March 1986 Report No. STAN-CS-86- 1105
Also numbered CS1L-86-294

Software-Controlled Caches
in the VMP Multiprocessor

by

David R. Chcriton
Gert A. Slavenburg
Patrick D.Boyle

Department of Computer Science

Stanford University
Stanford, CA 94305

Software-Controlled Caches

in the VMP Multiprocessort

David R. Cheriton
Stanford University

Abstract

VMP is an experimental multiprocessor that follows
the familiar basic design of multiple processors, each
with a cache, connected by a shared bus to global
memory. Each processor has a synchronous, virtu-
ally addressed, single master connection to its cache,
providing very high memory bandwidth. An unusu-
ally large cache page size and fast sequential memory
copy hardware make it feasible for cache misses to
be handled in software, analogously to the handling
of virtual memory page faults. Hardware support for
cache consistency is limited to a simple state machine
that monitors the bus and interrupts the processor
when a cache consistency action is required.

In this paper, we show how the VMP design pro
vides the high memory bandwidth required by mod-
ern high-performance processors with a minimum of
hardware complexity and cost. We also describe sim-
ple solutions to the consistency problems associated
with virtually addressed caches. Simulation results
indicate that the design achieves good performance
providing data contention is not excessive.

This work was sponsored in part by the National
Science Foundation Grant DCR-83-52048 and by
Philips Research, Bell-Northern Research, ATT In-
formation Systems and NCR.

1 Introduction

VMP is an experimental shared memory multiproces-
sor being built at Stanford University. It follows the
familiar model[4)o fmultiple processors connected by
a shared bus to global memory with per-processor
caches to reduce bus traffic.

Our research focuses on the problem of connect-
ing multiple high-performance processors to a shared

t A version of this paper will be presented at the 13th
Symposium on Computer Architecture in June 1986.

Gert A. Slavenburg
Philips Research

Patrick D. Boyle
Stanford University

memory without significant performance degrada-
tion, rather than connecting a large number of proces-
sors of more modest capabilities[14] or not providing
shared memory[17). By high-performance, we mean
the 20-30 MIPS microprocessors of modest cost ex-
pected in the near future.

This particular focus is motivated by three obser-
vations. First, it appears to be much easier to pro-
gram parallel applications for shared memory ma-
chines than for networked processors because man-
agement of the shared program state is familiar and
direct. Second, initial experimentation[5,13] with
parallel applications indicates that few, fast proces-
sors are more effective than many slow processors,
simply because most applications exhibit a low degree
of parallelism. Finally, we are interested in medium
to high performance workstations with uniprocessor
or multiprocessor configurations. For these machines,
the processor of choice is obviously the microproces-
sor of greatest performance within standard VLSI
technology.

The performance of future processors will be lim-
ited primarily by the memory bandwidth provided.
Current conventional processors, such as the Mo-
torola 68020, run at about 75 to 80 percent memory
bandwidth utilization. Some RISC processors achieve
much higher utilization. Thus, the primary design
problem for multiprocessor machines is providing suf-
ficient memory bandwidth to a shared memory to
accommodate multiple processors. This view argues
for per-processor caches with very efficient processor-
cache coupling.

In the VMP design, each processor has a syn-
chronous, virtually addressed, single master connec-
tion to its cache, providing very high memory band-
width except on cache miss. An unusually large cache
page size and fast sequential memory copy hardware
make it feasible for cache misses to be handled in soft-
ware, analogously to the handling of virtual memory
page faults. Hardware support for cache consistency

Page 1

Local
Memory CPU Cache
Memory
Isolator 1

Bus Monitor Cache C I

(action table) ontroller
— Block Copier

|Bus Inten‘ace]

Figure 1: VMP Processor Board Organization

is limited to a simple state machine that monitors
the bus and interrupts the processor when a cache
consistency action is required.

We argue that these simple hardware resources,
operated under software control, provide memory
bandwidth for a very high-performance processor and
bring the power of the processor and the flexibility
of software management to bear on the cache man-
agement (and virtual memory) problem. Simulation
results indicate that the design achieves good per-
formance providing data contention is not excessive.
We also describe simple solutions to the consistency
problems associated with virtually addressed caches.
" The paper emphasizes the techniques rather than our
specific hard ware design.

The next section describes the cache miss han-
dling mechanism. Section 3 describes our approach
to cache consistency, including consistency with re-
spect to virtual address translation. Section 4 de-
scribes additional details of the VMP design. Section
5 provides some indication of expected performance
for VMP and raises some software issues with the de-
sign. Section 6 compares this design to some other
representative multiprocessor designs. We close with
a summary of the key points plus an indication of
future directions.

21 Cache Access and Cache
“Miss Handling

The processor is directly connected to a virtually
addressed cache, as depicted in Figure 1. That is,
the cache contents are addressed by virtual address,
rather than by physical addresses.” Thus, in the ab-
sence of a cache miss, the memory reference is sat-

Y An address space identifier is included as part of the ad-
dress presented to the cache so that the cache need not be
flushed on context switch.

isfied at maximum speed because the processor is
the single master of the cache and it executes syn-
chronously with respect to the cache, i.e. no arbi-
tration is required and there is no virtual-tophysical
address translation as part of a cache reference.

The processor is connected to some local memory in
the same synchronous, single-master fashion. High-
order bits of the address discriminate local memory
references from cache references so no significant de-
lay is introduced by having the two memories. Local
memory is required for storing the code and data as-
sociated with cache miss handling, ensuring there can
be no cache miss in the cache miss handling software.

On cache miss, the cache controller signals a pro-
cessor exception interrupt (bus error) and generates
a suggested cache slot? to use for the missing cache
page.

On exception interrupt, the processor saves its
state on the supervisor stack in local memory and
traps to the cache miss handler routine, also stored
in local memory. The processor writes out the cache
page if it has been modified. It then maps the vir-
tual address that generated the miss to the physical
address for the associated cache page. Assuming the
virtual memory page is present in the main memory,
the processor instructs the block copier to copy the
required data from main memory into the cache, spec-
ifying the cache flags to be assigned to the cache slot
if the copy succeeds. Concurrently with the copy op-
eration the processor updates its data structures de-
scribing the current cache contents, returns from the
original exception and continues execution a8 soon as
the copy operation completes. If the copy operation
fails (for instance because it is aborted by one of the
bus monitors), the cache flags are left unchanged and
the processor traps again in retrying the instruction,
causing it to try again. If the required data is not in
main memory, the operating system page fault han-
dler is given control.

The virtual-to-physical mapping may be performed
in a variety of ways[9]. A two-level page table is the
scheme proposed for VMP. With page tables stored
in virtual memory, a cache miss may result in ad-
ditional cache misses as the processor references the
page table. Each such miss results in the processor
stacking another level of exception state on the su-
pervisor stack contained in local memory. Some mini-
mum amount of page table information is maintained
in local memory (or non-cached global memory) so
there is a small bounded depth to page table misses.

2A cache slot is the cache element holding & cache Page.
Theterm cache pageis usedthe same as virtsal page is used
for conventional virtual memory systems. A cache page frame
is a portion of main memory corresponding to one cache page.

Page 2

After handling the cache misses (if any) involved with
virtual address translation, the processor returns to
handling the original cache miss.

A cache miss can also occur when the processor
attempts to write data for which it has not secured
write access. In this case, it negotiates write permis-
sion using the cache consistency protocol described in
Section 3.

Cache miss handling by the processor is facilitated
by the hardware providing fast data transfer. This
hardware exploits three main techniques for perfor-
mance:

e Sequential Memory Access: Main memory
boards are optimized for fast sequential opera-
tion by using static column RAM chips (which
provide 60 nanosecond access to successive lo-
cations). The first access to the memory board
takes 300 ns but each subsequent sequential ref-
erence takes less than 100 ns.

e Sequential Bus Protocol: Bus protocols are
optimized for sequential access by issuing a sin-
gle address for a transfer and then simply strob-
ing the data words across, relying on the source
and destination modules to automatically incre-
ment the source and destination addresses. This
is provided by the VMEbus block transfer mode
in our prototype machine.

e Block Copier: A specialized block copy mech-
anism is embedded in the cache controller that
allows us to take advantage of the sequential
access on the VMEbus and memory board. It
also eliminates the instruction fetching overhead
which would arise if the processor did the copy.®
The block copier can operate concurrently with
the CPU executing out of local memory.

The block copier significantly reduces the bus occu-
. pancy for the transfers as well as the elapsed time.
For example, the VMEbus-based VMP block copier
should transfer data at 40 megabytes per second,
achieving 100 percent VMEDbus utilization during the
transfer. In contrast, a simple copy loop using the
processor can achieve less than 5 megabytes per sec-
ond at best. The block copier allows some overlap
of the copy time with the bookkeeping performed by
the processor on cache miss.

Cache miss handling is more complicated with a
virtually addressed cache than with a physically ad-
dressed cache. A virtually addressed cache requires

3The climination of instruction fetch is secondary in effect
compared to the use of sequentid access, given that & copy
loop fits in the processor’s on-chip instruction buffer.

virtual-to-physical address translation on cache miss
and, if page tables are stored in virtual memory, has
the possibility of incurring a real page fault as part
of cache miss handling.

The software implementation of cache miss han-
dling has the benefit of replacing rather complex
cache-control hardware with relatively simple hard-
ware: local memory that holds the cache manage-
ment software. It also offers the flexibility to exper-
iment with different techniques of virtual-to-physical
address translation and cache loading and replace-
ment policies without hardware modification.

The major concern with software controlled caches
is performance. We claim that, by choosing an un-
conventionally large cache page size (and keeping the
number of cache slots and degree of associativity large
enough), one reduces the cache miss rate so that the
overhead of software cache management is not a prob-
lem. The effect of cache page size on cache hit ratio
is discussed in Section 5.

It remains to address the problem of maintaining
cache consistency. Note that, with a virtually ad-
dressed cache, cache consistency is not strictly a mul-
tiprocessor issue. A single processor cache can be
inconsistent with respect to itself if the same physical
memory is mapped to two different virtual addresses
and both virtual addresses are represented in the (sin-
gle) cache.

3 Cache Consistency
There are two cache consistency problems to solve:

e ensuring that all copies of a cache page are con-
sistent across all processors, and

e ensuring that the virtual-to-physical translation
implicit in the per-processor caches is consistent
with that specified by the system page tables.

We first describe the cache consistency protocol and
then how this protocol is implemented with the aid
of the bus monitor.

3.1 Cache Consistency Protocol

Cache consistency is maintained by a variant of
the distributed ownership protocol described by
Frank[11] and Goodman[12]. Main memory is viewed
as a sequence of cache page fames.* For consistency,
a cache page must be in one of two states:

‘Our prototype allows for experimentation with cache page
sizes of 128, 256, and 512 bytes.

Page 3

® shared - Main memory contains the most re-
cently written value of the cache page. Several
copies of the block may exist elsewhere, all of
them being identical to that in main memory.

e private - Some cache ¢ contains the only copy of
the page. In this case, cache $ is said to own this
cache page.

The processors use an extended form of read and
write bus transactions that specify if ownership is be-
ing requested or released. It is up to each processor
to observe and respond to bus transactions so as to
ensure each page of memory is in one of the two legal
states.

There are six types of bus transactions associated
with bus monitor operation (plus the normal ones
which are not, those used by DMA devices and CPUs
to access device registers). A processor issues one
of these six types of bus transactions, depending on
the reason for the bus transaction (the first five are
consisiency-related bus transactions):

e read-shared - to acquire a non-exclusive or
shared copy of a cache page.

® read-private - to acquire an exclusive copy of a
cache page. The processor issues this bus trans-
action when it incurs a cache miss on a write to
an address within that cache page but has no
copy of that cache page.

® assert-ownership - to gain exclusive ownership
of a cache page without reading it from main
memory. It presumably acquired a shared copy
of the cache page earlier using a read-shared
operation.

e write-back - to write the cache page back to
main memory, releasing ownership of the page.

e notify - to send notification to a processor (de-
scribed in 5.4)

e write action table - to write an entry in the
action table (described below).

To allow the processor to execute concurrently with
bus transactions, we provide a simple state machine
called a bus monitor that monitors the bus and inter-
rupts the processor when either consistency actions
are required or notification is signalled.

3.2 Per-Processor Bus Monitor

The bus monitor’ performs one of four actions on
each bus transaction depending on the type of bus

“The main difference between our bus monitor and a
snoop is that the bus monitor is not connected to the cache

transaction, the physical address of the bus trans-
action and the contents of the bus monitor’s action
table. The bus monitor’s action table contains a two-
bit entry per physical cache page frame® (of main
memory) indicating:

e 00 - do nothing

e 01 - interrupt local processor on read-private,
assert-ownership (ignore read-shared or notify)

e 10 - abort bus transaction and interrupt local
processor on any consistency-related bus trans-
actions (including read-shared)

e 11 - interrupt processor on a notification trans-
action.

The main function of the bus monitor is to enforce
cache consistency, however the action table code 10
can be used to “protect” a page (prevent its modifi-
cation or a change in its state), and entry 11 can be
used for notification (see 5.4).

The action table of the bus monitor associated with
a particular CPU is normally updated as a side effect
of (and concurrently with) a consistency-related bus
transaction issued by that CPU. Thus, in the com-
mon cases, checking and updating the action table
over the bus does not entail additional bus occupancy.
The action table can also be updated by the CPU us-
ing the wrete action fable bus transaction. Update
as part of a consistency-related bus transaction only
takes place if the bus transaction is not aborted. The
consistency check interval and action table update in-
terval, each of 150 nanoseconds, are overlapped with
the block transfer, as shown in Figure 2. On abort,
the bus transaction is terminated at the end of the
current memory reference. The assertownership bus
transaction is a degenerate form of this behavior since
it does not involve block transfer. Updating the ac-
tion table as part of bus transactions minimizes bus
overhead for action table management and avoids the
cost of a dual-ported action table, the other solution.
Note that completion of a few transfers during the
consistency check does not compromise the correct-
ness of main memory because write-back is the only

(does not share the cache tag matching hardware, the cache
flags, or even have a copy of the flags) and thus does not re-
duce the cpu/cache bandwidth. It can operate at the leisurely
pace of our relatively long bus transactions rather than at the
memory reference speedsrequired when using small cache page
sizes.

6 Allowing a maximum of 8 megabytes of physical memory
for the prototype with 128 (256, 512) byte pages, each bus
monitor has 16 (8, 4) kilobytes of memory for its action table.
A larger physical memory would require additional memory for
the action table.

Page 4

block transfer

time
¥~action table update
consistency check

acquire bus

request bus

Figure 2: Action Table Update in a Bus Transaction

bus transaction that modifies main memory. Write-
backs are only issued if a cache is releasing a privately
held page and so are never aborted (unless there has
been a consistency protocol violation).

The bus monitor is connected to the processor by
a non-ma&able interrupt and a FIFO queue of in-
terrupt requests. Each time a bus transaction occurs
that should interrupt the processor, a word is queued
in the FIFO for the processor. The word specifies the
type of bus transaction and the physical address asso-
ciated with the bus transaction. The FIFO provides
a maximum of 128 entries, minimizing the likelihood
of an interrupt word being lost. However, the FIFO
also sets a flag for the processor when an interrupt
word is dropped because the FIFO is full.

The bus monitor is a fairly general-purpose hard-
ware resource available to each processor. We plan
to explore its use in a variety of settings. However,
its primary use is for ensuring cache consistency, as
described in the next two subsections.

3.3 Cache Page Consistency

Each processor sets the action table of its bus moni-
tor according to the cache pages its cache holds and
acts on bus monitor interrupts so as to enforce this
2-state consistency of cache pages. There are three
cases to consider for each cache page frame k in phys-
ical memory, corresponding to there being no copy,
a shared copy or a private copy of the page in the
processor’s cache.

No Copy: The action table entry for cache page
k is 00, indicating that the bus monitor can ignore all
bus transactions on this cache page.

Shared Copy: The k-th action table entry is set
to 01 causing the bus monitor to ignore read-shared
transactions, and interrupt on read-private or assert-
ownership bus transactions. Write-back operations
are protocol violations and result in an abort and
interrupt. Note that, due to virtual memory aliasing,
the cache may contain (shared) multiple copies of this
cache page in different cache slots. On interrupt from

a read-private or assert-ownership bus transaction,
the processor invalidates the cache slots holding this
cache page and sets the k-th action table entry to 00.
Consequently, when a cache page becomes private,
all other cached copies of the page are discarded in
parallel.

Private Copy: The k-th action table entry is set
to 10 causing the bus monitor to abort the bus trans-
action and interrupt the processor on all consistency-
related bus transactions on this page (including write-
back operations which are protocol violations). On
interrupt, the processor writes out the cache page (f
dirty). If the bus transaction was read-private (or
assert-ownership), it invalidates the cache page and
sets the action table entry to 00. If not, it “down-
grades” the cache page to read-only and changes the
action table entry to 01 (shared). The processor is-
suing the bus transaction detects that the bus trans-
action was aborted and retries the bus transaction.

This scheme also solves the alias consistency prob-
lem that arises with a physical cache page mapped
to two or more different virtual addresses. Each pro-
cessor observes the consistency protocol “competing
against itself”. Thus, for instance, should a processor
issue a read-shared for a cache page its cache already
owns (referenced by a different virtual address), its
own bus monitor will abort the bus transaction and
interrupt that CPU. In response to the interrupt, the
CPU flushes (or writes back) the owned page. The
read-shared bus transaction is then retried.

Using this protocol, a request for a shared copy of
a shared cache page is satisfied immediately. A re-
quest for a shared copy of a private cache page fails
but causes the owner to relinquish ownership, allow-
ing the requestor to succeed on retry. A request for a
private copy of a shared cache page succeeds imme-
diately but causes all cache copies of the cache page
to be discarded. A request for a private copy of a
private cache page fails but causes the owner to re-
linquish ownership.

Each processor is trusted to set its bus monitor ac-
tion table appropriately for the cache pages it holds
and to act on interrupts from the bus monitor accord-
ing to this protocol. Information about the state of
each cache page and the mapping from physical ad-
dress to cache page is maintained by the processor in
the local memory.

The consistency scheme is deadlock-free because
ownership of cache pages can be preempted (no bloc k-
ing) and a processor is guaranteed to make at least
one successful reference to a newly acquired page be-
fore that page is flushed from the cache (non-zero
progress). One worst case example is that of two pro-
cessors simultaneously attempting to acquire a Ppri-

Page 5

vate copy of a cache page. In this case, the first
processor to acquire the bus gets the page, then the
second issues the read-private resulting in an inter-
rupt to the first processor by the first’s bus monitor
leading to subsequent flushing of the page from the
first processor’s cache, and so on. However, inter-
rupts are only serviced between instructions and the
CPU blocks on the cache controller mid-instruction
while awaiting the completion of the block transfer.
Thus, the first processor makes at least one success-
ful reference so the contention results in performance
degradation but not deadlock.

Correctness of consistency maintenance is rendered
independent of the processor’s ability to keep up with
bus monitor interrupts as follows. The interrupt
FIFO includes a flag that indicates that an interrupt
word was dropped (which only occurs if the processor
is unable to keep up with the bus monitor interrupt
rate). When this flag is set, the processor recovers by
invalidating (or rereading) shared cache entries from
main memory and updating its bus monitor action
table. Note that loss of the interrupt word for a bus
transaction requesting ownership of cache page owned
by this processor is not a problem since the bus trans-
action is aborted by the bus monitor and then retried
by the requesting processor until successful.

Dropping an interrupt word in the bus monitor
FIFO is extremely unlikely for several reasons. First,
" the FIFO queue provides considerable buffer space
giving the processor time to handle bursts of con-
sistency actions. Second, the only operations that
leave the processor unresponsive to these interrupts
for a significant time are its block transfers. Dur-
ing the transfer the bus is fully consumed so other
bus transactions cannot occur, limiting the rate of
accumulation of interrupt words. Finally, the rate of
interrupt word generation is no worse than the rate of
cache misses, which is assumed to be reasonably low.
(Of course, there is no problem with the bus monitor
keeping up with the rate of bus transactions.)

The flexibility of the bus monitor allows VME-
standard DMA devices to be used in the system. To
set up a DMA into a particular area of memory, the
operating system code acquires a high-level lock on
that area of memory so that it is not accessed by
other processors. The cache management software
then does an assert-ownership bus transaction on this
area of memory, forcing every other processor to dis-
card any cached copies of this memory or write back
the private copy, if any. It then sets the bus moni-
tor to abort any consistency-related bus transactions
addressing this area (which should not occur in any
case). Since DMA operations have no associated con-
sistency operation the DMA completes without abort

by a bus monitor. Once the DMA transfer completes,
the processor can release its lock on this area of mem-
ory at the operating system level and clear the corre-
sponding entries in the bus monitor’s action table.

3.4 Virtual Address Translation Con-
sistency

A virtually addressed cache implicitly stores a por-
tion of the virtual-to-physical address mapping spec-
ified in the operating system page tables. To ensure
consistency, this implicit mapping must be updated
when the page tables change. This problem of vir-
tual address translation consistency is handled in a
straight-forward fashion in our design, as described
below.

The operating system and cache management soft-
ware ensure that every valid cache slot corresponds
to some portion of a virtual memory page currently
in main memory. To change the mapping of virtual
page up which currently maps to physical page pp,
the processor first issues a read-private for the cache
page pt corresponding to the page table entry for
up. If the page table is in virtual memory, obtaining
exclusive ownership of pt may entail page faults as
well. The processor then issues an assert-ownership
on page pp, causing all cached copies to be flushed
or written back, depending on whether the copy is
shared or private. This flushes the implicit mappings
for this virtual page in all other processor caches. The
processor then updates the page table entry and re-
linquishes ownership of the two cache pages. Note
that cache page pp need not be read into the cache of
the processor performing this mapping operation.

Deletion of an address space can be handled simi-
larly with an assert-ownership on every resident page
in the address space.

A similar technique can be used to keep page ta-
ble reference information consistent with cache page
references in the cache. The page-out daemon can
periodically use assert-ownership to flush cache pages
chosen as candidates for reclamation out of all caches.
The processors then update the page table reference
information if they subsequently refer to these cache
pages.

The software implementation of address translation
in combination with the bus monitor and local mem-
ory allows considerable latitude in handling virtual
address translation consistency. We have sketched a
basic scheme permitting the storage of page tables in
either physical memory or virtual memory.

Page 6

4 Details of VMP

This section provides some details of VMP, the multi-
processor machine we are building to investigate the
performance of the cache design described in the pre-
vious sec tions.

The system consists of the following major compo-
nents:

o A shared central bus (VMEbus) that is used
for all communication between processing nodes,
memory and I/O devices.

e A central memory connected to the bus. The
memory is optimized to do the transfer of cache
pages at 40 MBytes/Second.

e [/O units which adhere to the standard VME
protocol and can be obtained from external sup-
pliers. Expected I/O units include an Ethernet
interface and a framebuffer.

e Several VMP processor boards.

Each VMP processor board consists of a 68020
CPU running at maximum speed (currently 60
nanosecond cycle, 180 nanosecond memory cycle)
coupled to a 68881 FPU (Floating Point Coproces-
sor), local RAM (32 KBytes), a 4-way set associative
256 KByte cache that responds to virtual addresses,
a bus monitor (with associated action table), and lo-

. cal devices (UART, timer). The CPU, FPU, local
RAM, local devices and bus monitor are connected
to a private onboard bus which may be connected
to the VME interface through the bus ssolator. The
bus isolator permits concurrent execution of the CPU
accessing local memory with transfers between the
cache and VME memory. Note the absence of compo-
nents found in other systems: memory management
unit, translation lookaside buffer and reverse transla-
tion buffer.

The basic VMP processor board organization is

- shown in Figure 1. The memory space seen by the
CPU is divided into 5 regions. The lowest addressed
region (227 bytes or 128 MBytes) maps straight-
through to VME address space and is used to access
device registers and execute boot ROM code. The
next region (128 MB) is set aside for local accesses
(local memory, ASID register, bus monitor FIFO, and
other local devices). The third region (128 MB) ad-
dresses cache control. The fourth region (128 MB)
addresses kernel virtual address space. The last re-
gion (3.5 Gigabytes) is the user virtual address space,
which is extended by an 8 bit Address Space Identi-
fier ASID.” Accesses to regions other than the user

‘This is similar in function to the context register in the
SUN workstation architecture.

virtual memory require supervisor privilege.”

Virtual addresses are mapped into the 4-way set as-
sociative cache. The cache page replacement strategy
is LRU, with the replacement slot “suggested” by the
hardware based on references. For each cache slot,
flags are maintained that indicate: valid, modified,
exclusive-ownership, supervisor writable, user read-
able and user writable. Because the cache matches
on <ASID, VirtAddress>, the operating system sim-
ply changes the ASID to specify the new address
space on each context switch.

The cache in the prototype is configurable for a
choice of 128,256 or 512 byte cache pages to allow us
to experiment with a variety of cache page sizes. The
number of sets is variable from 1 to 4, and number of
pages per set is variable from 16 to 256. In addition
to experimenting with different hardware configura-
tions, we are interested in investigating the benefit
of software techniques that improve the utilization of
large cache blocks.

S Expected Performance

We are building a prototype of the VMP design that
is highly instrumented in order to measure perfor-
mance and investigate the effects of different cache
page sizes, cache sizes, associativity, modifications to
the cache management software, and various software
techniques for improving locality and reducing con-
tention. This machine is an initial prototype for the
VMP design since the choices of processor (68020
over a RISC-style processor), bus (VMEbus over a
much higher-speed bus) and memory boards (com-
mercial sequential-access VME memory over high
performance boards) make a significant concession to
budget and fast construction over ideal performance.
The prototype will allow us to evaluate the expected
performance of this design since, as pointed out by
Clark([8], trace-driven simulation is frequently a poor
indication of real performance. However, since our
prototype is not yet operational, we provide some ex-
pected performance figures based on: simulation, in-
struction counts for the key software cache manage-
ment routines, and timings for hardware components.

In the VMP design, the performance of a processor
is degraded by three factors:

e (Cache Misses - some proportion of the result-
ing bus transactions are ¢e+.O0 retried when an
ownership conflict arises on the data,

8 This organization allows the kernel space to be part of each
user virtual space.

Page 7

Cache Page | Elapsed Time | Bus Time
Size (bytes) (psecs) (psecs)
128 17 14

Cache Page Replaced Elapsed Bus

Size Page The The
(bytes) State (psecs) |(psecs)
128 | not modified 17 3.5

256 | not modified 20 6.6

512 | not modified 26 13.0

128 modified 17 7.0

256 modified 23 13.2

512 modified 36 26.0

Table 1: Elapsed Time and Bus Time per Cache Miss

e Consistency Interrupts - both for cache data
as well as page table updates,

e Bus Load - which affects the time for the above
two operations.

In this discussion, we first estimate processor perfor-
mance a8 a function of the cache miss ratio for differ-
ent cache page sizes, assuming no consistency inter-
rupts and no bus contention. We then use simulation
results (cache miss ratios) to determine the ranges
for the cache parameters which will give the desired
processor performance. Finally, we calculate bus uti-
lization per processor as a function of the miss ratio
to estimate the number of processors that one can
* feasibly configure without significant bus contention.
Consistency interrupts introduce the same overheads
as cache misses (and possibly increase the miss ratio
by flushing cache entries). Thus, consistency over-
head can be incorporated in these performance esti-
mates by hypothesizing a higher miss ratio than that
suggested by the simulations.

5.1 Cache Miss Time

The elapsed times for a cache miss (assuming no bus
contention and no bus transaction abort) are given
in Table 1. These times assume a 16 MHz 68020
running with 0 wait state access to cache memory
plus a block copier and memory that perform block
transfers in 300 nanoseconds for the first long word
(32-bits) and 100 nanoseconds for each subsequent
long word. These times were calculated by summing
instruction execution times for the cache miss handler
and the time to update the cache (one block transfer
if the page to be replaced was not modified, two block
transfers if it was modified). Block transfer time is
overlapped with the CPU processing where possible.

Clearly, the software time associated with miss
handling (about 15 psecs) means that there is lim-
ited benefit using in a smaller cache page size. If we

56310 1 0y 1 8316, |

Table 2: Average Cache Miss Cost

£ 100~
g 00
80 |
Page Size
& 70
5 0 (bytes)
60 —| 128
256
)
I I T T 512
° 0.25 05 075 1.0

Miss Ratio (%)

Figure 3: Processor Performance to Cache Miss Ratio

assume a mix of different cache miss scenarios with 75
percent of the replaced pages being unmodified then
the average cache miss cost is given in Table 2.

Figure 3 plots the processor performance as a func-
tion of the miss ratio, assuming the average cache
miss cost is incurred on each miss, with data for cache
page sizes of 128, 256 and 512 bytes. The processor
performance is normalized so that processor perfor-
mance with no cache misses is 1.%

Note that the miss ratio is a function of the cache
page size so it is inappropriate to use this graph to
compare the benefits of different cache page sizes.

Next we determine the characteristics of the cache
that are required to achieve a sufficiently low miss
rate, given the large cache page sizes, to realize rea-
sonable processor performance.

5.2 Cache Miss Ratio and Processor
Performance

The ranges of the variable hardware parameters of
the VMP prototype (cache size from 64K to 256K
bytes, page size of 128, 256 or 512 bytes) were estab-
lished using four VAX 8200 traces obtained by the
ATUM technique[2]. These traces include VMS op-

’per Jjofmance = (1 + MissRatio «
AverageMissCoste RefsPerInstrsInstrEzecutionRate)™?
From MacGregor{16]): RefsPerInstr=1.2 and
InstrEzecutionRate = (7clocks/inatn = 60nsecs/clock)™ =
2.4 MIPS

Page 8

Miss Ratio (%)

14 P(%ge Si)ze
ytes
12 64 o
1.0 128 ©
0.8— B 0
(]
0.6 g
0.4 =] o
0.2 a 0
< |
0.0
32 A 198 286

Cache Size (KBytes)

Figure 4: Cache Miss Ratio and Cache Size

erating system references and a small degree of mul-
tiprogramming. The trace lengths vary from 358,000
to 540,000 four-byte references.

The cold-start simulation results of a 4-way set as-
sociative cache for various cache sizes and cache page
sizes are summarized in Figure 4. These low miss
ratios contrast with most cache measurements pub-
lished to date. However, with the parameters of our
cache, it is better compared to a 4-way set associa-
tive translation lookaside buffer with 512,256 or 128
. sets of 4 entries (with 128, 256 or 512 byte cache
page sizes) except that the cache also has the ass+
ciated data. Smith[19] indicates that .4% miss ratio
has been observed in TLB’s with 128 sets of 2.

In these traces operating system references account
for approximately 25% of the references and 50% of
the misses, and the application programs employ no
special locality enhancing techniques. We anticipate
that application of appropriate software techniques
could lead to even lower miss ratios.

Applying these results, for example, using a 256
byte cache page size and 128 kilobyte total cache size,
one would expect a miss ratio of 0.24 giving processor
performance of 87% according to Figure 3.

5.3 Bus Utilization and Number of
Processors

Each cache miss results in bus traffic. Table 2 pro-
vides the bus cost for the “average” cache miss. Fig-
ure 5 shows bus utilization as a function of the cache
miss ratio for the three cache page sizes, using this
average bus cost per miss.!® For example, for a 256

— Page Size
¥ 30— (bytes)
§ 512
5
=
5 20 —
:§ 256
10 4 512
0 | T T T
0 0.25 0.5 0.75 1.0

Miss Ratio (%)

Figure 5: Bus Utilization to Cache Miss Ratio

byte cache page size, with a miss ratio under 0.6%,
the bus utilization by a single processor is under 10%.
Using a simple single-server (the bus) multiple-client
(several processors, ignoring DMA 1/O devices) queu-
ing model, and observing the request service times,
we estimate that one can accommodate up to 5 pro-
cessors on a single bus. Additional processors can
be expected to degrade individual processor perfor-
mance by increasing bus contention as well as possi-
bly increasing the miss ratio because of consistency
contention.

5.4 Consistency Overhead and Sys-
tem Software

The effect of consistency interrupts can be incorpo-
rated into the above figures by assuming a higher miss
ratio. The rate of consistency interrupts and its ef-
fect on the cache miss ratio are unknown and highly
dependent on the programming of the system and the
cache page size. For instance, the straightforward use
of test-and-set locks on the same cache pages as the
data being modified could result in enormous con-
sistency overhead. Thus, this design requires “good
behavior” from the software it is executing to realize
its performance, just as the performance of virtual
memory systems is highly dependent on program be-
havior. We are developing software support at the
operating system and programming system level that
is tuned for the VMP design. In this vein, we are
interested in exploring how far the software support
can go to ensure good behavior, as opposed to how

10 bus utilization is the bus wuse time during the exe-
cution of N instructions divided by the execution time
(including miss handling) of JV instructions. Utii =
(MissRatio » BusTimePerMiss)/((InstrExecutionRate »
RefsPerInstr)~! + MissRi to « MissServiceElapsedTime)

Page 9

well the hardware can deal with bad behavior.

For operating system support, we are porting the V
kernel[6) to VMP and adding kernel-supported lock-
ing and queuing primitives. These primitives can be
implemented either using the notification facility of-
fered by the bus monitor, or by using non-cached,
globally-addressable physical memory. A process re-
questing the lock accesses the lock as part of a kernel
operation and suspends for a timeout period if the
lock is taken. As an additional optimization, the pro
cessor can set the action table entry associated with
this memory to 11 (notify) so it can wake up the pro-
cess to retry when the lock is cleared. As another
operating system support mechanism, we are plan-
ning to allow the application to specify whether an
area of virtual memory is going to be shared or not.
If not, a read cache miss to this area is handled by a
read-private bus transaction, eliminating the need to
later do an assert-ownership on the first write oper-
ation. Since the data is not shared, this should not
conflict with other processors and may in fact serve
to flush this data from the cache of another proces-
sor that was previously running this process. It is
interesting to note that the bus monitor can also be
used to implement interprocessor messages: the bus
monitor would interrupt the processor when a mes-
sage is written to the cache page corresponding to its
mailbox. Other specialized uses are also possible, an
. example being notification locks.

To realize the maximum performance offered by
VMP, programming systems need to recognize the
importance of clustering related data on cache pages
and compiling code and data for high cache page
utilization. These demands on software technol-
ogy are significant but are also a common theme
in previous efforts to redefine some of the hard-
ware/software boundaries. We have been exploring a
parallel programming paradigm which we call work-
Jorm processing[7] that draws analogy from the pro
cessing structure of the (human) office. Determining
the quantitative effects of these programming tech-
niques in the VMP prototype is a focus of future re-
search.

6 Related Work

A central focus of our work has been to better un-
derstand the proper trade-off between hardware and
software. Our design proposes operating system con-
trol of the caches with suitable hardware support to
make this efficient. An alternative software control
scheme proposed for the MIPS-X project[l] is to have
the compiler generate cache control instructions to

ensure consistency. This relies on using a language
that includes explicit constructs for accessing shared
data, such as the monitor construct[15), and all data
sharing being properly controlled by these constructs.
Except for instructions which selectively flush cache
entries, this scheme requires no hardware support
for consistency. However, the MIPS-X scheme must
flush all shared data in anticipation of shared access
whereas the VMP scheme only flushes on demand. It
remains to be seen which is most expensive and how
application-sensitive the behavior is.

The performance
of cache memories for single processor machines has
been studied extensively[12,19,18]. Much of this work
studies much smaller cache page sizes, so the results
have limited application. However, as mentioned pre-
viously, our expected performance is consistent with
that expected and observed with TLB’s of compara-
ble size.

There has also been interest in cache consistency
protocols for multiprocessor machines[11,12,18,10,3].
The cache consistency algorithm we describe is ba-
sically the ownership protocol used in the Synapse
multiprocessor[11]. The alternative to an owner-
ship protocol is to use a write-broadcast protocol,
as used with the snoopy cache schemes.[10] With a
write-broadcast protocol, the system bus acts as a
sequencer, imposing a total ordering on memory up
dates consistent with that observed by each proces-
sor. However, a write-broadcast scheme requires a
data path from the bus to the cache that can up
date the cache as required at near memory-reference
speed. (Replicating or dual-porting the cache flags
can reduce the contention at some cost in hardware.)
It also requires a write-broadcast on every update
of (potentially) shared memory at the level of the
unit of indivisible memory update, typically a mem-
ory word or byte. This precludes the use of the
large cache page sizes required for very low cache
miss rates. Finally, it requires the cache either be
physically addressed with a virtual-tophysical trans-
lation between the processor and cache or a physical-
to-virtual address translation for use by the bus spy.
(Note that the latter translation may be one-to-many
unless virtual address aliasing is ruled out.) Thus,
a write-broadcast approach requires a multi-master
cache together with physical-tovirtual address trans-
lation and complex bus spy hardware, all operating
at near memory-reference speed.

Most researchers have focused on the performance
of different cache consistency protocols, looking only
at the bus traffic levels. However, the consistency
schemes providing the lowest bus traffic also tend to
be the most complex and present a potential bottle-

Page 10

neck between processor and cache memory, especially
as processor and memory speeds increase. In con-
trast, we are interested in cache consistency schemes
that are simple enough so there is minimal complex-
ity in the processor-to-cache path and so a significant
portion of the cache management can be performed
in software.

7 Concluding Remarks

We have described the design of VMP, a shared-
memory multiprocessor machine that uses software-
controlled virtually addressed caches. We have ar-
gued that the basic approach of a virtually addressed
cache with the processor being its single master pro-
vides the high memory bandwidth connection that
will be required by processors of the future. Using
this high-speed processor in combination with the lo-
cal memory for cache management software and high-
speed block data transfer hardware makes cache miss
handling in software efficient. The software imple-
mentation provides a high degree of flexibility as well.

There are two major novel aspects of the design.
First, an unusually large cache page size is used in
combination with a large total cache size and a high-
speed block data bus transfer facility, reducing the
cache miss ratio so that software control of the caches
is feasible. This eliminates the need for a considerable
amount of specialized hardware, including memory
management unit and cache miss handler. Instead,
we simply provide per-processor local memory for the
cache management code and data.

Second, the simple bus monitor in combination
with software control solves the consistency problems
associated with a virtually addressed cache. In par-
ticular, the scheme handles virtual address aliases or
synonyms with no restrictions and virtual address
translation consistency. It also allows DMA devices
to be accommodated with no special consistency sup
port.

The bus monitor state machine is a hardware re-
source provided to the processor for cache consis-
tency. However, the generality of the mechanism sug-
gests there may be other uses.

The challenge of the VMP design is in the soft-
ware. Clearly, the cache management software itself
must be highly optimized as well as correct. More-
over, VMP operating system software must provide
means of synchronization between processes that does
not induce the thrashing that one would expect with
conventional test-and-set busy-wait loops on top of
the VMP design. Finally, programming systems for
the VMP design need to recognize the importance of

clustering related data on cache pages and compiling
code and data for high cache page utilization. These
demands on software technology are significant but
also a common theme in previous efforts to redefine
some of the hardware/software boundaries.

Finally, there appears to be some issues in design-
ing processors for a VMP-like design. First, the ideal
VMP processor is as fast as memory technology al-
lows. Faster processors reduce the speed advantage
of implementing complex control logic in hardware.
Second, the processor has minimal overhead for tak-
ing a bus error (or suitable cache miss signal) trap
and returning from the trap, including making some
registers available for the trap handler. Fortunately,
many of the RISC-style processors appear to being
going in these directions.

8 Acknowledgements

The Stanford Center for Integrated Systems and
Philips Research made the collaboration among the
authors possible. We are grateful to Tim Mann,
Michael Stumm, Ross Finlayson and Helen Davis for
their critique of the design and early versions of the
paper, and to Naguine Navab for her work on the
cac he cont rol software. We thank Anant Agarwal
for providing the cache simulation results and Digital
Equipment Corporation for supplying the instruction
traces.

Page 11

References

[1] A. Agarwal and M. Horowitz.
MIPS-X Internal and External Caches.
Technical Report, Computer Systems Labora-
tory, Stanford University, 1985.

[2] A. Agarwal, R.L. Sites, and M. Horowitz.
ATUM: A New Technique for Capturing Address
Traces Using Microcode.
In Proc. 18th Int. Symp. of Computer Architec-
ture, June 1986.

[3] J. Archibald and J.-L. Baer.
An Evaluation of Cache Coherence Solutions in
Shared-Bus Multiprocessors.
Technical Report 85-10-05, Computer Science,
U. of Washington, October 1985.

[4] C.G. Bell.
Multis: a new class of multiprocessor computers.
Science, 228:462-467, April 1985.

[5] David R. Cheriton and Michael Stumm.
The Multi-Satellite Star: Structuring Parallel
Computations for a Workstation Cluster.
To appear in Distributed Computing.

[6] D.R. Cheriton.
The V kernel: A Software Base for Distributed
Systems.
IEEE Software, 1(2), April 1984.

[7] D.R. Cheriton.
Workform Processing: a model and language for
parallel computation.
Stanford University, Computer Science Techni-
cal Report, to appear 1986.

[8] D. Clark.
Cache Performance in the VAX-11/780.
ACM Trans. on Computer Systems, 1(1), Feb.
1983.

[9] H.M. Deitel.
Introduction to Operating Systems.
Addison-Wesley, 1983.

[10] R. Katz et al.
. Implementing a Cache Consistency Protocol.
In Proc. 12th Int. Symp. on Computer Architec-
ture, pages 276-283, ACM SIGARCH, June
1985.
also SIGARCH Newsletter, Volume 13, Issue 3,
1985.

[11] S. Frank.
Tightly-coupled Multiprocessor System Speeds
Memory Access Times.
Electronics, 57(1), January 1984.

REFERENCES

[12] J.R. Goodman.
Using Cache Memory to Reduce Processor-
Memory Traffic.
In Proc. Tenth International Symposium on
Computer Architecture, pages 124-131, June
1983.

[13] A. Gupta, C. Forgy, and R. Wedig.
Parallel Algorithms and Architectures for Rule-
Based Sytems.
In Proc. 18th Int. Symp. of Computer Architec-
ture, June 1986.

[14] W.D. Hillis.
The Connection Machine.
MIT Press, 1985.

[15) C.A.R. Hoare.
Monitors: An Operating System Structuring
Concept.

CACM, 17(10):549-557, October 1974.

[16] D. MacGregor and J. Robinstein.
A Performance Analysis of MC68020-based Sys-
tems.
IEEE Micro, 5(6):50-70, December 1985.

[17] C.L. Seitz.
The Cosmic Cube.
CACM, 28(1):22-33, January 1985.

(18] A.J. Smith.
Cache Evaluation and the Impact of Workload
Choice.
In Proc. 12th Int. Symp. on Computer Archi-
tecture, pages 64-73, ACM SIGARCH, June
1985..
also SIGARCH Newsletter, Volume 13, Issue 3,
1985.

[19] A.J. Smith.
Cache Memories.
Computing Surveys, 14(3), September 1982.

Page 12

