June 1988 Report No. STAN-CS-88-1213
(Also numbered CSL-TR-88-360)

0T FiLe ¢

Exploiting Recursion to Simplify
RPC Communication Architectures

AD-A198 711

r by

3 . David R. Cheriton

; DTIC

ELECTEE®

“ AUG O 4 1988
-
] .
2 Department of Computer Science
? Stanford University
. Stanford, California 94305
]
DISTRIBGT o 57, s e ™y
v . Approved for patic rc;ﬂ;z‘uj:“;. .. ’
. Di:!fri_.butivn Ualwiiegd :‘

R i O

l‘. »
Wbl W -

. . - i < gt v - " a' i . i " 1 Ny o) 3 - > > . - Y bl " ‘. .
:;lv\\@,,19!-‘-"“1""%.! l.u,’.l"g"'. |.'.|.I‘.t|.||.l.'t_‘,...u.'t."'."'.'p A ""'.‘.y" X . ..
T Mgt gl b SOUOUOMIGOU NN l‘n.q‘,’u_.,‘tku.l\..t..|A‘.‘l'..§‘.‘l'..l‘,.t‘,. () 0.' 00U bf.h“‘a‘,*a KBCAMA

¥ 1}
AR PO R SIOR RO H IR o P

"o} Curmrent communication architectures suffer from a growing col-

oy = 24 = T ————

TTT.2 ¢ (.A85-CAaTONOF Te§ 2408

REPORT DOCUMENTATION PAGE oM N 5304 188
Exp Date Jun 0. 1986

va REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS

22 SECURITY CLASSIFICATION AUTHORITY 1 DISTRIBUTION/AVAILABILITY OF REPORT

26 DECLASSIFICATION/DOWNGRADING SCHEDULE

3 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)
STAN-CS-88-1213
6a NAME OF PERFORMING ORGANIZATION 60 OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

i if lica bl
Computer Science Dept. (it applicable)

6¢. ADORESS (CGty, Stare, and ZiP Code) 7b AOORESS (City. State, and 2P Code)

Stanfoid University
Stanford, CA 94305

Ba NAME OF FUNOING SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION ’ (if applicable)
DARPA
8¢. ADORESS (City, State, ang Z2iP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
tLEMENT NO NO NO ACCESSION N

11 TiTiLE (Include Security Classification) ees . . .
: i Exploiting Recursion to Simplify

RPC Communication Architectures

12 PERSONAL AUTHOQR(S)

David R. Cheriton

*3a TYPE OF REPORT 135 TIME COVERED 14 DATE OF REPORT (Year, Month, Day) [1S PAGE COUNT
FROM TO June 1988 12

‘6 SUPPLEMENTARY NOTATION

vy COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by biock number)
FIELD GRQUP SUB-GROUP

19 ABSTRACT {Continue on reverse if necessary and dentify by biock number)

In this paper, we show how the RPC approach can be used
for lower layer protocols so that the resulting “layer violations”
generate a simple recursive structure. The benefits of exploiting
recursion in a communication architecture are similar to those
realized from its use as a programming technique; the resulting
protocol architecture minimizes the complexity and duplication
of protocols and mechanism, thereby reducing the cost of im-
plementation and verification. We also sketch a redesigned DoD
Internet architccture that illustrates the potential benefits of this
N approach. __This work was sponsored in part by the Defense

T Advanced Research Projects Agency under contract N0O0039-84-
C-0211, by Digital Equipment Corporation, by the National Sci-
ence Foundatiod Grant DCR-83-52048 and by ATT loformation

lection of protocols in the host operating systems, gateways apd
applications, resulting in increasiog implementation and majo-
tenance cost, unreliability and difficulties with mleroperablh'ty.
The remote procedure call (RPC) approach has been u§cd_m
some distributed systems to contain the diversity of application
layer protocols within the procedure call abstraction. However,
the same technique canpot be applied to lower layer protocols
without violating the strict notion of layers.

Systems.) oo
\‘\-,!./ - { b //
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
O uncLassiFEouNumiTeD [SAME As RPT J oTiIC USERS ;
223 NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Ares Code) | 22¢ OFFICE SYMBOL
DD FORM 1473, 8a mar 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF TwiS PAGE

Allother editions are obsoliete.

4%y 0

O . 0)) 0 e ¥y {
R R e Lt SRR L S R R TR S P R e R DY N R R

,’_'_: i T o i b I‘_~C\IOI.TO

L&

’.‘
o e,

Ry
,i; ;a

o

Wi

13V

o Exploiting Recursion to Simplify
RPC Communication Architectures

Iy

3

;,:: David R. Cheriton

v::q Computer Science Department

Ky - Stanford University

0

e

0‘::

D

:':' Abstract (OSI) standard protocols is running into the same problem. The
1:‘.: basic data transfer protocols represent only one portion of the
Y*"‘ Current communication architectures suffer from a growing col- architecture. The supporting management protocols represent a
: lection of protocols in the host operating systems, gateways and growing portion of the protocol suite.

:‘I‘ applications, resulting in increasing implementation and main- This trend has several major disadvantages. First, the cost
;;:, tenance cost, unreliability and difficulties with interoperability. for the implementation and maintenance increases as new proto-
- The remote procedure cail (RPC) approach has been used in cols are added, not to mention difficulties with interoperability.
?,‘i some distributed systems to contain the diversity of application Second, the size of the implementations and the dynamics of in-
W layer protocols within the procedure cali abstraction. However, teractions between protocols make reliability difficult to achieve

- the same technique cannot be applied to lower layer protocols and verification, such as might be required in a secure environ-
2 without violating the strict notion of layers. ment, impractical. Finally, the large number of protocols and
’9:' In this paper, we show how the RPC approach can be used size of code make providing hardware support to optimize proto-
:'o: for lower layer protocols so that the resulting “layer violations” col performance for the high-speed networks of the present and
Q&::. generate a simple recursive structure. The benefits of exploiting future almost impossible.

a:'.‘ recursion in a communication architecture are similar to th93e The remote procedure cail (RPC) (2] approach has been used
w realized from its use as a programming techmique; the resuiting in some distributed systems to contain the diversity of application

protocol architecture minimizes the complexity and duplica.ion layer protocols within the procedure call abstraction and the suite

A of protocols and mechanism, thereby reducing the cost of im- of protocols used to implement RPCs. For example, file access,
;w:, plementation and verification. We also sketch a redesigned DoD program execution, time service and remote database access can
4:,' Internet architecture that illustrates the potential benefits of this all be defined in terms of a set of procedures representing a mod-
:.c: approach. This work was sponsored in part by the Defense ule interface. The RPC system translates these procedure calls
,b:o Advanced Research Projects Agency under contract N00039-84.- into (automatically generated) stub routines that use standard pre-
o C-0211, by Digital Equipment Corporation, by the National Sci- sentation, session and transport protocols for remotely invoking

ence Foundation Grant DCR-83-52048 and by ATT Information
Systems.

1 Introduction

the services.

Lower layer protocols are also reasonably viewed as remote
procedure calls. For example, RARP [23] is a specialized
Tequest-response protocol in the internetwork layer of the DoD
Internet architecture that can be viewed as a remote procedure call

Ol N . . that returns a host's IP host address, given its Ethernet address
] Curfent commugication architectures suﬂ_’a’ from a growing col- as a call parameter. Unfortunately, applying the RPC “solution”
lection of protocols in the host operating systems, gateways to lower layer protocols violates the conventional notion of lay-
,::; and applications. For example, an Internet host should m‘; ers, at least following conventional wisdom that communication
A ment, in addition to IP and TCP [15], the subtranspart protoco architectures should be strictly layered'. However, using RPC at
‘;i ICMP [21], BOOTP {14], ARP (18], RARP [23] and now more a layer below the RPC interface layer only results in the lower
o receatly IGMP [16]. The list continues to grow as mew Pro- v jnuoking the RPC service interface and not an arbitrary
R tocols are mvent'ed fo hu:;dle mors mphm'“‘“.l meme;“’ couplings to higher layers. The result is a recursive architecture,
L query aod exception handling funcno'n§. (The main data transfer as illustrated in Figure 1. This structure is analogous to calling a
portions of the architecture are surprisingly stable.) . procedure as part of the impiementation of the procedure calling
':.’ The recent work of ISO on the Open Sy.ftam' Interconnection. mechanism in a conventional pmgrmng lmgu‘ge implemn-
'o:: tation, such as calling a procedure to allocate a stack frame as
::l‘ part of the procedure call mechanism itself. In this analogy, the
5 " whole RPC architecture is a procedure call mechanism and RPCs
-’;:; Also publiﬁhed in "Proceedings of invoke the whole structure recursively as part of its overall im-
= SIGCOMM'88 plementation.
3N In this paper, we describe how recursion can be exploited in an
L}
:’:' "The term srictly layered is used 1o refer to a layered architecture in which a
c:": ° layer may only invoke services of the layer directly below.
e
&
o

' ,’\(5 e;ﬁ‘,e‘,o‘ Yy nc‘

.t' .l") m l \ ,

[\ AN "' " ‘I‘ U
" L] 10'!‘ ()

!i’

OLTOO)
ittty o’Hl.a' ity

RPC Service

.lm.eda:.F_J

Presentatio
Qpssinn

recursive
calls

Transport
Network
Datalink

\— J

Figure 1: Recursive RPC Calls

RPC communication architecture to simplify the description, im-
plementation and verification of the architecture. The unification
and simplification of implementation makes hardware support for
high performance protocol implementation significantly easier. In
addition, we describe various techniques to ensure that recursive
calls terminate. We also sketch a redesigned Internet architec-
ture that illustrates the potential benefits of this approach, using
VMTP [9, 8] as the transport protocol. The extended function-
ality of VMTP beyond conventional RPC, including multicast,
datagrams, idempotency and priority is important, if not neces-
sary, for a clean implemeatation of recursion.

The next section describes the use of recursion for simplify-
ing the management portion of a protocol architecture. Section 3
describes the use of recursion to invoke query operations, such
as arises in determining the network address of a server and self
identity. Section 4 describes the use of recursion for the presen-
tation level. In each of these sections, we identify the sources of
potential unbounded recursion, and techniques to terminate the
recursion. Section 5 describes how recursion facilitates the provi-
sion of hardware support to achieve high performance. Section 6
illustrates the use of these techniques by presenting a redesigned
Internet protocol architecture that is considerabled simplified by
the use of recursion. We close with general conclusions and
discussion of open issues.

2 Management

Control, query and monitoring of protocol behavior are provided
by a set of management operations implemented as part of the
protocol module. Examples include operations to query the num-
ber of retransmissions, change buffering parameters and stop ac-
ceptance of incoming calls. We first consider how recursion
simplifies access to management operations.

2.1 Access to Management Operations

Access to management operations balow the presentation layer is
conceptually a problem in a strictly layered architecture because
the application cannot access the lower layers directly without
violating the basic principles of layering and the management
routines cannot be implemented at a higher layer within violating
the integrity of protocol layer being managed. That is, these
operations are an integral portion of the noduie implemeniing
the protocol being controlled or monitored because they need to

)
LN ’1,‘ m) \ pN :,* N t,‘.!,‘.&,' -,l‘;,: :,;‘9,:‘”' !.

et
Latie
'4 "l

directly access and manipulate the protocol implementation data
structures.

This problem motivated the provision in the original OSI ar-
chitecture of a separate column of access for management which
bypasses the normal layering, as suggested in Figure 2.

RPC Service
Intertace

Presentation

Session Management
Transport Functions
Network
Datalink

Figure 2: OSI Management Structure

However, exploiting recursion, the procedures of a protocol’s
management interface can be exported to the application level
using the export service of the RPC service interface. That is,
the module invokes the export facility of RPC service interface
to export the management procedures as remotely invokeable
procedures. Subsequently, these management procedures can be
invoked by any modules with access to the RPC facility. Both
the procedure export and the RPC invocation are illustrated in
Figure 3. Note that the export service is a standard part of an

RPC Service exparied management |
Interface management RPC
procedures invocations
Presentation
Session — < 7
Transport -/
Network "'//
_/
Datalink <4

Figure 3: RPC Access to Management Procedures

RPC service interface, allowing each module to specify which of
its procedures may be invoked “remotely”. The export operation
is a recursive call because a lower layer is calling the RPC service
interface, which is at the application layer and implemented in
terms of this lower layer.

This approach also makes these procedures available as RPCs
to other protocol modules at the same or different layers of the
architecture, whether they are running locally or remotely. In
particular, RPC can be used by a management procedure to in-
voke operations in peer management modules on other hosts.
For example, in VMTP, creating a (dynamically allocated) mul-
ticast group involves selecting a group identifier, checking that
the identifier is not aiready in use and then adding a first mem-
ber o e gi-up. The checking phase requires communication
with the other VMTP managers to ensure that the address is not

‘b 'l
,o Wt .‘;

.C

l K) 'y
U
hale “'.. ‘ 'A"h S0 h‘ h‘

"'t."::"n'.c. '

WU N T T U TN PN T Y RN TN A NEM W aW ST W Wy rTmry BT

.
Oz
CO0 'n‘.‘o’-ﬁ‘

BERNTOYOOOOKN)
] 7'3"",9’31"3".3A"

()

w8

already in use. Therefore, each VMTP management module ex-
ports a procedure that allows an RPC client to query whether
a particular group has any members local to the exporting host.
A VMTP management invokes this procedure as a multicast re-
mote procedure call in all VMTP managers. As another use of
this technique, the request to add this member must be commu-
nicated to its host machine, if the first member is remote from
the requesting process.

Using this recursive approach, communication with the man-
agement operations and between management modules takes
place using the standard RPC facility, requiring no special proto-
cols. The recursive export calls do not repeatedly recurse because
they simply add s recor of the exported call to a local configu-
ration data base or else communicate with a remote configuration
database at a well-known address, as described in Section 3.

Exporting procedures to be called as RPCs can be use to handle
other functions as well, an example being acknowledgements.

2.2 Acknowledgement Handling

Acknowledgement handling can be viewed as part of manage-
ment, recognizing the control aspects of positive and negative
acknowledgements. Positive and negative acknowledgements are
required in an RPC transport protocol to handle several situation
aithough, in the common case, the return packet scknowledges
the call and a subsequent call or timeout acknowledges the re-
turn packets. As an example of the need for acknowledgements,
consider a server sending a response to a client that has migrated
to another host. The client’s original host should send a notifica-
tion to the server's transport module indicating that the response
should be redirected to the new host. Conventionally, a special-
purpose packet is used in the transport protocol to send a negative
acknowledgement of this nature. However, exploiting recursion
and the RPC export of management procedures, the notification
can be accomplished as 8 RPC to the management module of the
server, as illustrated in Figure 4. The number in the figure indi-

1)
i
Manager notfication Manager
(1) request
i Server
‘ Client (2) response
k client host serverhost /

Figure 4: Notification/Acknowledgement as an RPC

actes the order of message transmission. First, the call request is
sent followed by a response message, which prompts a migration
notification call request to the manager of the server.

Several optimizations on this basic approach should be sup-
ported by the RPC system. First, as suggested in Figure 4, the
notification RPC should be sent as a datagram call because the
invoking module does not require a response or normal confirmed
reliable delivery. If the notification is lost, a subsequent event,
such as ine retransmission of the response, causes the call to be
reinvoked, resulting in retransmission.

Second, these acknowledgement RPCs should be invoked with
higher priority than normal RPCs so that an acknowledgement is

QOQOIGNOSON) OGRS A0 OO IO YOOI,
RO T O i U LA T 2t S .,u!.,c'.hﬁ.flf.‘,\?.!t!.h'_.. \

L

.
OB

not held up behind the transmission of user-level RPCs.

Finally, the acknowledgement call should be able o take ad-
vantage of the local “knowledge” of the host address for the
manager, which is contained as a return address in the return or
response packet that caused the notification to be sent. That is,
the host address of the manager is known from the source address
of the response and the fact that the manager is necessarily co-
resident (on the same host) with the server. Without this support,
it may be necessary to query the network to locate the manager.

To this end, VMTP, as an RPC transport protocol, supports
datagram requests, priority, well-kmown multicast addresses and
co-resident addressing to support all three optimizations. These
extended RPC features are easy to impiement and of wider utility,
as described in Section 3.3,

2.3 Authentication Callback in Secure RPC

Management of secure RPCs involves authenticating a client and
getting the encryption key to be used with the current and subse-
quent calls. These functions can be implemented using a callback
to the client using a challenge-response protocol, as in Birrell's
secure RPC [3]. That is, the server “challenges” the client to
encrypt a random value; the client returns a response contain-
ing both an sutheaticator and the encrypted result. The random
value protects against replays. The callback also eliminates the
need to supply this extra information on 2very call. Callbacks are
generally infrequent because the server caches the authentication
information for a client between calls. .

In Birrell’s secure RPC protocol, the callback is implemented
as special packets in the transport protocol. However, using the
same techniques as described previously, we can instead export
a management procedure GetAuthenticat ion which is in-
voked by a recursive call from the server to the client's manager
module, as shown in Figure 5. (The sequeance of message trans-

¢ A

Authentication
Server

¥ ey

request authenticator

request
@ for authentication
Manager
{S) response
r @
(1) request o
Client (©)] Server
k response J

Figure 5: Recursive Call for Authentication

missions is oumbered in order 1 through 6.) The call to the
authentication service is effectively another recursive call made
by the client’s manager as part of implementing the secure call.
This authentication approach is used by VMTP {8] with the co-
resident addressing mentionai previously to address the cuent’s
manager efficiently. The use of recursion again eliminates the
need for special packets to handle the authentication callback

e

L R N ,
" » ‘!‘l :'b"‘a'??n‘. WS .h‘g.»'

MR oAty
‘\‘!\.’.l !‘u J"‘.'- i ‘.ﬁ !h R AR ’. =

eyt f } for”,

PR W e |

-

and takes further advantage of the RPC export of management
procedures.

The callback call for authentication is actually performed as
a non-secure call from the standpoint of the normal call encryp-
tion mechanism, thereby avoiding infinite recursion (to get the
authenticator for the manager sending the callback). However,
the callback is still secure because the call need not contain any
parameters that have not already been sent in cleartext and the
sensitive return parameters are encrypted by the authentication
service or the respondent. Similarly, the call to the authentication
server is made secure by using 2 public key for the authentication
service to encrypt the call parameters and supplying a private key
in the call that is used by the authentication service to return the
response. In essence, both thesc calls are made secure by special
case handling of the encryption of the call data and by restric-
tions on what is actuaily sent. These two mechanisms provide
the base for the (recursive) implementation of the general secure
call.

2.4 Exception Handling

An exception, whether a error condition or simply an unusual
condition (as we have considered elsewhere [S]) often requires
a sophisticated mechanism to properly handle the situation. It is
attractive to make the full power of the RPC system available to
handle exceptions in modules. However, this approach introduces
another potential source of recursive structure when exceptions
occur in the lower layers.

As one example, a module may use an RPC to remotely log
when it receives a packet that contains a protocol error. Another
example arises with a process incurring a page fault as part of
a (remote) call invocation. On a diskless workstation, the page

exception. By exploiting recursion, we simply make this 1ssuc
more evident.

The exporting of management operations as RPCs makes
query operations available as RPCs that can be used for vari-
ous binding operations, as described in the following section.

3 Binding Operations

Conventionally, specialized protocols are used for establishing
bindings to remote servers as well as establishing local identity.
For example, RARP [23] is used by a diskless workstation on
the Ethernet to determine its IP address. However, these op-
erations are logically just remote procedure calls that return the
required information. The following subsections consider how to
use RPCs for these binding operations without infinite recursion.

3.1 RPC Binding

The general problem for the client implementation of RPC is
to bind an RPC stub to the right server and remote procedure,
given a procedure p and object O. For example, p may be a file
open operation on file O so the right server depends on the file
name O. Alternatively, p may be a read from some open file
O. As a special restricted case of this object-oriented binding, a
procedure exported by a single server can be bound based only
on the procedure name.

In the recursive approach, a binding is implemented as a re-
mote procedure call that queries the binding from a directory
server. That is, what is logically the session layer invokes the
application RPC interface to access this directory server.

‘ o To avoid unbounded recursion, the directory server is ad-
s fault itself must be satisfied from across the network. Using dressed using a well-known logical address. Because the address
- a (recursive) RPC 1o read the page, the page can be retrieved is well-known, it is explicitly included in the session layer code
:, the same as a conventional file read operation (without special so the code does not query (or recurse) to locate this server. This
A protocols or mechanism). This recursion is particularly evident known value acts as the terminating condition for the binding in
g: if the process is doing a remote file read at the point it incurs the same way as the known value factorial(1) = 1 terminates
the page fault. The recursion terminates in this case because the recursion of the factorial function.
S the process is now reading into a page frame which is of course Administratively assigned multicast addresses, as provided in
Wy never paged out, VMTP, are a good way to provide well-known logical addresses
;! In general, infinite recursion does not arise from the use of because they provide a level of indirection to the specific server,
‘: recursion for exception handling providing that we order all ex- are easy to implement and allow for replication of the server. It is
t ception handlers and require that an exception handler only in- attractive to replicate the directory server for improved reliability
% voke exceptions that are strictly less than itself by this ordering. and load sharing. In the following discussion, we assume the use

Typically, the handlers are ordered by increasing sophistication
and the exceptions are ordered by decreasing severity. As a sim-
ple example, the transport module shouid never send a negative
acknowledge o a negative acknowledge “call”. To be more so-
phisticated, it should skip sending a negative acknowledge if the
“severity” of the error code was less than that of the call to which
it was responding. For example, one would not send a negative
acknowledgement to indicate that the server had migrated in re-
sponse to a negative acknowledgement such as described with
Figure 4. The same reasoning applies to other management op-
erations.

This explicit “architecting” of the recursive structure of the de-
sign makes the recursion safe and may well expose unintended
recursion in design. The problem of infinite recursion with ex-
ception handlers arises independent of the use of the techniques

of these multicast addresses.

Several optimizations on this basic approach arise. First, to
avoid sending every query to all replicas of the directory server,
the client can query the directory server group to locate a specific
server, cache that specific server's identifier and use it until it is
necessary to rebind because of server crash or overioad. This
optimization effectively introduces an extra level of recursion
because the session layer query recursives to select a particular
directory server when it does not have a valid directory server
identifier in its cache.

Second, the scope of the multicast transmission to the direc-
tory server group can be limited in a large-scale system to a
small subgroup, using (say) the time-to-live parameter in some
protocols [10]. Thus, in the common case, only nearby direc-

-)) tory servers receive the query. However, if the nearby directory
: detscn.bed h_ere. Every exception hu.xdler has‘ to be concerned servers have failed, the scope can be expanded to access more
i with incurring cxceptions as part of its handling of the current distant servers. In this fashion, the typical load on the petwork
L)

s

'

A

.

L)

,|

L]
%

R0 O LA - Ay ed Y TRTATY ' ’ SO CODON
B R A R S A R A e &m&&m

Sty

and directory servers for multicast queries is minimized.

Third, for objects such as files with a large name space and
significant requirements for performance, reliability and security,
the directory can be partitioned across the sct of servers so that
each server implements the directory information for its own
objects. (This approach, as implemented in V {7, 11], allows
the directory information to be made available with the same
performance, reliability and security as the server because it is
implemented as part of the server.) By caching information on
which portions of the name space are implemented on the dif-
ferent servers, a client binds directly to the right server most of
the time. On cache miss, the client (recursively) invokes either
a multicast RPC query to the group of servers or a query to a
directory server to determine the correct server. In either case,
the cache miss results in an extra jevel of recursion.

More generally, the name space can be implemented as mul-
tiple levels of directory servers, as described by Lampson [20],
rooted at a replicated global directory server and binding even-
tually to a local server that maintains directory information for
its own objects, as described above for V. Each new level in-
troduces a new level of recursion. For example, a query of the
file name “%edu/stanford/dsg/bin/emacs” recursively queries on
“%edu/stanford/dsg/bin", “%edu/stanford/dsg”, “ F%edu/stanford”,
“%edu”, and finally “%" with the last query satisfied by the hard-
wired binding of “%"” to the well-known multicast address of
the global directory server group. Caching reduces the expected
amount of recursion to an insignificant level. For example, mea-
surements of the V distributed system using the name cache [11]
indicate name cache misses (resulting in name query operations)
occur for less than 0.3 percent of the binding operations. As a
consequence, the average cost of this recursive structure in the V
naming system constitutes less than 2 percent of the average suc-
cessful binding operation. In general, the use of recursion allows
replication and partitioning the directory service across multiple
servers with minimal mechanism. Name caching at each level
results in good performance.

As a further optimization, some objects can be identified by
a value that includes the server ideatifier as an embedded field
so the server can easily be determined from the object identifier.
An example is the tuple (server,local-obj-id) used to identify open
files in V, called UIO objects {6]. With open files, this technique
amortizes the cost of binding to the server over all operations
on the >ren file, rather than doing a separate binding operation
for all read and write operations. This further reduces the cost
of recursion in the naming system. Embedding the server identi-
fier in the object identifier also simplifies the allocation of object
identifiers because every object manager can assign the second
portion of the tuple independently, relying on the system-wide
uniqueness of its server identifier to avoid collisions with other
object identifiers. In V, identifiers of this nature are used for ob-
jects such as processes, address spaces, and other objects that are
too transient to warrant assigning a character string name. (Ex-
tensions to the RPC stub compiler are required to take advantage
of this technique.)

Finally, co-resident addressing, as supported in VMTP, can be
used for operations that need to be bound to the specific server
(in a group of servers identified by 2 well-known multicast ad-
dress) that is co-resident with specified client. For example, the
operation to get a client's authenticator is addressed to the client's
manager which is co-resident with the client, as illustrated in Fig-
ure 5. This mechanism takes advantage of local knowledge of
the host machine of the client in many situations so the procedure

| (Type T1 well-known ... Type T2 well-known
ulticast adar. 1 multicast addr. k
Server Server] [Serverl [Serve Server

can be unicast dii 'y o the correct manager module, avoiding
the query operation (o locate the manager.

The approach of assigning a well-known multicast group to
a group of servers can be applied beyond its use for directory
servers. For instance, there can be a well-known multicast ad-
dress for each type of module. Members of the multicast group
are the servers that implement this type. For each such object,
the client queries the group (possibly in a type-specific manner)
to determine the right manager and then addresses the call to
that specific manager. The result is a forest of servers, with each
server logically rooted by the well-known address for its type,
as suggested in Figure 6. This approach further allows an object

Figure 6: Flat (Decentralized) Query Forest

to migrate between managers of the same type providing that
the object identifiers are unique across the type; the clients just
rebind using the query mechanism when their cached notion of
the specific manager for an object becomes incorrect because of
migration.

This same technique can be applied to the binding and query
problem at any protocol layer. For example, there can be a query
operation at the transport level that determines the binding of a
given transport address to host address, similarly for host ad-
dress to datalink address and so on. The query operation can be
exported by each management module the same as other man-
agement procedures, as discussed above. As a consequence, the
functionality of specialized protocols such as RARP and ARP
can be replaced by standard remote procedure calls.

Other attributes and parameters, such as maximum packet size,
need to be set as part of communication with a server. However,
a restricted version of RPC using default parameters is generally
adequate for the simple query operations discussed above. In
particular, both the call and the return parameters are relatively
short so both generally fit into single packets.

Some environments may require a query to be done securely,
with network intruders precluded from observing the contents
of the query, modifying the query or responding to the query
as an impostor. By (recursively) using a secure RPC facility for
queries, the system can take advantage of security mechanisms in
the RPC protocol, which should already be present and adequate
in any environment that imposes such security requirements on
the query operations. Without recursion, the security mechanism
as well as the basic transport implementation would have to be
duplicated as part of implementing the query mechanism. The
normal secure RPC call can be used as soon as the client knows
its (unique) client identifier. Establishing the client’s identifica-
tion is discussed in the next section.

3.2 Self Identification

A problem with using standard RPCs recursively to boot and
initialize a client (machine) is that the client may not know its
own “communication identity” initially. For example, consider

Fs g gt dgn Sae Ty Segtin Ty S0 Ty Bor Rt S by 0 DU O AT OL W ORI N AT LT, WP X O y:
: “:*":"‘-i!‘n"af‘!«"‘! ~"a*"«‘f’:'f','?‘?v'.‘:O',‘(’f’:3"'!‘*“’3'5"’!3" '.‘:'!‘.*.\‘:",':'!‘a:!‘:ﬂ‘:’?‘&‘d"ﬁ! "'a'!'ﬂ!‘u’!’: A A‘.‘A’:ﬁ':': .‘t':.i AL afc'u'f..,. ’l\nt\c'.c‘.?\'.“., N

T T

¥
' v, ‘v. 'a. "g

booting a diskless workstation using the IP protocols. It needs
to determine its Internet host address by querying the network.
However, both TCP and UDP require that the workstation know
its IP host address in order to use these transport protocols. [n
addition, it may peed to determine its datalink layer addresses
and other parameters of operation.

To allow use of the recursive approach in this situation, a
communication entity uses default identifiers and addresses un-
tl it can determine or be assigned specific unique ones. In our
example of the [P workstation, the workstation uses a default IP
address initially. In general, each identifier space (application,
process, host, gateway, etc.) must reserve a distinguished default
identifier to be used in this situation. Thus, continuing our ex-
ample, at the RPC level the workstation boot process acts as the
default client, a well-known reserved transport-level client iden-
tifier. At the (inter)network level, the host uses a well-known re-
served default host address. In addition, there are default values
for the parameters associated with each protocol. In particular, at
the RPC level, there is a default call identifier. The combination
of the default client identifier and default call identifier defines
the default call .

Several complications have to be handled to allow a client to
use the standard RPC mechanism with default values. In par-
ticular, several nodes and processes may be using the default
identifiers and parameters at the same time. Thus, two different
call requests can come from two different network hosts with the
same (default) client and transaction identifiers and be present on
the petwork at the same time, making standard duplicate suppres-
sion unworkable. For default calls to work correctly, we require
that each default call be handled as though idempotent and that
the return parameters be self-describing, as defined below.

Handling a defauit call as idempotent means that the call pro-
cessing is redone and a new response is generated every time a
default call packet is received even though it may appear as a
retransmission (given that every default call uses the same client
and call identifier). The reprocessing ensures that the response
matches the call parameters which are normally different between
different default calls. Thus, each client call causes a response
to be generate Because each default call can in fact be a differ-
ent query, the response is not in fact idempotent but handling
it in this way produces the desired behavior, namely a response
specific to the call parameters. If the default call were not han-
dled as idempotent, each subsequent default call would appear
as a duplicate call and would generate a retransmission of the
response to the previous call, defeating the use of the default
call for name/address queries. Idempotent handling of default
calls requires no special-case code in the servers if the transport
protocol provides for idempotent responses, as in VMTP [9].

With multiple concurrent default calls in progress, there may
be multiple return packets to default calis sent over the network
in a short time range. Because onme cannot guarantee precise
routing of return packets, a default client may receive a retum
packet that is in fact a response to another node’s call request. To
handle this situation, we view return values to default calis to be
essentially non-deterministic in that the return a client receives
will be a valid retum for some default call but not necessarily the
one issued by the client. For example, a default client may ask
about X but receive a response about Y. To handle this problem,
default calls must have return parameters that are self-describing
so the clieat can determine from the return parameters whether

This is & defsult transaction identifier defining a default message transaction in
VMTP terminology (9, 8].

W', W, U (A
ORI ’t LX)
‘ "'p Q' e " “ :l: !". X :' .' “"y '. " L\ J

the response it receives matches the call request. If it does not
match, the client discards the response and reissues its cal] after
some limeout pericd. For example, the response to a query for
the IP address for workstation with Ethernet address X returmns
the information “the IP address for X is H”, rather than just "H".
Thus, the node can repeat the query if it receives a response
giving the Ethemnet address for Y instead of that for X.

Ideally, there should be only one call that uses the default
call so the client does not have to deal with multiple different
return formats and self-identification schemes. However, to fully
establish its identity as a communicating entity, a node must
determine its identification and addressing at all levels, including
the transport level, (inter)network level and possibly the datalink
level. The order of determination that allows a single default call
type depends on the protocol structure. For architectures such as
TCP/IP in which the transport-level addressing is dependent on
the (inter)network level addresses, the client should (first) use the
default call to determine its (inter)network level address. It can
then locally allocate transport identifiers and use its own vnique
identifiers. With a protocol like VMTP in which the transport
identifiers are independent of the lower levels?, the client (first)
determines its transport identifier using the default call and then
determines the bindings for the lower levels. Only the transport-
level query needs to be self-describing and able to handle the
incorrect responses that can be received to default calls. Once it
has its own client identifier, a node can then proceed to generate
unique transaction identifiers and therefore needs only one default
call.

It is relatively easy to make this one simple query self-
describing and allow it to be handled idempotently. The query
does not change a server’s state and the host usually has some
unique identifier that it can send in the call to be returned in the
respoase as an identification key for the caller. Examples of the
latter include serial sumbers and Ethernet addresses.

In the absence of a unique identifier to use on boot, a node
must first allocate a unique number. One approach is to use
random assignment from a large space (which minimizes the
probability of collision), optionally checking with other nodes
for collision. Interestingly, the check for collisions can be im-
plemented as a default multicast query to all hosts. A response
is expected only if there is a collision. Thus, there is no need
to make responses to this query self-describing and so there is
no additional recursion. Therefore, the multicast query call acts
as the base (terminating) case for a recursive query structure for
determining the host communication identification procedure.

A default call be performed securely if the configuration server
that is to respond to these queries has a well-known public key,
that is a default key. In this case, the default client uses this
default key to encrypt its call parameters. It includes a private key
in the call to be used by the server for encrypling the response.
Only a valid server should be able to decrypt the call parameters
and determine the private key so only a valid server is able to
generate a response encrypted with the private key. The client
decrypts each default call response it receives, discarding any that
fail to decrypt correctly. The selection of the private key to use
in this case is analogous, both in role and suggested mechanism,
to the choice of a unique identifier for self-describing messages
discussed earlier.

With the approach described above, an RPC call proceeds as

3Transport-leve] addressing that is independent of lower leve! addressing is im-
portant as support for process migration, multi-homed hosts, mobile hosts and ac-
commodating different network-level protocols.

"'.‘ 'N?o:'f::‘!vt“!:. \"0.' R g ity

&

::: \ follows. On invocation of a call, the communication module first 33.1 Multicast RPC to Well-Known Servers

;:.0' checks whether it knows the address for the server that is being _

S addressed. If pot, it (recursively) queries to locate the server. We have assumed that there are well-known replicated servers
Y, However, before performing either call, it first checks whether it implementing the directory and configuration <ervices that are
H is the default client caller. If so, and it is not already sending a queried for server and client information. For this facility to
g query operation to determine its real address or identifier, it recur- work, all the layers must support the use of wc!l-known logical
:"H sively invokes the query operation to determine its real identity addresses. By logical address, we mean an address that identifies
M) before continuing with the original call. (The query operation a commurication entity by its function or service, rather than by
KRk is defined as a standard RPC call) This recursive behavior is location. By well-known, we mean that these addresses are ad-
Pui illustrated in Figure 7. In addition to the recursion shown in the ministratively assigned their particular logical meanings and can
_.’:l. be safely “hardwired" into programs. Certain values can easily be

reserved and administratively assigned in every identifier space
used in the protocol architecture. The problem is mapping these
Query server values. Multicast addresses to provide logical addresses that are
\ relatively easy to map and allow for replication of servers.

B, . Well-known identifiers can be mapped using well-known map-
::o:.': Query Cl‘lem Id ! l query client pings. For instance, a well-known transport 8identiﬁc:r can haSc

il a fixed mapping to a well-known (inter)petwork identifier which
r ﬂ has a fixed mapping to well-known network-specific identifiers.
,1§ query server In a broadcast network such as the Ethernet. the network-specific
RX identifier can be a multicast address that provides selective recep-
»j.:y ’l tion at the desired hosts. In a point-to-point or store-and-forward
; ‘ C'Ii ent call completion network, the network can provide default rowting of packets ad-
N dressed to the default address(es). For example, each switch may
ootk Figure 7: Recursive Calls as Part of a Client RPC simply route each such packets out each outgoing link other than
the one on which it was received. The use of caching, scope and

Client call ~ Servers

client request

i figure, the client can recurse further to check for collisions when embedded identifiers means that this relatively expensive routing
‘..:.‘ picking a unique identifier or private key*, need not occur ﬁpq}xcnuy and need not 'ex-tend over mpch of the
;.: X A response to a default call may have to be routed to multiple total network if it ‘s large. More sophisticated techniques have
':..‘ machines because several machines may be operating as the de- been developed [17] as well to handle internetwork multicast

"

fault client simultaneously. Theretore, the default identifiers are
treated as multicast addresses. In particular, at the (inter)network
level, the default client host group address is used as the defauit
value, with this host group [10] corresponding to machines com-
municating as the default client. As an optimization, if a host
that is operating as default client knows its lower-level identi-
fiers or addresses, the server can record the low-level addresses
associated with that default client call. Then, a response can
be directed to the host originating the call using these low-level
addresses.

A client switches from using default addresses to using its
specific assigned addresses as it discovers these assignments.
Servers should be prepared to rebind the addresses associated
with a client as it begins to use these specific addresses. How-
ever, this rebinding is required to allow transparent migration
of processes anyway so 00 new mechanism should be required.
That is, a server must potice a new host address to associate
with a client process after it has migrated if it already has a host
address association cached for this process.

routing.

It is sufficient to have one well-known logical address that
has a complete well-known mapping if that address is used for
a directory server that provides access to all other addresses and
mappings. However, a general multicast facility, as provided in
VMTP, is useful for multi-destination delivery as part of repli-
cated data update, for real-time state update and for various dis-
tributed algorithms, including scheduling, clock synchronization
and atomic transactions. In fact, the other uses of multicast were
the primary motivation for its development and use in VMTP
and V.

332 Co-Resident Addressing

A second extension of RPC was to exploit co-resident addressing
in conjunction with multicast. With co-resident addressing, a
call is invoked at only those servers that share the same host (i.e.
are co-resident) with an endpoint designated in the call. Co-
resident addressing is implemented at the client end by looking

up the host address corresponding to the specified endpoint in
local data structures and transmitting the call to that host if the
information is found. (Most of the circumstances in which co-
resident addressing is used, this information is available locally.)
If the host address is not found, the call is transmitted to the
(inter)network multicast address corresponding to the transport
multicast address. At the server end, any call specifying a co-
resident entity that is not local to the server host is discarded.

3.3 Extended RPC Functionality

Several of the techniques we have presented require extended
functionality beyond that normally present in an RPC facility.
This extended functionality is relatively easy to provide and of
significant utility beyond its application here.

® pLAIES

-

‘-‘..“.‘".
SHB S

:‘:': “How to check for collisions of private keys without violating the security of- Based on our experience in V and VMTP, this mechanism
iy fered by the key is left as an exercise for the reader. is easy to implement in an RPC system and results in efficient
‘ unicast addressing of managers without needing to first determine
i the specific identifier for each manager. It is also useful for a
J:r:! variety of situations in which it is appropriate to address one

LA e

N N A L OO MO RN o R Wptaty ety e 8 Tt Se Siu By TR g STt S SN g e Gt
RIS ASORCKNIUOATABRE Do (-0 £ LORR DRSO XM L) kﬁ':fl':‘:':!l:‘;'n:!?l-.‘l':'a‘!'- KXNRODNCI S u‘!‘::!'o':'a‘?'ﬂ._oa.‘ub"!‘a'

e v.»"'v'\

server out of a group that collectively provides the service for
the whole cluster.

333 Idempotency

The self-identification problem required that the server specify in
the response that the the call was redoable on retransmission, i.e.
handled as though idempotent. From our experience with VMTP,
this facility just requires a control flag in the respouse indicating
that retransmissions should be handled in this fashioa and the
transport module checking this flag when it receives a retrans-
mission. This flag also allows the response transmission code to
discard the response once it is sent (because it will be regenerated
by redoing the call if there is a retransmission). Overall, there
is a modest amount of mechanism and insignificant overhead for
this facility.

The idempotency facility is also useful for efficient file access
support and for some real-time applications. For example, with
file access, the transport layer of the file server need not incur
the overhead of keeping a copy of the data blocks in case of
retransmission. A retransmission simply accesses the data from
the file server's buffer pool. In the case of real-time uses, the
retransmitted response contains the latest data rather than what
was sent in the previous response. For example, a call to get the
current value of a sensor is better redone to get the new value
if the original response is lost rather than retransmitting the old
response.

33.4 Datagrams

The use of datagram calls is an important optimization in several
of the situations considered. A datagram call is easily supported
by the ransport layer; a flag indicates that no response is expected
and that no retransmission and timeout should be done. That is,
it simply disables some existing mechanism rather than adding
more mechanism.

The datagram call can be viewed as a conventional RPC that
has no return parameters and is not guaranteed to occur. It is
sufficient to have VMTP-like support for datagrams and a stub
generator that allows certain remote procedures to be handled as
datagram calls.

Datagrams are extensively used in real-time systems. Inte-
grating datagram call with the RPC facility makes this important
mechanism widely available.

335 Priority

Different priorities for calls are needed to cause negative ac-
knowledgements to be handled respousively. Priority is also used
for calls that implement routing, as described in Section 6. [m-
plementation of priority requires a field in the transport layer
header and priority-based transmission, reception and processing
of calls according to priority. For example, a high priority call
should be sent sooner than a lower priority call that is already
queued for transmission.

Priority is also important in real-time applications in which
response guarantees are important.

Overall, the extensions we advocate and assume in an RPC
system to support the techniques described here are relatively
easy to implement and provide functionality that is useful in a
variety of other applications. Each of these facilities would be

Bt it M
‘..l Qi

"' ""'."':' ':‘l.c'.i. .M.?ﬁf,a.,

.g"'.

relatively straight forward to specify o a stub generator which
then communicates these requirements to the transport layer.

4 Presentation

The presentation problem is to take an arbitrary procedure call
and map it onto a standard (serial) network representation. We
note that this mapping is normally defined in a recursive fashicn
to allow, for example, an array of arrays to be represented easily.

An example of the potential of recursion in the presentation
protocol is the use of callback to implement a procedure param-
eter. Rather than defining how to transfer the procedure itself,
the presentation level can require the recipient to call back the
sender with a request to invoke the passed procedure. Then, the
presentation layer need only specify how to represent the pro-
cedure call identifier, a much easier problem that describing the
procedure itself. It also requires less conversion and transmission
cost in general.

A second but similar example arises in the passing of large
complex data structures. The server can recursively call back the
client to get portions of this data structure as needed rather than
passing it in its entirety at the time of procedure invocation. In
both this case and the previous example, a well-known server
(group) can be used to address these callbacks, with the server
providing the invoking of these functions at the client end.

Finally, one can define a base presentation message format and
then define all others (recursively) in terms of this base format or
another so-defined format. For example, VMTP defines a basic
presentation format to its messages as being 8 32-bit values fol-
lowed by 0 or more octets in the so-called data segment. More
complex data values are defined by their mapping onto this basic
level, which in turn, maps onto the standard network representa-
tion. For example, a tree data structure would be mapped onto
the 8 32-bit valies and the octets of the data segment for trans-
mission. On reception, the receiver would map from this default
presentation to its local representation of the tree data structure.
The conversion between different machine representations of the
basic message format would be handled by the lowest level of
the presentation protocol implementation. The advantage of this
approach is that the basic presentation format can be chosen to
match the performance-critical case(s) and the implementation
can then be optimized for this case, as described below.

§ Performance Benefits

A recursively structured RPC architecture defines the full-
function RPC facility in terms of a more restricted version of
itself. This suggests an “implementation” view of the layering
of the architecture in which each higher layer implements an ex-
tended version of the same abstraction, as illustrated in Figure 8.
Layer N provides full data representation including procedure
parameters plus secure transport and authentication. It is imple-
mented in terms of the more restricted versions of RPC provided
by the lower layers. Conversely, layer i represents a level of
RPC functionality as an extension of layer i-1. For example,
a secure call is implemented in terms of an unsecure call. A
non-idempotent call is implemented in terms of an idempotent
call. Each layer implements some version of presentation, ses-
sion and transport functionality. Layer O can be the idempotent,
non-secure, non-duplicate suppressing, not fully reliable form of

UL,
ﬁ.‘.n...l.' .'g‘o" n‘l‘.’.‘ -.' . u‘:...‘ l’l '..‘l.“. K - .. ~ ' ,,n

Wt

L]

¢

%
}"\ " transport level, the reverse on reception. Other cases arise as a
:.:b: RPC N - full function. result of a cache miss or and because of a complex call.
.:,:n — In the case of a cache miss, the (software) cache miss handling
DN uses a restricted version of the RPC functionality provided by
i RPC i the NAB to get the missing information. For example, a miss
1 in the encryption key cache results in a non-secure call to the
',c,";a RPC i-1 sender’s manager. (Encryption support is not needed in this case
e:‘.' as described in Section 2.3.) The hardware can readily support
:;:s: . s » these simpler cases as a subcase of the common case call.
,Zl:p(. In the case of more sophisticated calls, the handling requires
f“ RPC 1 multiple RPC calls of the common case (or more restricted) calls
W, or else extra processing at the sender and receivers. For example,
::;q.) RPC 0 a remote procedure call passing a procedure as a parameter may
N invoke multiple callbacks during its execution. As another exam-
[. . ple, a call format that is different from the common case format
}"o.., Figure 8: Recursively Implemented RPC Layers must be transformed into that format by the sender. In VMTP,
=,:ﬂ, for example, calls that match the common case presentation for-
s » . . mat of 8 32-bit words and a data segment of 0 or more octets,
{ call used to checx for collisions with the choice of random boot are transmitted in big-endian order. Any other call format must
;;:; identifier, as described as in Section 3.2. A significant difference be transformed into this format before being transmitted by the
*:l.: between these layers and those of a normal architecture is that NAB and transformed from this format when received. Thus, the
:.:l. layer i in our mode.l d?“ not normally invoke layer i-1 as part representation of less common data objects must be defined in
.0.:. of normal communication but only as a result of a cache miss or terms of the common data objects, not just a sequence of octets
::'.: other unusual circumstances. as is done conventionally.
‘ _ The VMTP and NAB [19] desigos exploit recurs ve structur- Using this approach, the application user of RPC sees perfor-
., ing to achieve high-performance communication using hardware mance similar to that expected from a complete hardware real-
A support. The Network Adaptor Board (NAB) is a specialized ization but with a relatively low cost. That is, the hardware fully
A board designed to provide hardware support for running VMTP implements the commor case RPC but only the common case.
gy over networks of 100 megabits per second or more. The design With large on-board caches, expected loci'ty and repetitiveness
K auempts to identify and support the most performance-critical in communication, the cache miss cases occur infrequently and,
' functions of the protocol in hardware, focusing on packetizing, by definition, the other cases are also infrequent. The complexity
7 checksumming and encryption and their inverse functions. of the less common cases are handled by software.
e The NAB supports in hardware the most performance-critical In contrast, using a conventional layered architecture, the hard-
[!3)’“ of RPC_Of the layers shown n F}S‘"‘ 8, d“’}de the layers ware support generally implements fairly completely one or more
) into three major layers, as shown in Figure 9. This performance- of the low layer protocols, representing only a small portion of
s that needed for applications. As a consequence, hardware is
:!:“ v~asted on supporting fuactions with no real performance benefits
s, Extended RPC - in terms of basic RPC yet support is not provided for certain higher-level functions that
\ are performance critical. Direct hardware support of common
e i - - case communication appears essential to realize the performance
¢ 3 Basic RPC - hardware Suppo ted potential offered by future high-speed networks.
) N
Qe Restricted RPC - subcase for hardware.
V 6 Example: A Redesigned Internet Archi-
A3 Figure 9: Extended, Basic and Restricted RPC tecture
w critical layer is defined in our experience by the requirements of The potential impact of our recursive apprcach is further illus-
" file read and write RPC operations {12]. Anticipating require- trated by sketching a redesigned version of the DoD Internet
@ - ments for security, the common case is a secure call with a small architecture using recursion to minimize the number of protocols
KTy - number of short parameters, returning a similar number of pa- and their complexity. A key part of this redesign is the use of
iy rameters and a large parameter corresponding to the data to be VMTP as the transport protocol in place of TCP, as described
el read. A write operation is similar except the large data parameter, below.
@ . the data to be written, is sent as part of the call, not the return. In
A the common case, the server identification and parameters, client
\ identification and parameters and encryption keys are known and 6.1 VMTP: The Transport Protocol
W cached. . . .
(; . . . VMTP {8] is a request-response transport service tuned to RPC
:;% . 1':1le '}AB&% lol:mdl; tg\“ mm (‘:::e_;all ;fg'e but augmented with support for multicast, datagrams, idempo-
Py ciently. 'n paricu l'ls;dmp nu:en exl'es 150 teli Tsion OF | tency, priority and streaming. The inclusion of these facilities
presept.al:xon protocol u >d I this case. t also relies on geting was motivated by application considerations such as real-time
g t.hg binding of server, client and encryption mformhop (as re- communication, etficient remote file access, and distributed par-
;’t quu'ed‘by the session level) from on-board caches.. Finally, it allel computation. However, these facilities are also useful, if
. j packetizes, checksums and encrypts the data as required by the
el
7.t

o 'n.x ISOSINGD \'ln W ""'k 0 0N
e ORI A .:t!.._ ,u’“ :.: e |‘, a"‘ﬂ,‘ 0".'"."‘.0" b" .0. .o ot gt ety l.o'i o, o".n ..‘\ .l‘l.o I m

Ry w

)

[

9

¥

\ not necessary, lo support the recursive lechniques, as descnbed nism, which is network-independent except for the specification
o.' in Section 3.3. of network address sizes (or type) and perhaps various default
N The application of the recursive techuiques of this paper to values as parameters in the calls.

" VMTP has lead to a protocol with only two types of packets The more recent BOOTP protocol is a query facility similar
'_ (Request and Response) and the implementation of the mapping, to ARP and RARP but operating oa top of IP. Its functionality is
;:’ management and exception operations on top of VMTP, using a similarly replaced by remote procedure calls. In fact, we argue

standard RPC facility. (VMTP defines a standard representation
protocol, procedure identifiers and a well-known entity group
identifier (transport-level) multicast address for the VMTP man-
agement modules, sufficient for fully defining the binding and
parameter formats for th. e calls.) In contrast to this sinplicity,
the early design of VMTP [9] used 8 different packet types and

that there need not be any special remote procedures for booting
either; the required services can be supplied by a page-level file
access interface, which is an obvious service to provide using the
RPC facility.

ICMP is a subtransport management protocol for use with
IP coumsisting of datagrams as well as requestresponse pairs.

.'r.- suffered as a consequence from complexity (and repetitiveness) To eliminate ICMP, the IP module exports as RPCs the pro-
o of description and implementation. One pair of packe* types cor- cedures corresponding to the handling of d-tagram notifica-
> responded to a “probe” query operation to determine the mapping tion calls: destination-unreachable, time-exceeded, parameter-
-, of transport layer identifiers. This pair was eliminated by recur- problem, source-quench and redirect and the normal calls echo,
¥ sively invoking VMTP to perform the query, using well-kuown timestamp and information. To address this service, the group
{ identifiers, as described in Section 3. This operation is also used of all IP management modules is addressed using a well-known
. (o request and receive an 3“.“"31'{““‘0' as part of secure commu- transport-level multicast address and particular IP modules are
N nication, as was illvstrated in Figure 5. designated using co-resident addressing (s¢2 Section 3.3.2) and
3 A second pair of packets, the RequestAck and ResponseAck a co-resident transport identifier derived from the IP address. The
:-. packets, were used for management and exception handling op- IP modules and other higher-level clients of ICMP are modified
N erations. These specialized packets were eliminated from the to invoke these remote procedures in place of sending ICMP
‘N protocol by (recursively invoking) “notify” management opera- packets.
P tions as RPCs in the management module associated with the
- sender of the packet(s) being acknowledged. . ep. o
.‘; These changes build on an original aspect of the protocol, 6.3 Reducmg Lnlfy‘ ng
r namely exporting of the management module as a server so Network/Gateway Protocols
the operations could be invoked using VMTP. This management . . .
::: modnﬁ:n implements operations for n:;anaging groups ofagentiﬁes Gate'ways. _mu!ers and.bnflge's can be vne.wed as servers, their
) (for multicast) and controlling servers. The extension of this services being communication interconnection between networks.
{ module to handie the probe query operations and the notify op- Therefore, 'they can reasouabl): export an RPC procedural inter-
"o erations was modest, and lead to a net reduction of mechanism face to '.he ir control and mon;torﬂ:::g services. Thus, hosts and
:I ia the protocol implementation. ;m:ozlil;:m ‘:lm mr:oR:Sl t::e taywt:amvokc these procedures
v] As a result of using VMTP in place of TCP in our redesigned . guery #a¢ con 8 ys. -
: ". Internet architecture, the transport layer is a better base for ap- Routing protocols are az?other example ‘.’f specialized packet-
do plication of recursive techniques, allowing us to further simplify level pro m‘fOB that can be xmplfmet:}ed using RPCs. Th.ese pro-
P the rest of the Internet architecture. It also appears easy to pro- tocols consist of querics and nouﬁcauon calls some_of which may
) vide a high-speed implementation using hardware support such be flatagrams and multicast. Using RPCs for routiog communt-
" as supplied by the NAB. cation, the gateway can make greater use of the RPC facility it
' has to implement for monitoring and control. It also simplifies
k) g9 the specification of routing algorithms because communication is
4 6.2 Reducing the Number of Host Protocols encapsulated as (remote) procedure calls. This approach appears
N applicable to both EGP and GGP.
1 In the current Internet architecture, a full function host must im- Use of RPC and VMTP for routing protocols introduces further
® plement a (growing) number of different specialized protocols logical recursion, namely the routing of call packets used by the

in support of basic transport service. xamples include ICMP
[21], ARP [18], RARP [23], BOOTP [14) and UDP {22] in addi-
tion to the prevalent transport protocol, TCP [15]. Each protocol
requires its own procedures for transmitting, timing out, retrans-

routing algorithm. That is, how does one ruute the call packet that
is querying to find out a route. This case is handled by default
routing, as described in Section 3.3.1. The default routing may
simply correspond to broadcast or flooding the network. More

ooy

~

LN,]

ry

mitting and receiving packets.

The need for UDP is eliminated because VMTP provides a
datagram facility. It also subsumes the other common use for
UDP, namely the implementation of a request-response protocol,
whether as a general-purpose protocol or as jart of TFTP, NTP
and other special-purpose protocols.

selective routing follows once the information required for this
selective routing has been acquired from queries using the d=fault
routing.

Implementing routing as RPCs means that each gateway must
implement a relatively complete RPC facility. Fortunately, the

W g memory and processing cost of a general-purpose facility of this
ARP and RARP are query protocols used to determine host ad- nature is no longer a significant hardware cost, especially com-
‘: dresses, the IP host address and the Ethernet address respectively. pared to 10 years ago when the Internet architecture was de-
By making this information available through remote procedure veloped. Moreover, the same RPC support is then used for the
calls, these protocols are replaced by recursive calls, with the monitoring and control procedures as well as for handling the
‘9 caller using a default network or IP address for the call. This remote procedures replacing ICMP. This use of an RPC facility
X change replaces RARP with the use of the standard RPC mecha- in gateways can be exploited further, as described below.
N
y
)
L\
L J
W
"
4.‘

“ AT .0. 'u...i‘ () .’ U4 lu. L0 'l“'l‘ '..n' "’I' o o". 'Q'»‘l.ﬁ ~ c'l.‘y "‘ o‘l » 0‘ "‘ e 9"‘.::[

*' ,f‘ !

.- i, e
" ‘ o'ulil.Q.l (NN ... " '\")'

A

*-‘ ,"b-)'r.f ’

)

o

R e

-

Pl l A e

ey

AP PP o 4

-

T Ve e

g
a @« 7.8

oo
- - o S

L s

-,

W
:n":o '.~".o'

6.4 RPC Gateways: Recursive Internet-
working

Internetworking can be implemented using recursive RPC calls
by extending the notion of transport-level gateways. Transport-
level gateways were previously proposed by the author {4] as
a solution to the performance, reliability and security pmoblema
with the internetworking of high-performance local networks®,

In brief, 0 communicate with & remote endpoint (on agother
network), the client first creates a local alias endpoint in a local
gateway representing this remote endpoint. The gateway makes
communication directed to the alias sppear as communication
directly with the remote endpoint. For example, communica-
tion between two endpoints A and B on different networks takes
place through gatewsy alisses, as depicted in Figure 10. As a

Host L Gateway
T
T Local network 1 T
Host K Gateway
o I -

~r Local network 2

Figure 10: Transport-level Gateway Operation

cousequence, the hosts need only wnderstand the performance
and administrative aspects of the local network. The gateway
imposes access ~ontrol between the local network and the inter-
network. It can also (for example) tailor the retransmission rate
10 the delay and error rate of the intemetwork link (by filtering
out retransmissions). This structure also supports new techniques
such as rate control [8, 13), which require hop-by-hop support
for proper implementation. The interested reader is referred to
the original article for more discussion [4). This basic approach
can be extended to provide RPC gateways with the intergateway
calls viewed as recursive calls.

Communication with a8 remote server is implemented as a se-
quence of recursive calls with each recursion corresponding to an
additional hop between gateways. That is, a call to a server that
is N networks away is implemented as a call to an alias for that
server that is N-1 networks away. A call to a remote alias appears
the same as a call to a remote process. Thus, a call from the lo-
cal client to local alias recursively invokes a call from the local
alias to the remote alias repeatedly for each gatewsy-to-gateway
hop and from the “last” remote alias to the actual server. Each
recursive call crosses a different communication domain, using
potentially different naming, retransmission strategies, and pro-
tection for each recursive call. With each network representing
a separate domain of trust, this approaches results in the same
relative authentication and trust described by Birrell et al. [1].
However, the performance-critical mechanism at each gateway
is simple because it only needs to handle communication within
one network, further facilitating hardware support such as the

*1a this spprosch, muiupie physical local networks are connected by bridges
rather than gateways (o form & single logicsl local network if there are no perfor-
mance or adrmunistratve boundaries between them.

J‘~ e

: RN l'v‘:' 4‘0."' 0 I' ""::.l'n by 'o 0’0. '.‘l':.h :' X l.l

AN S ¥

A%, ::,‘.I.,l ?A:'f‘i)

NAB [19).

This technique can even be used to access and manage a gale-
way that is N-1 networks awa,. 1. is simply imported by recur-
sively importing remote gateways into the local petwork using
the alias mechaniszn, The recursive importing terminates when
a gateway is imported that can commupicate with the desired
server in the configuration indicated in Figure 10. Importing 2
gateway allows |t to be accessed and managed as though it were
a local gateway®.

The author is engaged in on-going work to develop this ap-
proach further to evaluate it as a credible alternative to current
approaches to internetworking. A key issue is the reliability of
internetworking with alias state in the gateways.

7 Conclusions

Recursion is a powerful technique for structuring RPC commu-
nication architectures. We have shown how various lower-level
management, query and exception-handling services can be ac-
cessed remotely as remote procedure calls, using recursion to
structure what would otherwise be a layering violation. The ef-
fect is to replace specialized protocols such as ARP, RARP and
BOOTP in strictly layered architectures with procedural inter-
faces provided by the RPC system. These protocols are effec-
tively part of the implementation of a full RPC facility, leading to
a recursive structure. We showed how to apply these recursive
techniques to the presentation, session, transport and network
layer protocols, including routing protocols. We also showed
how these techniques facilitate inexpensive hardware support.
The application and benefits of this approach were illustrated by
describing how the DoD Internet architecture might be redesigned
and simplified using these techniques.

Compared to & conventional, strictly layered architecture, the
basic service routines that implement the functionality of a spe-
cialized low-level protocol remain in the recursive architecture.
The saving lies in the elimination of the packet handling code for
each protocol and the special-purpose translation from procedure
calls to communication packet formats. With an automatic stub
generator, an increasingly common programming tool, even the
code to generate and interpret transport layer messages is auto-
matically generated from procedural interface specifications. The
eliminated sofiware, dealing with packet transmission, reception
and timeouts, is significantly more complex for testing and verifi-
cation than the procedure interfaces resulting from our approach.
Thus, these changes reduce the overall size and complexity of
what is characteristically the “networking software”.

Using our recursive approach, the conventional architecture
layers for spplication, presentation, session, transport, network,
datalink and physical remain intact. Arbitrary calling into the
higher levels is forbidden and most calls continue to be from one
layer to the layer directly below. Lower layers are only allowed
to use the RPC service itself (the highest level service interface)
and any procedures that are exported through the RPC facility
by other modules. Thus, strict layering is violated but the loss
of modularity is minimal. In particular, lower layers only incor-
porate knowledge of the interfaces of the exported remote proce-
dures they use and their ability to invoke these procedures. They
otherwise remain ignorant of the protocols, service interfaces and
implementations of the higher-levels allowing these intermediate-

*This technique is used in an impiementation of transport-level gateways used
by the Port PC networking system developed by Waterloo Microsystems.

ha\c,..t oy .""

Moot

K“"’\'«.'

- -
=P

‘;i -,

T L

> LA, o T

-

@ Xk

¥
X "'(‘ "

.

Y
‘; ,_' ﬂt‘q’l » N "

level protocols and implementations to be replaced transparently,
a claimed advantage of a strictly layered architecture. The major
problem is guaranteeing the absence of unbounded recursion.

Recursion does not impose a significant performance penalty
because recursion is not used on the critical path in the com-
mon case. Typically, recursion only arises on a cache miss or
with less common operations. Moreover, the recursive approach
results in all layers using the same transport proiucol and proto
col implementation. This unification has significant performance
benefits when hardware support is provided (and needed) for
high-performance transport service, as the NAB [19] provides
for VMTP.

Our recursive approach also structures the full RPC commu-
nication facility as successive extensions of the same basic ab-
straction. This structure appears to facilitate verification of the
security and reliability properties of a communication architec-
ture compared to a layered architecture in which each layer is a
totally different abstraction. In particular, recursion leads to more
succinct description of the architecture, reducing the amount of
specification (and programming). The resulting short description
facilitates proof of correctness as does the recursive structure,
which is often amenable tv an inductive proof. Further work is
required to evaluate the merits of recursion in simplifying the
verification task.

Well-known values are used to ensure that recursive calls ter-
minate. For example, well-known multicast addresses are used
to address servers (or discover the address of servers) whose
specific server address is not already known. The well-known
addresses provide a terminating condition for recursive query op-
erations called to map to server identifiers and addresses. Also,
well-known default values are used by query operations whose
purpose is to (recursively) determine specific values for com-
munication parameters, including the identification of the caller.
Although these default values limit the functionality and relia-
bility characteristics of RPCs using these parameter values, we
have argued that the functionality is adequate for bootstrapping.

In conclusion, the growing sophistication of communication
environments and services requires that there be a consolidation
in protocols. The remote procedure call approach offers such
an opportunity. Handcrafted, special packet formats and packet
generating and handling can be replaced by automatic techniques
analogous to the replacement of handcoded assembly subroutine
calls by compiler-generated calling sequences. While these bene-
fits are largely recognized at the application level, similar benefits
accrue at the transport level and lower if one accepts the recur-
sive techniques advocated here. In any case, some new approach
is required to stem the tide of new specialized protocols within
cach protocol architecture. Our investigation of the recursive
approach presented here finds it very promising.

8 Acknowledgements

The formulation of these ideas has benefited from discussions
with Steve Deering, Carcy Williamson, Ross Finlayson, Hemant
Kanakia, Marc Abrams, Michael Malcolm, Jon Crowcroft and
Lorenzo Aguilar.

References

(1] A.Birrell, B.Lampson, R.Needham, and M. Schroeder. A global
authentication service without global trust. In Proc. Sympasium on

1K) ‘0-".!‘ WO Na'o"t
l'.|‘ l' ..l‘\ 5\1,|

(2

[3

(4]

(5]

(6

|
18)

9]

(10]

11}

(12]

3]

(14
{15]
(16]
[ty
(18]

[19]

{20]

21]

{22

{231

- L K
IO |)
Wi tintin e c';'l':::‘ 'n“‘o AN ‘c‘. :\.:' Sttty

Security and Privacy, pages 223-230, IEEE, Apnl 1986, |EEL
Computer Society order number 716.

A. Birrell and B. Nelson. Implemeating remote procedure calls
ACM Trans. on Computer Systems, 2(1), February 1984,

A.D. Birrell. Secure communication using remote procedure calls.
ACM. Trans. on Computer Systems, 31), February 198S.

D.R. Chenton. Local networking and internetworking in the V-
System. In 8th Data Communication Sympasium, IEEE/ACM,
1983.

D.R. Cheriton. Making exceptions simplify the rule (and justify
their handling). In World Congress, IFIP, 1986. Dublin, Ireland.

D.R. Cheriton. UIO: A uniform I/O interface for distributed sys-
tems. ACM Trans. on Computer Systems, 5(1):12-46, February
1987.

D.R. Cheriton. The V Distributed System.
31(3):314-333, March 1988.

D.R. Cheriton. Versatile Message Transaction Protocol (VMTP).
RFC 1045, SRI Network Information Center, February 1988.

D.R. Cheriton. VMTP: A transport protocol for next generation
communication systems. Ila SIGCOMM '86, ACM SIGCOMM,
August 1986.

D.R. Cheriton and S.E. Deering. Host groups: a multicast extension
for datagram internewworks. 1o 9th Data Communication Sympo-
sium, IEEE Computer Society and ACM SIGCOMM, September
198S.

D.R. Cheriton and T.P. Mann. Decentralizing a global naming ser-
vice for efficient fault-tolerant access. ACM Trans. on Computer
Systems, 1988. To appear; An earlier version is available as techni-
cal report STAN-CS-86-1098 Computer Science Department, Stan-
ford University, April, 1986 and CSL-TR-86-298.

D.R. Cheriton and C. Williamson. Network measuremest of the
VMTP request-response protocol in the V distributed system. In
SIGMETRICS '87, ACM, 1987. Banff, Canada.

D.D. Clark, M. Lambert, and L. Zhang. NETBLT: A Bulk Data
Transfer Protocol. RFC 969, SRI Network Information Center,
1985.

B. Croft and J. Gilmore. Bootstrap Protocol. RFC 951, SRI Net-
work Information Center, March 1985.

DARPA. DOD Standard Transmission Control Protocol. 1EN 129,
SRI Network Information Center, January 1980.

S.E. Deering. Host Extensions for IP Multicasting. RFC 1054, SRI
Network Information Center, May 1988,

S.E. Deering. Multicast routing in internetworks and extended
LANs. In SIGCOMM 88, ACM SIGCOMM, August 1988.

D.Plummer. An Ethernet Address Resolution Protocol. RFC 326,
SRI Network Information Ceater, November 1982,

H. Kanakia and D.R. Cheriton. The VMP network adapter board
NAB: High-performance network communication for multiproces-
sors. In SIGCOMM ' 88, ACM SIGCOMM, August 1988.

B. Lampson. Designing a global name service. In Proceed-
ings of the Fifth Annual ACM Symposium on Principles of Dis-
tributed Compusing, pages 1-10, ACM, August 11-13 1986. Cal-
gary, Canada.

J. Postel. Internes Control Message Protocol. RFC 792, SRI Net-
work Information Center, September 1981.

1. Postel. User Datagram Protocol. RFC 768, SRI Network Infor-
mation Center, September 1980.

R Finlayson, T. Mann,].Mogul, and M.Theimer. Reverse Address
Resolution Protocol. RFC 903, SRI Network Information Center,
June 1984,

Comm. ACM,

(
l J
*f“'.t'l!!'i.s I.Jo,"m .c‘m ,:'&.:'0 l,"l‘:'t!:

I
"
o,
v
':i:‘
_l,;'i
"’...
1% 1
K}
Wy
.~
*
X
y
o

‘..'!! ”/ M E D
o "

b

Al

RERNES) SOGISOSA '0 N M
eOroNY -m .a ,n e ,o .|.ilah‘\. .0' .,", .w. ',\\.' :': .,.. ;:.e 1.

A o ’t’e"’g "q I’ 'l .l’tkf‘# O‘Q l q " l‘.‘t X l\ ARSI
it !‘i'l' t, sf‘z" et ’ ROON0NS .l'u' Wl atatioty ‘:“ ‘

W

