
i

July 1989 Report No. STAN-CS-89-1268

Addition Machines

by

Robert W. Floyd and Donald E. Knuth

Department of Computer Science

Stanford University

Stanford, California 94305

SD Ss2
£572

1

Addition Machines

Robert W. Floyd and Donald E. Knuth

Stanford University

An addition machine is a computing device with a finite number of registers, lirnited to

the following six types of operations:

read x {input to register x}

X — UY [copy register y to register x}

T— T+ Y {add register y to register x}

T— IT —Yy {subtract register y from register x}

if v 2 vy [compare register = to register y}

write xT {output from register x}

The register contents are assumed to belong to a given set A, which is an additive subgroup

of the real numbers. If A is the set of all integers, we say the device is an integer addition

machine; if 4 is the set of all real numbers, we say the device is a real addition machine.

We will consider how efficiently an integer addition machine can do operations such

as multiplication, division, greatest common divisor, exponentiation, and sorting. We will

also show that any addition machine with at least sis registers can compute the ternary

opera tion x |y/z| with reasonable efficiency, given x, y, 2 € A with z # 0.

Remainders. As a first example, consider the calculation of

—- yi if 0:

moa y = {HEL 2x, if y=0.

This binary operation is well defined on any additive subgroup A of the reals, and we can

easily compute it on an addition machine as follows:

Py: read x; read y; 2 « z — =z;

if y > z then

if 2 > y then {y = 0, do nothing}

else if # > z then while t > y do x «— x — y

else repeat © «— Tr + y until x > 2

else if3 > vr then while y 2X do Xx «Xx —y

else repeat vr «— = + y until z > x:

write I.

This research was supported in part by the National Science Foundation under grant,

CCR-86-10181, and by Office of Naval Research contract NO0014-S7-Ix-0502.

I

(There is implicitly a finite-state control. A pidgin Pascal program such as this one is

easily converted to other formalisms; cf. [1] .)
Program Pj; handles all sign combinations of x and vy; therefore it is rather messy. In

the special case where xr > 0 and y > 0, a much simpler program applies:

Ps: read x; read vy; {assume that x 2 0 and y > 0}

while x > y do x + XxX — y;

write Xx.

Any program for this special case can be converted to a program of comparable efficiency

for the general case by using the identities

-X=(X-X)-X;

(-x) mod (-y) = —(x mod Yy);

(—2) mod y = y — (xmod vy), if x mod y #0;
0, it mod y = 0.

General programs for multiplication, division, and gcd can be constructed similarly from

algorithms that assume positive operands. We shall therefore restrict consideration to

positive cases in the algorithms below.

Program FP, performs ly/ x] subtractions. Can we do better? Yes; here, for example.

is a. program that uses a doubling procedure to subtract larger multiples of vy:

Px: read x; read y; {assume that x > 0 and y > 0}

while © > y do

begin 2 «— y;

repeat w + 3; z «— Z + z; until not Tr > z;

T—T — WwW;

end;

write x.

This program repeatedly subtracts w = 2*y from a, where k = llog,(z/y)]; thus, it
implicitly computes the binary representation of |z/y|, from left to right. The total

running time is bounded by O(log(x/y)) ~, which is considerably smaller than |z/y| when

lz /y] is large.
9

Further improvement, to a running time that is O(log(z/y)) instead of O(log(z/y))",
appears at first sight to be impossible, because an addition machine has only finitely

many registers and it cannot divide by 2. Therefore the numbers y, 2y, 4y, 8y,.. . must all

apparently be computed again and again if we want to nse a trick based on doubling.

A Fibonacci method. Remainders can, however. be computed with the desired efficiency

O(log(x/y))ifwe implicitly use the Fibonacci representation of |x/y| instead of the binary

2

representation. Define Fibonacci numbers as usual by

Fo=0, Fi=1; F,=F,.1+F,_o,. forn> 2.

Every nonnegative integer n can be uniquely represented [9] in the form

n=F,+F,+ + F,, Lh>b>»--->L4>0,

where t > 0 and [>> 71' means that [— I’ > 2. If n > 0, this representation can be found

by choosing [; such that

Fy < n < Fi +1 ,

so that n — Fy, < Fy 41 — Fj, = Fj ~1, and by writing

n = Fj, + (Fihonacci representation of n — Fj) .

We shall let

An = [4 and vn = t

denote respectively the index of the leading term and the number of terms, in the Fibonacci

representation of n. By convention? AQ = 1.

Fibonacci numbers are well suited to addition maclunes because we can go from the

pair (Fj, Fi41) up to the nest pair (Fiyq, Figo) with a single addition, or down to the

previous pair (Fj_q, Fr) with a single subtraction. Furthermore, Fibonacci numbers grow

exponentially, about 69% as fast as powers of 2. They have been used as power-of-2 analogs

in a variety of algorithms (see, for instance. “Fibonacci numbers” in the index to 13]). and
in Matijasevich’s solution to Hilbert’s tenth problem [6].

If we let two registers of an addition machine contain the pair of numbers (y £7, yFjy),

where [is an implicit parameter, it is easy to implement the operations

[— 1, [— [+1 [— [1-1

and to test the conditions

r > yk, r< yer, l=1.

Therefore we can compute * mod y efficiently by implementing the following procedure:

read x; read vy; {assume that x > 0 and y > 0}

if © > y then

begin I «1;

repeat [«— I + 1 until a < yFjyq;

repeat if x > yF) then x «— x — yFy;

[— 1-1;

until / = 1;

end:

write x.

3

The first repeat loop increases [until we have

yb <a <yFiy,

i.e., until / = An, where n = |2/y|. The second loop decreases | while subtracting

yb, + yf, +--+ yk, =n

from x according to the Fibonacci representation of n. The result, x — ny =r mod y, has

been computed with

2An — 2 + vn = O(log(z/y))

additions and subtractions altogether.

Here is the same program expressed directly in terms of additions and subtractions,

using only three registers:

Py: read x; read vy; {assume that > 0 and y > 0}

if +> vy then

begin ZY,

repeat (y, z) « (z,y + z) until not = > =; { © > vy still holds}
repeat if x 2 y then = «— z= — vy;

(y, 2) = (2 — y, ¥);

until y > z;

end:

write x.

The multiple assignment “(y , 2) + (z, y + x) ' is an abbreviation for the operation ‘set

y «— y + = and interchange the roles of registers y and = in the subsequent program’: the

assignment ‘(y, 2) « (z — y, y) is similar. By making two copies of this program code. in

one of which the variables y and z are interchanged, we can jump from one copy to the

other and obtain a legitimate addition-machine program; cf. [4, Esample 7].

A formal proof of correctness for program Pj; would establish the invariant relation

3121 (y =yoFi and = = yo Fry)

in the case zg > yg, where xy and yg are the initial values of * and y.

Multiplication and division. We can use essentially the same idea to compute the

ternary operation x|y/z]efficiently on any addition machine. This time we accumulate

multiples of x as we discover the Fibonacci representation of [y/z] :

read x: read y; read =: {assume that y > 0 and z > 0}

w « 0;

if y > > then

begin [+ 1;

repeat [«— [+ 1 until not y > zF)q;

repeat if y > zF then (w, y) « (w + «Fy — =F):
[— 1-1;

until [= 1;

end;

write w.

The actual addition-machine code requires six registers, because we need Fibonacci mul-

tiples of x as well as =z:

Ps: read x; read y; read =z; { assume that y > 0 and z > 0

W — W — Ww;

if y > z then

begin u «— X; V « 2;

repeat (u,z) «— (x, u+ 2); (v, 2) (z,v + 2);

until not y > z: {y 2 v still holds}

repeat if y > v then (w,y) « (w+ u,y — v);

(u, x) — (x = 11, u); (v, 3) «{(z =v, V);

until v > z;

end;

write tw.

The key invariant relations, in the case yg > zg, are now

3 [> 1 (uw = To ky, X =x Fi41, v= zo Fy, z=z20F141);

dn 20 (w=29n, y=yo — zon).

If we suppress x, u, and w from this program, the repeat statements act on (y, v, z=) exactly

as the repeat statements in our previous program act on (x, vy, z). Therefore, if yg = zy.

we have y = yg mod zp = yo — 2g Yo / 20] after the repeat statements in the new program.

Hence Ww = 2g |yo/20] as desired. The total number of additions and subtractions is

4rn — 3 + 2vn =0(log(ye/20)))

where 17 = yg / Zo].

An integer addition machine can make use of the constant 1 by reading that constant,

into a. separate, dedicated register. Then we can specialize the ternary algorithm by set-

ting z + 1 (for multiplication) or x « 1 (for division). Thus we can compute the product.

ryi nn O(logmin(|z|,dy¢rppeotis, and the quotient |y/z] in O(log |y/z|) operations,
using only addition, subtraction, and comparison of integers. (Multiplica tion and division

5)

J

|

clearly cannot be clone unless such constants are used, since any function f(x,y... .) com-

puted by an addition machine that inputs the sequence of values (x,y, ...) must satisfy

flax, ay,...)=af(x,y,...) for all «> 0.)

Greatest common divisors. Euclid’s algorithm for the greatest common divisor of two

positive integers r and y can be formulated as follows:

read r: read vy; {assume that x > 0 and y > 0}

while ¥ > 0 do (.I', y) « (y, £ mod y);
write x.

The while loop preserves the invariant relation ged(x, y) = ged(zg, yo). After the first

iteration, we have x > y > 0; the successive values of x are strictly decreasing and positive,

so the algorithm must terminate.

We can therefore use our method for computing * mod y to calculate ged(x, y) on an

integer addition machine:

Fs: read zx; read vy; {assume that x > 0 and y > 0}

TY e242

while not y > z do {equivalently, y > 0, since z = 2y}

begin while x > z do (y,z)t (zy + 2);
repeat if * 2 y then vt Xx — y;

(y, 2) = (z= = yu);

until y > =;

Gy) — (yy, x); sy; zt 2+ z;
end:

write I.

(Here the operation (x, y) « (y,) should not really be performed; it means that the roles

of registers © and y should be interchangecl. The implementation jumps between sis copies

of this program, one for each permutation of the register names x, vy, z.)

This algorithm will compute gecd(x, y) correctly on a general addition machine, when-

ever the ratio y/x is rational. Otherwise it will loop forever.

The total number of operations performed by program Fj is

T(x,y) = f(q1) + flaz) + + flgm) + 6,

where ¢1,q2,... , ¢m 1s the sequence of quotients lz /y] in the respective iterations of Eu-

clid’s algorithm. and where f(¢) counts the number of operations in one iteration of the

outermost while loop. If ¢ = 0 (this case can occur only on the first iteration), we have

one assignment, one addition. one subtraction, and four comparisons; so f(0) = 7. If

¢ > 0 we have one assignment, A¢ — 1 additions, A\¢ + vq — 1 subtractions, and 3\g — 2

6

COImMparisons; so

f(q) = 5Aq + vq — 3.

We have f(1) = 8, f(2) = 13, and, in general, f(Fj;) = 51 — 2 for all [> 2.

This three-register algorithm for greatest common divisor turns out to be quite effi-

cient, even though it uses only addition, subtraction, and comparison. Indeed, the numbers

in the registers never exceed 2 max(x, y), where = and y are the given inputs, and we can

obtain rather precise bounds on the running time.

Theorem 1. Let NV = max(z, y)/ ged(z, y). The number of’ operations T(x. y) performed

by program Py satisfies

logy N +a < T(r,y) <13.5logy N + 3,

for some constants « and 3, where ¢ = (1 + v/5)/2.

Proof. We can assume that x > y; then all the g’s are positive. If F; < g < Fjy1 we hase

Ag =land 1 <wvg<1/2, hence

5-2 <f(q) £5.51 -3.

Furthermore we have $=? < F< HL hence

Slogy(g+1)~2< f(g) < 5.5 logy,q+8.

Summing over all values ¢q1,...,¢m gives

: log, (a1 + 1) Ch (gm + 1)) — 2m < T(z, y) —6 < 5.9 log (41 Coe Im) + 3m.

Now let the values occurring in Euclid’s algorithm be zg, zy, . . . , Tm+1, Where ay = x,

Ty =Y, Tyjp1 = Tj—1 mod Tj, Tym = ged(x. y),and Tpmyy = 0. Then ¢; = [vj—/x;] for
1 <j<m,and we have

Tp I Tm—1

192- + Gm— — + ——— << (q+ D(@2+1)... (gm +1).
Typ I2 Lm

The product (zo /x1)(z1 [xa) . .. (Tm—1/Tm) = Zo/xm is just what we have called :N. Fur-

thermore we have m <log, N by a well-known theorem of Lamé [2, Theorem 4.5.3F]. This
suffices to complete the proof.

When the inputs are consecutive Fibonacci numbers (x, y) = (Fy, , Fint1) with m= 2,

we have ¢; = 0, go =... =(¢m-1 = 1, gm = 2, and the total running time is

TF Font) = 7T+8m—=2)+13+6=8m + 10.

This appears to be the worst case, in the sense that it seems to maximize T(x, y) over all

pairs (x, y) with max(x,y) < Fi,+1. Computations for small n support this conjecture,

which (if true) would imply that the upper bound in Theorem 1 could be improved to

Slog, N + 2.

Stacks. Euclid’s algorithm defines a one-to-one correspondence between pairs of relatively

prime positive integers (X, y) with x > y and sequences of positive integers (q1, . . . , qm)

where each ¢; 2 1 and gm => 2. We can push a new integer ¢ onto the front of such a

sequence by setting (x,y) « gT + y, X); we can pop ¢; = |z/y] from the front by setting

(ty) — (y.x mod y).

Therefore an integer addition machine can represent, a stack of arbitrary depth in two

of 1ts registers. The operation of pushing or popping a positive integer g can be clone with

O(log g) operations, using a. few auxiliary registers.

Here, for example, is the outline of an integer addition program that reads a sequence

of positive integers followed by zero and writes out those positive integers in reverse order:

(x,y) «— (2,1); {the empty stack}

repeat read ¢;

if ¢ > 1 then (x,y) (gx +y, x);

until not g > 1;

repeat (q, x, y) te (lz /y], y, x mod y);
if y > 1then write gq;

until not y > 1.

This program uses the algorithms for multiplication and division shown earlier. The run-

ning time to reverse the input (q1,g2,. .., gm, 0) is O(m + log qi ¢2. . . qm)-

We can sort a given list of positive integers (q; , qa, . . . , qm) in a similar way, using the

classical algorithms for merge sorting with three or more magnetic tapes that can be “read

backwards” [3, Section 5.4.4]. The basic operations required are essentially those of a stack;

so we can sort in 0 (m + log gq; q2 . . . qm) log m) steps if there are at least 12 registers.

Exponentiation. We can now show that an integer addition machine is able to compute

x ¥ mod z

in O((log y)(log =z) + log(x/z j) operations. The basic idea. is simple: We first form the
numbers

2; = xf mod :z

for 2 < [| < My; this requires one multiplication mod z for each new value of [, once

ro = x mod z has been found in 0 (log(x/z)) operations. Then we use the Fibonacci

§

representation of y to compute z¥ mod z with vy — 1 further multiplications mod =z. For

example, z! mod z is computed by successively forming the powers

zt, et, ad, x” xt, pit?

modulo z.

There 1s, however, a difficulty in carrying out this plan with only finitely many reg-

isters, since the method we have used to discover the Fibonacci representation of y deter-

mines the relevant terms £7} in reverse order from the way we need to calculate the relevant

factors xj.

One solution is to push the numbers x2, Z3,...,Z), onto a simulated stack as the;

are being computed. Then we can pop them off in the desired order as we discover the

Fibonacci representation of y. Each stack operation takes O(log z) time, since each uy is

less than z; hence the stacking and unstacking requires only O((log vy)(log z)) operations,
and the overall running time changes by at most a constant factor.

But the stacking operation forms extremely large integers, having © ((log y)(log z))
bits, so it is not a practical solution if we are concerned with the size of the numbers being

added and subtracted as well as the number of additions and subtractions. An algorithm

that needs only O((log y)(log z)) additions and subtractions of integers that never get
much larger than z would be far more useful in practice.

We can obtain such an algorithm if we first compute the “Fibonacci reflection” of vy.

namely the number

y" = Foyay—1, + Foyay—1i, + 4 Fogay-1,

when y has the Fibonacci representation

y=, +F,++F,.

Then we can use the Fibonacci representation of ye to determine the relevant factors ux

as we compute them; no stack is needed.

Here is a program that computes yf. assuming that y > 0 and that both y and the
constant 1 have already been’reacl into registers named y and 1.

we 1; v «1, wy; {wu =Fj,v =F, =1}

repeat (u, v) « (v, u + v) until not w > v; {u=F,v = Fi41,y > u}

{u = Fi, v= Friq, [= Ay}

Pe—1;, s—1; t —1t—1t;

repeat if w > u then

begin w «— w — u; t «— t+ s;

9

end;

(u,v) — (v = wu); (r,s) « (s,r + s); {l —1-1}
until uu > v.

Throughout this program we have w = Fj and v = Fj, where [begins at 1, rises to Ay.

and returns to 1. During the second repeat statement we have also

= F s = F: t= (y —w)"= Lit ay=ts § = La4Ay—1, =(y —w)".

The program terminates with [= 1 and w = 0; hence we have

=F s =F t = yfr= AY > — LAy+1, =Yy .

The full program for z¥ mod z can now be written as follows, using routines described

earlier:

read x: read y; read =z;

(rs.) = (Fay, Fag41.97);

rTxr mod z; we T; u — I; {x =x, w = 2131, = 1}
repeat if + > r then

begin + «— + — r; u « (uw) mod z;
end;

(r,s) (s—=r,1); (Xx, Ww) « (w, (xw) mod z); {l—=1+1}
until » > s;

write u.

The invariant relations

£ = T] , Ww = Ti41 , ro. Fiiay—i . Ss = Fogyany—1

are maintained in the final repeat loop as [increases from 1 to Ay.

For example, ify = 11 = 843 = Fx + Fy, wehave \y = 6 andyt = [H+F, = 143 = 4.

Hence r = 8, s=13,t=4, u =1, and * = w = Tg mod zg at the beginning of the final

repeat. The registers will then contain the following respective values at the moments

when the final until statement is encountered:

r S t u x Ww

5 3 4 ro mod zg z3 mod zg

3 5 4 x2 mod zg xg mod zy

2 3 l rg mod zg x3 mod zg x5 mod zg
I 2 l xp mod zg xy mod zy x8 mod zg

0 ry! mod zg z5 mod 2g x33 mod zy

10

The statement ‘ut + (uw) mod 2’ can be implemented by first forming uw and then

t aking the remainder mod z, using the multiplication and division algorithms presented

earlier. But we can do better by changing the multiplication algorithm so that the quan-

tities being added together for the final product are maintained modulo =: We simply

change appropriate operations of the form a « a + J to the sequence

a — a+ 3;

if « > z then ov +— a — =.

Then the register contents never get large. In fact, if zg and gy, are initially nonnegative

and less than zg, all numbers in the algorithm will be nonnegative and less than 2zp. We

have proved the following result:

Theorem 2. If 0 < z,y < z <2"! the quantity ©¥ mod z can be computed from x, y.

and = with 0 ((log y)(log z)) additions and subtractions of integers in the interval [O.. 2"),
on a machine with finitely many registers.

Indeed, the constant implied by this 0 is reasonably small. The algorithm just

sketched may therefore find practical application in the design of special-purpose hard-

ware for ¥ mod z, which is the fundamental operation required by the RSA scheme of

encoding and decoding messages [7].

Lower bounds. Some of the algorithms presented above can be shown to be optimal,

up to a constant factor. For example, we obviously need {2 (log min(z, y)) additions to
compute the product xy; we cannot compute any number larger than 2k max(x, y) with

k additions, and if 2” < min(z, y) this is less than min(z, y) max(z, y) = xv.

Logarithmic time is also necessary for division and gcd, even if we extend addition

machines to addition-multiplication machines (which can perform multiplication as well as

addition in one step). An elegant proof of this lower bound was given by L. J. Stockmeyer

in an unpublished report 8]. We reproduce his proof here for completeness.

Theorem 3 (Stockmeyer). An integer addition-multiplication machine requires {2(log x)

arithmetic operations to compute |2/2}, x mod 2, or ged(x, 2), for infinitely many x.

Proof: If we can compute |x /2] or ged(x, 2) in t steps, we can compute T mod 2 =

vr —2|x/2] = 2 — ged(z, 2) in at most 7 + 2 steps. So it suffices to prove that x mod 2

requires §2(log x) steps.

Any computation of an integer addition-multiplication machine on a given input a

forms polynomials in = and compares polvnomial values. A t-step computation defines at

most 2° different computation paths, depending on the results of if tests. For convenience

we assume that each statement of the form ‘write w’ is changed to

if 0 > w then write w else write w.

11

Then a program that computes x mod 2 must take a different path when x is changed to

x + 1.

Each computation path is defined by a sequence of polynomial tests

q1(x) : 0, g2() 0, oo qs(T) 0 0

made at times #; < fy < . . . < tg < {. (Different paths have different polynomials in

general, although ¢; (x) will be the same on each path.) If ¢;(2) corresponds to a test at

time t;, the degree of ¢;(x) is at most 2% “1. Therefore the sum of the degrees of the q(x)
is less than 2!. Therefore the total number of roots of all the polynomials ¢j(x), taken over
all computation paths of length #, is less than 22¢.

Let m be the least integer > 22! such that none of the polynomials described in the

previous paragraph has a root in the closed interval [m, m + 1]. Each root can esclucle at

most two values of m; therefore m < 2%! + 22!*1 By definition, the addition-multiplication

program takes the same computation path when it is applied to x = m and to x = m + 1;

therefore it is does not compute x mod 2 on both of these values. Therefore there is an

integer x; in the interval [22% 22t+3 such that the value x; mod 2 has not been computed

at time t on any of the computation paths. Therefore there are infinitely many x for which

the time to compute x mod 2 is (log x).

So far we have counted both arithmetic operations and conditional tests as steps of

the computation. This also gives a lower bound on the number of arithmetic operations,

since we can assume without loss of generality that no computation path makes more than

(2) consecutive conditional tests when there are k registers. This completes the proof.
Notice that Stockmeyer’s argument establishes the lower bound (log x) on the total

computation time even if the number of registers is unbounded, and even if the programs

are allowed to introduce arbitrary constants. A straightforward generalization of the proof

shows that an integer addition-multiplication machine needs 2 (log(x/ y)) steps to compute

x mod y, uniformly for all y > 0 and for infinitely many x when y is given. However. the

argument does not apply to machines with unbounded registers and indirect addressing;

for this case Stockmeyer [8] used a more complex argument to obtain the lower bound

Q(log z/log log x). It is still unknown whether indirect addressing can be exploited to do

better than O(log a). When integer division is allowed, as well as addition and multi-

plication, the bound {2 (log log log min(x,y)) on arithmetic operations needed to compute
ged(z, y) has been proved by Mansour, Schieber, and Tiwari [5].

Our efficient constructions have all been for addition machines that contain at least

three registers. The following theorem shows that Z-register addition machines cannot do

much:

Theorem 4. Any algorithm that computes ged(x, y) on an integer addition machine with

only two registers needs §2(n — 1) operations to compute ged(n, 1).

12

Lemma. Consider a. graph on unordered pairs { x,y } of nonnega tive integers, where { x.y }

is adjacent to {z,x + y}. {x + y,y}, {lx — y|, y}, and {z, |v — y|}. The shortest path from

{n,1} to {1,1} in this graph has length n — I, for all n > I.

Proof of’ the lemma (by Tomas Feder). Consider the following four operations on unordered

pairs { x, y}:

A. Replace min(x , y) by = + y.

A. Replace max(x,y) by x + y.

S. Replace min(z, y) by max(z, y) — min(z, y).

S. Replace max(z, y) by max(z, y) — min(z, y).

Then 45 = AS = S S = identity and SS — S. Furthermore S is either S54 or S A. hence
4.8 and 48 are either A or A. Any minimal sequence of operations must therefore begin

with S's and end with A’s. But 5" applied to {n, 1} yields n — &, 1}, for & < n; and A’s
do not decrease anything. Therefore the shortest path is Si

Proof'of’ the theorem. As in the proof of Theorem 3, the sequence of if tests made by an

addition machine defines a computation path, dependent on the inputs. We say that the

test ‘if x > y’ is critecal if it is performed at a moment when the contents of registers 2

and y happen to be identical.

Let MM be a Z-register addition machine that produces the output M(a, b) when applied

to inputs (a, b). We assume that a and b are initially present in the two registers; therefore

the computation path corresponding to (a, b) will be the computation path corresponding

to (ma, mb) for a.11 integers m > 1.

Every computation path defines constants « and J such that M(a, b) = aa + 3b for

all (a, b) leading to this path. If M never encounters a critical test when applied to (a, b),

it will follow the same path on inputs (am, bm) and (am + 1, bm) for all sufficiently large

values of m. Therefore we will have M(am + 1, bm) = M(am, bm) + « for all large m; and

M cannot. be a valid program for computing the gcd. We have proved that every Z-register

gcd program must make a critical test before it produces an output.

Nest we show that every Z-register gcd machine must make a critical test before it

uses any instruction of the form x + x — or « x + «. Suppose M performs such an

instruction when it is applied to inputs (a, b); these inputs determine a computation path

defining constants a and [3 such that the other register, y, contains «a+3b when © — v— 2

or x « r+ is performed. If no critical tests have occurred, the same computation path will

be followed when the inputs are (a bm + 1, ab*m) and (a? bm, ab*m + 1), for a.11 sufficiently
large m. But ged(a? bm + 1, ab®*m) = ged(a®bm, ab*m + 1) = 1; hence y must contain an

odd value when Af is applied to (a?bm + 1, ab*m) or (a*bm, ab*m + 1). (If y is even when
ris being set, to * — r or x + x, both registers will contain an even value; hence A cannot

subsequently output ‘1’.) Hence afa?bm + 1) + F(ab*m) and a(a?bdbm) + B(ab>m + 1) are

13

oclcl, for all sufficiently large m; hence « and J are both odd. But ged(2a? bm + 1,2ab* m + 1)

is odd, and the inputs (2a* bm+ 1, 2ab*m + 1) follow the same path as (a, b) for all large m;:
hence a(2a*bm + 1) + B(2b*m + 1) must be oclcl, a contradiction.

Therefore every %-register gcd machine must make a critical test, before which it has

performed only operations of the forms x «— © £ y, y « y & x. Such operations correspond

to the transformations considered in the lemma..

Suppose A is applied to the inputs (n. 1). When the first critical test occurs, we

have x = y; and ged(x,y) = ged(n, 1) = 1, because ged(a, y) is preserved by all of the

operations Xx + X + y or y « y * x that have been performed so far. Thus x = y = +1;

the algorithm must have followed a path from { n, 1} to { 1, 1} in the sense of the lemma.,.
So the algorithm must have performed at least n — 1 operations before reaching the first

critical test. This completes the proof.

Further restrictions. A “minimalist” definition of addition machines would eliminate

the copy operation X « y, because this operation can be achieved by

LX — I. I—X+Yy.

We can also simplify the if tests, allowing only the one-register form ‘if x > 0°, because a

general two-register comparison if x > y then « else 3’ can be replaced by

X +--X-V;

if x > 0 then begin x «— x + y; a end

else begin * «— x + y; J end.

Similarly, we can do away with addition, if we add a new register £, because x « x + y

can be achieved by three subtractions:

§—&—¢&; {= €—y; Te—zT—¢.

Addition cannot be eliminated without increasing the number of registers, in general.

For we can prove that the operation x; « x1 + To cannot be achieved by any sequence of

operations of the forms z; « z; — xj, for 1 <:.j <r. The proof can be formulated in

matrix theory as follows:

Let E;; be the matrix that is all zeroes except for a 1 in row i and column j. We

want to show that the matrix I + E,2 cannot be obtained as a product of matrices of the

form I — E;;. Clearly we cannot use the matrices I — E,;, whose determinant is zero: so

we must use I — F;; with 7 # j. But the inverse of I — E,; is I + Ej, when 2 # J. So if

I+En=0a0-Ei;)...0—-Ei.;.)

14

we have, taking inverses,

I — Fy = (I+ Ei.) a (I + Ei;),

which is patently absurd since the right side contains no negative coefficients.

Open questions.

1) Can the upper bound in Theorem 1 be replaced by 8 log, N + [37

2) Can an integer addition machine with only 5 registers compute 2° in O(log x)

operations? Can it compute the quotient |y/z] in O(log y/z) operations?

3) Can an integer addition machine compute z¥ mod z in o((log y)(log z)) operations,
given 0 < x,y < z7

4) Can an integer addition machine sort an arbitrary sequence of positive integers

(q1, 92, — ym) in o((m + log q1 42 Co Gm) log m) steps?

5) Can the powers of 2 in the binary representation of z be computed and output

by an integer addition machine in o(log x)* steps? For example, if 2 = 1.3, the program
should output the numbers S, 4, 1 in some order.

6) Is there an efficient algorithm to determine whether a given r x r matrix of integers

| is representable as a product of matrices of the form [I + Ei?

Acknowledgment. We wish to thank Baruch Schieber for calling our attention to Stock-

meyer’s paper [7].

| 15

References

[1] Donald E. Knuth and Richard H. Bigelow, “Programming languages for automata.”

Journal of the ACM 14 (1967), 615-635.

[2] Donald E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical *Algo-

rithms, (Reading, Mass.: Addison-Wesley 1969).

13] Donald E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching

(Reading, Mass.: Addison-Wesley 1973).

4] Donald E. Iinuth, “Structured programming with goto statements,” Computing Sur-

veys 6 (1974),261-301.

15] Yishay Mansour, Baruch Schieber, and Prasoon Tiwari, “Lower bounds for integer

greatest common divisor computations,” Proc. 29th IEEE Symp. Foundations of Comn-

pu ter Science (1988), 54-63.

[6] Yuri V. Matijasevich, “Enumerable sets are cliophantine,” Dokl. Akad. Nauk SSSR

191 (1970), 279-282; soviet Math. Dokl. 11 (1970), 354-357.

[7] R. L. Rivest, A. Shamir, and L. Adleman, “A met hod for obtaining cligi t a.1 signatures

and public-key cryptosystems,” Comm. ACM 21 (1978), 120-126.

[S] Larry J. Stockmeyer, “Arithmetic versus Boolean operations in idealized register ma-

chines,” IBM Thomas J. Watson Research Center report RC 5954, 21 April 1976.

9] E . Zeckendorf, “keprésentation des nombres naturels par une somme de nombres de

Fibonacci ou de nombres de Lucas,” Bull. Soc. Roy. Sci. Liege 41 (1972),179-182.

16

