
S aaacp “2211h :{

: ad) av.v -—A ROEM6 }rm ai
0

WwW aRare erAp . x
ep Loe

P ro ph NO Toa sso men ™Cc el :
u A -

h mb N 6 3-—l S/ -1 LE.G S 2s. Oku by t Ls OT | 2no 3 S ro. etH 1 N . .id r i 211 D (Rea 'g Ni t iakeu at IP a5EL i on er "| .
i

o 5 a oS| DISTRI ao om psAp)= put XXTT UT] i ni e X ®ov 5 ’ Chg rS WiDates NS cie i— ne RRa on ub ves e HSMN : U i '",8 limi NT A 0 KYBy, tod AKn ' ef iOR pi osele 5 JUNIC | rehe * ox Arsol +04 By | © : N Gastzt } 3] Na5 " n & 24dd os13 es] d t {ot vy oo LT!TA Geyr as3 hioh HRA \ NXXO) eynN- x" " ShnT awit 4 XRef TNon noInt | gi.Bl 'y oy* (i fetVe L LON . ;Fo" x atoy

TTTERET LA LE LE LR LR RTL CRE A LR LA A UR Rr OT IE EN TOT ISN IU ICR SCPRTTI Rp -

|
J

K)

{

No -Qr |
REPORT DOCUMENTATION PAGE Exp Date Jun 30. 1986 :

{: 1a REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS .

" -28 SECURITY CLASSIFICATION AUTHORITY 3 OISTRIBUTION AVAILABILITY OF REPOR

4)

| 2b OECLASSIFICATION/ DOWNGRADING SCHEDULE !
N t

| 4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) \

STAN-CS-87-1184 (KSL-87-57) ,
ANIZATION ¢: RGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORG ‘68 NAME OF PERFORMING ORG (if applicable) \

| Computer Science Dept. '| : iP Code ¢
: 6c. ADDRESS (City, State, and 2IP Code) 7b ADORESS (City, State, and 2) \

| Stanford University

Stanford, CA 94305 !
: 8a. NAME OF FUNDING/ SPONSORING ab. i Rn La 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER x

OR AREA ON F30602-85-C~0012 3}
))t : »SOURCE OF FUNDING NUMBERS ‘N . R , State, and ZIP Code) 10. SOU f

} ELEMENT NO. |NO NO ACCESSION NO .
p \

. X
11. TITLE (Include Security Classification) .

i

Firmware Approach to Fast Lisp Interpreter '
, ‘
: 1¢. PERSONAL AUTHOR(S)

H. Okuno, N. Osato, and I. Takeuchi - "13a. TYPE OF REPORT 13d TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15 PAGE COUN

16. SUPPLEMENTARY NOTATION 3
d

| 17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and 1dentify by block number)

; FIELD |GROUP| SUB-GROUP 4| HEE EE
\| EE Gentify by block number) !

19. ABSTRACT {Continue on reverse if toprosth tong ide : ify by lock by implementing it in firmware seems promising. y$ A microcoded Lisp interpreter shows good performance for very simple benchmarks, while it
’ often fails to provide good performance fur larger benchmarks and applications unless speedup

techniques are devised for it. This was the case for the TAO/ELIS system. This paper ydescribes various techniques devised for the TAO/ELIS system in order to speed up the 5L interpreter of the TAO language implemented on the ELIS Lisp machine. The techniques \
x include data type dispatch, variable access, function call and so on. TAO is not only upward §t
N compatible with Common Lisp, but also incorporates logic programming. object-oriented ¢
" programming and Fortran/C-like programming into Lisp programming. TAO also provides 3; * concurrent programming and supports multiple users (up to eight users). The TAO interpreter
p for those programming paradigms is coded fully in microcodes. In spite of rich xA functionalities, the speed of /merpreted codes of TAO is comparable to that of compiled codes

of commercial Lisp machines. Furthermore, the speeds of the interpreted codes of the same

R program written in various programming paradigms in TAO does not differ so much. This 4' speed balance is very important for the user.b|

, Another outstanding feature of the TAO/ELIS system is its firmware development od
; environments. Micro Assembler and Linker are written in TAO, which enables the user to use ¢\ the capability of TAO in microcodes. Since debugging tools are also written in a mini-Lisp, \
\ many new tools were developed in parallel to debugging of microcodes. This high level +
5 approach to firmware development environments is very important to provide high productivity

DL_Seyslopment

% 20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION :CJ uncrassipieounumiTed J SAME AS RPT. [J OTIC USERS !
; TY YMBOL b5 228 NAME OF RESPONSIBLE INDIVIDUAL 220. TELEPHONE (inciude rea Code) | 22¢ OFFICE §

)i ’
}be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE ¢73, 84 MAR 83 APR edition may SECURITY CLASSIFICATION OF THIS PAGE 'DD FORM 1473, & All other editions are obsolete Xi
3

}

1 i 1}

1Labioy!RANIRE HUIA IN OU RA MN RR) VaJRON KX MA LCN) ad] 4 aN tes, ACI, OOS OUR A a NU PU MUN hhh, on WLM AX % :

. |
Repor0 ;be | akLg 7 °

| to |
| y me

wt» A

sh |i |. 0 | to, Nob |uK ya ’NO |WL Osa) |N E SEDG |ip S : :u:e taaAx Th Tel nfor 2 T re i. | a Un S € € iraph 3 ii L uch r| u n vr A i hi; d n °F !| h 1 dr c a rim =} OR he| tho 43 RA ion je r a o 0 1 ii0 p 0 oh 5 O Ho0 i J h L | ihN 0 n 7, || ap Lab Y ul |
anth A

3 0 a ora io Pid ii t iW r e i r 0 oeA

| ti bii > 10 i| n i(, a3

GH

) 4 é iMn 4! i» 8 th) 2LX IC Y y\ 0 \&3
RK: $0

;

2
a

AT0) | |We i)| i» a| tt |botyNY

i

| i
ERS

A| : :E> !aoo

.
)
J

|

FIRMWARE APPROACH TO FAST LISP INTERPRETER i 3

Table of Contents i
1. Introduction 1 ;

2. Background - the TAO/ELIS system 1
2.1. Overview of the ELIS Lisp machine 1 v
2.2. Firmware Development Environment 4 0
2.3. Language aspect of TAO 5 i

: 3. Bottlenecks of interpreted execution 5 -!
3.1. Variable search 6 !
3.2. function call 6 g

) 3.3. type checking 7
3.4. real computation 7 a3

4. Speedup techniques for Lisp interpreter 7
4.1. Usage of Tag 7 i
4.2. Variables in TAO 9 nd

4.2.1. Mechanism of variable search 9 “
4.2.2. Preprocess of lexical variables 9 a
4.2.3. Variable cache 9

4.2.4. Preprocess of Instance variables 10 3
4.3. Function calls 11 W

4.3.1. Function invocation 11 y
4.3.2. Special dispatch of built-in message 11 KS
4.3.3. Fast lookup of message-method table 11 A

. 5. Evaluation of the TAO interpreter 11
5.1. Benchmark results 11 Yt
5.2. Speedup of variable access 13

5.2.1. Lexical variables 13 y
5.2.2, Special variables 13 it
5.2.3. Instance variables 13 RX

5.3. Speedup of function invocations 14 a
5.3.1. Function invocation 14 ,
5.3.2. Method search 15 »

6. Discussion 15 "
I. Microinstruction Format 19 Ww!

I. Micro sode of binary search for id-message 20 d)ITI. Microcode of the body of the car function OTic 21 i
IV. Evaluation of a form fear.) copy 22

INSPECTED ht
6 vi

1%
Y

Accesion for 2
NTIS CRA&I }

OTIC TAR S fa
Unannounsed 0 N
Justdicono a 3

: i /) ee

Avid Satyr Lodas ol
oe en nm me OH

NEERN Et . +
It rec x)

! %

oo
A-ll 3
— on

jo
u

W

RE OR OARCr COAT HO TNTNO LAOS ION HCEMI MAUR MATNH OC MMIC

: t;!

: Get
| ty!

v Abstract mn0,
The approach to speed up a Lisp interpreter by implementing it in firmware seems promising. &
A microcoded Lisp interpreter shows good performance for very simple benchmarks, while it XB
often fails to provide good performance for larger benchmarks and applications unless speedup Ut
techniques are devised for it. This was the case for the TAO/ELIS system. This paper i

: describes various techniques devised for the TAO/ELIS system in order to speed up the Ay
interpreter of the TAO language implemented on the ELIS Lisp machine. The techniques yf
include data type dispatch, variable access, function call and so on. TAO is not only upward
compatible with Common Lisp, but also incorporates logic programming, object-oriented oy
programming and Fortran/C-like programming into Lisp programming. TAO also provides 4
concurrent programming and supports multiple users (up to eight users). The TAO interpreter h
for those programming paradigms is coded fully in microcodes. In spite of rich XY

| functionalities, the speed of interpreted codes of TAO is comparable to that of compiled codes i)
of commercial Lisp machines. Furthermore, the speeds of the interpreted codes of the same

program written in various programming paradigms in TAO does not differ so much. This :
speed balance is very important for the user. (Ke) & 0
Another outstanding feature of the TAO/ELIS system is its firmware development oy
environments. Micro Assembler and Linker are written in TAO, which enables the user to use "i
the capability of TAO in microcodes. Since debugging tools are also written in a mini-Lisp,

many new tools were developed in parallel to debugging of microcodes. This high level or
approach to firmware development environments is very important to provide high productivity 2
of development. NY

A

=
ws

a

ue
W,
aly
0 y
et

X

)

we
(0
ve
het
oh
J)

. ve,
9
we
oY

oy

ay
Sys
0
NO
Ny
KK

Co

BOCCONIOL CAREaIM ANCIMOMO RA AL ONYUCOU RR ROKION Jo AUR CAN ICHIGO Ho CoOOCO MN NR >OCRMa NANO We

FIRMWARE APPROACH TO FAST LISP INTERPRETER 1 A
Ww

1. Introduction he
The TAO/ELIS system is the first milestone of the New Unified Environment (NUE) project Os

at NTT Software Laboratories. ELIS ol is a Lisp machine family, one is a breadboard ®machine and the other is a VLSI machine [14]. TAO [7, 1], 12, 13] is a superset of Common hs
Lisp and designed as a kernel language for NUE on the ELIS machine. However, TAO is not 8
a simple Lisp system, but a multi-paradigm language which incorporates logic programming, by
object-oriented programming and Fortran/C-like programming into Lisp programming. .

We consider that Lisp interpreter is essential from the following three points-of-view. 4

o [Application] Interpretive execution of programs is required by some application ve.
programs. For example, many expert system building tools support sophisticated AR
programming environments, while they often lack a rule compiler and execute user- NN
specified Lisp programs interpretedly. hotF) .

o [Programming Environments] The interpreter is considered as an important A
component of interactive programming environment such as stepper, editor, tracer, ’'Y
and error break. os
[Debugging tool] One of the best debuggers for Lisp programs is the interpreter. bi
And the interpreter is the easiest and clearest tool for the user. ii

CN

These are our motivations to design and implement a fast Lisp interpreter with full-fledged a
facilities, Furthermore, the speed of each programming paradigm should be balanced so that |

the user can implement his idea naturally by using multiple paradigms which is suitable to his +
conceptualization of applications. it

| Our approach to speed up the interpreter is to implement it in microcodes. Microcoded Lisp oh
interpreter shows a good performance for very simple benchmarks, but it often fails to provide WON
a good performance for some benchmarks and applications unless speedup techniques are 0
incorporated into it. This was the case for the TAO/ELIS system and we have been
developing various techniques of speedup for several years. In this paper, we discuss various
speedup techniques adopted in the TAO/ELIS system, their evaluation and applicability to tale!
other systems. In Section 2, the background on the ELIS Lisp machine and the TAO language en
is presented. Firmware development environments of the TAO/ELIS system is also discussed eh
in this section. They are written in TAO or a mini-Lisp, which raises the expressibility of we)
microcodes as well as gives flexibility and customizability to tools. The bottlenecks of ry,
interpreted execution of the Lisp system are presented in Section 3, and their solutions are ®
given in Section 4. In Section S5, the TAO interpreter is evaluated. Vi

A
4
3

2. Background - the TAO/ELIS system a
This section gives an overview of the ELIS Lisp machine and the TAO language. Firmware ht

development environments are also discussed. ®

2.1. Overview of the ELIS Lisp machine 4
The ELIS family has two types of Lisp machines; breadboard machine and VLSI chip Yt,

machine. The cycle time of each machine is 200nsec and 180nsec, respectively. VLSI chip is AU
| manufactured by 2um CMOS technology [14]. Both machines are compatible at the level of

microcodes. The block diagram of CPU is shown in Fig. 2-1. All data given in this paper are he
measured on a VLSI ELIS machine. The features of ELIS which influence the design and od
implementation of TAO are summarizea below: '

4

o [Tagged architecture] Pointer is 32-bit wide with 8 bit tag included (Fig. 2-2). ol
Tags are used to specify various data types and speed up the interpreter. Various

combinations of tag branches are provided by the ELIS hardware. TR
o [Hardware stack] ELIS has 32K words stack and three stack pointers. Stack 3

() yy

Wy
®

» \

EEN NOONE MADSEN ORR HC OE OBBDCO UN MOCO TUS ISU MA MO MCA AA SG SY SANARAT

EAT RIT AE TRTN IPE MICE PRET ATT ArT SCIEN J PUPILS JETS JTS ICP JET NaPI EY, SL IE, ON I RA KA MA EARN EAR A ANNA ER MARY EN ER MANNE AN

? FIRMWARE APPROACH TO FAST LISP INTERPRETER y)

2 + Data out 64b or 32b

-==|=ce=|=e==ce=esce=cw---=- Address 31b |
AR: | |a2

he 32b [-==<--1 A-Bus B-Bus 32b
0) seeseescescccmsccccscecsccnanencccnacncesa===] path |----+ $oermmmmae=
+ + + + * + JI---=--1 | | Emit data
i 1 | |

| | | | MGR | | | SESS |s00008|s080000000se

De IU | | «| [C======a ®
Bt | CARO | CDRO| —————————— I---1 -——— * {mmm mm ®
I abel DELL | SDC1 | 6b | | | SP1 | $V Vv |
4 a huinl —ees-ee= | S | ceeeo== * --- See ==e=- 0
Be |CAR1|CDR1| cvemceea | t | vemeom- * \ \/ / |R]|] *

» —ee=ccen=== (a= | SPC2 | 5b | a | <== | SP2 | * \N \/ / |e] =
ha —nescccsces reson | ¢ | ceeseo- he \ALU / lg} ©
Ou |CAR2 | CDR2| ~—escom- | k |} ——eevee . -——- wena ®
Ms mm | SDC3 | 5b | | | SP3 | . +t
oo esses eo=- ceemm——- I---1 a ¢ | |32b ¢
“ | CAR3 | CDR3 | t * * . |====osem=— 0

coacncecvcececee | | | 968586800CE Rese RES SSeSSv7

Ne +e +e | | | |
n Tl | | | |
iO! 1 I | | Is=----1 ~V
et cedrmmepmmccrccrcnet mera cncrmccnpen=]| path |c-cccccemaaat
A | 32b [~---=-1 Y-Bus
TY piateiindiededs deededeideiedeiefede
he | Data in 64)
4 '4

0 cecdccccccccmccccaa=
ns
a

aat
Figure 2-1: Block Diagram of the ELIS CPU

§ :
"ab

g”

“a

+ 3 .

a
Hh
AY

BY

AD

x

ROCA TMM A RAN ry RR 3 HS TOL SOLe) " X00 3.90 Kh Vv ly Nh OO W RIO) te NY Piet Wily PRU SEN Tot Mo TANIA Ho

®

FIRMWARE APPROACH TO FAST LISP INTERPRETER 3 2| ¥

oe
cece ecemaccecceceecccescsescmamaeereceec=e—ac-—a= 1th

| tag? ~ tag0 | pointer part re
ely

Assignment of tag bits in TAO el
tag? -- for garbage collector hy,
tag6 -- auxiliary use arin
tags -- atomic data if 0, non-atomic data otherwise AQ
tags ~ tag0 --- data type

Figure 2-2: Structure of Lisp pointer Soh(
ble

overflow and underflow are checked by hardware and if such an overflow occurs, a : oN
bit of processor status word (PSW) is set. However, microcode should check the ®
overflow by testing the bit. There is no hardwired interrupt. Stack operation is Wik
performed in one microcycle. en

o [Large Writable Control Store (WCS) for microprogramming] The capacity of es
Writable Control Store is 64K 64-bit words so that the TAO interpreter and most Ill;
of system functions are coded in microcodes. For example, some primitives for WK
EMACS-like editor, TCP/IP software and Japanese text processing are coded in ®

microcodes. yi
« [Memory General Registers (MGR)] Four sets of 64-bit memory interface registers i
called Memory General Register (MGR) are provided with three index registers hah
called Source Destination Counter (SDC) which points to any byte of MGR. Car nn
and cdr field of each MGR can be used as a memory address register or memory eh
data register. They also can be accessed by ALU as a source or destination operand.
Note that a 64-bit word (one Lisp cell) can be read or written between MGR and ww
memory. MGR with SDC can be used as byte manipulation buffers (for strings, e's,
compiled codes, etc.) ht

o [Hardware check of memory access] If a memory operation is initiated to an illegal a
pointer, that is, a memory address register (say, car or cdr field of some MGR) hh
points to a non-CAR-CDR-able address, the memory operation will be aborted ®

automatically. _Tag-5 of a pointer specifies whether the pointer is CAR-CDR-able an
or not (see Fig. 2-2). Therefore, a memory operation can be initiated without nd
checking the validity of CAR-CDR-ability. Since it takes three microcycles to En
complete a memory operation, this hardware checking capability is very important oe
because it enables the programmer to fetch a data in advance without performing thir!
such a check at the microcode level. This memory operation is called boc, which is wh

used in the body of the car function shown in Appendix III. 5 x
Microinstructions are divided into four types shown in Appendix I. The type IV is reserved ! p

for floating operations, but the current system implements IEEE standard floating operations oe
by microcodes. One of the powerful instructions is a set of tag branches (see Table 2-1). onNote that since there is no address field in the type III instructions, the linker should be ht
intelligent to handle the combination of a type III instruction and branch instruction. ®

Consider the following code: a
(11r8 (- rO #15) (br gel (rn null Treof))) hoie. 4%.

(17rn (= r0 #12) (br z (110 1r1))) ht
Wt

11r1 jsr no store-byte)) ®

11ria (mov ri) vaybrc tag? (1rl' 1r1''))) SK
neh
$q,t

i
bobs

Ro
0

EEDSDSOSHODE DEDGX DSOBOOONN AX!UOMO AM FOC RM AM dA ORICA OCC AN : a baba hl? My Dn, NOAM NN RS a UL hy! ».0%.4 o!

: ET EE EY UFO TUR OAR RERR A EE EANRR ATR TR YL TTI LV UT UYU AN AN AR TER FO SR TERY N
3k
'

FIRMWARE APPROACH TO FAST LISP INTERPRETER 4 K

”| We

The instructions labeled by 1r0 and 1r1 should be allocated to a consecutive address with th:
starting an even address. In addition, since the instruction labeled by 1ri .s of type III, the ne
next instruction labeled by 1rila should be allocated to the consecutive address. The three)
instructions labeled by Irn, 1null and 1reof should be allocated to three consecutive byt
addresses and the address of 1rn should be a multiply of four. The linker considers these WW

constraints of addressing and allocates instructions within the narrowest possible address range. 4

4

Table 2-1: Branch conditions on Tag field “

: Condition Meaning Y,
(mnemonic) 3
tag? branch if tag7 is set v
tag6, tage branch if tagé is set ne.
tags, tagcadbl branch if tag$ is set oN
tagS-0 64-way branch according to tag5-0 bit i
taghS-0 33-way branch; branch to 33rd offset if tag5=1 IN

| tagls-0 33-way branch; branch to 33rd offset if tag5=0 he,
| tagd-0 32-way branch according to tag4-0 bit 2
i tagfil branch if tag5-0 is not zero
' tagnil branch if tag5-0 is zero hy
! A —————— ———————— :
3 ’

2.2. Firmware Development Environment
The Micro Assembler and Linker are implemented in TAO itself. Therefore, the syntax of a

microcodes is expressed in S-expressionl. For example, Appendix III shows the microcode of ol
car function. The argument of car is given on the stack and the returned value is pushed oh lay
the stack. The microcode of binary search function is shown in Appendices II. Since the oN
Micro Assembler and Linker are written in TAO, the user can use the power of TAO in A
microcodes. For example,)

5

((mov t(** 2 16) r0)) &
; U3

is the same as B
| oy

((mov 65536 r0)) A
|)

That is, a form prefixed by + is evaluated before assembling. This evaluation may be NY
postponed till linking or global linking. In the following operation, -

(1161 (mov 1 #10400000000 (getsym '1b1)) Co| ~<sp>)) i

the address of the instruction can be given as an operand at the time of linking. iN
The source of microcodes for the TAO interpreter consists of 112 files and its total size is ph

: about 2.7M bytes. It takes about one and a half hour for the micro assembler and linker to J

assemble and link all source files. The total size of used Writable Control Store is about 48K ,
R words. Needless to say, microcodes are being developed to support new functions. It takes A

|)

ls expression consists of a sequence of alphanumeric characters or a sequence of S-expressions enclosed by a pair of oe
parentheses. M)

W:
%',
) |

)

IR IREICRAAMKIARANICLL,{ (f (= % 3 Cao NOOOCOOPOCOG TREN00 0 Son, TAR AN, THMIRTLEATR, AA

4

FIRMWARE APPROACH TO FAST LISP INTERPRETER S v

%
0

about three minutes to create a binary image of WCS, which is down loaded to WCS from the of
front-end processor (FEP). '
A mini-Lisp system is implemented on various FEP’s such as PDP-11, VAX and NTT's DPE |

and it provides primitives to access various hardware resources of ELIS such as WCS, 0
sequencer, Y-bus, and processor status word. Therefore, the loader and debugger of microcodes t!
are written in this mini-Lisp system. Since the user can inspect the status of ELIS b
interactively via this mini-Lisp system, the productivity of the development of microcodes was ¢
very high. The debugging tools was also being developed during the debugging of the ¢
microcodes. -

. ;
N

2.3. Language aspect of TAO X
"TAO is a Lisp dialect and upward compatible with Common Lisp [10]. However, it is not a 0
simple Lisp dialect but a very powerful language. TAO supports various programming X
paradigms within Lisp world; logic programming, object-oriented programming, Fortran/C-like A
programming and concurrent programming. The logic programming is embedded in Lisp by
extending function types to support the primitives of logic programming; pattern matching ot,
(unification) and choice function types. The object-oriented programming is embedded in Lisp ’
by extending eval. That is, Common Lisp signals an error for a form whose car is not a | "
function, while TAO treats it as a message passing form. For example, (1 + 3) is a message "
passing form which expresses that a message + is sent to an object 1 with an argument 3. This Y

is an implicit message passing form whose car should be checked whether it is a function. &
Explicit message passing form is represented by [1 + 3], whose meaning is the same as 5
(1 + 3). The factorial function can be defined as follows: 04

8

y (defun fact (n 0
(if (n = 0 Ye,

Ye!

(n * (fact (n - 1))))))

». a. . [L] - o!
In object-oriented programming, a factorial can be defined as a method for the class integer. Xn

The program is I
| 0

(defmethod (integer fact) () o
(if [self = 0] -

[self * [[self - 1] fact]])) k

and [10 fact] calculates the value of factorial of 10. TAO provides a powerful set of o
concurrent primitives and its operating system is implemented on these primitives. Therefore,)
the TAO system supports multi-user/multi-task environments and up-to eight users can login

| the same ELIS at the same time. %
: In this paper, we will focus our attention only on Lisp programming and object-oriented hY,

programming for the simplicity of discussion. The concept of logic programming and)
concurrent programming in TAO will be discussed in [13]. oo

| 3. Bottlenecks of interpreted execution 3
The execution of Lisp programs is divided into four categories, variable search, function call, ot

type checking and real computation. In each phase, speed up is needed to provide a fast oy
interpreter. 1

\
)

Xi

X

¢

| a
Ls
« &

-

«\)

: "

RAOMUAGTONCNING 00, a il) CTO OK MX eS, ps) X Ve! for? WY » "ne oY“ A ,LL at LAS ’ » h \ We p, ft - Wo Oo i" '

oo Cw EE ET EE RE EE A EE RR TR TUT UM WU PIU TU A TL PLUTO YL. FUL PMT UNE FL LO NY RITE A

' FIRMWARE APPROACH TO FAST LISP INTERPRETER 6

i 3.1. Variable search
0 Common Lisp has two kinds of variables; lexical (local) and special (non-local) variables. In
th the factorial program, a variable n is a lexical variable. Since lexical variables can be looked

up statically, they can be accessed directly in compiled codes. However, it is one of the main

s problems for interpreter to speed up the access of lexical variables.
- Special variables are looked up dynamically in the context of computation. For example, a

built-in function, print, refers a special variable *print-pretty®*. Consider the following
: program:

: (defun f (x) |
a: (let ((®*print-pretty®* t))
oo (h x))) » (1)
“

it (defun g (x)
2 (let ((*print-pretty® nil))
YW h x : {2

f x))) : {3 .

0 (defun h (x)

oy (print “banner")h print x)) : {4}
0

LU The values of ®print-pretty® in executing the print are t for {1} and {3}, nil for {2}. The
4 value for {4} is decided on the context. Special variables may be implemented by shallow-
wh binding or deep-binding technique. In shallow-binding, the value of a special variable is
" stored in the value cell of each variable. Thus, no search of special variables is needed in
hd shallow-binding. New context for special variables is established when entering a function
E which contains the definition of special variables and old context is recovered when exiting the
Bt function. In other words, an old value of special variables is saved and a new value is stored

in the value cell of special variables. In deep-binding, special variables and local variables are
oy stored in a function frame or on the stack and to access a variable, the function frame chain
o or the stack is traversed. Therefore, shallow-binding provides faster variable lookup than
- deep-binding. However, the former is more expensive under concurrent programming, because
a process switch requires saving and restoring a context for special variables.

I, The implementation of TAO on ELIS adopts deep binding for special variables. This is
because the cost of process switch is smaller in deep-binding implementation than in shallow-

ao binding implementation. Furthermore, debugging tools are easy to construct in deep-binding
gl implementation, because all information on context of computation is pushed on the stack in
hy the manner that their stored position is directly associated with the corresponding activation
i frame. Therefore, for example, the backtrace function is quite easy to implement.
0

3.2, function call

Mh Since Common Lisp provides a rich variety of lambda bindings such as optional arguments
2p) with/without default values, rest arguments and keyword arguments, the function call is quite
ih, heavy, especially for interpreter. Consider the following example:
wo
td

" (defun
foo (a b

0 &optional (c¢ 30) d (eo 123 exist-p)
uN &rest x
0 &key start (end 10)
aH &aux index (result 3))

. An indicator of &optional indicates optional arguments and paired list specifies a default
e value. &rest indicates arbitrary number of arguments and &key indicates keyword arguments.
4

X
Ky

«

he)

ER OO CI TT CRETE RTH ES TX TT DO SH OER AIOAE CHE DAHNDaMi OD DN, DanC)

RT = n -~ . - REN AER A UN RN TET UIIERI Er aT rrr Terr, at 20. hVa in k's Bomb BL be

CL

FIRMWARE APPROACH TO FAST LISP INTERPRETER 7 x

&aux declares local variables. In some cases, the actual computation may be done while tes
processing function call. Macro function also introduces overheads for interpreter, because ey

| macro form is expanded before its evaluation. =
WN
TY }

3.3. type checking tad
Since Lisp is one of the languages which has the richest data types, type checking is very es!

important to provide the validation of computation. In addition, some data types are very, i
complex and their manipulation functions are overloaded. For example, number type in SOS
Common Lisp contains rational, float and complex; rational contains integer (fixnum and {|
bignum - integer of infinite precision) and ratio, float contains short float, single-float, hh
double-float, and long-float. A function + should work well for any type of numbers and any ho
combination of types. Therefore, number functions should dispatch an appropriate subfunction AO)
to do the calculation. Since Common Lisp provides more than 20 data types, checking of hi
arguments is extensively performed to validate the correctness of the computation. oy

: @

ry

3.4. real computation ka
Actual computations of Lisp prograins are data manipulations such as list handling, Hn

numerical computation, infinite precision compuiation, string manipulation and vector S00
handling. In other words, almost all kinds of computations provided by other languages may HI
appear in Lisp programs. In the TAO/ELIS system, most of Common Lisp functions are XX
implemented in microcodes to speed up the execution. In addition, some functions which are La
critical to the speed of applications such as a screen editor and networking programs are We!
implemented in microcodes. Since this phase is a general problem for compiled codes and : oh
interpreter, we will not discuss it any further here. aie0)

4. Speedup techniques for Lisp interpreter

a
beh

4.1. Usage of Tag hel
The implementation of TAO on the ELIS machine uses the tag in four ways. iid

Ne ®

1. To represent data types and internal data types ®

2. To speed up the interpreter and decrease the memory consumption 2
3. 10 make S-expression more readatle to human 2A"Q
4. To realize new computation mechanisms such as message passing i;0.

The tag is used as a pointer tag not a self-descriptive flag in the TAO/ELIS system. That is, ®
a pointer includes a tag which indicates the property of the data pointed by the pointer. uy
Invisible pointer is originally introduced to implement logic programming, but is used hie

| extensively to speed up the interpreter. Some data types and invisible pointers are listed in he) v
Table 4-1. >
Checking data types is performed very efficiently in multiple branch of microcodes. If the £3

data is given to the Y-bus at the previous irstruction, branch occurs after executing the current ®

instructions. In the microcode of car funciion shown in Appendix III, the branch instruction en
(br tag4-0 al) is performed by the Y-bus result yielded by the instruction labeled by a7. hit
However, it is neither possible nor practical to do 64-way, 33-way or 32-way branch in each Wen!
function body to check data types because of limit of WCS. Therefore, data types are first) Re
encoded to smaller groups of data. Note that the overheads introduced by this subgrouping are \ ye
only one or two microinstructions. °

"eh

RS
Wh
X00
Wott
AO
ON

0
3) i" I 8 HRV APLY TARY NF ¥ v_¥e : oy Hy Fa W PLARE AY » r (EY GL. EN NNLSE ICN Xn "i Wig 11 JUN, PX 0 hy AN { X% \ ; he fs ty tir ih, ONC 5 n Ny "a ARNT, WA "s *) W AA) gti

i . Lo. Sci ta Enc mas EW TI EEE FE TE TE TE TOR IRC TAY I FRR TS TELA I TL SLT TER AATSPUIERTLR SKTARASNE MARSEA TA IE 2 :

we FIRMWARE APPROACH TO FAST LISP INTERPRETER 8
:,

"d t

1, {
\R L]

) Table 4-1: Some data types and invisible pointers
BE

4 Data types or meaning
! invisible pointers

IA nil nil and () are discriminated to d
i give more readable form to human.)
00 shortnum 24 bit integer
5 bignum integer of infinite precision |
an ratio ratio, e.g., 2/3 $

float floating-point number
o complex complex number

be keyid keyword symbol '
iy sysid special symbol
he logic logical variable for logic programming
IX] char character :

str string .
K fatstr string with font information '
R filstr string with fill pointer
a vector vector |
bh applobj function object \
Ky cell cell :
a namcell named cell, eg. table(i j k) for 1/0,

| but the same as (table i j k). 2
Y bra bracket)
nN nambra named bracket, e.g., window[move 10 20] i
hy quoted quote, 'foo is output as 'foo, ‘
oy not (quote foo)
‘ backq backquote macro expander 3

eval comma in backquote or evaluation
> before unification)
NX icar invisible pointer to car of cell
py (Cdr of cell is invisible)
ty icdr invisible pointer to cdr of cell \
ao (Car of cell is invisible) ,
O spivar special variable or closed variable

evalvar preprocessed variable, a kind of icar
Fs evallogic preprocessed logical variable, a kind of icar

Ww evalinst preprocessed instance variable, a kind of icar 4
2 evaledr macro expanded form, a kind of icar \
fh shadow preprocessed result for let, prog, a kind of icar J
n comment comment, comment is stored by A

using an invisible pointer, a kind of icdr a.
AF EE —————— }

L

:)
¥, :

,

" N
i \

) |

KN C

K ~~ a : FEV - eo . e, - : }
CNOA AOLTrTAD on on Oy EmCo CE eS a To EE TAS SIREEa 57 Da AN 3 oi Dn Ci re TH

Why
%!
a)

FIRMWARE APPROACH TO FAST LISP INTERPRETER 9 Wl
i

4.2. Variables in TAO "
The variables in TAO are classified into lexical variables, special variables, semi-global el

variables and global variables. Semi-global variables are process-wide global, while global
variables are system-wide global. Semi-global variables are introduced to provide the same 28
mechanism as global variables to each process, because some variables in a process must be X
stable against accidental process reset. For example, a variable, *history-obj*®, which holds oi

: the top-level loop conversation history, is declared as a semi-global variable attached only to ow.
the user main process. he
The order of variable lookup is (1) lexical variables, (2) special variables, (3) semi-global -

variables, and (4) global variables. If the current environment is a message passing form, or
instance variables are checked before special variables. Access to an instance variable of an Ww
object will be discussed in the section of instance variables. o

olt
4.2.1. Mechanism of variable search hy
Since TAO uses a single stack, function frames and values are pushed on the stack. A >

function frame consists of chain pointers to access and control frames, function objects, A
arguments, and other information such as lexical scope limit and a flag which indicates 0
whether special variables are contained or not. NS)
The value of a lexical variable is pushed on the stack as an element of a function frame, et

while its name is not pushed. The variable names are stored in the vector, called how-to-bind Nd
vector which can be accessed via function object. To get the value of a lexical variable, the th
interpreter searches for the name in the how-to-bind vector to know the relative position of -
the variable in the frame. The interpreter repeats this lookup till it finds the variable or up to 0
the limit of lexical scoping frame. If the variable is found, its value is returned. If the KN
variable is not found and is declared as special, special variables are sought. Otherwise, an 8
error is signalled. Special variables are pushed on the stack as a pair of variable name and 4
value with a special invisible tag, called splvar. Since a frame has a flag which indicates XN
whether special variables are contained in it, a frame without special variables are skipped and
all frames are not traversed in searching for a special variable. If no special variable is found HY
in the frame chain, semi-giobal variables are sought. If no semi-global variable is found, then a
the value of global variable is returned. However, if the value is unbound, an error is Wy
signalled. we

If a variable is accessed in the body of a method, instance variables are sought before 2
checking special variables. That is, the order of variable lookup in the body of a method is oe
(1) lexical variables, (2) instance variables, (3) special variables, (4) semi~global variables, and En
(5) global variables. ne;

13

4.2.2. Preprocess of lexical variables i
The lexical variables are preprocessed at the time of definition. That is, a lexical variable is 3

converted to a pair of variable name and its variable position on the stack with a tag evalvar.
Variable position consists of fchain and offset. Fchain is a count for access frame chain and Ww
offset is a deviation from the target frame. This preprocess may be considered as a very WY
simple compilation. Figure 4-1 shows a preprocessed form of the tarai function. In the hie

: figure, {evalvar}(x. #x200) indicates that the position of a variable x in the stack is specified We
as fchain is 0 and offset is 2. Ne

t.

4.2.3. Variable cache op
Variable cache is used for special variable, semi-globals and globals in order to speed up the or,

search of these non-local variables. Variable cache is attached to each process. When a new oN
function frame is created and if it contains special variables, the special variables are registered KN
to the variable cache. When exiting a function, entries corresponding to the special variables 0",
are cleared whether they hold exactly the special variable bindings or not. Cache entries for
semi-global and global variables are set only when they are accessed. Note that no anomaly
will occur even if there exist a special variable and a semi-global or global varible with the nv}
name name declared in a program. The variable cache is stored in each process. To search &

LN

Jt

ne
OC ACR Or aC MOS HME XM Tr CR MROME TT CHARI C=he HG Ct A Kr SN NCNM Pn IACGN

ET EAA EIT th "ah whe Ft ae la fe REL LT ELSAA PARR MRA NAUE CEU UY IA LAS LL UGE MA EARA TIRE EN UY LN.FATE AYR SCV IOETRY

0

FIRMWARE APPROACH TO FAST LISP INTERPRETER 10 y

X
.,

A

(defun tarai (x y z) X
(if (> x y) '

tarati (tarai (1- x) y 2)
tarai (1- y) z x Ne
tara (1- z) x y)) W

y)) CB
I

: is preprocessed and converted to L

(defun tarai (x y z) CW

(if OO fovanard (x . #x200) 0evalvar}(y . #x300)) W
| (tarai 2

(tara (1- {evalvar}(x . #x200)) XY

| raat y . #x300) =evalvar}(z . #x400)) "
(taraf (1- {evalvar}(y . #x300)) a

cratvar} (z . #x400) i"evalvar}(x . #x200)) h
. (tarai (1- {evalvar}(z . #x400)) io

paul 1 . #x200) Jevalvar}(y . #x300)))

{evalvar}(y . #x300))) >
Note that #x200 reads 200 in hexadecimal.

: Figure 4-1: Preprocessing of lexical variables 5
for a non-local variable, the interpreter checks the cache and return the value if found. If the A

, cache entry is void or holds other variable binding, that is, cache doesn't hit, the frame chain x
is traversed to search for the variable as described before. If the cache hits, the performance “
of this cache mechanism is quite similar to that of shallow-binding technique. Note that the A
variable cache is automatically write-through, because cache entries hold a binding cell tagged 0
with splvar. Note that the tag is used as a pointer tag, any data can be carried out to 1)
anywhere. }

TAO provides direct access methods to global and semi-global variables. (Value ~
expression) and (sg-value expression) are used to access a global and semi-global Ay

| variable directly, respectively. Semi-global variables are sought by a binary search. If global
or semi-global variables are used as a means of communications between several functions, 0
value or sg-value will give a direct and fast access method to the user. W

)

=

4.2.4. Preprocess of Instance variables Be
: Instance variables are not stored on the stack but in an instance vector. Instance vector is »,

held as a value of a variable self, which is a kind of lexical variable and pushed on the stack ¢

as the first argument. X
Since object-oriented system in TAO provides a hierarchical decomposition of data and -

| programs, each class has only its own definitions of instance variables for data and methods a
for programs. Each class has several superclasses whose instance variables and methods are "]

inherited to it. Rp
| Each class has its all instance variables including the inherited ones from superclasses and, x

thus, the offset of the same instance variable in the instance vector may vary among classes. 0
If inherited methods are copied to subclasses, the offset can be determined. This copying

technique is not adopted in the TAO/ELIS system by considering the tradeoff among memory J :
waste and efficiency. Instead of copying, instance variables are preprocessed to point to self, R
not to themselves. This preprocess is the same as that of lexical variables, except the tag. wo

on

4

Y SERIE)RAATALANSCANAAN OOIG0 Ah MY POC XN | ARCO SAR! & {AS AK ha, OM UIA LIRR RN ACN Pe oN INIA¥ : RUN i POL KUN of be ete

RLY LISFL MT LA PLA TLS 5 RATURIS RRR URN KC EN TC RR AXA RA RT A KN A NR KR EA RANA LR EU AAR ETE NIA RINE NR NT Pre ay?
i!

I

FIRMWARE APPROACH TO FAST LISP INTERPRETER 11 a

| That is, an instance variable is converted to a pair of the variable name and the variable oN
| position with a tag evalinst. After getting an instance vector, instance variable is sought by a v

| simple linear hashing.

%

N 1

: 4.3. Function calls : 0M . Fe

: 4.3.1. Function invocation 4

Symbols in TAO has one of four tags; sysid, id, keyid and logic (see Table 4-1). The latter
a two tags are for speedup to check a keyword and logic variable, respectively. Symbols with by
5 sysid tag are microcoded primitive functions such as car, cdr, cons and so on. The entry 2
'e address of sysid function in microcodes is the same address of a sysid symbol. That is, if the ,
5 address of car is #143 (in octal) in memory, the entry address of microcodes of car is #143 :
1 in WCS (see Appendix III). Furthermore, checking the number of arguments is embedded in 3
: the body. Therefore, to lookup a function definition is not needed to check the IV shows the o

control flow in evaluating (car ...). »

i Every function has a function definition table which contains information on arguments and Ki
: function body. Common Lisp provides various kinds of arguments of functions such as i;

obligatory, optional and rest arguments. However, if a function has only obligatory arguments, 5
- it suffice to check only the number of arguments. Such a function is called expr-simple or ’

subr-simple and its invocation is faster than expr (interpreted function) or subr (microcoded J
} function), because checking arguments in the former is much simpler.]

¥
; ",

: 4.3.2. Special dispatch of built-in message 0
\ In TAO, primitive data types such as integer, list, or symbol, can be treated as a class. These .
\ classes have several built-in messages such as +, <. The method corresponding to these built-in 0)
) message is invoked directly without searching the method "able. The key idea is quite similar !

to sysid functions. There are 14 reserved built-in messages; that is, +, =, ©, **, /,), &, =, d=,
* =, /=, ., .. and belongs~to for the moment. These built-in messages have a sysid tag and >
f the entry address of the corresponding method is calculated by adding the offset unique to the WN
y class to the address of a message symbol. Micro assembler and linker supports absolute x}
N addressing as well as symbolic addressing for this purpose. O

4.3.3. Fast lookup of message-method table ~

; Object-oriented programming in TAO [9] is quite similar to the original FLAVOR system &: [15]. All methods defined to a class including inherited ones are registered in the message-
“ method table associated to the class, The table is sorted by the address of message, and a W
g method is sought by binary search. The microcode of binary search is shown in Appendix II. Ry!
i The cost of method lookup is log,n usecond, where n is the total number of methods defined \

- in the class including inherited ones. | 0
A Nn
:
. tf

5 5. Evaluation of the TAO interpreter \

)

Ct S.1. Benchmark results R
K The data shown in Table 5-1 except for TAO is an excerpt from [8]. Symbolics-3600 with N
J Instruction Fetch Unit (IFU) and 8 Mbytes memory is used to compare the performance with
! the TAO/ELIS system, because it is the fastest commercial Lisp machine, Symbolics-3600 hi

without IFU is about 30 ~ 40% slower that one with IFU. Roughly speaking, the interpreter of i
! the TAO/ELIS system runs much faster than that of Symbolic-3600 but we cannot say which ~~

is faster, the interpreter of the TAO/ELIS system or the compiler of Symbolics-3600. It -
, depends on benchmarks. \

The definition of tarai-5 is shown in Fig. 4-1 with arguments 10, 5, 0. The tak is a 3
| | i

8

PRRT ORENSENS RSENS SU SHOR ONS OFS Ont ThA SOTO WLEMAL Wy WhWATSORO I SE WiTWONTRNi FM HCA RO NK NMMANIC

EEE NEA ETE ET RRTO TR Te TT IR TO TTT TET AL TENT ER I TARY TENS AL RTL LA UROR UO TT OW IE
LA

“x

FIRMWARE APPROACH TO FAST LISP INTERPRETER 12 N

Table 5-1: Benchmark results according to [8] i
)

benchmark TAO Symbolics 0)
: interpreted interpreted! compiled? oy
: (i

| Tarai-5 1.00 449 0.17 Ly
Tak-18-12-6 1.00 41.8 0.15 2
List-tarai-4 1.00 36.8 2.52 o:

String-tarai-4 1.00 26.0 3.50 ty
: Bignum-tarai-4 1.00 40.8 2.48 x

Flonum-tarai-4 1.00 30.3 0.26 '.
Bit-A-6 1.00 214 0.69 te
TPU-3 1.00 21.4 1.20
TPU-4 1.00 21.0 1.32 ,
Boyer 1.00 33.8 0.28 Q
EEE X)We

[

1 Release 5.0 without Instruction Fetch Unit 0
: 2 Release 6.0 with Instruction Fetch Unit and scheduler off 9

0
[tf

modified tarai, which is well-known in the American Lisp community. String-tarai, list- iy

tarai, bignum-tarat, flonum-tarai is a modified tarai for various data types. For example, ¥

(defun list-tarai (x y z) 0

, (if { (car x) (car y)) N| Tist-tarat x)
l1ist-tarai (copy (cdr x)) y z | KN
1ist-tarat (copy (cdr y)) z x 0

yj stare copy (cdr z)) x y)) oNy
es,

: is the definition of 1ist-tarai and the the speed is measured by 0Ud
byt

(1ist-tarai '(1 23 456 7 8 9 10) 4
‘(6 6 789 10) A
'(9 10))))

1 EO)

: which is a variation of (tarat 8 4 0). These data shows that TAO provides efficient data |

\ type manipulations except for floating point operations. This is because 64-bit IEEE floating W
point number is manipulated by microcodes. These operations will be implemented by | he

: hardware in the future. The bit produces all permutations of a list of length 6 by a mapping ne
function. The TPU is a theorem prover by Unit resolution and its program size is about 400 UN

| lines. The Boyer is a well-known benchmarks, but the size of program is smaller than that of)
TPU and it uses property lists extensively. i
The process switching takes about 40 usec. Although logic programming is not discussed &

here, the speed of logic programming in TAO is about 11.5 KLIPS. XS

| '

WN)
oO,

0)
0d)

XX

¥,

EN A AROS SOSUSOACAC SOB NG RCAC AGN, LMC MY SOY RIN MMO HANAAHA A AR HNP OAC RO KS NOUNS

FIRMWARE APPROACH TO FAST LISP INTERPRETER 13 “
yh

i
5.2. Speedup of variable access ng

RYN

5.2.1. Lexical variables oe
JER

. Table 5-2: Execution time ratio between non-/preprocess i.
Ho

tak-18-12-6

— ty
preprocessed 1.00 ig
no preprocess 1.62 0)

I$

9

The typical time to access a lexical variable is 1.7 usec, while the compiled code takes 0.6 pe
usec. Table 5-2 shows that speed-up factor by preprocessing lexical variables to evalvar is 1.62
for the tak function. we

5.2.2. Special variables ne
The programs shown in Fig. 5-1 proves that benefit of variable cache will be gained if the ®

same special variable is accessed more than twice, that is, for all n where 2 > 2. Of course, the a!
cost includes cleanup time to remove the entry of x from variable cache as well as setup time. NW
Note that Gabriel's stak [3] (tak function with special variables) runs slower with variable Yi
cache than one without it, because every special variable is accessed only once. Since an expert ht
building tools called KRINE [6] uses many special variables, KRINE runs two to seven times he!
faster with variable cache. Its resulting speed is comparable to compiled codes of KRINE on
Symbolics-3600. we,

iyt
(defun f (x) yy

(declare (special x)) Ks9)) iY
| ®

(defun g () x; x; ... Xx,) a
where x, is x. oy

Figure 5-1: Benchmark to evaluate variable cache hag
for special variables

oe

ou]
| 5.2.3. Instance variables a

Table 35-3 shows the speed to access some instance variables of an object which has 50 aes
instance variables. Instance variables are accessed in two ways; as a name and by a message We

| passing. Consider the following object.

(defclass ship 0) (x-pos y-pos) () Wh:gettable :settable sh
oi,

(defmethod (ship distance) () 0

(sqrt t X-pos **¢ 2] + iself y-pos] °** 21])) ry
NN :

The class ship has two instance variables and these variables are accessed by its name. In the ho

i
[J

ny

| weA
ER aerr SUSAN CAAA SHR UGE REMOUS SUFOCOMFUAT RY UeUSAOA A A SCLSANOLAWe AA AMEND ON

Ce ner Eb ah Suh Fed BOLE VAS tg¥ral FHKE TEE ap vB Cal Taf de® 1,6 CB UR Hd dal 2 ul tak 0,8 fob VaR LE SRV RC RY Ep 08" ERANENER MAREN ER UR

J FIRMWARE APPROACH TO FAST LISP INTERPRETER 14

| distance method, the value of x-pos is accessed by its name, while the value of y-pos is
accessed by a message passing, [self y-pos]. The speedup factor by preprocessing is from
1.5 to 5.8 and 1.4 for a name access and a message passing, respectively. Name access for the
last instance variable in an instance vector is the most time consuming because the search is
linear from the first instance variable to the last one.

. Table 5-3: Speed of instance variable access

; Instance ELIS! ELIS? Symbolics TI/Explorer ;
it variable interpreter compiled compiled
; position

i: first 1.36 247 0.47 0.91
by MP3 1.94 2.32 2.53 5.87

of last 1.36 9.23 0.45 0.94
K by MP3 1.83 2.38 2.53 5.88 |

! The unit time is microsecond. |
; 1 Preprocessed 2 Not-preprocessed
v 3 MP = message passing
L

iy"
N

. The CARE system [1] is an instrumented multiprocessor simulation system developed at
yg Knowledge Systems Laboratory, Stanford University. The CARE system is a large system (the t
2 size of source codes is about 600K byte) implemented in object-oriented programming. That

is, it is written in ZetaLisp and Flavors system [15] and uses only a few special variables, We \
[ported the CARE to TAO (CommonLisp) with TAO's object-oriented system. The interpreted /
i codes of the CARE system runs on the TAO/ELIS system nearly as fast as the compiled codes ,
. of the TI/EXPLORER with 8 Mbytes memory system. ;
k b

| 5.3. Speedup of function invocations |

: 8.3.1. Function invocation :
0 Table 5-4 shows that the speedup by expr-simple function is about 1.12 for tak-18-12-86. .
, The tak function uses three arguments. The more the number of arguments of expr-simple is, A
K the faster a function is invoked. ;

0 }

’ Table 5-4: Execution time ratio for exper-simple

tak-18-12-6 ’

R expr-simple 1.00 |
, expr 1.12 \

X

]

|

}

REEL OU AUG GUAU AL OLOMOUCHE WOMAN MM RH TAC XI ACARR KOCTON MMT HUCHMMFd NA Ti KXHMMAKCA IRRINT

FIRMWARE APPROACH TO FAST LISP INTERPRETER 1§ i
J

5.3.2. Method search ey
Table 5-5 shows that sending a built-in message is executed almost as fast as Lisp functions. aN

Note that a bracket form such as [x + y] is treated as a message passing form without | »
checking a normal form, while a form (x + y) is first checked whether x is a function or 0
not. This overhead for the latter is not negligible if the real computations is not small like + KN
or =, As a consequence, the user is not recommended to use a parenthesized form such as (x bh
+ y) as an overloading means to a message passing, although this overloading is a new "
interpretation of Lisp forms proposed by the TAO/ELIS system, io

: Table 5-5: Speed comparison between prefix notation Ny
and infix notation 7)

| form time form time Ww.§

(+ x y) 12.92 (= x y) 11.74 "
(x + y) 18.10 (x = y) 18.17 n
[x + y] 12.06 [x = y] 12.09 wt

unit: microsecond 0
be

defun fib (n Rv

((17 (<n 2) u; he

(+ (Fb (= n 1)) (fib (= n 2))))) 0LAN
Figure 5-2: Lisp style Fibonacci function <

(defmethod (integer fib) () we
(1f [self < 2] | Se

p oy
[[[self - 1] fib] + "
[[self - 2] fib]])) |

v0.

Figure 5-3: Object-oriented style Fibonacci function i
Table 5-6 shows the results of Fibonacci function written in Lisp and object-oriented SH

programming (Fig.5-2 and Fig.5-3) and gives two conclusions. First, the method search is only ll
a 5% overhead to Lisp function call. Second, if the method is found in the worst case by
binary search, the execution is slow down by 7% and 10% for 30 and 100 user-defined i
messages, respectively. Since the overhead is small, we can say that the merit of object- "a

- oriented programming is not be subsumed by the overhead of execution. In fact, many i
applications are implemented in object-oriented programming in the TAO/ELIS system, 0
examples being an Emacs-like editor, TCP/IP and network application programs, operating htt:

| system, Y

® LA

6. Discussion x
The experience of implementing the TAO/ELIS system proves that a naive implementation 0

of Lisp interpreter in firmware cannot provide high performance and that microcoded 0.
interpreter should incorporate many speedup techniques. With various techniques discussed in d
this paper such as data dispatch, variable search, function invocation, method search, the 0
resulting TAO/ELIS system provides a very fast interpreter of which speed is comparable to "
the compiled codes of commercial Lisp machines. Ve,

He!
he

i,

A SS OS AASBON ROR OAR OODOODORONO OUCUOUOIO DONOORaR

EEE ER TREY EEL TL SL PU PUTO NUM BADR RTOUAN NA RA HANS SXYAIRI YLYr CIV En 1
.

: Ww.

oe)

FIRMWARE APPROACH TO FAST LISP INTERPRETER 16

| o
| 0

- by

| Table 5-6: Speed comparison a
. between Lisp and Object-Oriented programming i

Lisp style time in usec 3
EEE , i

. (fib 19) 783 0
N (fib 22) 3,394 i)

} (fib 25) 14,376 3
Object-oriented style size of method table 2

A 1 30 100 | CO

: 19 fib 795 853 880 8

22 fib 3,364 3,610 3,730 x
. 25 fib 14,246 15,294 15,800 r

These techniques presented in this paper can be applied to any (compiler-bases) deep~binding »
: Lisp system as well as any Lisp interpreter. Much attention is recently paid to implementation y
2 of Lisp by deep-binding mechanism, because parallel Lisp system forces such an 0
: implementation [2, 4]. In parallel or concurrent Lisp system, many processes are spawned and 0
¢ process switching is critical to the performance. If the variable binding mechanism is i
: implemented by deep-binding mechanism, process switch is very easy because all information “

on computations is stored in the stack. This ig the criteria why the TAO/ELIS system adopts 4
deep-binding mechanism. Although the TAO/ELIS system is a Lisp machine system, it works :
as a multi-user system like Unix.

The TAO/ELIS system proves that the high level approach to firmware development !
environment is very important. That is, micro assembler and linker are written in TAO itself xX
and micro loader and debugger are written in mini-Lisp system running on the FEP, As a !

| consequence, any simulator, either hardware level or software level, was not used to design and A
develop the breadboard ELIS and the TAO interpreter. Note that the TAO/ELIS system has A

; no machine instructions as convensional machines. The system uses the bytecode interpreter to X
: execute compiled codes, but most computations are executed by microcoded Lisp functions. 0
) Byte codes manipulates only function calling and exiting. If a set of machine instructions is 0

fixed, it is very difficult to incorporate new functionalities to the system. As Lao-Tsu said 6
"The TAO named TAO is not the true TAO", the TAO/ELIS system is ever evolving. In fact, 2.
the TAO/ELIS system supports object-oriented programming, logic programming, Fortran/C- N
like programming, concurrent programming and database management capabilities as well as ':

: Lisp. We believe that firmware approach gives this flexibility to language design. ol
. The current status of the TAO/ELIS is that Japanese word processing system, window system, 0

Emacs-like editor, network system, C programming environment (C is compiled to TAO) and 0!
other utilities are developed for the TAO/ELIS system. Even if the TAO/ELIS system is an W;

i Interpreter-centered system, compiler is useful for memory economy and further speedup. The)
development of compiler for Lisp and object-oriented programming is almost completed and Cx

| that for logic programming is under development. i»
: It will be an interesting research theme to use the ELIS machine to implement other high- i

level language such as Smalltalk, because the ELIS machine is not dedicated to Lisp but a bt,
general-purpose stack machine. In addition, powerful firmware developing environments are "W

- provided by the TAO/ELIS system. This approach will be in a striking contrast to RISC)
approach. 2

h'

EE OU OOOCOELC OtORDCOO SOCA ACD".

CL EERIESRE Ait ia TE LA APES BLL BE WL MEL TSE TE WL END WEL LAU ML COAL YTER I IY. GL UR TS ts: v S dev fa Fan a TENET io Be ?
J

b FIRMWARE APPROACH TO FAST LISP INTERPRETER 17 A

Acknowledgments ;

The authors thank Yasushi Hibino and Kazufumi Watanabe, NTT Human Interface |
Laboratories, who designed ELIS and VLSI ELIS and made the prototype ELIS. They express '

! thanks to their colleagues of NTT Software Labs for developing various application softwares !
L and evaluating the TAO/ELIS system. They also express thanks to the members of NTT

‘I Human Interface Labs, to design and develop VLSI ELIS. They thank Dr. Katsuji Tsukamoto v
for his continuous support to the NUE project. They also thank Prof. Edward Feigenbaum for)
giving two of them a chance to write this paper and to evaluate the TAO/ELIS system at .

|. Knowledge Systems Lab, Stanford University. Computer facilities were partially provided by
\ NIH grant RR-00785 to Sumex-Aim and by DARPA Contract F30602-85-C-0012, NASA "
1 Ames Contract NCC 2-220-S1, and Boeing Contract W266875 to Advanced Architectures "
: Project at KSL. '

h
A ‘

: |

]

| Y

[. 4

: v

: ;

\ :
x A

)
)

N
%

N X
. -

: '
¥ \J
y d

\

\)
\

| 0

:
SE SSRNAIAN WAC OACSOIIYYI121,000 0 We WhOOOOORI IOS NOTUNK WN KIX OCR IO JSON Ph nA) N A OX WY, Ye ", OYWat

Lo EE OE IR TEE ERT IRE RETO LE RN AE N RRRNE MR AR RA ANA REA SA TW OA PUN PUN WU RUM RUNG NUN LL RU RA WW Wh y,

FIRMWARE APPROACH TO FAST LISP INTERPRETER 13 .

References ¢

1. Delagi, B.A., Saraiya, N.P,, Nishimura, S., and Byrd, G. An Instrumented Multiprocessor
Simulation System. Report KSL 86-35, Knowledge Systems Laboratory, Stanford University,

; Palo Alto, CA, January, 1987. "

2. Gabriel, R.P. and McCarthy, J. Queue-based multiprocessor Lisp. Conference Record of :
| the 1984 ACM Symposium on Lisp and Functional Programming, ACM, Austin, Texas, ¥

August, 1984.

” 3. Gabriel, R.P.. Performance and Evaluation of LISP Systems. MIT Press, Cambridge, MA, ;
. 1985. :
: §
= ft

\ 4. Halstead, R. MultiLisp. Conference Record of the 1984 ACM Symposium on Lisp and
; Functional Programming, ACM, Austin, Texas, August, 1984.

5. Hibino, Y., Watanabe, K., and Osato, N. The architecture of Lisp machine ELIS (in ‘
. Japanese). Report of WGSYM 24, TPS], June, 1983. N
’ 6. Ogawa, Y., Shima, K,, Sugawara, T. and Takagi, S. Knowledge Representation and Inference p
: Environment: KRINE, --- An Approach to Integration of Frame, Prolog and Graphics. J
. Proceedings of the international conference on Fifth Generation Computer Systems (FGCS :

- ‘84), ICOT, Tokyo, Japan, October, 1984, pp. 643-651. A
J . ope \

: 7. Okuno, H.G., Takeuchi, I, Osato, N., Hibino, Y. and Watanabe, K. TAO : A Fast \
: Interpreter-Centered System on the Lisp Machine ELIS. Conference Record of the 1984 ACM >

Symposium on Lisp and Functional Programming, ACM, Austin, Texas, August, 1984, pp.
140-149. >

; 8. Okuno, HG. The Report of The Third Lisp Contest and The First Prolog Contest. Report ¥
of WGSYM 33-4, IPSJ, September, 1985. K

M e

9. Osato, N., Takeuchi, I. and Okuno, H.G. Object-Oriented Programming in TAO (in .
; Japanese). In Suzuki, N., Ed., Object-Oriented System, Kyoritsu Publishing Inc., Tokyo, Japan,

1985.
3

' 10. Steele, GL. COMMON LISP : The Language. Digital Press, Burlington Massachusetts, y
K 1984. '
. RK

g 11. Takeuchi, I, Okuno, H.G. and Osato, N. "TAO - A harmonic mean of Lisp, Prolog and Ny.
. Smalltalk.” SIGPLAN Notices 18, 7 (July 1983).

: 12. Takeuchi, I, Okuno, H.G. and Osato, N. "A List Processing Language TAO with Multiple J

x Programming Paradigm.” New Generation Computing 4, 4 (1986). ,
‘ 13. Takeuchi, I, Okuno, H.G., Osato, N., Kamio, M. and Yamazaki K. A concurrent multi- A
h paradigm list processor TAO/ELIS. Proceedings of Fall Joint Computer Conference (FICC'87),

ACM & IEEE, Dallas, Texas, October, 1987. ro appear OH
3 4

14. Watanabe, K., Ishikawa, A., Yamada, Y. and Hibino, H. A 32b LISP Processor. Proc. of
IEEE International Solid-State Circuits Conference (ISSCC '87), IEEE, New York City, A

: February, 1987, pp. 200-201, 394.

- 15. Weinreb, D., Moon, D. and Stallman, RM. Lisp Machine Manual. LMI, 1983.

4
)

x (

,s a 0) 3 WARSI IRN She DONO DX OSHBOSOBONUS IG OROBOO0OOUNM IC RN SN OCH aT ae, on oY, CLA IA InAN Oy

EE A IR or a TL TE TC A TETE RT TL A ET A EA LR DN NU UY TV A OR IRE YU Ou, PONISI WIS PA

0)

)

FIRMWARE APPROACH TO FAST LISP INTERPRETER 19 4
\

fl
| J » [J \3

I. Microinstruction Format 2
nN

<< Type I >> Memory Reference type | -
i

6 66 §5 54 44 33 33 2 2 0
| 3 10 32 09 43 87 21 2 1 0 n
y IEE IES A ant SLE LEE ES EE ERTL Sl nt DEL EE EE EEE ELE EERE | n

D | 0
: b|00 ALU Path| Y-D | A-S B-S Memory | Sequencing

|] | {; g | 0
: a ES BE ad SE EE El et i LTS | ne

ir

’ << Type II >> SDC Control type is
6 66 55 5 4 4 4 33 3 33 2 2

3 10 32 09 43 87 210 2 1 0 n
: EE ET tLLE Tr Tu a a Sys. o
: D A "
\ e L WY
‘ bjo1| ALU |[Path| Y-D | A-S | B-S |U| SDC Sequencing bo

u

g c

J El Al SE EE Et CE alt SEL EE ttSn o
3 3

: < Type III >> Immediate type 2
: a

6 686 56 54 44 33 33333 Ng
3 10 32 09 43 87 43210 0 a

[-4=-docmcccccapoccctecccehencenbonm cdo bopmmcccccccncccnnccncacaa==])
D E|A 0
9 AUX-|R|m}L ¢
b|10 ALU Path| Y-D | A-S |cont|T|i|U Immediate hy

| u rol|s|t x)
g C 0
ot et EE TL EL EE REET EE Ll at ah ah a TT \

' { Type IV >> Reserved for floating point operations ,

0)

. sen legend ***

| ALU c ALU carry control L
Emit MSB of Immediate data "4

ve,

P| 4
: 2

)

A of

X]

;
1

:
\]

| ')

LY

: 3
| My

vy

) A

os!
EERE ADS ONOADI OSU OAT OTIS NCO ARINC YA GEN, dat, Woody a uit Vy, a OO UCR LA CnKN 2% na

R |MW| “%
II) y search forid-message

A| : PPR)) AC |. b ; |

x

3 a: ard : | : |
SP “y

al k 0 lows ,Hh - :] i Ss v i 3 pY n a 0 t 0 tt |+ 1 ad 0 fa:) sitio ag h "(t aa on”or 11 N |! - r p a n : | |1 r ar ra ng : |g (a aol ro no (| |{! nd 1 1)) t- bo tl |: : , (b1g fou ca hod ble RTS(In 11 + re " ° .) |
| d n on| | r 0 y? ; : d 1 t “oni Se 3)a |+] 6) wi

| . 20 .#20) (5 s 14 car)| : . 1) ; Ss ro y0 0 a . 300 5)) m ts) . Fr| x pay >rt m) ’ 4 p 0 :
: : p oH

ol

: ; S 1 i XA)) re "next. wid |’ ty oxt y one iH: b r / p a :gp El hwa r t d b 0 . ene ible. Ton st pt w 1 0 : |
; ate | o wel: i so via 9 pos x8

i

| ot
a e 00s ;n em ieot-f yi0 |u |n | |d |cod | |

OLE AOA 20UNLa ht AyNYY

i

2 YXOOhe othYX JM i 1 AY Ty

0)

WHY | ho!
X 2 0Ca He Seal ANn , «

. BEATETRE RE ER EEE LA SEARAE v ta? Gar tat IRah a2 a¥3 a hats at ad u'Y avd ah ato HL ROY FABRE RAE ARI Y I ARR EY LR al eb « i oF LP LB ¢,
of

5
A)

KX FIRMWARE APPROACH TO FAST LISP INTERPRETER 21 W

III. Microcode of the body of the car function 3
4

f,

{-1ocal *nil-car 4) ; car-nil error flag bo.Jocal :car t(sysid #143)) ; address of symbol car
\ {

: : entry point of car body -~ its argument is on sp x
)

\ (!lcar {ord {sp>+ gmc carl) (boc car mdrl) ; read car0 to marl !: br nhap (a8 a?7))) : check special condition v
i something-happened/®*

” e

J ; entry point of car -- its argument is on car0 -
b 0)

N (ftfcar.s (mov carQ) (boc car0 mdr1) o
. (br nhap (a8 a7))) ; check special condition 0
' : something-happened/* J

(1la7 {pov carl rpr); br tagcadbl (a3 ad))) , branch on cadbl data type V,
» ; error?/ok ha
y (1a4 (mov 1 rpf) (br tagd4-0 al)) : cadble, invisible? 0;

: rpf 1 means rplaca assign NV)
; (.case al cadr# N

; inv-a (mov cari card) (goto car.s ; invisible in car heinv-d (mov cdrl car0) (goto car.s i invisible in cdr)
t mov <{sp>) (goto a2))) : (carl . cdrl) is founded. x]

'" + yield return adder on Y-bus ¢
(a2 (and carl gmc <sp>) return) : push return value and return x

t !

? (1a3 {or sysmode ®nil-car) + car-nil error? xx br tagnil (a5 ag))) : 1s 1t ni1? no/yes ny

. (1a06 (clr rpf) (br z (29 al0))) i should be car-nil error ?7 he
A : nil 1s not rplacable N!
! (1a10 (mov <sp>) (goto rtnnil’)) : not error, returns nil hot
} a9 cir r8)) ; car-nil is error "
; {lael (mov :car r7)) ; errored fn {is car X

mov :11larg r1)) ; set error message a
, goto err)) -
’ 1a mov car0 r8) (goto ael)) : non-car-cdrable thing at

11a8 (mov card -<sp> ; store back arg ,
, mov car' -<{spd h:

: mov sor) (br spover hap)) ; stack overflow?p car’ mov <sp>+ car0) (boc carl mirl) ; resume car oreration "
goto a7)) .

0 J

i 0
))
nN

) 3
]

)

-

‘ ,
o

X

-
| on

0
Ct Aa obSahat, ve ANH SISK RY AK A MAN CI R O whatighal nti AWI : we LM on, i ne : aN x 4 hyA Wb, 0POUT

TO 1.3% 40 oy tata RSa ah aS aM UY LVM ATT INY ET YIY NA NRC ARNUN IY IRN UY NIV IT EIT EY FRU NUTTY. TOV ALS. A" ?
y

| J

2

FIRMWARE APPROACH TO FAST LISP INTERPRETER 22 ng

ot,

IV. Evaluation of a form (car ...) nl
Wo

a LR

Entry of Eval)
: <sp> => form Wa

| : <sp+1> => return address 2)i

!leval (and <sp>+ gmc car0) (boc car0 ode)s (br nhap (evi ev))) : 2lev br tag5~0 eval-disp) (com sysmode) : check evalhook i
| lev-nohook : eval without hooking ty

(br tag5-0 eval-disp) (mov -1)) |
or

\ (.case leval-disp dtyp# v.
: ((1ist dnil keyid shortnum bignum ratio fiocat codnum undef 3

bigfloat str char fatstr filstr complex shortfioat) o
| mov <sp>) (br y6 (hevconst evconst))) bt
, ((1ist sysid 1d) A

and carl gme rl)| br y6 (hlispv lispv))) : rl = variable to be searched rn
((11st cell namcell) : For the case of (car ...) %

: mov carl -<sp>) W
br y6 (hform form))) : push form onto stack WW!

) veo) w
Analyze a form ’

| (Iform (asrc carl) (aluh zero) (ydes rpf) 24bw ; clear rpf every time for form 5
boc cdrl mdr0)) ; get arg list in mdrO ihy : {tirst-arg . arg-tail) hh,

(1forml {oe tagb-0 car-form) : dispatch car of form oN} mov cari ri)) ;: rl = car of form i
(.case car-form dtyp# y

y (sysid (and <sp> gmc r2) (br ybr 0)) : sysid, jump by its addr .
: ; r2 = the form i
' : gm clear for indicating that XJ

; this sysid call is from eval On

; ((1ist id logic pt pls carl 1 car0) (bo car0 mdr0) ; mdr0 <- (applobj . prop) [xgoto df)) ’
cos) p

wl

; Entry of car \
§ t'* 43 (mov car <sp>)) ; Symbol-car's address is #143 At\ mov cdrl) (goto sysi)) ; car is a label of microcodes iW

gle

Arguments check)) : 1 arg sys subentry >

; Upon entering, r2 = the form ty

| (1!sysl (mov cdr0) (br tagh5-0 s0)) : 1 arg sysid subentry ES
: branch on previous result ,

(.case sO dtyp# SY

inv-a (mov car(cord} (bo cdrl manos goto sysl |inv-d (mov cdrQ cdrl) (bo cdrl mdr0) (goto sysli ry

) dnil (mov (spo+) (nua sel)) : no arg, r2 contains the form ’\(11st cell namcell bra nambra quoted eval# backq assign usym oo
selfass assignee) D9)
(and car0 gmc carl) (boc car0 mdril) : copy of eval head Ae

| (br tagcadbl (s2 s3)))) : is there excess arg? no/yes >

' “,
wo

Lat
ow

ot

RD:SUR ONDSOR ROA inl % 5 CAN x (h) ¥) AN KO H JInfaOAR RR INK, n. nh he ots. AV We, Ln) . al

ET CT Mi oA

B48 0g) al 8 Dal Soh p80 4.0Fob "of 240 bob #8 C4 N eltB98) gy ata ab oshaah Sabo Ye "a tah vad mh - wiTL LICTUTE IPR TYJOSE BUTS JEN o. at eta Ry MACUSER UNOS »Ch a gy ALIENS x
Oy
3

2

Jy
0
[39

AeTh
nh
ue
NW
ht
\
x
Ll

FA

4

5et
on 1d
$4
Wh
‘Wr

fy
0d)

0's

"0
oss

Nt
ny

A +
4

ot,
We,
MG

AA
Wf
&
t

nNIN

&
ot

nt,
ha
i
Ho

4%
et

y LA
%1

ne

ly
Le
Ya
he
hy

» » ®
® . “aN aM» ARAN a on SUNYLJ rr WY ’

w ha RIOR AN XA nay Ha Ls fh RT & \ WON SahCr I CNOY I a OUSOMON NS nN) 4 (\ ") ae OCR ADA WA TN eam So,BPR RTI RRR Re:orgsioe OR SuntanSseNaHEALY.

