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Fast Sparse Matrix Factorization on Modern Workstations

Edward Rothberg and Anoop Gupta

Department of Computer Science

St anford University
Stanford, CA 94305

October 2, 1989

Abstract

The performance of workstation-class machines has experienced a dramatic increase in the recent past.

Relatively inexpensive machines which offer 14 MIPS and 2 MFLOPS performance are now available, and

machines with even higher performance are not far off. One important characteristic of these machines is

that they rely on a small amount of high-speed cache memory for their high performance. In this paper, we

consider the problem of Cholesky factorization of a large sparse positive definite system of equations on a

high performance workstation. We find that the major factor limiting performance is the cost of moving data

between memory and the processor. We use two techniques to address this limitation; we decrease the number

of memory references and we improve cache behavior to decrease the cost of each reference. When run on

benchmarks from the Harwell-Boeing Sparse Matrix Collection, the resulting factorization code is almost three

times as fast as SPARSPAK on a DECStation 3100. We believe that the issues brought up in this paper will

play an important role in the effective use of high performance workstations on large numerical problems.

1 Introduction

The solution of sparse positive definite systems of linear equations 1s a very common and important problem.

It is the bottleneck in a wide range of engineering and scientific computations, from domains such as structural

analysis, computational fluid dynamics, device and process simulation, and electric power network problems.

We show that with effective use of the memory system hierarchy, relatively inexpensive modem workstations

can achieve quite respectable performance when solving large sparse symmetric positive definite systems of

linear equations.

Vector supercomputers offer very high floating point performance, and are suitable for use on a range of

numerical problems, Unfortunately, these machines are extremely expensive, and consequently access to them

1s limited for the majority of people with large numeric problems to solve. These people must therefore content

themselves with solving scaled-down versions of their problems. In comparison to vector supercomputers,

engineering workstations have been increasing in performance at a very rapid rate in recent years, both in

mteger and floating point performance. Relatively inexpensive machines now offer performance nearly equal to

that of a supercomputer on integer computations, and offer a non-trivial fraction of supercomputer floating point

performance as well. In this paper we investigate the factors which limit the performance of workstations on

the factorization of large sparse positive definite systems of equations, and the extent to which this performance

can be improved by working around these limitations.

A number of sparse system solving codes have been written and described extensively in the literature

[2, 4, 6]. These programs, in general, have the property that they do not execute any more floating point

operations than are absolutely necessary in solving a given system of equations. While this fact would make

it appear that only minimal performance increases over these codes can be achieved, this turns out not to be

the case. The major bottleneck in sparse factorization on a high performance workstation is not the number

of floating point operations, but rather the cost of fetching data from main memory. Consider, for example,

the execution of SPARSPAK [6] on a DECStation 3100, a machine which uses the MIPS R2000 processor.

Between 40% and 50% of all instructions executed and between 50% and 80% of all runtime spent in factoring



a matrix is incurred in moving data between main memory and the processor registers. We use two techniques

to decrease the runtirne; we decrease the number of memory to register transfers executed and we improve the

program’s cache behavior to decrease the cost of each transfer.

We assume that the reader is familiar with the concepts of sparse Cholesky factorization, although we do

give a brief overview in section 2. Section 3 describes the benchmark sparse matrices which are used in this -

study. Section 4 briefly describes the concept of a supemode and describes the supemodal sparse factorization

algorithm. Then, in section 5, the characteristics of modem workstations which are relevant to our study are

discussed. Section 6 discusses the performance of the supemodal sparse solving code. Then in section 7,

the factorization code is tailored to the capabilities of the workstation, and the results of the modifications are

presented. Future work is discussed in section 8, and conclusions are presented in section 9.

2 Sparse Cholesky Factorization of Positive Definite Systems

This section provides a brief description of the process of Cholesky factorization of a sparse linear system. The

goal is to factor a matrix A into the form / L I The equations which govern the factorization are:

J

- kF=1 =

J—1

lij = (ai; — > Liclie)/1;
k=1

Since the A matrix 1s sparse, many of the entries in L will be zero. Therefore, it 1s only necessary to sum

over those & for which /;; # 0. The number of non-zero entries in L is highly dependent on the ordering of the
row and columns in A. The matrix A 1s therefore permuted before it is factored, using a fill-reducing heuristic

such as nested dissection [5], quotient minimum degree [5], or multiple minimum degree [8].

The above equations lead to two primary approaches to factorization, the general sparse method and the

multifrontal method. The general sparse method can be described by the following pseudo-code:

1. for J =1 ton do

2. for each k s.t. Lik #0 do
3. Lj — Lj =p x 17x-

5. for each i s.t. [; #0 do
6. ly — ij [1

In this method, a column j of L is computed by gathering all contributions to j from previously computed

columns. Since step 3 of the above pseudo-code involves two columns, j and A, with potentially different
non-zero structures, the problem of matching corresponding non-zeroes must be resolved. In the general sparse

method, the non-zeroes are matched by scattering the contribution of each column £ into a dense vector. Once
all &’s have been processed, the net contribution is gathered from this dense vector and added into column j.
This 1s probably the most frequently used method for sparse Cholesky factorization; for example, it is employed

in SPARSPAK [6].

The multifrontal method can be roughly described by the following pseudo-code:

1. for k = 1 to n do

3. for each ¢ s.t. lj; #0 do

4. Lr — Lin[lpr
5. for each j s.t. lj; #0 do
6. lw — lj — lip * 1*x-
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Table 1: Benchmarks

[Name [Descripion | Equations | Nonzerocs
1.[ D750 | Denso symmewnicmams | 750] 561750
3. | BCSSTKI4 || Roof of Omni Coliseum, Allania | 1.806 | 61.648
3. [ BCSSTK2S || Globally Triangular Building | 3,134 | 42,044
"4 | LSHP3466 | Finite clement discretization of L-shaped region | __ 3.466 | 20430
5. | BCSSTKIS || Module of an Offshore Platform | 3948 | 113.868
"6. | BCSSTK16 || Corps of Engineers Dam | 4884 | 285.494
J

5. | BCSSTKI7 | Elevated Prossure Vessel | 10.07 | 417.676 _
g

In the multifrontal method, once a column # is completed it immediately generates all contributions which
it will make to subsequent columns. In order to solve the problem of matching non-zeroes from columns j and

kin step 6, this set of contributions is collected into a dense lower triangular matrix, called the frontal update
matrix. This matrix is then stored in a separate storage area, called the update matrix stack. When a later column

k of L is to be computed, all update matrices which affect A are removed from the stack and combined, in a
step called assembly. Column A is then completed, and its updates to subsequent columns are combined. with
the as yet unapplied updates from the update matrices which modified *, and a new update matrix is placed on
the stack. The columns are processed in an order such that the needed update matrices are always at the top of

the update matrix stack. This method was originally developed [3] as a means of increasing the percentage of

vectorizable work in sparse factorization. It has the disadvantage that it requires more storage than the general

sparse method, since an update matrix stack must be maintained in addition to the storage for L. It also performs

more floating point operations than the general sparse scheme.

An important concept in sparse factorization is that of the elimination tree of the factor L [7]. The elimination

tree 1s defined by

pare nt( 3) =min{i|l;; #£ 0. 1 > 3}

In other words, column j is a child of column : if and only if the first sub-diagonal non-zero of column j

in L is in row /. The elimination tree provides a great deal of information concerning dependencies between

columns. For example, it can be shown that in the factorization process a column will only modify its ancestors

in the elimination tree, and equivalently that a column will only be modified by its descendents. Also, it can be

shown that columns which are siblings in the elimination tree are not dependent on each other and thus can be

computed in any order. The information contained in the elimination tree is used later in our paper to reorder
the columns for better cache behavior.

3 Benchmarks

We have chosen a set of nine sparse matrices as benchmarks for evaluating the performance of sparse factorization

codes. With the exception of matrix D750, all of these matrices come from the Harwell-Boeing Sparse Matrix

Collection [2]. Most are medium-sized structural analysis matrices, generated by the GT-STRUDL structural

engineering program. The problems are described in more detail in Table 1. Note that these matrices represent

a wide range of matrix sparsities, ranging from the very sparse BCSPWRI10, all the way to the completely

dense D750. Table 2 presents the results of factoring each of the nine benchmark matrices with the SPARSPAK

sparse linear equations package [6] on a DECStation 3100 workstation. All of the matrices are ordered using

the multiple minimum degree ordering heuristic. These runtimes, as well as all others which will be presented

in this paper, are for 64-bit, IEEE double precision arithmetic. Note that although the machine on which these

factorizations were performed is a virtual memory machine, no paging occurred. The factorizations for each

of the matrices were performed entirely within the physical memory of the machine. The runtimes obtained

with SPARSPAK are used throughout this paper as a point of reference for evaluating alternative factorization
methods.

3



Table 2: Factorization information and runtimes on DECStatnon 3100.

Nonzeroes| Floating point SPARSPAK

ame ||onion | me rors
D750 | oss | wo] T5135 | 090
BCSSTRI4 || 110461 | 992 810] 127

"BCSSTK23 || 417.77 | 10960 | 13697 | 094
LSHP3466 | SLil6 | 414] 345] 120
BCSSTKIS | 67.274 | 16572 | T1238 | 096
BCSSTKI6 || 736294 | 1989 | 15080 | 099
08 7 te
CBCSSTKI7 | 094885 | 15.37 | 1661 | 106
| BCSSTK18 Il 650,777 | 141.68 | 148.10 | 0.96 |
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Figure 1: Non-zero structure of a matrix A and its factor L.

4 Supernodal Sparse Factorization: Reducing the Number of

Memory References

The problem of Cholesky factorization of large sparse matrices on vector supercomputers has recently received

a great deal of attention. The concept of supernodal elimination, proposed by Eisenstat and successfully ex-

ploited in [1, 10], has allowed factorization codes to be written which achieve near-full utilization of vector

supercomputers. Supernodal elimination is important in this paper not because it allows high vector utilization,

but because it decreases the number of memory references made during sparse factorization. Consequently, it

alleviates one of the major bottlenecks in sparse factorization on high performance workstations. This section

describes the concept of a supernode, and describes supernodal sparse factorization. It also discusses the reasons

for the decrease in the number of memory references when supemodal elimination 1s employed.

In the process of sparse Cholesky factorization when column j of L modifies column #, the non-zeroes of
column ; form non-zeroes in corresponding positions of column k. As the factorization proceeds, this unioning

of sparsity structures tends to create sets of columns with the same structures. These sets of columns with

identical structures are referred to as a supernudes. For example, in Figure 1 the set { 1.2.3.4} of columns
forms a supemode. Supemodal elimination is a technique whereby the structure of a matrix’s supemodes is

exploited in order to replace sparse vector operations by dense vector operations. When a column from a

supemode is to update another column, then every column in that supemode will also update that column, since

they all have the same structure. In the example matrix, the four columns in supemode { 1.2.3.4} all update
columns 6 through 7 and 9 through 11.

The general sparse super-nodal method of factorization exploits supemodes in the following way. Instead

of scattering the contribution of each column of the supemode into the dense vector, as would ordinarily be

done in general sparse factorization, the contribution of all columns in the supemode are first combined into a

4



single dense vector, and that vector is then scattered. Since the storage of the non-zeroes of a single column

1s contiguous and the columns all have the same structure, this combination can be done as a series of dense

vector operations.

The multifrontal factorization method can also be modified to take advantage of supemodal elimination.

Where previously each column generated a frontal update matrix, in the multifrontal supernodal method each )

supemode generates one. Consider, for example, the matrix of Figure 1. In the vanilla multifrontal method,

columns 1, 2, 3, and 4 would each generate separate update matrices. When it comes time to assemble the

contributions of previous columns to column 6, these four update matrices would have to be combined. In

contrast, in the multifrontal supemodal method, the contributions of supemode { 1.2.3.4) are combined into a
single update matrix. This modification substantially reduces the number of assembly steps necessary. Since

the assembly steps are the source of all sparse vector operations in the multifrontal factorization scheme, the

net result 1s a reduction in the number of sparse vector operations done. Note that by reducing the number of

assembly steps, supemodal elimination also decreases the number of extra floating point operations performed

by the multifrontal scheme.

As stated earlier, a major advantage of supemodal techniques is that they substantially decrease the number

of memory references when performing Cholesky factorization on a scalar machine. The reduction in memory

to register traffic is due to two factors. First, the supernodal technique replaces a sequence of indirect vector

operations with a sequence of direct vector operations followed by a single indirect operation. Each indirect

operation requires the loading into processor registers of both the index vector and the values vector, while the

direct operation loads only the values vector. Second, the supemodal technique allows a substantial degree of

loop unrolling. Loop unrolling allows one to perform many operations on an item once it has been loaded into

a register, as opposed to non-unrolled loops, where only a single operation is performed on a loaded item. As

will be seen later, the supemodal scheme generates as few as one half as many memory reads and one fourth

as many memory writes as the general sparse scheme.

5S Characteristics of Modern Workstations

The machine on which our study is performed is the DECStation 3100 workstation. This machine uses a MIPS

R2000 processor and a R2010 floating point coprocessor, both running at 16.7 MHz. It contains a 64K high-

speed data cache, a 64K instruction cache, and 16 Megabytes of main memory. The cache 1s direct-mapped,

with 4 bytes per cache line. The machine 1s nominally rated at 1.6 double precision LINPACK MFLOPS.

The most interesting aspect of DECStation 3100 performance relevant to this study is the ratio of floating

point operation latency to memory latency. The MIPS R2010 coprocessor is capable of performing a double

precision add in two cycles, and a double precision multiply in five cycles. In contrast, the memory system

requires approximately 6 cycles to service a cache miss. Consider, for example, the cost of multiplying two

floating point quantities stored in memory. The two numbers must be fetched from memory, which in the worst

case would produce four cache misses, requiring approximately 24 cycles of cache miss service time. Once

fetched, the multiply can be performed at a cost of five cycles. It is easy to see how the cost of fetching data from

memory can come to dominate the runtime of floating point computations. Note that this is an oversimplification,

since these operations are not strictly serialized. On the R2000, the floating point unit continues execution on a

cache miss, and floating point adds and multiplies can be overlapped.

We believe that the DECStation 3100 is quite representative of the general class of modem high performance

workstations. Although our implementation is designed for this specific platform, we believe that the techniques

which we discuss would improve performance on most workstation-class machines.

6 Supernodal Sparse Factorization Performance

We now study the performance of the general sparse, the general sparse supemodal, and the multifrontal

supemodal methods of factorization on the DECStation 3100 workstation, Our multifrontal implementation

differs slightly from the standard scheme, in that no update stack is kept. Rather, when an update is generated,

it 1s added directly into the destination column. Since the update will only affect a subset of the non-zeroes

5



Table 3: Runtimes on DECStation 3100.

General sparse Multifrontal

IEEI
tw |wriord or lon | meory (| ab | woesProblem (s) (M) MFLOPY (s) M) MFLOPY (s) (M) MFLOPS

D750 | 15725 | 14119 | 090 || 86.62 | 14147 | 163 || 84.54 | 14091 | 167
BCSSTKIZ | 8.10 992 12] 506] 1022] 19 | 37] 1003] 266
BCSSTK23 | 12697 | 11960 | 094 | 75.67 | 12135 | 158 | 6820 | 12048 | 175
EeBe TE Bart He NE 3
BCSSTKIS | 17238 | 16572 | 0.06 [101.40 | 167.85 | 163 | 87.84 | 16667 | 189
BCSSTKI6 || 150.80 | 149.89 |  0.99(92.10 | 15088 | 163 | 71.74 | IsIS1 | 2.09
BCSPWRIO | 040 | 033 | 082] 046] 034 | 071] 039 032] 084
BCSSTKI7 || 136.67 | 145.37 | 1.06 || 85.66 | 14876 | 170 | 6235 | 14694 | 233

"BCSSTKIS | 148.10 | 14168 | 0.96 || 89.70 | 143.78 | 1.58 || 7746 | 14262 | 183

Aeon | 1 1 tel Tw] [a0

in the destination column, a search is now required in order to locate the appropriate locations into which the

update values must be added. The multifrontal method is modified in this way because this paper studies in-core

factorization techniques, and the extra storage costs incurred in keeping an update stack would severely limit

the size of problems which could be solved on our machine. This modification trades increased work due to

index searching for less storage space and fewer floating point operations. It is not clear whether this scheme
would be faster or slower than a true multifrontal scheme.

Table 3 gives the runtimes of the two supemodal schemes compared with those of the general sparse scheme,

as employed in SPARSPAK, for the nine benchmark matrices. Note that in order to avoid skewing the average

MFLOPS figures, the averages reported in the table do not include either the number for the most dense matrix,

D750, or for the least dense, BCSPWRIO. Also note that in this and subsequent tables, the MFLOPS rate of

a factorization method on a particular matrix is computed by dividing the number of floating point operations

executed by SPARSPAK when factoring the matrix by the runtime for the method. Thus, the MFLOPS numbers

take ito account any floating point overhead introduced by the different factorization schemes. As can be seen

from the table, however, these overheads are relatively small, and for some matrices the multifrontal supernodal

scheme actually executes fewer floating point operations than SPARSPAK.

Since the standard general sparse code of SPARSPAK executes substantially more memory operations than

the general sparse supemodal code, the latter 1s understandably much faster. However, since the multifrontal

supemodal scheme executes essentially the same number as the general sparse supernodal scheme, it 1s somewhat
surprising that their runtimes differ by such a large amount. In order to better explain this difference, Table 4

presents the total number of cache misses which must be serviced, as well as the number of memory references

which are generated, when solving each of the above problems using a direct-mapped 64 Kbyte cache with 4

byte lines, as found on the DECStation 3100. Note that the memory reference numbers count one word, or

32-bit, references. A fetch of a double precision number, which 1s a 64-bit entity, is counted as two references.

It 1s clear from this table that the general sparse supemodal scheme generates substantially more cache misses

than the multifrontal supemodal scheme in factoring a given matrix, and thus spends much more time servicing
cache misses.

We now consider how the above factorization schemes interact with the processor cache, in order to better

understand the cache miss numbers in the table and also to give a better understanding of how the schemes

can be modified to make better use of the cache. All of the factorization methods execute essentially the same

number of floating point operations, and almost all of these occur in either a DAXPY or a DAXPYI loops. A

DAXPY loop is a loop of the form y — « * x + y, where * and y are double precision vectors and « is a

constant. A DAXPY]I, or indirect DAXPY, loop is of the form y — a * 2( inde x) + y, where « and y are again
double precision vectors, « is a constant, and index is a vector of indices into x. Since almost all cache misses

come from fetching the x and y vectors in loops of this sort, we base our intuitive analysis of caching behavior

on how many of these two operands we expect will miss in the cache.

We first consider the general sparse method. Recall that in this method, updates from all source columns to

6



Table 4: Cache behavior (numbers are in millions).

General sparse Multifrontal

|earseax_|smpenotal | supomedl _
Problem || Refs [ Misses | Refs [Misses || Refs [Misses
D750 | 356.07 | 14167 | 161.77 | 148.44 | 150.55 | 146.80
BCSSTKI4 | 2600 | 429 || 1431] 433 | 1428 136
BCSSTK23 || 303.57 | 112.11 || 150.40 | 117.58 || 15422 | 08.60
LSAP3d66 || 1124] 122] 675] 117] 665] 064
BCSSTK15 421.39 | 151.48 || 206.47 | 156.32 || 208.62 | 120.47

BCSSTK16 || 382.77 | 12398 || 19442 | 13170 || 194.19 | 8247
BCSPWRIO0 || 102 | 021 | 090 | 021 [| 094] 0.5
BCSSTKI7 || 374.28 | 106.09 || 194.07 | 105.40 [| 193.17 | 5385
BCSSTKIS || 361.25 | 127.96 || 181.22 | 13390 || 187.19 | 10274
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Figure 2:
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a given destination column are first scattered into a single dense vector, and then the net update is gathered into

the destination column. SPARSPAK maintains with each column Jj, a list of columns which have a non-zero

entry in row j. A column is a member of this list if the next column which it is to update is column j. Thus, a

column can only be a member of one such list at a time. After a column ! is used to update column J, it is placed
at the head of the list of columns which will update column A, where k is the location of the next non-zero
entry in column i. The list of columns which will update some column ; is therefore sorted by the order in )
which the update columns were last used. The general sparse method therefore performs greedy caching, in the

sense that when a column is updated, the set of columns which will update it are applied in the order in which

they were last used, and thus were most recently in the cache.

The main limitation of this caching scheme is apparent if we consider two adjacent columns which have
similar sets of columns which update them. For example, consider columns 6 and 7 of Figure 2. Once column

6 has been completed, the cache will be loaded with some set of entries from columns 1 through 5, the columns

which modified 6. If the size of the set of columns which modified column 6 1s larger than the cache, then the

set of entries remaining in the cache will be a subset of the entries which modified 6, and thus only a portion

of the set of columns needed to update column 7 will be in the cache. Therefore, sets of columns which have

large, similar sets of update columns get little benefit from the processor cache. In order to get an intuitive feel

for how many misses will be incurred, we note that the vast majority of the factoring time 1s spent in scattering

the various source columns to the dense update column. One would expect the dense column to be present

in the cache, and that for large problems most of the update columns would not be present. Thus, one would

expect that for most DAXPY loops, one of the operands would not be in cache.

The general sparse approach with supemodes is quite similar to the vanilla general sparse approach in terms

of cache behavior. The behavior differs slightly, due to two factors. First, since the supemodal approach makes

half as many memory accesses, one would expect it to perform better than the general sparse approach when

the cache is relatively small and subject to frequent interference. On the other hand, the greedy caching strategy

1s not as effective in the supemodal case. If the greedy scheme indicates that a supemode was most recently in

the cache, and that supemode is much larger than the cache, then only the tail end of the supemode will actually

be present in the cache. However, the supemode will subsequently be processed starting from the head, and

thus will get no caching benefit. In this respect, the general sparse supemodal approach exhibits worse caching

behavior than the general sparse approach.

The multifrontal supemodal approach generates modifications to subsequent columns at the time the modifier

supemnode is completed. Consider supemode { 1.2.3.4} of Figure 2, and assume that all of its non-zeroes fit
in the cache. The updates to subsequent columns are generated by adding each of the four columns in the

supemode into a single update vector. If we assume that the update vector is not present in the cache, then

we find that of the five operands in the four DAXPY loops (the four columns in the supemode and the update

vector), only one operand will miss in the cache. In the multifrontal case, the cache behavior deteriorates when

the supemode does not fit in the cache, eventually degenerating to one operand missing for each DAXPY loop,

just as in the general sparse supemodal case. The reason for the multifrontal supemodal method’s superior cache

performance 1s simply that it 1s more likely for the supemode in the multifrontal method to fit in the cache than

for a set of update columns in the general sparse method to fit.

Thus in summary, although the three schemes for sparse Cholesky factorization which have been discussed

perform essentially the same set of floating point operations, they exhibit substantially different cache behaviors.

The general sparse and general sparse supemodal schemes both use the cache in a greedy way, always attempting

to access columns in the order in which they were most recently present in the cache. The multifrontal supemodal

scheme, on the other hand, loads the cache with the non-zeroes of an entire supemode and reuses these values

in computing updates to subsequent columns. Although the multifrontal supemodal scheme makes better use

of the cache than the other two schemes, all three schemes rapidly degenerate as the size of the problem grows

relative to the size of the cache. They all eventually reach a point where the cache provides little benefit.



7 Modification of Cholesky Factorization for Hierarchical

Memory Systems

From the previous section’s discussion, it is clear that there are two main sources of cache misses in Cholesky

factorization: (1) adjacent columns which make use of dissimilar sets of columns, and (11) supemodes which do )
not fit in the processor cache. If a number of consecutive columns make use of dissimilar sets of columns, it

1s clearly unlikely that the cache will be well utilized. The cache will be loaded with the set of columns used

for one column, and subsequently loaded with an entirely different set of columns used for the next column.

Similarly, supemodes which do not fit in the cache present difficulties for effective use of the cache. The -

non-zeroes in the supemode are used a number of times in succession. If the supemode doesn’t fit in the cache,

then each time the supemode is used it must be reloaded into the cache. This section presents modifications

which are meant to deal with these problems.

In order to increase the locality of reference in processing a sequence of columns, the structure of the

elimination tree 1s examined. As was discussed in section 2, a column will only modify its ancestors in the

elimination tree. In order to increase locality, therefore, it is desirable to process columns with common ancestors

in close succession. In this way, the ancestor columns are loaded into the cache and hopefully reused between

one column and the next. One way to group columns with common ancestors together is to process columns

from the same subtree of the elimination tree together. This order can be achieved by processing the columns in

the order in which they would appear in a post-order traversal of the elimination tree. As was discussed before,

such a reordering of the computation does not alter the computation since it only changes the order in which

independent siblings of the elimination tree are processed.

Such a reordering was employed in [9] in order to decrease the amount of paging done when performing

Cholesky factorization on a virtual memory system. The use of this reordering to reduce cache misses is clearly

the same idea applied to a different level of the memory hierarchy. That is, in [9] anything which is not present

in main memory must be fetched from the slow disk drive. In our case, anything which 1s not present in the

cache must be fetched from the slow main memory. The improvement gained from performing the multifrontal

supemodal factorization with a reordering of the computation based on a post-order traversal of the elimination

tree turns out to be quite modest. The runtimes for the smaller test matrices are decreased by at most ten percent,

and the runtimes for the large matrices are reduced by at most a few percent. The runtime differences aren’t

substantial enough to merit a new table. The reduction in cache misses due to this modification, which we call

the reordered multifrontal supernodal method, will be presented in a future table.

Since the remaining source of poor cache behavior in the multifrontal supemodal scheme is the presence

of supemodes which do not fit in the cache, the criteria for adding a column to a supemode is now modified.

Initially, a column was a member of the current supemode if it had the same structure as the previous column. In

order to improve the caching behavior of the multifrontal supermodal approach, we now require that the column

must also satisfy the condition that, if it were added to the current supemode, the non-zeroes of the resulting

supemode would fit in the cache. We call this the multifrontal bounded-supernodal method. Note that while

this modification will improve cache performance, it will also increase the number of memory references, since

it increases the number of supemodes.

As can be seen from Table 5 and Table 6, our expectations were correct. Cache misses are greatly reduced,

while references are slightly increased, with an overall result of substantially shorter run times. The next

modification attempts to exploit both the reduced number of memory references resulting from large supemodes

and the improved cache behavior resulting from limiting the size of supemodes. In the supemodal multifrontal

approach, the innermost routine is the creation of the frontal update matrix. This lower triangular dense matrix

contains the updates of a supemode to all columns which depend on it. In the bounded-supemode approach, we

split any supemode whose non-zeroes do not fit in the cache into a number of smaller supemodes. In our new

approach, any such supemode is not split into multiple supemodes. It is still considered to be a single supemode,

but 1s partitioned into a number of chunks corresponding to the smaller subset supemodes. The update matrix

1s now generated by computing the contribution of each chunk, one at a time, and then adding the contributions

together into an update matrix for the entire supemode. The resulting update matrix 1s then distributed to those

columns which are affected. In this way we maintain the caching behavior of the bounded-supemode approach,

since each chunk fits in the cache, yet we maintain the full supemodal structure of the multifrontal supemodal

approach. We call this the multifrontal partitioned-supernodal method. The only disadvantage of this approach

9



Table 5: Runtirnes on DECStation 3100.

General Multifrontal

sparse Multifrontal bounded-an| mm | oem | RE
| Problem || Time (s) MFLOPS [Time (s) [MFLOPS || Time (s)| MFLOPS || Time (5) MFLOPS |
D0 | v5 [0 | we | Te sas] Te] sso | 243
'BCSSTKI4 | 810] 12 | 506 19] 373] 266 | 362] 274
"BCSSTR23 || 12697 | 004 | 7567 | IS8] 6820] 175 | 4513 | 265

aR EE HERE EEEBCSSTKIS || 17238 | 09 | 10040 | 1.63] S78 | 18 || S873] 29

BCSSTKI6 sos ow nanan]BCSPWRIO || 040 | 082 || 046 | 071 039] 084] 037] _ 0®
"BCSSTKI7 || 13667 | 106 | 8566 | 170] 6235] 233 || 4885 | 298
'BCSSTKIS || 148.10 | 096 | 8970 | 158] 77.46] 183 | 5306 | 2.67

Aeon | [te] [te | aw] | aw

Table 6: Cache behavior (numbers are in millions).

General Multifrontal

sparse Multifrontal bounded-

Problem || Refs [Misses || Refs [Misses || Refs [Misses || Refs [Misses

or er Ler wer [wes Tos [et [0050 [555BCSSTKIA | 2600 | 429 | [31 | 433 | 1438 | 136] 1431 | 080
BCSSTK23 || 303.57 | 112.01 || 15040 | 117.58 || 154.20 | 08.60 || 1770.09 | 22.83
LSHP3466 | 1124 | 122 | 675 | LI7[ 665 | 064 [| 665] 036
BCSSTKIS || 421.39 | 15 148 || 206.47 | 156.32 || 208.62 | 12047 [| 227.92 | 26.89
BCSSTKI6 | 382.77 | 12398 || 194.42 | 13170 || 19419 | 8247 || 20505 | 19.71EriciaianBCSSTKI7 || 374.28 | 10609 || 194.07 | 10540 || 195.17 | 538 || 199.43 | 1542
BCSSTKIS || 361.25 | 12796 || 18122 | 13390 || 187.19 | 10274 || 203.57 | 2431
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Table 7: Runtimes on DECStation 3100.

General Multifrontal
sparse Multifrontal partitioned-

SPARSPAK supemodal supemodal supemodal

Problem || Time () | MFLOPS || Time (5) | MFLOPS| Time (5) | MFLOPS || Time (+) | MFLOPS |

D750 || i725 | 090] 8662] 163] asa] 167] 4051 349
BCSSTKI4 | 810] 122 506] 196] 373] 266 357] 278
'BCSSTK23 || 12607 | 094 7567] 158 6820] 175 | 3863 | 310
LsHP3de6 | 345] 120 226|  Ls3| 190] 218 | 179] 232
"BCSSTRIS | 17238 | 096 | 10140 163] 8784] 189 | 5083 | 36
"BCSSTKI6 || 15080 | 090 | 0210] 163 | 7L74| 209 4744] 316
"BCSPWRIO | 040] 082 | 046] 071] 039] 084] 035] 094
BCSSTK17 136.67 1.06 85.66 1.70 62.35 2.33 46.80 3.11
BCSSTKIT | THsi0 Toe | wv] Tes | Tero] dese] sm
Aeon | Gs] | tw] [ow] | 29

1s that the entire frontal update matrix must now be stored, as opposed to the previous approaches where only

the updates to a single column had to be stored.

Table 7 presents the results of this modification, As can be seen from the table, the multifrontal partitioned-

supermodal approach achieves very high performance, typically doing the factorization at almost three times the

speed of SPARSPAK. The combination of the decreased memory references from supemodal elimination and the

improved cache hit rate of supemode splitting yields an extremely efficient factorization code which performs

sparse factorization of large systems at more than three double precision MFLOPS on the DECStation 3100.

In order to provide a more detailed picture of how the various factorization schemes which have been

described interact with the processor cache, Figure 3 presents graphs of the number of cache misses incurred

in factoring four of the test matrices as a function of cache size using each of the schemes. Interestingly, even

though these four matrices have substantially different sparsities (see Table 1), the graphs appear quite similar.

The cache for these graphs is again direct-mapped, with 4 byte lines. Note that the range of cache sizes depicted

in these graphs falls within the limits of caches which one might reasonably expect to encounter. A one kilobyte

cache might be found in an on-chip cache, where space is extremely tight. A one megabyte cache, on the other

hand, would not be unreasonable in a very large machine.

In examining Figure 3, the question arises of what factors determine the cache behavior when working with

a particular matrix. While the exact behavior is extremely difficult to predict, the general shape of the curve

for the partitioned-supernodal scheme can be justified by an intuitive explanation. The partitioned-supemodal

scheme depends on the ability to break supemodes into smaller chunks in order to improve cache behavior.

The caching benefit of breaking them up comes from the ability to read a subsequent column into the cache

and apply many column updates to it once it has been fetched. Clearly, if the largest piece of a supemode

that will fit in the cache at one time is a single column, then no caching benefit is realized. Applying a single

column update per fetch is exactly what would be done without the supemode splitting modification. The initial

sections of the curves in Figure 3, where the cache miss reducing schemes perform no better than the other

schemes, correspond to cache sizes in which no more than one matrix column will fit. In the graph for problem

BCSSTK15, for example, no benefit is achieved for cache sizes of less than 4 kilobytes.

As the size of the cache grows, more columns of the supemodes fit in the cache. For the multifrontal

supemodal schemes which do not break up supemodes, the number of misses declines gradually as more and

more supemodes fit wholly in the cache. For the schemes which do break up supemodes, however, the number

of misses declines much more quickly due to the reuse of fetched data. As was discussed earlier in this section,

if only one column fits in the cache, then one operand is expected to cache miss for each DAXPY loop. If

two columns fit, however, we would expect one operand to miss for every two DAXPY loops. This effect can

be seen in the graphs of Figure 3; once the cache 1s large enough to contain more than one column of the

supemodes, a doubling in the size of the cache results in a near halving in the number of cache misses. Note

that this is somewhat of an oversimplification for a number of reasons. One reason is that doubling the size

of the cache will have little effect on supemodes which already fit entirely in the cache. Another is that the
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Figure 3: Cache misses (in millions).

number of non-zeroes per columns is not the same across supemodes, so that the point at which more than one

column fits varies for different supemodes. All of the schemes eventually reach a point at which the cache is

large enough so that the only cache misses incurred are due to data items which interfere with each other in the
cache or due to data items which have never before been accessed.

8 Discussion

The performance gap between vector supercomputers and low cost workstations 1s definitely narrowing. In

Table 8 we compare the performance obtained in our study of sparse factorization on a workstation with the

performance obtained on a single processor of the CRAY Y-MP, as reported in [10]. As can be seen from this
table, using the techniques described in this paper, an inexpensive workstation based on the MIPS R2000 and

R2010 running at 16.7 MHz, such as the DECStation 3 100, can perform sparse factorization at approximately

one-sixtieth of the speed of the CRAY Y-MP. Of this factor of sixty, a factor of approximately ten is due to

the CRAY’s faster clock speed, and a factor of approximately six is due to the CRAY’s vector architecture

and multiple functional units. It 1s likely that both of these factors will decrease when we compare future

12



Table 8: Comparison of DECStation 3 100 and CRAY Y-MP.

| DECSwion 3 1 | CRAY YMP' |
Name Tow: 6] MFLOPS || Time (J[MFLOPS | Fai
BCSSTKZ | 3863 | 310] 062] 19157 | 618
BCSSTKIS || 5083 | 326 | 084 | 19774 | 607
BCSSTKIG || 4744] 316 | 079] 19078 || 604

vector supercomputers to future workstations. Consider the factor of ten due to the CRAY’s faster clock speed.

Next generation microprocessors will be significantly faster than the 60 nanosecond cycle time of the R2000

used in the DECStation 3100. The Intel 1860 microprocessor, for example, is currently available with a 25

nanosecond cycle time, and a version with a 20 nanosecond cycle time is not far off. Furthermore, prototype

ECL microprocessors with 10 nanosecond cycle times have been developed, and such microprocessors will

probably be generally available in a few years. Next generation vector supercomputers, on the other hand, will

most likely experience a much less dramatic decrease in cycle time. The remaining factor of six due to the

CRAY’s machine architecture is expected to decrease as well, as future microprocessors (e.g., 1860, tWarp)} move

to superscalar architectures with multiple functional units and floating point pipelines that produce a result per

clock cycle.

An important item to note about performing sparse factorization on a vector supercomputer is that the matrix

reordering step, which is necessary in order to reduce fill in the factor, is done entirely in scalar mode. It

therefore achieves poor utilization of the vector hardware and typically consumes as much time as the numerical

factorization. In cases where a number of matrices with identical structures are to be factored, the reordering

time can be amortized over a number of subsequent factorizations. However, in some cases the linear system

need only be solved once. In such cases, a CRAY Y-MP would only be approximately thirty times as fast as

an R2000-based workstation, since the R2000-based machine can perform the ordering almost as quickly as the
CRAY.

9 Future Work

One issue which requires further study is that of improving cache behavior when the cache is too small for the

techniques discussed here to have any benefit. As can be seen in Figure 3, these techniques only produce an

improvement in cache behavior when the cache is larger than a certain size, the size depending on the matrix

being factored. By splitting columns of the matrix into sub-columns, and performing similar techniques, it may

be possible to substantially reduce the number of cache misses incurred for much smaller caches, at a cost of

increased computational overhead and more memory references. This issue was not investigated here because

the machine on which the study was performed had a sufficiently large cache that such a modification was not

necessary for the matrices which were used.

Another issue which merits further investigation is the effect of varying the characteristics of the processor

cache on the overall cache behavior. This paper has studied the behavior of a direct-mapped cache with a 4

byte line size. It would be interesting to observe the effect of varying the set-associativity or line size of the

cache, for both the factorization codes which attempt to reduce cache misses and for those that do not, in order

to discover to what extent the differences observed here would carry over to different types of caches.

Another interesting related issue 1s that of factorization on a machine with a multi-level cache. Numerous

current machines have multiple levels of cache. For example, a machine might have a small, on-chip cache,

and a larger, slower second level cache. Further investigation 1s necessary in order to determine how the results

which have been presented in this paper would apply to such a machine. While it is clear that one could choose

a particular level of the cache hierarchy at which to decrease cache misses and ignore the other levels, it is not

clear which level should be chosen or whether it might be possible to achieve higher performance by taking
more than one level of the cache into account.

‘The early CRAY Y-MP which was used in [10] had a 6.49 nanosecond cycle time. More recent Y-MP’s have a 6 nanosecond cycle

time. In order to estimate the computation rate of the current CRAY Y-MP, we have adjusted the MFLOPS and runtime numbers reported
in [10] to take the faster clock rate into account.
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In this paper, only in-core factorization techniques have been studied. Thus, the size of matrix which could

be studied was limited by the amount of physical memory which the machine contained. A number of out-

of-core techniques have been described in the literature. They all, however, introduce a substantial amount of

added complexity to the factorization program, since the programmer must deal with explicitly loading needed

sections of the matrix from disk, and off-loading unneeded sections. We hope to study the effectiveness of a

virtual memory system, guided by hints from the program, in dealing with this problem. The main constraint

in using the paging facility of a virtual memory system is the fact that the program blocks when a location

which must be fetched from disk is accessed With the ability to pm-fetch pages from disk, it may be possible

to avoid the blocking associated with a virtual memory system. It may also be more efficient to deal with data

in memory-page size chunks, which the virtual memory system is optimized to handle, rather than explicitly

manipulating rows and columns of the matrix. A relatively simple modification to the factorization code could

potentially allow full utilization of the processor on extremely large matrices.

We also hope to study the impact of the reduced memory traffic achieved in this paper on parallel sparse

factorization on a shared-memory multiprocessor. The traditional bottleneck in a bus-based shared-memory

machine 1s the bandwidth of the shared bus. By using cache-miss reduction techniques to reduce the bandwidth

requirements of each processor, it should be possible to effectively use more processors on the same bus.

Similarly, in a network-based shared-memory machine such as the Stanford DASH multiprocessor, a reduction

in the cache miss rate of each of the cooperating processors should reduce the load on the interconnect network.

10 Conclusions

In this paper, we have demonstrated that the bottleneck in executing existing sparse Cholesky factorization codes

on modem workstations 1s the time spent in fetching data from main memory. The floating point hardware in

these machines is sufficiently fast that the time spent in performing the floating point calculations 1s a small

fraction of the total runtime. We have proposed a number of new techniques for factoring these large sparse

symmetric positive definite matrices. The intent of these techniques has been to improve performance by

reducing the number of memory fetches executed and by improving cache behavior in order to reduce the cost
of each fetch.

The techniques which we used in order to improve sparse factorization performance were based on the concept

of supemodal elimination, a concept originally utilized to improve the performance of vector supercomputers on

sparse factorization problems. Supernodal elimination allowed us to decrease the number of memory references

executed, and also led to a method which reduced the number of cache misses incurred in the factorization. The

result is an extremely efficient sparse factorization code; on a DECStation 3 100 workstation we achieve more

than three double precision MFLOPS in factoring a wide range of large sparse systems. This is almost three times

the performance of the popular SPARSPAK sparse linear equations package. In achieving this performance, we

have shown that a very simple memory system can be exploited extremely effectively when performing sparse

Cholesky factorization. At this level of performance, we believe that performance is limited by the processor,

not by the memory system. Considering the high cost of main memory accesses on this machine, this is not what

we would have expected. We have also shown that it 1s extremely important to exploit the characteristics of the

memory system in order to achieve high performance. Modem workstations rely heavily on high-speed cache

memory for their high performance, and programs which are modified to make better use of this hierarchical

memory design will achieve substantially higher performance.
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