I U LA S L U S T YR L Ot UL L AL R L LG IR RS MRS N AU R KX R A R

Scptember 1987 Report No. STAN-CS-87-1184
Also numbered KSL-87-57

AD-A198 673 OTG FILE cop

Firmware Approach to Fast Lisp Interpreter

by

H. G. Okuno, N. Osato, and I. Takeuchi

DTIC

Department of Computer Science

Stanford University
Stanford, CA 94305

| DISTRIBUTION STATEMENT A

' | Approved for public releasel
‘ Distribution Unlimited

"V, § T
I.‘:!.‘:ﬁl
DOUC

QOO Q 0 : \) af v K U N \ Wy W W 00O OO 9.9 Pl
‘.‘-“‘-"‘t'..h‘?\l.!l:'?‘n‘?‘l"'x‘!‘\‘.‘i‘.'l‘: !’.‘t’l :“ 8% :'.‘.:..‘C'. l‘*ﬁ.“"‘!"* NN N \‘L‘.“.a 0o l‘bl.:‘) .t.\.i e > 5‘ ¥ l‘!‘l o\l a !‘J‘n'.‘u L !“‘! !“‘!‘

g v

- v o~

Y e

+

+

. - . A . SOOI ry
"";:".0.;‘#".!“‘.\"‘A“'ﬁ"!i‘i"qh l"’l"'l"‘l“!&“ AN -_‘!'-‘l!.‘l'»‘ .c‘.‘-“‘n‘l‘n'l‘-'l‘s'\ ;'l'-.i.\ () \'b.‘ Dt _JP"‘.‘.‘I q't"-“‘- l‘-.l.-.tvy..‘JO.o A Y

URITY CLASSIFICATION =15 PA

REPORT DOCUMENTATION PAGE

Form Approved
OMB No 0704-0188
Exp Date Jun 30 1986

1a REPORT SECURITY CLASSIFICATION

b RESTRICTIVE MARKINGS

23 SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION/AVAILABILITY OF REPORT

20 DECLASSIFICATION/DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
STAN-CS-87-1184 (kSL-87-57)

§. MONITORING ORGANIZATION REPORT NUMBER(S)

6b OFFICE SYMBOL
(if applicable)

6a NAME OF PERFORMING ORGANIZATION

Computer Science Dept.

7a. NAME OF MONITORING ORGANIZATION

6¢. ADDRESS (City, State, and 2iP Code)

Stanford University
Stanford, CA 94305

7b. ADORESS (City, State, and 2IP Code)

8b. OFFICE SYMBOL

F ING / SPONSORING
8a. NAME OF FUNDING / 5F (* spplicable)

ORGANIZATION
DARPA

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
F30602-85-C~0012

8c. ADDRESS (City, State, and ZIP Code)

10. SOURCE OF FUNDING NUMBERS

WORK UNIT

PROJECT TASK
ELEMENT NO NO ACCESSION NO

ELEMENT NO.

1. TITLE (Includle Security Classification)

Firmware Approach to Fast Lisp Interpreter

12. PERSONAL AUTHOR(S)
H. Okuno, N. Osato, and I. Takeuchi

13a. TYPE OF REPORT 13b TIME COVERED
FROM T0

14. DATE OF REPORT (Year, Month, Day) [15 PAGE COUNT

16. SUPPLEMENTARY NOTATION

17 COSAT! CODES

FIELD ~ GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

19. ABSTRACT {Continue on reversqn:': ?p'p“‘“" and identify

patible with C
programming and Fi /C-like progr

block number)
rosch to speed up a Lisp intetpreter by implementing it in firmware seems promising.
A microcaded Lisp interpreter shows good performance for very simple benchmarks, while it

often faile to provide good performance fur larger benchmarks and applications unless speedup

techniques are devised for it. This was the case for the TAO/ELIS system.
describes various techniques devised for the TAO/ELIS System in order 1o speed up the
interpreter of the TAO language implemented on the ELIS Lisp hi q
include data type dispatch, variable access, function call and s0 on. TAO is not only upward

Lisp, but also incorporates logic programming, object-oriented

This paper
The techni

ial Lisp hi

speed balance is very important for the user.

nt

ing into Lisp programming. TAO also provides
concurrent programming and supports muitiple users (up to eight users). The TAO interpreter
for those programming paradigms is coded fully in microcodes.

functionalities, the speed of /nterpreted codes of TAO is comparable to that
of Furthermore, the speeds of the interpreted codes of the same
program written in various programming paradigms in TAO does not differ so much. This

Another outstanding feature of the TAO/ELIS
environments. Micro Assembler and Linker are written in TAO, which enables the user to use
the capability of TAO in microcodes. Since debugging tools are also written in a mini-Lisp,

many new tools were developed in paraliel to debugging of microcodes. This high flevel
approach to firmware development environments is very im

In spite of rich
of compiled codes

system is its firmware development

portant to provide high productivity

20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT

CJuncLassIfEDUNLMITED [J SAME AS RPT. O onic users

21. ABSTRACT SECURITY CLASSIFICATION

222 NAME OF RESPONSIBLE INDIVIDUAL

L

22b. TELEPHONE (inciude ~:ea Code) | 22¢ OFFICE SYMBOL

DD FORM 1473, 8a mar

)

83 APR edition may be used unt:l exhausted
All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

P we e e wm

- a
2N

T - ..

” - -
AT XA

‘.-—-’ﬂ-‘.

:"."

N

fnriasindatalndin)

Knowled[se Systems Laboratory September 1987
Report No. KSL 87-37

Firmware Approach to Fast Lisp Interpreter

by
Hiroshi G. Okuno, Nobuyasu Osato and Ikuo Takeuchi

KNOWLEDGE SYSTEMS LABORATORY
Computer Science Department
Stanford University
Stanford, California 94305

and

Electrical Communications Laboratories
Nippon Telegraph and Telephone Corporation
3-9-11 Midori-cho, Musashino
Tokyo 180 J’apan

To Appear in Proceedings of Twentieth Annual
Workshop on Microprogramming (MICRO-20).

FIRMWARE APPROACH TO FAST LISP INTERPRETER

Table of Contents
1. Introduction
2. Background - the TAO/ELIS system
2.1. Overview of the ELIS Lisp machine
2.2. Firmware Development Environment
2.3. Language aspect of TAO
3. Bottlenecks of interpreted execution
3.1. Variable search
3.2, function call
3.3. type checking
3.4, real computation
4. Speedup techniques for Lisp interpreter
4. Usage of Tag
4.2. Variables in TAO
4.2.1. Mechanism of variable search
4.2.2. Preprocess of lexical variables
4.2.3. Variable cache
4.2.4. Preprocess of Instance variables
4.3. Function calls
4.3.1. Function invocation
4.3.2. Special dispatch of built-in message
4.3.3, Fast lookup of message-method table
5. Evaluation of the TAO interpreter
5.1. Benchmark results
5.2. Speedup of variable access
5.2.1. Lexical variables
5.2.2. Special variables
5.2.3. Instance variables
5.3. Speedup of function invocations
5.3.1. Function invocation
5.3.2. Method search
6. Discussion
I. Microinstruction Format

II. Micro c%e of binary search for id-message
111. Microcode of the body of the car function
IV. Evaluation of a form -

1
1
1
4
S
]
6
6
7
7
7
7
9
9
9
9
10
11
11
11
11
11
11
13
13
13
13
14
14
15
15
19
20
21
22

(Accavion
CCesion ror
L.

NTIS CRA&I
CTIC 1A

Unannonnsed

o o - R L SRR Sa——

Avia oty Sudes

P e

Abstract

Y
The approach to speed up a Lisp interpreter by implementing it in firmware seems promising.
A microcoded Lisp interpreter shows good performance for very simple benchmarks, while it
often fails to provide good performance for larger benchmarks and applications unless speedup
techniques are devised for it. This was the case for the TAO/ELIS system. This paper
describes various techniques devised for the TAO/ELIS system in order to speed up the
interpreter of the TAO language implemented on the ELIS Lisp machine. The techniques
include data type dispatch, variable access, function call and so on. TAO is not only upward
compatible with Common Lisp, but also incorporates logic programming, object-oriented
programming and Fortran/C-like programming into Lisp programming. TAO also provides
concurrent programming and supports muitiple users (up to eight users). The TAO interpreter
for those programming paradigms is coded fully in microcodes. In spite of rich
functionalities, the speed of interpreted codes of TAO is comparable to that of compiled codes
of commercial Lisp machines. Furthermore, the speeds of the interpreted codes of the same
program written in various programming paradigms in TAO does not differ so much. This
speed balance is very important for the user. (ke

Another outstanding feature of the TAO/ELIS system is its firmware development
environments. Micro Assembler and Linker are written in TAO, which enables the user to use
the capability of TAO in microcodes. Since debugging tools are also written in a mini-Lisp,
many new tools were developed in parallel to debugging of microcodes. This high level
approach to firmware development environments is very important to provide high productivity
of development,.

'] W IR T e 1% TN T A Yoty OO
oA b e R s R I T TR A L s aat Y A OBUSOIO NN OGO NG AT K R o NS > XN P "‘' LB T U RN R R N

FIRMWARE APPROACH TO FAST LISP INTERPRETER 1

1. Introduction

The TAO/ELIS system is the first milestone of the New Unified Environment (NUE) project
at NTT Software Laboratories. ELIS [5} is a Lisp machine family; one is a breadboard
machine and the other is a VLSI machine [14]). TAO [7, 11, 12, 13] is a superset of Common
Lisp and designed as a kernel language for NUE on the ELIS machine. However, TAO is not
a simple Lisp system, but a multi-paradigm language which incorporates logic programming,
object-oriented programming and Fortran/C-like programming into Lisp programming.

We consider that Lisp interpreter is essential from the following three points-of-view,

« [Application] Interpretive execution of programs is required by some application
programs. For example, many expert system building tools support sophisticated
programming environments, while they often lack a rule compiler and execute user-
specified Lisp programs interpretedly.

o [Programming Environments] The interpreter is considered as an important
component of interactive programming environment such as stepper, editor, tracer,
and error break.

o [Debugging tool] One of the best debuggers for Lisp programs is the interpreter.
And the interpreter is the easiest and clearest tool for the user.

These are our motivations to design and implement a fast Lisp interpreter with full-fledged
facilities. Furthermore, the speed of each programming paradigm should be balanced so that
the user can implement his idea naturally by using multiple paradigms which is suitable to his
conceptualization of applications.

Our approach to speed up the interpreter is to implement it in microcodes. Microcoded Lisp
interpreter shows a good performance for very simple benchmarks, but it often fails to provide
a good performance for some benchmarks and applications unless speedup techniques are
incorporated into it. This was the case for the TAO/ELIS system and we have been
developing various techniques of speedup for several years. In this paper, we discuss various
speedup techniques adopted in the TAO/ELIS system, their evaluation and applicability to
other systems. In Section 2, the background on the ELIS Lisp machine and the TAO language
is presented. Firmware development environments of the TAO/ELIS system is also discussed
in this section. They are written in TAO or a mini-Lisp, which raises the expressibility of
microcodes as well as gives flexibility and customizability to tools. The bottlenecks of
interpreted execution of the Lisp system are presented in Section 3, and their solutions are
given in Section 4. In Section 5, the TAO interpreter is evaluated.

2. Background - the TAO/ELIS system

This section gives an overview of the ELIS Lisp machine and the TAO language. Firmware
development environments are also discussed.

2.1. Overview of the ELIS Lisp machine

The ELIS family has two types of Lisp machines; breadboard machine and VLSI chip
machine. The cycle time of each machine is 200nsec and 180nsec, respectively. VLSI chip is
manufactured by 2um CMOS technology [14]. Both machines are compatible at the level of
microcodes. The block diagram of CPU is shown in Fig. 2~1. All data given in this paper are
measured on a VLSI ELIS machine. The features of ELIS which influence the design and
implementation of TAO are summarizea below:

o [Tagged architecture] Pointer is 32-bit wide with 8 bit tag included (Fig. 2-2).
Tags are used to specify various data types and speed up the interpreter. Various
combinations of tag branches are provided by the ELIS hardware,

o [Hardware stack] ELIS has 32K words stack and three stack pointers. Stack

RO OR P ATUN U A MO ML Y S AU TGN ARSI

BCY

’ FIRMWARE APPROACH TO FAST LISP INTERPRETER

o + Data out 64b or 32b
= +
‘ I I
e R e g Address 31b
s I |
h [[32b I------1 A-Bus
L sesesssemmcoso e it bt bttt g | path |----+ +
oy + * + + + I---n-- 1 | |
i il | [|
Il I' MGR | l I “.‘I.‘..‘.I
ke | | | .
R | CARO|CDRO| “emmmee- I---1 “m—-ee- LI ECTEERY
----------- | SDC1 | 6b | | | SP1 | sV v
4 ekt @ 42 43z SGoowmSooe - e ' s I - an w» W o - . - an e -
[CAR1|CDR1| =-==-==-- | t | R * \ \ /
b memmes “-=== (== | SDC2 | 5b | a | <== | SP2 | * O\ \/
W cmemmeceees vem-e- - lc] W =====-- . \ALU /
o |CAR2|CDR2|] =--=-===-- | k| —————— . ----
o el] SDC3 | 56 | | | SP3 | . I
e “———-- mmeeeee I---1 et . |
. | CAR3 | CDR3| * * * . -=-
e eaee ' | ' sesesssecens
:g ™" e | | |
2 1 | | |
) T | | | I------ X
‘€¢ ceprmcacpmm=- T L e T S e LT L L +---| path |=-=v==-=== ~
' ! | 32b) CELERRS Y-Bus
" | Data in 64b
“‘;’i comdprmccaccrmncnsnann
Qz'g
x"'
AL
Figure 2-1: Block Diagram of the ELIS CPU
0 |
,:'0'
o
&
‘.-'q‘
‘e
it
s
s
ﬁ&
DN
."*.
i'*4
N

. . } . . -
SN TR IO A ISR LS I PN O B B W AR IR I Wt W TS OSOROTINUDT T v RIS

| R

2

B-Bus 32b

Emit data

S8 Ss00seseRe

[]

...... I []

Lo

- -—-—o-- L]

/ | R] *

le| *

lol *

..... ®

+ [

|32b *

------- L]

sSesesScseRee
|
|
Vv
+

Wity A 0."-!"“.'.0'.,0“.\

- S D . Y S A WD D YR W T W e R P WD e WD ek WD YR e @ e

Assignment of tag bits in TAO
tag? -- for garbage collector
tag6 -- auxiliary use
tag$ -- atomic data if 0, non-atomic data otherwise
tags ~ tag0 --- data type

5.t
Figure 2-2: Structure of Lisp pointer :'l‘:.::
i
'0:':
overflow and underflow are checked by hardware and if such an overflow occurs, a 5 \!",
bit of processor status word (PSW) is set. However, microcode should check the @
overflow by testing the bit. There is no hardwired interrupt. Stack operation is Wi
performed in one microcycle. o;:}:}
o [Large Writable Control Store (WCS) for microprogramming] The capacity of a‘:::'
Writable Control Store is 64K 64-bit words so that the TAO interpreter and most t:.ge:
of system functions are coded in microcodes. For example, some primitives for KRK]
EMACS-like editor, TCP/IP software and Japanese text processing are coded in ®
microcodes. 7 N
o [Memory General Registers (MGR)] Four sets of 64-bit memory interface registers .‘;n!:
called Memory General Register (MGR) are provided with three index registers ‘o{'x
called Source Destination Counter (SDC) which points to any byte of MGR. Car i
and cdr field of each MGR can be used as a memory address register or memory O
data register. They also can be accessed by ALU as a source or destination operand.
Note that a 64-bit word (one Lisp cell) can be read or written between MGR and Wi,
memory. MGR with SDC can be used as byte manipulation buffers (for strings, dels,
compiled codes, etc.) .::;‘,:
o [Hardware check of memory access] If a memory operation is initiated to an illegal .‘:::}
pointer, that is, a memory address register (say, car or cdr field of some MGR) .!".
points to a non-CAR-CDR-able address, the memory operation will be aborted 'S
automatically. Tag-5 of & pointer specifies whether the pointer is CAR-CDR-able RiEH
or not (see Fig. 2~2). Therefore, a memory operation can be initiated without .0::."
checking the validity of CAR-CDR-ability. Since it takes three microcycles to e
complete a memory operation, this hardware checking capability is very important 59:'21
because it enables the programmer to fetch a data in advance without performing !

such a check at the microcode level. This memory operation is called boc, which is

used in the body of the car function shown in Appendix IIL ‘ .
Microinstructions are divided into four types shown in Appendix I. The type IV is reserved ! !
for floating operations, but the current system implements IEEE standard floating operations .‘
by microcodes. One of the powerful instructions is a set of tag branches (see Table 2-1). .
Note that since there is no address field in the type III instructions, the linker should be el

intelligent to handle the combination of a type III instruction and branch instruction. °
Consider the following code: 54::
(11r8 (- r0 #15) (br gel (Irn 1null Treof))) ;,.(
e 870,
(1rn (= rO #12) (br z (170 1r1))) :;;!‘
W

1irl jsr no store-byte)) ®
!11ria mov l‘l‘; e
brc tag? (1r1' 1r1''))) KRS
() .t
o
"t“';
oy
‘l‘p‘h’
b

A 1 Y N ;. j 1 I3 ;. . -
IEDADGSOSDEDADLERI N 'o’-’\‘..l’u'!’-‘\ ~'n‘a'n'.‘n’..t‘.'l':.ﬂu A‘.'l‘.'ﬂ._t‘...o'v A \'-.l‘;.l‘n.l‘n‘l'\,l.n.l.. C'a.l'u,l'un .l'., 'o.l‘u.l‘mi'b. ". '.,I",l‘.,i‘.,i‘..l‘o."h ‘i, 'Q. G .!

PO R NP OVRNAR AR EAR LR E TR TR NI L YIPTRIV. LN U VY M YN UK PR IO O R U

FIRMWARE APPROACH TO FAST LISP INTERPRETER 4 ‘.:
|:|

X

I\

The instructions fabeled by 1r0 and 1r1 should be allocated to a consecutive address with ‘0:~

starting an even address. In addition, since the instruction labeled by 1ri .s of type III, the _:f,
next instruction labeled by 1rila should be allocated to the consecutive address. The three)
instructions labeled by 1rn, 1null and 1reof should be allocated to three consecutive bt
addresses and the address of 1rn should be a multiply of four. The linker considers these W,
constraints of addressing and allocates instructions within the narrowest possible address range. ::
o\

3

Table 2-1: Branch conditions on Tag field -

M

iy

{

Condition Meaning :':

{(mnemonic) .;:
tag? branch if tag7 is set)

tag6, tage branch if tag6 is set e
tagS, tagcadbl branch if tag$ is set K
tagS-0 64-way branch according to tag5-0 bit i
tagh5-0 33-way branch; branch to 33rd offset if tagS=1 N
tagl5-0 33-way branch; branch to 33rd offset if tag5=0 phe,
tag4-0 32-way branch according to tag4-0 bit b
' tagfil branch if tag5-0 is not zero L

/ tagnil branch if tag5-0 is zero bty

:)

: h

oY,

2.2. Firmware Development Environment)

The Micro Assembler and Linker are implemented in TAO itself. Therefore, the syntax of ':i

microcodes is expressed in S-expressionl. For example, Appendix III shows the microcode of v:l,f

car function. The argument of car is given on the stack and the returned value is pushed oh :af
the stack. The microcode of binary search function is shown in Appendices II. Since the N
Micro Assembler and Linker are written in TAO, the user can use the power of TAO in ",
microcodes. For example,)

((mov +(** 2 16) r0)) o

Ui

is the same as ':5
. XK

((mov 65536 r0)) L,
)

) That is, a form prefixed by ¢ is evaluated before assembling. This evaluation may be i‘
: postponed till linking or global linking. In the following operation, ‘

(1101 (mov +(+ 10400000000 (getsym '1b1)) N
-<sp>)) I

i)

the address of the instruction can be given as an operand at the time of linking. '

The source of microcodes for the TAO interpreter consists of 112 files and its total size is o

about 2.7M bytes. It takes about one and a half hour for the micro assembler and linker to]

assemble and link all source files. The total size of used Writable Control Store is about 48K ‘:

words. Needless to say, microcodes are being developed to support new functions. It takes ::0.
)

2

ls-expresslon consists of a sequence of alphanumeric characters or a sequence of S-expressions enclosed by a pair of ':!‘

parentheses.]

",

o

) |

n

4

.\

N , ‘ . ey - .) . . %
RSO INCROSORQUIL KK RKXIMRIMIIARIAS, - { (9l v e o AOODOON OO0 RN DUIN L LA S D IR AT AN OARNININAGNT A

S IR - Ce T Tmat R R U T TR T T R e I oy, R TS AR T RRARAR A RESE A U AN MY RERY LY

FIRMWARE APPROACH TO FAST LISP INTERPRETER 5

about three minutes to create a binary image of WCS, which is down loaded to WCS from the

front-end processor (FEP).

A mini-Lisp system is implemented on various FEP's such as PDP-11, VAX and NTT's DPE
and it provides primitives to access various hardware resources of ELIS such as WCS,
sequencer, Y-bus, and processor status word. Therefore, the loader and debugger of microcodes
are written in this mini-Lisp system. Since the user can inspect the status of ELIS
interactively via this mini-Lisp system, the productivity of the development of microcodes was
very high. The debugging tools was also being developed during the debugging of the
microcodes.

2.3. Language aspect of TAQ

TAO is a Lisp dialect and upward compatible with Common Lisp [10]. However, it is not a
simple Lisp dialect but a very powerful language. TAO supports various programming
paradigms within Lisp world; logic programming, object-oriented programming, Fortran/C-like
programming and concurrent programming. The logic programming is embedded in Lisp by
extending function types to support the primitives of logic programming; pattern matching
(unification) and choice function types. The object-oriented programming is embedded in Lisp
by extending eval. That is, Common Lisp signals an error for a form whose car is not a
function, while TAO treats it as a message passing form. For example, (1 + 3) is a message
passing form which expresses that a message + is sent to an object 1 with an argument 3. This
is an implicit message passing form whose car should be checked whether it is a function.
Explicit message passing form is represented by [1 + 3], whose meaning is the same as
(1 + 3). The factorial function can be defined as follows:

(defun fact (n
(if Sn =0

(n * (fact (n - 1)))))

In object-oriented programming, a factorial can be defined as a method for the class integer.
The program is

(defm::lflogsggt:ggs fact) ()

(self * [[self ~ 1] fact]]))

and [10 fact] calculates the value of factorial of 10. TAO provides a powerful set of
concurrent primitives and its operating system is implemented on these primitives. Therefore,
the TAO system supports multi-user/muiti-task environments and up-to eight users can login
the same ELIS at the same time.

In this paper, we will focus our attention only on Lisp programming and object-oriented
programming for the simplicity of discussion. The concept of logic programming and
concurrent programming in TAO will be discussed in [13].

3. Bottlenecks of interpreted execution

The execution of Lisp programs is divided into four categories, variable search, function call,
type checking and real computation. In each phase, speed up is needed to provide a fast
interpreter.

‘ - AN R ; ATAAS ORI AR AT AR A T ORI, T
S O 0 T el T e VW T 0T T e 8T, 000 Y 0, W) SO N AR T WGk

I i 2N i3 LAl gl M| S N

\'f‘
0}

Lad ML s Y

55202 a2 08 %1 a¥d &5 a3 ath a%k 253 a¥h 2’8 %0 ot p'h at8 at gt atd i pte ¢t

FIRMWARE APPROACH TO FAST LISP INTERPRETER

3.1. Variable search

Common Lisp has two kinds of variables; lexical (local) and special (non-local) variables. In
the factorial program, a variable n is a lexical variable. Since lexical variables can be looked
up statically, they can be accessed directly in compiled codes. However, it is one of the main
problems for interpreter to speed up the access of lexical variables.

Special variables are looked up dynamically in the context of computation. For example, a
built-in function, print, refers a special variable *print-pretty®*. Consider the following
program:

(defun ix)
(let ((*print-pratty* t))
(h x)))

def
(e(lllgt:(i"(;)wint.-pret.ty‘ nil))
b

)

(defun h (x)
ipr1nt “banner")
print x)) 3

The values of ®print-pretty® in executing the print are t for {1} and {3}, nil for {2}. The
value for {4} is decided on the context. Special variables may be implemented by shallow-
binding or deep-binding technique. In shallow-binding, the value of a special variable is
stored in the value cell of each variable. Thus, no search of special variables is needed in
shallow-binding. New context for special variables is established when entering a function
which contains the definition of special variables and old context is recovered when exiting the
function. In other words, an old value of special variables is saved and a new value is stored
in the value cell of special variables. In deep-binding, special variables and local variables are
stored in a function frame or on the stack and to access a variable, the function frame chain
or the stack is traversed. Therefore, shallow-binding provides faster variable lookup than
deep-binding. However, the former is more expensive under concurrent programming, because
process switch requires saving and restoring a context for special variatles.

The implementation of TAO on ELIS adopts deep binding for special variables. This is
because the cost of process switch is smaller in deep-binding implementation than in shallow-
binding implementation. Furthermore, debugging tools are easy to construct in deep-binding
implementation, because all information on context of computation is pushed on the stack in
the manner that their stored position is directly associated with the corresponding activation
frame. Therefore, for example, the backtrace function is quite easy to implement.

3.2. function call

Since Common Lisp provides a rich variety of lambda bindings such as optional arguments
with/without default values, rest arguments and keyword arguments, the function call is quite
heavy, especially for interpreter. Consider the following example:

(defun
foo (a b
&optional (¢ 30) d (e 123 exist-p)
&rest x
&key start (end 10)
&aux index (result 3))

An indicator of &optional indicates optional arguments and paired list specifies a default
value. &rest indicates arbitrary number of arguments and &key indicates keyword arguments,

g ¢

0 n . - A . N A
1’:"’:0" -.!".s“,.\".-ﬁ'):i’,“.',‘q"'. !’t‘!‘d"n"‘I‘?‘l.!‘l.'-‘t'. X O T AR COONON N RO R FOU DM W D TN u.l‘t'.!'n. A U S L o vty oW

PO L Lo et RN AR N AU IR U NS RN R R R A T T T 4 ah 2 g¥ WYY

0,

@
FIRMWARE APPROACH TO FAST LISP INTERPRETER 7 o
':‘:o'

s
&aux declares local variables. In some cases, the actual computation may be done while 'r:\'r
processing function call. Macro function also introduces overheads for interpreter, because o
macro form is expanded before its evaluation. n
oy
I" 3
3.3. type checking .a':::’
Since Lisp is one of the languages which has the richest data types, type checking is very n{h{'
important to provide the validation of computation. In addition, some data types are ver, '.':‘.u
complex and their manipulation functions are overloaded. For example, number type in W
Common Lisp contains rational, float and complex; rational contains integer (fixnum and
bignum - integer of infinite precision) and ratio, float contains short float, single-float, 'n";'a’
double-float, and long-float. A function + should work well for any type of numbers and any ';'::
combination of types. Therefore, number functions should dispatch an appropriate subfunction 0;:','.
to do the calculation. Since Common Lisp provides more than 20 data types, checking of .:‘,;.-
arguments is extensively performed to validate the correctness of the computation. 0
: @
Yy
3.4. real computation ‘?.:‘::
Actual computations of Lisp programns are data manipulations such as list handling, ‘,.;!,e
numerical computation, infinite precision computation, string manipulation and vector 0":0'
handling. In other words, almost all kinds of computations provided by other languages may sl.::
appear in Lisp programs. In the TAO/ELIS system, most of Common Lisp functions are <
mp}emented in microcodes to_speed up the execution. In addition, some functions which are ”
g:rmcal to thg qued of apphc_ations ;uch as a screen editor and networking programs are :i;e';
implemented in microcodes. Since this phase is a general problem for compiled codes and : :t"
interpreter, we will not discuss it any further here. .a:§:
b
b

4. Speedup techniques for Lisp interpreter o
W

lg"

4.1, Usage of Tag o
The implementation of TAO on the ELIS machine uses the tag in four ways. .;,:;3
U0

1. To represent data types and internal data types d
2, To speed up the interpreter and decrease the memory consumption .&‘ I

3. 10 make S-expression more readatle to human " 3
4. To realize new computation mechanisms such as message passing '::f
s,

The tag is used as a pointer tag not a self-descriptive flag in the TAO/ELIS system. That is, L
a pointer includes a tag which indicates the property of the data pointed by the pointer. o
Invisible pointer is originally introduced to implement logic programming, but is used {ﬁ_n
extensively to speed up the interpreter. Some data types and invisible pointers are listed in > v
Table 4-1. :
Checking data types is performed very efficiently in multiple branch of microcodes. If the C.;E\
data is given to the Y-bus at the previous irstruction, branch occurs after executing the current °®
instructions. In the microcode of car funciion shown in Appendix III, the branch instruction "\!;'
(br tag4-0 al) is performed by the Y-bus result yielded by the instruction labeled by a7. ol
However, it is neither possible nor practical to do 64-way, 33-way or 32-way branch in each :e:i:
function body to check data types because of limit of WCS. Therefore, data types are first ::n‘.g
encoded to smaller groups of data. Note that the overheads introduced by this subgrouping are \ "‘:
only one or two microinstructions, .
e
l“|§
Q.O"..
(YO
b,
O

o
0:2:

, W
" r - ~ . " ST PIPITIIRY S B o° U v g M M T LA » 4 LY N W) ']
LR N A T O A IR N XYL X6 b B A o e A Y A L A T A W AP A sty

WAIPULR WL T U . TR PRI A

s g Wy gNa aWg"

FIRMWARE APPROACH TO FAST LISP INTERPRETER

Table 4-1: Some data types and invisible pointers ¢

Data types or meaning
invisible pointers

r": nil nil and () are discriminated to 'f.
o give more readable form to human. ‘
B shortnum 24 bit integer

bignum integer of infinite precision ,
e ratio .ratio, eg., 2/3 ¢
! fioat floating-point number

. complex complex number
N id symbol
A keyid keyword symbol \
c': sysid special symbol _ . '
Y logic logical variable for logic programming

K] char character .
) str string

o fatstr string with font information !
R filstr string with fill pointer '
,:: vector vector]
) applobj function object !
K cell cell :
o+ namcell named cell, eg. table(i j k) for 170,

, but the same as (table i j k). .
Ty bra bracket I
N nambra named bracket, e.g., window[move 10 20] i
::} quoted quote, 'foo is output as 'foo,)
.'.v not (quote foo)

$ backq backquote macro expander I

eval comma in backquote or evaluation i

» before unification \
& icar invisible pointer to car of cell y
o (Cdr of cell is invisible)

h icdr invisible pointer to cdr of cell X
o (Car of cell is invisible) \
Vi splvar special variable or closed variable

evalvar preprocessed variable, a kind of icar

i evallogic preprocessed logical variable, a kind of icar

o evalinst preprocessed instance variable, a kind of icar]
) evaledr macro expanded form, a kind of icar o
;l| shadow preprocessed result for let, prog, a kind of icar \
o comment comment, comment is stored by A

using an invisible pointer, a kind of icdr

@

hy 3 o ; ' CA TR CCn T ny XA T O R PR
“t‘a‘-,fl’ven',,Q‘.fn‘."l’.,l!gfl'_gf“.,l.) @!t&'..‘.'.‘, S R i R R o‘!‘o IOUK O SOC Bh = BL) M S LA NG T

OISR IR IS T I sy atA s wit @l eVl oat o gtk e . R W) (RPN NN VR ik R b ok - I R S v g

FIRMWARE APPROACH TO FAST LISF INTERPRETER 9 4t

4.2. Variables in TAO o
The variables in TAO are classified into lexical variables, special variables, semi-global K]
variables and global variables. Semi-global variables are process-wide global, while global
variables are system-wide global. Semi-global variables are introduced to provide the same a8
mechanism as global variables to each process, because some variables in a process must be '.:.
stable against accidental process reset. For example, a variable, *history-obj®, which holds g
the top-level loop conversation history, is declared as a semi-global variable attached only to !.“3,
the user main process. ::‘:
The order of variable lookup is (1) lexical variables, (2) special variables, (3) semi-global -
variables, and (4) global variables. If the current environment is a message passing form, o
instance variables are checked before special variables. Access to an instance variable of an u
object will be discussed in the section of instance variables. }:',(
3
\l
4.2.1. Mechanism of variable search Q::'
Since TAO uses a single stack, function frames and values are pushed on the stack. A

function frame consists of chain pointers to access and control frames, function objects, %
arguments, and other information such as lexical scope limit and a flag which indicates]

whether special variables are contained or not. q:f
The value of a lexical variable is pushed on the stack as an element of a function frame, :':f
while its name is not pushed. The variable names are stored in the vector, called how-to-bind .'.'.'
vector which can be accessed via function object. To get the value of a lexical variable, the '
interpreter searches for the name in the how-to-bind vector to know the relative position of A
the variable in the frame. The interpreter repeats this lookup till it finds the variable or up to x4
the limit of lexical scoping frame. If the variable is found, its value is returned. If the o
variable is not found and is declared as special, special variables are sought. Otherwise, an :::‘
error is signalled. Special variables are pushed on the stack as a pair of variable name and 4
value with a special invisible tag, called splvar. Since a frame has a flag which indicates 0
whether special variables are contained in it, a frame without special variables are skipped and
all frames are not traversed in searching for a special variable. If no special variable is found 3
in the frame chain, semi-global variables are sought. If no semi-global variable is found, then 0
the value of global variable is returned. However, if the value is unbound, an error is e
signalled. Ky
If a variable is accessed in the body of a method, instance variables are sought before :'::
checking special variables. That is, the order of variable lookup in the body of a method is
(1) lexical variables, (2) instance variables, (3) special variables, (4) semi~global variables, and =
(5) global variables. ciz;'
l"f
4.2.2. Preprocess of lexical variables n
The lexical variables are preprocessed at the time of definition. That is, a lexical variable is .
converted to a pair of variable name and its variable position on the stack with a tag evalvar.
Variable position consists of fchain and offset. Fchain is a count for access frame chain and T
offset is a deviation from the target frame. This preprocess may be considered as a very W
simple compilation. Figure 4-1 shows a preprocessed form of the tarai function. In the ‘a:-
figure, {evalvar}(x. #x200) indicates that the position of a variable x in the stack is specified W
as fchain is 0 and offset is 2. N
]
4.2.3. Variable cache W
Variable cache is used for special variable, semi-globals and globals in order to speed up the .:-',
search of these non-local variables. Variable cache is attached to each process. When a new ‘,:c
function frame is created and if it contains special variables, the special variables are registered :'.‘.
to the variable cache. When exiting a function, entries corresponding to the special variables i
are cleared whether they hold exactly the special variable bindings or not. Cache entries for
semi-global and global variables are set only when they are accessed. Note that no anomaly ,
will occur even if there exist a special variable and a semi-global or global varible with the ™
name name declared in a program. The variable cache is stored in each process. To search nt

& AT S T I I L W S IRt Nt .Q"ﬂ.iM W00 .0?‘-0"' . ‘. % s"‘q'!’a'

R L T TR U LR N AR AN N K RV U UN TS [T U L U LA UG CEN B R LT OAN Y Y UNTUT O

i
FIRMWARE APPROACH TO FAST LISP INTERPRETER 10 ,,
I\
8
'
N
(defun tarai (x y z) X
(if $> x y) '
tarat (tarai (1- x) y 2z X
gtara'l 31- yi z xi »
taraf (1- z) x y)) K
y)) B
[N
is preprocessed and converted to a
(defun tarai (x y z) s
(it ievalvar%(x . #x200) K
evalvar}(y . #x300)) na
(tarai Vi
(tarai (1- {evalvar}(x . #x200)) W
ievalvari y . #x300) . -
evalvar éz . #x400)) ,
(tarafi (1- {evalvar}(y . #x300)) y
{evalvar (z . #x400) "
evalvar}(x . #x200)) e
(tarai (1- {evalvar}(z . #x400)) W
ievalvar (x . #x200) Y
evalvar}(y . #x300))) :)
{evalvar}(y . #x300))) -
o}
Note that #x200 reads 200 in hexadecimal. . ‘:'(
I\
(5
Figure 4-1: Preprocessing of lexical variables :S;
for a non-local variable, the interpreter checks the cache and return the vatue if found. If the !
cache entry is void or holds other variable binding, that is, cache doesn't hit, the frame chain X]
is traversed to search for the variable as described before. If the cache hits, the performance 4!
of this cache mechanism is quite similar to that of shallow-binding technique. Note that the A
variable cache is automatically write-through, because cache entries hold a binding cell tagged
with splvar. Note that the tag is used as a pointer tag, any data can be carried out to i
anywhere.)
TAO provides direct access methods to global and semi-global variables. (Value o
expression) and (sg-value expression) are used to access a global and semi-global Xy
variable directly, respectively. Semi-global variables are sought by a binary search. If global ::*
or semi-global variables are used as a means of communications between several functions, o,
value or sg-value will give a direct and fast access method to the user. b
)
4.2.4. Preprocess of Instance variables
Instance variables are not stored on the stack but in an instance vector. Instance vector is Y,
held as a value of a variable sel1f, which is a kind of lexical variable and pushed on the stack M
as the first argument. .
Since object-oriented system in TAO provides a hierarchical decomposition of data and '
programs, each class has only its own definitions of instance variables for data and methods " =
for programs. Each class has several superclasses whose instance variables and methods are X
inherited to it. :::
Each class has its all instance variables including the inherited ones from superclasses and, :.:
thus, the offset of the same instance variable in the instance vector may vary among classes, o
If inherited methods are copied to subclasses, the offset can be determined. This copying ;
technique is not adopted in the TAO/ELIS system by considering the tradeoff among memory ’ ,
waste and efficiency. Instead of copying, instance variables are preprocessed to point to self, R
not to themselves. This preprocess is the same as that of lexical variables, except the tag. "

: W G 3 7 X r . ! §
R v’?-a'i.s'i.f‘“-“l.'.:ﬂ’ ;'u’i,\'if\'&.;‘tfa’: IR IOOR0 MO .(;‘,&“\‘."a’hﬁ.\. QOO UER NN "g“.u‘{'t t'u."u’t‘s l’j.l.b L X NINTIAGH SO KIOCOCU R RN LY

RN R T N R R R R A R LT T R T I M O A R e T R N A T L T I YT SAUN RN ’ WS

FIRMWARE APPROACH TO FAST LISP INTERPRETER 11

L]
That is, an instance variable is converted to a pair of the variable name and the variable i,
position with a tag evalinst. After getting an instance vector, instance variable is sought by a g
simple linear hashing.

4.3. Function calls . i

4.3.1. Function invocation t
Symbols in TAO has one of four tags; sysid, id, keyid and logic (see Table 4-1). The latter

two tags are for speedup to check a keyword and logic variable, respectively. Symbols with A
sysid tag are microcoded primitive functions such as car, cdr, cons and so on. The entry A
address of sysid function in microcodes is the same address of a sysid symbol. That is, if the '
address of car is #143 (in octal) in memory, the entry address of microcodes of car is #143 :‘.
in WCS (see Appendix III). Furthermore, checking the number of arguments is embedded in)
the body. Therefore, to lookup a function definition is not needed to check the IV shows the J
control flow in evaluating (car ...). .

h Every function has a function definition table which contains information on arguments and o
: function body. Common Lisp provides various kinds of arguments of functions such as ;
obligatory, optional and rest arguments. However, if a function has only obligatory arguments, ¥
. it suffice to check only the number of arguments. Such a function is called expr-simple or 5
. subr-simple and its invocation is faster than expr (interpreted function) or subr (microcoded 4
function), because checking arguments in the former is much simpler.)

R

» 4.3.2, Special dispatch of built-in message O
: In TAO, primitive data types such as integer, list, or symbol, can be treated as a class. These ::
X classes have several built-in messages such as +, <. The method corresponding to these tuilt-in J
! message is invoked directly without searching the method ‘able. The key idea is quite similar !

to sysid functions. There are 14 reserved built-in messages; that is, +, =, ®, **, /,), <, =, D=, e
R =¢, /=, ., .. and belongs-~to for the moment. These built-in messages have a sysid tag and K
e the entry address of the corresponding method is calculated by adding the offset unique to the o8
N class to the address of a message symbol. Micro assembler and linker supports absolute 2
\ addressing as well as symbolic addressing for this purpose. it
[}

4.3.3. Fast lookup of message-method table :

s Object-oriented programming in TAO [9] is quite similar to the original FLAVOR system ':
! [15i. All methods defined to a class including inherited ones are registered in the message- B
2 method table associated to the class. The table is sorted by the address of message, and a)
method is sought by binary search. The microcode of binary search is shown in Appendix II. N
i The cost of method lookup is logyn usecond, where n is the total number of methods defined ‘
J in the class including inherited ones. ,.’
R 0
H ‘h
P (1
R 5. Evaluation of the TAO interpreter i
* ¢
)
: S.1. Benchmark results X
; The data shown in Table 5-1 except for TAO is an excerpt from [8]. Symbolics-3600 with "
Instruction Fetch Unit (IFU) and 8 Mbytes memory is used to compare the performance with i
! the TAO/ELIS system, because it is the fastest commercial Lisp machine. Symbolics-3600 hﬁ
, without IFU is about 30 ~ 40% slower that one with IFU. Roughly speaking, the interpreter of :;t
! the TAO/ELIS system runs much faster than that of Symbolic-3600 but we cannot say which _
is faster, the interpreter of the TAO/ELIS system or the compiler of Symbolics=3600. It -
: depends on benchmarks. 0

The definition of tarai-5 is shown in Fig. 4-1 with arguments 10, 5, 0. The tak is a

oy g v v, B8 R | - " _ ».
L s Y T L Y s T G e G R T I T e

YRS NN TA3E TR T R TR T A R] WA SR T o giaats pthogt ‘g Ry BN B BN XTURTY R N O AT O N AP O O O T LW L

FIRMWARE APPROACH TO FAST LISP INTERPRETER 12 "
X
B
Table 5-1: Benchmark results according to [8] o
)
N
benchmark TAO Symbolics W
interpreted interpreted! compiled? -
.v“"
Tarai-5 1.00 44.9 0.17 £
Tak-18-12-6 1.00 418 0.15 b
List-tarai-4 1.00 36.8 2.52 W
String-tarai-4 1.00 26.0 3.50 B
Bignum-tarai-4 1.00 40.8 2.48 =)
Flonum-tarai-4 1.00 30.3 0.26 "
Bit-A-6 1.00 214 0.69 o)
TPU-3 1.00 214 1.20
TPU-4 1.00 210 1.32 3,
Boyer 1.00 338 0.28 ':.
'i‘:
e
¢
1 Release 5.0 without Instruction Fetch Unit 2'::
2 Release 6.0 with Instruction Fetch Unit and scheduler off
v
Q(T
modified tarai, which is well-known in the American Lisp community. String-tarai, list- '
tarai, bignum-tarai, flonum-tarai is a modified tarai for various data types. For example, ':i
(defun l1ist-tarat (x y z) o
(it (< (car x) (car y)) b
Tist-tarat :.'
1ist-tarai (copy (cdr x)) y z ' KN
1ist-tarai (copy (cdr y}) z x N
)Hst-tarai copy (cdr 2)) x y)) oy
e,
is the definition of 11st-tarai and the the speed is measured by :i
Ud
he
(14st-tarai ‘(123 456 7 8 9 10) o
‘(6 6 789 10) .
'{9 10)))))
"
which is a variation of (tarat 8 4 0). These data shows that TAO provides efficient data ,:':3
type manipulations except for floating point operations. This is because 64-bit IEEE floating 0
point number is manipulated by microcodes. These operations will be implemented by :l.'
hardware in the future. The b1t produces all permutations of a list of length 6 by a mapping Wi
function. The TPU is a theorem prover by Unit resolution and its program size is about 400)
lines. The Boyer is a well-known benchmarks, but the size of program is smaller than that of , '
TPU and it uses property lists extensively. E:.
The process switching takes about 40 usec. Although logic programming is not discussed c::
here, the speed of logic programming in TAO is about 11.5 KLIPS. .’;;
U
ot
)
l'|
l.q
"
."'
"
.
o

)
4% ar, Bia dte af ks R R [AR LA ¥ B, A ' o0 (b iy
Vo bt ".-5:5:‘,"»'.'\ - ’:J‘é.‘ﬁ;‘f’a‘ﬁﬂs;‘ : “J'4‘\“‘«"‘1‘9&‘.’&’“&"’1 Aled .5‘!.;".4. ,c‘l.'-'t,u‘!_‘ .|~ q'la‘tg‘i.p' ,t".& 0,.' .t'ﬁ,o'l,‘ 3 _.\, _..Q,..I_‘ UM

FIRMWARE APPROACH TO FAST LISP INTERPRETER 13

5.2. Speedup of variable access

5.2.1. Lexical variables

Table 5-2: Execution time ratio between non-/preprocess

tak-18-12-6
preprocessed 1.00
no preprocess 1.62

The typical time to access a lexical variable is 1.7 usec, while the compiled code takes 0.6

psec. Table 5-2 shows that speed-up factor by preprocessing lexical variables to evalvar is 1.62
for the tak function.

5.2.2. Special variables

The programs shown in Fig. 5-1 proves that benefit of variable cache will be gained if the
same special variable is accessed more than twice, that is, for all 2 where n > 2. Of course, the
cost includes cleanup time to remove the entry of x from variable cache as well as setup time.
Note that Gabriel's stak [3] (tak function with special variables) runs slower with variable
cache than one without it, because every special variable is accessed only once. Since an expert
building tools called KRINE [6] uses many special variables, KRINE runs two to seven times

faster with variable cache. Its resulting speed is comparable to compiled codes of KRINE on
Symbolics-3600.

(defun f (x)
sggc;are (special x))

(defun g () x; x; ... x,)
where x,; is x.

Figure 5-1: Benchmark to evaluate variable cache
for special variables

5.2.3. Instance variables

Table 5-3 shows the speed to access some instance variables of an object which has 50
instance variables. Instance variables are accessed in two ways; as a name and by a message
passing. Consider the following object.

(defclass ship (g (x-pos y-posg)
:gettable :settable

(defmethod (ship distance) ()
(sqrt E{x-pos es 27 +
self y-pos] ** 2]]))

The class ship has two instance variables and these variables are accessed by its name. In the

RS e e e

]

L

" v o~ -
lae e o e e

el e e

K) L

A

R R A R R I A I A R IR K A XA N IR A AR A A A EN R M N KW N ENANERERNMAKN EX R o

FIRMWARE APPROACH TO FAST LISP INTERPRETER 14

distance method, the value of x-pas is accessed by its name, while the value of y-pos is
accessed by a message passing, [self y-pos]. The speedup factor by preprocessing is from
1.5 to 5.8 and 1.4 for a name access and a message passing, respectively. Name access for the
last instance variable in an instance vector is the most time consuming because the search is
linear from the first instance variable to the last one.

Table 5-3: Speed of instance variable access

Instance ELIS! ELIS? Symbolics TI/Explorer
variable interpreter compiled compiled
position
first 1.36 247 0.47 0.91

by MP3 1.94 2.32 2.53 5.87
last 1.36 9.23 0.45 0.94

by MP3 1.83 2.38 2.53 5.8

The unit time is microsecond.
1 Preprocessed 2 Not-preprocessed
3 MP = message passing

The CARE system [1] is an instrumented multiprocessor simulation system developed at
Knowledge Systems Laboratory, Stanford University. The CARE system is a large system (the
size of source codes is about 600K byte) implemented in object-oriented programming. That
is, it is written in ZetaLisp and Flavors system {15] and uses only a few special variables. We
ported the CARE to TAO (CommonLisp) with TAO's object-oriented system. The interpreted
codes of the CARE system runs on the TAO/ELIS system nearly as fast as the compiled codes
of the TI/EXPLORER with 8 Mbytes memory system.

$.3. Speedup of function invocations

5.3.1. Function invocation

Table 5-4 shows that the speedup by expr-simple function is about 1.12 for tak-18-12-6.
The tak function uses three arguments. The more the number of arguments of expr-simple is,
the faster a function is invoked.

Table 5-4: Execution time ratio for exper-simple

tak-18-12-6
expr-simple 1.00
expr 112

. i e v ’ Q Q GAOO0M
SUCUARNINGIRE \".ﬂ'f‘n"‘-.q"l,5"‘3*.\".&?!3'1.s”;'}‘*‘«"‘1",_0" v".‘ﬁ“.?“.t".t"n"d” ".0'\.]"»".' BEONI M"‘J“-O“.D":O‘l K I R R A LN

(omng—a—r

o

¢
O
)

e 6
9..1
FIRMWARE APPROACH TO FAST LISP INTERPRETER 15 ',:.;’
||'«
0
5.3.2. Method search . o
Table 5-5 shows that sending a built-in message is executed almost as fast as Lisp functions. ';:
Note that a bracket form such as [x + y] is treated as a message passing form without ' ’
checking a normal form, while a form (x + y) is first checked whether x is a function or b
not. This overhead for the latter is not negligible if the real computations is not small like + v:‘
or =, As a consequence, the user is not recommended to use a parenthesized form such as (x o
+ y) as an overloading means to a message passing, although this overloading is a new v
interpretation of Lisp forms proposed by the TAO/ELIS system., -
Table 5-5: Speed comparison between prefix notation ,,
and infix notation 4
(3
T
U]
form time form time :'.'s
§
t!‘
(+ x y) 12.92 (= x y) 11.74 >
(x +y) 18.10 (x = y) 18.17 s
[x +vy] 12.06 [x = y] 12.09 bt
Mo
unit: microsecond ;'i
:‘e
defun fib (n B
(i (& 2 i
N 39:
(+ (T1b (= n 1)) (£4b (- 0 2)))) 0
£
s
Figure 5-2: Lisp style Fibonacci function -
o
(defmethod (1integer f1b) () e
(if [self < 2] _ g
1 c9¢'
CCCself - 1] r1b] + K
[[self - 2] rib] 1))
UG
W
Figure 5-3: Object~oriented style Fibonacci function ng
(5, ¢,
Table 5-6 shows the results of Fibonacci function written in Lisp and object-oriented ﬁ:;-
programming (Fig.5-2 and Fig.5-3) and gives two conclusions. First, the method search is only W)
a 5% overhead to Lisp function call. Second, if the method is found in the worst case by .
binary search, the execution is slow down by 7% and 10% for 30 and 100 user-defined v::;
messages, respectively. Since the overhead is small, we can say that the merit of object- R
oriented programming is not be subsumed by the overhead of execution. In fact, many .s?'
applications are implemented in object-oriented programming in the TAO/ELIS system, ::.:
examples being an Emacs-like editor, TCP/IP and network application programs, operating byt
system. .
6. Discussion 0
The experience of implementing the TAO/ELIS system proves that a naive implementation o}ﬁ
of Lisp interpreter in firmware cannot provide high performance and that microcoded .
interpreter should incorporate many speedup techniques. With various techniques discussed in [
this paper such as data dispatch, variable search, function invocation, method search, the K
resulting TAO/ELIS system provides a very fast interpreter of which speed is comparable to o

the compiled codes of commercial Lisp machines. 3§§

O DA DR ON RO A0 C OO D SO O D R O O M D O DR ON

(AN U ISV UG PO UM BA N N ARARAS P AN CH A NN Y X YA TR TR L YT YT VN VO

FIRMWARE APPROACH TO FAST LISP INTERPRETER 16

Table 5-6: Speed comparison '

between Lisp and Object-Oriented programming :,
Lisp style time in psec ;;

i
(fib 19) 783 ' "
; (fib 22) 3,394 "
R (fib 25) 14,376 %
K '!
Object-oriented style size of method table g

1 30 100)

19 fib 795 853 880 R

22 fib 3,364 3,610 3,730 x

25 fib 14,246 15,294 15,800 N

These techniques presented in this paper can be applied to any (compiler-bases} deep~binding »
Lisp system as well as any Lisp interpreter. Much attention is recently paid to implementation \
- of Lisp by deep-binding mechanism, because parallel Lisp system forces such an
; implementation [2, 4]. In parallel or concurrent Lisp system, many processes are spawned and X
‘ process switching is critical to the performance. If the variable binding mechanism is
: implemented by deep-binding mechanism, process switch is very easy because all information :

on computations is stored in the stack. This is the criteria why the TAO/ELIS system adopts X
deep-binding mechanism. Although the TAO/ELIS system is a Lisp machine system, it works

as a multi-user system like Unix. M
The TAO/ELIS system proves that the high level approach to firmware development :‘3:
| environment is very important. That is, micro assembler and linker are written in TAO itself X

and micro loader and debugger are written in mini-Lisp system running on the FEP, As a o
consequence, any simulator, either hardware level or software level, was not used to design and ¥
develop the breadboard ELIS and the TAO interpreter. Note that the TAO/ELIS system has ,
no machine instructions as convensional machines. The system uses the bytecode interpreter to ¥
execute compiled codes, but most computations are executed by microcoded Lisp functions.

Byte codes manipulatss only function calling and exiting. If a set of machine instructions is 2{

fixed, it is very difficult to incorporate new functionalities to the system. As Lao-Tsu said o

. "The TAO named TAO is not the true TAO", the TAO/ELIS system is ever evolving. In fact, 0
the TAO/ELIS system supports object-oriented programming, logic programming, Fortran/C-)

like programming, concurrent programming and database management capabilities as well as R

Lisp. We believe that firmware approach gives this flexibility to language design. ::~’

The current status of the TAO/ELIS is that Japanese word processing system, window system, , .:'.

Emacs-like editor, network system, C programming environment (C is compiled to TAO) and :u',

other utilities are developed for the TAO/ELIS system. Even if the TAO/ELIS system is an W,

Interpreter-centered system, compiler is useful for memory economy and further speedup. The
development of compiler for Lisp and object-oriented programming is almost completed and

.]

that for logic programming is under development. :::‘

It will be an interesting research theme to use the ELIS machine to implement other high- 3::

level language such as Smalitalk, because the ELIS machine is not dedicated to Lisp but a Y

- general-purpose stack machine. In addition, powerful firmware developing environments are 3
. provided by the TAO/ELIS system. This approach will be in a striking contrast to RISC

)
approach.

R A A IR LIPS WL RS WL S W Y WAL MU MO YOI I I T L) WL LU OIS e T XS DX B TON R AR 1L LT

FIRMWARE APPROACH TO FAST LISP INTERPRETER 17 9

:.

Acknowledgments)

L

The authors thank Yasushi Hibino and Kazufumi Watanabe, NTT Human Interface

Laboratories, who designed ELIS and VLSI ELIS and made the prototype ELIS. They express g

thanks to their colleagues of NTT Software Labs for developing various application softwares !

and evaluating the TAO/ELIS system. They also express thanks to the members of NTT ,

Human Interface Labs, to design and develop VLSI ELIS. They thank Dr. Katsuji Tsukamoto :

for his continuous support to the NUE project. They also thank Prof. Edward Feigenbaum for ¥

giving two of them a chance to write this paper and to evaluate the TAO/ELIS system at -

. Knowledge Systems Lab, Stanford University. Computer facilities were partially provided by

: NIH grant RR-00785 to Sumex-Aim and by DARPA Contract F30602-85-C-0012, NASA "

i Ames Contract NCC 2-220-S1, and Boeing Contract W266875 to Advanced Architectures M

: Project at KSL. :«}

:t

)

z‘ 6:_

by,

<1 .x

i N

v

\

q

'i

‘l

.l

‘l

¥

. i

* .;

: ¢

X ¢

3 :

|]

| (]

"
!
)

i \]

X

: V]

.‘ ~l

] ,

: \

[‘r

: 3

2

\

'I

\J

3

U8 0 P Y, a0 O 0 e Ve g e U T T R e N T VT N T WA T e

P A PR DA L TN TSNS TUI VOO TN VO A PRI VAIE TAN TAJCICU P Yl T LI SR A TS TS WU WU U IPU WU WA P LT IR SPU TG WA MNP WY) *ty

FIRMWARE APPROACH TO FAST LISP INTERPRETER 18

References

- A WA e

1. Delagi, B.A., Saraiya, N.P,, Nishimura, S, and Byrd, G. An Instrumented Multiprocessor
Simulation System. Report KSL 86-35, Knowledge Systems Laboratory, Stanford University,
‘ Palo Alto, CA, January, 1987,

o

2. Gabriel, R.P. and McCarthy, J. Queue-based multiprocessor Lisp. Conference Record of
the 1984 ACM Symposium on Lisp and Functional Programming, ACM, Austin, Texas,

—

August, 1984,
3. Gabriel, R.P. Performance and Evaluation of LISP Systems. MIT Press, Cambridge, MA, :
1985. ;
¥
:
‘; 4. Halstead, R. MultiLisp. Conference Record of the 1984 ACM Symposium on Lisp and i
B Functional Programming, ACM, Austin, Texas, August, 1984. L

. 5. Hibino, Y., Watanabe, K., and Osato, N. The architecture of Lisp machine ELIS (in
\ Japanese). Report of WGSYM 24, TPSJ, June, 1983.

6. Ogawa, Y., Shima, K., Sugawara, T. and Takagi, S. Knowledge Representation and Inference
Environment: KRINE, --- An Approach to Integration of Frame, Prolog and Graphics.
Proceedings of the international conference on Fifth Generation Computer Systems (FGCS
‘84), ICOT, Tokyo, Japan, October, 1984, pp. 643-651.

- v -

*
t
7. Okuno, H.G., Takeuchi, I, Osato, N.,, Hibino, Y. and Watanabe, K. TAO : A Fast v
j Interpreter-Centered System on the Lisp Machine ELIS. Conference Record of the 1984 ACM :
: Symposium on Lisp and Functional Programming, ACM, Austin, Texas, August, 1984, pp. ;
140-149. :
5 8. Okuno, H.G. The Report of The Third Lisp Contest and The First Prolog Contest. Report i
: of WGSYM 33-4, IPSJ, September, 1985. v
3] : (X
9. Osato, N., Takeuchi, I. and Okuno, H.G. Object-Oriented Programming in TAO (in :f;
; Japanese). In Suzuki, N., Ed., Object-Oriented System, Kyoritsu Publishing Inc., Tokyo, Japan, :
1985.
'<
' 10. Steele, GL. COMMON LISP : The Language. Digital Press, Burlington Massachusetts, :‘
. 1984, X
B J
; 11. Takeuchi, I., Okuno, H.G. and Osato, N. "TAO - A harmonic mean of Lisp, Prolog and "
. Smalltalk.” SI/GPLAN Notices 18, 7 (July 1983).
; 12. Takeuchi, I, Okuno, H.G. and Osato, N. "A List Processing Language TAO with Multiple)
-‘ Programming Paradigm.” New Generation Computing 4, 4 (1986). ;':
X 13. Takeuchi, I, Okuno, H.G., Osato, N., Kamio, M. and Yamazaki K. A concurrent multi- A
h paradigm list processor TAO/ELIS. Proceedings of Fall Joint Computer Conference (FICC'87),
ACM & IEEE, Dallas, Texas, October, 1987. o appear o
Q)
14. Watanabe, K., Ishikawa, A., Yamada, Y. and Hibino, H. A 32b LISP Processor. Proc. of ‘§
TEEE International Solid-State Circuits Conference (ISSCC '87), IEEE, New York City, A
February, 1987, pp. 200-201, 394. .

B 15. Weinreb, D, Moon, D. and Stallman, RM. Lisp Machine Manual. LMI, 1983.

AN

Rty

> ‘!‘1* ‘("‘n‘\‘l"_‘k"' RN NI ’\" ’l'-‘i*\'l‘.'l"Q‘n.li|.Q.s.l’«.'¢‘~.l'u.“v“.r.l.u".l...l ¥y l'- I't.l‘n.l‘ul’.‘l’;,!‘n.l. I Y, ‘-"lv"i.“i-"' (N

R RIL
NEREE RN

.,::;
b
)
FIRMWARE APPROACH TO FAST LISP INTERPRETER 19 &
[\
A\
[] [[3 ‘.
I. Microinstruction Format bt
¢
<< Type I >> Memory Reference type “
N
1t
6 686 §5 54 44 33 33 2 2 "
3 10 32 09 43 87 21 21 0 w
D T s T - O O mmmmmm e ees I ":
0 ' | } 0
b|00 ALU Path| Y-D | A-S | B-S Memory | Sequencing '
u o
g I ’ l K
e nnt ST oo o= ittt e LS 1 .:t,
br
<< Type II >> SDC Control type X
6 68 §5 54 4 4 33 3313 2 2 -
; 3 10 32 09 43 87 210 21 0)
. [-4=-bmccmmeeaa L ST bm———- tm———- dopmmmm O T TP 1 W
D A N
k) L W
. b|o1 ALU Path| Y-D | A-S | B-S |U| sDC Sequencing]
3 c)
)) O T $om——- R $odrmmmmaca i ::"
3 3
; < Type III >> Immediate type 3‘:
; o
‘ 6 686 §5 54 44 33 33333 Y
3 1 0 32 09 43 87 43210 0 é
) o T SR O R — $omcmebopododmmcccacccacccaaccancceaa- I 4
0 E|A o
e AUX-{R|m]L o
b|10 ALY Path| Y-D | A-S |cont|T|i|U Immediate WY
u rol|s|t W
g c &
—$e—drmccccaaa LT ST tom——- B D T e L L T S Ry -

\ << Type IV >> Reserved for floating point operations

se8 lesend *88

ALU ¢ ALU carry control 7
Emit MSB of Immediate data "

BRSO D TRGN NOICN Yo O o A ORGP

FIRMWARE APPROACH TO FAST LISP INTERPRETER

20

II. Micro code of binary search for id-message

®e we wo 4 we wo we

%

binary search for id-message

r6 = the lowest position of the current table
r2 = the highest position of it

car0 = position to be examined

r0 = key

all relevant addresses are nilnuml

returns carl = corresponding method if not nil

{ltbins (+ r6 r2 car0) sra (bo car0 mdrl))
Ip - r2 r6))
- car0 1 r3)

br n (cont not-found)))

+ car0 1 r4)

2!cont g' cdrl r0))

br gel (big found small)))

(1found (and carl #17777777777 carl) rts)
§lbig §+ r6 r3 car0) sra (bo car0 mdrl))

mov r3 r2) (goto 1p))

ﬁ(small §+ r4 r2 car0) sra (bo car0 mdrl))

mov r4 r6) (goto 1p))

(Inot-found

RSDSOCOCAIGROO TN 8',)'!.,!‘., .’l‘.« ’QJ‘IJ’ J .‘. '.h,‘ln.‘lc.‘ N :"lu N IO

(mov #20000000000) rts)

“s as we we

.
*

AT YN R A

car0 = middle point

something remains?

r3 = next possible highest pos
yes/nothing remains.

compare key and contents

r4 = next possible lowest pos
bigger/found/smaller

raturn method without gcmark

bigger, get the middle point
update the highest position

smaller, get the middle point
update the lowest position

return a not-found code

. et R
%0 A% VAT TR

A A - I T IR g

- -

-

s
L)
'
*

!

R N L AR R P AR R N R T S T R P T I T TR TS

FIRMWARE APPROACH TO FAST LISP INTERPRETER 21 W
i

III. Microcode of the body of the car function ¢
4

f,

ﬁ.local *nil-car 4) ;i car-nil error flag b
.local :car t(sysid #143)) ; address of symbol car]
4

i entry point of car body -~ its argument is on sp 'ﬁ
4

(!lcar 2and <{sp>+ gmc carD) (boc car0 mdrl) i read car0 to mcrl h
br nhap (a8 a7))) ; check special condition v

; something-happened/*

I.;

; entry point of car -- its argument is on car0 H
N
(ftcar.s (mov car0) (boc car0 mdri) R
(br nhap (a8 a7))) : check special condition "

: something-happened/*]

(la7 mov carQd rpr))
br tagcadbl (a3 a4d))) . branch on cadbl data type i

H error?/ok 3
(las (mov 1 rpf) (br tag4-0 al)) ; cadble, invisible? é
i rpf 1 means rplaca assign X

(.case al cadr# N
inv-a (mov carl carog goto car.s ; invisible in car b
inv-d (mov cdrl car0) (goto car.s ; invisible in cdr)

t mov <sp>) (goto a2))) ; (carl . cdrl) is founded.]

i yield return addr on Y-bus o

(a2 (and carl gmc <sp>) return) : push return value and return "y
)

(1a3 and sysmode *nil-car) : car-nil error? &
br tagnil (a5 ag))) i is 1t ni117 no/yes A

(1a6 (cir rpf) (br z (a9 al0))) ; should be car-nil error ? ?.
: nil 1is not rplacable !

(1a10 (mov <sp>) (goto rtnnii')) ; not error, returns nil Al

1a9 cir r8))
1lael (mov :car r7))
mov :1llarg r1))
goto err))
1ad mov car0 r8) (goto ael))
11a8 mov carQ -<{sp>
mov car' -<{sp>

mov sbr) (be spover hap)g
tcar® (mov <sp>+ car0) (boc car0 mdrl)
goto a7))

]
Nreay vy e ; A F p N W W ~ Y ;
oA ‘~§0}3‘,h'l!o’i,t' AN B AR M AN BN "-0"5'. by ML X e o 0. !.-'. o A 24 -"‘n 3 n.l. > W, o"»‘nl -".'-'.‘-' b

car-nil 1is error)
errored fn is car N
set error message
:..
non-car-cdrable thing o
store back arg "
. (]
.u
stack overflow? W
resume car oreration 3
}
o
.{
)
]
o
Ve
)
)
3
b
0‘ ,
]
n
3
n‘:‘
(} H
1]
)
¢
)

b v e -

M NN T W W B LT I\

FIRMWARE APPROACH TO FAST LISP INTERPRETER

IV. Evaluation of a form (car ...)

Entry of Eval
: <sp> => form
; <{sp+1> => return address

!leval (and <sp>+ gmc car0) (boc car0 mdrl; (br
llev br tag5~0 eval-disp) (com sysmode)
!lev-nohook

(br tag5-0 eval-disp) (mov -1))
(.case l!leval-disp dtyp#

((1ist dnil keyid shortnum bignum ratio fioat codnum undef
bigfloat str char fatstr filstr complex shortflioat)

mov <sp>) (br y8 (hevconst evconst)))
((1ist sysid id)

and car0 gmc rl)

br y6 (hlispv lispv)))
((1ist cell namcell)

gmov car0 -<sp>)

br y6 (hform form)))
<)

> e

Analyze a form
({form (asrc carl) (aluh zerc) (ydes rpf) 24bw
boc cdrl mdr0))

(tform1 (br tagb-0 car-~form)
mov carl rl1))

{(.case car-form dtyp#
(sysid (and <sp> gmc r2) (br ybr 0))

((11st id logic keyid
+ carl 1 car0) (bo car0d mdr0)
goto idf))

Entry of car
2!# 43 zmov car <sp>))
mov cdrl) (goto sysi))

Arguments check

H arg sys subentry

; Upon entering, r2 = the form
(tlsysl (mov cdr0) (br tagh5-0 s0))

(.case sO dtyp#

we we we we

; branch on previous result &,

FUVORN U WV IR O : p ba'd gt VY XA LS N 2

?

W

i
22 "

!‘:

l"

O:Q

i,
o

»

M)

N

i

nhap (evi ev))) . N
check evalhook o
eval without hooking i
«

l’a

(3

W

W

U

R

rl = variable to be searched &

For the case of (car ..)

push form onto stack

clear rpf every time for form .v
et arg list in mdr0 e
?f1rst-arg . arg-tail) "W
dispatch car of form AN
r1l = car of form &
\
]
sysid, jump by its addr .,
r2 = the form v
gm clear for indicating that 6t
this sysid call is from eval O
¥
mdr0 <- (applobj . prop) &
)
W "
M
Symbol-car's address is #143 ,‘
car is a label of microcodes)
t'
]
e
0y
y
: 1 arg sysid subentry Ea

inv-a (mov car0 cdrlg 2bo cdrl mdr0) (goto sysil .

inv-d (mov cdr0 cdrl) (bo cdrl mdr0 zgoto syslg;

dnil (mov <sp)+2 (nua sel)) i no arg, r2 contains the form %

(11st cell namcell bra nambra quoted eval# backq assign usym %
selfass assignee))

(and car0 gmc car0) (boc car0 mdri)
(br tagcadbl (s2 s3))))

BUCR L M 14,0 i " F ; i
S S IR TN TR e EANNERAY N

; copy of eval head

T XA ? : L4,
LA LSOO A OOOC OV

is there excess arg? no/yes

) i
ORI r
At SR AN AL MO

R A R B T A LI LN LA L U A T U T R U LT LA U P I U L A U LR O R A R N R R L N R O N O X K L S s " .!]

T AT s
W
¢
&
"3’
.
iy
NN
e
iy
L
N

v ° v v .

.
.l‘ .‘r'v. ‘ N ' W
3 o'| W "l"’i ‘;"\' ':?(' "
\ . <'... l\'i'. "': ‘ :: "“" o “'. X |‘A .‘:3:.
R RN R

D0
n".o". 0.\ '» Xk 0': Wty .l. .‘l m‘& ":!!'M

- - w
™ OO0 "' 9, %! .’ U XA 0" %/
,mv;'t'.‘l'l:.l|‘ ‘l. ocla'l
BB .nt . o .‘
: ﬂn‘e) " e
N a.‘,‘t . g,'h ‘.i ! l|l.l
et " ‘s’ |' 'c‘ c‘ R
' 4'*- -, l’ «b “' o ’qﬁ‘

_‘ "

't" |'
.: ‘

!
' l
’ 4
-..;". OO

