
December 1988 Report No. STAN-CS-88-1233

A Procedural Semantics for

Well Founded Negation
in Logic Programs

by

Kenneth A. Ross

Department of Computer Science

Stanford University

Stanford, California 94305

A Procedural Semantics for

Well Founded Negation

in Logic Programs

Kenneth A. Ross

Stanford University

November 1988

Abstract

We introduce global SLS-resolution, a procedural semantics for well-founded

negation as defined by Van Gelder, Ross and Schlipf. Global SLS-resolution

extends Przymusinski’s SLS-resolution, and may be applied to all programs;

whether locally stratified or not.! Global SLS-resolution is defined in terms
of global trees, a new data structure representing the dependence of goals on

derived negative subgoals. We prove that global SLS-resolution is sound with

respect to the well-founded semantics, and complete for non-floundering queries.

This research was supported by the National Science Foundation under grant IRI-87-

22886, by a grant from IBM Corporation, and by the United States Air Force Office

of Scientific Research under contract AFOSR-88-0266.

In recent unpublished work, Przymusinski has independently described a similar extension of
SLS-resolution. See Section 3 for further discussion.

1

1 Introduction

Much recent work has been concerned with negation in logic programs. Extending

Horn clause programs to allow negation has not been a straightforward task, and

various alternative semantics have been proposed. These proposals have come from

both the logic programming community and the deductive database community, and

the various approaches attempt to give an intuitive meaning to negation incorporating

some form of default reasoning.

The first approach, due to Clark [Cla78], was to define the “completion” of a
program. The semantics of the program is then given by the logical consequences

of the completion. For a detailed description of this approach see [She85, Shes,
Llo87]. An alternative approach was taken by Fitting [Fit85] and Kunen [Kun87],
who interpreted the completion in terms of 3-valued logic in order to overcome some

anomalies with the completion when interpreted in a 2-valued sense.

Based on the completion, Clark proposed a top-down procedural semantics known

as “Negation as Failure,” which when combined with SLD-resolution [VEKT76] is
referred to as SLDNF-resolution. This method is sound with respect to the completion

of the program, and is complete for Horn programs (possibly with negative subgoals

in the goal only).

Another approach was taken by Przymusinski [Prz88c|. Przymusinski defined
the class of “perfect models” of a program, and argued that the semantics of the

program be given by the logical consequences of the (unique) perfect model. For

locally stratified programs (and hence also for stratified programs (CHS5, ABWSS,
VG86)) there is guaranteed to exist a unique perfect model, so the semantics 1s well-

, defined in these cases.

Based on the perfect model approach, Przymusinski introduced SLS-resolution

[Prz87]. SLS-resolution is a top-down procedural semantics that uses an extension of
SLD-resolution to answer queries. Przymusinski showed that for stratified programs

with non-floundering queries, SLS-resolution is sound and complete with respect to

the perfect model of the program. Unfortunately, SLS-resolution is not effective.

However it was argued in [Prz87] that SLS-resolution may be considered a theoretical
construct, an ideal query answering procedure to which various effective approxima-

tions may be compared.

*Various other approaches have been proposed. Minker’s “Generalized Closed

World Assumption” [Min82} which is based on minimal models is closely related
to McCarthy’s “Circumscription” [McC80]. Gelfond and Lifschitz have defined the
class of “Stable Models,” and argued that the semantics of a program be determined

by these models [GL88]. In the context of disjunctive databases, Ross and Topor
have introduced the ‘(Disjunctive Database Rule” [RT87].

As a development of these approaches, Van Gelder, Ross and Schlipf [VGRS88a|
introduced the “Well-Founded Semantics” for logic programs with negation. For a

discussion of the relationship between the well-founded semantics and the various

other semantics see [VGRS88al.

| 2

The purpose of this paper is to present a top-down procedural implementation of

the well-founded semantics. We call this procedure, which extends SLS-resolution,

“Global SLS-resolution.” We show that for arbitrary programs with non-floundering

queries, global SLS-resolution is sound and complete with respect to the well-founded

model of the (augmented) program. (What we refer to as completeness some authors

call “partial completeness” to indicate possible non-termination.) As with SLS-

resolution, global SLS-resolution is not effective in general, but may be considered a

theoretical construct.

1.1 Terminology

In this section we describe our notation, and the class of logic programs we consider.

Where possible, we use the standard terminology of [L1o87].

Definition 1.1: A normal program clause is a clause of the form

A Ly, cen L,

where A is an atom, and Ly,..., L, are (positive or negative) literals. We refer to A

as the head of the clause and Lq,..., Ln as the body of the clause. All variabies are

assumed to be universally quantified at the front of the clause, and the commas in

the body denote conjunction. If the body of the rule is empty, we may omit the “«"

symbol.

A normal logic program (abbreviated to program hereafter) is a finite set of pro-

gram clauses. U

Definition 1.2: The Herbrand universe of a program P is the set of all variable-free

terms that may be formed from the constants and function symbols appearing in P.

If there are no constants in P then we treat P as if it had a single extra constant

symbol. OU

Definition 1.3: A query is a set of literals. We interpret a query Q as the conjunction

of the literals it contains. We use the notation « Q to denote a goal, so that resolution

may be applied directly to the goal. A ground substitution for a goal G is a substitution

"of terms from the Herbrand universe of the program for all the variables in G. ¢ I

Definition 1.4: A computation rule is a rule for selecting one or more literals from a

query. Note that it may depend on the previous queries as well as the current query.

cl

Definition 1.5: The Herbrand instantiation of a logic program is the set of rules

obtained by substituting terms in the Herbrand universe for all the variables in

each rule in every possible way. An instantiated rule is an element of the Herbrand
instantiation. [J

3

Definition 1.6: Let S be a set of literals. We denote the set formed by taking the

| complement of each literal in S by — . S.

eo We say that the literal g is inconsistent with S if g € =. §.

eo Sects of literals R and S are inconsistent if some literal in R is inconsistent with

S.

e A set of literals is inconsistent if it is inconsistent with itself; otherwise it is

consistent.

The set of positive literals in S is denoted by pos(S), and the set of negative literals
by neg(S). O

Definition 1.7: Given a program P, a partial interpretation I is a consistent set of

literals whose atoms are in the Herbrand base of P. A rotal interpretation is a partial

interpretation that contains every atom in the Herbrand base, possibly negated. (Note

that ours is a “3-valued” definition of “interpretation.)

A total models a total interpretation such that every instantiated rule is satisfied.

A partial model is a partial interpretation that can be extended to a total model. «I

2 Unfounded Sets and the Well-Founded Seman-

- t1Cs

In this section we present the definition of the well-founded semantics for logic

programs. For a more detailed presentation with examples see [VGRS88a).

"Definition 2.1: Let P be a program and H its Herbrand base. Let I be a given
partial interpretation. We say A C H is an unfounded set of P with respect to I if

each atom p & A satisfies the following condition: For each (Herbrand) instantiated

rule » of P whose head is p, at least one of the following holds:

I. The complement of some literal in the body of ris in I.

2. Some positive literal in the body of 7 is in A.

A literal that makes either of the above conditions true is called a witness of unus-

ability for rule r with respect to I. «I

Definition 2.2: The greatest unfounded set of P with respect to I, denoted by Up(I),

is the union of all sets that are unfounded with respect to I. (The “greatest unfounded

set” is easily seen to be an unfounded set.) * I

Definition 2.3: Mappings Tp, Up and Wp of partial interpretations to partial in-

terpretations are defined as follows.

. p € Tp(I) if and only if there is some (Herbrand) instantiated rule » of P such

that » has head p and each literal in the body of r is in I.

4

oe Up() is the greatest unfounded set of P with respect to I, as in Definition 2.2.

- We(I) = Tp(D) u ~- Up(D.

It is straightforward to show that Wp is monotonic, and so has a least fixpoint.

We denote this least fixpoint by Mw r(P), and call this the well-founded (partial)
model of P.?2 Note that Mw g(P) is a “three-valued model.” A ground atom A may

appear positively, negatively or not at all in Mwpg(P).
For ground queries Q = {P1,..., Pry “1: - . » “Gm}, Mwe(P) = Q if and only if

Q C Mwr(P). Also Mwr(P) = —@Q (the negation of the conjunction of elements of

@) if and only if either some g; or some —p; is in Mwr(P).
We write Mwr(P) = V@, where Q is a query or negated query, possibly containing

variables, to mean Mwr(P) = Qa for every ground substitution a of terms from
the Herbrand universe for the variables of Q. We write Mwp(P) = 3Q, to mean
Mwr(P) |= Qa for some ground substitution a. Adopting such a definition of “I=”
is equivalent to considering only Herbrand models of Mwr(P). Restricting attention
to Herbrand models of the augmented program is justified in Appendix A.

We now give an alternative definition of the well-founded partial model that has

technical advantages for the proofs of our results. Define

Te(I) = Te(I) u I.

Since T is monotonic, so is T. Let Vp be defined by

00 =

Ve(I) = (U Tp(1)U = up).

Again Vp is monotonic, and has a least fixpoint. We can construct the least fixpoint

of Vp by the following transfinite iteration.

Definition 2.4: Let a and B be countable ordinals. The partial interpretations I,

and [* are defined recursively by

1. For limit ordinal «a,

I, = I
« Ln B

i Note that 0 is a limit ordinal, and Io = 0.

2. For successor ordinal a + 1,

la+1 = Vp(1a)

3. Finally, define

[7 = JU I,

Following [Mos74], for any literal p in I”, we define the stage of p (written stage,) to
be the least ordinal a such that p € I,. The above definition implies that the stage

1s always a successor ordinal for literals in 77. OU

For a justification that it is a partial model see [VGRS88al.

9

It is straightforward to show that the sequence of partial interpretations I, is

monotonically increasing, i.e., Ig C I, if 8 < a.

Lemma 2.1: I” is the least fixpoint of Vp, and is equal to Mwyg(P).
Proof: That I® is the least fixpoint of Vp is a consequence of classical fixpoint results

of Tarski for monotonic operators over complete lattices. It is clear by the definitions

of Vp and Wp that for every partial interpretation I, Wp(I) C Vp(I), and hence

We now define a sequence of partial interpretations that is similar to the sequence

of Definition 2.4, except that we iterate Wp rather than Vp. Let a and 3 be countable

ordinals. The sets I and Mwr(P) of partial interpretations are defined recursively
by

1. For limit ordinal a, I] = 52 Ig. 0 is a limit ordinal, and Ip = 0.<a

2. For successor ordinal a + 1, I]; = Wp(I!)

3. Finally, Mwr(P) =U I
Lo]

From the definitions of I, and I, it is easily shown by induction that I, € I |
where wa is the ordinal product of w and a. The proof uses the observation that T

is continuous, and hence has closure ordinal w. Hence I” C Mwr(P), and the result
follows. ~

3 Global Trees and Global SLS-Resolution

. In this section we define SLP-trees, which form the basis of the definition of Global

Trees. These in turn form the basis of the definition of global SLS-resolution.

Definition 3.1: Let R be a computation rule. We say that R 1s safe if 1t never

selects a non-ground negative literal from a query. We say that R is positivistic if

it selects positive literals ahead of negative ones. A positivistic rule R 1s negatively

parallel if given a query containing only negative literals, it selects all (and only)

the ground negative literals appearing in the query. The positivistic and negatively

parallel conditions imply safety; a positivistic and negatively parallel rule is said to

be *preferential. * I

In order to achieve soundness in a derivation, we require the computation rule to

be safe. As we shall see, in order to achieve completeness of global SLS-resolution

with respect to the well-founded semantics we will require a positivistic and negatively

parallel computation rule. We now define SLP-trees. The “SLP” stands for “Linear

resolution using a Positivistic Selection rule.”

Definition 3.2: (SLP-trees) Let G be the goal « Q and let R be a positivistic

computation rule. We define the SLP-tree Tg for G. The root node of Ig is G. If

the goal H =« Q’ is any node of Tg then its children are obtained as follows:

6

eo If Q contains a positive literal then the literal L selected by R from Q’ must

be positive. In this case, the children of H are all goals K that can be obtained

by resolving H with (a variant of) one of the program clauses over the literal L

using most general unifiers. If there is no such K then H has no children, and
is a dead leaf.

eo If Q’ is empty, or contains only negative subgoals then Q’ is an active leaf.

A branch of Tg is an acyclic path from the root of Tg. We associate with each active

leaf L its computed most general unifier, which is the composition of the most general

unifiers used along the branch to L. «I

See Example 3.1 for examples of SLP-trees. We now define the global tree for a

goal in terms of SLP-trees. The global tree may be thought of as an “OR/ NOR” tree

in the style of AND/ OR trees.

Definition 3.3: We define the global tree I'¢ for a goal G. The nodes of 'g are

of three types: negation nodes, tree nodes, and non-ground nodes. Tree nodes are

actually SLP-trees for intermediate goals. The root of I'g is the SIP-tree for the goal
G. An internal tree node is a tree node that is not the root.

Let Tyg be any tree node of I'g. The children of Tx are negation nodes, one

corresponding to each active leaf of Tg.

Let J be any negation node, corresponding to the active leaf « Q. Let Q =

{-¢q1,...,7q.} where n 2 0. J has n children, one corresponding to each g;. For

i =1,...,n, if g; is ground then the child corresponding to g; is the tree node T._g;;
otherwise the corresponding child is a non-ground node. Non-ground nodes have no

children.

Every node has associated with it a status (either successful, failed, floundered or

indeterminate) according to the following rules. Successful and failed nodes also have

an associated level.

I. Every non-ground node is floundered.

2. If some child of a negation node J is a successful tree node, then we say that J

is failed. The level of J is the minimum level of all its successful children.

3. If every child of a negation node J is a failed tree node, or if J has no children,

then we say J is successful. The level of J is the least ordinal upper bound of
the levels of the children of J. (If J has no children, then it has level 0.)

4. If at least one child of a negation node J is a floundered node, and all children

of J are not successful, then we say that J is floundered.

5. If every child of a tree node T is a failed negation node, or if T is a leaf of ['g

(i.e. T has no active leaves) then we say T is failed. The level of T is a + 1,

where a is the least ordinal upper bound of the levels of the children of T. (T

has level 1 if it has no children.)

7

6. If some child of a tree node T is a successful negation node, then we say T is

| successful. An internal tree node T has level one more that the minimum level

of all its successful children. The root tree node may have several associated

levels, one for each successful child; the level of the root tree node with respect

to such a successful child is one more than the level of the child.

7. If at least one child of a tree node T is a floundered negation node, then we say

. that T 1s floundered.

8. Any node that is successful, failed or floundered according to the above rules is

said to be well determined. Any node that is not well determined is said to be
indeterminate. * I

See Figure 4 in Example 3.1 for an example of a global tree. Note that the

definition of the global tree itself is top-down, but that the status of the nodes as

successful, failed or floundered is defined bottom-up. The correspondence between

the level of a goal and the stage a literal is put in to the well founded model by

iterating Vp will be discussed in Section 4.

Let L be an active leaf of a tree node in I'q¢. We may say that L is successful,

failed, floundered or indeterminate if the corresponding negation node is respectively

successful, failed, floundered or indeterminate. We may also say that the goal G is

successful, failed, floundered or indeterminate if Tg is respectively successful, failed,

floundered or indeterminate in I'g.

Definition 3.4: Let G be a goal. A success&Z branch of Tg is a branch of Ig that

ends at a successful leaf. An answer substitution for G is given by 8 = 6:68, . . . 6,

where the 8; are the most general unifiers used at each step along a successful branch

* of Tg. In other words, an answer substitution is the computed most general unifier
at a successful leaf. Cl

A tree node may be both successful and floundered, although no other pair of

statuses is possible for a single node. The reason the root tree node is treated

differently in rule 6 above is that there may be different answer substitutions for

‘the goal that succeed at different levels. Internal tree nodes have ground goals, and

so there cannot be multiple answer substitutions. If we need to distinguish between

levels of a goal G with answer substitutions 8;, 82, ... (each corresponding to a distinct

leaf) then we will refer to the level of G with respect to 0; for each i. Failed goals have

a unique level.

We may consider a non-ground node as a special type of tree node, in which case

I'c is a bipartite graph. For every active leaf of a tree node T there will be an edge

from T to a negation node. A branch from a negation node to a tree node denotes

(negated) membership in the corresponding subgoal.

Definition 3.5: Global SLS-resolution is the top-down process of finding all answer

substitutions for a goal G using a preferential computation rule. When a derived goal

G’ containing only negative literals is encountered, the appropriate SLP-trees for the

complements of the ground Literals in G’ are recursively constructed in parallel. 4

di

Global SLS-resolution is, in essence, an appropriate traversal of the global tree

for a goal. This process incorporates the traversal of the SLP-trees corresponding to

the tree-nodes of the global tree. Selecting a positive literal from a goal corresponds

to moving one node deeper in the SLP-tree for the current goal; selecting negative

literals corresponds to moving one level deeper in the global tree, by passing through

a negation node.

Observe that a goal can have an infinite level even if it involves only finite recursion

through negation.

Example 3.1: (Van Gelder) Let P be the program

e(5(0),5(s(0)))
e((0),0)

e(s(X), s(s(X)))—e(X, s(X))
e(s(X),0)—e(X,0)

w(X)e—-u(X)
u(X)—e(Y, X), ~w(Y)

Let i, w; and u; be abbreviations for s*(0), Te wisi(o)) and T'—y(4i(0)) respectively:* Then
the appropriate SLP-trees and global tree for the goal «— w(0) are given in Figures 1
to 4. We use the symbol e to denote negation nodes, and omit the “«” symbol from

goals for clarity.

w(t)
|

ud

Figure 1: SLP-trees w;, for i 2 0

u(t)
|

e(Y, 1), ~w(Y)
|

w(1) e(Y',i—1),~w(Y’')
| |

e(Y,1), ~w(Y)

|

e(Y1-2),2),~w(Y 2)
/ \ |

~w(t — 1) e(Y=1) 1), ~w(y (i-1))

Figure 2: SLP-trees uy and u; for i 2 2

9

u(0)
|

/ \

—w(1) e(Y', 0), ~w(Y' + 1)
/ \

~w(2) e(Y", 0), ~w(Y" +2)

/

~w(3)

Figure 3: SLP-tree ug

For mn > 1, the goal «— w(s™(0)) has level 2n, and so the goal « w(0) has level
w + 2. Note that « w(0) has infinite level despite the fact that every branch of the

global tree for «— w(0) is finite. Note that this program does have a well-founded
total model, in which w(0) is true, even though it is not locally stratified. O

In order for global SLS-resolution to find all answer substitutions, and not get

“lost” down an infinite branch of an SLP-tree, an appropriate method for searching

SLP-trees (such as breadth first search) is needed. For well-determined goals, global

SLS-resolution will (given infinite time) traverse the appropriate global tree. For goals

that are indeterminate, global SLS-resolution will recurse through an infinite number

of negation nodes. For a discussion of the non-effectiveness of global SLS-resolution

see Section 7.

There 1s a close relationship between global SLS-resolution and SLS-resolution.

. The first difference is that we insist the computation rule be preferential. This

restriction is necessary to achieve completeness over the broader class of all programs.

(Recall that SLS-resolution is not well-defined for programs that are not locally

stratified.)

The second difference is that the definition of SLS-resolution requires a level

‘mapping to be associated with the literals and goals simply in order to define the SLS-

tree for a goal. Our construction relaxes this requirement by allowing all subsidiary

SLP-trees to be constructed recursively.

In recent unpublished work [Prz88a), Przymusinski independently defines a similar
extension of SLS-resolution using induction on what he terms the “generalized stratifi-

cation” of a program. Generalized stratification corresponds roughly to what we have

called the level of the global tree for a goal. One advantage of our construction is that

the level is a consequence of the definition of global trees, rather than a precondition

of its definition.

Another advantage is the explicit representation of the global tree, in which infinite

branches correspond to indeterminate derivations. Przymusinski’s definition only

allows selection of subgoals that are known to be well-determined at lower level.

However, in a top-down system, the status of subgoals is unknown until they are

themselves expanded, and so such a restriction on the selection of subgoals is unlikely

10

Wo

o

|
Ug

[1
*e oo oo .-.

I.

I.
* oo oo ...

I.

|
® ® ME.

I.
wn Wo eo a

a.
° ® “oo

I.

U1, U2) "ee

Figure 4: Global tree for «— w(0). Each w; is successful, and each wu; is failed.

to be useful.

Observe that if R is not positivistic, then we will not be able to achieve complete-

ness.

Example 3.2: [PP88] Let P be the program

pe—7s,q,T

qT, 7p

r<p,q

S&P, —q, 7

The model {s} for P is well-founded. However, consistently expanding the leftmost
literal first (i.e. —8 before g in the first rule) will give us an apparently indeterminate

result rather than a successful result for the goal « s. oI

Sequential expansion of ground negative subgoals rather than a parallel expansion

is not sufficient to achieve completeness.

11

Example 3.3: Let P be the program

p(z)—-p(f(z))
g—-p(a), 8
S

If a computation rule R chooses the leftmost negative literal first, then the goal « ¢

will appear to be indeterminate, although —gq is in the well-founded (partial) model

{s, 7g} for P. However, expanding both negative subgoals in the rule for ¢ in parallel
causes ¢g to fail. U

Since only ground negative literals are expanded, they may be processed indepen-

dently. We do not apply the same parallelization to positive literals, as they may

generate competing bindings, and we do not want to have to resolve such conflicts.

4 Ground SLP-Trees and Ground Global Trees

In the following sections we will present our results on the soundness and completeness

of global SLS-resolution. First, though, it will be convenient to consider a simplified

version of SLP-trees, which we call ground SLP-trees. Ground SLP-trees are SLP-

trees in which all goals are ground, and rules used in the construction of branches of

the SLP-tree are instantiated rules. Ground global trees are constructed from ground

SLP-trees in a similar way to the construction of global trees from SLP-trees.

We will obtain a new characterization of the well-founded model in terms of ground

global trees, that facilitates the proof of soundness and completeness in the general

case.

Definition 4.1: (Ground SLP-trees) Let G be the ground goal « Q and let R be

a positivistic computation rule. We define the ground SLP-tree TZ for G. The root
node of Tg is G. If the (ground) goal H =« Q’ is any node of TZ, then its children
are obtained as follows.

eo If Q’ contains a positive literal, then the literal L selected by R from Q’ must be

positive. In this case, the children of H are all goals K that can be obtained by

" resolving H with an instantiation of one of the program clauses over the literal

L. If there is no such K then H has no children, and is a dead leaf.

eo If Q is empty, or contains only negative subgoals then Q’ is an active leaf.

The depth of a node in a ground SLP-tree T is the number of edees in the shortest

path from the node to the root of 7. U

There is a structural similarity between SLP-trees and ground SLP-trees that will

be made precise in Section 5. Since the Herbrand universe of the program may be

infinite, there may be infinitely many instantiated rules with a given head. Hence, a

12

ground SLP-tree may have an infinite branching factor at any node. SLP-trees have

a finite branching factor.

The ground global tree Tg for a (ground) goal G is defined like the global tree for
G except that tree nodes are ground SLP-trees rather than SLP-trees. A goal may be

ground successful, ground failed or ground indeterminate in the same way that goals

are successful, failed or indeterminate respectively. The difference is that the ground

global tree is traversed rather than the global tree. Since all goals appearing in ground

SLP-trees are themselves ground, there are no floundered nodes in a ground global

tree.

For both global trees and ground global trees, the position of a tree node in the

tree does not affect its status. More precisely, if G is a goal, and Tg appears in I'g for

some goal H, then Tg is successful, failed, indeterminate or floundered in I'g if and

only if it is respectively successful, failed, indeterminate or floundered in I'g, since

the status of a tree node only depends on its descendants. A similar property holds

for ground global trees. Further, since the level of a goal also depends only on its

descendants, the level of G is identical in I'g and I'g. Hence we shall not refer to

the appropriate global tree when discussing the status or level of a goal appearing

therein.

On every branch to an active leaf of a ground SLP-tree, every positive literal must

eventually be selected, as active leaves contain only negative literals. Further, since

there is no interaction between positive literals in a ground goal, the order of selection

of the positive literals in a path to an active leaf is not important. Hence, the set of

active leaves in 12 for a given ground goal G is independent of the computation rule
used, as long as the rule is positivistic. Since the status of goals in I' depends only
on the active leaves of its tree nodes, we may conclude that the semantics induced by

I's is independent of the computation rule used.’
In light of this observation, we have the following result.

Lemma 4.1: Let G be the ground goal « P1,. . ., p,,, GQ1,-. ., gm. Then L is an

active leaf of T¢ if and only if there exist active leaves Lq, ..., Ln of Tf, ,...,T2 ,,
respectively such that L=L; U...U L, U{~q, ..., “gm}. Further, the depth of L

in TZ is equal to the sum over all i of the depths of L; in T?,..
Proof: Since L is an active leaf independent of the computation rule, we may choose

any positivistic computation rule for Té. Let Ry, . .. , R, be arbitrary positivistic

"computation rules for T3,,-. . 17. respectively. Let R be the computation rule
that first simulates R;, expanding all “descendants” of pj, then Rj, Rs and so on

until R,,.

L is an active leaf, at finite depth, if and only if each segment of the path to L

in TZ (corresponding to R,,..., R, respectively) is finite, and does not terminate in

a dead leaf. This occurs precisely when each 17. has an active leaf, say L;, and
L=Liu...uLpou{"q,...) qn}. The relation between the depths of the leaves is
obvious from the construction. §

3In the more general case of SLP-trees, the set of leaves 1s again independent of the computation
rule used. Such a result may be proved using a “switching lemma.” See [Llo87] for details.

13

Lemma 4.2: Let p be a ground atom, and let G be the goal t p. Let ST be a set

of positive ground literals, and S~ a set of negative ground literals. Then

1. p € U Th(S") <=> TZ has an active leaf whose members are all in S~.
2. p € Up(S™) <= every active leaf of TZ has a member in —- St,

Proof:

(1, =) If p € U T5(57) then p € TE(S™) for some finite k 2 1. We prove by induction
on k that for all p,

p € TE(S7) = T¥ has an active leaf whose members are all in 5S.

Base Case: p € Tp(S™) <= there is some instantiated rule r with head p
and (negative) literals from S~ in the body. By definition, this holds if

and only if TZ has an active leaf (at depth 1) whose members are all in
S -.

Induction Step: Suppose the statement above is true for k = N. We show

it is also true for k = N + 1. Let p € TH+H(S™). Then there 1s some
instantiated rule r with head p such that all literals ly, .. ., ln in the body of

r are in TH (S~). Since the only negative elements of TH (S™) are actually
in S7, all of the negative literals in {l1,..., l,} are in S~. By the induction

hypothesis, for each of the positive literals [;, (for i = 1,. . . ,m with m <

n), TY, has an active leaf (say L;) whose members are all in S™. Let
L=L,U... UL, U{lmt1,...,0,} Then L must be an active leaf of Tg by
Lemma 4.1. Further, L C€ §~, thus demonstrating the result for k = N + 1.

(1, <=) This argument is by induction on the depth of the active leaf. We show that

if T¢ has an active leaf at depth d, all of whose members are in S~, then
p € TE(S™). The base case of this induction 1s identical to the base case of the
previous argument.

Induction Step: Suppose the statement is true for all d < N. We show it

is true for d = N + 1. If TZ has an active leaf L at depth N + 1 such
that L € S~, then some child G’ of G has L as an active leaf at depth

N. Let tr be the instantiated rule used in deriving G’ from G, given by

P< Piy---yPny q1,.-., gm, so that G' = {p1,. cy Pny q1,y- . -, “Gm }- By

Lemma 4.1, for every positive literal p; in G’, TS, has an active leaf at
depth at most N, whose members are all in L, and hence in S™. By our

induction hypothesis, p; € TH (S~). Each —¢; is in S~ (since it is in L),
and hence in TH(S™). Thus p € Tp T1(S7).

(2, =) Suppose p € Up(S™). Then for every instantiated rule 7 with head p, either
some positive literal in the body is also in Up(ST), or some negative literal is in
—. S%. Hence every goal appearing in T¢ has either a positive literal in Up(ST)
or a negative literal in — + S¥. Since active leaves have no positive literals, it

follows that every active leaf of T; contains a negative literal in — St.

14

(2, <) Suppose every active leaf in TZ has a member in =. 57. We show p € Up(S*)
by constructing an unfounded set U (with respect to S*) containing p. Since

Up(S™) contains all unfounded sets, the result will follow. Let U be the set of
ground atoms defined by

U = {q : Every active leaf of T? has a member in = .S5%}

p € U by assumption. Let g’ be an arbitrary element of U. We claim that every

goal appearing in T? contains either

— a positive literal p’ such that p’ € U, or

— a negative literal [such that [€ =. S™.

We prove the claim by contradiction. Suppose the contrary, i.e., that for some

goal H={p1,...,Pny"Q1,..., Gm}in T? no p; is in U and no —g;is in —~-ST.
Then for each p; there must be an active leaf (say L;) of T?, containing no
members of = . ST (by the definition of U, and by Lemma 4.1). Hence there

must be an active leaf L of T? that is a descendent of H, and is given by

L,u...UuL,U {-q,..., “Gm }. But no element of L is in = -S¥, contradicting
the assumption that ¢’ € U, and thus proving the claim.

In particular, every child of « ¢g’ in T? , satisfies the above claim. But the
children of «— ¢’ are simply the bodies of all instantated rules with g’ as head.

Any literal that makes the claim above true for such a rule body is a witness

of unusability for that rule; the claim shows that every rule for ¢’ has a witness

of unusability. Since ¢’ is arbitrary, by the definition of unfounded sets, U is

unfounded with respect to ST and the result follows.

i

The above results are false if we do not insist that ST and S~ contain only positive
and negative literals respectively. However, as the following result shows, Lemma 4.2

is sufficient for our purposes.

Lemma 4.3: Let | be a ground literal in Mwpg(P). Suppose I € I4; according to
the iteration of Definition 2.4. Then

eo If [is positive, then [€ UJ Th (neg(ly)).
1=1

e If] is negative, then | € =. Up(pos(l,)).

Proof: The proof is by transfinite induction on a.

Case 1: a is a successor ordinal. Let a = 8 + 1 and assume the result for 3.

For the first part, we know [€ 0 TL(1,) and so | € U TH(I') for some finite1= 1=1

subset I! of I,. (This compactness property follows from the finiteness of the

bodies of instantiated rules.) By hypothesis, and since I is finite, there is some
k > 0 such that all the positive literals in I’ are in TE(neg(Ig)). (T(S) 2 S

15

implies that the finite union to the k** term simplifies to the final term.) By

monotonicity pos(I') C TE(neg(Il,)). Hence I € J Th(Th(neg(1a))), and the
result follows.

For the second part, suppose [= =p. We know that neg(l,) C —-Up{pos(Iz)) by

our induction hypothesis. Hence, by monotonicity, neg(I,) C =. Up(pos(1,)).
Let w be any witness of unusability for a rule » having head p, with respect to

. I,. If w € pos(I,) then it certainly remains a witness with respect to pos(l,). If
w € neg(l,) then w € =-Up(pos(1,)) by the above, and hence w is still a witness
for 7 with respect to pos(l,). Hence p € Up(pos(l,)) and I € = Up(pos(1,)).

Case 2: a is a limit ordinal. The proof in this case is a simple extension of the

arguments in the successor ordinal case. The case a = 0 is trivial since I, = 0.

For the first part, where [is positive, the proof is essentially the same once we

observe that I, being finite, must be a subset of I, for some successor ordinal
vy < a.

For the second part, observe that if [€ neg(l,) then I € neg(Igs1) for some suc-

cessor ordinal 8 + 1. By hypothesis, I € —- Up(pos(Ig)), and since [is arbitrary,

neg(l,) C oJ - + Up(pos(Ig)). We can extend the argument of the successor< a

ordinal case to show that neg(l,) C o — . Up(pos(Ip)) implies neg(Io} C<

= Up(J pos(I3)), by monotonicity, and hence neg(l,) C = Up(pos(l,)). The<a

remainder of the proof is identical.

1

" Lemma 4.4: Let | be a ground literal. Then

e If [is positive, then | € Io; <= [€ U Th(neg(la)).
o If lis negative, then | € Io <=> 1 € —. Up(pos(1,)).

Proof: The implications from left to right follow from Lemma 4.3. The implications

from right to left follow by monotonicity. [i

-We now demonstrate the precise correspondence between the well-founded seman-

tics and ground global trees.

Theorem 4.5: Let p be a ground atom, G the goal « p and a a countable ordinal.
Then

e G is ground successful at level < a <= p € I,.

e G is ground failed at level < a <= -p € [,.

Proof: The argument is by induction on «a.

16

Case 1: a is a successor ordinal. Suppose @ = 8 + 1, and suppose the statement is
true for the ordinal B.

G is ground successful at level < a

= TZ has an active leaf L = {-p,, ...,7Pn}, say, such that
each Ts. (i =1,...,n) is ground failed at level < 3

<= L C neg(lg), by hypothesis
pi

— pct Y Th(neg(ls)), by Lemma 4.2
<< p €l,, by Lemma 4.4

G is ground failed at level < «

<= every active leaf of TZ contains a literal —q such that

T?, is ground successful at level < 3
&= every active leaf of TZ has a member whose complement is

in pos(Ig), by hypothesis

<= p € Up(pos(Ig)), by Lemma 4.2
<= -p€ I,, by Lemma 4.4

Case 2: a is a limit ordinal. The truth of the above statements for a = 0 is trivial.

By the construction of global trees, goals can only be successful or failed at a

level that is a successor ordinal. Also, the stage of every ground literal must be

a successor ordinal, as observed in Definition 2.4.

Let us consider first the implication from left to right. For limit ordinals a > 0,

G is ground successful (respectively, ground failed) at level < a implies that G

is ground successful (ground failed) at level 8 for some successor ordinal 8 < a.

Hence by hypothesis, p (—p) is in Ig and hence in I, by monotonicity.
Conversely, p (respectively -p) is in I, implies that p (—p) is in Ig for some
successor ordinal # < a. Hence p is ground successful (ground failed) at level

< B by hypothesis, and the result follows since 8 < a.

i

Corollary 4.6: Let p be an atom, G the goal « p and a a countable ordinal. Then

e (7 is ground successful at level @ <= stage, = a

. eo (5 is ground failed at level a <= stage, = a

1

Theorem 4.7: Let Q = {p1,. cv yPny qr, . ., “Gm } be an arbitrary ground query,
and let G be the goal « Q.

e G is ground successful <= Mwr(P) = Q

e Gis ground failed <= Mwp(P) E —€

e Gis ground indeterminate <=> Mwpr(P) = » and Mwr(P) FE -Q

17

Proof: G is ground successful if and only if each p; is ground successful, and each g;

is ground failed, by Lemma 4.1. This happens precisely when each p; and each —g;

is in Mwp(P), by Theorem 4.5, i.e., when Mwr(P) |= O.
Similarly, G is ground failed if and only if some ¢; is ground successful or some

Pp: is ground failed, again by Lemma 4.1. This happens precisely when some —p; or

some ¢; is in Mwp(P), by Theorem 4.5, i.e., when Mwpr(P) = -Q. |

oO Soundness

Now that the correspondence between ground global trees and the well founded

semantics has been established, we investigate the correspondence between ground

global trees and (general) global trees.

Lemma 35.1: Let P be a program and G a goal. Let L’ be an arbitrary active leaf

of Tg, with computed most general unifier 8. Then for every ground substitution 6

for G6, Tags has an active leaf L that is an instance of L’.
Proof: Let ry, ...,7, be the rules used in the branch ending in L’ in Tg, and let

6 ...,Abe the corresponding most general unifiers. By definition, § = 6,8, . . .6,.

We prove the result by induction on the depth, x.

When n = 0, G is itself the only active leaf of Tg, with the identity computed

most general unifier. G6 is then the only active leaf of Tos, and 1s clearly an instance
of G.

Suppose the result is true for n = k. We show it is true for n = k + 1. Let G be

— P1,...,P1,q1,..., Gm, and suppose L’ is at depth k + 1 in Tg. Suppose that

is the rulep « b4,.. ., bir, —ecy,..., 7c, and that p unifies with p; using most general

unifier #;. Then the resultant goal G’ is

— (D1, Pic1, Pitly +» Pl "1s + +» "Gmb1, oy by mC, Cm)6)

(Recall that the order of literals in a goal is unimportant.)

L’ is a leaf of Tg at depth k, with computed most general unifier 8’ = 85. . . 8x11.

Let 4 be a substitution such that G'8'6y is ground. By our induction hypothesis,
there is an active leaf L of Tugs, that is an instance of L’. But G'8'6y is a child of
G86 in T2ys using the rule 7,08y which must be ground. Hence T¢gs has a leaf L that
is an instance of L’. Since § is arbitrary, the result follows. |

We now investigate the converse of Lemma 3.1.

Lemma 5.2: Let P be a program, G a goal, and 6 a ground substitution for G.

Let LL be an arbitrary active leaf of TZ. Then there exists an active leaf L’ of Tg,
with computed most general unifier 8, such that L is an instance of L’ and € is more

general then 6.

Proof: (Sketch)

We may consider the branch to L in Ts as an unrestricted derivation from G,
i.e., a derivation in which we do not insist that unifiers be most general. (In the

18

ground SLP-tree, such unifiers always make the resulting goal ground.) The proof of

this lemma is then very similar to the proof of the “mgu lemma” in [Llo87], and the
details are omitted here.

Lemma 5.3: Let G be a goal. Then

eo If G is successful with answer substitution 8, then G86 is ground successful for

every ground substitution é for G8.

eo If G is failed then Gé is ground failed for every ground substitution § for G.

Proof: The proof is by induction on the level of G with respect to #. Since no goals

succeed or fail at limit ordinals (including the base case, 0), the result for limit ordinals

is trivial. We now consider the successor ordinal case.

(First part) Suppose G is successful with respect to 8 at level a, and that L =

{—P1,..., Pm} is the successful leaf with answer substitution §. Then each p; must
be ground, and each «- p; failed at level 3; < a. By our induction hypothesis, each

«— pP; 1s ground failed.

Since L is ground, L must appear as a leaf of TZ, for every ground substitution
6, by Lemma 5.1. Finally, since each « p; is ground failed, G86 is ground successful.

(Second part) Suppose G is failed at level a, and that L” = {—=py,. . ., 2pm} is an
arbitrary active leaf of Tg. Then some p; must be ground, and « p; successful at

level 8; < a. By our induction hypothesis, « p; is ground successful. Since L’ is

arbitrary, every active leaf of Tg contains such a ground subgoal.

Let 6 be an arbitrary ground substitution for G. Every active leaf of Tos is an
instance of an active leaf in Tg, by Lemma 5.2. Hence every active leaf of Tas contains
a literal —g such that « gq is ground successful. By definition, Gé is ground failed.

Since é is arbitrary, the result follows. |

We may now prove the soundness of global SLS-resolution.

Theorem 5.4: (Soundness of global SLS-resolution) Let P be a program, and let

G =« Q be a goal. Then

| 1. If G is successful with answer substitution 8 then Mwp(P) |= V(@8).

2. If G is failed then Mwpr(P) = V(—Q).

Proof: (First part) Let 6 be a ground substitution for G8. By Lemma 5.3, G is

successful with answer substitution € implies that G86 is ground successful. By

Theorem 4.7, Mwp(P) = Q8§. Since § is arbitrary, it follows that Myr(P) = V(@8).
(Second part) By Lemma 5.3, G is failed implies that G8 is ground failed for all

ground substitutions § for G. By Theorem 4.7, Mwp(P) |= -Q8§ for all such 6, and
hence Mwp(P) =V(-Q). 1

19

6c Completeness

We now address the completeness of global SLS-resolution.

Lemma 6.1: (Lifting lemma) Let P be a program, G a non-floundering goal and let

6 range over all ground substitutions for G. Then

eo . If for some 6, Go is ground successful then G is successful with an answer

substitution # more general than §.

o If for all 6, G§ is ground failed, then G is failed.

Proof: The proof is by induction on the level of GS. (For the second part, the

induction is on the maximum over all § of the level of G§.) Again, since goals cannot
succeed at limit ordinals, the limit ordinal case, including the base case 0, is trivial.

(First part) Suppose G6 is ground successful at level a, and let L = {-p1, Cy TP}
be a successful leaf in Tg. By Lemma 5.2, Tg has a leaf L’ = {-p!,. .. , pl} such
that each p; is an instance of p., and the computed most general unifier § at L’ is
more general than 6.

Since Gé is ground successful, each « p; is ground failed at strictly lower level.

If p; = p; (ie., p; is ground) then p; is failed by our induction hypothesis. If p; was
not ground for some j, then the negation node corresponding to L would have a non-

ground child. Since no « p. can be successful (it must be either failed or floundered),
this would contradict our assumption that G is not floundered.

Hence L’ is ground and every « p; is failed. Thus, G is successful with answer
substitution § more general than 6.

(Second part) Let L’ = {-p!,. Ce -p! } be an arbitrary leaf of Tg, with computed
most general unifier 8. Let 4 be a ground substitution for G8, and let § = 6+. Then

TEs has an active leafL = {-p1,.. Cy Pp } that is an instance of L, by Lemma 5.1.
Since G6 is ground failed by assumption, some « p; is ground and successful at

strictly lower level.

Consider « p;, which is more general than « p;. If p, is ground, then jo = p; and
so «— pi is successful by the induction hypothesis. If p. is not ground, then since G is

not floundered, some other Pi is ground and successful. In either case, L’ is a failed
leaf in Tg. Since our choice of L’ was arbitrary, all active leaves of Tg are failed, and

hence G is failed. |}

The restriction to non-floundering goals in the above lemma cannot be omitted

due to programs of the form

p(z)——q(f(z))
q(a)

for which the goal « p(x) flounders, while every ground instance of this goal succeeds.

This example indicates that disallowing floundering goals altogether is perhaps too

harsh. However, if we add the rule g(f(a)) to the program above then we are faced

with somehow trying to represent the success set for « p(x) as “@ may be anything

20

except f(a),” a concept that requires a broader notion of answer substitution. Some

results in this direction have been presented in [LMB86], and some more recent work
has described a process called “constructive negation” in which negative subgoals are

used to generate negative bindings [Cha88, Prz88b]. Whether such methods will be
useful in practice, or whether ground negation is sufficient for most purposes remains

to be seen. Restricting programs and goals to be “allowed” [L1087], for example,
guarantees freedom from floundering.

Theorem 6.2: (Completeness of global SLS-resolution) Let P be a program, and

G =« Q a non-floundering goal involving only symbols from P. Let P’ be the

augmented version of P.* Let ¢ be a substitution for the variables of Q. Then

1. If Mwr(P) |= 3Q then G succeeds

2. If Mwr(P) |= V(—Q) then G is failed

3. If Mwr(P') |= Y(Q¢) then G succeeds with an answer substitution more general
than ¢.

Proof:

“1. If Mwp(P) |= 3Q, then Mwp(P) = Q6 for some ground substitution 6. By
Theorem 4.7, G§ is ground successful. By Lemma 6.1 G is succeessful.

2. If Mwr(P) |= V-Q then for every ground substitution §, Mwr(P) E -Q6.
Hence, by Theorem 4.7 G6 is ground failed. By Lemma 6.1 G is failed.

| 3. (We assume ¢ does not mention the symbols f or ¢. Extending the proof below
in the case that f or ¢ does appear in ¢ is straightforward.)

Let {z,,. Ce Tn} be the variables appearing in @¢. Let § be the (ground)
substitution {zglc, z; 1f(2), C. z,.|f™(2)} of terms from the Herbrand universe
of the augmented program for the variables in @8. Then Mw g(P') = Q@d, and
so Gd is ground successful by Theorem 4.7.

By Lemma 6.1, G succeeds with an answer substitution 8 such that for some
substitution 7

Now 8 cannot contain any substitutions involving f or ¢ since G contains only
symbols from P, and the predicate p in P’ appears nowhere in P. Hence the

only occurrences of f and € in the left side of the equality above are in 7. Let

7’ be formed from 7 by replacing every occurrence of fi(©) by the variable z;.
Then 97° = ¢, and so 8 is indeed more general than ¢.

1

tsee Appendix A

21

We cannot substitute P for P’ in the third item in Theorem 6.2 as illustrated by

Example A. 1 in Appendix A. Some texts (for example [Llo87]) make the implicit
assumption that extra constants exist in order to prove completeness results. The

purpose of the augmented program is to formally include sufficiently many such

constants in the Herbrand universe.

Corollary 6.3: For non-floundering goals G =« Q,

Tc is indeterminate <> neither My r(P) |= 3(Q) nor Mwr(P) |= V(-Q). 1

7 Discussion

The well-founded semantics is a declarative semantics that unifies a number of ap-

proaches in a robust fashion. In order to be able to use well-founded negation in logic

programs, a corresponding procedural semantics is necessary. This paper presents

such a procedural semantics. Although global SLS-resolution is not effective, as

discussed below, it may be considered an ideal query answering procedure to which

effective approximations may be compared.

Global SLS-resolution (and hence the well-founded semantics) captures the mean-

ing of all well-behaved programs in the sense that every program without infinite

recursion through negation is given a semantics in which every ground atom is either

true or false. For the perfect model approach, finite recursion through negation is

only guaranteed for locally stratified programs.

Furthermore, for programs that do involve infinite recursion through negation,

those portions that recurse infinitely through negation are left undefined, while the

"remainder of the program is given the expected semantics.

There are three sources of non-effectiveness in global SLS-resolution:

I. Infinite branches of an SLP-tree are treated as failed.

2. The SLP-tree for a goal may have an infinite number of branches, (although

only a finite branching factor at any’particular depth).

3. If a goal is indeterminate, global SLS-resolution will recurse infinitely through

negation.

We cannot expect to have a sound and complete implementation of the well-

founded semantics that is also effective, as in general Mwpr(P) is not recursively
enumerable. However, in the absence of function symbols, the Herbrand Base is

finite, and so effective procedures exist.” Developing an effective top-down procedure
(possibly employing some form of loop checking to handle the items mentioned above)

is a topic for further research. Progress in this direction may be made by suitably

extending the procedures in [KT88, SI88].

*A polynomial ti me for constructing the well-founded model for function-free programs, that is
bottom-up in nature, is given in [VGRS88b].

22

Although a preferential computation rule selects positive literals ahead of negative

literals, in practice a sub-process may be spawned to expand a negative subgoal as

soon as it becomes ground. Such spawning will not only improve performance but

may allow the earlier pruning of long branches.

Note that SLDNF-resolution using a safe computation rule is sound with respect to

the well-founded semantics for all programs. However, even with a preferential com-

putation rule, SLDNF-resolution is incomplete as it does not treat infinite branches

of an SLP-tree as failed.

I would like to thank Teodor Przymusinski, Rodney Topor, Jeff Ullman and Allen

Van Gelder for helpful comments on earlier drafts of this paper.

A The Universal Query Problem

We address what has been termed the “universal query problem” [Prz87] and justify
our handling of it. The problem concerns certain anomalies that occur when working

only with Herbrand interpretations. We define the augmented program, first intro-

duced in [VGRS88a}, but discussed implicitly in [Mah88], and show how this allows
us to restrict ourselves to Herbrand interpretations.

Example A.l: Consider the program P given by the single rule

p(a)

The only Herbrand model of P is {p(a)} and so Vz p(x) is true in all Herbrand models,

although it is not a logical consequence of the program. However, if we add the

apparently unrelated fact g(b) to P, VX p(x) becomes false in some Herbrand models.

Further, no resolution-type procedure will give the identity answer substitution for

the query {p(z)}. As we shall see, VX p(x) is not true in all Herbrand models of

the augmented program FP’, and so use of the augmented program overcomes such
anomalous behaviour. «I

Przymusinski has studied the universal query problem (and in fact coined that

term for the problem) in [Prz87]. His solution, in the context of proving the soundness
. and completeness of SLS-resolution with respect to the Perfect Model semantics, was

to consider all Perfect Models rather than just Herbrand models. These models, in

addition to being models of the program, had to be models of a set of equality axioms

known as Clark’s equality axioms [Cla78].

Definition A.: Clark’s equality axioms are as follows. All axioms are universally

quantified. (Actually, the list below specifies an axiom schema rather than individual

axioms.)

23

4. X,=Y AN... AX, =Y,=> f(X1,...,.Xn) = f(Y1,...,Y,,) for every m-ary
function f

50 Xi = VTA AX,=Y,,=>(p(X:,..., Xnn)=>p(Y1,..., Y,,)) for every m-ary
predicate p

6. f(Xi,...,Xn) # g(Y1,...,Y,) for any two different function (or constant)
symbols f and g

7.f XK, Xp) =f(Y,....Yn) 2X, =Y1A... A X,, =Y,for any functionf

8. t|X] # X for any term t[X] different from X, but containing X.

Let P be a program. Then the equational theory of P (abbreviated to ET(P)) is

the theory of the above axioms. The purpose of this theory is to insist that distinct

variable-free terms represent different domain elements. U

Definition A.2: For any program P we define the augmented program P’. Let p, f
and c¢ be a predicate symbol, function symbol and constant symbol respectively, none

of which appear in P. Define P’ = P U {p(f(¢))}. C

Our motivation for introducing the augmented program is that it allows us to

overcome some well known anomalies such as in Example A.l encountered when

working only with Herbrand interpretations [VGRS88a, Prz87, Mah88] by assuring
that the Herbrand universe contains infinitely many constants that do not appear

explicitly in the program.

| In function-free programs, it may not be desirable to augment the program as

above since it introduces the function symbol f. In this situation, we may augment

the program instead with the clause p(&,,. . . , &), in which case our results below
hold for expressions with at most n variables. This alternative augmentation will be

sufficient if the queries we give to a program have a bounded number of variables.

~ Definition A.3: Let P be a program, and let C be a class of (standard 2-valued)

models of PUET(P). We say C is restriction-closed if for every M € C, the restriction
of M to symbols appearing in P is also in C. O

Examples of restriction-closed classes of models are:

e the class of all Herbrand models of P U ET(P).

eo the class of all minimal models of P U ET(P).

eo the class of all perfect models of P U ET(P).

eo the class of all stable models of P U ET(P).

eo the class of all models of P U ET(P).

24

Definition A.4: Let P be a program, F a set of logical formulas and C a class of
models. Then we write

=C F

if every element of C is a model of F. We also write

C

=H(P) F

if every Herbrand model (with respect to P) in C is a model of F. O

| Lemma A.l: Let P be a program, S a sentence involving only symbols from P and
C a class of models of P U ET(P). Then

C C

=" 5= Fp dS

Proof: Straightforward. |

We now investigate the converse of the above lemma. We are particularly inter-
ested in universal and existential sentences

Lemma A.2: Let P be a program, S a quantifier-free formula involving only symbols

from P, and C a restriction-closed class of models of P U ET(P). Then

Proof: We argue by contradiction. Suppose =p) 3S and that for some M € C,
M = 3S. Let My be M restricted to symbols appearing in P. (Note that Mp must
have at least one constant symbol.) My is also in C since C is restriction-closed.

Since M |= P and P is a set of clauses, My |= P. Similarly, My = ET(P). Now

My [£ 3S since otherwise My would model some ground instance of S, and thus so
would M. But My is a Herbrand model of P in C, so it must model 35, thus yielding

the desired contradiction. J

Lemma A.3: Let P be a program, P’ its augmented version and S a quantifier-free

formula involving only terms from P. Let C’ be a restriction-closed class of models

of P' U ET(P'). Then
Cc! Cc’

Proof. Suppose =Gp VS. Let {z,,. Coe Zn} be the variables in S. Let 8 be the
substitution {z|¢, z,|f(&), Cee z.|f*(8)}. Then =p SO. By Lemma A.2, =C" S58.

Neither f nor ¢ appear in P’ except in the clause p(f(2)). Also, ET(P) contains
only axioms about equality. Hence, since these symbols don’t appear in S by assump-

tion, the fi(e) terms are arbitrary. Hence we may “invert” f to reconstruct S, and
conclude =¢ VS. }

Lemma A.3 cannot be strengthened to models of P, as illustrated by Example A.l.

The three preceding lemmas have the following immediate result.

25

Theorem A.4: Let P be a program, and P’ its augmented version. Let S be a

quantifier-free formula involving only symbols from P, C a class of restriction-closed

models ofP U ET(P) and C’ a class of restriction-closed models of P'U ET(P’). Then

o =S py 35 © |=° 3S

Thus, when analyzing the semantics of a program with respect to any restriction-

closed class of models, it is sufficient to consider only Herbrand models of its aug-

mented version. We consider that dealing with Herbrand models is simpler in practice,

since we only need to deal with known symbols.

Note that we cannot extend the first part of Theorem A.4 to existential formulas

over H(P’) as illustrated by the following example.

Example A.2: (Przymusinski) Let P be the program

p(a)

P(b)

and let S be —p(z). Then 3S is true in all Herbrand models of P’, but false in
models that do not possess additional constant symbols. Global SLS resolution would

flounder on the query —p(z); this query is not safe. In a realistic system, such a query

would not make sense unless suitable domain restrictions were made on Xx, for example

by a typing mechanism. ¢ |

An alternative approach to considering the well-founded model of the augmented

~ program P’ is to define the semantics by the class of (2-valued) “extended well

founded models” of P. An extended well-founded partial model is constructed in a

similar fashion to the well-founded partial model, except that the rule instantiations

in Definitions 2.1 and 2.3 may be with respect to any pre-interpretation containing

the Herbrand universe (i.e. not necessarily the Herbrand universe itself). An extended

well-founded model is then an extension of a well-founded partial model (with respect

to any pre-interpretation) that is total, i.e., that assigns true or false to every variable-
free atom over the pre-interpretation.

The set of extended well founded models gives a strictly weaker semantics than

our original approach. For example, 5 of Example A.2 is not implied by the class
of extended well-founded models. Nevetheless, this class 1s restriction-closed, and

our soundness and completeness results also hold with respect to this alternative

semantics. The set of extended well founded models is analagous to Przymusinski’s

set of perfect models.

References

[ABW88| K. R. Apt, H. Blair, and A. Walker. Towards a theory of declarative
knowledge. In J. Minker, editor, Foundations of Deductive Databases

26

and Logic Programming, pages 89-148, Los Altos, CA, 1988. Morgan

Kaufmann.

(CH85] A. Chandra and D. Harel. Horn clause queries and generalizations.

Journal of Logic Programming, 2(1):1-15, 1985.

(Cha88| David Chan. Constructive negation based on the completed database.
In Proc. Fifth International Conference and Symposium on Logic Pro-

gramming, 1988.

[Cla78] K. L. Clark. Negation as failure. In Gallaire and Minker, editors, Logic
and Databases, pages 293-322. Plenum Press, New York, 1978.

Fit85] M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of

Logic Programming, 2(4):295-312, 1985.

(GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic
programming. In Proc. Fifth International Conference and Symposium

on Logic Programming, 1988.

[KT88] D. Kemp and R. Topor. Completeness of a top down query evaluation
procedure for stratified databases. In Proc. Fifth International Confer-

ence and Symposium on Logic Programming, 1988.

[Kun87] K. Kunen. Negation in logic programming. Journal of Logic Program-

ming, 4(4):289-308, 1987.

[L1o87] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, New
York, 2nd edition, 1987.

[LM86] J. L. Lassez and K. Marmot. Explicit representation of terms defined by
counter examples. In J. Minker, editor, Workshop on Foundations of De-

ductive Databases and Logic Programming, pages 659-677, Washington,

DC, August 1986.

[Mah88] M. J. Maher. Equivalences of logic programs. In J. Minker, editor,
Foundations of Deductive Databases and Logic Programming, pages 388-

402, Los Altos, CA, 1988. Morgan Kaufmann.

[McC80] J. McCarthy. Circumscription — a form of non-monotonic reasoning.
Artificial Intelligence, 13(1):27-39, 1980.

Min82] J. Minker. On indefinite databases and the closed world assumption. In
Proc. Sixth Conference on Automated Deduction, pages 292-308. Springer

Veriag, 1982.

(MosT4] Y. N. Moschovakis. Elementary Induction on Abstract Structures. North-
Holland, New York, 1974.

27

[PP88] H. Przymusinska and T. Przymusinski. Weakly perfect model semantics

. for logic programs. In Proc. Fifth International Conference and Sympo-

sium on Logic Programming, 1988.

[Prz87] T. Przymusinski. On the declarative and procedural semantics of logic
programs. Technical report, Univ. of Texas at El Paso, 1987.

[Prz88a] T. Przymusinski. Every logic program has a natural stratification and
an iterated fixed point model. (manuscript), 1988.

[Prz88b] T. Przymusinski. On constructive negation in logic programming.
(manuscript), 1988.

[Prz88c] T. C. Przymusinski. On the declarative semantics of deductive databases
and logic programs. In J. Minker, editor, Foundations of Deductive

Databases and Logic Programming, pages 193-216, Los Altos, CA, 1988.

Morgan Kaufmann.

[RT87 K. Ross and R. W. Topor. Inferring negative information from disjunc-
tive databases. Technical Report 87/1, University of Melbourne, 1987.

To appear in Journal of Automated Reasoning.

[She85] J. C. Shepherdson. Negation as failure, II. Journal of Logic Program-
| ming, 2(3):185-202, 1985.

[She88] J. C. Shepherdson. Negation in logic programming. In J. Minker, editor,
: Foundations of Deductive Databases and Logic Programming, pages 19-

88, Los Altos, CA, 1988. Morgan Kaufmann.

| [SI88] Hirohisa Seki and Hidenori Itoh. A query evaluation method for strat-

ified programs under the extended cwa. In Proc. Fifth International

Conference and Symposium on Logic Programming, 1988.

['VEK76] M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic
as a programming language. JACM, 23(4):733-742, 1976.

| (VG86 A. Van Gelder. Negation as failure using tight derivations for general
| logic programs. In Proc. Third IEEE Symposium on Logic Programming,

Salt Lake City, Utah, September 1986. Springer-Verlag. (Preliminary

: version also appears in Foundations of Deductive Databases and Logic
: Programming (J. Minker, Ed.), Morgan Kaufmann Publishers, Inc., Los

Altos, CA, 1988.).

i [VGRS88a| A. Van Gelder, K. A. Ross, and J. S. Schlipf. Unfounded sets and well-
j founded semantics for general logic programs. In Proc. Seventh ACM
: Symposium on Principles of Database Systems, 1988.

[VGRS88b] A. Van Gelder, K. A. Ross, and J. S. Schlipf. Unfounded sets and well-
founded semantics for general logic programs. Submitted for publication,

1988. (Full paper).

29

