplication of all transmissions. We are focusing on a small fraction of time critical trans-
missions, so that the overall load increase may not affect the response time of transmissions over sin-
gle paths significantly. Furthermore, in most dependable applications, there is already an excess of

communication capacity. The system should continue to operate with acceptable performance even



when one or more of the links have failed. This means that during normal operation there must be
extra bandwidth. We wish to utilize this spare capacity during normal operation to provide more than
just the bare minimum acceptable service. Furthermore, communications cost (dollars/bit) is drop-
ping rapidly with new technology (e.g., optical links). This means that redundant transmissions may
be cost effective, just like mirrored disks (redundant storage) and processor pairs (redundant comput-
ing) are. Similarly, the extra CPU cost of sending and receiving duplicate messages can be justified
by dropping processor costs and the transmission time improvements we will show in this paper.
Finally, we note that "partial redundancy" is feasible. For example, if three paths are available, we
can send one packet via one path, a second packet via the second, and a parity packet via the third
(see Figure 1). Any two of the arriving packets can be used to reconstruct the two data packets. This
reduces the overhead, while still achieving some of the response time benefits. We do not analyze
this partial redundancy case in this paper, but we do mention it as an area of future research. Arguing
for split streams is easier, since all that is involved is higher processing and buffering requirements.

Again, given current hardware trends, the extra resources may be well invested.

A faster and more predictable response time is important for time-constrained applications[12]
where messages must be delivered within a certain time limit, or they will be useless. Examples of
such applications include packetized voice[2], distributed sensor networks, and other real-time control

applications[21].

Conventional applications can also benefit from reduced response times. Message transmission



time represents a major portion of the total execution time of many distributed algorithms, and a
reduction in response time can therefore provide a significant speed up. For example, in mutual
exclusion[14, 15], commit[8], and election[6] algorithms running time is dominated by message

delays, since there is relatively little processing.

In some cases, the response time gains can be magnified substantially due to reduced resource
contention. For example, during a distributed commit protocol in database applications, participants
typically hold locks on modified database objects. With reduced network response times and conse-
quently faster commit protocols, resources are held for a shorter period of time, alleviating con-

tention. As a result, total system throughput is improved.

A smaller variability in response time is another source of potential gains. For example, in order
to achieve accurate clock synchronization, a transmission time with small variability is required.
Many clock synchronization protocols[20] have upper bounds on synchronization accuracy inversely
proportional to the variability of message transmission delay. Therefore, a network with a more pre-
dictable latency gives us tighter clock synchronization. This has important implications in areas like
distributed agreement and consensus protocols[18]. In particular, many consensus protocols assume a
synchronous model — processors with closely synchronized clocks.t Moreover, these algorithms are
usually designed to be carried out in rounds (made possible by their synchronized clocks), with the
duration of each round being equal to the maximum send-receive-forward time — the time taken by
each processor to broadcast a message, to receive all incoming messages, and to perform some com-
putation. It has been shown that[4] in a synchronous fail-stop model, the worst case time complexity
is k + 1 rounds where k is the upper bound on the number of failures tolerated. A shorter response
time together with less variability enable these consensus protocols to have shorter rounds, immedi-
ately giving us faster algorithms. Finally, with a more accurate global snapshot obtainable using
closely synchronized clocks, we can reduce the likelihood of the occurrences of anomalies in a dis-

tributed environment such as those suggested by Lamport[13] and phantom deadlocks[17].

TWithout clock synchronization (i.e., for asynchronous models), it has been shown that no proto-
col exists for reaching agreement in the fail-stop model that can tolerate a single failure[5].



The rest of the paper is organized as follows. In the next section, we present our model for the
end-to-end round trip latency of a network. In sections 3, 4 and 5 we analyze the response time speed
up that aggressive strategies provide for single packet message, medium sized message, and long

message transmissions respectively. Finally, section 6 offers some conclusions.

2. The Model

Our goal is to evaluate the response time gains obtained by sending packets over multiple net-
works. We assume we have a source node transmitting data to a destination node. We study and com-
pare two scenarios: (a) the source and destination are connected by two independent networks, i.e., a
2-net, and (b) they are connected by a single conventional network, a 1-net. In this paper we will ana-
lyze three cases: a short one-packet message (Section 3), a medium sized message that consists of
several packets (Section 4), and a long message transmitted using a sliding window protocol (Section
5).

Before analyzing the effect of flow control protocols and of duplicate transmissions, we need to
understand the basic performance of the underlying communication medium. That is, we need to
model the distribution of the round trip delay between the source and the destination nodes for a sin-
gle packet, as well as the probability that the packet gets lost. This base model does not take into
account re-transmissions performed by the source when a packet is not acknowledged; such effects
are incorporated later. We would like our model to be general enough so it can be applied to any type

of network, either wide-area, point-to-point or local-area multiple access (see Figure 2).

If we think of the source-destination round trip latency as a random variable, what probability
density function (pdf) should it have? We believe it should have the shape shown in Figure 3 (experi-
mental data [3] supports this). There is a minimum transmission time dictated by the speed of light
and the processing time at intermediate switches (if any). The probability that the transmission time
is less that this minimum is zero. Beyond this limit, there is a range of times that are the most likely

to occur, but larger delays may also occur. These long transmission times arise due to congested or



faulty switches in a wide-area network or due to collisions in a local area network. Some messages

may never arrive, but we model this in our next step.

f(t)

t
Figure 3 : End-to-end round trip delay

For our analysis we desire a function that has the shape of Figure 3 and is also relatively easy to
work with. Thus, we chose a shifted two-stage hypoexponential random variable with parameters
1/4, and 1/1,+1/4, to represent the underlying round trip latency of a single network. Its probability

density function (pdf) is given by :
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where A is the minimum delay. By varying the values of 4, and 4,, we can model networks with



different transmission delay characteristics: The smaller the value of 4,, the faster f(z) rises at t = A.
The smaller the value of A,, the faster f(¢) falls as t grows. Choosing A = 1 time unit, Figure 4 shows
curves of f(¢) for various values of 4, and 4,. From this figure, one can see that our model can cover

a wide range of networks, either slow or fast, with low or high variance.
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Figure 4 : {(t) for various (4, 4,) pairs

Another argument in favor of the hypoexponential distribution is that it arises from a series of
exponential distributions. That is, if the network is a point-to-point and if we approximate the IMP-
IMP transmission delay by an exponential (or hypoexponential) distribution with some minimum
delay, then it can be shown that the overall end-to-end round trip latency of the network is hypoexpo-

nentially distributed with some minimum delay[23].

To model lost packets we truncate our distribution f(z) at a constant 7,. In other words, we
assume that packets that take more than 7, to be acknowledged will never be acknowledged. The

probability that a packet makes it, p, is given by

T,
p=| rwa.
0

With probability 1 — p a packet will not be delivered. Figure 5 shows the relationship between p and
T,. Note that assuming a cutoff time 7', is reasonable, as most networks that can store packets inter-

nally do discard them if they loiter for a long time (this is also required by some transport layer



protocols for proper connection management)[22].
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Figure 5 : end-to-end round trip delay

Given our assumption, it makes no sense at all for the source node to set a timeout interval larger
than 7. If the packet does not arrive by T, it never will. Conversely, if timeout is set smaller than
T, the source node risks the possibility of sending a redundant packet and this complicates our analy-
sis. Therefore, we assume that the source node sets its timeout interval to be equal to 7,. (In reality,
messages can arrive after the sender times out. Our computed transmission times are hence slightly
overestimated, but the difference is small given that very few messages show up after a time out. Fur-
thermore, the response time reduction is greater for a 2-net, so the speed up values we compute later

are pessimistic, i.e., 2-nets perform better than what we indicate.)

If we let X be the conditional random variable denoting the round trip latency of a single net-

work given that the packet is not lost, then X has its pdf, h(t), given by

1

—f@® r<T,,
h(t)=1{P 2

0 t>T,.

Note that

PriX>1]= j h(Hdr  and,
t



E[X] = j PrX > 1]dr.
0

The Appendix contains the formulae and their derivations for Pr[X > ¢] and E[ X], given a hypoexpo-

nential distribution for the round trip latency. They are required in our analysis later.

In our model of redundant transmissions in a 2-net, a sender node is connected to a receiver node
by two networks with independent failure probabilities. For each packet to be transmitted, two copies
of it are created and routed independently through the two networks to the destination node. As soon
as the destination node gets the first arrival, an acknowledgement is sent back to the source through
the network from which the copy is received.t As argued in Section 1, we assume that the extra load
incurred by duplicate transmissions does not change the response time of the underlying networks or
processors significantly. We also assume that the source has at least two network interface (or con-

trol) devices, so that the two copies can essentially be transmitted in parallel.

Let X,, be the conditional random variable representing the effective round trip latency of a
2-net given that both copies of the packet get through the network. We have X, = min { X, X,}

where X, and X, are two random variables having the same pdf as X. Moreover,
Pr[X, > t]= Pr[X, > t]- Pr[X, > t] = {Pr[X > t]}%.

So,

oo

E[Xy] = j Pr(X,, > tldt = j (PrIX > 1]Ydi
0 0

The formula for E[ X,] is a little bit lengthy and is included in the Appendix.

Figure 6 compares the pdfs of X and X, for p =0.95 (T, =8.2), 4, =1, and 4, =5. It can be

seen from this example that the curve for X, is more skewed to the left and has a thinner tail. It thus

T A better alternative would be for the destination node to send two acknowledgements back to the
source node, riding through both networks, as soon as it gets one copy of the packet. This has the
effect of bringing the momentarily slower network up to speed. However, the transmission times
would no longer be independent and our analysis would be more complex. Again, this means that
2-nets could perform better than our analysis shows.



has a smaller expected value and a smaller variance.
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Figure 6 : Comparing X with X,

Figure 7 shows the variances of X and X,, for 4, =2 and 4, = 5, and for values of p > 0.95.
(The Appendix contains the formulae.) Note that in our graph, as well as in others in this paper, we

focus on high values of p, i.e., reasonable networks should not lose too many packets.
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Figure 7 : Variances of X and X,

Note that the variances increase as p increases. To see why this is so, recall that p is defined by

the equation :

T,
p=[ rwa,
0



where T, is the time constant denoting the maximum life time of a packet (see Figure 5). A larger
value of p means a bigger 7,. (Given the base transmission time defined by 4, and A,, to lose fewer
packets, we must extend our timeout period.) As T, grows, the tail for the round-trip delay distribu-
tion grows. This explains why the variances of X and X, increase as p increases. Moreover, since
the distribution of X, is much skewed to the left (see Figure 6), the area under the tail of the distribu-
tion is much thinner and therefore the increase in variance due to a larger p value is much milder than

that for X.

In Figures 6 and 7 we assume that packets are not lost. However, we already see the advantages
of redundant transmissions: significantly reduced delays and variances. In the following sections we

analyze the impact of lost packets and the flow control protocol.

3. A Single Packet Message

Our response time analysis is dependant on the flow control and re-transmission policies used by
the networks. This in turn depends on the type of traffic: different protocols are typically used for
short messages (e.g., datagram service) as opposed to long messages. Thus, we start our analysis by

considering the transmission of a one-packet message.

One-packet transmissions are of special interest because in a large class of distributed algorithms
small control messages are exchanged (e.g., in commit or election protocols). In these algorithms
there is little opportunity for pipelining data (as in the window protocols we study in Section 5).
Essentially, each packet must be sent and acknowledged before the next one can be sent. As we
argued in Section 1, the major factor in the running time of these distributed algorithms is the trans-
mission time of these short messages. Thus, the speedup computed by our analysis will essentially be

the speedup obtained by these algorithms.

In Section 1 we stated that there are two main ways to use aggressively a 2-net: redundant trans-
missions and "stream splitting" (sending some of the packets over one net, the rest over the other). In

the case of a single packet transmission, stream splitting does not make sense. Thus, we only study



redundant transmissions, and compare them to transmissions over a single network.

To send a single packet reliably over a single net, the sender must transmit it and wait for an
acknowledgement. If the packet is lost or discarded, the sender eventually times out and sends the
packet again. Let R,,, be the random variable representing the time to successful transmission of one
packet in a 1-net. Say a particular packet is transmitted for the first time at time #,. If there are losses,
the packet will be re-transmitted, and eventually an acknowledgement arrives at another time t,.
Then R,,, will be ¢, —t;. We note that with probability p, we have a successful transmission on the
first attempt and therefore R,,, = X, where X is the conditional random variable denoting the round
trip latency of a network given that no packet is lost (see Section 2). In general, if the transmission of
a packet fails i times before the last trial succeeds, then the response time (R, ) is equal to iT, + X.
The first term corresponds to the i timeout intervals and the second term represents the round trip

delay caused by the last successful transmission. Hence,
Pr(R,, =iT, + X]=p(1-p) i=0,1,...

This gives us the following expected value of R,,,.
E[R,] = %p(l — p)'[iT, + E[X]]

= prxp+ 2022

The first term is the expected round trip delay of a successful transmission while the second term is

the delay due to an expected number of timeouts.

The probability that at least one copy of a packet gets through a 2-net (p,) is given by

pr=1-01-py.
If we let Y denote the effective round-trip latency of a 2-net given that at least one copy of a packet

arrives at the receiver, we have,

2

2p(1 -
Y=p—XM+MX

P2 ) 2)

and,



2 —
Byl =2 prx+ 228D gy
P2 P2

Therefore, if R, ) is the random variable representing the time to successful transmission of one
packet using a 2-net, we have,

(1 —
E[R, o1 = ELY] + 20 2P2)
D>

Let us define the speedup (su,,.) of response time for the one packet case by

expected response time using a 1-net
SU e = : : .
7" expected response time using a 2-net

Therefore,
T,(1-p)
E[R,..] E[X]+ ———=
SUppe = = .
" ElRoen] E[Y] + L -p)

) 2)

Figure 8 shows how speedup varies against p, the reliability of the network, for various 4,’s and 4,’s.
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Figure 8 : su,,, for various (1, A,) pairs
We note that a 2-net gives us a smaller expected round trip delay (E[Y] < E[X]) and a smaller

- 1—
P2 p). Both of these factors contribute to a smaller response
P2

. 1
number of re-transmissions (



time. Taking p =0.95, 1, =5, 1, = 1 for example, E[ X] = 6.04, E[Y] =4.24, T,(1 — p)/p = 0.89, and

E[Y] - E[X
T5(1 — p,)/p, = 0.042. The ratio LY] X1 measures the relative contribution to
TL[(1 = p)/p — (1= py)p,]

response time speedup by the 2 factors. For our example values of p, 4,, and 4,, this ratio is equal to

1.804/0.848 = 2.13. This means that the reduction in expected round trip delay contribute more than
twice as much as the reduced number of re-transmissions. That is, the round trip reduction is the more
important factor. We also notice that as the value of p increases, the difference between p and p,
decreases, while the difference between E[Y] and E[X] increases (see the formula of E[Y]). There-
fore, for reasonably large values of p (e.g., p > 0.95), a large portion of the speedup is due to the

reduced variability of the round trip latency of the network.

To illustrate the effect of 4, on speedup, we choose two representative values for p (0.95) and
A5 (3), and plot speedup as a function of A; in Figure 9. The curve shows us that the more unpre-
dictable the round-trip delay (bigger 4,) is, the more speedup advantage we can obtain by using a
2-net. The conclusion drawn from Figures 7 and 8 is that the speedups due to redundant transmission
can be significant, anywhere from 20 to 65 percent. These results are obtained over a wide range of

base distributions and network reliabilities.

1.6
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Figure 9 : Effect of A4, on speed up

1 Recall that 1, is a parameter controlling the shape of the round trip delay distribution of a com-
ponent network — the larger 4, is, the more spread out the distribution is (see Figure 4).



4. Medium Sized Message

In this section, we study the transmission of a medium sized message over a high latency net-
work. A medium sized message consists of more than one packet but is not large enough to fill up the
network pipeline. By this we mean that the round trip latency of the network is larger than the total
time taken by the sender to pump all packets onto the network. If we let 7, be the amount of time
taken by the sender to put a packet onto the network, then with a medium sized message of k packets,

we have,
kT, < A

The transmission protocol we are going to study is very simple. When the sender sends out a
packet, p;, a timer for p; is enabled. When the receiver receives a packet p;, an acknowledgement
ACK; is sent back to the sender. If the sender does not receive an ACK; T, time units after p; is sent,
p; 1s retransmitted. We assume that k is sufficiently small that each packet can be individually
buffered at the receiver and can be individually acknowledged. We choose to study this selective
repeat protocol, even though it requires more complicated logic and more buffer space at the receiver
than the more commonly used go-back-N algorithm [22], because it is more efficient and the addi-
tional buffer space requirement is easily accommodated for small k. Moreover, go-back-N is more
sensitive to p for the range we are interested (0.9 < p < 1.0)[16]. This implies that an improvement
in error rate increases network utilization by a bigger margin when go-back-N is used than when
selective repeat is used. As we will see later in this section, a main advantage in using a 2-net is an
improved error rate; therefore, we expect speedups that are greater than what we show in this section

for go-back-N using 2-net.

4.1 Computing Response Time for a Single Network

In order to demonstrate how response time is calculated, we consider the following two scenar-

ios for transmission using 1-net.

¥ A is the minimum round trip latency of a network. See Section 2.



Scenario (1) : No Retransmission

In this case all packets survive through the first transmission. Therefore,

Response time = kT, + E[X],

where kT, is the time taken for the source to put all k packets onto the network and E[X] is the
expected time taken for the last packet (p,) to get to the destination and its acknowledgement to be

received by the source (see Figure 10).

Scenario (2) : One Retransmission

In this case, some packets get lost in the first trial, but make their ways through the second time.
To illustrate, suppose we want to transmit 7 packets at time O (see Figure 11). In our first trial packets
#3 and #5 are lost. At time T, + 27T, and time 7T, + 47T, respectively, the timers of p; and ps expire
and the two lost packets are retransmitted. Finally, at time 7, + 57, + E[X], ACK is received and the
transmission is completed. Note that the total transmission time is not affected by the fact that p; gets

lost in its first trial.

We can generalize the analysis to the the case when n retransmissions are required (i.e., there is

at least one packet that takes n + 1 trials to complete). Let p; be the last packet received at the desti-

nation in the last (n+1") trial. Then the response time for sending the message would be

nT, + E[X] + jT, (see Figure 12). The probablity of such event happening is :

Pr[Response time = nT, + E[X] + jT,] = Pr[A & B & C]



where,

A = the event that packet p; is received at the n + 1" trial.

B = the event that none of the transmissions of py,..., p,_; takes more than n + 1 trials.

C = the event that none of the transmissions of p,,, ..., p; takes more than n trials.
Letting g = 1 — p, it can be seen that

Pr(A)=4"p,

Pr(B) = (1 —¢"")"", and

Pr(C) = (1—¢").
Therefore,

Pr[Response time = nT, + E[X] + jT,]

= Pr(A)- Pr(B)- Pr(C)

=q"p(1-q"")™"' (1 -qg".



Let R, be the expected response time of transmitting a medium sized message of k packets using a

1-net. Then,
S v +1yj-1 k) :
R, = 26 2. q"p(L—¢"" )Y (1= ¢")7/ (T, + E[X] + jT,).
n=0 j=1
As shown in the Appendix, this can be rewritten as

R, = E[X]+ B(q, k)T, + C(q, k)T,

where,

k(k ) i
B(q, k) = Z( . )(—1)’“ 1
=i\ 1 I-¢

Il ke _1 k— .] i1+
C(q.k) = ZPJ XXl D — -4 WH'

j=1 i1=0 i,=0

4.2 Redundant Transmissions

By duplicating packets and transmitting the duplicates over a second network in parallel with the
originals, we effectively form a 2-net that has a shortened expected round trip latency (E[Y]) and a
higher effective probability of successful transmission. The probability of a successful transmission
is p, = 1 — (1 — p)?, and the probability of a loss is 1 — p, = 1 — (1 — (1 — p)® = ¢*. Hence, if we let

R, .4 be the response time of a 2-net using redundant transmission, we have,

Ry ea = EIY1+ B(g*, )T, + C(q*, )T,

In this expression, B(¢>, k)T, is likely to be the dominating factor. This is because for a high
latency network, 7T, the timeout interval, should be much larger than T,, the packet duration. Con-
stant T, should also be larger than E[X], otherwise the network will time out too early. Thus, before
studying R, ,,, we study the factor B(g?, k). (Note also that value E[Y] has been studied in Section 2

and Figure 6.)



Intuitively, B() is the expected number of retransmissions. Figure 13 shows B(qg,k) as a function
of p (=1~ g) for various values of k. From the figure, we see that as the network becomes more and
more reliable (as p increases), the number of retransmission (B()) decreases. Moreover, the slope of
the curves gets steeper as k becomes larger. Therefore, as the size of the message increases, the
improvement in response time attributable to a higher probability of successful transmission (p) also

increases.

0.8

B(q, k) 0.6
0.4

0.2

(o

p
Figure 13 : B(q, k) Vs p for vaious k’s

Redundant transmission helps reduce retransmissions by essentially increasing the effective
value of p (to p, = 1 — (1 — p)*). For example, if p = 0.94, k = 20, the expeccted number of retrans-
missions is about 0.79 (point a in Figure 13). A 2-net pushes p to p, (= 0.9964), and B(0. 0036, 20) =
0.06 (point b).

Figure 14 shows B(g*, 10)T,, B(g, 10)T, and their difference for A, =2, 1, = 5, and for various
values of p. The value of T,(B(q, 10) — B(qz, 10)) represents the improvement, due to reduced re-

transmissions, brought about by a 2-net.

A — E[X]
o — E[Y]
8 | + —B(q.10)T,
. —B(@ 10T,
[ J— E[X] - E[Y]
6 — (B(g,10) - B(g*.10))T>
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The figure also shows E[X], E[Y], and E[X] — E[Y]. The value E[X] — E[Y] represents the
response time improvement provided by a 2-net due to reduced transmit times. Comparing
T,(B(q, 10) — B(¢*, 10))) and E[X] — E[Y], we see that the savings on retransmission contributes to a
more significant factor in speedup, unless the underlying network is very reliable.

Now that we have studied the factors that make up the transmission time, let us study the overall
speedup obtainable by a 2-net. Define su, ., to be the speedup obtainable by a 2-net in sending a k-

packet message using redundant transmission. We have,

response time of 1-net

SUp roq = .
"¢ response time of 2-net

_ E[X]+ B(q, k)T, + C(q, k)T,
"~ E[Y]+ B2 k)T, + C(¢% k)T,

For our evaluation we need to select a value for T,. Typically, for a high latency network, 7', varies
from 1/30 (satellite link) to 1/100 (optical fiber, long-distance transmission) of A, the total latency[1].
For our next graph we choose a medium value of 7, = A/50. Since we are assuming that k7, < A
(medium size messages), we will let k range from 2 to 50. Results are plotted in Figure 15 which

shows su, ., as a function of p.
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Figure 15 : suy ., for various values of k.



Taking a look at the su, ., expression, we see that for small values of p, the number of retrans-
missions is large, and the B() terms tend to dominate both in the numerator and in the denominator.
And hence su ., behaves more or less like B(gq, k) B(q*, k). B(g*, k) decreases faster than B(qg, k)
as g decreases, we would expect su,,, to increase as p increases for small values of p. This

explains, for example, the part of the curve labeled ab in Figure 15.

Now as p increases further, the number of retransmissions, (i.e. B()) becomes smaller, and
suy. .4 therefore, tends to (E[X]+A)/(E[Y]+A), a fixed value. This explains the curves labeled bc in the
graph.

Lastly, as more packets are sent (k increases), more retransmissions are expected, and this leads
to bigger B() terms. Therefore, the B() terms tend to donimate for a wider range of p values. This

explains why the curves for larger k peak more to the right.

4.3 Stream Splitting

With stream splitting, we divide the set of k packets into two equal sized groups and send them
independently over two networks. If we let 7T, and 77T be the random variables denoting the

response times of transmitting k/2 packets over each network, then,

E[TT,] = E[TTg] = E[X] + B(q,k/I2)T, + C(q, kI2)T,.
The total transmission time R, ,,;, would be

Ry iy = max {TT,, TTg}

>2TT,.

Therefore, the expected value of the response time using stream splitting R, ,,;, has the following
lower bound :

Ry i 2 E[X] + B(q, kI2)T, + C(q, kI2)T,.
Hence, an upper bound on the speedup su ,,;, can be computed as

R,
SUp splis < E[TT,]



= E[X]1+ B(q, kI2)T, + C(q, kI2)T,

Figure 16 shows this upper bound as a function of p for various values of k.

1.3 4

upper bound of 1.2~
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Figure 16 : upper bound of su, ,;;, for various values of k.

We observe that the maximum speedup obtainable using stream splitting in this case can hardly

exceed 35% while at least 40% improvement in response time is almost always guaranteed by redun-

dant transmission (see Figure 15). Therefore, we conclude that redundant transmission is a better

choice for transmitting medium sized messages.

By generating graphs like Figure 15, intelligent decision can be made concerning the choice of

transmision mode. Say for example, we have two slow but cheap networks, and a fast and expensive

network, and we have a soft real-time application. By considering the costs of transmitting the mes-

sage, the size of the message, and the penalty of a missed deadline, we can choose to send the mes-

sage through (1) the slow network, or (2) the polynet formed by the slow networks, or (3) the fast net-

work. Moreover, we can also consider the level of reliability, and the variability in transmission time

(a measure of risk) each transmission mode provides.



5. A Long Message

In this section, we analyze the transmission of a long message (many packets) over a high
latency network. For such transmissions, a sliding window protocol is typically used. In particular,
we analyze protocol #6 (selective repeat) in [22]. This is the most complete sliding window algo-
rithm presented in that textbook. Our results are also applicable to other algorithms of this type with

slight modification.

Let m, the message to be sent consist of k packets py, p,, .., p. Instead of having the source
node block every time it sends out a packet and wait for the acknowledgement, we allow the sender to
transmit packets continuously. When the sender puts a packet p; onto the network, a timer for it is
started. If acknowledgements always arrive before timeout, the sender just keeps on sending one
packet after another, without delays. However, if no acknowledgement for a packet p; is received
when the timer goes off, p; is re-transmitted. The receiver transmits an acknowledgement A; only if
D1, .-, p; have all been received. We assume that the receiver has a lot of buffer space (a large win-
dow), so packets received out of sequence are buffered (but not acknowledged). Since we are inter-
ested in networks with reasonable reliability (p = 0.95), we make the following simplifying assump-
tion: the probability that the transmission of a given packet fails twice in a row is extremely small.
As a result, we assume that if a packet is re-transmitted, it is properly received and acknowledged.
Once again, the effect is that we underestimate (by a small amount) the potential speedup generated

by a 2-net.

If we let T, be the amount of time taken by the sender to put a packet onto the network, then we
can think of time being divided into slots, each slot being T, units long. If the network is perfect, no

packets will ever get lost, and as have been explained in last section,
Response time = kT, + E[X],
Complications arise when the network is not perfect. We let / be the timeout interval in units of

time slots (i.e., [ = T,/T,), and let r be the round trip latency in units of time slots (i.e., r = E[X])/T,).

Consider the following sample scenario : packets py,.., p;_; get through the network but not p;. So at



time slot number i + [, the timer for p; goes off and p; is re-transmitted. The sequence

ot Pi Pivt v Pin Pi
——— time
shows the stream of packets sent by the source node.

In sliding window protocols, typically packets p;,; pis» - - - cannot be acknowledged by the desti-
nation until packet p; is received. (The acknowledgement for p,,; implicitly acknowledges all pack-
ets through i + 1.) Therefore, at the source the timers for packets p;, p;, .. etc. will also go off suc-

cessively and p;,; p;s... etc. will be re-transmitted. Thus, the sequence of packets is :

ot Pi Pivt " Pivi Pi Piv1 Pix2 "~
As mentioned earlier, we assume that the second trial of the transmission of p; succeeds. So at time

slot number i +/ + 1 + r, the sender gets the acknowledgement for p;,; and can proceed with the next

packet, piyjy;.

“ Pi Piv1 " Pivl Pi " Pivr Pivivl
Note that missing a single packet, p;, not only caused us to waste one slot re-transmitting, but also
caused the unnecessary transmission of r other packets (which were not lost, but simply unacknowl-

edged). Thus, the number of slot overhead (d) that can be charged to the loss of p; is equal to

d=(+r+1)-D)=r+1.

Since r = E[X]/T, (defined above), where E[ X] is the expected round-trip latency of a network,

then,
d=r+1=E[X])T,+ 1.

We note that if p;,; is also lost in the first trial but makes its way through the second time, no addi-
tional overhead is incurred by its loss. The number of wasted slots is still 4. In general, the loss of a
packet p; causes a "burp," an overhead of d additional time slots. However, any subsequent losses of

Di+1s - - - » Pisr dO not cause any additional "burps."



We compute the overhead in the general case as follows. Let N; be the expected total number of
burps that occur given that packets py,..., p,_; have arrived safely (p, ..., p;,.; caused no burps) at
the destination. If packet p; arrives intact, the number of burps is be equal to N;,,. Conversely, if
packet p; is lost, one burp occurs and this burp is good for any subsequent losses of an additional
d — 1 packets. The expected number of burps in this case is thus 1 + N;,,. We can formalize the above

idea by the following recurrence :

Ni:PNi+1+(1_P)[1+N,~+d] lSk,
N;=0 i>k.

This recurrence enables us to compute N, the expected number of burps in transmitting the k-packet
long message.

The total transmission time (77) is given by
IT =T,k + N,d) + E[X]
=kT,(1+ N,d/k) + E[X].

The above formula is useful in the following subsections for computing speedups.

5.1 Redundant Transmissions

Let us now analyze the case where the full stream of packets is sent over two networks. The
analysis is similar, except that we have a different expected round trip latency, E[Y], and therefore a
different burp length d’, which is equal to E[Y]/T, + 1. Let the sequence { N;} be determined by the
following recurrence

Ni/:pNz{H +(1-p)l +Ni/+d’] i<k,
N/ =0 i> k.

Then the speedup of a 2-net (with redundancy) over a conventional single network (su,,,.,) would be

KT, (1+ Nyd/k) + E[X]
Sinired =3 1+ N{d'Tk) + E[Y]

When k is large (e.g., we want to transfer a big file which consists of hundreds or thousands of



packets), E[ X] and E[Y] are negligible compared with the other terms. Hence,

_ KT+ Nydlk)
Sinired =3 4 N{d'Tk)

large k.
Defining n = lim N,/k, and n” = lim N1/k, we have
k—>oc0 k—>o00

i 1+nd
im =—.
et SUtnired l+n'd

In the Appendix we show that n = g/[1+(d — 1)q] and n" = ¢’/[1 + (d’— 1)q’], where ¢ = 1 — p and
g’ =1— p, (and as before, p, = 1 — (1 — p)?). Figure 17 shows sit,,.q plotted against p, for various

values of 4, and A,.
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Figure 17 : su,,,,.4 for various (1,,4,) pairs

We observe that if the network never loses packets (p = 1), the number of burps that occur is
zero and a 2-net has no advantage over a 1-net (speedup is one). However, speedup rises sharply
when p starts decreasing from 1. For example, even if the network drops only one packet out of a
hundred, a 2-net can already achieve a speedup of 17%. This is due to the magnification effect of
burps: a single loss causes a break in the pipeline and a string of re-transmissions. If packet delivery

rate drops further, to p = 0.9, a gain of 50 percent is obtainable with a 2-net.

The curves shown in Figure 17 correspond to networks with widely differing round-trip variabil-
ities (see Figure 4). The overlapping of their speedup curves shown in the figure suggests that the

speedup in the transmission of large messages is quite immune to the network transmission delay



distribution.

Finally, we note that it is possible to modify sliding window protocols to avoid the burps we
have analyzed. The key is to have the destination acknowledge packets individually. That is, the
acknowledgement for p; now means that p; was received, but it says nothing about p,_; or the previ-
ous packets. This generates slightly more acknowledgement traffic.¥ On the other hand, the number
of wasted slots per loss is now simply one. With p being the probability of a successful transmission,
the expected number of transmissions required to get a packet from the source node to the destination
node is now 1/p. Therefore, the total transmission time is k7 ,/p for a 1-net, and kT ,/p, for a 2-net.

The speedup made possible by a 2-net is thus equal to

_ _ 2
pr_[=(-pf1_

p p

For p > 0.95, a 2-net can only buy us a 5% speedup, probably not worth the extra effort spent.

5.2 Stream Splitting

A second alternative is to split the stream into two streams, each with k/2 packets. Thus, packet
p; is sent over one network, packet p, over the second one, p; over the first, p, over the second, and
so on. This approach is only feasible if there is enough buffer space at the source and destination to

keep two full windows.

Consider a 2-net that is composed of two networks A and B. Let 7T, and 7T be the random
variables denoting the response times of transmitting k/2 packets over networks A and B respectively.

Then, for large k,
E[TT,] = E[TT] = (k/2)T ,(1 + nd).

The total transmission time (77) of the 2-net would be

1 If packets arrive in order, then the modified protocol uses the same number of acknowledge-
ments as the conventional protocol: one per received packet. It is only when packets arrive out of
order that the modified protocol would send more acknowledgements.



TT =max { TT,,TTy }.

In the Appendix we show that, ’Iim orr,/E[TT 4] = 0 where o7, is the standard deviation of 77T, (A
—>00

similar statement holds for 77). Therefore, for large value of k, the transmission time of a network

will not deviate from its mean by any significant amount. Hence,
E[TT] = E[TT ] = (k/I2)T,(1 + nd) large k.

Comparing this to the response time of a 1-net and to the response time of a 2-net with redundant

transmission, we get
SUpysplic = 2

_2(1+n'd)
SUred/splir — A+nd
The fact that stream splitting provides a speedup of 2 over a single network is what one would intu-
itively expect, given that twice the bandwidth is available. Redundant transmissions also provide a
speedup with respect to a 1-net (Figure 17), but our su,,,;, shows that splitting is better. Figure 18

shows su,,., @s a function of p. As can be seen, splitting is superior by a factor ranging from 1.33

(at p=0.9)to2 (at p = 1).
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Figure 18 : sy, for various (4,,4,) pairs

Note that redundant transmissions could be more effective than splitting at lower values of p.

However, we do not consider values of p less than 0.9 realistic (plus our analysis is only for relatively



reliable networks). Also note that stream splitting requires two full sets of windows, so it may be
infeasible if memory is tight. In conclusion, for "moderately reliable" networks where memory is

plentiful, stream splitting is the best alternative for very long messages.

6. Conclusions

If two computers wish to communicate, it is much more efficient to have a single path linking
them, rather than two separate paths, each with half the bandwidth[11]. However, all reliable systems
opt for the two path solution to avoid vulnerability to a single failure. So, given that separate paths
exist, it is possible to use aggressive transmission techniques to improve the response time (and

decrease the variance) of critical messages.

For sending a single short packet, duplicate transmissions may improve response time by 20 to
60 percent, depending on the network characteristics. This may in turn improve the overall perfor-
mance of distributed algorithms that are limited by network latency (not by network throughput). In

turn these savings may reduce resource contention, as is the case for distributed commit protocols.

We have also analyzed an intermediate case, in which a small number of packets is to be sent
over a high latency network. Here again, duplication pays off, as it is better to be pessimistic and
send copies, rather than to wait and see if all the packets made it. As a matter of fact, since there is
now more than a single packet, the probability that at least one is lost or delayed increases, making
the payoff for duplication even larger than for the single packet case. (Stream splitting is not effective,

as latency and not bandwidth is the major factor)

For sending long messages (e.g., file transfer), full pipelining makes speedup rather insensitive
to network latency characteristics. In this case, splitting the stream over 2 networks is superior, by up

to a factor of 2, to redundant transmission. This is true even for unreliable networks.

Our last observation concerns the price and speed of communication lines. Sometimes vendors
provide lines of varying qualities and prices. (A higher grade line needs more expensive equipment,

more repeaters, needs to run slower, and so on.) Given that multiple paths exist and that aggressive



transmissions are used, it may be feasible to use lower grade lines (either to save money or to get
faster lines). That is, the duplicate paths compensate for losses that may occur on one path, so good
performance can still be obtained. In other words, aggressive transmissions and redundant paths open

the door for many interesting alternatives in the price/performance/reliability spectrum.



Appendix

Computing Pr[ X>¢], E[ X] and Var[ X]
PriX > 1] = j h(r)dt.
For A<t <T,, we have

PrX > 1] = j h(t)dt
17
- d
p!ﬂnt

= % [I fdr — j: Sf(@)di]

/1+/1
:_d R T e

A+A
L A+ A (I_A)Ml_& (r—A)(1 )

— [

1-p).
Ly /11 —(1-p)]

We also have

E[X]= j PrX > t)dt
0

) A
=jPr[X>t]dt+j1-dt

2

2
A+ A,

1
= [(A1 + A2)a; — o, = (T, =A)(1 = p)] + A,

where

—(Tx-4A)
o = 1-—e A




(Tz—A)(“”Z)
0!2 = 1 — e A2 .

Moreover,

Var[X] = E[X?] - E*[X]
T,
- j 2h(t)dt — EX[X].
A

This equation was solved numerically using Mathematica to obtain Figure 7.

Formula for E[ X ,,] and Var[X,,]

E[X,] = j PrX,, > t]d = j (Pr[X > 1])2dt
0 0

1
= ? (181 + By + 8383+ Eufa+ G5 Bs + (1 — P)Z(Tz -AN]+A

where
A+ Ay 2T, - A
i pr =1 exp(— =),
_ At ) e +24,
2 = (/11 + 2/12)11 s ﬂZ - 1 exp( (TZ A)( 1/12 ))9
M N +
{3 = 20, (A + Ay) ) By =1—exp(=2(T, - A)( s ),
_ _ —(T,-A)
$y==-2(1=p)(4; + 1y), Bi=1- exP(T),
_20-pA; I A+ A,
{5 = A+ A s Bs=1—exp(—(T, —A)(——— A A ).

Letting /), (¢) be the pdf of X,,, then

d
(1) = = (PriXy < 1])



d
= o (1—Pr[X, > t]).

Therefore,

Var[Xy]1 = E[X3;] — E[X )]
T,
= j 2hy(Ddt — E[X ).
A

This last equation was also solved numerically.

Formula for R,

o k X .
R =Y Y q"p(l—g""yY (1 - ¢"(nT, + E[X] + jT,),

n=0 j=1
which can be broken down into three terms as follows :

where,

oo k . )
Alg.k)=Y Y ¢"p(1—g"" (1 -g",

n=0 j=1

o k X ,
B(q.k)=Y Y q¢"p(1—¢""y"'(1—¢")/n, and
1

n=0 j=

o k X .
C(g, k) = g -21 q"p(1 =g (1 - g
n=0 j=

Now, A(g, k) is the sum of the probabilities of all the cases, therefore, A(q, k) = 1.

Let

k . .
D(g,n.k)=Y ¢"p(1—g""yY (1 - g,
e

then,



oo

B(g,k) = % nD(q, n, k).

Now, the probability that a packet gets through the network within # trials is (1 — ¢"). The probability
that all k packets get through the network within n trails is therefore equal to (1 —¢")*. Since
D(q,n, k) is the probability that exactly n retransmissions (i.e., n+ 1 transmissions) are required,
D(q,n, k) = Prob[ All k packets get through the network within n+ 1 transmissions but not all k

packets get through the network within n transmissions]. We thus have,

D(g,n,k)=(1-q""" -1 -g""

Hence,
B(g. k) = io al(1 - g™ = (1 - ¢""]
) k (k . . k (k . .
— Z n|:2(.jq(n+l)l(_1)l _ Z(-qu(_l)l:|
n=0 |i=0\! =0\ !
oo k (k L
=Xn (.)(—1)’61"’(61’ -1
n=0 =0\
k (k L it :
= .)(—1)’(61’ -1 Y n(g")"
i=1 \ 1 n=0
k (k L qi
= -D'(g' -1
50
— i If)_l)Hl qi .
=1\ I-¢g
Finally,

o k . .
C(g, k) = % Zl q"p(1—g"™"y™'(1 - g"Hj,
n=0 j=

(=S

k . .
= 21 pj ZO q"(1—q""yY (1= g™
Jj= n=
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Computing n and n’

Il
.
i M»
AN

The original recurrence (for a 1-net) is :

N;=pNiy + (A =p)[1+ Nyl i<k,
N;=0 i>k.

We would like to compute n = I}im N,/k. But this is equivalent to computing lim M,/i for the follow-
—>o0 11—

ing recurrence :

Mi:(l_q)Mi—l +q(Ml_d+1) foriZI,
M;=0 fori <0,

where g =1 - p.

We can interpret M; as the expected number of burps that occur during the transmission of an i-packet

long message.

Simple inductions show that for all 7 :
(1) M, is apolynomial in ¢, and

(2) M, has 0 as its constant term.

We can therefore let M; =g ) a; ; g’. For example, since M, =0 and M, = g, we have
Jj=0

ap; =0 forall j, and

a1’0=1, al’j=0 ]>0



By the recurrence, we have

M, =(1-¢q)q ), ai—l,jqj +q(q ), ai—d,jqj +1)
=0 =0

e - T i+
= Q[Za aiy;q’ - Zaai—l,jq] + Zaai—d,jq] +1]
J= J= J=

=qlY(ai1j—aiyj1 +aigj0)q +ai0+1] (D).
=
So, for i >d,
aio=a;10+1

..... (telescoping)

= ao’o +1i

Hence,

i—o0 [
Claim : Vj = constant C; such that
a;;=C;+i(l—dy fori> jd.

Proof: We prove our claim by induction on j.
Base case : For the case with j =0, we choose Cy = 0. Our claim for the base case is clearly satisfied.
Induction Hypothesis : Assume claim is true up to some j-1.

Inductive Step : By equation (1), we have for j > 1

Aij = Qi-1,j — Qji1,jo1 + Qigj1



=a, ;- [Ciy+ (-1 -dy™]
+[Ciy+(—d)1—dY™"] fori—d> (j—1d
=a,,;,—(1-d)Y(i-1-i+d) fori—-d>(j—1d
=a.,;+(1-d) fori> jd
..... (telescoping i — jd times)
=a;, + (- jd)(1-dy

=aj; - jd1-d)y +i(1-d).

Setting
Ci=aj,;—jd(1—-dy,
we have
a;;=C;+i(1-dy fori>jd. QED.O
Moreover,
a; ; C;+i(1-a)y
lim — = lim #
1= ] 1—00 l
=(-d)y.
Hence,
q X ai;q’
lim — = lim —=
i—e ] i—o0 1
=g Y lim—L.q/
j=0 11— 1

= ¢ Ylg(1- D)
=0



q

T1-g(l-d)
-9
1+d-1)q"
Therefore,
n= L
1+ d-1)q’
Similarly,

, )

=—) h =1-p,.
n ]_+(d,—1)q2 where g, P>

\Var[TT 4]

E[TT 4]

Proof of —0ask > o

If we let the random variable X; denote the number of burps that occur during the transmission of an

i-packet long message, then we have the following recurrence:
X, =ZX, ., +Z[1+ X,_;] fori>d,

where Z has the following distribution
PrlZ=1]=p,
Pr(Z=0]=1-p,

andZ=1-2Z.

For i <0, the distribution of X; is

la=0,
0 otherwise.

Pr(X; =a] ={

Let o; be the standard deviation of X, i.e., o; = \'Var[X;]. Also let o7y, be the standard deviation of

1T ,. We prove that lim o, _ 0 by first proving that lim g 0. We begin with the following
ke E[TT 5] iz E[X;]



Lemma.

Lemma 1. If A and B are two independent random variables, then,
Var[AB] = Var[A\Var[B] + E*[BlVar[A] + E*[A]Var[B].
Proof:
Var[AB]
= E[A’B*] — E*[AB]

= E[A’|E[B*] - E}[A1E*[B] —(1).

Var[A]Var[B]

= (E[A’] - E’[A]E[B’] - E*[B))

= E[A’]E[B*] — E[A*]E*[B] — E*[A]E[B*] + E*[A]E*[B] —(2).
(1) - (2) gives

Var[AB] — Var[AlVar[B)

= E[A’]E*|B] + E*[A]E|B*] - E*|AlE*[B] - E*[A]E?[B]

= (E[A’] - E’[ADE’[B] + (E[B*] - E*[B)E*[A]

= Var[AlE*[B] + Var[ B]E*[A].

Lemma 1 follows. O

From the distribution of Z and Z, we get
E|Z] = p, Var(Z] = p(1-p),
E[Zl=1-p, Var[Z]=p(1-p).

From the recurrence of X;’s, we have



X, =ZX,, +Z[1+ X,_4] fori>d,
and hence, for i > d,
Var[X;] = Var[ZX,_,] + Var[Z(1 + X,_))] + 2Cov[ZX,_;, Z(1 + X._ )]}
=Var[ZX,_|]1 + Var[Z(1 + X,_,)] +
2{E[ZX, Z(1 + X,_)] — E[ZX,_\]E[Z(1 + X._)]}.
=Var[ZX,_|] + Var[Z( + X,_))] — 2E[ZX,,1E[Z(1 + X,_))].
Using Lemma 1,
Var[X;] = Var[Z\Var[X,_] + E*[X,_|1Var[Z] + E*[Z]Var[X,] +
Var|Z\Var[X,_,] + E*[1 + X,_,1Var[Z) + E*[Z]Var[X,_4] -
2E[Z]E[X,1E[Z]1E[l + X,_,%
= p(1 = p)Var[X; 41+ p(1 = p)E*[X; 41 + p*Var[ X 4] +
p(1=p)Var[X;_g] + p(1 = p)E*[1 + X;_ 4] + (1= py*Var[X; 4] -
2p(1 = pE[Xi41E[1 + X 4]
= pVar[Xi 1+ (1= p)Var[X,_4] + p(1 = p)E[X;,] = E[1 + X;_4])°.
From recurrence
X, =ZX,, +Z[1 + X,_,] fori=>d,
50,
E[X;,1= E[Z]E[X,.,] + E[Z]E[1 + X,_;]
= pE[X, ]+ (1 - p)E[l + X,_,].

Since E[X;] = E[X,],

+ Cov(X,Y) = covariance of X and Y = E[XY] - E[X]E[Y].
t Z, X;_, are independent, so as Z and X;_,.



E[X;4]1< pE[Xi ]+ (1= p)E[l + X; 4],
(1-pEX;i, 1< -pE[l+ X 4],
(1= p)E[Xi] - E[1 + X, 4]) <0,
E[X,,]— E[1+ X;_4]<0.
On the other hand,
E[X;]— E[l + X; 4] = E[X;] - E[X;q] — 1
>—1 (because E[X;_] = E[X,_4])-
Therefore,
(E[Xi.]1— E[1+ Xi_g])* < 1.
Hence,
Var[X;] < pVar[X; ]+ (1 - p)Var[X; 4] + p(1 - p).
Let v; = Var[ X;], we have,
vi<pvig+-pviy+pd-p)
Sspmax { vy, vig }+(I=—pmax { vy, vy } +p(1-p)
Svis, +p(d=p), —O3)
where 6, is either 1 or d depending on whether v;_; or v;_, is bigger.
Telescoping m times until the subscript of v on the right hand side of (3) gets down to some value &
such that 1 £ h < d, we get,
v; < v, + mp(l —p).

Since each telescoping step decrements the subscript of v by at least 1, and since 4 is between 1 and



Therefore,

v <v, +({—d)p(l-p),

o, <A\lv, + (i—d)p(1 - p),

O; _ Gl/l
E[X,] E[XVi

Now,
lim i =0 and,
i—oo
. E[X;] . .
lim ——— = n, a constant > 0 (see last section of the Appendix).
i—e0 ]
By L’hospital rule,
i 0=
i E[X]
Finally,

TT, = kT /2 + X,,dT,,
Var[TT ] = d*T*Var[ X,
orr, =dT,04,, and
E[TT ) = kT /2 + dT,E[X;,].

orT, _ dT o4
E[TT,] kT, 2+ dT, E[X;]

d Ok
_ E[Xyp]
T k2 ’
+d
E[X;p]
. O'TTA d * 0
lim =
ke E[TT 4]

1
—+d
n
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