
March 1986 Report No. STAN-CS-86- 1105
Also numbered CSL-86-294

Software-Controlled Caches

in the VMP Multiprocessor

by

David R. Chcriton

Gert A. Slavenburg

Patrick D.Boyle

Department of Computer Science

Stanford University
Stanford, CA 94305

Software-Controlled Caches

in the VMP Multiprocessor f

David R. Cheriton Gert A. Slavenburg Patrick D. Boyle

Stanford University Philips Research Stanford University

Abstract memory without significant performance degrada-
tion, rather than connecting a large number of proces-

VMP is an experimental multiprocessor that follows sors of more modest capabilities[14] or not providing
the familiar basic design of multiple processors, each shared memory[17]). By high-performance, we mean
with a cache, connected by a shared bus to global the 20-30 MIPS microprocessors of modest cost ex-

memory. Each processor has a synchronous, virtu- pected In the near future.

ally addressed, single master connection to its cache, This particular focus is motivated by three obser-
providing very high memory bandwidth. An unusu- vations. First, it appears to be much easier to pro-
ally large cache page size and fast sequential memory gram parallel applications for shared memory ma-
copy hardware make it feasible for cache misses to chines than for networked processors because man-
be handled in software, analogously to the handling agement of the shared program state is familiar and
of virtual memory page faults. Hardware support for direct. Second, initial experimentation[5,13] with
cache consistency 1s limited to a simple state machine parallel applications indicates that few, fast proces-
that monitors the bus and interrupts the processor sors are more effective than many slow processors,
when a cache consistency action 1s required. simply because most applications exhibit a low degree
In this paper, we show how the VMP design pro of parallelism. Finally, we are interested in medium
vides the high memory bandwidth required by mod- to high performance workstations with uniprocessor
ern high-performance processors with a minimum of or multiprocessor configurations. For these machines,
hardware complexity and cost. We also describe sim- the processor of choice 1s obviously the microproces-
ple solutions to the consistency problems associated sor of greatest performance within standard VLSI
with virtually addressed caches. Simulation results technology.

indicate that the design achieves good performance The performance of future processors will be lim-
providing data contention 1s hot CACCSSIVE. ited primarily by the memory bandwidth provided.

This work was sponsored in part by the National Current conventional processors, such as the Mo-
Science Foundation Grant DCR-33-32045 and by torola 68020, run at about 75 to 80 percent memory
Philip5 Research, Bell-Northern Research, ATT In- bandwidth utilization. Some RISC processors achieve

- formation Systems and NCR. much higher utilization. Thus, the primary design
problem for multiprocessor machines is providing suf-

i ficient memory bandwidth to a shared memory to

I Introduction accommodate multiple processors. This view argues
for per-processor caches with very efficient processor-

VMP is an experimental shared memory multiproces- cache coupling.

or being built at Stanford University. It follows the In the VMP design, each processor has a syn-amiliar model[4)o fmultiple processors connected by
a shared bus to global memory with per-processor chronous, virtually addressed, sing¢ master connec
caches to reduce bus traffic. tion to its cache, providing very high memory band-

width except on cache miss. An unusually large cache
Our research focuses on the problem of connect- : :

: page size and fast sequential memory copy hardware
ing multiple high-performance processors to a shared make it feasible for cache misses to be handled in soft-

" § A version of this paper will be presented at the 13th ware, analogously to the handling of virtual memory
Symposium on Computer Architecture in June 1986. page faults. Hardware support for cache consistency

Page 1

isfied at maximum speed because the processor is

Local the single master of the cache and it executes syn-
Cache chronously with respect to the cache, i.e. no arbi-

Memory tration is required and there is no virtual-tophysical
Isolator | address translation as part of a cache reference.

. | The processor 1s connected to some local memory in

Bus Monitor the same synchronous, single-master fashion. High-
(action table) der bits of the address discrimi local

order bits of the address discriminate ocal memory
P references from cache references so no significant de-

lay is introduced by having the two memories. Local

| memory 1s required for storing the code and data as-

' sociated with cache miss handling, ensuring there can

Figure 1: VMP Processor Board Organization be no cache miss in the cache miss handling software.
On cache miss, the cache controller signals a pro-

cessor exception interrupt (bus error) and generates

1s limited to a simple state machine that monitors a suggested cache slot? to use for the missing cache
the bus and interrupts the processor when a cache page.

consistency action is required. On exception interrupt, the processor saves its

We argue that these simple hardware resources, state on the supervisor stack in local memory and

operated under software control, provide memory traps to the cache miss handler routine, also stored

bandwidth for a very high-performance processor and in local memory. The processor writes out the cache

bring the power of the processor and the flexibility page if it has been modified. It then maps the vir-

of software management to bear on the cache man- tual address that generated the miss to the physical

agement (and virtual memory) problem. Simulation address for the associated cache page. Assuming the

results indicate that the design achieves good per- virtual memory page is present in the main memory,

formance providing data contention 1s not excessive. the processor instructs the block copier to copy the

We also describe simple solutions to the consistency required data from main memory into the cache, spec-
problems associated with virtually addressed caches. ifying the cache flags to be assigned to the cache slot

" The paper emphasizes the techniques rather than our if the copy succeeds. Concurrently with the copy op-

specific hard ware design. eration the processor updates its data structures de-

The next section describes the cache miss han- scribing the current cache contents, returns from the

dling mechanism. Section 3 describes our approach original exception and continues execution &8 soon as

to cache consistency, including consistency with re- the copy operation completes. If the copy operation

spect to virtual address translation. Section 4 de- fails (for instance because it 1s aborted by one of the
scribes additional details of the VMP design. Section bus monitors), the cache flags are left unchanged and

5 provides some indication of expected performance the processor traps again in retrying the instruction,

for VMP and raises some software issues with the de- causing it to try again. If the required data is not in

sign. Section 6 compares this design to some other main memory, the operating system page fault han-
representative multiprocessor designs. We close with dler is given control.

"a summary of the key points plus an indication of The virtual-to-physical mapping may be performed
future directions. in a variety of ways[9]. A two-level page table is the

scheme proposed for VMP. With page tables stored

in virtual memory, a cache miss may result in ad-

21 Cache Access and Cache ditional cache ios as the Drocessor references the
- Miss Handlin g page table. Each such miss results in the processor

stacking another level of exception state on the Ssu-

The processor is directly connected to a virtually pervisor stack contained in local memory. Some mini-
addressed cache, as depicted in Figure 1. That is, mum amount of page table information is maintained
the cache contents are addressed by virtual address, in local memory (or non-cached global memory) so
rather than by physical addresses.” Thus, in the ab- there is a small bounded depth to page table misses.

sence of a cache miss, the memory reference is sat- —A cache slot is the cache element holding & cache Page.

1 An address space identifier is included as part of the ad- The term cache pageis used the same as virtual page is used
dress presented to the cache so that the cache need not be for conventional virtual memory systems.A cache page frame
flushed on context switch. is a portion of main memory corresponding to one cache page.

Page 2

After handling the cache misses (if any) involved with virtual-to-physical address translation on cache miss

virtual address translation, the processor returns to and, 1f page tables are stored in virtual memory, has

handling the original cache miss. the possibility of incurring a real page fault as part

A cache miss can also occur when the processor of cache miss handling.
attempts to write data for which it has not secured The software implementation of cache miss han-

write access. In this case, it negotiates write permis- dling has the benefit of replacing rather complex

sion using the cache consistency protocol described in cache-control hardware with relatively simple hard-

Section 3. ware: local memory that holds the cache manage-

Cache miss handling by the processor is facilitated ment software. It also offers the flexibility to exper-

by the hardware providing fast data transfer. This iment with different techniques of virtual-to-physical

hardware exploits three main techniques for perfor- address translation and cache loading and replace-

mance: ment policies without hardware modification.
The major concern with software controlled caches

e Sequential Memory Access: Main memory is performance. We claim that, by choosing an un-
boards are optimized for fast sequential opera- conventionally large cache page size (and keeping the
non by using static column RAM chips (which number of cache slots and degree of associativity large
provide 60 nanosecond access to successive lo- enough), one reduces the cache miss rate so that the
cations). The first access to the memory board overhead of software cache management is not a prob-
takes 300 ms but each subsequent sequential ref- lem. The effect of cache page size on cache hit ratio
erence takes less than 100 ns. is discussed in Section 5.

: It remain r he problem of maintainine Scquential Bus Protocol: Bus protocols are t rema 'S to address the p oble of ma taining
So. Co cache consistency. Note that, with a virtually ad-

optimized for sequential access by issuing a sin- :
dressed cache, cache consistency is not strictly a mul-

gle address for a transfer and then simply strob- :
: tiprocessor issue. A single processor cache can be

ing the data words across, relying on the source : : :
oo. : . inconsistent with respect to itself if the same physical

and destination modules to automatically 1ncre- : :
Co. memory 1s mapped to two different virtual addresses

ment the source and destination addresses. This 14 both virtual add ted in the (si: : n ir r re represented in in-

1s provided by the VMEbus block transfer mode a OH VIftual dQeresses arc Tepresenie €
: : gle) cache.
in our prototype machine.

e Block Copier: A specialized block copy mech- .
anism 1s embedded in the cache controller that 3 Cache Con sistency
allows us to take advantage of the sequential
access on the VMEbus and memory board. It There are two cache consistency problems to solve:
also eliminates the instruction fetching overhead : :

Lo : 3 e cnsuring that all copies of a cache page are con-
which would arise if the processor did the copy. :

: : sistent across all processors, and
The block copier can operate concurrently with

the CPU executing out of local memory. e ensuring that the virtual-to-physical translation
The block copier significantly reduces the bus occu- implicit in the per-processor caches is consistent

. pancy for the transfers as well as the elapsed time. with that specified by the system page tables.
For example, the VMEbus-based VMP block copier We first describe the cache consistency protocol and
should transfer data at 40 megabytes per second, : oo. :
C LT then how this protocol is implemented with the aid

achieving 100 percent VMEbus utilization during the :: of the bus monitor.
transfer. In contrast, a simple copy loop using the

processor can achieve less than 5 megabytes per sec-

ond at best. The block copier allows some overlap 3.1 Cache Consistency Protocol
of the copy time with the bookkeeping performed by oo

the processor on cache miss Cache consistency 1s maintained by a variant of

Cache miss handling is more complicated with a the rec opens protocol described by
virtually addressed cache than with a physically ad- rank[11] and > man] J. Main Cp 15 vieweddressed cache. A virtually addressed cache requires as a sequence ol cac ¢page fames.” For consistency,

a cache page must be in one of two states:

3The elimination of instruction fetch is secondary in effect —_—
compared to the use of sequentid access, given that & copy ‘Our prototype allows for experimentation with cache page
loop fits in the processor’s on-chip instruction buffer. sizes of 128, 256, and 512 bytes.

Page 3

® shared - Main memory contains the most re- transaction, the physical address of the bus trans-
cently written value of the cache page. Several action and the contents of the bus monitor’s action

copies of the block may exist elsewhere, all of table. The bus monitor’s action table contains a two-

them being identical to that in main memory. bit entry per physical cache page frame® (of main
: : : memory) indicating:

® private - Some cache ¢ contains the only copy of y) 8
the page. In this case, cache s is said to own this e 00 - do nothing
cache page.

The processors use an extended form of read and ¢ 01 - Interrupt local processor on read-private,
write bus transactions that specify if ownership is be- assert-ownership (ignore read-shared or notify)
ing requested or released. It is up to each processor : :
& Iq p p e 10 - abort bus transaction and interrupt local

to observe and respond to bus transactions so as to :
Co processor on any consistency-related bus trans-

ensure each page of memory is in one of the two legal : : :
actions (including read-shared)

states.

There are six types of bus transactions associated ® 11 - interrupt processor on a notification trans-
with bus monitor operation (plus the normal ones action.

which are not, those used by DMA devices and CPUs
to access device registers). A processor issues one The main function of the bus monitor is to enforce
of these six types of bus transactions, depending on cache consistency, however the action table code 10

the reason for the bus transaction (the first five are can be used to “protect” a page (prevent its modifi-

consisiency-related bus transactions): cation or a change in its state), and entry 11 can be
: : used for notification (see 5.4).

® rcad-shared - to acquire a non-exclusive or : () : : :
The action table of the bus monitor associated with

shared copy of a cache page.
a particular CPU is normally updated as a side effect

® rcad-private -to acquire an exclusive copy of a of (and concurrently with) a consistency-related bus

cache page. The processor issues this bus trans- transaction issued by that CPU. Thus, in the com-

action when it incurs a cache miss on a write to mon cases, checking and updating the action table
an address within that cache page but has no over the bus does not entail additional bus occupancy.

copy of that cache page. The action table can also be updated by the CPU us-

: : : : ing the write action fable bus transaction. Update
® assert-ownership - to gain exclusive ownership :

: C. : as part of a consistency-related bus transaction only
of a cache page without reading it from main : oo .

: takes place if the bus transaction is not aborted. The
memory. It presumably acquired a shared copy : : : :

: consistency check interval and action table update in-
of the cache page earlier using a read-shared :
operation terval, each of 150 nanoseconds, are overlapped with
p the block transfer, as shown in Figure 2. On abort,

e write-back - to write the cache page back to the bus transaction is terminated at the end of the
main memory, releasing ownership of the page. current memory reference. The assertownership bus

¢ q Fr q transaction is a degenerate form of this behavior since
° ho : a p o notification to a processor (de- it does not involve block transfer. Updating the ac-. scribed 1m 34) tion table as part of bus transactions minimizes bus
e write action table - to write an entry in the overhead for action table management and avoids the

action table (described below). cost of a dual-ported action table, the other solution.
Note that completion of a few transfers during the

To allow the processor to execute concurrently with : :
consistency check does not compromise the correct-

bus transactions, we provide a simple state machine : : :
ness of main memory because write-back 1s the only

called a bus monitor that monitors the bus and inter-

rupts the processor when either consistency actions (does not share the cache tag matching hardware, the cache
are required or notification is signalled. flags, or even have a copy of the flags) and thus does not re-

duce the cpu/cache bandwidth. It can operate at the leisurely
pace of our relatively long bus transactions rather than at the

3.2 Per-Processor Bus Monitor memory reference speeds required when using small cache page
sizes.

The bus monitor’ performs one of four actions on ® Allowing a maximum of 8 megabytes of physical memory
each bus transaction depending on the type of bus for the prototype with 128 (256, 512) byte pages, each bus

monitor has 16 (8, 4) kilobytes of memory for its action table.
“The main difference between our bus monitor and a A larger physical memory would require additional memory for

snoop is that the bus monitor is not connectedto the cache the action table.

Page 4

block transfer / a read-private or assert-ownership bus transaction,
the processor invalidates the cache slots holding this

ZINNNY EERE A time cache page and sets the k-th action table entry to 00.

® ¥~_ction table update Consequently, when a cache page becomes private,
consistency check all other cached copies of the page are discarded in

acquire bus parallel. | |
request bus Private Copy: The k-th action table entry is set

to 10 causing the bus monitor to abort the bus trans-

action and interrupt the processor on all consistency-

Figure 2: Action Table Update in a Bus Transaction related bus transactions on this page (including write-

back operations which are protocol violations). On

mterrupt, the processor writes out the cache page (if

bus transaction that modifies main memory. Write- dirty). If the bus transaction was read-private (or
backs are only issued if a cache is releasing a privately assert-ownership), it invalidates the cache page and
held page and so are never aborted (unless there has sets the action table entry to 00. If not, it “down-
been a consistency protocol violation). grades” the cache page to read-only and changes the
The bus monitor is connected to the processor by action table entry to 01 (shared). The processor is-

a non-ma&able interrupt and a FIFO queue of in- suing the bus transaction detects that the bus trans-
terrupt requests. Each time a bus transaction occurs action was aborted and retries the bus transaction.

that should interrupt the processor, a word is queued This scheme also solves the alias consistency prob-
in the FIFO for the processor. The word specifies the lem that arises with a physical cache page mapped
type of bus transaction and the physical address asso- to two or more different virtual addresses. Each pro-
ciated with the bus transaction. The FIFO provides cessor observes the consistency protocol “competing
a maximum of 128 entries, minimizing the likelihood against itself”. Thus, for instance, should a processor
of an interrupt word being lost. However, the FIFO issue a read-shared for a cache page its cache already
also sets a flag for the processor when an interrupt owns (referenced by a different virtual address), its
word is dropped because the FIFO is full. own bus monitor will abort the bus transaction and

The bus monitor is a fairly general-purpose hard- interrupt that CPU. In response to the interrupt, the
ware resource available to each processor. We plan CPU flushes (or writes back) the owned page. The
to explore its use in a variety of settings. However, read-shared bus transaction is then retried. :
its primary use 1s for ensuring cache consistency, as Using this protocol, a request for a shared copy of
described in the next two subsections. a shared cache page is satisfied immediately. A re-

quest for a shared copy of a private cache page fails

3.3 Cache Page Consistency but causes the owner to relinquish ownership, allow-
ing the requestor to succeed on retry. A request for a

Each processor sets the action table of its bus moni- private copy of a shared cache page succeeds imme-
tor according to the cache pages its cache holds and diately but causes all cache copies of the cache page
acts on bus monitor interrupts so as to enforce this to be discarded. A request for a private copy of a
2-state consistency of cache pages. There are three private cache page fails but causes the owner to re-

. cases to consider for each cache page frame k in phys- linquish ownership.
ical memory, corresponding to there being no copy, Each processor is trusted to set its bus monitor ac-

a shared copy or a private copy of the page in the tion table appropriately for the cache pages it holds

processor’s cache. and to act on interrupts from the bus monitor accord-

No Copy: The action table entry for cache page ing to this protocol. Information about the state of
k is 00, indicating that the bus monitor can ignore all each cache page and the mapping from physical ad-
bus transactions on this cache page. dress to cache page 1s maintained by the processor in

Shared Copy: The k-th action table entry is set the local memory.
to 01 causing the bus monitor to ignore read-shared The consistency scheme is deadlock-free because
transactions, and interrupt on read-private or assert- ownership of cache pages can be preempted (no bloc k-
ownership bus transactions. Write-back operations ing) and a processor is guaranteed to make at least
are protocol violations and result in an abort and one successful reference to a newly acquired page be-
interrupt. Note that, due to virtual memory aliasing, fore that page is flushed from the cache (non-zero

the cache may contain (shared) multiple copies of this progress). One worst case example is that of two pro-
cache page in different cache slots. On interrupt from cessors simultaneously attempting to acquire a Ppri-

Page 5

vate copy of a cache page. In this case, the first by a bus monitor. Once the DMA transfer completes,

processor to acquire the bus gets the page, then the the processor can release its lock on this area of mem-
second issues the read-private resulting in an inter- ory at the operating system level and clear the corre-
rupt to the first processor by the first’s bus monitor sponding entries in the bus monitor’s action table.

leading to subsequent flushing of the page from the

first processor’s cache, and so on. However, inter-

rupts are only serviced between instructions and the .
CPU blocks on the cache controller mid-instruction 3.4 Virtual Address Translation Con-

while awaiting the completion of the block transfer. sistency
Thus, the first processor makes at least one success-

ful reference so the contention results in performance A virtually addressed cache implicitly stores a por-
degradation but not deadlock. tion of the virtual-to-physical address mapping spec-

Correctness of consistency maintenance is rendered ified in the operating system page tables. To ensure

independent of the processor’s ability to keep up with consistency, this implicit mapping must be updated

bus monitor interrupts as follows. The interrupt when the page tables change. This problem of vir-

FIFO includes a flag that indicates that an interrupt tual address translation consistency is handled in a

word was dropped (which only occurs if the processor straight-forward fashion in our design, as described

1s unable to keep up with the bus monitor interrupt below.

rate). When this flag is set, the processor recovers by The operating system and cache management soft-
invalidating (or rereading) shared cache entries from ware ensure that every valid cache slot corresponds

main memory ne updatingits bus monitor action to some portion of a virtual memory page currentlytable. Note that 08s of the Interrupt word for a bus in main memory. To change the mapping of virtual
fransaction requesting ownership of cache page owned page Up which currently maps to physical page pp,
by this processor is not a problem since the bus trans- the processor first issues a read-private for the cache
action 1s aborted by the bus monitor and then retried page pt corresponding to the page table entry for
by the requesting processor until successful. up. If the page table is in virtual memory, obtaining
Dropping an interrupt word in the bus monitor exclusive ownership of pt may entail page faults as

FIFO is extremely unlikely for several reasons. First, well. The processor then issues an assert-ownership
" the FIFO queue provides considerable buffer space on page pp, causing all cached copies to be flushed
giving the processor time to handle bursts of con- or written back, depending on whether the copy is
sistency actions. Second, the only operations that shared or private. This flushes the implicit mappings
leave the processor unresponsive to these interrupts for this virtual page in all other processor caches. The
for a significant time are its block transfers. Dur- processor then updates the page table entry and re-
ing the transfer the bus is fully consumed so other linquishes ownership of the two cache pages. Note
bus transactions cannot occur, limiting the rate of that cache page pp need not be read into the cache of
accumulation of interrupt words. Finally, the rate of the processor performing this mapping operation.

interrupt word generation 1s no worse than the rate of Deletion of an address space can be handled simi-
cache misses, which 1s assumed to be reasonably low.

larly with an assert-ownership on every resident page
(Of course, there is no problem with the bus monitor :

.)) in the address space.
keeping up with the rate of bus transactions.) oo

The flexibility of the bus monitor allows VME- A similar techniquecan be used to keep page ta-
: ble reference information consistent with cache page

standard DMA devices to be used in the system. To
references in the cache. The page-out daemon can

set up a DMA into a particular area of memory, the a. :
: : : periodically use assert-ownership to flush cache pages

operating system code acquires a high-level lock on :
oo chosen as candidates for reclamation out of all caches.

that area of memory so that it 1s not accessed by
The processors then update the page table reference

other processors. The cache management software
: information if they subsequently refer to these cache

then does an assert-ownership bus transaction on this es
area of memory, forcing every other processor to dis- pages.
card any cached copies of this memory or write back The software implementation of address translation
the private copy, if any. It then sets the bus moni- in combination with the bus monitor and local mem-
tor to abort any consistency-related bus transactions ory allows considerable latitude in handling virtual
addressing this area (which should not occur in any address translation consistency. We have sketched a
case). Since DMA operations have no associated con- basic scheme permitting the storage of page tables in
sistency operation the DMA completes without abort either physical memory or virtual memory.

Page 6

4 Details of VMP virtual memory require supervisor privilege.”
Virtual addresses are mapped into the 4-way set as-

This section provides some details of VMP, the multi- sociative cache. The cache page replacement strategy
processor machine we are building to investigate the is LRU, with the replacement slot “suggested” by the
performance of the cache design described in the pre- hardware based on references. For each cache slot,
vious sec tions. flags are maintained that indicate: valid, modified,
The system consists of the following major compo- exclusive-ownership, supervisor writable, user read-

nents: able and user writable. Because the cache matches
e A shared central bus (VMEbus) that is used on <ASID, VirtAddress>, the operating system sim-

for all communication between processing nodes, ply changes the ASID to specify the new address
memory and I/O devices. space on each context switch.

The cache in the prototype is configurable for a

* A central memory connected to the bus. The choice of 128,256 or rr oh cache ages to allow us
memory 1s optimized to do the transfer of cache to experiment with a variety of cache page sizes. The
pages at 40 MBytes/Second. number of sets is variable from 1 to 4, and number of

e I/O units which adhere to the standard VME pages per set is variable from 16 to 256. In addition

protocol and can be obtained from external sup- to experimenting with different hardware configura-
pliers. Expected I/O units include an Ethernet tions, we are interested in investigating the benefit
interface and a framebuffer. of software techniques that improve the utilization of

large cache blocks.
e Several VMP processor boards.

Each VMP processor board consists of a 68020

CPU running at maximum speed (currently 60 5 Expected Performance
nanosecond cycle, 180 nanosecond memory cycle)

coupled to a 68881 FPU (Floating Point Coproces- We are building a prototype of the VMP design that
sor), local RAM (32 KBytes), a 4-way set associative 1s highly instrumented in order to measure perfor-
256 KByte cache that responds to virtual addresses, mance and investigate the effects of different cache
a bus monitor (with associated action table), and lo- page sizes, cache sizes, associativity, modifications to |

. cal devices (UART, timer). The CPU, FPU, local the cache management software, and various software |
RAM, local devices and bus monitor are connected techniques for improving locality and reducing con-
to a private onboard bus which may be connected tention. This machine is an initial prototype for the
to the VME interface through the bus isolator. The VMP design since the choices of processor (68020
bus isolator permits concurrent execution of the CPU over a RISC-style processor), bus (VMEbus over a
accessing local memory with transfers between the much higher-speed bus) and memory boards (com-
cache and VME memory. Note the absence of compo- mercial sequential-access VME memory over high
nents found in other systems: memory management performance boards) make a significant concession to
unit, translation lookaside buffer and reverse transla- budget and fast construction over ideal performance.
tion butter: oo The prototype will allow us to evaluate the expected
The basic VMP processor board organization is performance of this design since, as pointed out by oo

- shown in Figure 1. The memory space seen by the Clark[8], trace-driven simulation is frequently a poor |
CPU is divided into 5 regions. The lowest addressed indication of real performance. However, since our
region (227 bytes or 128 MBytes) maps straight- prototype is not yet operational, we provide some ex-
through to VME address space and 18 used to access pected performance figures based on: simulation, in-
device registers and execute boot ROM code. The struction counts for the key software cache manage-
next region (128 MB) is set aside for local accesses ment routines, and timings for hardware components.
(local memory, ASID register, bus monitor FIFO, and In the VMP design, the performance of a processor
other local devices). The third region (128 MB) ad- is degraded by three ’ Factors:
dresses cache control. The fourth region (128 MB)

addresses kernel virtual address space. The last re- e Cache Misses - some proportion of the result-
gion (3.5 Gigabytes) 1s the user virtual address space, ing bus transactions arc cesO retried when an
which 1s extended by an 8 bit Address Space Identi- ownership conflict arises on the data
fier ASID.? Accesses to regions other than the user

This is similar in function to the context register in the 8 This organization allows the kernel space to be part of each
SUN workstation architecture. user virtual space.

Page 7

Cache Page Replaced Elapsed Bus Cache Page | Elapsed Time | Bus Time
Size Page The The Size (bytes) (psecs)

(bytes) State (psecs) |(psecs) 128 17 4.4
128 | not modified 17 3.5

256 | not modified 20 6.6 AUBIN 09 8316. |

512 | not modified 26 13.0

128 modified 17 7.0
256 modified 73 13.2 Table 2: Average Cache Miss Cost
512 modified 36 26.0

® 100-2
® N

Table 1: Elapsed Time and Bus Time per Cache Miss £ 80 ON

; 80
e Consistency Interrupts - both for cache data 5 70 i roof

as well as page table updates, 60 128

e Bus Load - which affects the time for the above & 50 . 296
two operations. 512

0 025 05 075 1.0
In this discussion, we first estimate processor perfor- Miss Ratio (%)
mance 88 a function of the cache miss ratio for differ-

ent cache page sizes, assuming no consistency inter- Figure 3: Processor Performance to Cache Miss Ratio
rupts and no bus contention. We then use simulation

results (cache miss ratios) to determine the ranges

for the cache parameters which will give the desired assume a mix of different cache miss scenarios with 75
processor performance. Finally, we calculate bus uti- percent of the replaced pages being unmodified then
lization per processor as a function of the miss ratio the average cache miss cost 1s given in Table 2.
to estimate the number of processors that one can Figure 3 plots the processor performance as a func-

* feasibly configure without significant bus contention. tion of the miss ratio, assuming the average cache
Consistency interrupts introduce the same overheads miss cost is incurred on each miss, with data for cache
as cache misses (and possibly increase the miss ratio page sizes of 128, 256 and 512 bytes. The processor
by flushing cache entries). Thus, consistency over- performance is normalized so that processor perfor-
head can be incorporated in these performance esti- mance with no cache misses is 1.°
mates by hypothesizing a higher miss ratio than that Note that the miss ratio is a function of the cache
suggested by the simulations. page size so it is inappropriate to use this graph to

compare the benefits of different cache page sizes.

51 Cache Miss Time Next we determine the characteristics of the cache
that are required to achieve a sufficiently low miss

The elapsed times for a cache miss (assuming no bus rate, given the large cache page sizes, to realize rea-
* contention and no bus transaction abort) are given sonable processor performance.
in Table 1. These times assume a 16 MHz 68020

running with 0 wait state access to cache memory 597 Cache Miss Ratio and Processor
plus a block copier and memory that perform block

transfers in 300 nanoseconds for the first long word Performance
(32-bits) and 100 nanoseconds for each subsequent The ranges of the variable hardware parameters of
long word. These times were calculated by summing the VMP prototype (cache size from 64K to 256K
struction execution times for the cache miss handler bytes, page size of 128, 256 or 512 bytes) were estab-
and the time to update the cache (one block transfer lished using four VAX 8200 traces obtained by the
if the page to be replaced was not modified, two block ATUM techniquef2]). These traces include VMS op-
transfers if it was modified). Block transfer time is —_—

overlapped with the CPU processing where possible. "per jofmance = (1 + MissRatio T
Clearly, the software time associated with miss Average MissCoste Re fsPerInstrs InstrEzecutionRate)™: ’ co From MacGregor(16]: RefsPerInstr=1.2 and

handling (about 15 pisecs) means that there is lim- InstrEzecutionRate = (7clocks/instn » 60nsecs/clock)™? =
ited benefit using in a smaller cache page size. If we 2.4 MIPS

Page 8

-— Page Size
14 Page Size 2 30 (bytes)

FT 12 Sovtes) 5 512~

2 128 © 2
eg 10 5 20

2 os- i WH g ose
0.6—

8 10 : S512
04 Oo Oo 3

8 0 .
0.2 8 0
0.0 0 0.25 0.5 0.75 1.0

2 64 128 256 Miss Ratio (%)
Cache Size (KBytes)

Figure 4: Cache Miss Ratio and Cache Size Figure 5: Bus Utilization to Cache Miss Ratio

byte cache page size, with a miss ratio under 0.6%,
erating system references and a small degree of mul- the bus utilization by a single processor is under 10%.
tiprogramming. The trace lengths vary from 358,000 Using a simple single-server (the bus) multiple-client
to 540,000 four-byte references. (several processors, ignoring DMA I/O devices) queu-
The cold-start simulation results of a 4-way set as- ing model, and observing the request service times,

sociative cache for various cache sizes and cache page we estimate that one can accommodate up to 5 pro-
sizes are summarized in Figure 4. These low miss cessors on a single bus. Additional processors can
ratios contrast with most cache measurements pub- be expected to degrade individual processor perfor-
lished to date. However, with the parameters of our mance by increasing bus contention as well as possi-
cache, it is better compared to a 4-way set associa- bly increasing the miss ratio because of consistency
tive translation lookaside buffer with 512,256 or 128 contention.

. sets of 4 entries (with 128, 256 or 512 byte cache

page sizes) except that the cache also has the ass+ 5.4 Consistency Overhead and Sys-
ciated data. Smith[19] indicates that .4% miss ratio (Softhas been observed in TLB’s with 128 sets of 2. cm Soltwdre

In these traces operating system references account The effect of consistency interrupts can be incorpo-
for approximately 25% of the references and 50% of rated into the above figures by assuming a higher miss

the misses, and the application programs employ no ratio. The rate of consistency interrupts and its ef-
special locality enhancing techniques. We anticipate fect on the cache miss ratio are unknown and highly

that application of appropriate software techniques dependent on the programming of the system and the
could lead to even lower miss ratios. cache page size. For instance, the straightforward use

Applying these results, for example, using a 256 of test-and-set locks on the same cache pages as the
* : : : data being modified could result in enormous con-
byte cache page size and 128 kilobyte total cache size, y

: : oo sistency overhead. Thus, this design requires “good
one would expect a miss ratio of 0.24 giving processor a. Co

: : behavior” from the software it is executing to realize
performance of 87% according to Figure 3.

its performance, just as the performance of virtual

memory systems 1s highly dependent on program be-

havior. We are developing software support at the
‘qe : operating system and programming system level that

5.3 Bus Utilization and Number of OP & 5 Progr & system

p 1s tuned for the VMP design. In this vein, we are
TOCESS0LS interested in exploring how far the software support

can go to ensure good behavior, as opposed to how
Each cache miss results in bus traffic. Table 2 pro- -

vides the bus cost for the “average” cache miss. Fig- '® bus utilization is the bus use time during the exe-
ure 5 shows bus utilization as a function of the cache cution of N instructions divided by the execution me

. (including miss handling) of JV instructions. Utd =

miss ratio for the three cache page sizes, using this (MissRatio « BusTimePerMiss)/((InstrEzecutionRate =
average bus cost per miss.}® For example, for a 256 RejsPerInstr)=! + MissR to « MissService ElapsedTime)

Page 9

well the hardware can deal with bad behavior. ensure consistency. This relies on using a language

For operating system support, we are porting the V that includes explicit constructs for accessing shared

kernel[6] to VMP and adding kernel-supported lock- data, such as the monitor construct[15], and all data
ing and queuing primitives. These primitives can be sharing being properly controlled by these constructs.
implemented either using the notification facility of- Except for instructions which selectively flush cache
fered by the bus monitor, or by using non-cached, entries, this scheme requires no hardware support
globally-addressable physical memory. A process re- for consistency. However, the MIPS-X scheme must
questing the lock accesses the lock as part of a kernel flush all shared data in anticipation of shared access

operation and suspends for a timeout period if the whereas the VMP scheme only flushes on demand. It
lock is taken. As an additional optimization, the pro remains to be seen which is most expensive and how
cessor can set the action table entry associated with application-sensitive the behavior is.

this memory to 11 (notify) so it can wake up the pro- The performance
cess to retry when the lock is cleared. As another of cache memories for single processor machines has

operating system support mechanism, we are plan- been studied extensively[12,19,18]). Much of this work
ning to allow the application to specify whether an studies much smaller cache page sizes, so the results

area of virtual memory 1s going to be shared or not. have limited application. However, as mentioned pre-

If not, a read cache miss to this area is handled by a viously, our expected performance is consistent with
read-private bus transaction, eliminating the need to that expected and observed with TLB’s of compara-
later do an assert-ownership on the first write oper- ble size.

ation. Since the data 1s not shared, this should not There has also been interest in cache consistency
conflict with other processors and may in fact serve protocols for multiprocessor machines11,12,18,10,3].
to flush this data from the cache of another proces- The cache consistency algorithm we describe is ba-
sor that was previously running this process. It is sically the ownership protocol used in the Synapse
interesting to note that the bus monitor can also be multiprocessor[11]. The alternative to an owner-
used to implement interprocessor messages: the bus ship protocol is to use a write-broadcast protocol,
monitor would interrupt the processor when a mes- as used with the snoopy cache schemes.[10] With a
sage is written to the cache page corresponding to its write-broadcast protocol, the system bus acts as a
mailbox. Other specialized uses are also possible, an sequencer, imposing a total ordering on memory up

. example being notification locks. dates consistent with that observed by each proces-
To realize the maximum performance offered by sor. However, a write-broadcast scheme requires a

VMP, programming systems need to recognize the data path from the bus to the cache that can up
importance of clustering related data on cache pages date the cache as required at near memory-reference
and compiling code and data for high cache page speed. (Replicating or dual-porting the cache flags

utilization. These demands on software technol- can reduce the contention at some cost in hardware.)

ogy are significant but are also a common theme It also requires a write-broadcast on every update
in previous efforts to redefine some of the hard- of (potentially) shared memory at the level of the
ware/software boundaries. We have been exploring a unit of indivisible memory update, typically a mem-

parallel programming paradigm which we call work- ory word or byte. This precludes the use of the
form processing[7] that draws analogy from the pro large cache page sizes required for very low cache

- cessing structure of the (human) office. Determining miss rates. Finally, it requires the cache either be
the quantitative effects of these programming tech- physically addressed with a virtual-tophysical trans-

niques in the VMP prototype 1s a focus of future re- lation between the processor and cache or a physical
search. to-virtual address translation for use by the bus spy.

(Note that the latter translation may be one-to-many

unless virtual address aliasing is ruled out.) Thus,

6 Related Work a write-broadcast approach requires a multi-master
cache together with physical-tovirtual address trans-

A central focus of our work has been to better un- lation and complex bus spy hardware, all operating

derstand the proper trade-off between hardware and at near memory-reference speed.
software. Our design proposes operating system con- Most researchers have focused on the performance
trol of the caches with suitable hardware support to of different cache consistency protocols, looking only
make this efficient. An alternative software control at the bus traffic levels. However, the consistency

scheme proposed for the MIPS-X project{1] is to have schemes providing the lowest bus traffic also tend to
the compiler generate cache control instructions to be the most complex and present a potential bottle-

Page 10

1

neck between processor and cache memory, especially clustering related data on cache pages and compiling
as processor and memory speeds increase. In con- code and data for high cache page utilization. These
trast, we are interested in cache consistency schemes demands on software technology are significant but
that are simple enough so there 1s minimal complex- also a common theme in previous efforts to redefine
ity in the processor-to-cache path and so a significant some of the hardware/software boundaries.
portion of the cache management can be performed
in software.

Finally, there appears to be some issues in design-

7 Concludin g Remarks ing processors for a VMP-like design. First, the ideal
VMP processor 1s as fast as memory technology al-

We have described the design of VMP, a shared- lows. Faster processors reduce the speed advantage
memory multiprocessor machine that uses software- of implementing complex control logic in hardware.
controlled virtually addressed caches. We have ar- Second, the processor has minimal overhead for tak-
gued that the basic approach of a virtually addressed ing a bus error (or suitable cache miss signal) trap

cache with the processor being its single master pro- and returning from the trap, including making some
vides the high memory bandwidth connection that registers available for the trap handler. Fortunately,

will be required by processors of the future. Using many of the RISC-style processors appear to being

this high-speed processor in combination with the lo- going in these directions.

cal memory for cache management software and high-
speed block data transfer hardware makes cache miss

handling in software efficient. The software imple-

mention provides a high degree of flexibility as well. 8 Acknowled cementsere are two major novel aspects of the design.

First, an unusually large cache page size is used in

combination with a large total cache size and a high-
speed block data bus transfer facility, reducing the The Stanford Center for Integrated Systems and
cache miss ratio so that software control of the caches Philips Research made the collaboration among the

is feasible. This eliminates the need for a considerable authors possible. We are grateful to Tim Mann,
amount of specialized hardware, including memory Michael Stumm, Ross Finlayson and Helen Davis for

management unit and cache miss handler. Instead, their critique of the design and early versions of the

we simply provide per-processor local memory for the paper, and to Naguine Navab for her work on the
cache management code and data. cac he cont rol software. We thank Anant Agarwal

Second, the simple bus monitor in combination for providing the cache simulation results and Digital

with software control solves the consistency problems Equipment Corporation for supplying the instruction

associated with a virtually addressed cache. In par- traces.

ticular, the scheme handles virtual address aliases or

synonyms with no restrictions and virtual address

translation consistency. It also allows DMA devices

to be accommodated with no special consistency sup

© port.

The bus monitor state machine is a hardware re-

source provided to the processor for cache consis-

tency. However, the generality of the mechanism sug-

gests there may be other uses.

) The challenge of the VMP design is in the soft-

ware. Clearly, the cache management software itself

must be highly optimized as well as correct. More-

) over, VMP operating system software must provide

means of synchronization between processes that does

not induce the thrashing that one would expect with

conventional test-and-set busy-wait loops on top of

the VMP design. Finally, programming systems for
the VMP design need to recognize the importance of

Page 11

References [12] J.R. Goodman.
Using Cache Memory to Reduce Processor-

[1] A. Agarwal and M. Horowitz. Memory Traffic.
MIPS-X Internal and External Caches. In Proc. Tenth International Symposium on
Technical Report, Computer Systems Labora- Computer Architecture, pages 124-131, June

tory, Stanford University, 1985. 1983.

[2] A. Agarwal, RL. Sites, and M. Horowitz. [13] A. Gupta, C. Forgy, and R. Wedig.
ATUM: A New Technique for Capturing Address Parallel Algorithms and Architectures for Rule-

Traces Using Microcode. Based Sytems.

In Proc. 18th Int. Symp. of Computer Archilec- In Proc. 18th Int. Symp. of Computer Architec-
ture, June 1986. ture, June 1986.

[3] J. Archibald and J.-L. Baer. [14] W.D. Hillis.
An Evaluation of Cache Coherence Solutions in The Connection Machine.

Shared-Bus Multiprocessors. MIT Press, 1985.

Technical Report 85-10-05, Computer Science, [15) C.A.R. Hoare.
U. of Washington, October 1985. Monitors: An Operating System Structuring

[4] C.G. Bell. Concept.
Multis: a new class of multiprocessor computers. CACM, 17(10):549-557, October 1974.
Science, 228:462-467, April 1985. [16] D. MacGregor and J. Robinstein.

[5] David R. Cheriton and Michael Stumm. A Performance Analysis of MC68020-based Sys-
The Multi-Satellite Star: Structuring Parallel tems.

Computations for a Workstation Cluster. IEEE Micro, 5(6):50-70, December 1985. |
To appear in Distributed Computing. [17] C.L. Seitz.

6] D.R. Cheriton. The Cosmic Cube. |
2 The V kernel: A Software Base for Distributed CACM, 28(1):22-33, January 1985. |

IEEE Software, 1(2), April 1984. Cache Evaluation and the Impact of Workload
Choice.

[7] D.R. Cheriton. In Proc. 12th Int. Symp. on Computer Archi-
Workform Processing: a model and language for tecture, pages 64-73, ACM SIGARCH, June

parallel computation. | | 1985.
Stanford University, Computer Science Techni- also SIGARCH Newsletter, Volume 13, Issue 3,

cal Report, to appear 1986. 1985.

[8] D. Clark [19] A.J. Smith.
Cache Performance in the VAX-11/780. Cache Memories.

AN xrans. on Computer Systems, 1(l), Feb. Computing Surveys, 14(3), September 1982.
_ [9] HM. Deitel.

Introduction to Operating Systems.

Addison-Wesley, 1983.

[10] R. Katz et al.
. Implementing a Cache Consistency Protocol.

- In Proc. 12th Int. Symp. on Computer Architec-

ture, pages 276-283, ACM SIGARCH, June
1985.

also SIGARCH Newsletter, Volume 13, Issue 3,

1985.

[11] S. Frank.
Tightly-coupled Multiprocessor System Speeds

Memory Access Times.

Electronics, 57(1), January 1984.

REFERENCES Page 12

