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THE ORIGIN OF THE BINARY-SEARCH PARADIGM

ZOHAR MANNA RICHARD WALDINGER
Computer Science Department Artilicial Intelligence Center
. Stanford University SRI International
Stanford, CA 94305 Menlo Park, CA 94025
ABSTRACT

,
In a binary-scarch algorithin for the computation of a munerical function, the interval in which
the desired output is songht is divided in half at each iteration. The paper considers how such
algorithms might be derived from their specilications by an automatic program-synthesis system,
The derivation of the binary-search coneept has been fouund to be surprisingly straightforward.
The programs oblained, thongh reasonably stiple and cfficient, are quito different from those that

would have bv(‘u constriucted by informal m('mls ,_/ ' ’, '; e v rgarls ] )
, ) ; , .
Key Wordq pmz;,m n :)(r:tfu:sns(l lencm 105’111:5,‘?)‘111.;& soméch-r(:al :(:Ud.'lL“I'O()f —/
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INTRODUCTION 4

Some of the most oflicient algorithms for the computation of numerical functions rely on the
technique of binary seareh: according to this technique, the interval in which the desired ontput is
sought is divided in half at cach iteration until it is smaller than a given tolerance.

For example, let us consider the foltowing program for finding a real-munber approximation to
the square root of a nonnegeative real number 7. The progra sets 2 to be within a given positive
tolerance « less than (/.

z¢+0
v «— max(r, 1)
while « v do v~ v/2
if [z+0]2 <r then 22+ v
return(2)

This is o classical square-rool. program based on one that appeared in Wenstey [59]. The program
establishes and maintains the loop invariant that 2 is within o less than /r, e that /r belongs
to Lhe hall-open inteeval [z, 2+ v). Al cach Heration, the program divides this interval in half and
tests whether /7 s inthe right or lefl half, adjusting z and v accordingly, wntil v is smaller than

This research was supported in part by the National Science Foundation under grants MCS-
82-14023 and MCK-81-06565, by Defense Advanced Rescarch Projects Agency under Contract
NOOO3O-84-C-021 L, by the United States Air Foree Ollice of Seientilic Rescarch under Contract
AFOSR-81-0014, by the Office of Naval Rescavel under Contract NOOO$4-84-C-0706, and by a
conlract fron the International Business Machines Corporation.
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the given tolerauce ¢. The program is reasonably cfficient; it terminates after [loga(maz(r, 1)/¢)]
iterations.

Analogous programs provide an cfficient means of computing a varicty of numerical functions.
It is not imnmediately obvious how such prograins can be developed by antomatice program-synthesis
systems, which derive programs to meet given specifications. Somne rescarchers (e.g., Dershowitz
and Manna [77]. Smith [85]) have suggested that synthesis systemns be provided with several general
program schemata. which could be specialized as required to tit particular applications. Binary
scarch would be oue of these schemata. The system would be required to discover which schema,
if any. is applicable to a new problem.

It may indeed be valuable to provide a synthesis system with generad schemata, bat this
approach leaves open the question of how such schemata are discovered in the first place. To our
surprise, we have found that the concept of binary scarch emerges quite naturally and casily in
the derivations of some numerical programns and does not need to be built in. The programs we
have obtaived in this way are reasonably simple and efficient, but bizarre in appearance and quite
different {from those we would have constructed by informal means.

The programs have been derived in a deduetive framework (Mauna and Waldinger [80], [85])
in which the process of constricting a program is regarded as a task of proving a mathematical
theorem.  According to this approach, the program’s specification is plirased as a theorem, the
theorem is proved, and a program gnaranteed to meet the specification is extracted fromm the
proof. Il the specification reflects onr intentions corrvectly, no further verification or testing is
required.

In this paper we outline our deductive framework and show the derivation of a numerical
program up to the point at which the binary-scarch concept cmmerges. We then show several
analogous Hinary-scarch programs that have been developed by this method. Finally we discuss
what these findings indicate about the prospects for automatic program syuthesis.

DEDUCTIVE PROGRAM SYNTHESIS

In this section we deseribe our framework for deductive programn synthesis, ciphasizing those
aspeets that ave essential for the derivation fragment that appears in this paper. Readers who
would like a [uller iutroduction to this approach are referred to Manna and Waldinger ([80], [85)).

We begin with an outline of the logical concepts we shall need.

LOGICAL PREREQUISITES

The system deals with

e terms composed [in the usual way] of constants a, b e, ..., variables u,v,w, .. .,
function symbols, and the conditional (if-then-else) term constructor.

o aloms composed of terms, velation (predicate) symbols, including the equality
symbol =, and the teath symbols true and false;
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e sentences composcd of atoms and logical connectives.

Sentences are quantifier-free. We somcetimes use infix notation for function and relation sym-
bols (for example, £ + a or 0 < y). An erpression is a term or a sentence. An expression is said
to be ground if it contains no variables. Certain of the symbols are declared to be primitive; these
arc the compntable symbols of our programming language.

Let ¢, s, and ¢ be expressions, where s and ¢ are cither both sentences or both terms. If we
write e as ¢[s], then e[t] denotes the result of replacing every ocenrrence of s in efs] with ¢.

We loosely follow the terminology of Robinson [79]. We denote a substitution 0 by {x, «
ty.xg — la, ...z, ¢+ t,}. For any expression e, the expression of is the result of applying 0 to e,
obtained by simultanconsly replacing every occurrence of the variable &4 in ¢ with the corresponding
terin t;. We shall also say that ¢f is an instance of e.

Variables in sentences are given an implicit universal gquantification; a sentence is true under
a given interpretation if and only if every instance of the sentence is true, and if and only if every
ground instance of the sentence (Le., an instance that contains no variables) is true.

Let e, 8, and ¢t be expressions, where s and ¢ are either both sentences or both terms, and let
0 be a substitution. If we write ¢ as e[s], then ¢0[t] denotes the result of replacing every occurrence
of sf in e¢0 with ¢t.

We now deseribe the basic notious of dednctive program synthesis,

SPECIFICATIONS AND PROGRAMS

A specification ix a statement of the purpose of the desired program, which need give no
iudication of the method by which that purpose is to be achicved.  [u this paper we cousider
only applicative (or functional) programs, which yicld an ontput but alter no data structures and
produce no other side effects. The specifications for these programs have the form

f(a) < lind z such that R]a, 2|
where Pla).

In other words, the progeam [ we want to construct is to yield, for a given tnput a, an output z
satislying the output condition R[a, z], provided that the input a satisfies the input condition Pla).
In other words, 2 is to satisly the inprt-output condition

if Pla
then Ra, z).

For example, suppose we waut to specify the program sqrt to yield a real mumber z that is 0]
within a given tolerance ¢ less than \/r, the exact square root of a given nounegative real number ™

r. Then we might write T 1

sqrt(r, () <= lind z such that
22 <r and not [(z+ )2 < 1]
where 0 < r and 0 <c.
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In other words, we want to find an output =z satisfying the output condition

22 <r and not[(z+)? < 1],
provided that the inputs r and ¢ satisfy the input condition
0<r and 0 <c.

The above square-root specification is not a program and does not indicate a particular method
for computing the square roof; it deseribes the input-output behavior of many progras, employing
different algorithins and perhaps producing different outputs.

The prograius we consider are sets of expressions of the forin
fi(a) & ¢t;,

where 5 is a primitive term, i.c., one expressed entirely in the vocabulary of our programming
language. These programs can be mutually recursive; i.e., we regard the function symbols f; as
primitive. In the usual way, such a program indicates a method for computing an output. For the
most part, in this paper we shall consider programs consisting of only a single expression f(a) < ¢,
which may be recursive.

In a given theory, a program [ is said to satisfy a specification of the above form if, for any
input a satistying the input condition Plaj, the program f(e) terminates and produces an output
t satisfying the output condition Rfa, ¢].

DEDUCTIVE TABLEAUS

The fundamental stencture of our system, the dednetive tableau, is a set of rows, cacli of which
st contain a senteace, cither an assertion or a goal; any of these rows may contain an expression,
the output entry. An example of a tablean follows:

i . I outputs )
assertions roals
5 [(a)
Plal
R[a, 2| z

if a(u)
then Rlu, 0]

q(a) 0

Here u and 2z are variables and a and 0 are constants.

Under a given interpretation, a tablean is true whenever the following condition holds:

If all instances of cach of the assertions are true,
then some instance of at least one of the goals is true.
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Equivalently, the tablean is true if some instance of at least one of the assertions is false or some
instance of at least onc of the goals is true. Thus, the above tableau is true if Pla] is false, if

if q(b)
then R|b, 0]

is false, if R[a, ¢] is true, or if q(a) is true (among other possibilitics).
In a given theory, a tableau is said to be valid if it is true under any model for the theory.

Under a given interpretation and for a given specification

() < find z such that Rfa, 2]
where Plaj,

a goal is said to have a suitable output entry if, whenever an instance of the goal is true, the
corresponding instauce ' of the ontput entry will satisfy the input-output condition

if Pla]
then Rla, t'].

(If the goal has no explicit output entry, then it is said to have a snitable output entry if, whenever
an instance of the goal is true, any term ¢ satislies the input-output condition.) An assertion is said
to have a suitable output entry if, whenever an instance of the assertion is false, the correspouding
instance ¢ of the output entry will satisfy the input-output condition.

Example

In the theory of the real nuwbers, _ounsider the square-root specification
sqrt(r, ) <= find z such that
22 <r and not [(z + )2 < 7]
where 0<7 and 0 < ¢

and the following tableau:

outputs

assertions oals
assertion 5 sqri(r, o)

1. 0<r and

0 <« L_
' 2. 22<r and
not [(z + ) < 7]

3. not|? <r| 0

This tablean is valid in the theory of real nnmbers, becanse, under any model of the theory,
cither the assertion {(which Lias no variables) is false or some instance of oue of the two goals is
trae. (In particular, the instance of goal 2 obtained by taking = to be /r itself is true.)
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Under any model for the theory, the output entries of the above tableau are suitable for the
squarc-root specification. In particular, if some instance of goal 2, obtained by replacing z with s,
is true, then s will satisfy the input-output condition. That is,

f0<rand 0<ce¢
then 32 <r and not{(s + () < 7]

is true. Also, if assertion 1, which has no output cutry, is false, then any term s satisfies the above .
condition.
o

Under a given interpretation I and for a given specification, two tableaus Ty and T2 have the
same meaning if

Ty is true under
if and only if
Tz is true under

and

the output entries of T) are suitable
if and only if
the output entries of Ty are suitable,

In a given theory and for a given specification, two tableaus are equivalent if, under any model T
for the theory, the meaning of the two tableaus is the same.

PROPERTIES OF A TABLEAU

Let us consider a particular theory and a particular specification, which will both remain fixed
throughout this discussion. We shall use the following propertics ol a tableau:

e Duality Property

Any tablean is equivalent to the one obtained by removing an assertion and adding its negatiou
a a new goal, with the saine ontpnt entry, Similarly, any tablean is cquivalent to Lthe one obtained
by removing a goal and adding it negation as a new assertion. Thus, we could manage with a
system Lhat has no goals or a system Lhat has no assertions, but the distinetion between assertions
and goalx does have some intaitive significance,

®..

o Renaming Property

Any tableau is equivalent to the one obtajned by systematically renaming the variables of any
row. More precisely, we may replace any of the variables of the row with new variables, making
sire that all occurrences of the same variable in the row (including those in the ontput cntry)

.
.
e
)
s

a0 2 MRy 20 r
S
.

i. arc replaced by the same variable and that distinet variables in the row are replaced by distinet
Ol variables. In other words, the variables of a row are dummics that may be renamed freely.
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\" L
M Any tableau is cquivalent to the one obtained by introducing as a new row any instance of
- an cxisting row. The new row is obtained by replacing all occurrences of certain variables in the
. existing row (including those in the output cutry) with terins. Note that the existing row is not
'y replaced; the new one is simply added.
THE DEDUCTIVE PROCESS !
&
3 Consider a particular theory and the specification ]
J{a) <= find z such that R[a, 2| f
where Pla).
We form the initial tableau
i | oufputs
assertions oals
. ~ 5 I(a)
! Plal
. R(a, 2] z
We may also include in the initial tablean (as an assertion) any valid sentence of the theory. !
. Note that the ontput entries of this tableau are suitable: Under auy model for the theory, if the
- initial assertion Pla] is false, then any output satislics the input-ontput condition vacuously; and
- if some instance Rfa, t] of the initial goal is trne, the corresponding instance ¢ of the associated
< output enlry satisfies the input-output condition. Furthermore, the valid sentences ineluded as
initial assertions cannot be false. i
We altempt to show that the above tablean is valid. We proceed by applying deduction rules
. that add pew rows without changing the tablean’s meaning in any model for the theory, In other g
.. words, nnder a given model, the tablean is true before application of the rule if and only if it is true '
- afterwards, and the output entries are suitable before if and ouly if they arve suitable afterwards. 4
) We deseribe the deduction rules in the next section.
. The deductive process continnes until we obtain cither of the two rows
. true : 4
o - - ———————— e
: or
)
. Jalse t

where the output entry ¢ is primitive, i.e., expressed entirely in the vocabulary of our progranuning
language. (We regard the input constant a aud the function symbol f as primitive.) At this point,
we derive the program

[(a) ¢=¢.
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We claim that ¢ satisfies the given specitication. For, in applying the deduction rules, we have
guaranteed that the new output entries are snitable if the carlier ontput entries are suitable. We
have scen that the initial output entries arc all suitable; therefore, the final output entry ¢ is also
snitable. This means that, under any model, if the final goal true is true or the final asscrtion false
is false, the corresponding output entry ¢ will satisfy the input-output condition

if Pla]
then R[a, t). :

But under any model the truth symbols true and fulse are true and false, respectively, and hence
t will satisfy the input-output condition. Therefore, the program f(a) <= ¢ does satisfy the speci-
fication.

THE DEDUCTION RULES

We now introduce the deduction riles of our systeny, emphasizing those that play a rvole in the
portions of the square-root derivation we present. We begin with the siplest of the rules.

THE TRANSFORMATION RULES

The transformation rules replace subexpressions of an assertion, goal, or output entry with
equal or equivalent expressions. For instance, with the transformation rule

P and true — P,

we can replace the subsentence ((A or B) and true) with (A or D) in the assertion

((A or B) and truc) or D 0
yiclding
‘:"':' (A or D) und D 0
r':::_
L With the translormation rule (in the theory of integers or reals)
P -
.’. © + u — 2u,
b
k‘_f-: we can replace a subterm (a + b) + (¢ + b) with the term 2(a + b).
p . ’
E{ . We use an associative-cornmautative matching algorithm (cf. Stickel [81]), so that the associa-

¢ tive and commutative propertics of operatoes can be Laken into account in applying the transfor-
) mation rules. Thus, we can use the above rules to replace a subsentence (Lrue and 3) with the
- sentence B oand the subterm (a + b) 4- b wilth the Lerm a -+ 20.
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We include a complete set of true-false transformation rules, such as

not false — true

tf P then fulse — not P.

Repeated application of these rules can eliminate from a tablean row any occurrence of the truth
symbols true and false as a proper subsentence.

The soundness of the transformation rules is evident, since cach produces an expression equiv-
alent or equal (in the theory) to the one to which it is applied.

THE RESOLUTION RULE: GROUND VERSION

The resolution rale corresponds to case analysis in inforimal reasoning. We first present the
ground version of the rule, which applics to ground goals. We express it in the followicg notation:

_ outputs
assertions goals f(a)
7P 3
]
(7] t
Fltrue] if P
and then s
Glfulse] else ¢

In other words, suppose our tablean contains two gronnd goals, ¥ and G, whose output cutries
are s and ¢, respectively. Suppose further that 7 and @ have a common subsentence P Then
we may derive and add to our tableat the new goal obtained by replacing alt oceurrences of 2 in
7 with true, veplacing all occurrences of Poin G with fulse, aud forming the conjunction of the
results. The outpul, entry associated with the derived goal is the conditional expression whose Lest
is the common subexpression P and whose then-clanse and else-clanse are the output entries s and
t for 7 and G, respectively. Becanse the resolution rule always introduces ocenreences of the truth
symbols frue and fulse as proper subsentences, we can immediately apply true-false transformalion
rules to the derived goal.

=

u

t For example, suppose our tablear contains the rows

= e o , i

:'-_ y | - “onlpnts T

assertions roals

. assertion g [(a, b)

H»_"_

NE pla,b) | and q(a) «

- - not (if r(b) then lp(u, b) l) b

b

L

t These goals have a conumon subsentence pla, ), indicated by boxes. Therefore we may derive and

S add to our tablean the new goal

h .

b

b

2

}.,
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true and q(a) if pla, b)
and then a
not (if r(b) then false) else b

By repeated application of transformation rules, this goal reduces to

if pla, b)
q(a) and r(b) then ba
evlse

If once of the given goals has no output entry. the derived output entry is not a conditional
oxpression: it is simply the output eniry of the other given goal. If neither given goal has an output
entry. the derived goal has no output entry cither. We do not require that the two given goals be
distinet; we may apply the rule to a goal and itsclf.

We hiave presented the resolution rule as it applies to two goals.  According to the duality
property of tableaus, however, we may transform an assertion into a goal simply by negating it.
Therefore, we can apply the rule to an assertion and a goal. or to two assertions.

4

The resolution rule may be restricted by a polarity strategy (Murray [82]; see also Manna and
Waldinger [80]), according to which we need not apply the rule unless some oceurrence of P in
7 is “positive” and some occurrence of £ in G is “negative”. (Here a subsentence of a tablean is
regarded as positive or negative if it is within the scope of a respectively even or odd munber of
ucegation connectives. Bach assertion is considered (o he within the scope of an implicit negation;
thus, while goals are positive, assertions are negative. The if-clanse P of a subsentence (if P then Q)
is considered to be within the scope of an additional implicit negation.) This strategy allows us to
disregard many uscless applications of the rule.

Let us show that the resolution rule is sound; that is, in a given model of the theery and for a
giver spectfication, the meaning ol the tablean is the saune before and after application of the rule.
It actually sullices to show that, if the derived goal is true, then at least one of the given goals is
true; and if the given output entries are suitable, so is the derived output entry.

Suppose the derived goal (Fltrue] and G|false]) is true. Then both its conjuncts Fltrue} and
Glfalse] arc true. We distingnish between two cases, depending on whether or not the common
subsentence £ s true or false. In the case in which 2 is tene, the [ground] goal F[P] has the same
truth-valne as the conjunct Fltrue]; that is, FIP] is tvue. In the case in whicli P s false, the goal
G| P} has the same truth-value as the corjunet. Gl false]i that is, [P is true. In cither case, one
ol the two given goals, F|P] and G[FP]. is true.

Now assne that the given output entries are snitable. To show that the derived output entry
is suitable, we suppose that the derived goal is true and establish that the derived ontput entry
satisfies the input-output condition. We have seen that, in the case in which 2 is true, the given
goal F{P| is true; becanse its output entry s is suitable, it satisfies the input-output condition.
Similarly, in the case in which P is false, the term ¢ satislies the input-ontput condition. In either
case, therefore, the conditional expression (f P then s else ) salisfies the input-ontput condition;
but this is the derived output catry.
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THE RESOLUTION RULE: GENERAL VERSION

We have deseribed the gromnd version of the resolution rule, which applics to goals with no
variables. We now present the general versiou, which applies to goals with variables. In this case,
we can apply a substitution to the goals, as necessary, to create a conmon subsentence.

F assertions goals outputs
J(a)
7P s
§lP] t
FO[true] i Po
and then s0
GO{false] else t0

More precisely. suppaose our tablean contains goals F and §. which have no variables in common.
{This can be enzured by renaming the variables of the rows as necessary, according to the renaming
property.) Suppose further that some of the subzentences of ¥ and some of the subsentences of §
are unifiable, with a most-general unifier @5 let Pt be the unilied subsentence. Then we may derive
and add to our tablean the new goal obtained by replacing all occurrences of P in 70 with true,
replacing all occurrences of P in G0 with false, and forming the conjunction of the results. The
associated ontput entry is a conditional expression whose test is the unitied subsentence F¢ and
whose then-clanse and else-clatse are the corresponding iustances 80 and 0, respectively, of the
given outpnut entries.

In other words, to apply the general version of the mle to F and G, we apply the ground
version of the rule to 70 and G0, The soundness of the general version follows from the sonnduess
of the gronnd version. The polarity sirategy applies as before. If we wish to apply the rale to an
assertion and a goal or to two assertions, we can vegard the assertions as goals by negating them,

as in the sronnd case,

For example, suppose our tablean coutains the rows

: outputs
assertions goals [(a, b)
y<a and ' nd
not [y +b < af an g(y)

r(u)

5 7 if q(x, v)
Slr.v) <t and
not [f(f, v) +v < :r]

then

The boxed subsentences are unifiable; a most-general unilier is

v

0: {z—a, ve=b, ye— f(a, b))}

Lo an e
Py
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'.'j?'. The subsentences are respectively positive and negative, as indicated by the annotation. We may
regard the assertion as a goal by negating it. By application of the general version of the resolution
e rule, we may derive the new row
.'::-4:' true and
p(f(a, b))
e and g(/(a, )
2 if s, b) '
B not
then [alse
e By the application of true-false transformation rules, this goal reduces to
- p(f(a. b))
o and g(/f(a, b))
< q(a, b)
Note that the unifier 0 has been applied to all variables in the given rows, including those in the

. output entry. Because the given assertion has no ontput entry, the derived output entry is not a
R conditional expression. This application of the rule is in accordance with the polarity strategy.
- The resolution rule and the true-false transformation rules have been shown by Murray [82] to
ol constitute a complete system for frst-order logic. The polarity strategy maintains this complete-
- ness.
.- We nse an associative-commutative unification algorithm (as in Stickel [81]) so that the as-
sociative and commmtative properties of such operators as addition and conjunction can be taken
e into account in finding a unitier; thus, p(f(z) + (b+g(a))) can be nnilied with p((9(y) + J(b) +z).

We have introduced two additional rules to give speciad treatment to equality and other i-
D) portant relations (Manna and Waldinger [85]), but these rules play no part in the portion of the
s derivation to be discussed.

'
»

l..".

S

e We shall need the induction rule; this we describe next.

s THE MATHEMATICAL INDUCTION RULE

. The rules presented so far do not allow us to introduce any repelitive construet into the
;o program being derived. The induetion rule acconnts for the introduction of recursion in the decived
® program. We employ a single well-Tonnded induction rule, which applies Lo a variety of theories.
o A well-founded relation <, is one that admits no infinite decreazing segnences, i.e., sequences
- Zy,L9,%3, ..., such that

e

-

ff.:‘ Ty > Ly and z9 >y T3 and. ...
aa For instance, the less-than relation < is well-founded in the theory of nonnegative integers, but
e not in the theory of real numbers.

-‘:':‘
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The version of the well-founded induction rule we need for the derivation is expressed as follows
(the general version is more complex):

Supposc our initial tableau is

. oufputs
assertions goals /(a)

Pla]

Rla, 2} z

In other words, we are attempting to consiruct a program [ that, for an arbitrary input a, yiclds
an output 2z satisfying the input-output condition

if Pla]
then Rla, 2|.

According to the well-founded induction rule, we may prove this assuming as our induction hy-
pothesis that the program [ will yield an output f(«) satisfying the same input-output condition

if Pla
then R[z, f(z)],

provided that z is less than e with respect to some well-founded relation <., that is, z <, a. In
other words, we may add to our tablean the new assertion

if T <y a
then if Plz]
then R[z, f(z)]

The well-founded relation <, used in the induction rule is arbitrary and must be selected later in
the proof,

For exawmple, consider the initial tablean obtained from the square-rool specification:

ontpnls

assertions goals aqrt(r, ¢)

0<r and 0 < ¢

22 <r and
not [(z+¢)? <]

SR - ———— e )

By application of the well-founded induction rule, we may introdnee as a new assertion the induoce-
tion hypothesis

if (z, v) <y {r, €)
then if 0<z and 0 < v

(sqrt(z, v)]i <z and

the
o not ([sqrt(r, v) + v]2 <)
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In other words, we may assume inductively that the output of the square-root program we construct
will satisfy the input-output condition for inputs x and v that are less than the given inputs r and
¢ with respect to some well-founded relation <.

Use of the induction hypothesis in the proof may account for the introduction of a recursive
call into the derived program. For examnple, suppose that in the square-root derivation we manage
to develop a goal of form

32< s and s
g not ([2 + 6] < s t

The boxed subsentences of this goal and the induction hypothesis are unifiable; a most-general
naifier is

0: {ze 3, ved, 2 sqri(s, 6)}.

Therefore, we can apply the resolution rule to obtain the new goal

Gltrue]

and

if (s,0) <y (r, ¢ t[sqrt(s, 6)]

not |then f 0<s and 0< 8
then false

This goal reduces under transformation to

Gltrue]

and
(#, 8) < (r, () und t{sqrt(s, 8)]

0<s and 0< ¢

Note that a recursive call sqri(s, 8) has been introduced into the ontput entry as a result of
this step. The condition (0 € 8 and 0 < 8) in the goal casures the legality of the arguments s and
8, i.e., that they satisfy the input condition of the desired program. The condition (s, 8) <, (r, ¢)
ensures that the evaluation of the recursive call cannot lead to a nonterminating computation. (If
there were an infinite computation, we conld construct a corresponding infinite sequence of pairs
of arguments deereasing with respeet to <, thus contradicting the delinition of a well-fonuded
relation.)

The particular well-fonnded relation <, referred to in the induction hypothesis is not yet
specified; it is selected at a later stage of the proofl. 11 we allow well-founded relations to be objects
iu our domain, we may regard the sentence z <, y as an abbreviation for <(w, z, y); thus, w
is a variable that may be instantiated to a particular refation. We assume that the properties of
many known well-founded relations (such as <., the proper-subtree relation over trees) and of
functious for combining them are among the assertions of our initial tableau,

We have given the simplest version of the induction rale, which is applied ouly to the initial
rows of the Lablean; in its general version, we may apply the rale to any of the rows, and we may
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strengthien or generalize the rows to which the rule is applied. In this more general version, the
rule accounts for the introduction of auxiliary subprograms into the program being constructed.
We shall avoid discussion of auxiliary subprograms here.

We are now ready to present the most interesting segment of the derivation of the squace-root
program.

THE DERIVATION

Recall that, in the theory of real immbers, the specification for the real-immber square-root program
is

sqrt(r, ¢) < find z such that
z22<r and not [(z+¢€)? <1,
where 0 <7 and 0 < e.

In other words, we want to find an estimate z that is within a tolerance ¢ less than /r, the exact
squarce root of 7, where we may assume that r is nonnegative and ¢ is positive.

We begin accordingly with the tableau

outputs

assertions goals sqri(r, <)
* )

1. 0<7r and 0 <c

[

22 <r Y and not [(z+ )2 <] z

The assertion and goal of this tableau are the input and output conditions, respectively, of the
given specification; the output entry of the goal is the ontput variable of the program.

THE DISCOVERY OF BINARY SEARCH

We are about to apply the resolution mile to goal 2 and itself. To make this step easicr to
understand, let us wrile another copy of goal 2.

2. 32<r and not I.—(-.:nl—_c)2 <r I

We have renated the variable of the second copy of the goal, so that the two copies have no
variables in common.

N,

The boxed subsentences of the two copies of the goal are uniliable; a most-general wifier is
0: {z+e 2+¢c}

Therefore, we can apply the resolntion rule hetween the two copies of goal 2 to obtain




_.rfr?-rf-.ﬂ-.m
X
N 16
2
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N T
woE N 2 s a 2
A true and not [((2+¢)+¢)” <] if (2+6)2<r
Sis and then %+ €
o 22 <r and not false else z

- By application of transformation rules, including the rule

B ‘

. u+u — 2u,

ol this goal can be reduced to

- 32 < 1 > 2

z2¢<r lf (Z + 6) S r

. 3. and then 2 + ¢

not [(3+2¢)? <r else 2

_j‘lf,i' (We have reordered the conjuncts for pedagogical reasons only; because we use associative-com-
- mutative unification, their actual order is irrclevant.)

According to goal 3, it suflices to find a rougher estimate 2, which is within a tolcrance 2e less
e than /7, the exact square root of r. For then cither 2 -+ ¢ or 2 itself will be within ¢ less than (/F,
. depending on whether or not 2 + ¢ is less than or equal to /7. The two possibilitics are illustrated
helow:

o z 2t 34 2 P i+e P42
- Case: 2+ ¢ < r Case: not [2 4+ ¢ < /7|
) Goal 3 contains the essential idea of binary scarch as applicd to the square-root problem.

. Although the idea scems subtle to us, it appears almost innmediately in the derivation. The step
is nearly inevitable: any brate-foree scarch procedure would discover it

o The derivation of goal 3 is logically straightforward, but the intuition behind it may be a bit
: mysterions, Let us paraphrase the reasoning in a more geometric way. Our initial goal 2 expresses
8 that it suflices to find a real munber 2 snch that \/r belongs to the halt-open inteeval [z, z + ¢).
:'. Onr rewritten goal 2' expresses that it is cqually acceptable to find a real muuber 3 such that /7
2 belongs to the half-open iuterval [2, 2+ ). We shall be content to achiove cither of these goals;
v -::: i.e., we shall be happy if /r belongs to cither of the two half-open intervals. In taking 3 to be
‘::-: z 4, we are concalenaling the two intervals, oblaining a new hall-open interval [z, 2 - 2¢) twice
the length of the original. It suflices Lo find a real number 2 such that /v belongs to this new,
3 longer interval, becaunse then /r must belong to one or the other of the two smaller ones,

‘N
[, '
" )P-

-fj:' INTRODUCTION OF THE RECURSIVE CALLS

. 4

N Let us continne the derivation one more step. By the well-founded induction rnle, we may
-0 introduce the induction hypothesis




if (z,v) <y (r, €

then sf 0 <z and O <v

[sqrt(z, v)]2 <« and

then 2 .
not ([sqrt(z, v) + v] < :L‘)

In other words, we assume inductively that the output sqre(z, v) of the program will satisfy the
input-output condition for any inputs z and v such that (z, v) <, (r, (). The boxed subscntences
of goal 3 and the induction hypothesis are unitiable; a most-general unifier iy

0: {ze—r ve 2 e sqri(r, 20)}.

We obtain (after true-false transformation)

4. {r, 2¢) <y {r, © if [sqre(r, 2¢) + e]2 <r
and then sqrt(r, 2¢) +¢
0<r and 0 < 2¢ else sqrt(r, 2¢)

Note that at this point three recursive calls «qre(r, 2¢) have been introduced into the ontput
entey. The condition (0 € r and 0 < 2¢) ensures that the arguments r and 2¢ of these recursive
calls will satisfy the input condition for the program, that r is nonnegative and 2¢ is positive.
The condition (r, 2¢) <, (r, ¢) cnsures that the newly introduced recursive calls cannot lead to
a nonterminating computation. The well-founded relation <, that scrves as the basis for the
induction is as yet unspecified.

We omit those portions of the derivation that account for the introduction of the base case
and the choice of the well-founded relation. The final program we obtain is

sqrt(r, ) <« if « < max(r, 1)
then sf [sqre(r, 2) + (12 <r
then sqri(r, 2¢) + ¢

else sqrt(r, 2c)
else 0.

A few words on this program are in order.

DISCUSSION OF TIIE PROGRAM

The program first checks whether the error tolerance ¢ is reasonably small. If ¢ is very big,
that is, if naxz(r, 1) < ¢, then the output can safely be taken to be 0. For, becanse 0 € r, we have

02<r.

And becanse max(r, 1) < ¢, we have 7 < ¢ and 1 < ¢, and hence r < ¢2 - that is,

not [(0 4 €)? <r].
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Thus, 0 satisfies both conjuncts of the output condition in this case.

If ¢ is small, that is, € < maz(r, 1), the program finds a rougher estimate sqre(r, 2¢), which is
within 2¢ less than /7. The programm asks whether increasing this estimate by « will leave it less
than /7. If so, the rough cstimate is increased by ¢; if not, the rough estimate is already close
cnough.

The termination of the program is a bit problematic, becanse the argument ¢ is doubled with
cach reenrsive call. However, the argument 7 is unchanged and recursive calls are evaluated only in
the case in which € € maz(r, 1), so there is a uniform npper bound on these uereasing arguinents.
More precisely, the well-founded relation <, selected in the proof is one such that

(£, 2y) <w (z, ¥}
provided that 0 < y < maz(r, 1).

If the waltiple occurrences of the recursive call sqre(r, 2¢) are combined by climinating com-
mon subexpressions, the program we obtain is reasonably cfficient; it requires [logg (max(r, l)/()]
recursive calls.

Onr final program is somewhat different from the iterative program we considered in the
beginning. The iterative program divides an interval in half at cach iteration; the reenesive program
doubles an interval with cach reenrsive call. Division of the interval in half ocenrs implicitly as the
recursive program anwinds, i.e., when the recttrsive calls yield output values.

It is possible to obtain a version of the ilerative programn by formal derivation within the
dednetive-tablean system. Although the derivalion and the resulting program are more complex
(it requires two additional inputs), it was this derivation we discovered first, because we were
already faumiliar with the iterative program. ‘

We first found the reenrsive program in examining the consequences of purely formal derivation
steps, not because we expected them to lead to a program but becanse we were looking for strategic
conziderations that wonld rule them ont. When we examined the program initially, we suspected
an creor in the derivation. We had not seen prograns of this form before, and we certainly would
not have constructed this one by informal means.

ANALOGOUS ALGORITHMS

- Many binary-scarch algoritlhins have been derived in an analogons way. Let us lirst consider some
. other real-numerical problemns.
!
&
¢ REAL-NUMBER ALGORITHMS
S
g
- Suppose a programn to perform real-number division is specified as follows:
’. div(r, s, () & find z such that
- z-9<r and not[(:+¢)-s$r]
# where 0 <7 and 0 <« and 0 <.
-
-
-
\
¢
i e e e S AT e T e
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In other words, the program is required to yicld a real number z that is within a tolerance € less
than r/s, the exact quotient of dividing r by 3. We obtain the program

div(r, s, ¢) < if c-s<r
then of [div(r, 3, 2¢) + e] -s<r
then div(r, 3, 2¢) + €
else div(r, s, 2c)
else 0,

The rationale for this program, like its derivation, is analogous to that for the real-number
square root. The program lirst checks whether the error tolerance is reasonably small, that is, if
-3 < r. If € is very big, that is, if r < ¢ - 8, then the output can be taken safely to be 0. For
because 0 < r, we have

0-s<r.
And because r < ¢ - 3, we have r < (0 + ¢) - s, that is,
not [(0+c)-s<r].

Thus, 0 satisfics both conjuncts of the output condition in this case.

On the other hand, if ¢ is small, that is, if € - 8 < r, the program {inds a rougher estimate
div(r, s. 2¢). which is within 2¢ less than r/«. The program considers whether it creasing this
estimate by ¢ will leave it less than r/s. If so, the rough estimate may be increased by ¢; if not,
the rough estimate is already close enongh.

The termination proof for this program is also analogous to that for the square root. Although
the arginent ¢ is donbled with cach reeursive call, the other arguments are unchanged and the
calls are evalnated only in the case in which ¢+ 8 < r, that is, ¢ < r/s. Thus, there i a uniform
upper bound on the doubled argument.

It 1may be elear from the above discussion that there is little in the derivations for the square-
root and division programs that depends on the properties of these functions. More or less the same
derivation sullices to tind an approximate solution to an arbitrary real-nnumber cquation f(2) =r.

For a given computable function [, we consider Lhe specilication

solve(r, ) < find 2 such that
J(z) <7 and not [f(z+¢) < 7]

fbh<u
where fla) Sroand | 0 (f(u) < r)]

Here a and b are primitive constants and u is a variable. In other wonds, we assume that there
exist real numbers @ and b such that f(a) < r and f(u) > r for every real u greater than b, The
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specification is illustrated as follows:

flu)

F) Z Z2+E€ b

Note that we do not need to assume f is increasing or even continuous; if f is not continuous,
an cxact solution to the cquation f(a) = r need not exist, but only an approximate solution is
required by the specification.

The program we obtain is

colve(r, ¢) < tfa+e<b
then if [(solve(r, 2<)+¢) <7
then solve(r, 2¢) + ¢

else solve(r, 2¢)
else a.

In the recursive case, in which a + ¢ < b, the program is so closely analogous to the previous
binary-scarch programs as to require no further explanation. In the base case, in which b < ¢ + ¢,
the ontput can safely be taken to be a. For, by our input condition, we have

J(a) <
and (again by our input condition, becanse b < a + ()
not [f(a+¢) <7].

Thus, a satisties both conjuncts of the output condition in this casc.

The above programn may be regarded as a schema, because we may take the symbol [ to
be any primitive fanction symbol.  An even more general binary-search program schema can be
derived from the specification

scarch(r, ¢) <= find z such that
p(r, 2) and notp(r, z-+¢)

tf b<u

where p(a) and [thcn not p(r,u)

where p ix a primitive relation gymbol and a and b are primitive constants. We obtain the schema

scarch(r,¢) & fa+e<bh
then if p(r, scarch(r, 2¢) + ¢)
then scarch(r, 2¢) + ¢
clse scarch(r, 2¢)
else a,




INTEGER ALGORITHMS

The programs we have discussed apply to the nonncgative real mumbers; using the same
approach, we have derived analogous programs that apply to the nonuncgative integers. These
derivations require a generalization step in applying the induction rule. We have avoided presenting
generalization and the concomitant introduction of auxiliary programs in this paper, but we give
some results of these derivations here.

Integer square root

The integer squarce-root program is intended to find the integer part of /n, the real square
root of a nonncegative integer n. It can be specified in the theory of nouncgative integers as follows:

sqrt(n) < find z such that _
z2? <n and not[(z+1)? <n).

In other words, the program must yield a nonnegative integer z that is within 1 less than /n.

In the course of the derivation, we are led to introduce an auxiliary program to mect the more
geucral specification

sqrt2(n, ) < find z such that
22 < n and not [(z +1)2 < n]
where 0 < 1.

In other words, we wish to find a nonnegative integer z that is within ¢ less than /n. This anxiliary

specification is precisely analogous to the real-number square-root specitication, with ¢ playing the
role of the crror tolerance c.

The programs we obtain to meet these specifications are
sqrt(n) <« sqri2(n, 1),

where

sqri2(n, i) « fi<n
then if [sqri2(n, 20) + i]2 <n
then sqri2(n, 28) + ¢
else sqri2(n, 2%)
clse 0.

Integer quotient

The integer quolicnt prograt can be specified similarly:

quot(m, n) < find z such that
zen<m and not [(z 1 1)-n < m]

where () < n.
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In other words, we wish to find a nonnegative integer z that is within 1 less than m/n, the real-
number quotient of m and n.

In the course of the derivation, we are led to introduce an auxiliary program to meet the more
general sy ccification

quotd(m, n, 1) < find z such that
z-n<m and not[(z+i)-n5m] i

where 0 < n and 0 < 1.

In other words, we wish to find a nonnegative integer z that is within ¢ less than m/n.

The programs obtained to meet these specifications are
quot(m, n) <« quotd(m, n, 1)

where

quotd{m, n, 1) < ifi.-n<m
then if [quotd(m, n, 2i) + 1'] n<m
then quotd(m, n, 20) +1
else quotd(m, n, 2i)
else 0.

The derivation is again analogous.

DISCUSSION

The derivations were first discovered manually; the real-munber square-root derivation was
subsequently reproduced by Yellin in an interactive program-synthesis system. The only automatic
implementation of the system (Russell [83]) is nuable to construet the derivation for a simple reason:
it never attempts to apply the resolution rale to a goal and itsclf.

The results of this investigation rmun counter to our usual experience, It is common for a bit of
reasoning that seems simple and intnitively straightforward to tnrn out to be diflicult to formalize
and more dilficult still to duplicate antomatically. Tere the opposite is true; an idea that requires
a substantial leap of human ingenuily to discover is captured mechanically in a few casy formal

steps.
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