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Abstract

A multibody car system is a non-nilpotent, non-regular, triangularizable and well-controllable
system. One goal of the current paper is to prove this obscure assertion. But its main goal is
to explain and enlighten what it means.

Motion planning is an already old and classical problem in Robotics. A few years ago a new
instance of this problem has appeared in the literature : motion planning for nonholonomic
systems. While useful tools in motion planning come from Computer Science and Mathematics
(Computational Geometry, Real Algebraic Geometry), nonholonomic motion planning needs
some Control Theory and more Mathematics (Differential Geometry).

First of all, this paper tries to give a computational reading of the tools from Differential
Geometric Control Theory required by planning. Then it shows that the presence of obstacles
in the real world of a real robot challenges Mathematics with some difficult questions which
are topological in nature, and have been solved only recently, within the framework of Sub-
Riemannian Geometry.

This presentation is based upon a reading of works recently developed by Murray and Sastry
[39], Lafferiere and Sussmann [55], and Bellaiche, Jacobs and Laumond [5] [33].

*On leave from Laas/Cnrs. His stay at Stanford was funded by DARPA/Army contract DAAA21-89-C0002.
Permanent address : Laas/Cnrs,7 Avenue du Colonel Roche, 31077 Toulouse, France. e-mail : jpl @aas.laas.fr
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1 Introduction

The motion planning problem (MP) is certainly one of the best formulated ones in Robotics. It
raises two questions :

e Can a robot reach a given goal while avoiding the obstacles of its environment ? This is the
decision problem.

o If the answer to the previous question is yes, what path may it follow ? This is the complete
problem.

The geometric formulation of this problem is known as the piano mover problem. This formu-
lation considers the motion of rigid bodies amidst obstacles in the 3-dimensional Euclidean space.
The placement (translation and rotation) of a body in the Euclidean space is given by a point in
a 6-dimensional space. Some geometric relationship between the bodies may appear for a given
robotic system (as is typical for a robot arm). They are translated into equations between the
placement parameters of the bodies. These are called the holonomic links. They restrict the space
of the allowed placements to a subspace of the placement spaces of all the bodies. This subspace
is called the configuration space. Finally, a configuration of the robot is represented by a point of
the configuration space that defines precisely the domain occupied by the robot in Euclidean space.
A point-path in the configuration space corresponds to a motion of the robot. For a holonomic
system, we have as many degrees of freedom as is needed to follow any path.

Therefore, for holonomic systems, the existence of a collision-free trajectory is characterized by
the existence of a connected component in the admissible (i.e., collision-free) configuration space. To
solve MP, it is enough to compute the admissible configuration space (i.e., transform the obstacles
in the Euclidean space into “obstacles” in the configuration space), and then explore its connected
components.

Since the seventies this problem has attracted many researchers working in Robotics and beyond,
in Computational Geometry and Algebraic Geometry. See [48] for a recent overview, [60] for a
review of the various approaches of the problem, and [27] as the first genuine book on the subject .

However, there are cases in which this formulation of motion planning is not sufficient. In the
last four years, an example of the limitation of the piano mover formulation has been investigated :
planning constrained motions where constraints are nonholonomic in nature. A nonholonomic link
is expressed as a non-integrable equation involving derivatives of the configuration parameters.
Such constraints are expressed in the tangent space at each configuration; they define the allowable
velocities of the system, and they cannot be eliminated by defining a more restricted configuration
space manifold. Thus, the main consequence of a nonholonomic constraint is that an arbitrary
path in the admissible configuration space does not necessarily correspond to a feasible trajectory
for the robot. Therefore, the existence of a collision-free trajectory is not a priori characterized by
the existence of a connected component in the admissible configuration space.

Planning motions for nonholonomic systems is not as new in other communities as in the
community working on obstacle avoidance for robots!. This problem is well known in Nonlinear

‘Notice that nonholonomic motion planning appears also in some spatial applications, for systems (like space-
stations or satellite) using internal motion and submitted to conservation laws (see [40] [42]).



Control and in Differential Geometry. Important results have been obtained over the last two
decades, while the first results seem dated from the thirties with Chow’s work [12].

Notwithstanding, Robotics brings to the front an important constraint which is not usually taken
into consideration : the planner has to produce trajectories that avoid the obstacles. Moreover, by
its applications to the real world, it requires effective and efficient computational tools, rather than
just proofs of existence.

Results useful to our problem can be found in publications-often difficult ones-from other
communities than the Robotics one. Because the viewpoints are different, they at tack only some
aspects of the problem, and use different terminologies. The goal of this paper is to enlighten
these points of view by a computational one (the right point of view for the planning problem)
and to stress the connections between motion planning and differential geometric control theory.
This study has to be viewed as an informal statement of these connections, hopefully readable
by a non-specialist in control theory or in differential geometry (as the author is). A spotlight
will be focused on some concepts from these theories, using a minimal formalism while trying to
understand where and why these are pertinent as far as the motion planning problem is concerned.
It is clear that an in-depth study of these concepts needs the precision given by the mathematical
formalism : for each concept there will be references introducing or using it.

Along this study we take a multibody car system (i.e., like a luggage carrier in an airport) as
an example of application. The results (Section 3 and Section 5) for this example constitute a
contribution by themselves. They can be read independently of the rest.

The decision problem of planning for nonholonomic systems is related to their controllability” :
more precisely the existence of a collision-free trajectory for a controllable nonholonomic robot
is characterized by the existence of an open connected component of the admissible configuration
space. The decision problem is then similar to that of the piano mover problem. This result
constitutes the first main link; it has been studied simultaneously in several research groups : [31]
[34] 3] [38]. It is based upon the Lie algebra rank condition, and will be recalled in Section 2.

Section 3 presents a three-step modeling of the multibody car system, from a purely geometric
model leading to the definition of the configuration space (Section 3.1), to four distinct control
models, all corresponding to practical applications (Section 3.3), via a differential model (Section
3.2). The differential model finally enables us to give a unified proof of controllability encompassing
all the envisaged systems (Section 5).

Section 4 refines the presentation of Section 2, by considering the computational aspects of the
problem : is a system controllable ? There is a semi-decidable procedure for this problem, which is
supported by several concepts of differential geometric control theory. Then this paper introduces
the well-controllability notion, in relation to the planning problem.

Nevertheless, at this stage the complete problem of nonholonomic motion planning remains
unsolved.

2The use of the term “controllability” in this context is fuzzy in the community. Indeed, the meaning we use here
is related to the reachability concept. A nonholonomic system may be controllable by openloops. It does not have to
be controllable by closed loops (see [47] for a study of feedback controls for a nonholonomic wheeled cart). It would
be better to use the notion of a completely nonholonomic system related to the concept of a distribution (see [58]).
This paper adheres to Sussmann’s terminology [54], which seems to have reached some state of general acceptance



Section 6 considers the complete problem. We will see that the key question is ropological in
nature. While motion planners for nonholonomic systems have blossomed through the last two
years (see Appendix 1), very recent contributions pursue a deep study of the differential geomet-
ric tools available for solving the complete problem. [33] presents an efficient planner for mobile
robots and shows that its strategy can be generalized. [55] presents a general planner based upon
a general constructive proof of controllability. These results let us stress the main difficulty for
building efficient planners : while obstacle avoidance requires us to consider the “natural” Rieman-
nian topology of the configuration space (i.e., induced by the natural Hausdorff metric working
in the robot environment), the trajectories allowed by the nonholonomic constraints compel us
to consider another topology in this space : the topology induced by the length of the shortest
allowed path between two points. Such a metric is known as a sub-Riemannian (or singular, or
Carnot-Caratheodory) metric. In fact, using sub-Riemannian geometry (see [7] [51] [58] [36]), it
is possible to show that both topologies are the same. This result enables us to conclude on the
generality of the approaches presented in [33] and [55]. Nevertheless, because we are interested in
the computational point of view, we have to study more deeply the shape of the sub-Riemannian
metrics in order to estimate the combinatorial complexity of the planners. This study has been
done in [33] for the case of the car-like robot. This section points at the reference [58] that gives
precisely the general and finest form of the sub-Riemannian metric we need to conclude on the
complexity of the complete problem.

Appendix 1 overviews other results related to nonholonomic motion planning : they do not
use intensively the tools we present in this paper, but they are interesting nonetheless from either
a theoretical or a practical point of view. Following appendices give the various computations
for the examples presented along the paper (Appendix 2), together with the tedious proof of the
controllability result presented in Section 5 (Appendix 3).

Two starting points are at the origin of this working paper. The first one has been the work of
Barraquand and Latombe on the controllability of multibody systems (see [4]). This report yields
a proof of controllability in a general case involving up to n trailers. The second point has been a
reading of papers written by Murray and Sastry [38] [39] and by Lafferiere and Sussmann [55]. It
seemed interesting to clarify the relationship between these approaches of the planning problem,
taking also into account the approach ([30] [33]) developed within the Hilare mobile robot project
[16] [10] by Jacobs and the author.



2 From Planning to Control

Until a very recent period, the main contribution to nonholonomic motion planning (independently
developed in [31] and [34]) has been to solve the decision part of the nonholonomic motion plan-
ning problem, via differential geometry and control theory. See [3] for a clear presentation of the
necessary tools that we examine here.

While the constraints due to the obstacles are expressed directly in the manifold of configura-
tions, nonholonomic constraints deal with the tangent space. In the presence of a link between the
robot’s parameters and their derivatives, two questions arise :

o Is this link holonomic ? (i.e., does it reduce the dimension of the configuration space ?)

o If not, does it reduce the accessible configuration space ?

In the case of r links corresponding to r equations linear in the derivatives of the n parameters,
these equations determine what is called an (n- r)-distribution A on the manifold of configurations.
The answer to the first question is then given by Frobenius’ theorem (see for instance [49]): the
equations are integrable if and only if the distribution A is closed under the Lie bracket operation.
Let us recall that the Lie bracket of two vector fields X and Y is defined as [X, Y] = 0X.Y - 0Y.X.
A sample of computation examples appears in Appendix 2.

From a control theory perspective, a control is a function which allows us to choose the system
state velocity at each instant by a careful weighting of smooth vector fields. The control Lie algebra
associated with A, denoted by LA(A), is the smallest distribution which contains A and is closed
under the Lie bracket operation. The answer to the second question is then given by the non-linear
system controllability theorem (see for instance [53] [35] [17]): if the rank of the Lie algebra is
full at a given configuration ¢, then there exists a neighborhood A of ¢ whose points represent
configurations reachable by the system moving from c along an admissible path. Moreover, this
path stays in N. This condition is known as the “rank condition™; it is a local condition.

If the rank condition holds everywhere in the configuration space, then the robot is termed
controllable®. From our planning point of view, the main consequence is that the existence of a
collision-free trajectory is characterized by the existence of a connected component in the free (i.e.,
with neither collision nor contact) configuration space.

Therefore, apart from topological subtleties dealing with motions in contact, the decision
problem of motion planning for controllable systems is the same as for holonomic

ones4 .

The difference is more involved with the complete problem. The previous result answers the
question of the existence of a feasible trajectory, that is, the decision problem, but does not solve the

In fact a controllable system requires only that the rank condition holds nearly everywhere, that is on a dense
subset of the manifold. Various precise controllability concepts appear involving the “size” of reachable sets and the
“size” of sets where the rank condition holds (see [54]). Omitting them does not affect our purpose.

‘Section 3 highlights the difficulty for proving the controllability of a system. Since we are interested in the
computational point of view, we are looking for a procedure that allows us to conclude. As we will see, this problem
is not trivial.



problem of efficiently producing an admissible trajectory. To the extent of the author’s knowledge,
there was no general constructive proof of the result mentionned above until the recent contribution
of Lafferiere and Sussmann [55]°. Their proof leads to the design of a general nonholonomic motion
planner in the absence of obstacles (see Section 0).

At this stage we can just hope that the search for a solution for a nonholonomic system can
be guided by a collision-free trajectory for the associated holonomic system. Indeed, thanks to the
local property above, a controllable robot can be steered close to any path as long as there is a
“small gap” between the reference path and the obstacles. This idea is precisely the basis of the
two strategies defined in [55] and [33] that we will study in Section 6. It appears clearly that the
key question for developing such a strategy deals with the size of the “gap”, i.e., with the ropology
induced by the nonholonomic constraints. This aspect is detailed in Section 6.

Now let us define the multibody car system.

5Speciﬁc constructive proofs appear in [28] for the car-like robot and in [32] for the car-like robot pulling a trailer.



3 The Modeling of a Multibody Car System

Figure 1 shows what we call a multibody car system. It corresponds to a car-like robot pulling
and pushing trailers (like a luggage carrier in an airport). In order to grasp the planning point
of view, we will build along three modeling levels for this system

: a geometric model (Section
3.1), a differential model (Section 3.2) and a control model (Section 3.3) respectively. Then a

close examination shows that four different control systems correspond to the same differential

model; this is the differential model that we will use to solve the decision part of the planning
problem (Section 5).
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Figure 1: A multibody car system

3.1 Geometric Model

Let us consider a multibody system (Be, B,

., By) constituted by a car By and n trailers B;. We
take the midpoint between the rear wheels as the reference point for each body; its coordinates are



denoted by z; and y; in some fixed Cartesian frame of the plane; the angle 6; is taken between the
main axis of B; and the x-axis of the frame. The space of possible placements of the n + 1 bodies
is then 3(n + 1)-dimensional.

In order to form a convoy (e.g., the car pulling the n trailers B;, each hooked up to the next
like for a luggage carrier), each trailer B; is assumed to be hooked up to the midpoint between the
rear wheels of the preceding body B;_18. This means that the system is submitted to 2n holonomic

links which yield the following equations in the placement space” :
T; —Ti—1 = —coséb;,
Yi — Yi-1 = —siné;.

The configuration space of the convoy is a submanifold of dimension 3(n + 1) — 2n = n + 3 in the
placement space of all the bodies. A possible parameterization of this submanifold is to pick out
the (n + 3)-tuple (2o, Yo, 60,01, . . . ,0,) belonging to R x (S1)"*+1. For the sake of simplicity, we
will set X = 2o, Y = Yo, 8 = 6y and ¢; = 6; — 6;_1, so that ¢; is the angle between the axes of B;
and B;_y, and use (z,y,0,¢1, ..., ¢n) as an alternative parameterization.

3.2 Differential Model

Each body is rolling on the ground without sliding; thus it is submitted to the classical nonholonomic
link :
Z;sin 8; — y; cos 6; = 0.

Remark : This equation is obvious. We just want to mention the following fact : it has been
obtained without any reference to a control system; we have just used some elementary kinematic
considerations (i.e., a moving rigid body has only one instantaneous center of rotation).

The system is subject to n + 1 such constraints. Since the number of degrees of freedom of a
mechanical system is defined as the difference between the dimension of its configuration space and
the number of independent nonholonomic links, the number of degrees of freedom of our convoy is
(n+3) = (n+ 1) =2 (obviously, the 2 degrees of freedom of the car. . . ).

These constraint equations are expressed in the tangent space of the placement space of all the
bodies. In order to translate them into the tangent space of the configuration space, we have to get
rid of the variables &; and ¢; for i # 0’ . By combining these n + 1 equations with the derivatives
of the 2n holonomic equations, we obtain the following system of n + 1 linear equations :

T sin 0; — 9o cos 0; — Z éj cos(#; — 6;) = 0.
i=1
A configuration ¢ being given, this system defines a plane in the tangent space at this point; this
means that, for a possible motion passing through c, the velocity vector at c-whenever defined—
has to lie in that plane®. If we compute the solution of the resulting system, we obtain :

8The hooking system is important. The equations do not simplify if the trailers are hooked behind the rear axles.
-Moreover the problem is unsolved for this generalization.

"We assume that all the links have the same length 1; obviously, this does not affect the generality of the following
results.

8The set of all these planes has the structure of what is called a distribution on the manifold.
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&o = acosby

Yo = asinby

b = B

91 = sin(01 - 00)

b, =« cos(f; — ) sin(6, — 6;)

. n-1

6, = asin(f,—0,_1) H cos(8; — 0;—1)
1=1

with @ and § any two reals. Setting (e, 8) = (1,0) and (a, B8) = (0,1) yields a basis of the plane,
namely :

X, = (cosby, sinbp, 0, sin(fy — bp), cos(6; — o) sin(fz — 61), . . .

n-1
5 sin(B = 0_1) ] cos(8; — 8;-1)),
i=1

Xy, =(,0 1, 0, . .. 0.

If we use the change of variable ¢; = §; — #;_1, the same computation yields?® :

z = acos0
¥y = asind
6 = p
$1 = B-asing
Y2 = @ (sin 1 — cos 1 sin p3)
@3 - 0 Cos(sin P2 — cos @3 Sin 3

n-2
Yn = a(sin @p_1 — COS Pp—15in ‘Pn) H COS @4

=1
as the parameterized equations of the plane, and
X, = (cos 6, sin 6, 0, — sin ¢y, sin ¢ — cos 1 sin g, . . .
n-2
oo, (Sin@p_y — €OS Pp_1sin @y) H cos (Pj) ,
i=1

Xy = (0, 0, 1, 1,0,...,0)

Unfortunately the general shape appears only from the 6th coordinate

11



as a distinguished basis.

Recall that all this system modeling has been done without reference to any control system.
It has been built just from the non-sliding hypothesis applied to each body of the convoy. So any
control system will apply to the framework above. We will use the generality of the differential
model in order to prove the controllability of the convoy for several control systems.

3.3 Control Models

At this moment, we have not mentioned yet how the system moves. We have just suggested that
the first body drives the convoy. But we can imagine that the car is in the middle of the convoys;
better it may be possible that there is no car, and just some effectors controlling the angular
joints between the bodies (as in some japanese snake-robots). We examine here four examples of
control systems and prove that, in all cases, the proof of controllability of these systems amounts
to computing exactly the same Lie algebra, namely the Lie algebra spanned by the vector fields X,
and X} introduced above.

3.3.1 The Convoy is Driven by Gofer

The Stanford mobile robot Gofer [ 1 1] is very interesting for our purpose. Indeed it leads to intro-
ducing a distinction between the control variables and the parameters which is pertinent from the
point of view of the planning. Gofer’s locomotion system is clever : three parallel driving wheels
are linked together by some mechanical system; their velocities are controlled by a same motor
(which produces forward or backward motions), while a second motor can control their directions.
Such a design requires that there be a part of the vehicle whose direction remains fixed.

If the non-rotating part has a geometric shape whose projection on the plane contains the
projection of the whole robot, then the robot appears, from the planning point of view, as a
translating, but non-rotating body. In this case the reference frame of the robot is linked to the
fixed part and the configuration space is only 2-dimensional.

Otherwise, if the projection of the non-rotating part is included in the projection of the other
parts, the robot appears (always from the planning point of view) as a 2-dimensional translating
and rotating body. The configuration space is thus 3-dimensional. The robot looks closely like
what is called a unicycle : this means that the speed of the vehicle and its direction are directly
controlled by two independent motors”.

Therefore, with (x, y, 0) designating a configuration of the robot, the control system is :

10The distinction we have introduced is meaningless for the true robot, since Gofer is circular ! However, this is
an example of the subtle links that may appear between a geometric model for planning and a differential model for
control : think of the case where none of the projected parts would be included in the other; in that case the planning
problem would concern a translating, rotating and deformable 2-dimensional body. As a matter of fact, Gofer is but a
pretext to introduce the interesting case of the unicycle. . . And, in order to be exhaustive with the Stanford Robotics
Laboratory, there is also a robot called Mobi whose sophisticated locomotion system endows with the privilege of
being one of the few existing holonomic mobile robots.

12



z cos 6 0
y =1 sinf |ur+]| 0 | us.
0 0 1
Thus if we attach » trailers at Gofer’s rear its control system expresses directly as the two vector

fields X, and X3 defined in the preceding section, so that the controllability of the system will be
established by computing the Lie algebra spanned by {X,, X3}.

3.3.2 The Convoy is Driven by Hilare

Consider now the Hilare family, dwelling at Laas [16] [10]. The three mobile robots have the same
classical locomotion system : two parallel driving wheels, the acceleration of both being controlled
by two independent motors. Assume that the distance between the wheels is 2, that the reference
point of the robot is the midpoint of the wheels and that the main direction of the vehicle is the
direction of the wheels. With v; and vy as their respective speeds, the control system is :

T (v1 4 v2) cos@ 0 0
v (v1 + v2)sin 6 0 0
é = v — V2 + 0 u + 0 Uus.
V1 0 1 0
U 0 0 1

In fact, from the planning point of view that we take in this paper (the speed at a configuration is
not considered as a part of the problem), this system can be rewritten in the following way :

T cos 8 cos 6
y | =| sinf |vi+ | sinf | ovs.
0 1 -1

If we add the trailers, the vector fields corresponding to the controls are clearly Y, = X, + X,
and Yy = X, — Xj. In order to prove the controllability of the convoy we have to compute the
dimension of the Lie algebra spanned by {Y;, Y3}. Due to the bilinearity of the Lie bracket, it is
equivalent to start with {X,, Xjp}.

3.3.3 The Convoy is Driven by a Real Car

The case of a real car is a little bit more complicated. Indeed, in addition to the nonholonomic link,
a specific constraint appears : the turning radius is lower bounded (we will see that this constraint
does not cause any trouble).

From the driver point of view, a car has two degrees of freedom : the accelerator and the steering
wheel (the brake is a kind of reverse accelerator and the clutch pedal is reserved to European

13



drivers. . . ). Take the midpoint of the rear wheels as the reference point. Assuming that the
distance between the rear and the front axle is 1, we denote by v the speed of the car and by ¢ the
angle between the front wheels and the main direction of the car !!. Simple arguments show that
the control system is the following :

z v cos @ cos @ 0 0
] v cos @ sin f 0 0
6 | = vsin @ +1 0 Jur+] 0 | us.
v 0 1 0
@ 0 0 1

Again we are only interested in the geometric planning problem. Then, since the position of the
front wheels is not relevant to the problem, as well as the speed of the vehicle, the system simplifies
into :

T cos @ 0
g | =| sinf |vcosp+ | O |wsine.
0 0 1

This is a non-linear system whose controls are v and ¢. Anyway, as shown by the form of the
equation, if we add trailers, the controllability of the convoy will still be proven by a close study of
the Lie algebra spanned by X, and Xp.

Remark : We did not take the constraint on the turning radius into account. This constraint
can be expressed as |¢| < @o,where g is a strictly positive real. From the point of view of
the complete control model, this constraint has exactly the same meaning as an obstacle in the
environment (an obstacle in the environment constrains the variables x, y and 0 to lie in some
domain); therefore, it does not affect the controllability of the complete system and, consequently,
it does not affect the controllability of the simplified system either!2.

3.3.4 The Convoy is Oddly Driven

The following system is no longer classical. Unlike the previous ones the driver system does not
involve the first body alone but also the second one. These bodies being articulated, a configuration
will be denoted by (x, y, 0, ¢). The specificity of the system lies in its controls : the linear speed
of the first body, and the angle ¢ between the bodies. This system actually corresponds to some
vehicles used in civil engineering!3.

"More precisely, the front wheels being not exactly parallel (else they would slide), we take the average of their
angles as the turn angle.

12Ba.l'l’a,qua.nd and Latombe [4]e]aborate on this point and take advantage of it to exhibit a motion planner that can
even manage constraints of the form 0 < @1 < ¢ < 2 (i.e., the car can only turn right !); independently Bellaiche,
Jacobs and Laumond give a proof in [5] for a Hilare-like system verifying I‘vl | < Ivz| ,e.8., equivalent to a car-like
robot: the vehicle turns (|1)2| > 0) only if its linear speed is not zero (Jv1 | > 0).

3R, Hurteau from Polytechnical Scholl of Montreal mentioned this example to the author: that kind of vehicle is
used in the conveyance of ore in some Canadian salt mines.
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Let uy be the speed control of the first body; let ua be the control of the angular joint of the
bodies. Since both are independent, 4y is applied onto a vector field Y, = (cos 6, sin 6, a, 0) while uy
is applied onto a vector field Y = (0, 0, b, 1). A ¢ose study of the differential model above (section
3.2) leads us to find a = sin ¢ and b = 1. The control system is :

Therefore the system is controllable if

R 8

cos 0

sin @

sin ¢
0

Uy + uz.

—_ = O O

0

the Lie algebra spanned by Y, and Y} is four-dimensional.

Furthermore, Y, is equal to the vector field X} instantiated with only one trailer. Moreover :

cos @
sin 0
sin ¢

\ 0

( cos
sin 6 .
0 t sin ¢

\ —singp

—_— - O

X, + sin pXp.

Hence, Y, ends up to be a linear combination of X, and X}. The Lie algebra spanned by Y, and Y,
is the same as the Lie algebra spanned by X, and Xj. These results obviously hold if we add trailers
to this strange vehicle and the controllability of the convoy remains subject to the computation of
the Lie algebra spanned by X, and X} as in the previous cases.

Conclusion

The decision part of the planning problem for the four multibody systems above is the same. We just
have to study the distribution appearing in the differential model. This study appears in Section 5.
We now discuss some computational aspects of the general tools we can use to achieve this.
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4 From Control to Planning : a Computational Point of View

4.1 What is the Problem ?

Proving the controllability of an n-dimensional system using the rank condition involves showing
that, for any point ¢ in the manifold, there exists a family of n vectors fields in the Control Lie
Algebra that spans R™ when applied to ¢. This stirs two difficulties due to the local and global
characteristics of the problem :

e At any specific point c, finding such a family enables us to conclude. Not being able to find
a suitable family does not imply that there is none. An exhaustive enumeration of possible
families is impossible since there is an infinity of potential choices. We will see (Section 4.2)
that this number can be reduced to a countable one, but not further, leading to the design of
some semi-decidable procedures. We will proceed then to giving an estimate of the complexity
of procedures testing the controllability of a system at a point.

e One may succeed in finding bases that work somewhere, but not necessarily everywhere. There
may be some singularities. An interesting problem is to know whether such singularities have
an intrinsic nature, or depend upon the choice we make (Sections 4.4 and 4.6).

As far as we know, testing controllability is not a decidable problem. Nevertheless, the procedure
we define always terminates provided we don’t encounter any singularities (Sections 4.7 and 4.8).

The material of this section uses the concepts of a distribution, also known as a Pfaffian system
(see for instance [58]), and of the Free Lie Algebra (see [6]).

Let us recall that every Lie operator has to verify skew-symmetry [X, Y] = —[Y, X] and the
Jacobi identity [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.

Consider the (n — r)-distribution A associated with a robotic system. We want to define an
algorithm for testing the controllability of that system at a point. Precisely, we are interested in
the rank of LA(A) (i.e., the distribution spanned by all the combinations of Lie brackets of vector
fields in A). We can consider a basis X of A together with all the combinations of Lie brackets
built upon that basis.

To do this, one may consider a brute force strategy consisting in building iteratively the following
increasing sequence of distributions : A; = A;_y1 + [A;-1, A;—1] where [A;_1, A;_1] is the linear
space spanned by all the brackets [X, Y] for X and Y in A;_y. By putting A = A, the Control
Lie Algebra LA(A)s precisely defined as |J; A;. But in fact, a more efficient strategy can be used.
First of all, let us define a parameter estimating the complexity of a combination of Lie brackets.
The degree of a combination is the number of elements in A" defining the combination. For example
the degree of [., [., [-,.]],[-.[-,-]]Jis 7. Now, our strategy will consist in building all the brackets of
a given degree, step by step. This strategy is founded on the following iterative construction. We
denote A by Ajp. Then A; is defined by :

Ai= At ) [A, A
k=i
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It verifies :

A1 CAyCA3C---CLA(A) and  LAA) =] A

The set of all the A;s is called a filtration associated with A.

Remark : Such a construction can be viewed as a “breadth-first” construction. Some authors
[58] [67] use another construction. A is denoted by Aj. Then A; is defined by :

Ai = Ai—l t [AI, Ai—l]-

Again : 3 : 3
Ay CAy; CA3C---C LA(A).

Such a construction can be viewed as a “depth-first” construction. Using skew-symmetry and the
Jacobi identity, we may verify that both constructions are the samel'?. We will prefer the first
presentation that corresponds exactly to the concept of Phillip Hall families introduced below.

On the other hand, at a point ¢ of our manifold (the configuration space), (n — r) < rank A;(c) <
n 5. Moreover, if Ay(c) # Ai—1(c), then rank A;(c) > rank A;_i(c). Hence, if we consider the
construction locally (i.e., by applying the distributions at a point), we can conclude that there exists
an index p. such that Ap _1(c) # A,,(c) = Ap.41(c) = ---. The construction always stabilizes.
The index p. is the degree of nonholonom y of the system at c. Therefore a system is controllable at
c if and only if rank A, =n (if p. = 1 we are locally in the holonomic situation). Notice that, from
a global point of view, this stabilization property is not true, since the degree of nonholonomy may
change from point to point. A close analysis of possible singularities shows that this degree may be
arbitrarily high at singular points-even when we start with a regular distribution, the filtration
we build may acquire some weird singularities. So, the degree of nonholonomy may be unbounded
when c varies.

Remark : Tt is possible to define a global degree of nonholonomy of a nonholonomic system,
as the maximum of pointwise degrees of nonholonomy. There are no obvious applications of this
notion. Also, keep in mind that this global degree can be infinite, though it will stay bounded in
the particular cases we consider.

4.2 A Controllability Algorithm

In this section we define an algorithm for testing the controllability of a given system at a point based
upon the previous construction. We have to use a basis A of A. According to that construction,
we build :

X = X

X o= X | [, Al
J+k=t

M For example, take [[X, Y], [X, [X, Z]]], an element of As:
(X, Y)[X,[X, 2] = —[X,[X,[Y,[X, ZIN} + [X, [, [X, [X, 2] + [X, [2, [X, [X, YD = (2, [ [ X, YO,

Hence, it belongs to [&5 too.
®We denote by A;(c) the linear subspace of the tangent space in c, obtained by applying the distribution Q¢ at c.
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where, now, [X;, Xk] is no longer viewed as a linear space, but as a finite family of brackets. Each
X; contains of course a basis of A;. Again, we can define the union LA(X) of all theses families
and we have :

XicXycxs.. - C LAX)

This is clearly an infinite family, but, during the real process, we can check out the added elements
if they happen to be linearly dependent on the previous ones.

Even if we know only about the relations pertinent to the concept of a Lie Algebra, we can take
advantage of these to compute only relevant elements of what is called the Free Lie Algebra.

4.2.1 P hillip Hall Families

In this section!® the elements of LA(X) are considered as formal expressions produced by the

construction above, i.e., they are not actually evaluated as vector fields belonging to a distribution.
From this point of view, LA(X) is considered as a Free Lie Algebra. Our current problem is to
enumerate a basis of this algebra, i.e., to get rid of redundant elements using only skew-symmetry
and the Jacobi identity. Such a basis can be found via a Phillip Hall family.

The degree of an element X in LA(X) is denoted by degree(X) : this is the degree of the
monomial defining X 7. According to our notations, a Phillip Hall family (PH-family for short)
of LA(X), is any totally ordered subset (PH, <) such that :

e If X € PH, Y € PH and degree(X) < degree(Y) then X < Y;

. X CPH;

« PHNA = {[X,Y], X<Y}

e An element X € LA(X) with degree(X) > 3 belongs to PH if and only if X = [U, [V, W)
with U, v, W in PH, [V,W]in PH, VU <[V,W]and V < W.

The main property of a PH-family is that, taking skew-symmetry and the Jacobi identity into
account, it yields a basis of the free Lie algebra LA( X) [6].

The proof of existence of such a family is easy; it is an iterative one. In the context of our
control problem, it can be extended into the following algorithm.

16The material used in this section comes from [6] We want just to give a rough idea of the concept and of its
pertinence with respect to our problem. Interested readers will find a more rigorous presentation in this reference.

17 We use the word “degree” with two different meanings, according to whether we speak of a bracket or of a
nonholonomic system. This may introduce some confusion, but both terms are already used in the literature (see for

instance [57]).
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4.2.2 The Algorithm

The idea is to build a PH-family, based upon a graded family of sets H;, where H; is a part of &A;.
We will also build a total order < on the union H;. Assume first that A’ is totally ordered by < and
set Hy = X'. The order < on Hj is the same as the order < on X. The next set H; is defined as
the set of all [X, Y], with X,Y elements of H; and X < Y. Endow Hy with any total order, and
define < on H; |J Hz by setting X < Y, for X in Hy and Y in H.

The rest of the algorithm consists in building the sets H; iteratively. Suppose the family
H1, Ha, . .., Hi—1is given. Denote it as H. Define H; according to the definition of a PH-family.
That is, H; is the set of all X = [U, [V, W]] verifying : U € H;, [V, W] € Hi—;, V 2U < [V, W] and
V < W. Choose a total order on H; and extend it to H UH; : X < Yif X € H and Y € H;. It is
almost obvious that the family H; is a PH-family and, furthermore, that the degree of an element
of H; is precisely i.

We can use this construction to design an algorithm for testing the controllability of a system
at a point ¢ of the manifold. Our algorithm adds new brackets to the PH-family step by step, but
now, we check further the value of each new bracket as a potential member of a basis at c. If we
ultimately obtain a basis, the system is controllable at c.

In the following procedure, B denotes the free family that will eventually become a basis, cnt is the
current number of element of that basis. The initial distribution is (n — r)-dimensional at the point c. For
an order on H, we assume that we have an initial order on &’; then we simply take the order of chronological
computation. Finally |x|is the integer part (floor function) of the real x.

Procedure Controllability(c)
(initialize Hy)
Hy — X
B X
cnt «— n —r
(build Hz)
For X,Y inH;, X <Y do
add [X, Y] in Ho;
If {[X, Y](©)} U B(c) is a free family ()
then
add [X, Y] in B
cnt — cnt + 1
1—2
While cnt < n do
t—1i+41
(build H;)
For 1 < j<|i/2]do
For X €M, Y = [U,V] € Hi_j do
If U <x @
then
add [X, Y] in H;
If {[X, Yl(©)} U B(c) is a free family @)
then
add [X, Y] in B

cnt — cnt + 1



One can verify that the procedure builds sets H; defining a PH-family. Therefore, it appears clearly
that the system is controllable at ¢ if and only if Controllability(c) terminates. This also means
that the procedure never stops otherwise.

Example Part 1 : For a classical example [6] [55], take & = {Xi, X2}. The first 14 elements
of the PH-family generated by the procedure (if it does not stop before) are:

X1 X3=[X1, X2] Xa=[Xy, (X1, X2]] Xe= (X1, [X1, X1, X0l Xy = (X1, (X1, [X1, (X1, Xa)]l]
X Xs = [X2, [ X1, X2]] X7 = [Xa, 1. xi. Xoll Xy - [Xe, [X1, [ Xy, [X1, X2]]]]
Xs =[X2,[Xa, [X1, Xoll] X11=[X2,[X2, [X1,[X1, Xa]]]]

X12 = [Xa, [X2, [X2, [ X1, X2]]]]

x13 = [IXI, XZ]! [Xl ) [le XZ]]]

aa = ma, Xa2), [Xa, [X1, Xol]

Example Part 2 : Consider now the controllability aspect. Replace X; and X, by the vector
fields X, and X, defining the nonholonomic distribution of the 2-trailer convoy (see Section 3.2).
The configuration space is a 5-dimensional manifold. Let ¢ be a point of coordinates (z, y, 8, ¢1, ¢2).
Yields :

cos 6 0

sin @ 0

X1 = 0 X2 = 1
— sin ¢y 1

sin g1 = cos ¢y sin @y 0

The first elements of a PH-family are displayed in Example Part 1 (see Appendix 2 for the coordi-
nates of the various vector fields). We can verify that the algorithm stops with {X7, X3, X3, X4, X6)
as a basis for every point ¢ verifying ¢y # % mod 7. The algorithm stops with {X;, X2, X3, X4, Xo}
for the remaining hyperplane!8,

Remark : Finally, the rank condition holds everywhere and we can conclude that the corre-
sponding system is controllable.

In this example, notice that the algorithm checks 6 —2 = 4 “candidates” in the first case, and
9 — 2 =7 in the second one. What happens in the general case ?

The core of the algorithm is the construction of a PH-family. The dimension n of the manifold
being a constant integer of our problem, the only tests needing a subroutine depending on n are (1)
and (3). Their complexity is asymptotically negligible. Therefore the worst-case complexity of the
algorithm is dominated by the complexity of building a PH-family. The relevant parameter is the
value of ¢ when the algorithm stops. Because of the test (2), our procedure for building a PH-family
is not optimal'®. But, here, we just want to find the minimal complexity of any algorithm that

8More precisely : Xs = Xi, det{X1, X2, X3,X4, X6} = —cos(p1), X7 = 0, Xg= —Xzand finally
det{X1, X2, X3, X4, Xo} = -1 — cos?(p1) cos(p2).

191t seems possible to define an optimal one. Maybe such a procedure already exists in the literature ?
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builds a PH-family. Now, the complexity of computing all the elements of a set H; is bounded
below by the number of all the elements in H;, j < i, and it has been proven that this number is

ai) = % > u(d)(n - ryé

dji
where p designates the Mobius function.

p o N* — {-1,0,1}
0 if m is the square of a prime integer

mo o p(m) = (=1)F otherwise, where k is the number of primes dividing m.

For example, setting (n — r) = m , we have a(1) = m, a(2) = 3(m? = m), a(3) = 3(m® — m),
a(4) = 3(m* = m?), a(5) = §(m® — m), a(6) = §(m® — m® — m? + m). One may verify the first
5 values on the current example.

If the algorithm runs for a point ¢ and stops with a family H;, the system is said to be completely
nonholonomic at ¢ (i.e., all missing dimensions can be recovered; its degree of nonholonomy is
maximal; it is controllable). Besides, its degree of nonholonomy at c is i.

We have to prove this latter result. Indeed, the algorithm above clearly depends upon the
basis X we chose for the distribution A. However, the concept of degree of nonholonomy does not.
Now, it is a general result from the Lie Algebra Theory that UjSi H; constitutes a basis of the
nilpotent free Lie algebra LA;(X) defined by taking all the brackets of degrees less than i and by
killing all the brackets of greater degrees. See [6] for details. Therefore, i does not depend on our
choice of a basis X of A. It truly is the degree of nonholonomy that has been previously defined.

Example Part 3 : The degree of nonholonomy of the 2-trailer convoy is 4 at points whose
coordinates (X, y, 8, ¢1,p2) verify 1 # 7 mod 7. It is 5 elsewhere.

Summing up the results of this section :

The method we use for testing the controllability of a nonholonomic system at a
point is at least exponential in the degree of nonholonomy at this point.

4.3 Growth Vector

This section introduces the growth vector of a controllable nonholonomic system at a point. It

appears in [58]. This concept is a key one for the topological viewpoint that we will adopt in
Section 6.

Suppose that the distribution associated to our system is (n — r)-dimensional. Consider a point
¢ and its degree of nonholonomy g.. The growth vector at ¢ is defined as the sequence (ny, . . ., 7y, ),
where ny = (n — r) <na <. .. <my, =n and n; is the dimension at ¢ of the linear space generated

by combinations of brackets of degree less than i.

Example Part 4 : Let us recall that {X3, X3, X3, X4, Xe}constitutes a basis for points whose
coordinates (X, y, 8, @1, @2) verify ¢y # 7 mod 7, while {X1, X3, X3, X4, Xo} works elsewhere. One
can verify (by computing the dimension of the linear spaces for each level) that the growth vector
at points verifying ¢y # § mod 7 is (2,3,4,5), while it is (2,3,4,4,5) elsewhere.
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44 Singularities and Regular Systems

All the above tools work only locally. For instance, we have just seen that the growth vector is not
the same everywhere in the manifold. The global viewpoint is not easy to reach. A first step is to
study what happens in a neighborhood of a point.

A filtration {A;} is regular at a point c if the growth vector is constant in a neighborhood of
c [58] [57]. This means that all the ranks of A;(.) are constant in the neighborhood. Otherwise,
the filtration is singular and the corresponding point is a singularity. Most of the problems we
encounter when we try to define growth vectors and degrees of nonholonomy derive from the
presence of singularities. By extension, we will say that a system is regular if the corresponding
filtration is regular everywhere.

Example Part 5 : The 3 body system is not regular; more precisely the corresponding filtration
is regular at points verifying ¢1 # g mod m . It is singular at the remaining points. Remark that
the growth vector is strictly increasing for regular points.

For regular systems, the degree of nonholonomy is a constant. It can also be shown (see [51])
that the growth vector is strictly increasing, so the procedure we designed always stops in that
particular case.

4.5 Well-Controllability

At this stage of the presentation, let us return to the planning problem. This section introduces the
concept of well-controllability. As the regularity concept, it deals with the existence of singularities,
but this is a more global one.

As we have seen in Section 2, a general idea for devising a nonholonomic motion planner for
controllable systems is to define a procedure that searchs for an admissible collision-free path,
taking any collision-free path as a seed for the search?.

Very recently Lafferiere and Sussmann proved that this principle is a general one. A collision-
free path is first computed without taking the nonholonomic constraints into account. Lafferiere
and Sussman’s method [55] (see Section 6.3 for more details) roughly consists of expressing the
first holonomic path into some ‘“local coordinate system” (a precise definition will be given in
Section 6.1); from these coordinates, because the system is controllable, the authors show that it
is possible to explicitely define an admissible control (and then an admissible path) that locally
steers the system from a given point (on the first path) to any other on the first path inside a given
neighborhood. Because the planner has to work a priori everywhere, one has to define a procedure
that guarantees to find a local coordinate system everywhere. The existence of such a coordinate
system is a technical point essential for the method. It is solved by considering an extended system
associated with the original one; this new system is obtained by adding virtual controls working on
vector fields defined from a PH-family of the original system. Since the nonholonomic distribution A
is (n — k)-dimensional, it seems a priori that k additional controls would suffice to make the system
holonomic. In fact, in order to avoid singularities (understood as points where the transformation

20[28] pinpointed this method for the car-like robot, while [32] presents a planner using this principle for this case.
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matrix would be non invertible), one has generally to add more controls. Lafferriere and Sussmann
note also that additional controls make easier the choice of a transformation matrix with a good
condition number.

Let us illustrate this point using our example.

Example Part 6 : Recalling Example Part 2, a local coordinate system defined from {X7, X3,
X3, X4, X6} will encounter singularities. Following Lafferiere and Sussmann’s method, a possible
extended control system is defined by {X7, X2, X3, X4, X6, Xo}; in the process, four controls are
added to the original ones. The previous results show that it is everywhere possible to choose in
this family a basis that spans R®.

Now, consider the following family :

U = Xy Vo = X2
Y - [ X1, X Uy = cos ¢1 X1 + sin p1 V1 V1 = sin ¢1X1 — cos 1 Y1
Y, _ [Uy, V4] Us = cos p2U1 + sin oY, Va = sin p2U; — cos oY,
Y3 = [U2’ V2]

It is easy to check (see Appendix 3 for the general case) that the determinant of {Vp, Vi, V2, Us, Y3}
is equal to 1. Therefore { Vo, Vi, Vo, Uz, Y3} spans R® everywhere?!. According to the previous
comments, we can define a minimal extended system that never meets with any singularity. More-
over, the transformation matrix has a good condition number. We introduce the concept of a
well-controllable system.

Definition 1 : An n-dimensional nonholonomic system defined by a distribution A is well-
controllable, if there exists a basis of n vectors fields in the Control Lie Algebra LA(A) such that
the determinant of the basis is constant.

Obviously well-controllability implies controllability. The converse does not hold. Indeed, as we
mentionned in Section 4.1, a system can be controllable while the local degrees of nonholonomy are
unbounded. This means that the filtration {A;} stabilizes locally, but not globally. In this case, it
is impossible to define a basis verifying the conditions of our definition.

The well-controllability concept is a global one and it is related to the planning problem. In-
deed, for well-controllable systems, the same “local” coordinate system can work everywhere. This
simplifies Lafferiere and Sussmann’s planning method. But, though we have a general procedure for
testing controllability, we have no general procedure for testing well-controllability. For instance,
there is no obvious argument leading to reducing the search of a good basis to a small family, like
a P H-Hall family.

Definition 2 : Let B be a basis of the control Lie Algebra verifying the conditions of Defini-

tion 1. The degree of well-controllability of the system is the maximum degree of all the elements
of a.

Remark : If the system is well-controllable, it is obvious that the global degree of nonholonomy
is finite.

21Be careful : the degree of Y3 equals 8, when it is viewed as a polynomial function with indeterminates X1 and

X2 in CA({Xl, Xz})
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Example Part 7 : The 2-trailer convoy is a well-controllable nonholonomic system. Its degree
of nonholonomy is 5, while its degree of well-controllability is at most 8.

4.6 Geometric Models and Singularities : some Examples

Singularities typically come from the geometry of the system, though in some cases a bad choice of
basis might create artificial singularities. Let us illustrate this point with three examples.

Consider once again the case of the I-trailer convoy. It appears (see Appendix 2) that this is a
regular, well-controllable system of degree 3; its growth vector is (2,3,4) everywhere. Now consider
the same convoy, but with another hooking system. Instead of hooking the trailer exactly at the
middle of the rear wheels, we hook it to a point behind the rear axle (see Figure 2)22. Solving the
equations yields the basis:

a’cosd (a' + a.cos ) cosf
[ Y] .
a'sin @ and (o’ + a. cos @)siné
0 sin ¢
—sin g 0

If we consider this basis only, we find a growth vector of (2,3,4) at points verifying sin ¢ # 0.
The points verifying sin ¢ = 0 seem to constitute a singularity. But, checking our provisional basis,
we find that the vector fields are collinear at these points, though the distribution is regular at
these points too. It is just awkward to find two vector fields which stay independent everywhere.
For the record, any vector field of the form

a’ cosd (a’ + a.cosp) cosf 0
1 o3 ’ .
X = k a'sin @ i, (a +a.f:osg0)31n0 tm 0'
0 sin ¢ a
—sing 0 acosp+a'

is a valid vector field. With some ingenuity, for any value of a and @', it is possible to obtain a
global basis.

Now let us pinpoint a stranger case. We have seen that the 3-body convoy we study is con-
trollable with degree 5 . Appendix 2 shows that the 2-body convoy is controllable with degree 3.
The I-body convoy (i.e., the unicycle) is controllable with degree 2. Because of the singularity we
mentioned, there is no 4th degree. What is the fundamental difference between one trailer and two
trailers ? Furthermore, we prove in Section 5 that a n-body convoy is well-controllable and that
its nonholonomy degree is at most 2”. What is its precise nonholonomy degree ? What kind of
singularities do we stumble upon ?

Finally, our third example doesn’t model any robotics systems whatsoever?® . Rather, it tries
to capture the flavor of problems encountered in practice without any tedious computations: for

22[31] gives a constructive proof of controllability for this system.
3 This example was suggested by Marc Espie.
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Figure 2: Another l-trailer car system

instance, the example of the 2-trailer system is quite similar to this one. Let us work in Euclidean
space (X, y, z). Choose an integer n and consider the following vector fields :

0 142"
X= 0 ) Y(): 1+22n
1 0

and the distribution they engender. Computing the associated filtration obviously sums up to
computing
z")("’)
Y. = (22")(k)
0

Now, this system is regular almost everywhere but not everywhere : the point (0, 0,0) is a major
inconvenience. At that point, for any k less than n, the vector field Y; vanishes altogether, so that
the growth vector at (0,0,0) is (2,2, . . . ,3), giving thus a generic case where the nonholonomy
degree is arbitrarily high. Furthermore, using standard techniques (Partitions of Unity), it is easy
to piece together a denumerable infinity of such singular patches, so that the resulting distribution
has an unbounded degree.

This is the typical case where our Algorithm will not terminate. A finer study of the problem
would be a tremendous help.

4.7 Nilpotent and Nilpotentizable Systems

We have seen that the controllability testing procedure does not necessarily terminate in the general
case. Notwithstanding, consider the following special case.
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Suppose that all the Lie brackets of degree greater than k vanish. In this case, the sequence X;
stabilizes :
XiCX,C--- C A = LAWX).

We can stop the procedure Controllability as soon as all the Lie brackets of degree k or less are
generated. If the procedure does not yield a basis, then the system is not controllable.

Such systems are called nilpotent of order k (see [6] for a general definition of the concept in
the Lie Algebra framework).

Example Part 8 : In our example, we may verify (see Appendix 2) that [Xs, [X2, Xi]] = —X1.
Set adx(Y) = [X,Y]. Then?*: adx,’™(X;) = (-1)” X;. The system is not nilpotent.

In some cases, a non-nilpotent system can be transformed into a nilpotent one via a linear
change of controls called a feedback transformation. Quite logically, such systems are called feedback
nilpotentizable. [55] gives some examples of feedback nilpotentizations (e.g., the unicycle, a car-like
system and a car-like system with a trailer). See also [18] for sufficient conditions for a system to
be nilpotentizable.

Conjecture : Nilpotent and nilpotentizable systems are well-controllable.

The study of this conjecture, currently in progress, should help the quest for a general test of
well-controllability.

4.8 Triangular Systems

The concept of a triangular system is used by Murray and Sastry in [39]. A system is triangular if
it can be defined as :

Ty = Vv

3 - fa(z)v

&3 = fa(zy,z2)v

tp = fp(z1,. . . 2p)0

with z; € R™ and 5. m; = n.

Because of the triangular form, there exists simple sinusoidal control that may be used for
generating motions affecting the P set of coordinates while leaving the previous sets of coordinates
unchanged. It is possible to use these sinusoidal controls for planning trajectories (see [39] for
details).

Even if a system is not triangular, it may be possible to transform it into a triangular one by
feedback transformations. Recent work [37] shows that a regular nilpotent controllable system can
. be t riangularized.

24 This example appears in [55] for the unicycle and the car-like robot, i.e., systems equivalent to our current system
without trailers (see Section 4).
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Conjecture : Triangularizable systems are well-controllable.

The next section will mention as an aparte that the multibody car system we consider along
this paper is triangularizable.
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5 The Multibody Car System is Well-Controllable

Let us return now to the general case of our convoy with n trailers. We know a basis {X,, X3} of
the distribution A of the system (see Section 3.2) and we want to prove the existence of a family of
fields in LA(A) that spans the full tangent space when applied anywhere. To solve this problem,
the only difficulty is to find a good family. Moreover, a minimal family that works everywhere (cf
the concept of well-controllability) is highly desirable.

Since the number of trailers is not fixed, we have to compute the general form of the (n + 3)
coordinates of the vector fields we use.

Recall the form of X, and X :

( cos @
sin e
0 0\
—sin ¢ 0
sin 1 — cos 1 sin g 1
Xa = Xb = I
i-2 0
(sin ;—1 — cos @;_1 sin ;) [] cos @; ‘
J=1 :
0,
. n-2
(sin ¢p—1 — €08 Yn_1 sin @n) [] cos p;
i=1

The vector fields of the basis are obtained through the use of the same combinations as in Section
4.6 (Example Part 5).

We build iteratively three brackets of degree 2' from brackets of degree 2'~! :

Step
0 Yo = X, Zo = Xp
I Xy = [Yo, Z) Y1 = cos¢1Yp+sin g1 Xy Zy = sing1Yp—cos ¢y Xy
= cos @aY1 + sin @9 X3 Zy = sin oY) — cos p2Xo

2 Xy - [Yl, Zl] Y,

i Xi = [Yic1, Zi4) Y: = cos ¢;Yio1 + sin p; X; Z; = sin ¢;Y;_1 — cos ¢; X;

The general form of the vector fields coordinates is given by a lemma (Lemma 1, in Appendix 3).
It remains for us to choose n + 3 vector fields that constitute a basis of R™*3,

Lemma 2 : For any point ¢, {Zo, Z1, Z2, . . . » Zny Y, Xnt1} (c) spans R™¥3.
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Proof : We just have to exhibit the following determinant :

0o B B B B cosa —sina
0o g B B B sina cosa
| 0 0 0 0 0 0
1 -1 0 0 0 0 0
0 I -1 0 0 0 0
0 0 1 -1 0 0 0
0 0 0 0 1 -1 0 0

where a = (0 — Y_ ¢;) (we do not need to express (). It appears clearly that this determinant
1=1
equals (-1)“. Q.E.D.
Finally, since the determinant does not vanish anywhere, we can conclude :
Property : The multibody car systems defined in Section 3.3 are well-controllable, with degree

at most 27+1,

...and the driver of our luggage carrier can play rambling through the airport in search of a parking
place ! An estimate of the time he needs to park his vehicle is the subject of the following section.

Remark: We have seen that such a system is not nilpotent. Because of the presence of
singularities, it is not regular either. Nonetheless, the form we obtained for the determinant clearly
shows that such a system is triangularizable.
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6 The Complete Problem

In Section 2 we saw that the existence of an admissible collision-free trajectory for a controllable
nonholonomic system is characterized by the existence of a collision-free trajectory for the associated
holonomic system. Planning a trajectory can thus be achieved through the following steps:

e using a geometric planner for finding a trajectory without taking into account nonholonomic
constraints?® , and then

e steerin e system as close as possible to this trajectory along an admissible trajectory.
t g the syst lose by as possible to this trajectory along d ble trajectory

Such a general strategy has been refined into two different approaches that we will examine
in Sections 6.3 [55] and 6.4 [33]. The first one uses a constructive proof of local controllability
founded on fundamental tools of differential geometry introduced in the next section (Section 6.1).
The second one uses an explicit form for canonical feasible trajectories (e.g., shortest trajectories).

Both approaches come up against the following key problem : how to guarantee that the
admissible trajectory lies as close to the steering trajectory as the obstacles require ? The topological
nature of this question is discussed in Section 6.2 .

6.1 From Vector Fields to Trajectories

In this subsection we will investigate the delicate problem of finding trajectories that are compatible

with our nonholonomic constraints. We need some precise concepts of differential geometry, which
are thoroughly studied in [50] [57] [51] [52].

Let us first take the very simple example of an Euclidean plane. At any point, the tangent space
is a two-dimensional Euclidean vector space, though one should not confuse the tangent space with
the manifold itself. Pictorially, just view the Euclidean plane as a table and the tangent space at
a point as a sheet of paper glued to the table at this very precise point. Considering the tangent
space at another point just involves sliding the sheet and gluing it at the other point. One can then
take a distinguished system of coordinates in these tangent spaces, namely the constant vectors X
and Y. These vectors induce a system of coordinates on the manifold in a straightforward way.
Starting from a given point (the origin), just move in the X direction for a given time, say a, then
in the Y direction for a time b. You have reached the point of Cartesian coordinates a and b. There
are some alternate ways to achieve that : you could have first followed Y for a time b, then X
for a time a or, with self-assurance, have directly taken the direction of choice, the straight line
along aX + bY. We can deduce some interesting facts from these simple manipulations. First, each
of these procedures gives rise to a system of coordinates. That means that we have a one-to-one
correspondence: every point is defined by its coordinates and reciprocally. That also means that
the correspondence is smooth, two neighboring points have neighboring coordinates and the whole
scheme is thoroughly unsurprising.

Z5Finding such a trajectory corresponds to the classical Piano Mover problem. This problem is decidable. From a
theoretical point of view, general algorithms exist in the literature. Notwithstanding, at this time, there is no general
software that runs efficiently in practice. This is due to the intrinsic combinatorial complexity of the problem.
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We are now going to use the same scheme for our purposes. The main difference is that our
vector fields won’t be constant any longer, and won’t even need to be globally defined. We could
say that, instead of dealing with a flat Euclidean space, we will now work in a skewed space, where
vector fields are allowed to behave horribly. But, nonetheless, the same constructions will work
locally and give rise to some systems of coordinates-these are no longer equivalent.

Choose a point p in our manifold and a vector field X defined around this point. There is
exactly one trajectory 7(t) starting at this point and following X. In a formal notation, it verifies

7(0) = p and H(t) = X,y

One defines the exponential of X (denoted by eX ) to be the point y(I). This gives a corre-
spondence between the space of vector fields and a neighborhood of p. It is obvious that one has
etX = v(t), namely this definition doesn’t describe a peculiar point of a trajectory but, more ac-
curately, links every point of the trajectory to a specific vector field. Let us translate our previous
example to this formalism. Following aX + bY for a given time (the unit time) simply means to
take e2X+bY Following X for a time a amounts to following aX for the unit time, that is taking
esX , and following Y for a time b is the same as taking e®Y This is still a slightly different point of
view : instead of considering the exponential to define a specific point of a trajectory with regard
to an origin point p, we understand it as describing a motion from a point to another on a given
trajectory. Thus, starting at the origin o, following X for a given time, then dbY leaves us at the
point ey . ¢*X . 0 Therefore the exponential of a vector field X appears as an operation on the
manifold, meaning “slide from the given point along the vector field X for unit time.”

In that setting, everything works nearly as smoothly as in the Euclidean case, at least locally.
The main difference is that, whenever [X, Y] # 0, following directly aX + dY or following first
aX then bY are no longer equivalent. Intuitively, [X, Y] measures the variation of Y along the
trajectories of X; in other words, the field Y we follow in aX + bY has not the same value as the
field Y we follow after having followed aX (indeed Y is not evaluated at the same points in both
cases). The main result is the following :

Assume that Xq, . .., X, are vector fields defined in a neighborhood U of a point p such
that at each point of U, Xy, . . . , X, constitutes a basis of the tangent space. Then there is a
smaller neighborhood V of p on which the correspondences (al, . . . , a,) et XittanXn p and
(a1y...,0p) einXn. . ¢n1X1 @ p are two coordinate systems, called the first and the second normal
coordinate system associated to {Xi,. . ., X,}.

The Campbell-Haussdorf-Baker-Dynkin formula states precisely the difference between the two
systems :

For a sufficiently small ¢, one has : eX . etV = etX +ty"%t2[x'yl+t2‘(t), where €(t) — 0 when
t— 0.

Actually, the whole Campbell-Haussdorf-Baker-Dynkin formula as proved in [57] gives an ex-
plicit form for the € function. More precisely, € yields a formal series whose coefficients lie in
LA({X,Y}) : the coefficient of t* is a combination of brackets of degree k. In the case of a nilpotent
system of order k, since brackets of degrees greater than k vanish, the Campbell-Haussdorf-Baker-
Dynkin gives an exact development of the exponential. This property is used in the Lafferiere and
Sussmann’s planner presented below.
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Roughly speaking, the Campbell-Haussdorf-Baker-Dynkin formula tells us how a nonholonomic
system can reach any point in a neighborhood of a starting point. This formula is the hard core
of the local controllability concept. It yields a method for explicitly computing trajectories in a
neighborhood of a point.

Now we take a closer look at the problem of obstacle avoidance.

6.2 Obstacle Avoidance : the Topological Question
6.2.1 What Kinds of Topologies ? An Informal Statement

Let us come back to the sources. Motion planning in Robotics deals with obstacle avoidance. Real
obstacles get transformed into “obstacles” in the configuration space. The Hausdorff metric?® on
the bodies, which are closed compact subsets, in the environment (that is to say, 3-dimensional
Euclidean space) induces a metric in the configuration space. Therefore, the reference open sets
in the configuration space are the open sets in the topology induced by the Hausdorff metric in
Euclidean space. This is the topology needed for solving placement problems2’. A path appears
as a continuous function from a closed interval of R to the configuration space equipped with this
topology.

In some cases, the very act of considering motions can lead to a finer topology. If we introduce
the distance induced by the best trajectory(ies) between two points with respect to a given cost
(length, energy, time taken, etc), differential considerations take the scene. Consider the case of
energy for instance. For holonomic systems, since every smooth path in the configuration space is
an admissible trajectory, this cost induces a natural Riemannian distance. In that case, the induced
topology remains the same.

For general nonholonomic systems, there may exists points at an infinite distance of each other.
The non-holonomic constraints partition the configuration space into disconnected submanifolds,
and the resulting topology has little ressemblance to the natural one. However, for controllable
nonholonomic systems, any two points can be joined by an admissible trajectory; considering the
best trajectory leads once again to a well-defined metric. This is the origin of sub-Riemannian
geometry. Recent contributions show that Riemannian and sub-Riemannian metrics are equivalent.
Therefore both topologies are the same. The next section state these results more thoroughly.

6.2.2 Of Sub-Riemannian Metrics, Shortest Paths and Geodesics

This section makes use of the ideas given in [58] for the case of regular systems. Consider a
controllable nonholonomic system (i.e., a completely nonholonomic one) defined on a n-dimensional

26 A Hausdorff metric can be defined for any space equipped with a distance d. It yields the following topology on
compact subsets :

du(A, B) = inf,ex(supyey d(zv Y)).

*"See the problem of cloth or leather cutting as an example of such a problem in the context of Computational
Geometry.
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manifold CM (for “Configuration Manifold”) by a distribution A. The nonholonomic metric?8[58]
is defined by

1
paled) = inf, [ (3(0),3(0)

where
S(e, ey ={7110,1] = cm, 7(0) =c, 7(1) = ¢, Y € A} .

In that setting, geodesics are admissible trajectories that locally solve the variational problem.

The proof of the equivalence of the Riemannian and the sub-Riemannian metric resides in a
two-sided estimate of the size of sub-Riemannian balls. Denote by B,(c) the sub-Riemannian c-ball,
i.e., the set of points reachable from c by an admissible trajectory of length less than €. Assume
that the system is regular at ¢ (see Section 4.8). Let {c;} be the local coordinate system defined
in Section 6.1. Now consider the parallelepiped Py e(c) = {c’ € CM ||ei( )| < ae“’(i)} where ¢( 7)

is derived from the growth vector {n y,. .. ,nqc} of A at c as ¢(¢) =] for nj_q < ¢ < njzg. A two
sided-estimate of B,(c) is given by the parallelepiped theorem [58]C : there are positive constants
ay, ag, €, such that for € < €g,

Py, ¢(¢) C B(c) C Py, ((©).

Therefore, for regular systems, Riemannian and sub-Riemannian topologies are the same.

Remark : The parallelepiped theorem holds only at regular points. There are some technical
problems at singular points (e.g., as at the singularities appearing in the 2-body system). It seems
possible to extend the proofs (using a local coordinate system, i.e., valid everywhere in a neighbor-
hood of a regular point) to well-controllable systems by using a local coordinate system holding for
singular points as well as for regular points (such a system exists by definition). Nevertheless, as
always with singularities, some care will have to be taken.

Strange phenomena appear in this sub-Riemannian geometry framework. We know that, in
general, if shortest paths are geodesics, geodesics are not necessarily shortest paths-indeed, they
only minimize length locally. One of the main features of Riemannian geometry is that, locally,
geodesics are shortest paths. Consider the e-ball B,(c)above, and S,(c) its boundary sphere. In
Riemannian geometry, for e sufficiently small, the sphere S¢ is in one to one correspondence with
the ends of geodesics of length € (the so-called wave front). No similar property does hold for
nonholonomic systems. [58] holds two drawings illustrating the strange relationship between the
spheres and the wave fronts in the Heisenberg group case.

28This metric is also known as a singular [7], a Carnot-Caratheodory [36], or a sub-Riemannian [51] metric.
2Example Part 9 : For the Z-trailer convoy at ¢ = (0,0, 0,0, 0), the growth vector is (2,3,4,5) (see Example Part
4). Therefore :

Par‘(c) = {(z’y181§919‘92) I lrl s ac, lyl S Qae, |9| S afzv ]‘Pll S acss I‘p'«’l S af‘}

%0 Bibliographic note : the proof of this theorem does not appear in [58]. A proof using different terminology
appears in [51].
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Another strange phenomenon can be illustrated by the study of the car-like system®!. In this
particular case, the shortest paths have an explicit form (see the following section). Figure 3 is a
rendering of one of the corresponding spheres. Just notice that this sphere is not smooth and look
at the planes cutting the smooth part.

6.2.3 Geodesics and Shortest Paths : Elementary Computational Aspects

The classical way for computing geodesics is to use the maximum principle of Pontryagin [43].
This is a powerful tool from classical Optimal Control Theory, which provides necessary conditions
for the existence of an optimal control. The bang-bang principle is its direct consequence [1].
Under some hypotheses, this principle gives the form of the optimal controls, if they exist. It has
been applied in [19] for Hilare-like robots (see Section 3.3.2) : in this case, geodesics are piecewise
clothoids or anticlothoids. Using the same ideas, we may verify that the geodesics for car-like robots
(see Section 3.3.3) are piecewise arcs of circle or straight lines.

How to compute shortest paths is a much more difficult problem, even when an explicit form
for the geodesics (local shortest paths) is known. The problem is basically a combinatorial one :
how to piece smooth geodesic parts together in order to produce a shortest path ? As far as the
author knows, this question has only been answered for the car-like robot by Reeds and Shepp
[44]. They extend the work of Dubins on the form of smooth shortest paths [14] and they establish
precisely which combinations of arcs of circle and straight line segments can produce shortest paths.
Since the number of used combinations is finite, this gives birth to an efficient method to compute
shortest paths.

6.3 A Planner Using Philipp Hall Coordinate Systems

This section is only a sketch of the general approach developed by Lafferiere and Sussmann in
[55]. First, they study nilpotent and nilpotentizable systems. For such systems we have seen
that it is possible to compute a basis B of the Control Lie Algebra LA(A) from a Philipp Hall
family. Their method assumes that a holonomic trajectory 7 is given. If we express locally this
trajectory on B, i.e., if we write the tangent vector 4(t) as a linear combination of vectors in B(y(t)),
the resulting coefficients define a control that steers the holonomic system along <. Using the
Campbell-Haussdorf-Baker-Dynkin formula, it is then possible to compute an admissible control
u for the nonholonomic system that steers the system exactly to the goal (indeed, since all the
brackets vanish after a given level k, the Campbell-Haussdorf-Baker-Dynkin formula gives an exact
development of the exponential on brackets of degree less than k, so the synthetized trajectory ends
exactly at the same point.

For a general system, Lafferiere and Sussmann reason as if the system were nilpotent of order k.
In this case, the synthetized trajectory deviates from the goal. Nevertheless, thanks to a topological
property, this basic method is used in an iterated algorithm that produces a trajectory ending as
close to the goal as wanted.

317f we allow further inequality constraints on the controls (see Remark in Section 3.3.3),[5] shows how to relate
to the sub-Riemannian geometry framework.
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In both cases, the nonholonomic trajectory is a local approximation of 7. In the presence of
obstacles, the “gap” due to the approximation has to be estimated in order to avoid the obstacles.
This point is not clearly mentioned in the preliminary version of [55]. In fact, their algorithm can
be used as is by performing a recursive subdivision on the holonomic trajectory until all endpoints
can be linked by collision-free trajectories synthetized by their algorithm above (this idea is also
used in the second planner described below). It also seems that the parallelepiped theorem could
be used to prove that the subdivision procedure always stops.

Remark : Lafferiere and Sussmann’s strategy can be extended to well-controllable systems by
replacing the Philip Hall local coordinate system by another one built from any basis working
everywhere. This extension is currently under study.

6.4 A Planner Using Shortest Paths

The planner developed by Jacobs and Laumond [33] uses a shortest paths approach. The three
steps of the algorithm are as follows :

e Plan a trajectory 4 for the corresponding holonomic system. If one does not exist, then no
feasible trajectory exists.

e Subdivide 4 until all endpoints can be linked by a minimal length collision-free feasible tra-
jectory.

e Run through an “optimization” routine to reduce the length of the trajectory.

The convergence of the algorithm is a consequence of the parallelepiped theorem. Indeed, consider
a point ¢ on 4 and AN, a neighborhood of ¢ included in the collision-free configuration space. The
parallelepiped theorem guarantees that there is a neighborhood N of c, such that for each point
¢ € M! the shortest trajectory between ¢ and ¢’ lies in M. Therefore since 4 can be covered by a
finite number of such neighborhoods M., the subdivision procedure will stop.

This planner has been totally implemented in an exact version for the special case of a polyg-
onal car-like robot. This means we had to implement a geometric planner for computing an exact
representation of the collision-free configuration space. To do this, we used Avnaim and Boisson-
nat’s algorithm [2]. We a so implemented a procedure for computing the shortest trajectories in
the absence of obstacles based upon Reeds and Shepp’s work. Finally, we designed a fast collision
checking procedure. Figure 4, an excerpt from [33],shows how the algorithm responds to the clas-
sical example of the parking problem. The three drawings give the trajectories produced by the
three steps of the algorithm.

An advantage of such a strategy is that it optimizes locally the trajectory (in terms of the
trajectory length). Indeed, the third step finds a quasi-optimal solution. Notice that finding the
optimal one is a problem known to be very difficult, and computationally very complex.

The main drawback of this general strategy is that we need to compute the shortest paths (see
Section 6.3.3). We are working on the Hilare-like system : at this time we know an explicit form
for the geodesics [19], but not for the shortest paths.
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Notwithstanding, using general mathematical techniques for proofs of controllability and com-
plexity analysis, we have laid a theoretical basis for a study of systems of greater complexity.
Essentially, the method consists in establishing a catalogue of canonical trajectories having the
necessary topological properties, then in using them together with the subdivision motion planning
technique. Clearly, the main question is : how to compute a sufficient set of canonical trajectories ?
In the general case, the only way out seems to be the use of discretization techniques, but even in
this case, the theoretical background is required to find a discretization fine enough to solve the
problem. This latter aspect is currently under investigation.

6.5 Complexity of the Complete Problem

As discussed in Section 2, the decision part of the motion planning problem for controllable systems
is equivalent to the decision problem for the associated holonomic system. Hence the complexity
of this problem is a polynomial function of the complexity of the environment (i.e., the number
of geometric primitives required to describe it), and the classical algorithms for the piano movers
problem can be applied.

Notwithstanding, the complexity of the complete problem (i.e., actually producing a trajectory)
is more difficult to grasp. As a rule, any measure of complexity for this problem ought to be bounded
from below by the complexity of the solution, which in turn ought to account for the number of
singular points (cusps, loops,. . . ) it contains. Unfortunately, this number bears no relationship to
the customary description of the input data used for the piano movers problem. It actually depends
on the inner size of the free space, measured in the sub-Riemannian setting adapted to the problem.

Before giving a formal definition of the complexity of a trajectory, as it appears in [5], we will
first introduce the concept for a continuous function f: [a, b] = R. A good measure of what we call
the geometric complexity GC(f Yofsuch a function is the number of changes of variation. More
precisely, this complexity is defined as the quotient of the total variation of the function (see [45])
by the amplitude of the function.

In the current context, our trajectories depend on the associated controls, which are continuous
real valued functions. Consequently, we define the complexity of a trajectory according to the
complexity of the associated controls. If a trajectory ¥ is defined by a control function u, its
geometric complexity GC(7) is :

Jien=1 GC (v, €)) df.
Jen=14¢

GC ((u, €)) denoting the geometric complexity of the continuous real valued function (u, €), projec-
tion of u along the axis supporting & (see [5] for details).

GC(v) =

This definition grasps every critical point of a trajectory, and so matches closely the output
complexity of any motion planner. In the current context, it also includes the number of maneuvers
as well as the number of loops and inflexion points.

This definition hints at some lower bounds for the complexity of complete motion planners. For
instance [5] solves the case of the car-like robot. Given ¢ and ¢’ two configurations in the same
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connected component of configuration space, we proceed to define €. Choose an admissible path
between ¢ and c¢’. At a point ¢ of that path, find the Euclidean diameter of the largest ball centered
at ¢ and wholly contained in the free configuration space. Take the infimum of this diameter for
all points of the path. Then € is defined as the supremum of this quantity over all possible paths
linking ¢ and ¢’.

Then the complexity of a trajectory of a car-like robot going between c¢ and ¢’ is proportional

to O(e72).

Roughly speaking, this means that, in the car parking problem (as shown in Figure 4), the
number of necessary maneuvers asymptotically varies as the square of the inverse of the margin of
maneuver.

The proof of this result is based upon the Campbell-Haussdorf-Baker-Dynkin development of
the exponential. A detailed study of the general case exhibits very close relationship between this
complexity model and the degree of nonholonomy of the system. Everything depend upon the shape
of the parallelepipeds derived from the growth vectors (Section 6.2.2). A general proof, currently
under study, should lead to the following property :

Property : Given ¢, ¢’ two configurations in the same arcwise-connected component of the
configuration space. Define € as the supremum, over all continuous paths from c to c’, of the
infimum, over all configurations ¢ along that path, of the Euclidean diameter of the largest ball
centered at ¢ and wholly contained in the free configuration space. The problem of finding the
trajectory for a regular controllable nonholonomic system of degree k between ¢ and ¢’ is in O(e~¥).

Conjecture : The problem is in O(e'k) for well-controllable systems whose well-controllability
degree equals k.

If our conjectures hold, this would mean that our luggage carrier driver would have to

do O (6_("‘“)) maneuvers in order to park his machine in the neighborhood of regular

—g(n+1)

points, and in O(e ) in the worst case . . .
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7 Appendix 1 : Related Work and Background

This section presents an overview of results recently obtained in constrained motion planning.
They are complementary to those mentioned in the main paper, in the extent that they take a
computational point of view into account.

7.1 Car-like and Trailer-like Robots

[28] envisaged the controllability of a car-like robot. The main result is that the existence of a
collision free trajectory for such a system is characterized by the existence of a connected component
in the free configuration space. The constructive proof of this result has led to the implementation
of a planner [32]. This planner uses an approximate representation of the free configuration space
decomposed into parallelepipeds.

The planner described in [3] uses a discretization of the phase space, the adjacency relation
between two cells taking kinematic constraints into account. Collision tests are obtained from a
bitmap representation of the 2D environment. The search algorithm applies a best-first search
strategy whose cost function is the number of maneuvers. The planner then produces paths with
a minimal (for the discretized representation) number of maneuvers.

Notice the heuristic approach developed in [56] : the 2D environment is decomposed into a
set of corridors in which a specific technique for planning smooth paths is applied. Finally [59]
proposes an algorithm that produces a motion with the minimum number of turns for a set of lanes
extracted from the environment.

The case of trailer-like robots was attacked by Laumond and Siméon [31]; they established
the controllability of such systems by applying the Lie Algebra formalism briefly recalled in the
introduction. They also give a second constructive proof, but this one does not lead to an efficient
algorithm.

The Barraquand and Latombe planner cited above also applies to the case of a robot with
trailers. Their planner is thus the first to produce paths for such a system.

7.2 Smooth Paths

Planning smooth, maneuver-free, paths for a mobile robot appears to be a more difficult problem
than when we allow maneuvers. In fact, there is no comparable controllability result. It is indeed
possible that a path exists for a holonomic system, and yet no smooth path exists. The specific
problem was first addressed by Dubins [14], who gives the form of the shortest bounded curvature
path in the absence of obstacles. The problem of obstacle avoidance appears more recently in [28].
In [29], the environments consist of closed curves which are not necessarily polygons. Unfortunately,
the method presented there is not guaranteed to find a path. In Fortune and Wilfong [15], a decision
algorithm is given to decide if a path exists under given conditions. The algorithm is exact, but
does not generate the path in question. This algorithm runs in exponential time and space. The
algorithm in [21] is a provably-good approximate algorithm solving the problem. It depends on a
simplification of the set of smooth trajectories to a sufficient subset of canonical trajectories.
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7.3 Shortest Paths

The study of shortest paths for constrained systems began with the seminal work of Dubins [14],
who found the form of minimal length smooth paths with bounded average curvature for the
nonholonomic system we study in this work. He established his result in the case that there are
no obstacles. The algorithm presented in [21] is a provably good approximate algorithm, which
depends upon an extension of the results of Dubins to the case where there are obstacles in the
environment. This extension has been presented in a rigorous manner in [20]. When there are
obstacles, minimal-length smooth paths consist of paths of the forms given by Dubins, alternating
with parts of the obstacle boundaries. Finally, the same proof holds for a polygonal robot moving in
a polygonal environment. However, in this case the portions of the obstacle boundaries are replaced
by logarithmic curves which we call generalized tractrices. These curves are those that maintain
contact between an obstacle edge and a robot vertex while satisfying nonholonomic kinematic
constraints [56]. A study is currently in progress to exploit this characterization of the minimal-
length paths and develop a provably good algorithm finding smooth paths for a polygonal robot.

Recently Reeds and Shepp extended the work of Dubins to piecewise smooth paths with bounded
curvature, alas without obstacles [44]. That is, they allow maneuvers and cusps along the path.

Essentially they proceed to show that any path holding more than two cusps is reducible to a
path with at most two cusps, no longer and possibly shorter. It is clear that between cusps, the
path must be of the form given by Dubins. Then they discard some of the allowable curves by the
use of a homotopy argument.

Because, in this paper, we have concentrated on the case in which maneuvers are allowed, we
have used these curves as the basis for the development of our algorithms.

7.4 Time-Optimal Paths

There has also been some work on planning time-optimal trajectories for systems with constrained
accelerations. Fundamental work in trajectory planning with dynamic constraints is presented
in [41]. That paper introduces the idea of planning trajectories for a particle with constraints
on its acceleration. Unfortunately, the analysis is restricted to the case of one dimension motion.
In [8] the same problem is addressed in the multiple dimension case. That work discusses finding a
near-time-optimal safe trajectory for a moving particle subject to uniform L., acceleration bounds
on each axis. Unfortunately, the constraints on accelerations which are allowed in such approaches,
while they may be state-dependent [23], do not apply to the systems we study here. More recently,
[9] presents the first exact algorithm for time-optimal kinodynamic motion planning in the two-
dimensional case.

7.5 Control-Oriented Approaches
There are sound arguments for applying ideas from Control Theory to motion planning. Control

theoreticians have long been interested in finding controllers which would be robust to modeling
errors, would reject disturbances and cope with parameter fluctuations (for example, see [13]).
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There is a small body of literature on the obstacle avoidance problem using some ideas from Control
Theory. Most of this work centers on the technique of potential fields introduced by Khatib [25].
In such problems, a potential function is set up so that the system will travel to the goal state by
moving in the direction of the negative gradient. Obstacles are avoided by making them areas of
high potential. This work suffers from being a local method that can abort before reaching the
desired goal state. However, an advantage is that these techniques are inherently robust. Extensions
have been proposed by Rimon and Koditschek [46] in an attempt to use this approach for global
path planning. Krogh and Feng [26] have also proposed a method of global planning in which the
location of a subgoal is continuously changed to lead the system around local minima generated by
a set of convex obstacles to the actual goal.
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8 Appendix 2 : The 2- and 3-Body Car Systems

This appendix presents the listings in Mathematica of computations of the various vector fields
corresponding to the examples of the 2- and 3-Body Systems respectively.

(*
* A definition for Jacobians and Lie derivatives
*)

Clear[Jac, Lie]

Jac [x_, vect_] := Table[D[x[[il], vect[[jl]], {i, Length[x]},{j, Length[vect]}]

Lie[x_, v,, vect_] := Jacly, vect].x - Jac[x, vect].y
(*

* The 2-body system

*)

vect = {x, y, theta, phi)

(x a "simple" lie function, that simplifies brackets along the way *)
<<Trigonometry.m

slie [x_, y_] := Map[TrigCanonical, ExpandAll[Lie[x, y, vect]]]

(* Phillip Hall Family H1 %)
x1 = {Cos[theta], Sin[thetal, 0, - Sin[phil}
x2 = (0, 0, 1, 1)

(* Phillip Hall Family H2 *)
x3 = slie[x1, x2]
(* Phillip Hall Family H3 *)
x4 = slie[x1, x3]
x5 = slie[x2, x31

This yields the following results:

x1  ={cos(8),sin(8),0,— sin (v) }

x2 = {0,0,1,1}

{sin(e), - cos(8),0,cos(¢)}
{0,0,0,1}

>
w
Il

X 4
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det(z1, x2, z3,24) = |

(*
* The 3-body system
*)

vect = (x, y, theta, phil, phi2}

(* Phillip Hall Family H1 *)
x] = {Cos[theta], Sin[thetal, 0, = Sin[phi1], Sin[phil] - Cos[phii] Sin[phi2]}
x2 ={0,0, 1, 1, O}
(* Phillip Hall Family H2 *)
x3 = slie[x1, x21
(* Phillip Hall Family H3 *)
x4 = slie[x1, x3]
x5 = slie[x2, x33
(* Phillip Hall Family H4 *)
x6 = slie[x1, x4]
x7 = s8lie[x2, x4]
x8 = slie[x2, x5]
(* Phillip Hall Family HS *)
x9 = slie[x1, x6]
(* an actual controllability algorithm would stop here *)
x10 = slie[x2, x6]
x11 = slie[x2, x7]
x12 = slie[x2, x8]
x13 = slie[x3, x43
x14 = slie[x3, x53

In that case, we obtain the following vector fields.

xl = {cos(f),sin(8),0, - sin(¢1),sin(¢1) — cos(¢py) sin(p2)}
x2 = {0,0,1,1,0}

x3 = {sin(8), — cos(8),0,cos(1), — cos(¢1) — sin(¢py) sin(2)}
x4 = {0,0,0,1,-1— cos(2)}
x5 = {cos(f),sin(h),0,—sin(¢1),sin(e1) _ cos(p1) sin(p2)}

x6 = {0,0,0,cos(¢1), —2 cos(p1) — cos(¢p1) cos(p2)}
27 = {0,0,0,0,0}

X8 = {=sin(0),cos(6),0, — cos(g1),cos(1) + sin(p1) sin(ipz)}
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x9 = {0,0,0, 1, —2— 2cos(1)*cos(pz)~cos(¢2)sin(1)?}

z10 = {0,0,0,—sin(¢1),2sin(¢1) + cos(ip2)sin(p1)}

z11 = {0,0,0,0,0}

x12 = {-cos(0),~sin(8), 0, sin(¢1), — sin(y1) + cos(¢1) sin(ipq)}
x13 = {0,0,0,5in(;),~2sin(p1) — cos(e2)sin(¢r)}

x14 ={0,0,0,-1,1 £ cos(y2)}

det(z1,x2, x3, z4,x6) = —cos(yp1)
det(z1, x2, x3, x4, x9) -1 = cos(p1)? cos(p2)
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9 Appendix 3 :Proof of the Lemma in Section 5.

Note X][x] the x-coordinate of the vector field X.

Lemma 1 : The general form of X;, Y; and Z; is :

-1
Xile] = sin(0 - Y;)

=1
-1
Xily] - —cos(6- ;)
J=1
X6 -
Xilpo] - 0
Xilpical = 0
Xilpi] = cos o
Xilpisr] = —cos p;—sin @; sin gigg
Xilpiga] = sin pifsin ;41 — cos @it1sin @it
k-2
Xilpk] = 1sin k1 — COS Pr—1 sin Pk] sin @5 H+1 Cos @;j
j=i
Yi[z] = cos(d — ¥ ;) Zi[z] = —sin(f —_El ®;)
1= 1=
Yily] = sin(0 - ) ®;) Zily] = cos(f = 1 ;)
J= j=
Y,[O] = 0 YA() = 0
Yilpo) - 0 Zilpd] =0
Yilpiza] = 0 Zilpia] = 0
Yill = 0 Zilp] = -1
Yi[‘Pi+1] =—5sin @i Zi[‘Pi+l] = 1
Yilpire] = 1sin $it1 — cos @ig1 sin @it Zilpiya] = 0
k-2
Yilpk] =1Sin or—1—cos @r_1sin @k lllcos ©; Zilpkl = 0
=

Proof : As in the special case n = 2 developed in Section 4.6, we can verify that the lemma
holds for 4 = 1 (to do this, simply add n — 2 trailers and check the coordinates from 1 to ).
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Assume now that the lemma holds for X;_;, Y;—; and Z;_;. We will just verify the z, ¢; and %
coordinates of X; = [Y,'_l,Z,'_l], other computations being similar.

First, Z;_y yields only four non-null coordinates, of which two are constant :

Zials) = sin® - F ) Zislpia] = -1
Z;[y] =c°3(0”ijz-:=1199j) Zialp] = 1

Moreover all the partial derivatives with respect to x and y vanish. Therefore :

Xi[z]

'; (Yi—l [@h]mzi—l [z] - Zio [‘Ph]a—%Yi—l[iv])

0
= —Zi-l[wi-l]myi-l[x]

i-1
= 0 cos(d — ) ;)

8‘,9,‘_1 j=1

t—1

= sin(6 - ) ;)
=

= 0

b ]
Xlel = % (Yoot o 5 Dl = 2o [wh]amw)

= —Zi|pi 0 Yi[pi]

O

= -2 g

Op;

= cos@;

Kiler) = 3 (Yol oot o= Zenslorl 5, Yo )

0
= —Zi_1[pk] 8—‘P,Yi—1 [#x]

k-2

a .
= “‘—.( H cos %)[Sln Pk—1— COS Pk_1 sin Pk]
6('91 j=t
k-2
= sin @;( H €os ;)[sin px_1 — cos Pi_1 Sin ox]
j=itl

Q.E.D.
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Figure 4: The three steps of the algorithm.
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