
July 1990 Report No. STAN-CS-90-1323

Protograms

by

Eyal Mozes and Yoav Shoham

Department of Computer Science

Stanford University

Stanford, California 94305

Protograms

Eyal Mozes and Yoav Shoham

Department of Computer Science

Stanford University

June 8, 1990

Abstract

Motivated largely by tasks that require control of complex pro-

cesses in a dynamic environment, we introduce a new computational

construct called a protogrum. A protogram is a program specifying an

abstract course of action, a course that allows for a range of specific

actions, from which a choice is made through interaction with other

protograms. We discuss the intuition behind the notion, and then ex-

plore some of the details involved in implementing it. Specifically, we

(a) describe a general scheme of protogram interaction, (c) describe a

protogram interpreter that has been implemented, dealing with some

special cases, (c) describe three applications of the protogram inter-

preter, one in data processing and two in robotics (both currently only

implemented as simulations), (d) describe some more general possible

implementations of a protogram interpreter, and (e) discuss how pro-

tograms can be useful for the Gofer project | 1]. We also briefly discuss
the origins of protograms in psychology and linguistics, compare pro-

tograms to blackboard and subsumption architectures, and discuss
directions for future research.

This work was supported by grants from NSF and AFOSR.

1 What are protograms?

The standard view in computer science of a program 1s as precise prescrip-

tion of a course of action to be taken, a one-to-one input-output function.

Indeed, any program is ultimately just that. Nevertheless, for various ap-

plications there are often more illuminating models of computation, models

which facilitate programming, debugging and maintenance. Two facets of

computational problems that, among others, have motivated new models of

computation, are distributivity of processing and complexity of information.

These are the motivations behind blackboard systems (2, 3], and behind some
other models of computation. Broadly speaking, distributivity and complex-

ity, and especially the complexity of processes involving continuously-varying

parameters, are also the motivation for the new notion of protograms.

Protograms reflect the intuition that most activities are determined by

several influences, which refine, reinforce, complement, and often contradict

one another. This is true of our everyday behavior. We use a car to get

to work because walking would take too long, and furthermore we use our

spouse’s car because ours is low on gas. We drive to the City fast, in order to

make the concert, but not too fast, to avoid accidents and speeding tickets.

When we learn how to ski we try to lean forward as instructed, but fear of

falling tends to make us lean back; over time the fear subsides and becomes

a very weak influence.

These multiple influences exist also in programming. We sort the data

base of employees alphabetically, but place the manager, Zbigniew Zablow ski,

at the head of the list; we drive the robot towards the goal, but veer it away

from obstacles. The standard view of programs requires the programmer to

resolve these various influences and produce a single course of action. This

is often feasible. In complex tasks, however, it can be very difficult, and

that is where protograms are useful. They allow the programmer to specify

only the individual influences — each represented by an abstraction of an

action, allowing for a (continuous or discrete) range of concrete actions, and

relative preferences within that range — as well as information about the

relative importance of the influences. The protogram interpreter then uses

that information to produce an unambiguous action description, which satis-

fies, to various degrees, the requirements of the individual protograms. The

advantage to the programmer, besides exemption from the need to specify

one global behavior, is modularity and incrementality: influences may be

added and removed without having to write the program from scratch each
time.

Consider in more detail the robot navigation task, and in particular a local

2

method such as the artificial potential field method [4]. In this procedure
the robot is influenced by two imaginary forces — one attracting it to the

goal, another repelling it from nearby obstacles. The movement of the robot

is dictated by the sum of these two imaginary forces.

This procedure has been implemented widely in conventional languages,

but it is possible to view it as an interaction between two protograms. The

“goal” protogram recommends that the robot head directly towards the goal,

and regards any other direction as less preferable to the extent that it deviates

from heading towards the goal. The “obstacle” protogram recommends that

robot head away from obstacles, and regards any direction as less preferable

to the extent that it gets closer to an obstacle. The strength of the second

recommendation is a decreasing function of the distance from the obstacle.

The advantage of this view is that now we may add new influences. For

example, an important deadline approaching may increase the strength of

the “goal” protogram; or, if the robot is holding a mug filled with coffee, this

may increase the strength of the “obstacle” protogram. We may also add

completely new protograms (e.g. “stay at the center of the corridor”), and

have their influence incorporated into the behaviour of the robot. Figure 1

illustrates the effect of different protogram.combinations on such a robot.
The remainder of this article is organized as follows. In the next section

we look more closely at protograms and the various ways they interact. In

Section 4 we describe an experimental protogram interpreter that we have im-

plemented. Then in Section 5 we describe two applications of this interpreter.

In Section 8 we compare the protogram framework to other computational

paradigms in Al, and discuss the connection to literature in psychology and

linguistics. Finally, in section 9 we summarize the paper and describe our
future work.

2 A closer look at protograms and interac-

tions among them

Specification of a system of protograms consists of three parts:

Tn robot navigation one distinguishes between local methods, which sense the immedi-
ate environment and act on this limited information, and global methods, which take into

account all spatial information about the terrain. The former are typically fast but incom-

plete, the latter typically complete but slower. For thorough coverage of robot navigation

see e.g. [9].

3

i
Pi P1 + P? P1+P2+PJ

P1- "get to goal P2 - "avoid obstacles” P3 - “stay at center”

Figure 1: Protogram combinations in local robot navigation

I. For each protogram, a range of actions and preferences, as a function

of the input. For example, for the “stay at the center of the corridor”

(henceforth SCC) protogram, the range of actions is expressed by di-

rections of movement, and a direction is more preferable the closer it

brings you to the center from the current position (which is the input

to the system); the ideal action for this protogram is moving directly
towards the center.

2. For each protogram its relative “urgency” or “priority,” again as a

function of the input. For example, the urgency of the SCC protogram

may be an increasing function of the distance to the center and, say,

the fragility of the payload.

3. An arbitration procedure for trading off the deviations from the various

ideals given the relative priorities.

The arbitration procedure is the most interesting component, the heart of

the protogram approach. The complexity of the system is, in effect, pushed

into this component, allowing other components to each handle an isolated

part of the problem.

4

Let us look at some examples of protograms, demonstrating different

possible types of interaction.

Consider a robot in an automobile factory, whose job it is to both assemble

cars and haul in shipments of parts. The robot should constantly work on the

assembly until a shipment arrives, at which point the robot should suspend

the assembly task, haul in the shipment, and, when it is done, return to

the assembly task. In effect, the robot is controlled by two protograms,

in a fixed hierarchy of priorities, interacting by one simply overriding the

other. Whenever the “haul in the shipment” protogram can act, it completely
controls the robot’s behaviour.

It is also possible to have a hierarchy in which a higher level does not

completely override the lower one, but imposes constraints under which the

lower level must optimize. For example, as we mention in section 1, you
may want to sort a list of employees according to the two protograms “sort

the list alphabetically” (henceforth SA) and “place the manager at head of
list” (henceforth PMAH). PMAH is the higher-priority protogram. SA has

a measure of deviation from the ideal, e.g. the number of pairs in reverse

order, which it tries to minimize. The list is sorted alphabetically as far as

possible, subject to the constraint of having the name of the manager at the
head.

In both the above examples, the hierarchical order is fixed, i.e. the same we

protogram always overrides (or imposes constraints on) the other one in

case of conflict. This need not be the case; it is also possible to have a

system of protograms, interacting by overriding or by constraints, in which

the hierarchical order can vary dynamically. An example of such a case is
discussed in section 5.3.

As an example of a different type of interaction, consider again the robot

navigation task, discussed in section 1. The different protograms (which, in

this case, might be implemented as artificial potential field forces) operate in

parallel, continuously determining the path of the robot; since they will gen-

erally disagree on the path, it must be determined by a compromise between

them. Here the relative priorities of the protograms have to be expressed,

not just as an ordering, but as a numerical ratio (which can be implemented

by the relative strengths of the potential field forces), to determine their rel-

ative roles in the compromise. As mentioned above, the relative priorities

may change dynamically (e.g. by a deadline approaching).

The above examples demonstrate three possible types of interaction be-

tween protograms, in increasing order of generality:

e Overriding: one protogram, at every moment, is used to determine the

behavior of the system, ignoring the others.

5

e Hierarchical constraints: several protograms interact, and one has a

higher priority. The other protograms must be satisfied as far as pos-

sible subject to the constraint imposed by the higher-priority one.

e¢ Compromise among constraints: several protograms interact, and the

behavior of the system is a compromise between their different instruc-

tions. This compromise can be based on either numerical or qualitative

specification of the relative priorities.

3 Mathematical definition of protogram in-

teraction

To integrate the above examples into a general framework, we propose a
mathematical definition.

We assume that the action of the system is controlled by n parameters,

vy to v,. Each v; is chosen from some set Vi, according to the instructions

of the protograms.

The operation of a system defined by protograms is expressed as a series

of what we call “protogram-interaction cycles”. At each such cycle, each

protogram returns its instructions — its priority and an indication of its

preferences about each v; — depending on the input. The arbiter then needs

to find the v; values according to all instructions, and pass them as arguments

to the procedure performing the action.

A “protogram-interaction cycle” is formally defined as a tuple (Vi, Vo,
.o.y V,, C), where V; are sets from which the v; are chosen, and C is a set
of “protogram instructions,, , i.e. indications.

Each protogram instruction in C is a formally defined as a tuple (P, Sti,
So7 ...,,), where P 1s a positive number (the protogram’s priority) and

each S; is a function V; — R; i.e. S; states the degree to which each value
of parameter 1 will satisfy the requirements of the protogram.

The result of the interaction is a tuple (v1, V2, . . . , V,), s.t. for each
i, Yo(P * S;(vi)) is maximized; i.e., the arbiter chooses a value for each
parameter that maximizes the sum of satisfaction of all protograms, weighted

by their priorities.

Note that each V; is an arbitrary set; usually, it will be a numerical value,
but it may also be a tuple. This naturally expresses the fact that parame-

ters of the action may be independent (and should then be independently

maximized), or may depend on each other. Each v; can be a cluster of in-

terdependent numerical parameters — so the corresponding S; functions are

6

maximized for all of them together — and different v;8 are used for mutually

independent parameters.

The three forms of interaction identified in section 2 generally fit into

this scheme, though some assumptions are required for overriding and for

hierarchical constraining:

e In the case of overriding, we need to assume that the actions recom-

mended by the protograms are mutually exclusive, so that two pro-

tograms can never agree on the actions they want (e.g. our example
of the robot in the automobile factory, in which one protogram always

recommends working on the assembly task, and the other always rec-

ommends hauling in the shipment). Each protogram returns, for each

parameter, an S; function that returns a constant high value (e.g. 100)
on one of the v;S, and a constant low value (e.g. 0) on all other v;s. The

highest-priority protogram will win, its desired action being performed.

e In the case of hierarchical constraining, we need to assume either that

there are only two protograms, or that the priorities are fixed and the

priority of the higher-priority protogram is higher than the sum of all

the other protograms’ priorities. The higher-priority protogram returns

an S; function with a high value for some range of v;s, and a low value
for all other v;s; no other protogram can use a lower value in its 5;
function. The value chosen will then be in the high-values range, and,

within that range, the other protogram(s) will be optimised.

e In the case of compromise, the v; parameter has to be from some met-

ric space (number, vector, etc.); and each protogram returns a ~bell-
shaped” S; function, with a high value on its desired value getting pro-
gressively lower as it gets further away. By maximizing Y o(P * S;(v:)),
the arbiter reaches a value which is close to the desired vale for each

protogram depending on its priority.

4 A protogram I1nterpreter

To experiment with the use of protograms, we have developed a protogram

interpreter, dealing with the three special cases of interaction described in

section 2. The interpreter is a “program skeleton”, which accepts a collection

of protograms, their modes of interaction and priorities, and handles the
interaction between them.

More precisely, the currently implemented interpreter expects the follow-

ing as description of the protograms:

e One procedure reading the input for all the protograms.

e For each protogram, a procedure computing its priority (as a function

of the input).

e For each protogram, a procedure (henceforth “effect procedure”) com-

puting — as a function of the input, of this protogram’s priority, and of

any constraints imposed on it — the protogram’s effects on the system’s

actions and the constraints it imposes on other protograms.

eo For each protogram, an indication of the way it interacts with lower-
priority protograms (by overriding, constraining, or compromise).

e One procedure running after all effect procedures, reading a common

data structure that was modified by each of them, performing the re-

sulting actions.

Even in its present, limited form, the interpreter is already suitable for a

variety of applications. We discuss three of them, that were actually imple-

mented with the interpreter, in the next section.

5 Three applications

The three applications described below deal with three very different tasks,

but all requiring some kind of interaction between several conflicting goals;

this makes them suitable for specification and implementation by means of

protograms. The three examples also demonstrate the three different types

of protogram interaction handled by the interpreter.

5.1 a sorting program for a list of employees

As discussed in section 1, the main motivation for the concept of protograms

is from robotics applications. This method is especially suited for robotics,

and for other systems involving continuous reaction to new input. However,

protograms are sometimes also useful in data processing systems, applying

an input-to-output transformation. One example of such a use was discussed

in section 2, and was implemented using the protogram interpreter — a

program sorting a list of employees.

The input list includes, for each employee, his name, his salary, and an

indication whether he is the manager. The list is sorted alphabetically as far

as possible (i.e. minimizing the number of out-of-order pairs) while putting

8

the name of the manager on top; if there is no manager, the list is simply

sorted alphabetically.

The program is implemented by supplying the interpreter with two pro-

tograms, “place the manager at head of list” (the higher-priority one) and
“sort alphabetically” (the lower-priority one), which interact by constraining.

5.2 a robot movement simulation program

Consider a robot with two protograms, “Get to point A quickly” and “Get

to point A safely”. Those two protograms control one linear parameter:
the speed of the robot, determined by a compromise between them. Relative

priorities can change dynamically, depending on road conditions and perhaps

also depending on instructions from the robot’s operator. To demonstrate

this type of protogram interaction, we developed a simulator for such a robot.

The program reads a file describing the safety conditions along the path

(in a real system, the robot will have to perceive the path and infer the safety

conditions). The safety conditions determine, for each possible speed of the

robot, the probability of crashing into an obstacle; this probability increases

with speed.

The program uses the safety conditions it reads to determine the speed

of the robot. The program has some default behaviour, “always move at the

speed that gives you X chance of crashing,,. It also accepts interrupts from

the user, who may instruct it to go faster or slower; such an instruction from

the user will modify the behaviour of the robot from then on, until the next
instruction.

Once the speed of the robot is determined, the program decides randomly,

according to the appropriate probability, whether the robot has crashed into

an obstacle (in a real system, the robot will try to move while avoiding

perceived obstacles, and this task will be harder if it is moving fast). If it

hasn’t crashed, the program calculates how far the robot will go during the

next cycle, reads ahead to the appropriate place in the input file, and repeats

the same operation.

The program ends either when the robot crashes, or when the robot

reaches the end of the path. In the latter case, the program reports how

long it took the robot to get there. The program can be used as a game, in

which the player can make his decisions regarding what instructions to give

the program, the purpose being to get to the end as fast as possible without

crashing.

The program is implemented with two protograms, using the protogram

interpreter. The interaction is by compromise.

9

distance distance

C

F

time time

distance legend.
F - “faster” command from user

S ~ “slower” command from user

C - robot crashed

F H- cluttered road segment

= EB - very cluttered road segment

[1- clear road segment
time

Figure 2: possible runs of robot movement simulator

Some possible runs of the program are illustrated in figure 2.

5.3 A “stop the moving object” program

This subsection describes an application which, so far, has been the main

focus of the “protogram™ project. It is the type of domain that is most suited

for protograms, allows the use of state-of-the-art robotics equipment, and

contains several interesting questions and opportunities for experimentation.

5.3.1 The task

The task is to observe several objects on a table, some of them in motion,

and use an arm to stop any object that is in danger of falling. If more than

one object appears to be in danger, the program must decide which object

to stop.

The decision is made based on several criteria: how close the object is

to the edge, how fast it is moving, how important it is to keep this object

10

from falling (depending e.g. on whether it is breakable), and how certain the

perception of the object is.
Once the program decides to stop an object, it needs to move an arm

into the object’s path, and should decide exactly where to place it. This

decision depends, of course, on the object’s speed, which determines how

much it will advance in the time it takes to move the arm. It also depends

on the degree of certainty in its perception. If there is more uncertainty

in the movement’s speed, the arm should be placed further away from the

object’s present position, so that it doesn’t undershoot the object. On the

other hand, of there is more uncertainty in the movement’s direction, the arm

should be placed closer to the object’s present position, so that it doesn’t

miss the object.

5.3.2 Implementation

So far, we have implemented a simulator of the system, using a real vision

system but not using a real arm. This simulator, again, was implemented
using the protogram interpreter.

The vision system used is a state-of-the-art system at Teleos Research,

Inc., which produces, for each time frame, an optical flow matrix. The pro-

gram analyzes each frame provided by the vision system, and tries to find a

moving object.

Currently, our object-detection method can only find one object. The

program reads two series of frames in parallel, each produced by the vision

system perceiving one moving object (this can be seen as a simulation of

looking at two tables side by side, each carrying one object, and having just

one arm). The program decides at each instant which of the two objects is

in danger, and if both are, which one to stop.

The task of stopping each of the two objects is a protogram; there is

also a protogram aimed at keeping the arm free (so that an object only gets

stopped if it is in some minimal degree of danger of falling). The interaction

2If we are dealing with actual vision equipment, there will always be some uncertainty
in the perception, and some objects may be perceived more clearly than others. The

proper way of taking this criterion into account is not clear-cut — if an object 1s perceived

less certainly, with more noise, 1s it more urgent to stop it or less urgent? — but it clearly

needs to have some effect. Our decision, currently, is that, when urgency based on the

other criteria is above some threshold, uncertainty decreases the urgency (since we are not

certain that the object is really in this much danger); when urgency based on the other

criteria is below that threshold, uncertainty increases the urgency (since the object may

be in more danger than we think).

11

between the protograms is by overriding, and relative priorities are dynami-

cally determined according to the speed of each object, its distance from the

edge, and the degree of uncertainty in its perception.

6 Related work

The modularity of the protogram framework makes it similar in appearance

to the blackboard architecture (2, 3]. Indeed, as was mentioned in section
I, they are both motivated by complexity and distributivity of knowledge.

However, protograms are different from blackboard systems in two related

respects. First, unlike blackboard “knowledge sources,” each protogram is
associated with an ideal behavior, and with a measure of deviation from the

ideal. Second, in a blackboard system at each round exactly one of the

knowledge sources that triggers is selected to run; any interaction between

knowledge sources is limited to information recorded in the blackboard, the

common data base. Protograms, in contrast, are not a winner-takes-all con-

struct; some or all of the active protograms can be taken into account in

determining the actual behavior, so the protograms framework stresses in-

teraction among protograms.

The protograms framework is also reminiscent of Brooks’ subsumption

architecture [6], in which simple bug-like behaviors are captured in hard-
ware, and then aggregated hierarchically to yield increasingly more complex

(though, to date, still bug-like) behaviors. This subsumption architecture can

be expressed very naturally in the protogram framework. In fact, it is tempt-

ing to view protograms as a software version of Brooks’ hardware, especially

in light of the similar robotics applications. For several reasons, however, we

discourage this view. First, Brooks’ approach is associated with philosophical

claims with which we disagree. Brooks has championed anti-representation,

arguing that intelligent machine behavior is an emergent phenomenon which

makes no use of symbolic representation [7]. We on the other hand intend
both sensory-motor protograms and formal-symbolic ones. Second, as we

discussed in section 2, we intend for quite flexible combinations of behaviors.

Brooks’ combination of behaviors appears to be more rigid: most combina-

tions that have appeared in the literature have been a simple overriding, and

all behaviors have had fixed priorities. Finally, the subsumption architec-

ture is geared specifically towards robotics; indeed, it is discussed entirely

in hardware terms. We, on the other hand, propose protograms as a gen-

eral programming methodology. Although our primary applications are in

robotics, we intend that protograms be used in other software tasks as well.

The idea of protograms was actually inspired by the literature, primar-

12

ily in psychology and linguistics, on the theory of abstraction and family

resemblance. Protograms are, in essence, an attempt to abstractly specify
programmed courses of action — i.e. specify the requirements for a course
of action in a generalized way, so that some flexibility is possible and several

such courses can be accommodated. Several other AI projects can also be

seen as applications of the theory of abstraction to their domains; for exam-

ple, number-to-symbol translation[8, 9, 10] is an application of abstraction
to numerical values.

Specifically, prototype theory was the original source of the idea of pro-

tograms, and of the current terminology we use for describing it. Prototype
theory holds that the basis of abstraction is not the notion of set but rather

those of prototype and similarity to a prototype. The argument, which dates

back at least to Wittgenstein [11], is that one never has necessary and suf-
ficient conditions for determining that something is of a certain sort, but

rather one has a prototype for that sort, and a measure of how close any

object is to that prototype. Thus a dog may be a fairly prototypical animal,

a kangaroo less typical, and a Volkswagen even less so. Attempts have been

made to confirm these ideas in psychological experiments, most notably by

E. Rosch and her associates (cf. [12]). A rather exhaustive account of family
resemblance and related topics appears in Lakoff’s [13]. An alternative the-
ory of abstraction, which avoids some of the philosophical and psychological

problems with prototype theory, on which further investigation of protograms

can be based, is measurement-omission theory, which holds that the basis of

abstraction 1s regarding certain attributes of an entity as quantitative, and

abstracting away from the specific measurements to form a general‘ concept.

The theory was first described in [14]. A rigorous discussion of the basic idea
of measurement-omission, contrasting it with other theories of abstraction,

can be found in [15].

7 Further research

Future research on the subject of protograms will include more detailed ex-

perimentation with applications of protograms, as well as more theoretical

work on the connection to theories of abstraction. We intend to try building

some applications actually controlling -—— rather than just simulating — a

robot or an arm. We also intend to expand the interpreter to a more general

implementation, and experiment with implementing more examples.

13

7.1 Possibilities for a more general interpreter

Let us now look at some more general possible implementations of a pro-

togram interpreter, based on the mathematical definition of section 3.
We don’t believe there is any pratical way to program an efficient and

fully general arbiter for optimising Y o(P * Si(vi)). There is, however, one
special case in which the optimisation can be performed easily and efficiently:

when the possible v; values can be divided into a finite, relatively small set

of ranges, such that each such range is indistinguishable to all protograms

(i.e. for any S; function from any protogram, the function will return the
same value on all this range). In this case, all the arbiter need do is compute

the weighted sum for a representative value from each of the ranges, find the

range which achieves the maximum sum, and then take any value from that

range.

We submit that many applications do fit naturally into this case. In

many applications, the v; values will be either numbers or vectors, and the

S; functions can return a relatively small set of values (for example, whole
numbers from 0 to 10). In this case, each protogram can represent each of

its S; functions as an array of possible return values, and, for each one, a
list of ranges for which this is the value; the arbiter can then find all the

intersections of the ranges supplied by the different protograms, and find the

optimal value as above. All the examples discussed so far, except for the

array sorting program, fit into this pattern.

If we have a relatively small set of ranges, as above, but V; are arbitrary
sets (so Vv; aren’t necessarily numbers or vectors), then the arbiter can be

implemented as follows:

We assume that ranges over V; are expressed in some language (which
the arbiter need not understand). In addition to the protograms and the

action function, the arbiter is given a “choice function”, which accepts as

arguments a set of ranges, performs their intersection, and returns either a
value from that intersection or an indication that the intersection is null.

The arbiter can then list all combinations of ranges from different pro-

tograms, and computes the weighted sum for each one. It then finds the max-
imizing combination, and passes it to the choice function to get the value;

if a null indication is returned, the arbiter tries the next best combination,

until a value is returned.

This implementation is suitable, for example, for the array sorting ap-

plication. There is one parameter, V, the set of possible permutations of

the array. Ranges over V; may be expressed, for example, by conditions
expressed in predicate calculus. The “put the manager on top” protogram

will return one range — the condition “the manager appears in place 1”.

14

The “sort alphabetically” protogram will return, as its ideal, the condition

“the array is sorted” (or “the array has no out-of-order pairs”); as its second

best range, the condition “the array has one out-of-order pair”; as its next

best range, “the array has two out-of-order pairs”; etc. The choice function

will have the knowledge necessary to perform efficient sorting (which it will

perform the first time it is called). When intersecting a combination (of “the

manager appears in place 1” with “the array has n out-of-order pairs”), it

will check the sorted array to see whether the manager can be moved to

the top while causing exactly n out-of-order pairs; if that is possible, it will

return the resulting array as the value for vi.

7.2 Gofer robots and protograms

We intend to specifically try to use protograms in a robotics project now

under development at J. C. Latombe’s group at the robotics laboratory at

Stanford — the Gofer project[l]. The project deals with controlling the

operations of mobile robots in a building, with the goal of automating a

variety of tasks such as delivery of mail to rooms, operation of machines,

cleaning, etc. Below, we present a possible scenario for a Gofer robot, and

discuss the various ways that protograms can be used in its implementation.

For simplicity, we assume just one robot. In more complicated scenarios, we

believe protograms may also be useful in allocating tasks among robots.
The scenario is as follows:

The robot needs to perform three tasks (in increasing order of urgency):

vacuum-cleaning the floors in the rooms and corridors (a continuous task

whenever it has nothing else to do), emptying trash cans (at a certain time

each day), and delivering mail and coffee (whenever mail arrives at the build-

ing, and whenever anybody orders coffee). Each of those tasks can be a pro-

togram, and the robot, whenever there is a conflict, needs to resolve them
(in this case, by simple overriding).

Once a task has been chosen, protograms can be of further use in planning

how to execute it, specifically in planning the robot’s movements through the

building.

When delivering (coffee or mail), if there are several items to deliver,

the robot needs to plan an order of delivery. Once decided on the order,

the robot’s high-level behaviour would be: load as many items as you can

carry, go to the room to which the first one is to be delivered, then to the

second one, etc.; when you're empty-handed, return to the base (some room

where the coffee machine sits and where the mail is delivered from outside),

reload, and so on until deliveries are finished or until something new (mail

15

or an order for coffee) arrives (in which case the order of delivery should be

recomputed).

In choosing the order of delivery, several considerations apply: coffee is

more urgent than mail; higher-ranking people should be served first; the

robot should try to minimize the distance it travels (so two people in the

same room, or nearby rooms, should be served in one trip). Each of these

considerations can be regarded as a protogram; the order of delivery is the

parameter which the arbiter needs to choose, each protogram returns its

ranges of orders according to its preferences, and the order is then chosen in

the method described in my previous note.

In the task of vacuum-cleaning, the robot should move around the build-

ing, cleaning the room or corridor he’s in, moving to another room or corridor,

cleaning it, etc. until a more urgent task comes along. Protograms can be

used in deciding, after you've finished cleaning a room or corridor, where to

move next. Again, there are several considerations: it is better to move to a

room or corridor which is nearby; it is better to move to a room or corridor

which you haven’t cleaned in a long while; and it is better to move to a room

or corridor in which you can’t see any people, so as not to bother anyone (the

last is an example of dynamic priorities; if the robot chose a room to clean

next, went to it and saw people in it, or if somebody came in before he fin-

ished cleaning, then the priority of cleaning this room goes down, which may

cause the robot to immediately leave and choose another room). Here, the

most natural way is to have a protogram for each room and corridor in the

building, ordering “clean this place”; the interaction is by simple overriding,

and the relative priorities are determined by the above considerations.

Also, in performing each of the tasks, once the robot has decided where

it wants to go, it needs to perform the low-level task of getting there. The

method described in the Gofer paper| 1], sections 3.3-3.4, can be very natu-
rally implemented with protograms to represent the “behaviour rules” and

the artificial potential fields.

The above description assumes that protograms should be used at vari-

ous levels of a system, while most of the system is specified conventionally.

An alternative is a system of hierarchical protograms — a system specified

entirely in the form of protograms, such that some higher-level protograms

are themselves composed of lower-level protograms (e.g. the procedure re-

turning the protogram’s range and preferences, or the procedure returning

the protogram’s priority, could itself need to balance several considerations

in reaching its answer, and could therefore be implemented as a system of

protograms). Intuitively, this also looks like a promising concept, and we

intend to investigate its possibilities.

16

8 Summary

In this paper, we described protograms — abstract courses of action, allow-

ing for a range of specific actions, from which one is chosen by interaction

with other protograms — as an approach to specifying and building complex

systems dealing with multiple tasks. This approach provides flexibility, in

being able to dynamically change relative priorities, and modularity, in be-

ing able to modify a system by adding new protograms to it. The general

protogram interpreter, even in its present limited form, is useful for a variety

of applications. Our planned future work includes building a more general

interpreter, and using it in more applications, especially in actual robotics

applications.

References

[1] P. Caloud W. Choi J.-C. Latombe C. Le Pape and M. Yim. Indoor au-
tomation with many mobile robots. In Proceedings IEEE International

Workshop on Intelligent Robots and Systems, Tsuchiura, Japan, 1990.

[2] B. Hayes-Roth. Blackboard architecture for control. Journal of Artificial
Intelligence, 26:251-321, 1985.

[3] H. P. Nii. Blackboard systems: The blackboard model of problem solving
and the evolution of blackboard architectures. AI Magazine, 7:38-53,
1986.

[4] 0. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. International Journal of Robotic Research, 5(1):90-98, 1986.

[5] J.C. Latombe. Robot Motion Planning. Klewer Academic Publishers,
1990 (to appear).

[6] R. A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, RA-2:14-23, 1986.

[7] R. A. Brooks. Intelligence without representation. In Proc. of the Work-
shop on Foundations of Artificial Intelligence, 1987.

[8] E. Davis. Solutions to a paradox of perception with limited acuity. In
Proc. of the First International Conference on Principles of Knowledge
Representation and Reasoning, pages 79-82, 1989.

17

[9] R. Parikh. The problem of vague predicates. In Language, Logic, and
Method, pages 241-261. Reidel Publishers, 1983.

[10] N. Goyal and Y. Shoham. Numerical ranges to discrete symbols.
manuscript, Robotics Laboratory, Stanford University.

[11] L. Wittgenstein. Philosophical Investigations. Basil, Blackwell & Mott,
1958.

[12] E. Rosch and C. B. Mervis. Family resemblences: Studies in the internal
structure of categories. Cognitive Psychology, 1:573-605, 1975.

[13] G. Lakoff. Women, Fire, and Dangerous Things. University of Chicago
Press, 1987.

[14] A. Rand. Introduction to Objectivist Epistemology. New American Li-
brary, 1979.

[15] D. Kelley. A theory of abstraction. Cognition and Brain Theory, 7:329-
357, 1984.

18

