
November 1987 Hcport No. STAN-CS-87-1189
Also Numbered KSL-87-65

|

Inst rumented Architectural Simulation

by

B. A. Delagi, N. Saraiya, S. Nishimura, and G. Byrd

Department of Computer Science

Stanford University

) Stanford, CA 94305

a EAD »

Xeanizen oF

Knowledge Systems Laboratory November 1987Report No. KSL 87-65

Instrumented Architectural Simulation

by

Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura,

and Greg Byrd

Digital Equipment Corporation
Maynard. Massachusetts 01754

Stanford University
Stanford, California 94305

This work was supported by DARPA Contract
F30602-85-C-0012, NASA Ames Contract NCC 2-220-S1, and 3oeing
Contract W266875. Greg Byrd was supported by an NSF Graduate

Fellowship and by the Stanford University, Department of
Electrical Engineering.

Instrumented Architectural Simulation

Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura, and Greg Byrd

Digital Equipment Corporation Stanford UniversityMaynard, Massachusetts 01754 Stanford, California 94305

ABSTRACT

Simulation of systems at an architectural level can offer an effective way to study critical

design choices if (1) the performance of the simulator is adequate to examine designs executing
significant code bodies -- not just toy problems or small application fragments, (2) the detailsof the simulation include the critical details of the design, (3) the view of the design presented

by the simulator instrumentation leads to useful insights on the problems with the design, and(4) there 1s enough flexibility in the simulation system so that the asking of unplanned
questions 1s not suppressed by the weight of the mechanics involved in making changes either
in the design or its measurement. A simulation system with these goals is described together
with the approach to its implementation. Its application to the study of a particular class of
multiprocessor hardware system architectures is illustrated.

1 INTRODUCTION

Simulation systems are quite often developed in the context of a particular problem. To a
degree, this 1s true for SIMPLE, an event based simulation system, and CARE, the computer
array emulator that runs on SIMPLE? The problem motivating the development of both

" SIMPLE and CARE was the performance study of 100 to 1000-element multiprocessor systems
executing a set of signal interpretation applications implemented as “1000 rule equivalent
expert systems” [2].

A set of constraints pertinent to this problem governed the design of SIMPLE/CARE. The
applications represented significant bodies of code and so simulation run times were expected
to be an important consideration. Moreover, the issues involved with the interactions of
multiprocessor system elements were sufficiently unexplored prior to simulation that
simplifications in the CARE system model, specifically with respect to element interactions,
were suspect. This need for detail was, of course, in tension with the need for simulation
performance. The ways that simulated system components would be composed into complete
systems was initially difficult to bound. Further, it was clear that the models of these

. components would be elaborated over time and would undergo substantial change as design
concepts evolved. It was also clear that the ways of examining the operation of these
components would change independently (and at a great rate) as early experience indicated
what alternative aspect of system operation should have been monitored in any given
completed run.

The design goals that emerged then were (1) that the simulation system should support the
management of substantial flexibility with regard to simulated system structure, function, and
instrumentation and (2) that, in order to accomplish runs in acceptable elapsed times, the detail
of simulation should be particularly focused on the communications, process scheduling, and
context switching support facilities of the simulated system -- that 1s, on just those aspects of

’ system execution critical to multiprocessor (as opposed to uniprocessor) operation.

ISIMPLE and CARE were developed by the authors at the Knowledge Systems Lab of Stanford University. SIMPLE
is a descendent of PALLADIO [1] optimized for the subset of PALLADIO's capabilities relevant to hierarchical design
capture and simulation. It is written in Zetalisp [3] and currently runs on Symbolics 3600 machines and TI Explorers.

This work wasupported by DARPA Contract F30602-85-C-0012, NASA Ames
Contract NCC 2-220-S1, and Boeing Contract W266875. Greg Byrd was
supported by an NSF Graduate Fellow ship and by the Stanford University
Department of Electrical Engineering.

1.1 Design Time Interaction And Run Time Operation

Encapsulation of the state of design components with the procedures that manipulate that
state is one clear way to manage design evolution. Such encapsulation partitions the design
along well defined boundaries, Components (by and large) interact with other components
only through defined ports. Connections between components terminate at such ports. When
a system simulation is initialized, connections are traced so that for every port, the simulator
knows the connected (terminating) ports together with their containing components. Once such
initialization is complete, that is, throughout the simulation run, assertions about the state of a
port of one component can be directly translated to assertions about the state of connected
ports of other components.

Partitioning issues of system structure, component behavior, and instrumentation into separate
domains of consideration helps in managing a design that 1s both fluid and complex. System
structure, that 1s, the relationship between components, can be specified through use of an
interactive, graphics structure editor and 1s largely independent of component function per se.
Component behavior 1s encapsulated in a set of definitions pertinent to the given class of
component, Each component in a SIMPLE simulated system 1s a member of a class defined
for that component type. Instrumentation 1s automatically and invisibly made part of the
definition of each simulated component that 1s to be monitored during a run. This 1s done by
arranging that the class of every component to be monitored is a specialization of the general
instrumented-box class. The basic data structures and procedures for monitoring simulated
components and maintaining the organizational relationships between each component and its
related instrumentation are inherited through this general, ancestral class and are thus made a
separate, substantially independent consideration in the design.

A further partitioning of concerns is employed to separate out the definition of the
application programming language interface and its support (as provided by CARE) from the
underlying information flow control governing component behavior. The behavioral
descriptions of components (which are expressed as sets of condition/action rules) deal
generically with gating information, independently of the structure of the information, between
ports of the component and its internal state variables. This 1s separated in the component
model definitions from the functions performed to create and manipulate the information so
gated. The simulated implementation of the application programming language support
facilities, on the other hand, relies only on the specifics of the information and its structure
and plays no part in gating it between the components of the system. Changing the definition
of the application language is thus done independently of changing component flow control
behavior. The application programmer and the implementer of the application language
interface may use whatever data structures seem suitable to them, be they numbers and
keywords or procedure bodies and execution environments. The simulation system doesn’t care.

The component probe definitions, that 1s, the specifications of what information should be
captured for each component type, are separated from the descriptions of the behavior of such

. components. in designing for flexibility in the instrumentation system, it turned out to be
important to further divide the information presentation from the information collection
issues. The mapping from particular component probes to particular instrument panels and the
transformations to be applied to the information as it passed from a given kind of probe to a
given panel (and between panels) 1s captured in the instrument specification. This is a
definition of what kinds of panels are included in an instrument, how they fit on an
instrument screen, how they are labeled and scaled, and what information from which kinds of
probes are displayed on each panel. The instrument specification also indicates what kinds of
probes are to be connected to which kinds (that 1s, which classes) of components in the system.

Putting together all the definitions of components, component probes, panels, instruments,
applications interfaces, and inter-component relationships is done in a set of design time
interactions by a system architect. These interactions are used by the simulation system to
generate efficient run time representations so that simulation performance goals can be met.
Figure 1 illustrates the partition between design time interactions and simulation run time
operation. Structure editing pulls together components from the component library to produce
a circuit. Associated with some components in the library, there are definitions for the syntax
and underlying mechanisms of a multiprocessor applications language. These specify the
interface used to provide the program input to the multiprocessor system being simulated.

)

The language Primitives supplied can be used to define multiprocessor language interfaces for either shared-variable
or value-passing paradigms. As supplied, the language interface built on these primitives supports value-passing on

aiidDetween objects but alternative interfaces can be (and have been) easily defined in terms of the given

applicatien cod?

multiprocessor programming language
component [lbrary/” emg, Interface

|modules| interface fetrgati] Buent-hased
zAA| : 7 .s1mulator

|modules§ Specilicstion mRcompileren y
design time Intsractions simulation run

Figure 1: Design Time Interactions and Run Time Representations

The definitions used to generate component probes are associated with each library
component to be monitored. There may be several such definitions, each appropriate to
measuring a different aspect of the associated component’s operation. An Instrument
specification selects from these definitions, elaborates them with selections from a set of probe

+ operation modules to include any pre-processing (for example, a moving average) to be
calculated by the probe, and indicates under what conditions what information from the probe
1s to be sent to which panels of the instrument and how it 1s to be transformed and displayed
there. Instrument specifications also partition the screen among the panels of the instrument.
The end product of these design time interactions 1s an instrumented circuit and an instrument.
The instrument comprises a set of instrument panels and a set of constraints relating them to
t he instrument screen. The instrumented circuit ties together instances of components, probes,
-nd panels for a simulation run.

For each defined class of component and its associated probes, the design time interactions
produce code bodies that accomplish simulation operations during a run. It 1s an attribute of
the underlying Lisp base of the simulation system that changes in these definitions have

. Immediate effect even during a simulation run -- an important capability during debugging.

2 STRUCTURE AND COMPOSITION

Design time interactions to specify a system include the establishment of component
relationships. Such specifications can be said to accomplish the composition of the system
from its components and so define its structure. SIMPLE supports hierarchical composition:
components may be described in terms of a fixed set of relationships among their sub-
components. Additionally, such composite components may have function beyond what can be
inferred strictly from their composition. All this can then be included a higher level
composite and so on indefinitely until the top level “circuit”, the system structure, is reached.

Composition 1s described graphically and interactively in SIMPLE by picking a previously
specified component type from a menu, placing it in relationship to other components with
“mouse” movements, and, through the same means, specifying the connections between its
selected ports and those of other components.

Although any connection of components can be created by the means noted previously, for
some repetitive, well patterned systems of connections, composition can be automated. The

CARE library includes a component, the irerated-cell, which rgpresents 3. template for thecreation of composite components by iteration of a unit cell, e specializations include a
method for responding to a request to provide a wiring list. Such a list associates each source
portof a cell with the corresponding destination port (in terms of port names) and the
position of the destination cell relative to the source cell in the iterated structure. The iterated
cell component uses this information to make the required connections between each of its
constituent cells.

3 INSTRUMENTATION

The results of a simulation are primarily the insights it provides into the operation of the
simulated system. The “insight” we frequently experienced using an early version of the
simulation system was that more interesting results could have been produced by the run just
completed if only the instrumentation had been different. With this in mind, the design for
the current ver<’ »n of the simulation instrumentation system was aimed at flexibility. This
was attained v. .out significant performance impact by building efficient run-time system
structures before each run, as outlined in section 1.1, from the declarations defining the
instrumentation.

event-based
simulator

{ :ApplyRules
create ¢y

instrument (f —
| component

__% S00 Instrumented-box

create § I ————rs,

CrI ——— trigger
; lemplate-probe }

J :create | }

i panel “AAC component-probeselect < :calculate

update

Figure 2: Instrument System Organization

The organization of the instrumentation system 1s pictured in figure 2. The simulator
interacts with component instances through assertions, that is, calls on an assert function, in
behavior rules (the methods associated with :ApplyRul es messages). All instrumented
components are specializations of an instrumented-box (as well as other classes). After each

invocation of :ApplyRules for such components, the :ApplyRules method for a generic
instrumented-box is applied. This causes invocation of the :trigger method for each
component-probe associated with that component. Data from component probes is collected
and displayed by instrument panels. Since this flow of measurements is accomplished by
means invisible to the the writer of behavior methods for a component, the concerns
surrounding component design are effectively partitioned from component instrumentation.
Panels are put together in an instrument screen according to a set of layout constraints
manipulated by the underlying window system. The finished screen might look like figure 3.

ACTIVITY BY CLASS CARE EXAMINER: EVALUATOR QUEUE LOAD LISP LISTENER

Service/Quene Average (Roms) Delay | Ra c ant HN is tery end Averege dy Site 0.240 1000 1
Wes IN: LD UY MY (15:40:59 Process Simpie's Hardcopy Proce

. SWE PLT BLN TWITTERD [%] got &Nn error' Ives tut BIR nLANK:9 [1s 2 [select Background Lisp interactor t by ty
Jers tas 5 owmr8 SA)— Daorn
Les iirm tn rman GnEee || [17 7 Press @mmDto continueor GRID to qu
MLE em Lr xm: he Pem—————————— ssa N

sure ' n am h¥ nar 0 a }_— hi27120 72 hea (Resume J
| 1 _————[w-

ACTIVITY BY INSTANCE is —_———————— E- 2 | NETWORK LOAD & LATENCY
Service/Quene Average (Rw) Dailey “ —_—— Net Poteatiel Offered Load

CWP LAID MIS ts (3 P WIKIMETTER7M 651% PATTY 3 —_—— BE -- p as8

os rm Bo nm t |Ierfe] ° o¢ ars ®
’ 38) |——————————ertaretrBeer rer t tWPPU IU P12 to 0 AINTINITIN© WieE LlT 33) Peetaetd B-- 700 ¢LM LBD VI & aN eRmem aise san nn ————————ft = e 4 n

CWO LMU KS ONETIG§ I sant iH{iii} n 22s
RL RL eyin t 28 150v
sve PMID NA (oD NINTSHITRL@ Iv0%e SarS 2 eee ee Tr en ! 14 7%ALWI FBIU AE & OD ETHERUO CWT MIO EE I oe———————————EE ——— a + CLT v

tvs Imo nr vos mean oman] © (1) FEoeene———— -- L 0 0 ®
i eepihtuiuisiionibinbiestuop 9.90 1884 109.54 36.! 199.57
CWO ANID RW (+ MD SWTNITIEN© NIN barD Stmulated Tine (ne) B-- Bimulatad Tine (ns)

. CUMULATIVE LATENCIES PROCESSOR UTILIZATION SYSTEM QUEUE LOAD NETWORK-OPERATOR MAP
Net-Opearetor-Lvalnator-Run Tima | Time Evaluators & Operators Busy | NeteOperatereLvalnetor Quenes | Operator QLoed & Network Activity

24 y 2% go 31

. 20 * y 0ooooo0ao [Jost e 23 oQoOooooo 18 2

. 16 v osyooa Ele2"12 0 13 Doonan E332
vy 8 | s t w[r]alsis[elc, Ma:4 . ‘ 1. WOOO dy Se 2

: ns 2 i $oooodua co21 S61 10911501 2091 2501 @ © 16 2432 40 40 5664 109.3 coooooo ud 2
Content by Rank Resources Busy Simulated Tine [ne] —Pod

NOTES:

Evaluation Override NlLus, Eveluastor Factor 1.90, Operator Word Touch Time 2.9xs

- 877.426 “I 1354) delog) a. “ CARE 3 | un HPP-3645-1@'s console idle 1 hr 24 nins

Figure 3: Overseer Instrument

4 CONCLUSIONS

. The design goals of simulation flexibility and simulation environment completeness have
been supported as discussed above. In summary, the system is flexible in that it supports:

o Arbitrary data types and lengths in simulation. The information whose flow and
’ creation is controlled by simulated components may be of arbitrary compiexity

-- from numbers and keywords to procedure bodies and execution environments.

» Instantaneous effect of definition change at both the application and component
modeling level (even during a simulation run).

« A broad range of instrumentation customization. Customizations may involve
arbitrary expressions for probe data transformations, many to many probe to panel
mappings, information from summary analyses on one panel's data included in
another, and control of what state is saved and for how long.

|

o Separation of probe and component definitions to facilitate their independent
modification.

« An application language interface that 1s easily extended or changed without
recasting the inf:-.rmation flow control described by the component behaviors.

While there 1s always room for additional capability, SIMPLE/CARE 1s a usefully complete
system. It now includes:

o Supplied components for a network multiprocessor simulation with many of their
parameters customizable by menu interactions.

o A hierarchical structure editor that currently provides automatic grid and torus
composition operators. (Automated composition of richer topologies, such as
hypercubes, has been provided for in the basic design).

« A rule language that supports a synchronous design style without incurring the
overhead of (naive) synchronous simulation.

« Method invocation for functional simulation that 1s integrated into the behavioral
stimulation rule system and which provides for ‘operations by and on both local and
hierarchically related components.

« Method specification design aids provided by the underlying program development
environment (for example, method dictionaries and quick access to method sources
from the debugging system).

« An evolved set of panel templates providing histograms and sorted, scrollable text
lines as well as self and fixed scaling, “two and a half" dimensioned, history
sensitive displays which may be scatter plots, strip charts, line graphs, intensity
maps, and signal animations.

We set off to build a multiprocessor simulation system with performance adequate for the

understanding of multiprocessor systems executing significant applications. TheSIMPLE/CARE simulation system has been used to study the operation of “expert systems” of
.respectable size[2 3. Depending on instrumentation load, these studies have involved
simulation runs from 20 minutes to several hours each. While faster would surely be better,
performance has proven adequate to these needs.

5 ACKNOWLEDGEMENTS

This work stands on the shoulders of its predecessor, the Palladio system, designed and
implemented by Harold Brown and Gordon Foyster. Our functional goals were more restrictive
than theirs so we had the luxury of design by simplification. Without their implementation
base, it would have been hard to know even where to begin.

. Many hands and minds have contributed to the development of SIMPLE/CARE. We are
particularly indebted to the work of Russ Nakano who started off to do a simple learning
exercise and ended up doing a particularly careful modeling of a intricate signalling protocol.

References

1. Brown, Harold, Christopher Tong, and Gordon Foyster. “PALLADIO: An Exploratory

Design Environment for Integrated Circuits.” [EEE Computer 16 (December 1983).

2. Harold D. Brown, Eric Schoen, and Bruce A. Delagi. An Experiment 1n Knowledge-Based
Signal Understanding Using Parallel Architectures. Tech. Rept. STAN-CS-86-1136 or
KSL-86-69, Stanford University, October, 1986.

3. Daniel Weinreb and David Moon. Lisp Machine Manual. Symbolics, Cambridge, MA,
1981.

