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Abstract: We present a system of interpolating splines with first and approximate sec-
ond order geometric continuity. The curves are easily computed in linear time by solving
a system of linear equations without the need to resort to any kind of successive approxi-
mation scheme. Emphasis is placed on the need to find aesthetically pleasing curves in a
wide range of circumstances; favorable results are obtained even when the knots are very
unequally spaced or widely separated. The curves are invariant under scaling, rotation,
and reflection, and the effects of a local change fall off exponentially as one moves away
from the disturbed knot. '

Approximate second order continuity is achieved by using a linear “mock curvature”
function in place of the actual endpoint curvature for each spline segment and choosing
tangent directions at knots so as to equalize these. This avoids extraneous solutions and
other forms of undesirable behavior without seriously compromising the quality of the
results.

The actual spline segments can come from any family of curves whose endpoint curva-
tures can be suitably approximated, but we propose a specific family of parametric cubics.
There is freedom to allow tangent directions and “tension” parameters to be specified at
knots, and special “curl” parameters may be given for additional control near the endpoints
of open curves.

This research was supported in part by the National Scicncc Foundation under grants
IST-820-1926 and MCS-83-00984 and by the Systems Development Foundation.



1. Introduction

The problem of fitting a smooth curve through a set of points on the plane has many
important applications in computer graphics, computer aided design, and typesetting.
Often there is no pre-existing curve to approximate except possibly a freehand drawing,
and the only requirement is to find an aesthetically pleasing curve that the computer
can easily manipulate. For some interactive applications the curves can be controlled by
manipulating points that do not lie on the curve, but many applications require the control
points to lie on the curve. For example, the control points may be obtained by digitizing
key points on a drawing, or there may be a priori knowledge that the curve must pass
through certain points.

Suppose the curve must pass through points 29, 21, . . . , 2n; either 29 and 2, are to
be the endpoints of the curve, or 29 = 2, and the curve is to be a closed loop. Optionally,
there may be direction vectors w; specifying the curve slope at some 2;. For example,
some of the z; may have been selected as vertical extrema so that the curve must pass
through them horizontally. It is desirable for the curve to be invariant under scaling,
rotation, and reflection in the sense that if T is such a transformation then applying T to
the computed curve should yield the same result as computing a new curve through Tz
for 0 € ¢+ < n with direction vectors Tw;.

The curve should have at least approximate continuity of slope and curvature where
no directions are given, and it would also be desirable to have some notion of extensibility
and locality. A system of splines is extensible if the curve generated from knots 2gp, 21,
...y 2y 1s identical to that generated from knots 26, z'l, C e z;H_l where 2! = z; for © < k,

1
z; = 2y for = > k, and z;c is on the curve segment joining 2x—j; and 2. In other words,
adding a new knot already on the curve must not change it. In practice it is extremely
difficult to achieve exact extensibility. The only well-known extensible spline family is the
“curve of least energy” that minimizes the integral of squared curvature with respect to
arc length [3,6], but this curve is difficult to work with. It is interesting to note that
when the knots are nearly collinear, the curve of least energy approaches the simple non-
parametric cubic spline passing through the given knots with continuous second derivative.

The splines that we deal with here will share this property.

T

20 21 22 2'3

1. The effect of changing wgy while preserving exact locality

* The concept of locality is that if one ‘of the knots or direction vectors is pcrturbed, the
changes should be confined to a few surrounding.spline segments. [lere we will settle for a
kind of exponential decline in influence rather than a strict limitation to a few surrounding
knots. As the example of Figure 1 shows, it is difficult to have both exact locality and
continuity of curvature even for nearly straight curves. If wy is in the direction of 23 — 29
then the desired curve is obviously a straight line, yet there is no way cubic curve can join
a straight line with continuous curvature.

B-splines have locality and continuous curvature, but of course they do not interpolate.
The interpolating splines analogous to cubic B-splines, sometimes called “natural cubic
splines,” do not have locality but can easily be computed by solving linear equations. If
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no directions are given, there is a unique piecewise parametric cubic, closed curve that is
C? continuous with respect to the parameter and passes through n given points in order.
Such a curve can be uniquely represented as a cubic B-spline, and its control points are
linear combinations of 2y, 21, . . . 2.

As shown in [2], natural cubic splines do not perform well for unequally spaced knots
because the spacing of parameter values al knots does not reflect the spacing of the knots.
Better results can be obtained by setting the parameter at each knot 2; to a value t; where
tj —tj_1= ”zj — z;_4]| for 1 < 7 < m, and requiring second order continuity with respect
to the parameter as shown in Figure 2b. This chordal paramcterization improves on the
uniform parameterization of Figure 2a, but. the splines that we shall develop still have
more gentle curvature in this case as shown in Figure 2c.

2a. Natural cubics 2b. Cubics with chordal 2¢c. Cubics with mock
parameterization curvature constraints

" Figure 2 points out the difference between geometric and parametric continuity. Re-
quiring first and sccond order continuity with respect to the parameter uses up four degreces
of frecdom per knot, enough co completely determine a parametric cubic spline. One of
these dcgrees of freedom can be reclaimed and put to better use by altering the parameter
spacing as shown in Figure 2b, but another dcgreo of freedom can be made available by
requiring only continuity -of slope and curvature.

In [1], Barsky and Beatty show how two extra degrees of freedom can be obtained
for B-splines by requiring only geometric continuity. We need to obtain similar degrees
of freedom for interpolating splines, but rather than trying to adapt the bias and tension
parameters of [ 1], we shall first concentrate on finding good defaults to work from. The



new parameters will be of little value if it is difficult to set them so as to obtain reasonable
results. Any system of cubic interpolating splines must implicitly provide some mechanism
for fixing the two parameters and it’is not at all clear that this best done by requiring any
form of parametric C? continuity.

In [5], J. R. Manning takes an interesting approach to this problem. He defines a
specific family of curves so that so that there is a unique one for each pair of initial and
final points and directions. He then selects spline directions at each knot so as to achieve
geometric continuity. Although Manning does not does not deal with the possibility of some
directions being specified in advance, his approach provides a certain degree of locality in
that cffects of local perturbations do not propagate past knots where a direction is given.

With Manning’s approach, both degrees of freedom are available to control the shape
of the curve, and defaults can be selected so as to obtain the most pleasing curves. Section 2
explains how to select the defaults by choosing two functions and using them to determine
the magnitudes of the velocities at each knot in such a way as to guarantee that the curves
generated will be independent of scaling, rotation, and reflection. We can then provide
two “tension” parameters for each knot by simply dividing them into these functions.
Essentially the same approach would work for other kinds of curves, although there may be
more parameters to choose. We select parametric cubics here because they are essentially
the simplest curves that can pass through two arbitrary points in two arbitrary directions.
Conic sections do not suffice because of their inability to handle points of inflection.

3. Three splines of the type proposed in [5]

One apparent disadvantage to this approach is the difficulty in solving for the direc-
tions that provide continuity of curvature. Manning proposes an iterative approximation
sclicme that secms to work well in practice, but he admits that there is not always a unique
solution and there is no guarantee that the iteration always converges to the desired solu-
tion. Cubic splinces often have very low curvature at their endpoints when they have very
sharp bends internally, and this can introduce extrancous solutions as shown in Figure 3.
The three curves shown are all curvature continuous open curves that have given directions
at 2y and 22, but regardless of the initial conditions, Manning’s iteration always converges
to onc¢ of the asymmetrical ones with sharp bends. If zg is raised and 2o lowered until the
angle zyz;2; is about 122°, the asymmetrical solutions merge with the symmetrical ones
and the rate of convcrgence for Manning’s iteration approaches zero.

While these kinds of problems do not seem to occur when the angles involved arc not
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so large, much additional testing would be necessary in order to verify this. In section 3,
we show how all such problems can be avoided by setting up a system of linear equations
that are easy to solve and guarantee approximate continuity of curvature. We derive the
specific equations appropriate for the family of curves discussed in Section 2, but similar
equations could be derived for many different classes of curves.

2. The Magnitudes of the Velocity Vectors

The subproblem to be solved in this section can be stated as follows: Given two points
z; and 2z;41, and two unit vectors w; and w;4j, find an aesthetically pleasing parametric
cubic z(t) so that 2(0) = z;, z(1) = 2i+1, 2'(0) = ow;, and 2'(1) = Pw;y;, where «
and f are positive real numbers and z’(t) is the componentwise derivative (z’(t), y’(t)) of
z(t) = (:z:(t),y(t)). We al so wish to introduce two “tension” parameters 7; and T;+1 such
that plcasing curves will be obtained when 7; = T;4+1 = 1, and as the tensions approach oo,
the curves will approach the line segment joining 2; to 2Z;41.

In order to guarantee that the results are independent of translation, rotation, and
scaling, we shall begin by finding a function ?:'(t) such that

£(0) = (0.0). 2(1) = (1,0),
1

5 1 . 5 .
2'(0) = —p(0, ¢) . (cos 8, sine), and 2(1)= —oa(8,¢) - (cosd, -sing) (1)
Ty Ti+41
where p and o are positive real functions to be determined later, 8 = arg w; —-—a.rg(z,-_H ——z;),
and ¢ = zu'g(z,-+1 —2z;) —arg w; 4. (Here arg(z, y) is the angle w such that (:z:, y) is a positive
multiple of (cos w, sin w).) We then set

2(t) = 2 + (‘”'1 ~ %o Yo U1t ) 2(t). (2)

Y1— Yo Ti1— X9

It is not hard to sec that the parametric cubic satisfying (1) has Bézier control points
(0,0), (p/37:) - (cos 0,sin0), (1 — (0/37+1) cos ¢, (0/37i+1)sin $), and (1,0), so that

occos¢ osing
- )

T

3(t)= ﬁ_t(1— t)?(cos,sin0) + t3(1—1t) (3 ) +t3(1,0). (3)

Tit1 Tit1

It only remains to choose positive functions p(f, ¢) and o(0, ¢) so that p(0, ) = o(¢, 8) =
P(—o, _‘b)
In [5) Manning chooses
2 ’ 2

1+ (1—c)cosl+ccos¢ and o(0,9) = 1+ccos¢+ (1—c)cosb (4)

p(0, ¢) =

and then cmpirically selects ¢ = 2/3 to obtain the most pleasing family of curves. Here
we shall attempt to do a systematic analysis of the vast range of possible functions to
dcterminc whether slightly more complicated functions will yicld better results. These
functions will have to be evaluated only once for each segment of the spline curve, and
they have a strong influence on the final shape.



2.1. Mathematical measures of smoothness

One common way of evaluating the smoothness of curves is to integrate the square of
curvature with respect to arc length. For 2 = (%,4)

1 ranar _ anan2
/k2ds:/ (7°% = 2"9)" ' (5)
0

(:%/2 + §I2)5/2

This can be simplified somewhat but it still proves to be intractable analytically. This is
not surprising considering the complex behavior of numerical solutions.

Equation (5) is exactly the energy function that the curve of least energy minimizes,
but if we restrict £ to be the cubic spline (3), we can investigate the functions p and
o that minimize (5). Actually we should consider the smallest local minimum since (5)
approaches 0 as p and o approach oo for fixed 8 and ¢.

Unfortunately, numerical integration of k? ds proves to be slow and imprecise, and it
would have to be repeated a large number of times in order to get a good idea what the
functions p(6, ) and o(@, ¢) should be. Instead we shall introduce two other measures of
smoothness that behave similarly: .

Joax, |k(t) | (6)
and
dk
& | 75| (M)

Using (6) to measure smoothness corresponds to taking the oo-norm of curvature instead
of the 2-norm; using (7) gives roughly similar results but applies a greater penalty to short

* periods of relatively high curvature. The functions p(f,¢) and o(8, ¢) that minimize (7)
turn out to be somewhat better behaved than those that minimize (6), but the overall
character is the same for both measures of smoothness.

For fixed 0 and ¢, the smoothness measures can have multiple local minima and the
relative smoothness at the local minima can change as @ and ¢ change. Therefore it should
not be surprising that the “optimum” p and ¢ functions have large discontinuitics where
they catastrophically change from one local minimum to another. When this happens there
tend to be (p, a) values between the two minima that also generate relatively “smooth”
curves, so it is not really necessary to use discontinuous functions for p and 0.

- Figure 4 illustrates the most basic catastrophe. Ncsr @ = ¢ = 45°, the “optimum”
p increases and lthe o decreases as 0 decreases. This action tends to reduce the curvature
where it is maximum near t = | without introducing other points of high curvature.
When 0 = § < ¢, the situation is entirely different. The high curvature near ¢ = 1 is
best controlled by making ¢ large, and increasing p beyond what is needed to control the
curvature at t = O just makes the problem worse.

When p and ¢ arc chosen to minimize (6) as shown in Figure 4a, there arc actually two
catastrophes, and the short segment between them is particularly interesting. Ordinarily,
extremely small ¢ values lead to high curvature near t = 1, but at § = 34.1 °, ¢ = 55.9°,
the curvature is actually minimized by choosing ¢ = .261. The choice of p = 2.423 here
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4a. The functions p(0, ¢) and o(0, ) 4b. The functions p(8,¢) and o(8, ¢)
versus 0 for ¢ = 90” — @, minimizing the versus @ for ¢ = 90” — @, minimizing the
magnitude of curvature. magnitude of curvature change.

is extremely critical. As shown in Figure 5, this has the effect of making the last three
Bézier control points almost collinear, so that the endpoint curvature is not too large in
spite of the low velocity.

5. The Bdzicr control polygon for (3) with @ = 34.1°, ¢ = 55.9°, where p
and o are chosen to minimize curvature.

The bizarre situation shown in Figure 5 does not occur when minimizing the derivative
of curvature, but there is still a catastrophe near 25°. When € + ¢ = 90° and 0 < 257 the
“optimum” cubic has a point of inflection, but when 8 > 25” it has none.

Figure 6 shows how the “optimal” velocity parameters grow as § and ¢ increase.
Minimizing (7) produces a catastrophe at 68” where p and o increase to about 1.58 and
the cubic acquires a single point of maximum curvature at t = .5. For p = 0 = 1.34,
the maximum curvature occurs at ¢t ~ .08 and t = .92. Intermediate values for p and o
produce rcintively high change in curvature necar £ = 0 and ¢t = 1.

Minimizing (G) instead of (7) avoids the catastrophe at 0 = ¢ = 68°, but then p and
o do not approach unique limits as (0, ¢) — (0,0). Along @ = —¢ the limit is \/6/2, while
p and o approach 1as 0 — 0 when # = ¢. Under the approximation k = :—:;—',’, when cither
(5) or (7) is used as the ieasure of smoothness, it can be shown that the optimum curves
are cubics where pcos @ = 0 cos ¢ = 1. Thus, it seems reasonable to let (p, @) — (1,1) as

(6, ) — (0,0).
2.2. Practical equations for the velocity parameters

Practical equations for p and ¢ must bc continuous and fairly easy to evaluate. The
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“optimum” functions illustrated in Figures 4 and 6 fail on both counts, but they still pro-
vide useful guidelines. The actual choice of functions is necessarily somewhat arbitrary, and
there is a trade-off between “smoothness” and simplicity. Other properties such as approx-
imate extensibility and predictable response to changes are also important, but empirical
studies indicate that these goals also tend to be served by maximizing “smoothness”.

We have already decided that p(0,0) = ¢(0,0) = 1. Thus for small angles we can
approximate the behavior of the curve of least energy and achieve very good approximate
extensibility. For § = ¢, we should approximate the behavior of the functions shown in Fig-
ure 6a, but these functions increase too rapidly for large angles: they’seem to approach oo
well before § and ¢ reach 180”. It is convenient to let

2

- = 8
1+ cosé for € =4 ()

p=o0
so as to obtain good approximations to circles.

Because of the symmetry requirements p(0, ¢) = o(é, 8) = p( -0, —¢), it suffices to
choose p and ¢ for 0 < |8] < ¢ < 180”. Figure 7a shows the p(0,4) and o(8, 4) that
minimize (7) for 4 =30". Figure 7b shows practical functions p and o that smooth out
the catastrophes and are consistent with (8). Similar plots for smaller ¢ would have p
and o closer to each other and closer to’ 1. (The slope discontinuitics at 64.7” and 69.6°
arc due to changes in the rclative sizes of extrema in ‘;i': at different parts of the cubic
curve.)

If complexity is of no concern, WC might want’ to choose p(8, ¢) and o(68, ¢) as follows
for 0 < |0] < 4 < 7 with angles measured in radians:

P = (0, 4) +~(8) sin(¥4(0/4)),
o = (0, 4)—+(9) . sin(¥4(6/9)),
, )
10,4) = 25 cospre
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B 6—0\* _ 0+¢ [ 26 \°
«=6-0- (%) =30 (%)
7(4) = 477¢ — .15 sin(2¢),
Yo(z) = 7. (z + (2% —1)((-32 — ¢/27)z + .5 - ¢/27)). (9)

A least squares fit of f to (p + a)/2 with p and o chosen to minimize (7) yielded a =
0.2678306, ¢ = 0.2638750, d = 1.402539, and e = 0.7539063. A possible refinement is to
require p < 1.5sin¢/sin(0 + ¢) when ¢ > m, 0 < 0, and 8 # —¢ SO as to avoid any
possibility of generating a curve with a cusp in it. (This only effects the above functions
when ¢ > 145°.)

It is desirable to have a simpler approximation that does not use transcendental func-
tions other than sines and cosines of 0 and ¢. One such approximation is the following
functions which were developed for the new METRFONT system [4]:

_ 2+a
P=T17F (1 —c¢) cosf +c cos¢’
o= 1-a wher
1+ (1—c)cos¢p +ccosf’ o
a = a(sin 0 - 6 sin ¢)(sin ¢ - 6 sin 0)(cos0 — cos ¢). (10)

The constants a, 6, and ¢ were chosen to minimize an error function based on the value
of (10) for 116 different (0, @) pairs. This suggested a = 1.597, 6 = .0700, and ¢ = .370,
but since cmpirical evidence indicated that large values for |p — o| were causing problems,
METAFONT uses the slightly perturbed values a = /2, 6 = 16> and ¢ = (3 — V5)/2.
Figure 8 shows some of the curves gencrated by (9) and (10). They arc similar for
moderate angles, but the simpler equations set p too small and o too large when ¢ = —90°.
Equation (10) does not perform well in such extreme cases because it does not allow p — 0
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8a. Curves from (9) with 8 = 45°. 8b. Curves from (10) with @ = 45°.

to be large enough when 0 < 8/¢ < 1 without making ¢ — p too large when -1 < 8/¢ < 0
or moving the cross-over point where p = ¢ too close to 0/(}5 = 0.

3. Mock Curvature Constraints

Here we need to-extend the notation of Section 2 so that 8; = arg w; — arg(zH.l - z_,-)
for 0 <g<mn,¢;= a.rg(zj - zj__l) — arg wj for 0 < j < m, and d; is the Euclidean length of
the vector 2j41—2; for 0 <j< n If the problem is to find a closed curve with no directions
given, it will be convenient to sometimes use alternative names 2y 41, Ony $n+t1y Tn, and Tn41
for 21, 0o, ¢1, 7o, and Ty respectively. We can then define ¢j'= arg(z,-“—zj)—a.rg(zj—zj_l)
for 1 < j < n', where n’ = n for closed curve problems with no directions given and
n’ = n — 1 otherwise. Unless stated otherwise, all ’t/Jj are at most 180” in absolute value.

Where w; has been given in advance, it simply determines ¢; and ;; other w; need
to be determined by solving for #; and ¢;. Since the problem of finding direction angles
can be broken into independent subproblems separatatcd by knots where directions are
given, we can assume that no directions other than wg and Wy, are given. For closed curve
problems we can assume that no directions at all are given, otherwise the problem could
be reduced to one or more open curve problems.

The requirement that the curvature be continuous at some knot 23, 0 < t < n, is
k1 (2im 1, 26, Wi 1, Wiy Tim 1, 73) = Ko (24 Zig 1y Wiy Wik 1, T4 Tip 1)
where ko and kj are functions that give the curvature at £ = 0 and ¢t = 1 in terms of the
endpoints, terminal directions, and tension parameters for the family of curves being used.
Because of the requirement for invariance under translation, rotation, and scaling, there
exists a function k such that s
ko(25, zj+1wwjtr1s Tjy Tih = k(05,¢541,75 Tit1)/dja n d
ki(zj, 2j0100 w541, 75, Ty41) = k{bjp 1, 05, Tigrs 75) /dy. (11)
Any particular family of curves determines a specific function k that satisfies (11).
The corresponding mock curvature function k consists of the linear terms in the Taylor
series for k(0, ¢,r,7), expanded about (6,¢) = (0,0). For the curves determined by (2)
and (3) with p and o determined by (9) or (10),
. 20(0,¢)sin(0 + $)/7 —6sin0
k(8,$,7,7) = 7
(P(0’¢)/T)

and
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12(0, ¢,7,7) = 2 (—2(0+¢) - 60) (12)

where the angles are measured in radians. Since the tension parameters are always known
in advance, they are treated like constants in this expansion.
Continuity of mock curvature requires

k($,0i—1, i, Tim1)/di—1 = k(0 $i1, i, Tig1) /di=0 for 1 <1 <n'. (13)
Combining this with the first order continuity equations
0,-+4;=—1,b,- for 1 <1< n (14)

gives enough equations to determine all 8; and ¢; for closed curve problems. For open curve
problems when directions wg and w, are given in advance, these provide the necessary

additional equations by fixing 0y and ¢,, but otherwise additional constraints are needed.

20 22 20 22 20 22

21 21 2

98.. XO:X2:O gb- XO: X2: 1. gc. xo"—")(zzoo.

The additional constraints are controlled by special “curl” parameters Xo and Xn.
There should be one such constraint for each endpoint where no direction is specified.
They have the form

k(8o, $1,70,71) = xok($1,00, T1,70) (15a)
and

k(d’nv o_n——la "—.n’T‘n.—l) - Xn];(on—l, ¢1i,Tn-—l) 'F‘n)'- (15b)

The curl parameters give the ratio of the mock curvature at the endpoints to that at the
adjacent knots. They should probably have default values of 1 so that the first and last
spline segments will usually be good approximations to circular arcs as in Figure 9b.

We now have a system of equations consisting of (13), (14), and possibly (150)
and/ or (156). If 8y or ¢, have been given in advance then they may bc regarded as
constants. The first step is to rewrite (15a) and (15b) as

73+ XnT2_ (370 — 1)

18 + x0T (310 — 1)
T 73(8Tn—1 — 1) + xnTo_4

0, =
0 Tg (3?1 - 1) + XOT]?

b1 and (»bn =

on'—.l (16)

so that @y and ¢, can be eliminated. Then (14) may be used to eliminate all ¢; so that
the remaining variables are 0y, 03, . . . , 0ns, and the remaining equations are those given
by (13) with appropriate substitutions. This system has some important properties that
may bc summarized as follows..



Theorem 1. If n > 2, if all tension parameters satisfy the bound 7;, T; 2 Tin > %, and
if any curl parameters satisfy Xo, Xn > O, then after the aforementioned substitutions, all
coefficientsof 6,0z, . . ., 0, in(13) are nonnegative, and for each 1, the coefficient of 6;
is at least 37y, — 1 times the sum of all the other coefficients in that equation.

Proof. The bounds on the tension parameters guarantee that the coefficient of € in (12)
will be negative, the coefficient of ¢ will be positive, and the magnitude of the former
will be at least 3Tmjn — 1 times the latter. When 1 < ¢ < n’ in (13), the only relevant
substitutions are @; = —4; — ¢; for |7 — 2| < 1, so the coefficients of 8;_y, 8; and G4,
clearly have the required properties. For closed curve problems, the same holds for 1 =1
and ¢ = n’, otherwise additional substitutions eliminate 6y and ¢y, so that k(¢1,80, 71, 7o)
depends only on ¢; and l;(ﬁn_l,én,rn_l,‘?n) depends only on 6,_;. We need only show
that both of these variables have non-positive coeflicients. This is clearly true for given
directions, and it also holds for curl constraints since the coefficients in (16) are at most
3790 — 1 and 37, — 1 respectively. [}

Theorem 1 shows that subject to certain reasonable limitations on the temsion and
curl parameters, the system of equations is diagonally dominant, and hence it has a unique
solution. Actually, the solution is unique only up to the choice of the angles ;. Ordinarily
all 1; should be chosen so that they are at most 180” in absolute value, but it is possible
to add multiples of 360” to them. The effect of such a change is usually to add a loop to
the curve as in Figure 10.

22

22

2 V4
2 Yoz zy 23 24

10a. A spline computed with %2 = -90” 10b. A spline computedb with %, = 270°

Theorem 1 also shows that the splines have approximate locality in the sense that
changes in direction angles fall off exponentially as one moves away from a disturbance.
Specifically, suppose a given direction @y is displaced by an angle é and let A bc the matrix
of cocfficients of 0, 02, . . . 8, from (13) after the substitutions. The change in 0,, 6,
... 0, due to this displacement is given by the solution vector © to A® = de; where
e; = (1,0,0,...,0)7.

WcC know that A is tridiagonal with nonnegative entrics, and within each row the diag-
onal clement dominates the sum of the other two elements by at least a factor of 37y, — 1.
It is not hard to sec that for any two adjacent components of O, either O = 0 or
©k-1/Ok <1 — 3Tyyn. This is trivial for k = n’, and it may be extended inductively
to smaller k using the fact that Agk > (37min — 1)(Akk—1 + Ak k+1)- Thus J knots away
from where a given direction is changed, the effect of the change is reduced by at least a
factor Of(3‘r,,,i,,-— l)j. In practice the reduction is often by a somewhat greater amount as
in Figure 11 where 7gy, = 1 and 9()/01 = - %—{-

When a knot 2; is displaced, three mock curvature constraints arc directly alfected
due to changes in d;_1, d;, ¥i—1, ¥i, and ¥;4+1. The adjustment will cause some change
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11. Exponential decline in the effect of a 45” change in direction.

in ¢;—; and 0,41, and the effect on 4, and @;_; for j > 1 is equivalent to what would
happen if directions w;4+; and w;_; were given in advance. The change in 0;4; will be at
most 1/(37min — 1)-"._1 as great as the change in @;41, and the change in 8;_; will be at most
1/(31‘,,,i,,—1)j_1 as great as the change in ¢;_.;. If the original problem was to find a closed
curve with no directions given, then these two effects will add together so that the change
in 6;4; will be at most 1/(37min — l)j"'1 of the change in 64 plus 1/(37'min - 1)""1"j of
the change in ¢;_1.

4. Conclusion

We have developed a tridiagonal system of linear equations that can be solved in linear
time to determine the spline direction at each knot so as to match mock curvatures. It is
necessary to use arctangents to set up the system of equations, and to use sines and cosines
to recover the resulting spline directions; but this work can be reduced to one arctangent,
one sine, and one cosine per knot on the spline.

We have shown that the splines have approximate locality in the sense that changes
in direction angles fall off exponentially. The rate of decline depends on how small the
tension parameters are allowed to be, but at least a factor of 2 per knot is guaranteed for
the default tensions. It should be noted that an exponential decline in angular change does
not guarantee that curve displacements decline similarly because it is technically feasible
for d; to be exponential in j.

The curve families discussed in Section 2 and defined by (9) and (10) are somewhat
arbitrary, and the concept of mock curvature could bc applied to other families of curves. It
would be desirable to find p and o functions simpler than (9) that perform better than (10),
although even the simplified functions of (10) produce very good results for problems such
as that shown in Figure 2c.
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