July 1989 Report No. STAN-CS-89-1268

Addition Machines

Robert W. Floyd and Donald E. Knuth

Department of Computer Science

Stanford University
Stanford, California 94305

Addition Machines

Robert W. Floyd and Donald E. Knuth

Stanford University

An addition machine is a computing device with a finite number of registers, lirnited to

the following six types of operations:

read {input to register x}

X — Yy {copy register y to register x}
Te—T+Yy {add register y to register z}
Te—r—y {subtract register y from register x}
ife>y {compare register T to register y}
write X foutput from register x}

The register contents are assumed to belong to a given set A, which is an additive subgroup
of the real numbers. If A is the set of all integers, we say the device is an integer addition
machine: if 4 is the set of all real numbers, we say the device is a real addition machine.

We will consider how efficiently an integer addition machine can do operations such
as multiplication, division, greatest common divisor, exponentiation, and sorting. We will
also show that any addition machine with at least sis registers can compute the ternary

opera tion r|y/z| with reasonable efficiency, given ¥, y, z € A with z # 0.

Remainders. As a first example, consider the calculation of

¥ mod y = {z_ytm/yja ;1;Yy7=é(;)3

This binary operation is well defined on any additive subgroup A of the reals, and we can

easily compute it on an addition machine as follows:

Py read x; read y; 2 «— 2z — z;
if y > z then
if 22>y then {y = 0, do nothing}
else if © > z then while t >y do x &« x —y
else repeat v « = + y until x > z
else if 3 > &r then while y 2x do x &« x —y
else repeat v «— x + y until z > x:

write .

This research was supported in part by the National Science Foundation under grant,

CCR-86-10181. and by Office of Naval Research contract N00014-S7-Ix-0502.

(There is implicitly a finite-state control. A pidgin Pascal program such as this one is

easily converted to other formalisms; cf. [1] J)

Program P; handles all sign combinations of x and y; therefore it is rather messy. In

the special case where x > 0 and y > 0, a much simpler program applies:

Ps: read x; read y; fassume that x > 0 and y > 0}
while x >y do v +—x —y;
write X.

Any program for this special case can be converted to a program of comparable efficiency

for the general case by using the identities
-X=(X-X)-X;
(-x) mod (-y) = —(x mod y);

. ~_ Jy—(rmody), ifxmody#0;
(I)mody—{o’ if * mod y = 0.

General programs for multiplication, division, and gcd can be constructed similarly from
algorithms that assume positive operands. We shall therefore restrict consideration to
positive cases in the algorithms below.

Program P, performs |y/x| subtractions. Can we do better? Yes; here, for example.

is a. program that uses a doubling procedure to subtract larger multiples of y:

Ps: read x; read y; fassume that * > 0 and y > 0}
while * > y do
begin z « y;
repeat w « 3; z « z + z; until not v > z;
LT —w;
end;
write x.
This program repeatedly subtracts w = 2*y from x, where k = llog,(z/v)]; thus, it
implicitly computes the binary representation of |x/y|, from left to right. The total
running time is bounded by O(log(x/y)) 2, which is considerably smaller than |z/y| when
Lz /y] is large.
Further improvement, to a running time that is O(log(z/y)) instead of O(log(w/y))z,
appears at first sight to be impossible, because an addition machine has only finitely
many registers and it cannot divide by 2. Therefore the numbers y, 2y, 4y, 8y,. . . must all

apparently be computed again and again if we want to nse » trick based on doubling.

A Fibonacci method. Remainders can, however. be computed with the desired efficiency

O(log(x/y))ifwe implicitly use the Fibonacci representation of |x/y| instead of the binary

2

representation. Define Fibonacci numbers as usual by
F():O; F1:1’, F,lz n_1+Fn_2, fOI"nzz
Every nonnegative integer n can be uniquely represented [9] in the form

n=F,+F,++F,, L>h> >0L>0,
where ¢t > 0 and [>> 1' means that [— [’ > 2. If n > 0, this representation can be found

by choosing [; such that
.F[1 S n < F[1+1 ,

so that n — F} < Fj 41 — Fy, = Fj 1, and by writing
n = Fj, + (Fihonacci representation of n — Fj) .

We shall let

An =4 and vn =t

denote respectively the index of the leading term and the number of terms, in the Fibonacci
representation of n. By convention? A0 = 1.

Fibonacci numbers are well suited to addition macliines because we can go from the
pair (Fj, Fi41) up to the nest pair (Fj4q, Fiyo) with a single addition, or down to the
previous pair (Fj_;, F}) with a single subtraction. Furthermore, Fibonacci numbers grow
exponentially, about 69% as fast as powers of 2. They have been used as power-of-2 ahalogs
in a variety of algorithms (see, for instance. “Fibonacci numbers” in the index to [3]) and
in Matijasevich’s solution to Hilbert’s tenth problem [6].

If we let two registers of an addition machine contain the pair of numbers (yFy, yFiy)),

where / is an implicit parameter, it is easy to implement the operations
[—1, l—1+1, l—1-1

and to test the conditions
x> yk, < yFieq, [=1.

Therefore we can compute T mod ¥y efficiently by implementing the following procedure:

read x; read y; {assume that @ > 0 and y > 0}
if t >y then
begin [«1;

repeat [«— I + 1 until v < yFi4y;

repeat if © > yFy then @ «— v — yFy;
[—1-1;

until 1 = 1;

end:

write x.

The first repeat loop increases [until we have
yFi <o <yFlyy,
ie., until [= An, where n = |x/y|. The second loop decreases | while subtracting
yFi, +yFi, + - +yF, =n

from x according to the Fibonacci representation of n. The result,z —ny=ax mody, has

been computed with

IA\n—2 +un = O(log(l'/y))

additions and subtractions altogether.
Here is the same program expressed directly in terms of additions and subtractions,

using only three registers:

Py read x; read y; {assume that £ > 0 and y > 0}
if v >y then
begin Iy,
repeat (y, z) « (2, y + z) until not = > z; { x >y still holds}
repeat if £ 2y then * «— z — vy;
(y,2) = (z =y, y);
until y > z;
end:
write .
The multiple assignment ‘(y , 2) « (z, y + ®) ' is an abbreviation for the operation ‘set
y « y + = and interchange the roles of registers y and = in the subsequent program’: the
assignment ‘(y, z) « (z — y, y)’ is similar. By making two copies of this program code. in
one of which the variables y and z are interchanged, we can jump from one copy to the
other and obtain a legitimate addition-machine program; cf. [4, Esample 7].

A formal proof of correctness for program Py would establish the invariant relation
3121 (y =yoFrand = = yoFiyy)
in the case Ty 2> yo, where x¢ and yp are the initial values of * and y.

Multiplication and division. We can use essentially the same idea to compute the
ternary operation ;L"_y/zjefficiently on any addition machine. This time we accumulate

multiples of x as we discover the Fibonacci representation of Ly/:_{ :

read x: read y; read z; {assume that y > 0 and = > 0}

w « 0;

if y > =z then
begin [« 1;
repeat [«— { + 1 until not y > zF;
repeat if y > zFj then («, y) — (w + cF,y — = F}):
l—1-1;
until [=1;
end;
write .
The actual addition-machine code requires six registers, because we need Fibonacci mul-
tiples of @ as well as z:

Ps: read z; read y; read = { assume that y > 0 and z > 0
W — w — w;
if y >z then
begin u « X; Vv « z;
repeat (u,z) « (x, u+a); (v, 2) « (z,v + z);
until noty > z; {y = v still holds}
repeat if y > v then (w,y) — (w + u,y — v);
(u, @) e {x — 11, u); (v,3) «—{z—v, V);
until v > z;
end;

write to.

The key invariant relations, in the case yy > zg, are now

3121 (’I.L= .’C()F[,x =‘.L'0F[+1, U=20F1, Z=2‘0F[+1);
dn >0 (w==azon, y=1yo — zon).

If we suppress @, u, and w from this program, the repeat statements act on (y, v, z) exactly
as the repeat statements in our previous program act on (z, y, z). Therefore, if yy > zp.
we have y = yo mod zg = Yo — 2 [yg/zoj after the repeat statements in the new program.

Hence w = Zg |Yo/z0] as desired. The total number of additions and subtractions is
0 =3 + 20m =0 (log(yo /)

where 1 = |yo / 20 .

An integer addition machine can make use of the constant 1 by reading that constant,
into a. separate, dedicated register. Then we can specialize the ternary algorithm by set-
ting z « 1 (for multiplication) or x « 1 (for division). Thus we can compute the product.
tyi n O(logmin(|z],dy¢rhpiotis, and the quotient |y/z] in O(log |y/z|) operations,
using ouly addition, subtraction, and comparison of integers. (Multiplica tion and division

clearly cannot be clone unless such constants are used, since any function f(z,y....) com-
puted by an addition machine that inputs the sequence of values (z,y, ...) must satisfy

Hlaz,ay,...)=af(z,y,...)for all > 0.)

Greatest common divisors. Euclid’s algorithm for the greatest common divisor of two

positive integers x and y can be formulated as follows:

read x: read y; {assume that @ > 0 and y > 0}
while ¥ > 0 do (.I’, y) « (y, T mod y);
write .
The while loop preserves the invariant relation ged(x, y) = ged(zg, Yo). After the first
iteration, we have z > y > 0; the successive values of x are strictly decreasing and positive,
so the algorithm must terminate.
We can therefore use our method for computing * mod y to calculate ged(@, y) on an

integer addition machine:

Ps: read z; read y; fassume that x > 0 and y > 0}
R (Rl -t
while not y > z do {equivalently, y > 0, since =z = 2y}
begin while © >z do (y,z)t (z,y + z);
repeat if @ > y then xt Xx — y;
(v, 2) = (z —y,y);
until y > z;
Goy) =y, x); 2=y 2t z + z
end:

write .

(Here the operation (x, y) «+ (y, ’1:) should not really be performed; it means that the roles
of registers © and y should be interchangecl. The implementation jumps between sis copies
of this program, one for each permutation of the register names x, y, z.)

This algorithm will compute ged(z, y) correctly on a general addition machine, when-
ever the ratio y/z is rational. Otherwise it will loop forever.

The total number of operations performed by program Py is

T(z,y) = fla1) + f(@2) + -+ f(gm) + 6,

where ¢1,q2,. . . , ¢m is the sequence of quotients |z/y] in the respective iterations of Eu-
clid’s algorithm. and where f(¢) counts the number of operations in one iteration of the
outermost while loop. If ¢ = 0 (this case can occur only on the first iteration), we have
one assignment, one addition. one subtraction, and four comparisons; so f(0) = 7. If

¢ > 0 we have one assignment, A\¢ — 1 additions, \¢ + v¢ — 1 subtractions, and 3\q — 2

Comparisons; so

f(q) = 5\qg + vq — 3.

We have f(1) = 8, f(2) = 13, and, in general, f(F})= 51 — 2 for all [> 2.

This three-register algorithm for greatest common divisor turns out to be quite effi-
cient, even though it uses only addition, subtraction, and comparison. Indeed, the numbers
in the registers never exceed 2 max(z, y), where = and y are the given inputs, and we can

obtain rather precise bounds on the running time.

Theorem 1. Let N = max(z, y)/ ged(z, y). The number of’ operations T(x. y) performed
by program Pg satisfies

3logy N +a < T(x,y) <13.5logy N + 3,

for some constants « and 3, where ¢ = (14 /5)/2.

Proof. We can assume that x > y; then all the g5 are positive. If F; < g < Fj4; we hase
Ag=1land 1 <wvqg<1/2 hence

51—2 < f(q) <55l -3,
Furthermore we have ¢'72 < F} < ¢!~1, hence
Slog,(g+1) =2 < f(q) < 5.5 log,q+8.
Summing over all values ¢1,...,¢qm gives

510g.((q1+ 1) ... (¢m + 1)) =2m <T(z,y) — 6 <5.510g,(q1 . . . Gm) + Sm.

Now let the values occurring in Euclid’s algorithm be xg, T1, . . ., T;m+1, Where 2y = x.
T =Y, Tjp1 =Tjmymod Tj, T,y = ged(. y),and iy = 0. Then ¢; = [xj_1/x;] for
1 <j<m,and we have

Tog I Tm—-1
@192 - - - qm S — — - S < (g D@+ 1) (gm+ 1),
T1 I3 Tin
The product (z¢/z1)(z1 /22) . . . (¥m=1/Tm) = Zo/Tm is just what we have called N. Fur-

thermore we have m <log, N by a well-known theorem of Lamé [2, Theorem 4.5.3F]. This

suffices to complete the proof.

When the inputs are consecutive Fibonacci numbers (2, y) = (Fy, , Fnt1) with 1m0 > 2,

we have ¢; =0, g2 =...=¢m-1 = 1, ¢ = 2, and the total running time is

T(Fm, Fong1) =7 + 8(m — 2)+ 13+ 6=8m + 10.

—

This appears to be the worst case, in the sense that it seems to maximize T'(z, y) over all
pairs (x, y) with max(&, ¥) < Fra41. Computations for small n support this conjecture,
which (if true) would imply that the upper bound in Theorem 1 could be improved to
Slog, N + 3.

Stacks. Euclid’s algorithm defines a one-to-one correspondence between pairs of relatively
prime positive integers (x, y) with x > y and sequences of positive integers (¢1, . . . , ¢m)
where each ¢; > 1 and g, = 2. We can push a new integer ¢ onto the front of such a
sequence by setting (z,y) < gz + y, X); we can pop ¢; = |x/y| from the front by setting
(r.y) — (y,2 mod y).

Therefore an integer addition machine can represent, a stack of arbitrary depth in two
of its registers. The operation of pushing or popping a positive integer ¢ can be clone with
O(log g) operations, using a. few auxiliary registers.

Here, for example, is the outline of an integer addition program that reads a sequence

of positive integers followed by zero and writes out those positive integers in reverse order:

(z,y) — (2,1); {the empty stack}
repeat read g;
if ¢ > 1then (z,y) « (gx +y, x);
until not g > 1;
repeat (¢, 2, y) < (|2/y], y, x mod y);
if y > 1 then write g,
until not y > 1.

This program uses the algorithms for multiplication and division shown earlier. The run-
ning time to reverse the input (¢1.g2,. - ., ¢m,0) isO(m+1log q1q2. . . qm)

We can sort a given list of positive integers (q; , q2, - - . , qm) in a similar way, using the
classical algorithms for merge sorting with three or more magnetic tapes that can be “read
backwards” [3, Section 5.4.4]. The basic operations required are essentially those of a stack;

so we can sort in 0 (m + log ¢y q2 . . . qm) log m) steps if there are at least 12 registers.
Exponentiation. We can now show that an integer addition machine is able to compute
x ¥ mod z

in O((log y)(log z) + log(x/2 j) operations. The basic idea. is simple: We first form the
numbers
£

;=2 'mod z

for 2 < | < M\y; this requires one multiplication mod z for each new value of [, once

2 = v mod z has been found in 0 (log(x/z)) operations. Then we use the Fibonacci

representation of y to compute ¥ mod = with vy — 1 further multiplications mod z. For

example, 2! mod z is computed by successively forming the powers

modulo z.

There is, however, a difficulty in carrying out this plan with only finitely many reg-
isters, since the method we have used to discover the Fibonacci representation of y deter-
mines the relevant terms Fj in reverse order from the way we need to calculate the relevant
factors xj.

One solution is to push the numbers x3, 3,. .. ,Z)y onto a simulated stack as they
are being computed. Then we can pop them off in the desired order as we discover the
Fibonacci representation of y. Each stack operation takes O(log z) time, since each & is
less than z; hence the stacking and unstacking requires only O((log y)(log z)) operations,
and the overall running time changes by at most a constant factor.

But the stacking operation forms extremely large integers, having © ((log y)(log :))
bits, so it is not a practical solution if we are concerned with the size of the numbers being
added and subtracted as well as the number of additions and subtractions. An algorithm
that needs only O((log y)(log z)) additions and subtractions of integers that never get
much larger than z would be far more useful in practice.

We can obtain such an algorithm if we first compute the “Fibonacci reflection” of v,

namely the number

R
' o= Fogng—t,+ Fogay—1,+ -+ Fagpay—y,

when y has the Fibonacci representation
y=F, +F,+---+F,.

Then we can use the Fibonacci representation of yR to determine the relevant factors
as we compute them; no stack is needed.
Here is a program that computes yR. assuming that y > 0 and that both y and the

constant 1 have already been’reacl into registers named y and 1.

U 1; v e L wey; {w=F,v=Fq,l=1}

repeat (u, v) « (v, u + v) until not w > v; {u=F,v =Fg4,y>u}
{u=F,v="Fqu,l=\y}

Pe—1; s«1;, t —1t—t

repeat if w > u then

begin w «— w —u; t —t+s;

9

end;
(U, v) — (v = wu); (r,s) « (s,r + s); {l =1-1}

until u > v.

Throughout this program we have u = Fj and v = Fj;y, where [begins at 1, rises to \y.

and returns to 1. During the second repeat statement we have also

R
ro= Flpay—t. s=Fypay—t, t=(y—w)".

The program terminates with [= 1 and w = 0; hence we have

A _ R
T:F,\y, D—F,\y+1, t—y .

The full program for z¥ mod z can now be written as follows, using routines described

earlier:
read x; read y; read z;
. e Ry,
(ros.t) = (Fay, Fagg1.y7);
T— xmod z; W T;u — I; {x =2, w = a131, [=1}
repeat if + > 7 then

begin 1« — r; u « (uw) mod z;

end;
(ros) = (s=r,7); (x, w) « (W, (xw) mod z); {l =1+1}
until » > s
write u.

The invariant relations
T =T, W = Ti41, T F1+,\y-—l . s = F2+Ay—l

are maintained in the final repeat loop as [increases from 1 to \y.

For example, ify = 11 = 843 = F; +Fy, wehave \y = 6 and yf* = F,+F, = 1+3 = 4.
Hence r = 8,8 =13, t =4, u =1, and ¢ = w = 9 mod zg at the beginning of the final
repeat. The registers will then contain the following respective values at the moments

when the final until statement is encountered:

r 8 t U T w

5 8 4 1 T9 mod zp :cg mod Z2p
3 5 4 1 ;rg mod zg ;zrg mod 2
2 3 1 ;1?3 mod zg ;7:3 mod zg x5 mod zg
I 2 I x3 mod zg x5 mod zy 28 mod zj
| | 0 23! mod zg z8 mod zg 2% mod zy

10

The statement ‘u « (uw) mod 2z’ can be implemented by first forming uw and then

t aking the remainder mod z, using the multiplication and division algorithms presented
earlier. But we can do better by changing the multiplication algorithm so that the quan-
tities being added together for the final product are maintained modulo =: We simply
change appropriate operations of the form « « a + [to the sequence

a — o+ 3

if « >z then o — o — 2.
Then the register contents never get large. In fact, if zp and yo are initially nonnegative
and less than zg, all numbers in the algorithm will be nonnegative and less than 2zy. We

have proved the following result:

Theorem 2. If 0 < z,y < z < 2""1 the quantity ¥ mod z can be computed from z, y.
and = with 0 ((log y)(log z)) additions and subtractions of integers in the interval [O.. 2"),

on a machine with finitely many registers.

Indeed, the constant implied by this O is reasonably small. The algorithm just
sketched may therefore find practical application in the design of special-purpose hard-
ware for z¥ mod z, which is the fundamental operation required by the RSA scheme of

encoding and decoding messages [7].

Lower bounds. Some of the algorithms presented above can be shown to be optimal,
up to a constant factor. For example, we obviously need € (log min(z, y)) additions to
compute the product xy; we cannot compute any number larger than 2k max(z, y) with
k additions, and if 2 < min(z, y) this is less than min(z, y) max(z, y) = zv.

Logarithmic time is also necessary for division and gecd, even if we extend addition
machines to addition-multiplication machines (which can perform multiplication as well as
addition in one step). An elegant proof of this lower bound was given by L. J. Stockmeyel

in an unpublished report [8] We reproduce his proof here for completeness.

Theorem 3 (Stockmeyer). An integer addition-multiplication machine requires (log x)

arithmetic operations to compute |2/2], x mod 2, or ged(z, 2), for infinitely many x.

Proof: If we can compute |_;1?/'2_] or gcd(x,2)in ¢ steps, we can compute T mod 2 =
v —2|x/2) =2 — ged(z, 2) in at most 7 + 2 steps. So it suffices to prove that x mod 2
requires §2(log) steps.

Any computation of an integer addition-multiplication machine on a given input u
forms polynomials in @ and compares polvnomial values. A t-step computation defines at
most 2! different computation paths, depending on the results of if tests. For convenience

we assuimne that each statement of the form ‘write w’ is changed to

if 0 > w then write w else write w.

11

Then a program that computes x mod 2 must take a different path when x is changed to
T+ 1.

Each computation path is defined by a sequence of polynomial tests

(h(’C) : 03 ‘12(77) 20, ..., (13(17) : 0

made at times ¢} < {p < . .. < t, < t. (Different paths have different polynomials in
general, although ¢; (x) will be the same on each path.) If ¢;(z) corresponds to a test at
time t;, the degree of ¢ () is at most 2% ~1. Therefore the sum of the degrees of the q;(x)
is less than 2'. Therefore the total number of roots of all the polynomials qj(:c), taken over
all computation paths of length #, is less than 22¢,

Let m be the least integer > 22! such that none of the polynomials described in the
previous paragraph has a root in the closed interval [m, m + 1]. Each root can esclucle at
most two values of m; therefore m < 22! + 22+1 By definition, the addition-multiplication
program takes the same computation path when it is applied to x = m and to x = m + 1;
therefore it is does not compute x mod 2 on both of these values. Therefore there is an
integer r; in the interval [2“,22“‘% such that the value z; mod 2 has not been computed
at time ? on any of the computation paths. Therefore there are infinitely many x for which
the time to compute = mod 2 is Q(logz).

So far we have counted both arithmetic operations and conditional tests as steps of
the computation. This also gives a lower bound on the number of arithmetic operations,
since we can assuime without loss of generality that no computation path makes more than
(;) consecutive conditional tests when there are k registers. This completes the proof.

Notice that Stockmeyer’s argument establishes the lower bound Q(log x) on the total
computation time even if the number of registers is unbounded, and even if the programs
are allowed to introduce arbitrary constants. A straightforward generalization of the proof
shows that an integer addition-multiplication machine needs Q (log(x/ y)) steps to compute
& mod y, uniformly for all y > 0 and for infinitely many x when y is given. However. the
argument does not apply to machines with unbounded registers and indirect addressing;
for this case Stockmeyer [8] used a more complex argument to obtain the lower bound
Q(log x/log log z). It is still unknown whether indirect addressing can be exploited to do
better than O(log a). When integer division is allowed, as well as addition and multi-
plication, the bound 2 (log log log min(,y)) on arithmetic operations needed to compute

ged(z, y) has been proved by Mansour, Schieber, and Tiwari [5].

Our efficient constructions have all been for addition machines that contain at least
three registers. The following theorem shows that Z-register addition machines cannot do

much:

Theorem 4. Any algorithm that computes ged(x, y) on an integer addition machine with

only two registers needs §)(n — 1) operations to compute ged(n, 1).

12

Lemma. Consider a. graph on unordered pairs { x,y } of nonnega tive integers, where { x.y }
is adjacent to {z,2 + y}, {z + y, y}, {lx — yl, y}, and {z, |z — y|}. The shortest path from
{n, 1} to {1,1} in this graph has length n — 1, for all n > 1.

Proof of” the lemma (by Toméas Feder). Consider the following four operations on unordered
pairs { @, y}:

Replace min(x , y) by = + v.

Replace max(x,y) by x + y.

Replace min(x, y) by max(x, y) — min(z, y).

Gl fn]

Replace max(x, y) by max(z, y) — min(z, y).

Then A4S = A S =S S = identity and SS = S. Furthermore S is either S .4 or S .Ai, hence
4.8 and AS are either A or A. Any minimal sequence of operations must therefore begin
with S’s and end with A’s. But 5" applied to {n, 1} yields ;m — k, 1}, for k < n; and A’s

—n—1
do not decrease anything. Therefore the shortest path is S

Proof’of” the theorem. As in the proof of Theorem 3, the sequence of if tests made by an
addition machine defines a computation path, dependent on the inputs. We say that the
test if & >y’ is critical if it is performed at a moment when the contents of registers 2
and y happen to be identical.

Let M be a Z-register addition machine that produces the output M(a, b) when applied
to inputs (a, b). We assume that a and b are initially present in the two registers; therefore
the computation path corresponding to (a, b) will be the computation path corresponding
to (ma, mb) for a.11 integers m > 1.

Every computation path defines constants o and § such that M(a, b) = aa + Fb for
all {a, b) leading to this path. If M never encounters a critical test when applied to (a, b),
it will follow the same path on inputs (am, bm) and (am + 1, bm) for all sufficiently large
values of m. Therefore we will have M(am + 1, bm) = M(am.bm) + « for all large m: and
M cannot. be a valid program for computing the gcd. We have proved that every Z-register
gcd program must make a critical test before it produces an output.

Nest we show that every Z-register gcd machine must make a critical test before it
uses any instruction of the form x ¢ x — & or « « x + x. Suppose M performs such an
instruction when it is applied to inputs (a, b); these inputs determine a computation path
defining constants « and 3 such that the other register, y, contains ¢+ 30 when = «— v — x
or ¢ «— x4+ is performed. If no critical tests have occurred, the same computation path will
be followed when the inputs are (a?bm + 1, ab?m) and (a® bm, ab®*m + 1), for a.11 sufficiently
large m. But ged(a® bm + 1, ab®m) = ged(a®bm, ab’®m + 1) = 1; hence y must contain an
odd value when M is applied to (a?bm + I, ab®m) or (a*bm, ab*m + 1). (If y is even when
x is being set, to ¥ — . or x + x, both registers will contain an even value; hence A cannot

subsequently output ‘1'.) Hence a(a?bm + 1) + 3(ab*m) and a(abm) + B(ab?*m + 1) are
1 A K

13

oclcl, for all sufficiently large m; hence « and 3 are both odd. But ged(2a’bm +1,2ab* m + 1)
is odd, and the inputs (2a® bm+ 1, 2ab®m + 1) follow the same path as (a, b) for all large m:
hence a(2a’bm + 1) + ﬂ(?ab2m + 1) must be oclcl, a contradiction.

Therefore every %-register gcd machine must make a critical test, before which it has
performed only operations of the forms x «— x + y, y < y & x. Such operations correspond
to the transformations considered in the lemma..

Suppose M is applied to the inputs (n. 1). When the first critical test occurs, we
have x = y; and ged(2.y) = ged(n, 1) = 1, because ged(z, y) is preserved by all of the
operations X + x * y or ¥y « y * x that have been performed so far. Thus z = y = +1;
the algorithm must have followed a path from {n, 1} to { I, 1} in the sense of the lemma,.
So the algorithm must have performed at least n — 1 operations before reaching the first

critical test. This completes the proof.

Further restrictions. A “minimalist” definition of addition machines would eliminate

the copy operation x « y, because this operation can be achieved by
Te—X—2: T—X+7yY.

We can also simplify the if tests, allowing only the one-register form if x > 0°, because a

general two-register comparison if x > y then « else (3’ can be replaced by

X +--X-y;
if x > 0 then begin x « x + y; a end

else begin = «— x + y; end.

Similarly, we can do away with addition, if we add a new register £, because @ «— 2 + y

can be achieved by three subtractions:
§=¢-¢6 f—f-y; rea-¢.

Addition cannot be eliminated without increasing the number of registers, in general.
For we can prove that the operation z; « ¥ + T cannot be achieved by any sequence of
operations of the forms z; « z; — x;, for 1 <. j <r. The proof can be formulated in
matrix theory as follows:

Let E;; be the matrix that is all zeroes except for a 1 in row i and column j. We
want to show that the matrix I + Ey2 cannot be obtained as a product of matrices of the
form I — E;;. Clearly we cannot use the matrices / — E;;, whose determinant is zero: so

we must use / — E;; with 2 # j. But the inverse of I — E;; is I + E;j, when ¢ #). So if

I+E12:(I—Ei1j1)...(I-—Eimjm)

14

we have, taking inverses,
=By =(U+E,,) - (I+Ej),
which is patently absurd since the right side contains no negative coefficients.

Open questions.

1) Can the upper bound in Theorem I be replaced by 8 logy N + 37

2) Can an integer addition machine with only 5 registers compute 2? in O(log)
operations ? Can it compute the quotient |y/z] in O(log y/z) operations?

3) Can an integer addition machine compute ¥ mod z in o((log y)(log :)) operations,
given 0 <,y < z7

4) Can an integer addition machine sort an arbitrary sequence of positive integers
(q1,¢2,---,qm) in of(m +1logqi1qa . . . qm) log m) steps?

5) Can the powers of 2 in the binary representation of be computed and output
by an integer addition machine in o(log 1‘)2 steps? For example, if = 1.3, the program

should output the numbers S, 4, 1 in some order.

6) Is there an efficient algorithm to determine whether a given r x r matrix of integers

is representable as a product of matrices of the form I + E,'j?

Acknowledgment. We wish to thank Baruch Schieber for calling our attention to Stock-

meyer’s paper [7].

15

References

[1] Donald E. Knuth and Richard H. Bigelow, “Programming languages for automata.”
Journal of the ACM 14 (1967), 615-635.

[2] Donald E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical *Algo-
rithms, (Reading, Mass.: Addison-Wesley 1969).

(3] Donald E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching
(Reading, Mass.: Addison-Wesley 1973).

[4] Donald E. Tinuth, “Structured programming with goto statements,” Computing Sur-
veys 6 (1974),261-301.

[5] Yishay Mansour, Baruch Schieber, and Prasoon Tiwari, “Lower bounds for integer

greatest common divisor computations,” Proc. 29th IEEE Symp. Foundations of Com-
pu ter Science (1988), 54-63.

[6] Yuri V. Matijasevich, “Enumerable sets are cliophantine,” Dokl. Akad. Nauk SSSR
191 (1970), 279-282; soviet Math. Dokl. 11 (1970), 354-357.

[7] R. L. Rivest, A. Shamir, and L. Adleman, “A met hod for obtaining cligi t a.l signatures
and public-key cryptosystems,” Comm. ACM 21 (1978),120-126.

[S] Larry J. Stockmeyer, “Arithmetic versus Boolean operations in idealized register ma-
chines,” IBM Thomas J. Watson Research Center report RC 5954, 21 April 1976.

9] E . Zeckendorf, “leprésentation des nombres naturels par une somme de nombres de
Fibonacci ou de nombres de Lucas,” Bull. Soc. Roy. Sci. Liege 41 (1972),179-182.

16

