June 1985

Report No. STAN-CS-85-1056

Nonclausal Temporal Deduction

by

Martin Abadi

Z.oharManna

Department of Computer Science

Stanford University
Stanford, CA 94305

NONCLAUSAL TEMPORAL DEDUCTION

Martin Abadz
Zohar Manna

Computer Science Department
Stanford University

Abstract

We present a proof system for propositional temporal logic. This system is based on
nonclausal resolution; proofs are natural and generally short. Its extension to first-order
temporal logic is considered.

Two variants of the system are described. The first one is for a logic with] (“al-
ways”), O (“sometime”), and O (“next”). The second variant is an extension of the first
one to a logic with the additional operators U (“until”’) and P (“precedes”). Each of these
variants is proved complete.

1. Introduction

Propositional temporal logic (PTL) is described in [MP]. The language of PTL contains the
usual propositional connectives (say, A, V, 7, D), and modal operators. Time is assumed
discrete and linear. In PTL, if v and v range over formulas,

e O umeans “u is true in the next state”;
ed wumeans“uis always true (from now on)*;
e O umeans “uis eventually true”; in other words, O u =[] u;

e u U v means “u is true until v is true”; in particular, u is true forever if v is never true
(therefore, U is often called “weak until” or “unless”);

e u P v means “u precedes v”; in other words, u occurs at least once before v occurs,
and u occurs even if v never does, i.e., (u Pv) = =((-u)lU v).

This research was supported in part by the National Science Foundation under grant
MCS-81-11586, by Defense Advanced Research Projects Agency under Contract N0OO039-
84-C-0211, and by the United States Air Force Office of Scientific Research under Contract
AFOSR-81-0014.

To appear in the Proceedings of the Logics of Programs Conference 1985, Springer-
Verlag Lecture Notes in Computer Science.

Some other proof systems for PTL have been proposed in the literature. For in-
stance, [GPSS] presents a complete Hilbert-style proof system; this system is theoretically
interesting, but not very practical.

Wolper ([W]) discusses the tableau decision procedure for an extended temporal logic
(ETL), a proper superset of PTL. The nondeterministic version of this decision procedure
is optimal, in the sense that it achieves the worst-case lower bound for the complexity of
the ETL decision problem. However, it acts uniformly on all inputs, and may do useless
work on irrelevant parts of them. Moreover, neither the Hilbert-style system of [GPSS] nor
the tableaux of [W] seem “liftable” to first-order temporal logic in a natural and efficient
way.

Cavalli and Farinas ([C], [CF]) extended the classical clausal resolution of [R] to PTL.
Their approach is more promising than the previous ones in terms of both speed and
extensibility. (We believe that their system is complete, but their completeness proof is
incorrect .)

In this paper we extend nonclausal resolution ((MW], [M]) to PTL. Nonclausal reso-
lution has the advantage over the classical clausal resolution of not requiring formulas to
be in clause form, and thus making them more intelligible. For instance, we can express
directly

oO(lp>09 Alg>0P),

while in clause form, as defined in [CF], one would have to rewrite this as

J 805+0000 A Q 80704000

Like regular nonclausal resolution proofs, our proofs are generally concise and clear, and
do not require guessing clever lemmas. Moreover, some attractive refinements to resolution
can easily be incorporated into our system.

In Section 2, we present a version R of our system for O, [Jand <. In Section 4, we
extend it to R to deal also with U and P. Actually, in the extended system R*, we can
regard [Ju and ¢ u as abbreviations for u Y false and u P false, respectively. Both ® and
R+ are shown to be complete, in Sections 3 and 5, respectively. In Section 6 we suggest
how to lift ® and R* to first-order temporal logic, despite the intrinsic incompleteness
problems involved.

2. ®: The resolution system for Q, (J, ¢

We write w to mean that the propositional temporal logic formula w is provable
by refutation resolution, i.e., that there is a sequence of formulas So,. . ., Sn, such that
So = —~w, Sp = false, and each S;is obtained from previous formulas in the sequence by
rules of the system. We refer to the S;’s as proof stens. and to So,. .., Sp as a proof. For
each t,wecall T; =Sp A ... A S;a proof truce.

2

For our proof notion to be meaningful, we require that rules be sound, i.e., that they
maintain satisfiability: Tj4, is satisfiable if and only if T} is satisfiable, for all j < (n — 1).

While pure refutation systems are sometimes considered counterintuitive, we can easily
modify our rules to show directly the validity of a sentence. The modified system we obtain
is similar in spirit to the one in [MW].

We distinguish two classes of rules: simplification rules and resolution rules.

(A) Simplification rules

These rules simplify formulas, or put them in forms where the other rules can be applied.
They are all of the form
G = D.

This can be read:
“let ug be an instance of G, and up the corresponding instance of D;
if ug occurs in the step S; in Tj, then Sy is S; with ug replaced by up.”

e true-false reduction rules:
These rules include

[true = true O true = true Q true = true
[] false = false O false = false O false = false

and the regular true-false reduction rules in propositional logic, such as
false A u = false, etc..

e Weakening rules:
uAv = u, UAV = V.

These rules are restricted to positive occurrences of instances of u A v (i.e., to oc-
currences embedded in an even number, explicit or implicit, of —’s). This polarity
restriction guarantees the soundness of the rules.

. o Distribution rules (= over modalities):

Qu = & u, “OoUu = []u, “Qu = Q u.

e Distribution rules (- over connectives):
-ﬂ(uv v)=>(—1uA —lv), —'(uA v)=>(ﬂuv~1v), U S U

Similar rules are added for the other connectives.

(B) Resolution rules

We will have a resolution operator R to obtain new formulas from given ones. Our reso-
lution rules will be of the two following forms:

e unary:

RG] — D .

This can be read:
“let ug be an instance of G, and up the corresponding instance of D;
if ug occurs in the step S; in Ty, then Sj4; is S; with ug replaced by ug A up
(in the special case where ug = S;, it suffices to take Sj4+1=up).”

e binary:
R[G1, Gz] — D,

This can be read:
“let ug, and ug, be instances of G; and G3, and up the corresponding instance
of D,
if ug A ... A ug occurs in the step S; in Tj, and for some h and k' (possibly
h = h’), ug, = up and ug, = uns, then S;41is S; with uy A.. . A ug replaced by
u; A...ANug Aup;
if for some h and h' (possibly 2 = h’), ug, = Sp and ug, = Sps, then we take
SJ'+1 = uD.”

We will say that the given formulas ug or ug,, ug, are being resolved upon, and that
the derived sentence up is one of their resolvents.

Polarity restriction: The rule is applied only to ug, ug,, ¥g, which occur with
positive polarity (i.e., the given formulas are embedded in an even number, explicit or
implicit, of —’s). Each of our rules has the property that up is a logical consequence of
ugG or ug, A ug,. Therefore, with the polarity restriction, the soundness and usefulness of
our rules is guaranteed.

Here are the resolution rules:

The; basic rule

The basic nonclausal resolution rule for propositional logic is:
R[A(u), B{u)] — A(true) V B{false).

That is, if the formulas A(x) and B(u) have a common subsentence u, then we can derive
the resolvent A(true) v B{false). This is obtained by replacing certain occurrences of u in

A(u) with true, and certain occurrences of u in B(u) with false, and taking the disjunction
of the results. (Here “certain occurrences” means one Oor more occurrences.)

4

This rule does not carry over to PTL. The problem is that while v occurs in both A and
B, it need not denote the same truth value in all its occurrences; intuitively, each occurrence
of ¥ may refer to different instants of time. In other words, PTL is not compositional. For
example, from —u and ¢ u we cannot soundly deduce —true V false, because while the
hypotheses are satisfiable (e.g., by the model which makes u false now, but true otherwise),
—true V O false is always false.

The basic rule is sound in PTL under the following restrictions:

The occurrences of uw in A or B that are substituted by true or false, respectively, are
all in the scope of the same number of ’s, and not in the scope of any [Jor ¢ in
A or B. Intuitively, this means that all the occurrences of u refer to the same instant
of time.

For example, consider the formulas

A: O-~0o(@pVve A oOp and B: OOOp vV OOp

Taking u to be [] p, the rule allows us to derive the resolvent

(O~ Oltreevyng gOp)v(OQfasev O Op).

We only substituted rrue or false for those occurrences in the scope of two (O’s. These
occurrences are not in the scope of any [] or ¢. We cannot replace the other occurrence
of 1 pin A by rrue, since it is not in the scope of two (O’s and it is in the scope of a ¢>.
Also, we cannot replace the other occurrence of [] pin B by false, since it is in the scope
of only one .

This rule is quite general, but does not handle U’S in the scope of [J’s and ¢’s, and
is certainly not complete. To complement this rule, we develop the following additional
rules.

Modality rules

These are rules to handle formulas in the scope of [], & and Q. They allow us to
resolve upon formulas which are otherwise not accessible, because they are in the scope of
some modal operator.

e [] rule:

ROQu]l—u A OQu.
e O rule:

R[oul—u v QO Ou.
e rule

R[Ow, Ov] — O(@Ou A v).

5

After applying this rule, we we will often attempt to resolve [J u and v. Thus, we
could informally write

RO, Ov] — OR[Ov, v|
(Other modality rules can be rephrased similarly, to reflect their intended use.)

e [rule:
R[Qu, ov] — o(Ow A v).

e O O rule:
R(Ou, Ov] — O(Ou A v) vV Ou A Ov).

e O QO rule:
RO, Ov] — O(u A v).

Two useful derived rules are:

e (] derived rule (obtained from the [Jand O Q rules, with weakening):

R[OQu, Ov] — O(Ou A v).

e O O derived rule (obtained from the & and O Q rules):

R[Ou, Qv — u V O(Ou A v).

Our powerful induction principle (presented below) makes some of these rules (in fact,
all but [, O, and O Q) unnecessary for completeness. We include them because they
often provide convenient and natural short-cuts in proofs.

The induction rule
The induction rule (g) is:
if b =(w A u), then
Rlw, O u| — O(~u A Ou A ~w)).
A special case of this rule (when w = —u) is
R[~u, o u] — O(-u A Qu).

This special case of g evokes a form of the least number principle: if ~®(0) and, for some
n, ®(n), then, for some m, d(m) » ®(m+ 1). However, our rule is more powerful in that
it does not require —u, but simply k =(w A u), for some w.

6

The extra flexibility of having an arbitrary w as hypothesis to g will be essential
for some proofs. The special case of u will yield those proofs only if we add a special
rule to introduce lemmas (intuitively, these lemmas would be useful in guessing inductive
sentences). Such a system would depend on clever heuristics to discover good lemmas; of
course, this feature is undesirable.

To show that the special case of u described above is too rudimentary, consider the
unsatisfiable sentence S:

P AOPD OP) A (OCD).
One would like to be able to refute this sentence by induction. The special induction
principle must be applied to conjuncts of form —u and ¢ u, and, therefore, we must take u
to be ¢ —p to resolve upon & O —p. However, since — ¢ —p is not one of the conjuncts of

S, the special rule cannot be applied. On the other hand, taking w to be p A Q P2>0Pr)
the general rule p can be applied; it requires that

F=(A O®FPD 0p A &-p),
which can easily be proved. Thus we can deduce
O(-o-PAO(C-PA~(pAQ (rD>0OP)

and this leads to a refutation of S in just a few trivial steps.

Distribution rules

Consider the following example. We know that

O(=pA-9) A (OPV O

is unsatisfiable; we should therefore be able to derive false from it. A natural way to do
this is to resolve [](—p A —g) with ¢ p to obtain false (by [] ¢ and the basic rule), and
C1(—p A —¢) with & ¢ to obtain false (by the same rules), and to form the disjunction of
these results. We get false v false, and, then, false, concluding the refutation. A key step
in this proof was our ability to resolve over vin O pv O g

This motivates the following V and A rules:
Rlu,viV ... Vuog]— UAv) V...V (uA vg),

Rlu,vi A.. . Avg]— (UAwvy...A vg).

One can write similar rules for the other propositional connectives, e.g., D and if-then-else.

7

An example

Let us prove the validity of the sentence

PAgOP20 0200 p

In other words, we will refute the sentence

[p AOP>00R] A ~OCP

The refutation is:
NpAld wNp2OOR|A-OCP
2)p
30 20 0 p
4) O-OP

5) O(=~OP A O(-OP A -p))
6) O(OP A O~ ODp)
. o(lpvOor)AO-OD)

8) O((P A O-0P) vV (0OOP A O-0D))
9) S((pAO -0 p) Vv (O false v o true))

10) O(pA o O P)

11) o((p A O~¢p) A Ol 2 0OP)
12) g (Ao ~0P)A(PD 00 P)
13) O((p A O~ O p)

A ((falsed = Op)V(true D O O p)))
14) g (PAo-~0pP) ANooOP)
15) o ((P AQO ﬂtrue) A Ofalse)

16) ¢ false
17) false

initial assertion

by weakening (line 1)

by weakening (line 1)

by weakening (line 1),
and distributing — over
by u (from lines 3 and 4)
since F ~(p A=~ p)

by simplifying -~ p
and weakening

by 0

by v distribution

by the basic rule (on ¢ p)
and weakening

by simplification

by ¢ (with line 3)

by [Jand weakening

by the basic rule (on p)
and weakening

by simplification

by the basic rule (on ¢ p)
and weakening

by simplification

by false reduction

To justify line 5, we still need to show a refutation for =— (p A-O p).

1) ==(p A= 0 p)
2YpAOp
3)pA-p

4’) false

initial assertion

by simplification

by [Jand weakening

by the basic rule and weakening

3.Soundness and completeness for R

We have
Soundness theorem. R is sound.
and
Completeness theorem. R is complete.

The proof of the soundness theorem is trivial. We give an outline of the completeness
proof.

Proof outline

The tableau decision procedure of [W] is known to be complete. We show that if this
decision procedure finds —u unsatisfiable, then F u. The resolution refutation for -« may
actually be quite similar to the one found in the tableau.

The tableau decision procedure creates a finite graph with formulas at the nodes. The
initial node contains —u; each node contains formulas derived from those of its parent.
Intuitively, children either

e expand what their parent says about the present (for instance, if N contains [Ju then
it may have a child with [Ju, QO [Ju and u); or

e summarize what their parent says about tomorrow, by eliminating all formulas not of
the form O v and erasing O’s from all others; any node obtained in this way and the
initial node are called pre-srates.

A node is eliminated in the following three cases:
1) Clash: it contains a proposition and its negation;
2) Propagation: all of its descendants have been eliminated;

9) Eventualities: if the node is a pre-state and contains ¢ vy,.. ., O Yk, and on no path
from the node do all the vi’s occur.

—u is found unsatisfiable if and only if all nodes of the tableau have been eliminated.

Our proof has three main parts; each of them corresponds to one of the ways to
eliminate unsatisfiable nodes of the tableau. In each of them, we show that if a node is
eliminated, then the formulas it contains can be refuted by R. They are proved together

9

by induction on the tableau. In this induction, the rank of a node N is smaller than that
of another node M if N is not an ancestor of M,and M is an ancestor of N. In particular,
all nodes in a cycle have the same rank.

In this proof we will often (informally) identify a node with the set of formulas it
contains. Sometimes this set will be identified with the conjunction of the formulas it
contains; of course, this is merely for convenience, and involves no special assumptions.

1) Clash: The first case deals with nodes eliminated because they contain some propo-
sition and its negation. Clearly, the formulas in such nodes could just as well be refuted
in R, with the basic rule and the reduction rules for srue and false.

2) Propagation: The second case deals with nodes whose children have all been elimi-
nated. We can assume (by inductive hypothesis) that all those eliminated children could
also be refuted in R, and show that the parent node can be refuted in R as well. The proof
of this inductive step involves a case analysis, where we consider which tableau rule the
children where created by. Two examples of such cases are:

e The parent node contains vy,...,un,[]V, and the child is created by the rule that ex-
pands []’s,i.e., the child contains u1,...,un,[Jv,v,0 O v.Assume there is a refuta-
tion of uy,...,un,[JV, Vv, Q[JV.to show that there is a refutation of uy,...,un,[JVv.
This is trivial, by the d rule.

e The parent node contains v1,...,Vn,Q ¥1,..., O Uk, where the v;’s are not of the
form (O w, and the child is created by the rule that erases O’s, i.e., the child con-
tains ui,...,Uk. Assume there is a refutation of u1,. .., ug, to show that there is a
refutation of vi,. . . ,¥p, O %1,..., QO k. The O QO rule will give us a refutation for
Ou1y..., O uk, which can be extended to a refutation for vy,..., vn,QU1,...,Q Uk.

3) Eventualities: Finally, the tableau method eliminates pre-states w which contain
some unfulfillable eventualities (in other words, w =v AQu1A... A ugand on no path
from w do all the u;’s occur). We prove than w can be refuted.

e Since the tableau is finite, some paths from w must cycle back to w, and others may
have been stopped further down in the tableau; we will only need to consider those
that cycle back to w, and show that all nodes on these cycles can be eliminated (the
other paths are dealt with by inductive hypothesis).

e Our goal will be to exploit the finite model property, and derive a formula ® which
expresses that at some point we are in one of the pre-states of the cycles, and at the
next moment we are no longer in one. Furthermore, it will be easy to show that ®
can be refuted in R. The following five lemmas implement this basic idea.

e We will want to construct future pre-states from a given pre-state po. More precisely,
we get wq’s that describe what the world can be like after ¢ steps: w; says that one of

10

the pre-states at depth ¢ will be true then. We will call w; the ¢** fringe of po. For
instance, if po = (d gV[Jr)AOrthen wo= po,and

w1 =0QO(0O¢Aor) VOOge vV OoOrAdr) vVoOor

While this lemma “normalizes” formulas (roughly, into disjunctions of conjunctions),
this does not necessarily correspond to how most proofs work-generally, formulas
seem to stay close to their original form.

Lemma 1:
Given a pre-state po, R can derive formulas w; built up from the pre-states pﬁ- at depth
i from po with V and (. Furthermore, each pf occurs in the scope of exactly ¢« O’s.

Proof:

Let wo = po. For all i, it is easy to obtain w;4; from w;:

Use the [J and ¢ rules to expand po, just like in the corresponding tableau. Use
the rules for the connectives to push —’s inwards and to obtain a disjunction of con-
junctions. Apply the O Q rule to pull O’s out of conjunctions. Apply the basic rule
whenever both a proposition and its negation appear in a conjunction at depth 1.
Then, by weakening, throw away all conjuncts at depth i; we are left with those at
depth i+ 1.

This lemma does not depend on any inductive hypothesis, and applies to any pg.

e Lemma 2 uses the inductive hypothesis to eliminate some unsatisfiable pre-states from
the w;’s of Lemma 1. In particular, we can eliminate pre-states outside the cycles for

Ll

Lemma 2:
If in Lemma 1 po = w then the w;’s can be built in such a way that they only include
pre-states from the cycles back to w.

Proof:
As soon as we get a pre-state p outside the cycles for w in the construction of Lemma
1, we apply the inductive hypothesis to refute it.

e The following lemma about the tableau decision procedure shows that we only need
to worry about one eventuality at a time.

Lemma 8: If w contains the unfulfillable set of eventualities { & uy, ..., O Un}, then
some u; does not occur on any of the loops back to w.

Proof:

Suppose, on the contrary, that each eventuality is fulfilled on at least one of the loops
back to w. Then we can find a path where they are all fulfilled: go through the loop
where uy occurs, then through the loop where ug occurs, . . ., then through the loop
where u, occurs. Since this contradicts our hypothesis, there must be one eventuality
that is not fulfilled on any of the loops back to w.

11

Thus, from now on, we will have w = v A u, where u does not occur on any of the
loops back to w.

The unfulfillable eventuality ¢ u is blocked at every time in R.

Lemma 4: '
For any 1, F = (w; A O'u).

Proof:

Distribute Oiu over the pre-states in w; and eliminate some occurrences of & u (by
weakening), in order to derive w} built up from pre-states of the tableau for w with
V and O (and, as usual, all pre-states at the same depth). Let p be one of these
pre-states. p cannot be on the cycles back to w, since it contains u. Hence, we can
refute p in R (by inductive hypothesis). Therefore, w; and w; A O'u can also be
refuted.

Lemma 5 is the main lemma of the completeness proof.

Lemma 5: ‘
If for all § k =(w; A O'u) then k-w.

Proof:
W = wg. From wp and ¢ u, p and weakening yield

O O(u A ~wo)

since F = (wo A u) by hypothesis.
By Lemma 2, we can derive w ;. Furthermore, ~(w; A O u) by hypothesis. Thus, u
yields

O O(O(u A ~wo)) A ~wy).

In general, we can get all w;’s, and check that I ~(wi A oiu), by hypothesis. Successive
applications of u will give

O OO0 Ou A~wp) A . A ~we—y) A ~wy)

for any t. We weaken this to

SO0 .. O(rwo) A ... A ~wi_1) A ~wy).

Call this formula W, and define also ¢ by ¥t = O ;. ¥; says that at some point
we will not be in any of the pre-states in the first ¢t + 1 fringes of wo.

The finite model property tells us that there are only finitely many fringes of wo, up
to collapsing. Thus, for some s, ¥, says that we are in no pre-state reachable from
wo. (As usual, Lemma 2 tells us that we can limit ourselves to pre-states in the cycles
for w.)

12

F = (wo A 1,), simply by writing the sth fringe of wp, and observing that all its pre-
states are denied in 4. Thus, we can apply u (and weakening) once more and get

SO0 A O Q).

Call this formula ®. ® says that at some point we are in one of the pre-states reachable
from wg, and that at the next instant we are in none of them. Of course, this cannot
be the case; in fact, we can refute -1 A O {1,: we derive the first fringe of all pre-
states in —{1,, and check that all the pre-states in these fringes were already in —{1,.
Thus, we derived ¢ false, and hence false.

Remarks: Note that w contains ¢ u. Let r = —u. Thus, Lemma 5 connects r being
proved at all instants with a proof for [Jr. This observation leads us to another
formulation of Lemma 5, which makes clear that we could have reduced infinitary
systems to R (instead of tableaux). Such a reduction is successful only because of the
finite model property.

The w Lemma: If 1-v D Oir for all + then kv D«]r.
We will not explore this relation with infinitary logic any further.

From Lemma 4 and Lemma 5 we obtain that w can be refuted in R.

4. ®*: The resolution system for Q, 4, P (and [, &)

The resolution system R% for O, U, and P is a generalization of ®. In fact, all rules of
R are natural special cases of rules of ", when we regard [Ju and ¢ u as abbreviations
for u U false and u P false, respectively. One important qualification is that P reverses the
polarity of its second argument. Therefore, it may be very convenient to include rules to
act on formulas of negative polarity, like the “goal-goal” rules of [MW]. These rules are
dual to those for formulas of positive polarity. Since this extension is not necessary, we
will not discuss it here.

(A)

Simplification rules

true-false reduction rules:

false Uv = v false P v = false O false = false
true U v = true true P v = —v O true => true
u U true = true u P true = false

and the regular rrue-false reduction rules in propositional logic.
Weakening rules: same as for R.

Distribution rules (- over modalities):
(v Uv)=>(-u)P v, =(u P v)=(~u)Uw, “Qu = O .

Distribution rules (= over connectives): same as for R.

13

(B) Resolution rules

The basic rule

The basic rule for Rt is similar to that for ®. Note, however, that the restriction is now:

the occurrences of u in A or B that are substituted by rrue or false, respectively, are
all in the scope of the same number of (O’s, and not in the scope of any Y or P of A
or B.

Modality rules

These are the rules that relate O, U and P by allowing us to resolve formulas in their
scope.

o U rule:

RulUul—uv (uAQOulu)).
e P rule:

RluPu]l — =v A (uv QO(u P v)).
o UU rule:

Rulv,w'Uvw] —uPvVv(vA@lUu Au)lUu.

That is, unless u Pu’, u does not occur before u’, and hence u Y u is true until u’, and
so are =w, and, of course, u’.

e UP rule:
Rulv,u’ PV — uPvv(~vA(ulUu Adv)Pv.

That is, unless v P u’, u does not occur before u’, and hence —v and u U v are true at
the point where u’ is true before v’.

" e PP rule:
Rlu Pv,u' Pu'] — ((UA W PY)YPv)v ((uPvAu’)PY).

That is, if u occurs no later than u’, then at some point before v we have u and u’ P v’;
on the other hand, if u” occurs no later than u, then at some point before v’ we have
v andu Pv.

e O O rule: same as for R.
We also have two useful derived rules:

e U QO derived rule (obtained from the U and O Q rules, with weakening):
Rulu Quwj— uv QOulvAw).

14

e PO derived rule (obtained from the Pand Q Q rules):

RluPv,Quw|— u v OuPv A w)

Like in R, some of these rules are not essential for completeness, and we present them
simply because of their usefulness. In fact, of all these modality rules, only ¥, P,and O O
are indispensable.

The induction rule

The induction rule of R was:

if - =(w A u), then

Rlw, ou] ¥— O(-u A Ou A ~w)).

The u rule carries over to ®%, with only minor changes; in %, it has the form:

if F(w Au) D v, then

Rw,uPur— (~u AQ(u A-w)P vV Quv).

(Notice that in the special case v = false we obtain R’s u rule.)

The u rule in R stated that, under the assumption that u and w cannot be true
simultaneously, if w is true now, and u is true at some future instant, then eventually u
must change from false to true. In other words, at eventually —u A O(u A —w).In R* this
is refined to take into account that u must be true before v, and hence ~u A O(u A ~w)
must be true before v and Q v.

Distribution rules

The distribution rules are exactly those for R.

5. Soundness and completeness for R+

We have
Soundness theorem. RT is sound.

and

15

Completeness theorem. R* is complete.

The proof of the soundness theorem is trivial. We sketch the proof of the completeness
theorem,

Proof sketch

The proof of completeness for R* is a relatively straighforward generalization of that for
R. In particular, R*, like R, is closely related to the tableau decision procedure for the
corresponding version of PTL. We prove that any formula that can be shown unsatisfiable
by the tableau decision procedure can be refuted by our Rt system. The structure of the
proof is parallel to that of the completeness proof for . However, since there are new ways
to create nodes in the tableau, we need to work out some more cases of “propagation.”
Also, the proof that cycles with unfulfillable eventualities are eliminated is slightly more
complex than for R.

6. Concluding remarks: first-order temporal deduction

We have presented a nonclausal resolution approach to theorem proving in PTL, with
modal operators O, [J, &, and also with the additional modal operators U and P. Both
versions were shown complete. We expect to be able to generalize this approach to get a
viable proof system for first-order temporal logic. In particular, we attempt to combine
the classical “cut” and “‘substitution” rules, which are usually expensive in their use of
heuristics, into resolution rules with unification.

In the proposed first-order system, the unification would be deferred to the end of the
refutation. In this way, we will not need to find unifiers, but just to check that there exist
appropriate unifiers for the refutation. Huet ([H72, 75]) discusses some of the benefits of
such a “constrained resolution” approach. Another benefit of this approach in temporal
Jogic is that we avoid unsound substitutions into the modal formulas under consideration.

While this lifting is rather natural, it has one major problem: the system we obtain
is not complete. A rule to introduce lemmas may prove helpful in enlarging the set of
provable sentences. At any rate, there is no hope of constructing a complete system, since
arithmetic can be embedded in first-order temporal logic. This makes first-order temporal
logic totally undecidable. We expect, however, that most practically useful theorems of
first-order temporal logic will have short and elegant proofs in our nonclausal resolution
system.

Acknowledgements We are grateful to Gianluigi Bellin, Yoni Malachi, Eric Muller, and
Pierre Wolper, for their careful reading of the manuscript and many interesting discussions.

16

References

[C]
Cavalli, A., “A method of automatic proof for the specification and verification of
protocols,” ACM SIGCOMM 84 Symposium, Montreal, Canada, 1984

[CF]
Cavalli, A., and L. Farinas del Cerro, “A decision method for linear temporal logic,”
Seventh Conference on Automated Deduction, Napa, CA, May 1984, pp. 113-127.

[GPSS]
Gabbay, D., A. Pnueli, S. Shelah and J. Stavi, “The temporal analysis of fairness,”
Seventh ACM Symposium on Principles of Programming Languages, Las Vegas, NV,
January 1980, pp. 163-173.

[H72]
Huet, G. P., “Constrained resolution: a complete method for higher order logic,” Ph.D.
Thesis, Case Western University, Jennings Computing Center Report 1117, August
1972.

[H75]
Huet, G. P., “A unification algorithm for typed X-calculus,
Science, Vol. 1, No. 1, pp. 27-57.

2

Theoretical Computer

[MP]
Manna, Z. and A. Pnueli, “ Verification of concurrent programs: The temporal frame-
work,” in The Correctness Problem in Computer Science (R.S. Boyer and J S. Moore,
eds.), International Lecture Series in Computer Science, Academic Press, London, 1982,
pp. 215-273.

MW]
Manna, Z. and R. Waldinger, “A deductive approach to program synthesis,” ACM
Transactions on Programming Languages and Systems, Vol. 2, No. 1, January 1980,
pp. 92-121.

M]
Murray, N. V., “Completely nonclausal theorem proving,” Artificial Intelligence, Vol.
- 18, No. 1, pp. 67-85, January 1982.

[R]
J. A. Robinson, “A machine-oriented logic based on the resolution principle,” Journal
of the ACM, Vol. 12, No. 1, January 1965, pp. 23-41.

(W]
Wolper, P., “Temporal logic can be more expressive,” Proc. 22nd IEEE Symp. on
Foundations of Computer Science, Nashville, 1981, pp. 340-348.

17

