August 1983 Report No. STAN-CS-85- 1053

Transaction Classification to Survive
a Network Partition

by

Peter M. G. Apers
Gio Wiederhold

Department of Computer Science

Stanford Ulniversity
Stanford, CA 94305

I

WD JUNIoN
2,
s - -

-
»--4 »
77D

T LR

Transaction Classification to Survive a Network Partition
Peier M. G, Apers §
Gio Wiederhold
Stanford University

ABSTRACT

When comparing centralized and distributed databascs one of the advantages
of distributed databases is said to be the greater availability of the data. . Availabil-
ity is defined as having access to the stored data for update and retricva!l, even
when some distributed sites are down due to hardware failures. We will investi-
gate the fimctioning of a distributed database of which the underlying computer
network may fail. A classification of transactions is given to allow an implementa-
tion of different levels of operatability. Some transactions can be guaranteed to
commit in spite of a network partition, while others have to wait until the state of
potential transactions in the other partitions is also known. An algorithm is given
to compute a classification. Based on historics of transactions kept in the different
partitions a merge of histories is computed, generating the new values for some
data items when communication is re-established. The algorithm to compute the
merge of the histories makes usc of a knowledge base containing knowledge about

the transactions, to decide whether to merge, dclcte, or delay a transaction.

1. Introduction

When comparing centralized and distributed databases one of the advantages of distributed
databases is said to be the greater availability of the data [1,10]. Availability is defined as having
access to the stored data for update and retrieval, even when distributed sites arc down due to
hardware failures. The reason for improved availability is that data can be stored redundantly;

increasing the probability that data is available on a site which is up.

One disadvantage of distributed systems is the possibility of a network partition. A partition

This work was supported in part by the Netherlands Organization for the Advancement of Pure Research
(Z.W.0.) and in part by the Knowledge Base Management System Project from the Defense Advanced Research
Projects Agency, contract N39-84 C 0211. This research is part of a joint project called Distribution Expertise for
Database Applications (DEDA-project).

+ Current address: Dept. of Mathematics and Computer Science, Vrijc Universiteit, De Boclelaan 1081. 1081 HV
Amsterdam.

-2-

is defined to be a split of a computer network into several subncts, each being able to operate
without conununication among them. Depending on the network topology it is possible that a
crash of only one site may causc a partition of the network. Now updates to replicated data
become problematical, since consistency cennot be maintained between the partitions. One rather
ad hoc solution that has been suggested in literature is to count the number of sites in a partition
and if the partition contains more than half the number of sites of the original network the database
in this partition of the network may process updates as normal [11]; the copies of the database in
the other partitions may only be used for retrieval. When the partition is repaired the updates
made are propagated to the other partition. Obviously, this solution provides only limited availabil-

ity, and perhaps no availability for updates.

By means of an example we will point out the specific problems of updating the database
during network partition. Image we have a database for a bank containing the balances of the
accounts. For simplicity, we assume that at every site a complete copy of the database is available.
Let the balance of account 4 before network partition be $500. During network partition the bank
still wants to allow banking transactions to be executed. A deposit is made to account A of $100 in
one partition and a withdrawal of $200 in another partition. Because there is no communication
between the two partitions we end up with two balances: $600 and $300. After communication has
been re-established the bank Wants to have one balance for account A. Obviously, from the two
balances alone we cannot compute a new balance that reflects the banking transactions made in the

two partitions. So, keeping the balances in the two partitions is not sufficient.

Another problem is caused by integrity constraints. For example, two withdrawals of $400
and $300 take place in the two partitions. Both are valid because the two partition balances remain
non-negative. However, after merging the transactions in the two partitions a negative balance of
$200 CR ($500 — $300 — $400) results. Prohibiting the eventual possibility of a final credit bal-
ance will severely restrict the handling of banking transactions. So, strict maintenance of global
integrity constraints may be reasonable during normal operation but may disable the functioning of

the database during partition.

A third problem relates to the interaction between the database and its environment. For
example, a manager inquircs about the balances of current, savings, and trust accounts during net-
work partition to decide about a loan. Although the balances of the accounts in the local partition
may be sufficient to obtain the loan, it does not mean that after merging the deposits and with-
drawals from all partitions the balances are the same. So, the question is what kind of decisions
can be made based on the data during partition and, also, whether the user must be informed that

the answer to his question has changed after merging the transactions from the partitions.

In the approach we will discuss in this paper we will provide a number of different levels of

service for the transactions of the users during network partition. Some transactions will be

-3-

guaranteed to commit after communication has been re-cstablished and others may commit depend-
ing on constraints. I lence we separate the notions of committing a transaction from making the
changes of the database causcd by the transaction permanent. This means that during the partition
we actually have scveral databases, which have to bc merged again into onc database after com-
munication has been re-cstablished. ‘170 classify the transactions a knowledge base is used contain-

ing knowledge about the transactions, their interaction and their effects on the real world.

A related problem is found in a database which is distributed over a loosely coupled network,
where the nodcs, typically personal computers, have a high degree of autonomy. In this case,
copics of part of a database are available on personal computers that can be hooked onto the net-
work at will. At that time changes made to the local copy of the database will have to be merged
with changes made to other copies.

Related research can be found in [4] where the problem of synchronization after communica-
tion has been re-cstablishcd, is discussed. In [6] a Highly Available System is discussed which
ensures the robustness of partitions. System R* [12] emphasizes autonomy for each partitioq.
In [8] a technique is introduced for dynamic allocation of primary copies and recovery if the data-
base becomes partitioned due to a network partition. Data-Patch [7] is a technique to generate one
big transaction to account for all changes made to the database in one partition; the goal is to find a
scrialization of these transactions. Another technique, presented in [3], tries to minimize the
amount of work to merge the transactions from databases in different partitions. In [S] an algo-
rithm is presented to detect conflicts between transactions executed in different partitions. In {2] a
system which permits distributed resources to be shared in a resilient manner, is discussed. Finally,

in [9] automatic conflict resolving in a distributed file system is discussed.

The paper is organized as follows. In Section 2 we will introduce some notions and define
our goal of surviving a network partition more formally. In Section 3 we discuss the history of data
items in the database. In Section 4 a classification of the database transactions is introduced. In
Section § an algorithm will be presented to compute the merge of the transactions of the different
partitions. In Section 6 it is shown that even though system-wide communication may not occur,
Wc are still able to commit or undo transactions. In Section 7 implementation issues are discussed.

Finally, we end with a summary and a conclusion.

2. Notions and Goal Statement
In this section we will introduce some notions and formalize our goal to survive a network
partition.

A (logical) database is a collection of logical data items. A logical data item will be the unit
of access at the logical level of a database; for cxample, the database itself, a relation, or a tuple.

The granularity of a logical data item depends on the transactions accessing it. A logical data item

-4-

can be represented by multiple physical data items. So, we allow for replicated data.

A network partition is a situation in which a certain site is not able to communicate with
another site, which is not necessarily down. We call the subnetworks that are caused by the nct-
wor k partition partitions. Due to a netwoik partition the set of physical data items belonging to
one logical data item will bc partitioned into a number of subscts, where each subsct is contained in
a partition. For each such subset of physical data items there will be a partition data item. Obvi-
ously, there are no more partition data items for one logical data item than there are partitions. A
partition database is the set of partition data items of all physical data items stored in a particular
partition of the network. We will use the term data item if we either mean a logical data item or a

partition data item.

Figure 1 shows the relationship between a logical data item, its partition data items and its
physical data items during a network partition. We assume that the network partition causes the set

of physical data items to be split into three subsets.

/\

Fig. 1. Relationship logical, partition and physical data items

logical data item

+ partition data items

M physical data items

A transaction is a sequence of database operations that transform the database from one con-
sistent state to another. A database operation consists of either a read or write of a data item. A
database operation accessing a data item actually refers to physical data items for reading or writ-
ing. If a change is made to a data item then all physical data items of that data item have to be
changed. A concurrency control algorithm is a scheduler which interleaves the execution of data-
base operations in such a way that the resulting values of the data items are the same as if the tran-

sactions were executed serially.

For a transaction we define an intentional read-set IR and intentional write-set IW as being a

description of the set of data items it will read, respectively write. For simplicity we assume that

-5-

the intentional read-sct includes the intentional write-set. We assume that the concurrency algo-
rithm makes usc of time stamps. When a transaction is given to the database for execution it is
labeled with a time stamp, which is unique for the partition in which it runs, plus its site number.

A transaction is called committed if its effects on the logical database have been mmade pecrmancnt.

The goal for surviving a network partition is to give the users as much as possible the impres-
sion that their transactions access the logical databasc instead of the partition database. To do so
the values of the physical data items are saved upon discovery of a network partition. Transactions
in each of the partitions exccute based on the locally available data items. After communication
has been re-cstablishcd between two or more partitions, the transactions executed in the different
partitions are redone on the values of the physical data items saved bcforc network partition. It
may happen that some of the transactions cannot be redone because some constraint has been
violated. For the users this means that the transactions and their consequences have to be undone.
Because undoing certain transactions may be impossible, because it would create an inconsistency
with the outside world, we will classify the transactions into a guaranteed to commit class, a condi-
tionally committable class, and a class of transactions that should not be executed during retwork
partition. To guarantee the commit of certain transactions the database administrator has to deter-
mine which contraints have to be relaxed, and to weigh whether the constraints are more important

than the inability to commit the transactions.

3. History of Data Items

In this section WC will introduce the notion of the history of a set of data itemns and USC it to

determine the different levels of opcratability that can be offered to the transactions.

A simple definition of the history of a data item is a scquence of triples:
Citem_id, old-value, new-value),

where item_id stands for the identification of the logical data item, old-value stands for the value of

the data item before the transaction, and new -value for the value after execution of the transaction.

During network partition each partition data item will develop its own history. The problem
is that these histories will have to bc merged to define the logical data item history after communi-
cation has been re-established. A merge of two histories is defincd as the result of interleaving the
two histories such that the result is a valid history, while prescrving the partial orders of both. By a
valid history of data item j we mean a scquence of <i, old-value, new_value> triples such that the
old-value of a triple equals the new -value of the previous tuple. Obviously, with this definition of
valid history we are not able to tncrge the two histories. For example, Fig. 2 shows two historics of

the balance of account A. The balance of the account bcforc network partition was $500. In

-6 -

history 1 there arc two transactions: a withdrawal of $300 and @ deposit of $400; and in history 2: a
denosit of $200 and a withdrawal of $600. Based on these tuples we are not able to construct a
valid history bccausc the value $500 (the old_value of the first transaction in History 2) never

returns as a new_value.

History (, History 2
<A.$500.$200> | <4, $500,$700>
<4, $200, $600> | <A, $700, $100>

Fig. 2. Histories of two partition data items

A more complete Aistory of a data item is a séquence of sextuples:
Litem_id, transaction type, values of input variables, IR, I W, pre-condition>,

where pre-condition is a constraint which has to be satisfied in order to execute a transaction

"instance of transaction type with the given valucs of the input variables. The /R is included to

.

easily determine which data items were accessed. A transaction may access a data item either by its
ID or by contents. In the first case the set consists of ID and in the latter it is a set described by a
condition that has to bc fulfilled by the data items to bc accessed. The rcason that we distinguish
between accessing data items by ID and by value is to allow some flexibility. [f a transaction
accesses data items by value then in the merge of the historics it cannot bc guaranteed that the tran-
saction accesses the same data items becausc their values may have changed. If in the final merge
the transaction should access the same data items they should be accessed by their IDs. A valid
merge of histories is now defined as a sequence of sextuples such that the prc-conditions of each
transaction are satisfied, and that the order of the transactions in the original histories are main-

taincd.)

Kceping a history of the kind dcfinad above gives a better chance of merging the two his-
torics. For example, the two histories in Fig. 3, which correspond to the above example, arc
mcrgeable into a valid history. The quintuples arc labeled for future refcrencc. The superscript
refers to the history.

A merge of the two histories may consist of: W, D2, D1, W2, Not every mcrgc is, of course,
allowable. The prc-conditions may cause a problem in determining the merge of two historics.
For cxamplc, the scquence W L D2 w2 plviolates a precondition, beenusc after the execution of

D? the balance is $400, which is not sufficient to withdraw $600. To make a mergc always possible

History 1

W1 <A, withdrawal, (A.300), (A.bulunce), (A.balance), exist(1) and GE(balancel -),300)>
D<A, deposit. (A.400), (A.balance), (A balance), exist(A)>

History 2

DY <A, deposit.(A.200), (A.balance).(A.balance), cxist(A)>
W2 <A, withdraw al, (4,600), (A,balance),(A.balance), exist() and GE(balance(A),600)>

Fig. 3. Historics consisting of quintuples

and to give the users some kind of guarantee about the execution of their transactions we will clas-

sify them, relax constraints and/or adjust transactions.

Another constraint on the validity of a merge of historics is the external time. As far as the
database is concerned, any merge of histories satisfying the definition of validity is fine. However,
if the database has to report to the outside world, for instance, to compute service charges and pro-
duce monthly statements, the order of the merge must coincide with an order that is acceptable in
the real world. For example, banking transactions that were handled on the same day should
appear in the monthly statement on the samc day. Therefore, WC assume that for each transaction
besides the quintuple also a time stamp is kept. During partition the clocks at the different sites
can not bc synchronized and may drift apart. Therefore, and also to allow for some flexibility in
merging historics, the time stamps of the transactions are only used to secondarily order the transac-

tions from different partitions.

In the next section we will classify the transactions.

4. Classification of Transactions
)

In this section WC will discuss the interaction of transactions and their effects on the real
world. A transaction may access data items ecither by key or value. If during network partition a
data item is accessed by key this data item should also be available after the communication has
been re-cstablished. Thercforce, the existence of the data items should be part of the pre-condition
of the transaction. If, on the other hand, data itcms are accessed by value it might happen that the
data items accessed in the partition differ from the ones accessed by the transaction in the merged

history. The latter may have been caused by transactions in other partitions.

In the next two subsection we will propose a classification for predefined updates and discuss

different ways of using rctricvals.

4.1. Update Transactions

In this subsection we will prov ide the database administrator with tools to put the updates
. into difterent classes for which different levels of service arc provided. In the following we will use
the word transaction instead of update becausc us we will see in the next subsection soine of the

retricvals will be turnied into updates.
The classification consists of the following classes of transactions:

. Unconditionally Committable Class { UCC): a sct of transactions belongs to the UCC if the
transactions can be committed as long as the database in the partition is the whole database,
i.c. the execution of a UCC-transaction in one partition cannot violate the precondition of a

KC-transaction in another partition,

2. Conditionally Committable Class (CCC): a transaction belongs to the CCC if commitment of
the transaction on the logical database cannot bc guaranteed and undoing the transactions

does not lead to inconsistencies with the real world,

3. Non-Committable Class (NCC): a transaction belongs to the NCC if undoing the transaction
will lead to an inconsistency with the real world that cannot be resolved from within the data-

base.

A simple approach to the network partition problem would be to place all transactions in the
conditionally committable class, and detcrmine which transactions have to bc undone after com-
munication has been re-established. Some transactions cannot bc undone because undoing them
would result in an inconsistency with the real world. Thercfore, they should either be put in the

Unconditionally Committable Class or the Non-Committable Class.

Our approach is to combinc the service that can be provided by the DBMS with the service
that is required by the organization to continue functioning as well as possible. The way to do this
is by relaxing integrity constraints and thereby making it possible to guarantee the commit of cer-
tain transactions. For example, a bank may have as a policy never to allow a withdrawal from an

.account with a negative balance. During a network partition a customer may withdraw from
- diffcrent partitions leading to a negative balance after merging the historics on this account. If the
bank would not allow this, the withdrawal would fall into the class of non-committablc transactions,
because the DBMS is not capable of forcing the customer to return the money. But this may be an
unacceptable situation. Therefore, the bank may change its policy by dropping the constraint con-

cerning the negative balance.

To classify the transactions operating on a set of data items we nced to know their pre-
conditions and their post-conditions. The pre-condition and the post-condition of a transaction on
“the databasc are first order logic expressions. The prc-condition specifies a condition that is

required for normal execution of a transaction, i.e. the transaction does not violatc any integrity

-9 -

constraints. The post-condition of a transaction expresses what happened to the data items specified
in the prc-condition or created by the transaction. 'To do so it makes use of the following predi-
cates:

EX(D) means that data item D is accessible,

INC(D.A) (DEC(D, A)) that the valuc of attribite A of data item D has increased (decreased),

CH(D, A) means that attribute A of data item D has changed its value.

This information will be kept in the Transaction Interaction of the transactions on a set of data
items. Let Pre(T) and Pos{T) denote the pre- and post-condition of transaction T'. These pre- and
post-conditions may make = of comparison operations such as GE(x,y) with the obvious mcan-
ing. PosAS) violates Pre(T) if we are not able to prove that PosdS) D = Pre(T) is false. With a
simple, but specialized theorem prover WC try to prove that Post(S)D 1 Pre(T) is false. If theorem
prover is not able to do so cither by lack of information or insufficient time it concludes that
Post(S) violates Pre(T). This specialized theorem prover needs to know about the predicates that
arc used and how they interact. For cxample, if the Post(S) is DEC(D,A) and the Pre(T) is
GE(A(D),x) then it concludes that Post(s) violates Pre(T) because it knows that
(DEC(D ,A)D = GE(A (D),x)) = true.

transaction input pre-condi tion post-condition
open_account (O) A not EX(A) EX(A)
close_account (C) A EX(A) and GE(balance(.1),0) not EX(A)
withdrawal (W) (4,x) EX(A4) and GE(balance(4,x) EX(A) and DEC(A.balance)
deposit (D) (4,x) EX(A) EX(A) and INC(A,balance)
money_transfer (M) | (4,B,x) EX(4) a n d EX(B) EX(A) and EX(B) and
and GE(balance(A4),x) DEC(A,balance) and INC(B,balance)

Fig. 4. Transaction Interaction for transactions on accounts

Figure 3 displays the: Transaction Interaction for transactions on accounts: it shows that the
transactions on the account 4 can only take place after the creation of the account by the
open_account, WC assume that open_account is given an account numbecr. Also, all transactions on
A should have finished before executing the close_account. Jn between these two transactions, the
transactions withdrawal, deposits, and money_transfer may take place under the condition that their

pre-conditions are satisfied. Their effects arc indicated by the predicates EX, INC, DEC, and CH.

.10.

Bcfore presenting the algorithm, which computes the classification, we need to introduce one
more notion. A transaction T is execution-dependent on transaction S if 7 cannot bc committed in
casc the execution of S is undone. E.g., S creates a new data item and 7 operates on it. The cxe-
cution of T depends on the exccution of S in the sense that if .S is undone T has to be undong as

well.

Based on the Transaction Interaction of a sct of transactions operating on a sct of data items
we are able to determine into what classes the transactions fall. The classification is computed by
the algorithm CLASSIFY shown in Fig. 5. It has two input parameters, S7, the sct of transactions
working on the set of data items under consideration and, RT, the sct of transactions that should
belong to the UCC according to the database administrator. Because the transactions in RT will be
execution-dependent on transactions that create data items these will be added to the set R7. To
put the transactions of RT in the sct UCC violations of prc-conditions have to be removed. The
part where these pre-conditions arc rclaxed and/or transactions are adjusted form an interactive ses-
sion with the database administrator. Then the transactions in UCC are made execution-
indcpendent of transactions outside UCC cither by relaxing preconditions, adding these transac-
tions to UCC as well, or by prohibiting the execution of these transactions during network partition.

. The choice is up to the databasc administrator.

procedure CLASSIFY=(set of transaction ST,RT)void:

begin
procedure UNITE =(set of transaction X, Y)set of transaction:
begin
relax some Of the pre-conditions and/or adjust transactions in the sets X and Y to remove
violations of pre-conditions:
update the pre-condition entries in the Transaction Interaction;
UNITE:=XUY
end:
1: add transactions that create data items to RT;
2: UCC: = O:

for T € RT do UCC: = UNITE(UCCA T}) od;
3: while T € UCC is execution-dependent on S € WCC
do
case let database administrator decide what to do of
relax: relax precondition of T such that T no longer execution-dependent is on S,
unite: UCC:=UNITE(UCC.,{S}),
non-comm: put S in the set NCC
esac
od:
4: put the transactions in ST that are not in UCC or NCC in the sets CCC or NCC depending on
whether non-committing may lead to inconsistencies
end

Fig. 5. Procedure CLASSII'Y

Theorem 1 The set UCC produced by procedure CLASSIFY contains only unconditionally com-

mittable transactions.

-11-

Proof A transaction 7 in the set UCC can bc committed on the logical database because the othet
transactions in that sct cannot violate its prc-condition. uand the transactions on which it is
cxccution-dependent arc cithet in UCC or in NCC. lcuce, T is an unconditionally committable
transaction.

a

Now an example. Assuine that procedure CLASS/I'Y of Fig. 5 is called with as first parame-
ter the sct shown in Fig. 4 { O, C, W, D, M } and as sccond parameter the set { W, D }. The exe-
cution of the statement at the line labeled 1 adds transaction O to the set RT. During execution of
the while-statement at the line labeled 2 wC have to unitc {O} and {D }. This can be done by
dropping the precondition that 4 should be unique. A simple way to do this is to let
open_account itsclf generate a unique number by prefixing a locally unique number with the
branch number where the account will reside. From now on we assume that O stands for this
adjusted transaction. In the sccond exccution of this while-statement wC have to unite (0, D} and
{W}. This can be achieved by dropping the constraint "GE(balance(A),x)" in the prc-condition of
withdrawal. Tn the execution of the while-statement labeled 3 we notice that none of the transac-
tions in UCC are execution-dependent on C. So, in the statement at the line labeled 4 C is either
put in the set CCC or NCC depending on whether non-committing may Icad to an inconsistency

with the real world.

4.2. Retriey al transactions

The difference between a rctricval transaction and an update transaction is that a rctricval
does not change the contents of the database. However, during its execution it may writc on output
devices such as a terminal or a printer. This output is a function of the contents of the database,
which is not up-to-date. The knowledge base may be used to indicate whether the result is reliable.
This may be done based on the frequency with which data items have been changed in the past.

Rut, in gencral, the result of a retrieval during partition is not reliable.

.For some applications this unreliability is acceptable. If a person inquires about the balance
of his account and the databasc answers: "The balance of your account shows $500 but due to
hardware problems not all banking transactions have been processed,” the person can be perfectly
happy with that response. If, on the other hand, a manager inquires about ncgative balances of

accounts to cvaluate the creditworthiness of their owners the conscquences might be more severe.

If the result of a retrieval has to have creditable validity it is best to turn it into an update.
Then the output devices arc considered to be part of the database. The output messages will form
just a private workspace of the database, to be used for the rctricval. Because none of the other
retrievals and updntcs belonging to UCC can violate the precondition of the retrieval the retrieval

transaction bclongs automatically to the CCC. During the time that the merge of the histories is

-]2 -

computed the previously computed output, which was kept in the private workspace, is compared
with the newly computed output. If there is any difference the user is notificd. Retrievals that are

not turned into an update need not be recorded in any of the historices.

To reconsider the inquiry of the manager, if the manager had turned the ictricval into an
update an updated list of accounts having a ncgative balance would be produced at the point in the

merged history where his retricval was cxccuted.

In the next section WC compute a merge of the histories of data items in different partitions

using the classification proposed in this section.

5. Computing a Merge of Histories

In this section we will discuss the problem of merging the histories of data items from
diffcrent partitions. An algorithm will be proposed, which on the one hand uses the classification
of the transactions and on the other hand uses a knowledge base containing knowledge about the
transactions, their interaction, and their cffects on the real world. This algorithm will later be used

within an algorithm to determine whether transactions can be comtnittcd or have to bc undone.

After communication has been re-established between two partitions the transactions exccuted
in these partitions have to be merged. The merge is done based on the histories that were kept for
the sets of partition data items in the diffcrent partitions and the ‘classification of the transactions.
In general, these historics from the two partitions consist of sequences of conditionally and uncon-
ditionally committable transactions. If the re-establisluncnt of the communication is system-wide
the resulting database is the logical database and all transactions in the final history can be commit-

ted on the logical data items. Otherwise, the history is kept for future merging.

To be able to operate on the histories we will represent them in a graph called the History
Graph. A History Graph consists of nodes representing the transactions and directed edges
representing a dependency among the transactions. Transaction T; depends on T; if
TS(T;PTS(77) and also if TS(T;)= TS(T;) but T; appears after 7; in the history of the data

. iterns, and IR (T;) intersected with /W (T;) is not cmpty. In this case there will be an cdge from 7;
to 7;. T; is called a ancestor of T; and T; is a dependent of T;. 'The casc of identical time stamps
has to be considered because in computing a valid merge of histories some of the titnc stamps may
be changed. In that case the order of the transactions in the history determines the depcndency.
The “roots” of the History Graph are the last committed transactions on the logical data items
before network partition, indicated by LCT. The post-conditions of all LCTs indicate that all data

items have changed.

Figure 6 shows a History Graph for two accounts 4 and B with transactions for deposits (D),

withdrawals (W) and money_transfers (M) from onc account to another. The roots of the graph are

-13-

the last committed transactions on the accounts, indicated by L.CT(A4) and L.CT(B).

1CT(4)" @ s LTy
Dy(4) ©® T
® Mz(A,g)
~
Wid4) ® ® DyB)

Fig. 6. A History Graph for accounts A and B

The procedure we propose to compute a merge of histories is called MERGE and is shown in
Fig. 7. The knowledge base required is shown in Fig. 8. The procedure starts with creating one
graph, called the RESULT, by identifying the last committed transactions of partition data items of
the same logical data item. Then it goes through the histories to determine which transaction will
appear in the merge. Every time it executes the while-statement it looks for a candidate mergeable
transaction, which is a transaction whose ancestors have already been merged and which has the
smallest time stamp. Procedure CMT computes this transaction and while doing so it might delete
some transactions from the CCC and reconnect their dependents to the last committed transactions
of the corresponding data items. The rules concerning the order in which the transactions from the
CCC are deleted from the cycle are not shown in the knowledge base. Procedure CMT throws
away identical transactions to allow procedure MERGE to merge two histories whose beginnings
are identical because they concern transactions executed in the same partition before another net-

work partition occurred.

The procedure MERGE accesses the knowledge base to dctcrmine which action to take. The
actions it can take on the T being the CMT are merge, delete, and delay. Merging a transaction
T, into the final history means that the transaction will be part of the history of the data items on
which it operates. Every dependent 7 of a ancestor of 7 is made a dependent of 7} if the inten-
tional read set of 7 has a non-empty intersection with the intentional write set of 7. Deleting a
transaction 77 means that it is r.cmovcd from the history. All dependents of 7 arc made depen-
dents of the ancestors of Ty depending on the intersections of the intentional read sets and inten-

tional write sets. Delaying a transaction 7; means that the order of exccution between transactions

-14 -

procedure MERGE=(history H1,H2;vef history FH;ref decision DL)void:
begin

history graph HGI, HG2, FinalHist,

vef decision DecList: = nit;

transaction T7: = null transaction;

procedure CMT= (history graph R)transaction:
begin
transaction T3
repeat
let T be the candidate mergeable transaction of R;
if no such T exists
then
there is a cycle in the history graph R;
access knowledge base to determine which conditionally committable transaction
should be deleted
elseif T is the same as the previous candidate mergeable transaction
then T = null transaction
fi
until T# null transaction;
CMT:=T
end;

let HGI and HG2 be the history graphs of HI and H2, respectively;,
let RESULT be the history graph that results from identifying the LCTs of HGI and HG?2;
white there are transactions which are not marked merged in RESULT

do
T1:=CMT(RESULT),
access know ledge base (RESULT, T1, ACTION);,
case ACTION in
merge: (make every transaction T w hose ancestor is also a ancestor of Tland IR(T)(N
IWTD # 0, a dependent of TI,
foreach dependent S of TI
do
if TS(S) < TS(T'!) then T&S’):= TS(T1) fi
od;
mark Tl as being merged,
add decision to merge Tl to DecList)
delete: (connect a dependent T of T1to a ancestor Ai of TLif IR(T) N IW(AD # 0;
remove T1l from RESULT,
add decision to delete T1to DecList);
delay: (make T1 a dependent of the last UCC-transaction, whose pre-condition might
be violated by the execution of TI, say T, and remove edge from Tlto Ai
where Ai is an ancestor of both Tland T)
€sac
od;
FH: = FinalHist;
DL: = DecList
end

Fig. 7. Yroccdure MERGE

from different partitions will deviate from the time stamp ordering. T is made a dependent of the
last UCC transaction T whose precondition is violated by the post-condition of T. The depen-

dency of T on the mutual ancestor of 7'y and 7’ is removed from the history graph.

The rules in the knowledge base should be such that a transaction belonging to the UCC is

merged into the result history. The other rules concerning the transactions from the CCC should

-15-

be such that most of them are merged into the resulting history. Note that a transaction belonging
to the CCC may only be delayed when there is system-wide communication. The knowledge base
is cstablished at database design time and is fully replicated. Figure 8 only shows a minimum set
of rules. A possible extension is to test in rule 2 whether the transaction violates the prc-condition
of another transactions belonging to the CCC and then to decide to dclcte the first transaction, thus

selectively backing out transactions [5].

Rule I:
if T belongs to UCC then ACTION: =merge fi;

Rule 2:
Af T belongs to the CCC and its pre-condition is not violated and
T does not violate the pre-condition of a UCC transaction
then ACTION: = merge
fi;

Rule 3: .

if T belongs to the CCC and its pre-condition is violated
then ACTION: = delete

fi;

Rule 4:
if T belongs to the CCC and its pre-condition is not violated and
T violates the pre-condition of a UCC-transaction
then ACTION: = if there is system- wide communication and
time stamp ordering is important then delete else delay

f i

Fig. 8. Rules of a knowledge base

Theorem 2 Procedure MERGE together with the knowledge base as shown in Fig. § computes a
valid history.

- Proof A history is valid if the partial order imposed by the time stamp ordering in the different par-
titions is retained and if the pre-conditions of all transactions in the resulting history are fulfilled.

Because the transactions in the different partitions are considered in time stamp ordering the
paitial order is maintained. The prc-condition of a UCC transaction cannot be violated by other
UCC transactions by definition and neither by CCC transactions due to the fourth rule of the
knowledge base, and the fact that the UCC transaction is not execution-dependent on CCC transac-
tions. Neither can a combination of CCC transactions and UCC transactions violate the pre-
condition of a UCC transaction, because of the same rcasons as above. Also, a CCC transaction

whose prc-condition is violated is deleted from the resulting history graph.

- 16 -

Now we will give an example. Assumc that the History Graph RESULT afier identification
of the LCTs looks as shown in Fig. 9. Furthermore, we assume that the transactions D, W, and M
belong to the UCC and C belongs to the CCC. The superscripts of the transactions indicate the
partition in which they were executed and the subscripts indicate the local time stamp. Transac-
tions which are merged in the final history are labeled with an asterisk. First, M { is merged and
D3 and W become its dependents. The result is shown in Fig. 10. Then D} becomes the CMT
and is merged; W$ becomes its dependent. After W# has been merged it is the turn of CZ. Exe-
cution of C7 violates the precondition of W and therefore it is delayed. The result is shown in

Fig. 11. Now both W} and C can be merged and the final history is obtained.

LCT(A) » ® ICT(B)
/ A
D1(4) o v MEA.B)

\\. o

Fig. 9. History Graph RESULT after identification of LCTs

wi(B) e Wi(4) ®

6. Merging and Committing Transactions

In the previous section we presented algorithm MERGE to merge the histories of different
partitions.. In this section we will show how this algorithm is used by the sites in the network after
-‘communication is re-established between all or several partitions, and when the sites decide about
committing transactions. WC make a distinction bctwcen merging and committing during system-
wide communication and during network partition. The former can be used in environments where
partitions are very unlikely, and the latter where simultaneous complete system-wide communica-
tion hardly ever occurs. An example of the latter environment is a locsely coupled system, e.g., a

network consisting of personal computers, which have a high degree of autonomy.

-17 -

LCr(ay - LCr(B)
~
Di4) o > o M{(4,B)
Wi(B) e W2(4) o C}B)

Fig. 10. History Graph RESULT after merging M {

1CT(A) ® ® 1CI(B)

o MIAR)

A

[o—<(—e C(C}(B)
+ wi(B)
o

Fig. 11. History Graph RESULT after delaying C?

D} (4)

w3 (a)

6.1. Merging and Committing during Systems-Wide Communication

In an environment where a partition hardly ever occurs the best strategy is to wait with merg-
ing and committing until system-wide communication has been established again. Then algorithm
MERGE can be executed to merge the histories of the different partitions. Because there is
system-wide communication the algorithm may also decide to delay certain transactions to increase
the number of transactions that will finally bc committed. After that, the list of decisions is scanned
to 1) commit the transactions that arc merged, anc\ 2) undo the transactions that are dcletcd. Undo-

ing a transaction means that the user will be notified of the fact that his transaction cannot bc

_18.

committed and that appropriate actions should be taken. How committing and undoing affect the
data at the different sites in the network will be discussed in the next section on implementation

issues.

6.2. Merging and Committing during Network Yartition

In a loosely coupled network there will hardly ever be system-wide communication. So,
merging and committing transactions cannot bc postponed until thesc system-wide communications
occur. In this section WC will present an algorithm, which is executed when two or more partitions

have communication again, to decide to commit or undo certain transactions.

Before presenting the algorithm we will introduce the notion of a partition-scenario graph. A
partitiorl-scenario graph consist of nodes and directed edges. A node represents a partition and is
labeled with the numbers of the sites in the corresponding partition. A directed edge from node 2;
to node P; means either that 1) P; was part of P; but that a partition caused P; to split into £; and
some other partitions (P; is called a phrtitiorz-node), or that 2) communication has been re-
established between P; and some other partition(s) to form P; (Pi is called a merge-node). P;is

called the predecessor of Pi.

All sites will keep track of their own partition-scenario graph. Because sites within one parti-
tion are able to communicate with cach other they will have the same graph. Furthermore, because
there is no system-wide communication none of the sites will have a partition-scenario graph that
completely describes the current partitions. ‘Therefore, the graph is only used .to keep irack of the
way partitions and reconnections occurred. Figure 12 gives an example of a. pa&on-scenario
graph. For example, the node labeled 23456 is a merge-node and the node labeled 23 a partition-
node. Note, the sites in the partition corresponding to node 1234 do not know anything about
what happened to sites 5 and 6.

As the partition-scenario graph shows, two things might happen: a network partition or the
re-establishment of communication. In the both cases the sites in each partition will update their
partition-scenario graph. In the latter case algorithm COMMIT_UNDQ is executed in the newly
formed partition. Figure 13 shows algorithm COMMIT-UNDO. The algorithm first exccutes
algorithm MERGFE to computc the merge of the histories and the decision list DL of the partitions
between which communication has been re-established again. A decision is either the merge or
delete of a transaction T. Then it checks whether the decisions in DL are consistent with the ones
taken by predecessor merge-nodes. If so, they are either committed or undone, and the
corresponding decision is taken from the decision list. Note, the decision list DL consists of both
the decisions taken by the current partition # and the delete decisions taken by the direct predeces-

sor merge-nodces of P.

-19-

time

Fig. 12. An example partition-scenario graph of the node labeled 1234

procedure COMMIT_UNDO=(history H1, H2;partition P;ref history FH)veid:
begin
gprocedure all_sites_know=(decision D)boolean:
begin .

set of site .S}
S . = <ites w the partition P,
visit recursively the predecessors of P in the partition-scenario graph and add the set of sites
corresponding to the predecessors if they are merge-nodes and they have also taken decision

all-sites-know = (SS = whole network)
end;

MERGE(H1,H2,FH,DL),
DL := DL + delete decisions in DLs of predecessors of P without doubles,
foreach decision D= (type,T) in DL do
case type in
merge: if all_sites_kinow(D) then commit(T) fi;
delete: if all.. sires _know(D) then undo(T) fi
esac,
od;
end

Fig. 13. Algorithm COMMIT-UNDO

Algorithm COMMIT_UNDO will bc executed in different partitions. It may occur that exe-
cutions. of algorithm A/ERGI take different decisions about a transactions. But as WC will prove
below the condition that all sites know and agree about a particular decision is sufficient to commit

or undo a transaction inspite of different decisions taken by algorithm MER GE.

- 20~

Theorem 3If T}, is committed or undonc in partition P all transactions T (x<y) arc already com-

mitted or undone.

Proof The theorem holds of course for transactions known in partition P at the time 7” is commit-
ted or undone, because the decision list is ordered on the time stamps of the transactions. So, the
only thing we have to show is that P knows all T, with x<y. P knows that all sites know and
agree about the final decision about 7, through the application of algorithm MERGE in the
different partitions (otherwise £ could not decide to commit or undo 7,). Through these same
applications of algorithm MERGE P also knows about the transactions executed at .other sites
before T,

O

Theorem 4 If partition P decides to commit or undo transaction 7 no other partition will take a
decision to the contrary, and all unconditionally committable transactions will be committed.

Proof Partition P can only commit or undo transaction T if it can see in the partition-scenario

graph that all sites agree. So, it is impossible that another partition will take another decision.

The precondition of a unconditionally commitable transaction U executed in partition P can
only be violated by a conditionally committable transaction C with a smaller time stamp executed
in a partition that is not a direct or indirect predecessor of P. Transaction C can never commit
because it would require all sites to agree about merging C into the final history and all sites that
know about U, the sites in all successors of P, will disagree. Therefore, all unconditionally com-
mittable transactions will commit.

cl
Example

Figure 14 shows the partition-scenario graph know by sites in the partition 45. In partition 1
transaction X was executed, in 23 Y5, and in 45 Z3 (the subscripts are their local time stamps).
All three transactions belong to the unconditionally committable class, and the post-condition of X
violates the pre-condition of Y, and the post-condition of Y violates the pre-condition of Z.

In the merge-node 12 the following two decisions were taken: (merge,X1) and (delete, Y).
No transactions were committed or undone. In merge-node 35 the following two decisions were
taken: (merge, Y,) and (delete,Z3). Again no transactions were committed or undone. In merge-
node 134 three decisions arc taken: (merge,X1), (delete, Y5), and (merge,Z). Transaction X can
still not be committed because site 5 does not know about the merge decision. In merge-node 25
two decisions ara taken: (merge ,X1) and (delete, Y5). The same is true here because the sites in
partition 25 do not know yet that the sites in partition 134 have taken a merge decisions about X.
In merge-node 45 two decisions arc taken: (merge,X1) and (merge ,Z3). The dccison list DL now

consists of

-2]1 -

Fig. 14. Partition-scenario graph of partition 45

(merge,X7)
(delete, Ys)
(merge,Z5)

From the partition-scenario graph we can see that all sites in the network know about (merge, &)
and (delete,Y). Thereforc, transaction X is committed and Y is undone. A final decisions about

transaction Z 5 cannot be taken at this point.

time

-22 -

7. lmplementation Issues

Until WC now have carefully avoided to talk about implementation aspects, bccausc we
wanted to explain the notions and algorithms without going into the details of the implementation.
Furthermore, there is of course no unique implementation. In this section wc wiil merely show
how everything can be implcmentcd in a straightforward but incfficient way and indicate ways of

assuring the efficiency of the algorithms.

When a partition occurs the values of the data items produced by the last committed transac-
tions arc saved. Transactions that are not able to commit becausc they arc not able to access all
their required logical and/or physical data items are aborted and have to be executed again under

the network partition mode.

During network partition transactions are executed in the local partition as if the available
data comprise the whole database. If, under normal circumstances, a transaction would commit it is
put in the history of the partition data items it accessed. If a transaction cannot access all its

required data items it is aborted.

After communication has been re-established the histories of the partition data items of the
different partitions are merged into a valid history and the transactions placed in this history are
redone based on the values of the physical data items saved before the partition. This may be
improved by starting from the values of the physical data items obtained during network partition
and try to incorporate transactions executed in the other partition by undoing and redoing transac-
tions [3]. This approach requires that the inverses of the transactions are known. By redoing WC

mean that only thc database operations of the transaction are executed again.

Conclusion

A schema has been proposed to allow for near normal fimctioning of a database during a net-
work partition. A knowledge base is used to store knowledge about transactions, such as pre- and
post-conditions and their classification. The classification indicates whether a transaction is
guaranteed to commit or not after communication has been re-established. An algorithm is given
to compute the classification of the updates. This algorithm requires interaction with the database
administrator to relax constraints and/or adjust transactions. Based on this classification and rules
in the knowledge base the merge of histories can be computed after communication has been re-
established. If system-wide communication is restored, the transactions in the computed merge of
histories can be committed. Otherwise, the history has to bc kept for future merges. A proof is
given that the rules in the knowledge base guarantee that unconditionally committable transactions
arc committed on the logical database. Finally, the problem of committing transactions was investi-
gatcd in an environment where sy-stem-wide communication hardly ever occurs. An algorithm is

given that decides to commit or undo transactions.

Acknowledgement

Wc would like to thank Wolfgang Efieisberg, Goran Fagerstrom, and Arthur Keller for the fruitful

discussions we had, and Hector Garcia-Molina for his comments on an earlier version of this paper.

References

L.

10.

ADIBA, M., CHUPIN, J.C., DEMOLOMBE, R., G.GARDARIN,, AND BiHAN, J. LE, “Issues in
Distributed Data Base Management Systems: A Technical Overview,” Proc. 4th Int. Confer-

ence Very Large Data Bases, pp. 89-110 (September 1978).

ALSBERG, P.A. AND DAy, J.D., “ A Principle for Resilient Sharing of Distributed Resources,”
2nd Int. Conference on Software Engineering, pp. 562-570 (1976).

BLAUSTEIN, B.T., GARCIA-Me LINA, I-1., RIES, D.R., CHILENSKAS, R.M., AND KAUFMAN,
CH.W., “Maintaining Replicated Databases Even in the Presence of Network Partitions,” ,
CCA, Boston ().

CHILENSKAS, R.M., BLAUSTEIN, B., anp RIES, D.R., “Concurrency After the Fact,” pp. 63 in

Symposium on Reliability in Distributed Software and Database Systems, ed.
Wiederhold,IEEE, Pittsburgh (July 1982).

DAVIDSON, S.B. AND GARCIA-M OLINA, H., “Protocols for Partitioned Distributed Database

Systems,” Proc. Symp. on Reliabilty in Distributed Software and Database Systems, pp. 145-
149 IEEE, (198 1).

EFFELSBERG, W., FINKELSTEIN, S., AND SCHKOLNICK, M., “Single Database Image in a
Cluster of Processors,” Report RJ 4175 (46103), IBM San Jose (Jan. 1984).

GARCIA-Me LiNA, H., ALLEN, T., BLAUSTEIN, B., CHILENSKAS, R.M., anp RIES, D.R.,
“Data-Patch: Integrating Inconsistent Copies of a Database After a Partition,” Proc. Third
Symposium on Reliability in Distributed Software and Database Systems, IEEE, (1983).

MINOURA, T. aND WIEDERHOLD, G., “Resilient Extended True-Copy Token Scheme for a
Distributed Database,” IEEE TSE SE-8(3) pp. 173-189 (May 1982).

PARKER, D.S. axo ET, AL., “Detection of Mutual Inconsistency in Distributed Systems,”

Proc.5th Berkeley Workshop on Distributed Data Management and Compuler Netw orks, pp.
172-183 (February 19800).

RoTIINIE, J.B. AND GoopMAN, N., “A survey of research and development in distributed
database management,” Proc. 3rd Int. Conference Very Large Data Bases, pp. 48-62
(October 1977).

224 -
11. STONEBRAKER, M.R. AND NuuHor n, E., “A Distributed Version of INGRES,” Proc. 2nd

Berkeley Workshop Distributed Data Management and Computer Networks, pp. 19-36 (May
1977).

12. WiLLIAMS, R. AND ET, AL., “R". An Overview of the Architccturc,” RJ 3325, [BM
Rescarch Laboratory, San Jose, Calif.(December 1981).

