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1 The Prefix Operation

We begin by reviewing the basic definitions necessary to understand the prefix and segmented

prefix operations. These operations were first introduced by Schwartz, where they are

referred to as “summing” and “summing by groups” [14].

Let © denote a binary associative operation mapping X x & to XA, for some domain X. Given

n values xg, ..., T,_1 belonging to A, the Prefix operation computes each of the partial sums

vi= x08-.& x;, 0 <1 <n. For example, assume that @ is addition, n = 5, zg = 5, 1 = 2,

Ty, = 6, x3 = 4 and x4 = 9. Then the output of Prefix is yo = 5, y1 = 7, yo = 13, y3 = 17 and

Y4 — 26.

Given an additional n boolean values ag, . . . , a,_1, We can partition the n given x; values into

contiguous intervals in the following manner: an interval begins at each ¢ such that a; = true

and extends up to, but not including, the next highest integer j such that a; = true. The

first interval begins at processor 0 regardless of the value of ag, and the last interval ends

at processor n — 1. The segmented Prefix operation executes a prefix operation over each

interval. Extending the example of the preceding paragraph, assume that as and a4 are true

while ag, a; and az are false. Then the x; values are partitioned into the intervals {zq, Z1},
{z2, 3} and {x4} and the output of the segmented Prefix operation is yo = 5, y1 = 7, yz = 6,
v3 = 10 and y4 = 9.

When we give implementations of the Prefix operation in Section 2, it will be convenient to

assume that there is an identity element for @ in &, which we denote Og. This assumption

can be made without loss of generality because if no such element exists, we can simply

augment the set A with an identity element Og by defining Og @ x = x and x $0, = x for
all x € X.

Definition 1.1 For all pairs of boolean values ag, ay and all xg, v1 € X, let @' denote the

binary operation

(ao, To) a’ (al, 1) = (ao or al, if a; then x else xg P Ty).

The operation @' will be referred to as the segmented @ operation.

Remark 1 The operation @' has identity Og = (false, Og).

Remark 2 The @' operation is not commutative, assuming |X| > 1.

Remark 3 The @' operation is associative.

Remark 4 For k > 0,

(ao,zo) ® +++ @' (ax, xx) = (ap or +++ or ax, T; © ++ S Ty),

where 3 is the highest index less than or equal to k such that a; = true, or 0 if there is no
such index.
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Remark 1 is an immediate consequence of Definition 1.1. For Remark 2, let zg, £1 be distinct

elements ofX and note that (true, To) @ (true, 1) = 1 while (true, 1) @(true, To) = Xp.
Remark 3 follows from the observation that for all boolean values ag, al, a; and zg, 1, T3 € X
we have

/

((a0, Zo) ®' (a1, 71)) &' (a2, 22)

= (ag or al, if ay then xy else xo B x) B® (ag, x7)

= (ao Or dj or ag, if as then xg else if aj then x1 x4 else xg P 1 PB To)

= (ap or (a1 or ag), if (a; or az) then X else xg @ X)
!

= (ao, To) ®' (ay 0r ay, X)
! /

= (ao, zo) @ ((@1,21)® (az, z2)),

where X denotes the conditional expression: if ag then x4 else x; @ x9. Finally, Remark 4

may be easily established by induction on k.

Remarks 3 and 4 demonstrate that any segmented Prefix computation with operator &

mapping X x AX to A is equivalent to an ordinary Prefix computation with operator @’

mapping (Bx X)x (BxX) to Bx X, where B denotes the set of boolean values {true, false}.
The second component of each output pair is the result of the desired segmented Prefix

computation, and the first component indicates whether or not that processor belongs to

an “undefined” interval; it is false at processor 2 if and only if ag, . . . , a, are all false. By

making use of the fact that segmented Prefix is equivalent to ordinary Prefix, we can avoid

coding up a potentially messy direct implementation of segmented Prefix.

2 Network Implementations

In this section, we develop efficient implementations of the Prefix operation for the complete

binary tree, hypercube and shuffle exchange families of networks. We will be concerned

with p-processor network implementations of the Prefix operation where processor 2 initially

contains the value z;, 0 <i < p, and n = p. The computation is considered to be complete

when the partial sum y; = zo @ . . . @ z; has been computed at processor 1, 0 <1 < p.

The model of computation that we adopt for our networks may be defined as follows. Each

processor has an infinite local memory configured in O(logp)-bit words and can perform

the usual set of CPU operations in constant time on word-sized operands. Processors

communicate with one another by sending packets over the links provided by the network.

A packet consists of a single word of data. The complexity of our algorithms will be stated

in terms of time steps. Unless otherwise stated, running times should be assumed to be

accurate to within an additive constant. In a single time step, each processor is allowed

to send and/ or receive at most one packet (I-port communication), and execute a constant

number of CPU operations on local data. We will assume that the z;’s, as well as all partial

sums of the x;’s, are word-sized quantities.

All interprocessor communication in our programs is specified using the pair of routines Send

and Receive. Send takes two arguments: the first specifies the word of data to be transmitted,

2



0111

0011

0001 0101 1001 1101

0000 0010 1010 1100 1110

Figure 1: An inorder complete binary tree.

and the second specifies the id of the destination processor. Receive is a function with one

argument, which specifies the id of the source processor. Once a packet arrives from the

source, the word of data contained in that packet is returned as the value of the function.

In order to comprise a valid source/ destination pair, two processors must be adjacent in the

network.

2.1 Binary Tree

The first implementation of Prefix that we consider is the standard two-pass algorithm for

the inorder complete binary tree. Assume that we are given a tree of size p = 2¢ — 1,
with processors numbered inorder from 0 to 2¢ — 2. An example of such a network is
given in Figure 1, where the processor ids have been written in binary, and d = 4. Our

code for this algorithm assumes that each processor has initialized the variables Root, Leaf,

LeftChild, RightChild and Parent in the following manner. The boolean variable Root (Leaf)

is true if and only if the processor represents the root (a leaf) of the tree. The integer

variables LeftChild, RightChild and Parent hold the ids of the neighboring processors, and

are undefined whenever such a neighbor does not exist.

begin Prefix(, x)
(1) rp, «+ if Leaf then Og else Receive(LeftChild);

(2) xg «— if Leaf then Og else Receive( Right Child);
(3) if not Root then Send (ay, $b x b rr, Parent);
(4) yr, «— if Root then Og else Receive( Parent);
(5) yr YL ® 7 D 7;
(6) if not Leaf then Send(yp,, LeftChild);
(7) if not Leaf then Send(ygr, RightChild);

(8) return(yg);
end Prefix

As mentioned above, the program makes two passes over the tree. The first pass is upward,

from the leaves to the root, and the second pass is downward. For every processor p, let T(p)
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denote the subtree rooted at processor p. Note that the ids of the processors in T(p) form a

contiguous block of integers. During the upward pass, each processor receives the sum of its

left and right subtrees (x1, and zg), computes the sum of T(p), and passes the result to its
parent. During the downward pass, each processor receives from its parent the sum over all

processors with ids less than those in T(p) (yr), computes the sum over all processors with

ids less than those in its right subtree (yr), and sends the appropriate values to its left and
right children (yr, and yr). The correctness of the program is easily established by induction
on the depth of the tree, and it runs in 4 log p (all logarithms in this paper are base 2) time

steps.

Note that in any given time step, only two of the levels of the tree are active, implying that

the algorithm can be pipelined level by level. By initiating a new prefix computation every

second time step, it is possible to perform k Prefix operations on the inorder complete binary

tree in 2k + 4 log p time steps.

2.2 Hypercube

For the hypercube, the following FFT-like computation executes Prefix in logp time steps:

begin Prefix(, 2)
1) yeu

(2) fori«—0tod—1do
(3) Send(y, i);

(4) if Myld, = 0 then
(5) y «—— y @ Receive(i);

(6) else
(7) temp +«— Receive(i);

(8) T «— temp ® T;
(9) y «— temp © y;
(10) end if
(11) end for
(12) return(x);

end Prefix

The variable Myld holds the id of the processor, and Myld, denotes the ith bit of the id
(the least significant bit is bit 0). The source and destination arguments of Send and Receive

specify the bit position in which the two communicating processors differ.

The program runs in logp time steps, and functions in the following manner. In addition

to the partial sums demanded by the Prefix operation, the total sum is computed at every

processor. The local variables x and y accumulate the partial and total sums, respectively.

For a hypercube consisting of a single processor, the computation is trivial. Given p = 24
d > 1, processors with associated x; values, the program first recursively computes partial

and total sums for the upper and lower halves of the values independently, and then exchanges

the total sums between halves. This enables the revised partial sums for the upper half to

be computed, as well as the new total sums.
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Figure 2: Embedding the inorder binary tree in the hypercube.

Unfortunately, the above program does not lead to a pipelined implementation of the Prefix

operation because it uses all of the processors at every time step. To achieve pipelined

speedup we can make use of the dilation 2 inorder complete binary tree embedding [5].
Figure 2 gives this embedding for the case p = 16, where the “extra” processor (with id

p — 1) has been added as an extra level above the root. The edges depicted in Figure 2

are physical hypercube edges. The left child of a non-leaf processor is connected directly to

its parent, while the right child is connected to its parent via the left child. It is easy to

verify that the pipelined algorithm given for the inorder complete binary tree in Section 2.1

can be modified to run in the same time bound on the dilation 2 inorder complete binary

tree embedding. In particular, note that processor p — 1 is in an appropriate location to

receive the sum over all of the other processors. To summarize, we have shown that k Prefix

operations can be performed in 2k + 4 logp time steps on the hypercube.

2.3 Shuffle Exchange

The hypercube code given in the preceding section for performing a single Prefix operation

can be easily adapted to the shuffle exchange:

begin Prefix(&, x)

(1) yea
(2) repeat d times

(3) Send(y, Exchange);
(4) if Myld, = 0 then
(5) y «—— vy @ Receive(Exchange);
(6) else
(7) temp —— Receive( Exchange);
(8) x +—— temp P x;

5



Figure 3: A shuffle exchange embedding for the high-numbered processors.

(9) y «— temp Dy;
(10) end if
(11) Send(x, Unshuffle);
(12) x «— Receive( Shuffle);
(13) Send(y, Unshuffle);

(14) y «— Receive( Shuffle);
(15) end repeat

(16) return(x);
end Prefix

The above program runs in 3 logp time steps. As we saw for the hypercube, however, a

different approach is needed in order to obtain a pipelined implementation of the Prefix

operation. Unfortunately, it is not possible to embed the morder complete binary tree in

the shuffle exchange with constant dilation. Instead, we make use of the dilation 2 complete

binary tree embeddings depicted, for the case p = 16, in Figures 3 and 4. The leaves of the

tree in Figure 3 are the high-numbered processors (those with ids in the range p/2 to p — 1),
numbered inorder. In this embedding, the id of the left child of an internal processor is the

shuffle of the id of its parent, and siblings communicate via the exchange connection. The

embedding of Figure 4 is defined in a similar fashion, and has the low-numbered processors

(0 to p/2 — 1) at its leaves.

We can make use of these embeddings to obtain a pipelined implementation of k Prefix

operations as follows. First, use the embedding of Figure 3 to compute the k sets of partial

sums over the high-numbered processors. This takes 2k + 4 logp time steps. Similarly,

the embedding of Figure 4 can be used to perform k prefix sums over the low-numbered

processors in 2k + 4 logp time steps. At this point, all that remains to be done is to

broadcast, in a pipelined fashion, the k total sums over the low-numbered processors to

the p/2 high-numbered processors, and to add these values to the partial sums computed

earlier. This last phase can be performed in 2k + 2 log p time steps using the embedding of

Figure 4 (note that the desired sums are already available at the root), so k Prefix operations

can be executed in 6k + 10 logp time steps on the perfect shuffle.
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Figure 4: A shuffle exchange embedding for the low-numbered processors.

2.4 A Useful Variation

In Section 4 we will make use of a variant of the Prefix operation, Prefix’, defined as follows.

Rather than computing xo®- . -@x; at processor i, 0 <i < p, Prefix’ outputs Og at processor 0

and zo@-..@P x;_7 at processor i, 1 <1 < p. This is sometimes more convenient, particularly

when the operator @ is not invertible. Note that all of our implementations of Prefix may be

trivially modified to implement Prefix’ with precisely the same time bounds. For example, in

the complete binary tree program of S&ion 2.1, it suffices to change the return value from

yr to yL @ zr.

3 Data Distribution

Consider the binary associative operator é defined over X by z®y = x, for all x, y € X. This

is sometimes referred to as the Copy operator. Observe that the effect of applying Prefix with

the Copy operator is to perform a broadcast of a single value from processor 0 to all other

processors. Of course, there are simpler techniques for broadcasting a single value over the

processors of any of the networks we have considered. However, combining this observation

with the results of the previous section immediately implies that k segmented broadcasts

can be executed in 2k + 4 log p time steps on the tree or hypercube, and in 6k + 10 log p time

steps on the perfect shuffle.

In order to fully illustrate the techniques discussed in Section 1, we now study the

implementation of segmented Prefix with the Copy operation in greater detail. As stated

in Section 1, processor i initially holds the boolean value a; and z; € A, 0 <i < p. Note

that under the Copy operation the only relevant x;’s are those for which the corresponding

a; 1s true.

Clearly, there is no identity element for the Copy operation in X. To remedy this situation,

we extend the domain of Copy from AX to B x A and define every pair with first component

false, say, to be an identity element. In practice, this corresponds to prepending a single bit



b;, to each of the z;’s. Formally, we have

(bo, xo) B (br, x1) = (bo or by, if bg then zp else x1),

for all bg, by € B and xg, 1 € X.

In order to reduce segmented Prefix with operator @ = Copy to ordinary Prefix with operator

@' = Copy’, we define @’ as follows:

(ao, (bo, To)) AP’ (ay, (by, 1)) = (ao or ap, if aq then (by, 1) else (bo, To) $ (by, r1)).

Dropping the inner parentheses and simplifying, this amounts to

(ag, bo, To) Te (ay, by, zy) — (aq or as,

if a; then b; else bg or by,

if a; or not bg then x; else xo).

Note that the above formulation allows bit pipelining in the sense described by Blelloch [6].
In other words, as each bit of the two operands is received, the next output bit can be

computed. This holds not only for the Copy operator, but also for any other single-pass

operator, as defined in [6].

Finally, we observe that the data distribution operation defined by Ullman [16] is equivalent
to a segmented Prefix operation with the Copy operator. Thus, the techniques outlined in

this paper immediately lead to efficient pipelined implementations of this primitive for the

complete inorder binary tree, hypercube and shuffle exchange network families.

4 Sorting on a Pipelined Hypercube

In this section, we describe a simplified implementation of the optimal merging algorithm of

Varman and Doshi [17], and show how this can be used to develop a pipelined version of the

sorting algorithm of Nassimi and Sahni [10] for a pipelined model of the hypercube.

The Sort operation is defined as follows. Given n O(logp)-bit values, with n/p] or [n/p] at
any processor, rearrange the n values so that every value in processor i is less than or equal

to every value in processor 7 whenever 0 <i < 3 < p. In addition, we require that there

be n/p] or [n/pyalues at any processor, and that the set of values within any particular
processor be sorted. There has been a great deal of previous research related to the problem

of sorting on the hypercube. For the l-port model of the hypercube that we have been

considering thus far, see [1], [4], [7], [9], [10] and [12]. For examples of results based on other
assumptions, we refer the reader to [13], [15], [17] and [18].

The time bounds for the merging and sorting algorithms described in this section do not

apply to the l-port model of computation that we have been considering up to this point.

Instead, we will make use of a restricted form of the less realistic d-port model, in which

a processor can send and/or receive a packet from each of its logp neighbors in a single

time step. This model, which we refer to as the pipelined hypercube model, was originally

8



defined by Varman and Doshi [17], and we refer the reader to their paper for both the strict
definition as well as the hardware implementation details.

We only need the pipelined model of the hypercube for performing pipelined inverse

concentration routes. It is interesting to note that we do not require pipelined concentration

routes, nor do we require the pipelined inverse concentration with copy operation of Varman

and Doshi. Concentration and inverse concentration routes were defined by Nassimi and

Sahni [10], and it is easy to show that k such operations can be performed in k + logp time
steps on the pipelined hypercube model. Furthermore, there is no hope of achieving this

asymptotic time bound on the l-port model since there is a lower bound of Q(k log!/? p)
time steps in this case. To prove this lower bound, consider a set of kK monotone routes for

which the source processors are exactly those with strictly more O’s than I’s in their ids and

the destination processors are those with more I's than 0’s. In such a case, (kp) packets
must pass through the O(plog='%p) processors with an equal number of O’s and 1's (or one
more 0 than 1, say, if log p is odd), which implies a lower bound of Q( k log!/? p) time steps
for performing k monotone routes. Since a monotone route is equivalent to a concentration

route followed by an inverse concentration, and these operations have equal complexity, this

lower bound applies to the pipelined concentration and inverse concentration operations as

well.

We now describe a pipelined algorithm for merging two sorted lists X and Y, each of length

pk, on p processors. The algorithm is similar to that proposed by Varman and Doshi [ 17],
but is somewhat simpler. The optimal merging algorithm of Anderson, Mayr and Warmuth

for the EREW PRAM also takes a similar approach [2]. For expository purposes, we make
the (avoidable) assumption that all of the 2pk input values are distinct. For both X and

Y, the values with ranks (numbered from 0) in the range ik to (i + 1)k — 1 are initially
stored at processor i, 0 <i < p. The two ordered sets of k values located at processor i will

be referred to as X; and Y;, respectively. Let z; denote the least element of X;, and let y;
denote the greatest element of Y;, 0 <i < p. Let X and Y' denote the set of all z;’s and

y;’s, respectively. Let Z denote the sorted list of length 2pk that results from merging X and

Y. Those elements of Z with ranks in the range 2:k to 2(z + 1)k — 1, denoted Z;, must be
routed to processor i by the end of the computation, 0 <i < p, and must be sorted locally.

Our approach is to first merge X’ and Y’, and then use the resulting list to guide the merging

of X and Y. Let Z’ denote the sorted list of length 2p that results from merging X and Y’.

Let z; denote the value with rank j in 2’, 0 <j < 2p. Let Z; denote the set of k values
associated with zj, that is, either 2; = x; for some z; € X’ and Z; = X;, or Zz; = YY; for
some y; € Y’ and Z; = Y,. Note that if 2; € X’ then the rank of z; in Z is between jk and
(7 + 1)k — 1, inclusive. The exact rank of z; in Z can be determined by computing its rank
in the set Y;, where y; is the least element of Y’ exceeding 2;. Similarly, if 2; € Y’ then the

rank of 2; in Z is between jk and (7 + 1)k — 1, and the exact rank of z; in Z depends upon
the set X;, where x; is the largest element of X’ that is less than z;. Furthermore, it is easy

to check that the set Z; is contained in the union of Z;., Zy.,,, the set X; corresponding to
the largest x; that is less than zp;, and the set Y; corresponding to the smallest y; that is

greater than z9;43. These observations lead to the following pipelined merging algorithm.

9



Algorithm Merge

1. Reverse the list Y’, that is, route y; to processor p —i — 1, 0 <i < p. This takes log p

time steps.

2. Merge X and Y by simulating a bitonic merge over 2p processors. Record the data

movements to facilitate the “unmerge” of step 3. This takes 2 logp time steps.

3. Route the rank of each value in Z’ back to the processor which originally held that

value. This can be done in 2 log p time steps by following the paths recorded in step 2

in the reverse direction.

4. Route each set X; to the processor that held x; after step 2, 0 <i < p. The id

of that processor can be computed from the rank received by processor i in step 3.

The routing can be performed in 2k + 2 log p time steps using a pipelined inverse

concentration. Route the Y;’s in a similar fashion, for a total cost of 4k + 4 logp time

steps.

5. Assuming the set X; was routed to processor J; in the previous step, broadcast X; to

all processors with ids in the range j; + 1 to 7;41, 0 <i < p. This can be done in

2k + 4 logp time steps with a single application of the Prefix’ operation, as described

in Section 2.

6. Assuming the set Y; was routed to processor j; in the previous step, broadcast Y; to

all processors with ids in the range y;_y to 3; — 1, 0 <i < p. This can be done with a

single application of a “backwards” version of Prefix’, and takes 2k + 4 log p time steps.

7. At this point, processor j contains a copy of Lys Lyirts the largest X; with z; < 2; and
the smallest Y; with y; > 29541, 0 <j < p. As observed above, the union of these sets

contains the desired set Z;, and the values to be discarded (i.e., those not belonging

to Z;) can be determined by computing the exact rank of either zy; or zp;44. These
sets can be merged, and the rank computation performed, with O(k) local operations.

Our definition of a time step allows these local operations to be interleaved with the

computations of steps 5 and 6 at no extra cost.

Note that only step 4 uses the power of the pipelined model. The total running time of Merge

is 8 + 17 logp time steps. Now consider the case in which 2p processors are available to

perform the merge, where we assume that X; is initially stored at processor i, Y; is initially

stored at processor 2p — i — 1, and Z; is to be output at processor j, 0 <i <p, 0 Lj < 2p.
In this case, step 1 is unnecessary, and the cost of each of the steps 2, 3 and 4 is halved,

while the cost of the remaining steps is unchanged. Thus, the total cost of Merge with 2p

processors is 6k + 12 logp time steps. Note that for k = (log p), this running time is within
a constant factor of optimal. Furthermore, as observed by Varman and Doshi, this optimal

merging routine immediately implies an optimal algorithm for sorting when the number of

values to be sorted, n, exceeds the number of processors, p, by a factor k that is §2(log p).
The idea is to sort the set of k values at each processor locally, and then to merge sorted

subcubes repeatedly until the entire hypercube has been sorted. At each level, even subcubes
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are sorted in ascending order and odd subcubes are sorted in descending order. The running

time of this algorithm, which we refer to as MergeSort, is

Y (6k + 12i) = 6klogp + O(log’p).
0<i<logp

As mentioned above, this running time is optimal for k = Q(logp).

We now describe a pipelined version of the multi-way merging procedure of Nassimi and

Sahni [10] that runs on the pipelined hypercube. The input consists of 2! sorted lists of
length k2™, and the output is a single sorted list of length k2!%™ The merging is performed
in O(k + log p) time steps on a hypercube with p = 22+m processors. Let the ith input list
be denoted XxX 0 <ic< 2! and let the set of k elements of X' with ranks between jk and
G+ 1) k — 1 (inclusive) be denoted Xi, 0_<j< 2”. The set X; is initially stored at processor
12™ + j. Let the output list be denoted X. At the end of the merging process, the elements

of X with ranks between j k and (j + 1)k — 1 (inclusive) should be stored at processor j,

0 <j< Hm,

It is useful to view the processors of the given hypercube as forming a 2! by lm array,
where the processor in row 1 and column j has id 12!™ + i (row-major order). Note that all

of the X's are stored in row 0. In fact, each processor in row 0 contains exactly one set X:.
Our algorithm makes use of pipelined broadcast and sum operations over entire subcubes.

Formally, a pipelined broadcast operation takes k values stored at a single processor and

broadcasts them over the entire subcube. For a pipelined sum operation, processor i initially

holds k values a;;, 0 <i < p, 0 <j < k. The output is the k sums } ogi, @ij, 0 <j < Kk,
all of which are output at a single designated processor. Although suck operations can be

performed using Prefix, other implementations exist which are more efficient by a constant

factor. For example, using the multiple spanning binomial tree (MSBT) embedding of Ho

and Johnsson [8] it is possible to perform k broadcasts in k + logp time steps. Similarly,
k sums can be performed in k + logp time steps. Note that although these operations are

pipelined, they run on the l-port model and thus do not require the additional power of the

pipelined model.

Algorithm MultiWayMerge

1. Broadcast X: to all of the processors in column 22™ + j, 0 <i < 2! 0 <j <2”. Each
of the columns is an independent subcube of dimension [. Thus, the broadcasts can be

performed in k + [ time steps using an MSBT embedding within each column.

2. Replicate list X* across the ith row, 0 <i < 2!. In other words, route a copy of X: to
each column of the ith row that is congruent to j mod 2”. This amounts to performing

pipelined broadcasts over subcubes of dimension [, which can be done in k + [ time

steps using the MSBT embedding.

3. Merge the lists X* and X’ using the jth block of 2” processors of row i (i.e., columns

32" to G+ 1)2™m —=1),0 <i, j < 2' i # j. This takes 8k + 17m time steps.
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4. In the jth block of 2” processors of row i, “unmerge” the rank of each element of X* in

X7 (this is the rank of that value in X* U X? minus its rank in X;), 0 <i, J < 2! i * 73.
In other words, route the rank of each value back to the processor that contained the

value before step 3. This is a pipelined inverse concentration, and can be performed

in k + m time steps. Where i = 7, simply label each value with its rank in X".

5. Compute the rank of every value in X. The processors of row i are used to perform this

computation for the elements of the set Xt 0 <i < 2! For each set X: , we perform
a pipelined sum over a subcube of dimension [, adding the ranks computed in step 4

and routing the results to the first block of 2” processors in each row. This takes k + {

time steps using the MSBT embedding.

6. In row i, route the elements of X; to the correct output column (given by the floor

of the rank computed in step 5 divided by k), 0 <i < 2’. This is a pipelined inverse

concentration in a subcube of dimension [ + m, and takes k + | + m time steps.

7. Each column of the array now contains k values. Route these values to the top of

the column (row 0). In terms of data paths, this is essentially an inverse pipelined

broadcast operation over a subcube of dimension [, and it can be performed in k + [

time steps using the MSBT embedding.

Only steps 3, 4 and 6 require the power of the pipelined model. Summing all of the costs

stated above, the total running time of MultiWayMerge is readily seen to be 14k + 5+ 19m

time steps.

By repeatedly applying MultiWayMerge on successively larger subcubes, we can obtain a fast

sorting algorithm for the case n < p logp. The running time of this algorithm, which we

refer to as MultiWayMergeSort, will be shown to be O(log” p/ log((plog p)/n))), as opposed to
O(log” p/ log(p/n)) for the sorting algorithm of Nassimi and Sahni. For the interesting case
n = p, the running time of MultiWayMergeSort is O(log? p/ loglogp), a slight asymptotic
improvement over that of Batcher’s bitonic sort. It must be emphasized, however, that

MultiWayMergeSort only runs on the pipelined model of the hypercube.

We now give a more formal description of the MultiWayMergeSort algorithm, and analyze

its time complexity. The algorithm is designed to sort n = k2™ values on a hypercube with

p = 2!T™ processors. It is useful to view the processors as being arranged in a 2’ by 2” array,

where the processor in row i and column j has id 22™ + j (row-major order).

Algorithm MultiWayMergeSort

1. Each column of the array contains k values. Route all of these to the top of the column

(row 0). As in step 7 of MultiWayMerge, this takes k + [ time steps.

2. At every processor in row 0, sort the set of £ values using an efficient sequential sorting

routine. This takes O(klog k) time steps.

3. Repeatedly call MultiWayMerge. The length of the sorted lists increases by a factor of

2! after each call. Thus, after m/l]iterations all of the values have been sorted. The
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cost of the ith iteration is 14k + 5{+ 19:¢/ time steps, for a total cost of approximately

(14k + 41 + 12m)m/l time steps.

4. The values have been sorted, but they are not configured appropriately (i.e., all of the

values are in row 0). All of the values can be routed to the correct output locations

using k pipelined inverse concentration routes, which takes k + logp time steps.

Steps 3 and 4 make use of the power of the pipelined model. The total running time

of MultiWayMergeSort is minimized (to within a constant factor) by setting k = logp,
and for this choice of k the running time is dominated by the cost of step 3. Observing

that [ = log(pk/n) and m = logp — [ < logp, we find that for k = logp the algorithm

runs in % log” p/log((plogp)/n) + O(logp) time steps. For the case n = p, we can set
k = log p/ log logp and reduce the dominant term in the running time to H log? p/ log log p,
at the expense of increasing the error term to O((logp/ loglog p)?).

5 Concluding Remarks

In this paper, we have presented simple and efficient pipelined implementations for the Prefix

operation on the complete inorder binary tree, hypercube and shuffle exchange families of

networks. This led immediately to an elegant pipelined implementation of Ullman’s data

distribution primitive. A variant of the Prefix was used to obtain a simplified implementation

of Varman and Doshi’s optimal merging algorithm for the pipelined model of the hypercube.

In order to better assess the practical speed of the various algorithms presented in this paper,

we have computed the coefficient on the leading term of the running time in each case. It

is quite possible that one or more of the moderately large coefficients in Section 4 could be

improved with only minor modifications to the code.

It should be mentioned that for permutation routing, an important special case of the sorting

problem, there is a much simpler O(log” p/ loglogp) time algorithm for the case n = p than
MultiWay MergeSort [11]. The idea is to route packets in a greedy fashion over sets of log log p
dimensions at a time. Each set of routings produces a load balancing problem in which there

may be as many as logp packets at any one processor, and the objective is to redistribute

the packets so that there is exactly one at each processor. It is a worthwhile exercise to

show how this redistribution can be performed in O(logp) time on the pipelined hypercube
by making use of the pipelined prefix, broadcast and concentration operations discussed in

this paper.
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