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NY In a binary-scarch algorithin for the computation of a munerical function, the interval in which
es the desired output is sought is divided in half at cach iteration. The paper considers how such
) algorithms might be derived from their specilications by an automatic program-synthesis system,
4 The derivation of the binary-scarch concept has been found to be surprisingly straightforward.

3 The programs oblamed, though reasonably simple and efficient, are quite different from those that
ps would have been constructed by informal means. IRF vy / ergo

CT - a AT 2 ~ ’

- Key Words: program synthesis (thabrctn profing, binary search, real square root 2-  —— po
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he Some of the most efficient algorithms for the computation of mumnerical functions rely on the
4 technique of binary scareh: according to this technique, the interval in which the desired ontput is

ho. sought is divided in half at cach iteration until it is smaller than a given tolerance.

~ For example, let us consider the following program for finding a real-munber approximation to

ve: the square root of a nonnegetive real number ro. The program sets 2 to be within a given positive
: tolerance « less than (/r.

I 2g t= 0
[v v — max(r, 1)
He

Ma while « <v do v — v/2
Nl if [2+ v]2 <r then z— z+ uv

return(z)
-

S This is a classical square-root program based on one that appeared in Wenstey [59]. The program
ho establishes and maintains the loop invariant that 2 is within o less than V7. he that Vr belongs
[ to Lhe hall-open interval [2, 2 + ©). AL cach iteration, the program divides this interval in hall and

Y tests whether fF isin the right or left half, adjusting z and 0 accordingly, nntil vis smaller than
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he AFOSR-81-0014, by the Office of Naval Research under Contract NOOO 4-84-C-0706, and by a
L contract from the International Business Machines Corporation.
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my the given tolerance ¢. The program is reasonably cfficient; it terminates after [logs (maz(r, 1) /c)]
p- iterations.

0 Analogous programs provide an cfficient means of computing a variety of numerical functions.
= It is not inmediately obvions how such prograins can be developed by antomatic programe-synthesis
-.. systems, which derive programs to meet given specifications. Some researchers (e.g., Dershowitz
LC and Manna [77]. Smith [85]) have suggested that synthesis systems be provided with several general
Ba . ' . » . . . . .

program schemata, which could be specialized as required to tit particular applications. Binary .
- search would be one of these schemata. The system would be required to discover which schema,

if any. 1s applicable to a new problem.

Fo, It may indeed be valuable to provide a synthesis system with general schemata, but this
S approach leaves open the question of how such schemata are discovered in the first place. To our

surprise. we have found that the concept of binary scarch emerges quite naturally and casily in

oS the derivations of some numerical programs and does not need to be built in. The programs we
~ have obtained in this way are reasonably simple and efficient, but bizarre in appearance and quite |
JC different from those we would have constructed by informal means.

The programs have been derived in a deductive framework (Manna and Waldinger [80], [85])
LY in which the process of constructing a program is regarded as a task of proving a mathematical
Lo theorem. According to this approach, the program's specification is phrased as a theorem, the

a theorem 1s proved, and a program gnaranteed to meet the specification is extracted from the
" proof. II the specification reflects our intentions correctly, no further verification or testing is
Se required.

- In this paper we outline our deductive framework and show the derivation of a numerical
a program up to the point at which the binary-scarch concept merges. We then show several
SEN analogons Hinary-scarch programs that have been developed by this method. Finally we discuss
oN what these findings indicate about the prospects for automatic program synthesis.
Br ~

h. &,

“ DEDUCTIVE PROGRAM SYNTHESIS

SL In this section we describe our framework for deductive program synthesis, cmphasizing those
i. aspects that are essential for the derivation fragment that appears in this paper. Readers who

ar would like a fuller introduction to this approach are referred to Manna and Waldinger ([80)], [89)).

a We begin with an outline of the logical concepts we shall need.

L J LOGICAL PREREQUISITES

wl The system deals with

ah e terms composed [in the usual way] of constants a, bye, ..., variables u,v, w, ...,

® function symbols, and the conditional (if-then-else) term constructor.

a e aloms composed of terms, relation (predicate) symbols, including the equality
LL symbol =, and the trath symbols true and false;

| Ll Ea! CREA To Tet “Le LI ae Jo -r , Ww EPR SEWEEE Sr . EE EE I Lr . . . a
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| e sentences composed of atoms and logical connectives. J

v Sentences are quantifier-free. We sometimes use infix notation for function and relation sym-

’ bols (for example, £ + a or 0 < y). An erpression is a term or a sentence. An expression is said
< to be ground if it contains no variables. Certain of the symbols are declared to be primitive; these yLJ » :

arc the computable symbols of our programming language. )

Let e, 3, and ¢ be expressions, where 8s and ¢ are cither both sentences or both terms. If we
- L] - [ ] Ll a

write e as ¢[s], then eft] denotes the result of replacing every ocenrrence of s in ¢fs| with ¢. :

| We loosely follow the terminology of Robinson [79]. We denote a substitution 0 by {x « 3
ty.xg — lg... x, «+ t,}. For any expression ¢, the expression of is the resalt of applying 0 to e, N

: obtained by simultancously replacing every occurrence of the variable 4 in ¢ with the corresponding :
tern ¢,. We shall also say that ¢0 is an instance of e. *]

) Variables in sentences are given an implicit universal quantification; a sentence is true under 3
; a given interpretation if and only if every instance of the sentence is true, and if and only if every }
f ground instance of the sentence {i.e an instance that contains no variables) is true. N
K A

Let e, 8, and { be expressions, where 8 and ¢ are either both sentences or both terms, and let

0 be a substitution. If we write ¢ as ¢fs], then ¢0[t] denotes the result of replacing every occurrence
of «0 in ef with t.

- A

: We now describe the basic notions of deductive program synthesis. j

SPECIFICATIONS AND PROGRAMS k

: A specification is a statement of the purpose of the desired program, which need give no

: indication of the method by which that purpose is to be achieved. [a this paper we consider J

: only applicative (or functional) programs, which yield an output but alter no data structures and
produce no other side effects. The specifications for these programs have the form

f(a) < lind z such that Ra, 2]
} \

. where Pla).

F In other words, the program f we want to construct is to yield, for a given input a, an output 2
satisfying the output condition Ra, z], provided that the input a satisfies the input condition Pla.
In other words, z is to satisfy the input-output condition |

A

tf Pla] {
oo then Ra, z).

A |

y For example, suppose we want to specify the program sqrt to yield a real nmmber 2 that is 1 :
4 within a given tolerance ¢ less than /r, the exact square root of a given nonnegative real number "1 3
! r. Then we might write Co ;

sgrt(r, ¢) <= lind z such that 1 EK
gri(r, ¢) , ¢ 2 Distribution/

4 2° <r and not (& +¢)*< r] Avallability C BR \vaila .
where 0 <r and 0 < c. | y Codes ’

3 Avail and/or .
: - Dist | Special K
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"wy In other words, we want to find an output z satisfying the output condition
‘ »

hn,’

i 2? <r and not (z+)? <r],

oA provided that the inputs 7 and ¢ satisfy the input condition
i H

non

a 0<r and 0 <c

CC The above square-root specification is not a program and does not indicate a particular method
Sh for computing the square root; it deseribes the input-output behavior of many prograios, employing

ON different algorithms and perhaps producing different outputs.
lw .

‘CER The programs we consider are sets of expressions of the form

- where t; is a primitive term, i.c., one expressed entirely in the vocabulary of our programming
3. language. These programs can be mntually recursive; te., we regard the function symbols f; as
ro. primitive. In the usual way, such a program indicates a method for computing an output. For the

® most part, in this paper we shall consider programs consisting of only a single expression f(a) <= ¢,
~5- which may be recursive.

5 In a given theory, a program [fis said to satisfy a specification of the above form if, for any
Co input a satisfying the input condition Pla], the program f(a) terminates and produces an output
‘on t satisfying the ontput condition Ra, ¢].

- DEDUCTIVE TABLEAUS

co The fundamental structure of our system, the deductive tableau, is a set of rows, cach of which

) must contain a sentence, either an assertion or a goal; any of these rows may contain an expression,
ove) the output enlry. An example of a tableau follows:

. “outputs TT TT

assertions goals fa. (

Plal
|

or if q(u)
ARS then Ru, 0

9 a(a) 0

- Here u and z are variables and a and 0 are constants.
a

oe Under a given interpretation, a tablean is true whenever the following condition holds:

: If all instances of cach of the assertions are true,

then some instance of at least one of the goals is true.
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eo Equivalently, the tablean is true if some instance of at least one of the assertions is false or some
~ instance of at least one of the goals is true. Thus, the above tableau is true if Pla] is false, if
k

= if q(b)
a

[> then R|b, 0]

is false, if Ra, ¢ is true, or if ¢(«a) is true (among other possibilities).
“=. ’ . . . cg ag ong oo

i In a given theory, a tableau is said to be veld if it is true under any model for the theory.

La Under a given interpretation and for a given specification

C- f(a) <« find z such that Ra, 2]
~ where Pla,

K a goal is said to have a suitable output entry if, whenever an instance of the goal is true, the
corresponding instance t' of the output entry will satisfy the input-output condition

3 if Pla]
¢ then Rla, t'|.

Sa (If the goal has no explicit output entry, then it is said to have a suitable output entry if, whenever
Lo an instance of the goal is true, any term ¢ sattslios the input-output condition.) An assertion is said
ASA to have a suitable output entry if, whenever an instance of the assertion is false, the corresponding |
- instance ¢' of the output entry will satisfy the input-output condition.

oN Example |

be In the theory of the real numbers, _onsider the square-root specification

) sqrt(r,¢) < find z such that
[-".. 22 <r and not [(= + ()? < r]
Le where 0 <r and 0 < ¢

A and the following tableau:

" outputs
.. assertions sqri(r. «

ro I. 0<7r and
So 0 <¢

° 2. 22<r and
her - not [(2 + ¢)? < r]
SO

- te

Py This tableau is valid in the theory of real numbers, because, under any model of the theory,
oT cither the assertion (which Las no variables) is false or some instance of one of the two goals is
Soe true. (In particular, the instance of goal 2 obtained by taking = to be /r itself is true.)

" er PE 7, a ta Ce * . 7 =" . . te, a . . o- . Lo RI RC ENRON he SUAS - "® ~ CO » ~ LN *
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or

a! Under any model for the theory, the output entries of the above tableau are suitable for the1.% . . . . . . . .

Ye square-root specification. In particular, if some instance of goal 2, obtained by replacing z with s,
re is true, then s will satisfy the input-output condition. That is,
Ta

. 5 -

Ee if 0<r and 0 <e¢

Arh then 3? <r and notf(s +)? <r]
<C

CN : Also. if assert | hich has t is fal he . atisfics th 1. 18 truce. Also, iI assertion 1, which has no output entry, 1s false, then any term 8 satasiies the above .
a condition.

p. Under a given interpretation I and for a given specification, two tableaus Typ and Tz have the
a same meaning if

2 Ti is true under J
- if and only if

oe Tz is truce under J

rg and

LL the output entries of Tj arc suitable
co if and only if

bo the output entries of Tg are suitable.

_ In a given theory and for a given specification, two tableaus are equivalent if, under any model IT
aN for the theory, the meaning of the two tableaus is the same.

oR PROPERTIES OF A TABLEAU

Lo. Let us consider a particular theory and a particular specification, which will both remain fixed
po throughout this discussion. We shall use the following properties of a tableau:

Le e Duality Property

Any tableau is equivalent to the one obtained by removing an assertion and adding its negation

ee as a new goal, with the sane output entry. Similarly, any tablean ix equivalent to the one obtained
= by removing a goal and adding ils negation as a new assertion. Thus, we could manage with a
IN system Lhat has no goals or a system that has no assertions, but the distinction between assertions
-. and goals does have some intuitive significance,

LJ o Renaming Property

oa Any tableau is equivalent to the one obtained by systematically renaming the variables of any

Se row. More precisely, we may replace any of the variables of the row with new variables, making
SE sure that all occurrences of the same variable in the row (including those in the output entry)

’y arc replaced by the same variable and that distinct variables in the row are replaced by distinct
=r variables. In other words, the variables of a row are dummies that may be renamed freely.

@
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- e Instance Property

~ Any tableau is cquivalent to the one obtained by introducing as a new row any instance of
[- an oxisting row. The new row is obtained by replacing all occurrences of certain variables in the

ro existing row (including those in the output entry) with terns. Note that the existing row is not
p replaced; the new one is simply added. !

THE DEDUCTIVE PROCESS

] Consider a particular theory and the specification 3

[{a) <= find z such that R[a, 2]
where Pla).

9 We form the initial tableau

oufputs |
assertions

> fla

- We may also include in the initial tableau (as an assertion) any valid sentence of the theory.

3 Note that the output entries of this tableau are suitable: Under any model for the theory, if the

2 initial assertion Pla| is false, then any output satisfies the input-ontput condition vacuously; and
- if some stance Rf, t] of the intial goal is true, the corresponding instance ¢ of the associated

output entry satisfies the input-output condition. Furthermore, the valid sentences included as \
g initial assertions cannot be false.

We attempt to show that the above tableau is valid. We proceed by applying deduction rules

- that add new rows without changing the tablean’s meaning in any model for the theory, In other :

-. words, under a given model, the tablean is trae before application of the rule if and only if it is true :
Y alerwards, and the output entries are suitable before if and only if they are suitable afterwards. 4
d We describe the deduction rules in the next section.

The deductive process continues until we obtain cither of the two rows

R | true | ¢ |
A or ;

f LL

>. | Jalse | | t
) where the output entry £ is primitive, i.c., expressed entirely in the vocabulary of our progranuning |

language. (We regard the inpnt constant a aud the function symbol [ as primitive.) At this point,
‘ we derive the program

: Ja) «= ¢.

“

|
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on We claim that ¢ satisfies the given specification. For, in applying the deduction rules, we have
hoo guaranteed that the new output entries are suitable if the carlier output entries are suitable. We

have seen that the initial output entries arc all suitable; therefore, the final output entry ¢ is also

uN suitable. This means that, under any model, if the final goal true is true or the final assertion false
MER is false, the corresponding output entry ¢ will satisfy the input-output condition

A then Ra, t|.

AO But under any model the truth symbols true and fulse are true and false, respectively, and hence
Ls t will satisfy the input-output condition. Therefore, the program f(a) <= ¢ does satisfy the speci-
ro fication.

THE DEDUCTION RULES |

LL We now introduce the deduction rules of our system, emphasizing those that play a role in the
¢ portions of the square-root derivation we present. We begin with the simplest of the rules.

Fe

or THE TRANSFORMATION RULES

_— The transformation rules replace subexpressions of an assertion, goal, or output entry with
- cqual or equivalent expressions. For instance, with the transformation rule

op P and true — P,

“) we can replace the subsentence ((A or B) and true) with (A or DB) in the assertion

a | ((A or B) and true) or D | | 0 |
SL yielding

Co With Lhe transformation rule (in the theory of integers or reals)

A u + u — 2u,

ov we can replace a subterm (a + b) + (6 + 0) with the term 2(a + b).

“ We use an associative-commautative matching algorithm (ef. Stickel [81]), so that the associa-
¢ tive and commutative properties of operators can be Laken into account in applying the transfor-
i. mation rules. Thus, we can use the above rales to replace a subsentence (true and 3) with the
Sh sentence Band the subterm (a + 0) 4- b with the Lerm a ++ 20.

@
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= We include a complete set of true-false transformation rules, such as

i

! not false — true
~. if P then fulse — not P.

-. Repeated application of these rules can eliminate from a tableau row any occurrence of the truth
» symbols true and false as a proper subsentence.

. The soundness of the transformation miles is evident, since cach produces an expression equiv-

, alent or equad (in the theory) to the one to which it is applied.

a THE RESOLUTION RULE: GROUND VERSION

- The resolution rule corresponds to case analysis in informal reasoning. We first present the

N ground version of the rule, which applies to ground goals. We express it in the foliowiag notation:

. TTertions ale outputs—: assertions roals

r wsoertions 50a f(a |.. . c or

By g[P] t

ba Fltrue] if P
a and then s

Gl alse] else ¢

.. In other words, suppose our tableau contains two ground goals, ¥ and §, whose output cutries
pas arc s and #, respectively. Suppose further that 5 and @ have a conunon subsentence Po Then

we may derive and add to our tableau the new goal obtained by replacing all occurrences of 2 an

hb -. 7 with true, veplacing all occurrences of Pin §G with fulse, and forming the conjunction of the
<. results, The output entry associated with the derived goal is the conditional expression whose test

oo ix the common subexpression P and whose then-clanse and else-clanse are the output entries s and
= t for F and G, respectively. Because the resolution rule always introduces occureences of the truth

) symbols frue and false as proper subsentences, we can unmediately apply lrue-false transformation
rules to the derived goal.

.- For example, suppose our tablean contains the rows

- TT oC1sI ET FECE
e assertions gos [(a, b)

| These roals have a common subsentence pla, H), indicated by boxes. Therefore we may dertve and5 ’ \

N add to our tablean the new goal



".
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-v 2 .

oi and then a
ND not (+f r(b) then false) else b

he By repeated application of transformation rules, this goal reduces to

\ - . L]| R if pla, bh) |
ve q(a) and r(b) then a
ae else b

F. If one of the given goals has no output entry. the derived output entry is not a conditional

. expression: it is simply the output entry of the other given goal. If neither given goal has an output

a entry. the derived goal has no output entry either. We do not require that the two given goals be
or distinet; we may apply the rule to a goal and itself.

oo We have presented the resolution rule as it applies to two goals. According to the duality

Fr. property of tableaus, however, we may transform an assertion into a goal simply by negating it.
= Therefore, we can apply the rule to an assertion aud a goal, or to two assertions.

LL The resolution rule may be restricted by a polarity strategy (Murray [82]; see also Manna and
tC Waldinger [80]), according to which we need not apply the rule unless some occurrence of Pin ‘
- Fis “positive” and some occurrence of Fin Gis “negative”. (Here a subsentence of a tableau is
r ve . . ' . . . .

regarded as positive or negative if it is within the scope of a respectively even or odd number of
oo neeation connectives. Bach assertion is considered to be within the scope of an mnplicit negation;

L- thus, while goals are positive, assertions are negative. The if-clanse Poof a subsentence (ifP then Q)
. is considered to be within the scope of an additional iiuplicit negation.) This strategy allows us to

disregard many uscless applications of the rule.

a Let us show that the resolution rule is sound; that is, in a given model of the theery and for a
TL giver specification, the meaning of the tablean is the same before and after application of the rule.
hE It. actually suflices to show that, if the derived goal is true, then at least one of the given goals is
SE true; and if the given output entries are suitable, so 1s the derived oulput entry.

[ Suppose the derived goal (Fltrue] and Glfalse]) is true. Then both its conjuncts Fltrue} and
St Glfalse] are true. We distinguish between two cases, depending on whether or not the common
eT subsentence £ is true or false. In the case in which P is true, the {ground} goal F{P| has the same
~ fruth-value as the conjnnet Fltrue]; that is, FIP] is trues In the case in which P ois false, the goal

Ey GP] has the same trath-value as the conjunct. Gl false]; that ix, GIP] ix true. In either case, one

° of the two given goals, FP] and G[F|. ix true.

Now assume that the given output entries are suitable. To show that the derived output entry
Se is suitable, we suppose that the derived goal is true and establish that the derived output entry |
a satisfies the input-output condition. We have seen that, in the case in which P is true, the given
- goal FIP] is true; because its output entry 8 is suitable, it satisfies the input-output condition.
@ Similarly, in the case in which P is false, the term ¢ satislies the input-output condition. In either
Lo case, therefore, the conditional expression (ifP then s else t) satisfies the input-output condition;
mt but this is the derived output entry.

@
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& THE RESOLUTION RULE: GENERAL VERSION A

y >
: We have described the ground version of the resolution rule, which applies to goals with no

3 variables. We now present the general version, which applies to goals with variables. In this case, E

. we can apply a substitution to the goals, as necessary, to create a common subsentence. 3

p ¥ ontputs N"A assertions goals
(a)

t FIP] s

Ww

: FO[true] if Po 3
: and then s0 :

| | Gol false) else LU .
| More precisely. suppose our tableau contains goals 5 and §. which have no variables in common. X

(This can be ensured by renaming the variables of the rows as necessary, according to the renaming y

property.) Suppose further that some of the subsentences of ¥ and some of the subsentences of §
are unifiable, with a most-general umifier 5 let 2 be the unilicd subsentence. Then we may derive J

and add to our tablean the new goal obtained by replacing all occurrences of PO in 70 with true,

. replacing all occurrences of Pin G0 with false, and forming the conjunction of the results. The 3
° associated ontpat entry is a conditional expression whose test is the nnitied subsentence FO and

\ whose then-clanse and else-clavse are the corresponding tustances 0 and 0, respectively, of the ;

: given outpnt entries.

~ In other words, to apply the general version of the rule to F and G, we apply the ground .
. version of The rule to 70 and G0. The soundness of the general version follows from the sonnduess

of the gromnd version. The polarity strategy applies as before. If we wish to apply the rule to an

| assertion and a goal or to two assertions, we can regard the assertions as goals by negating them, .
. as in the srronnd case.

For example, suppose our tableau contains the rows :

; } : outputsassertions roals

| assertion goals [{a, b)

8 | -

R y <a and )
: ane

: nol ly +b < ] g(u) |

: p(u) )

| if q(x, v) :

f(r, 0) <r and i
then .

- not [J (x, v) + v < r] )

The boxed subsentences are unifiable; a most-general unilier is 4

. 0: {z+—a, vb, ye fla, b)}. :

’ ) 5 K * ". -- SCI . . : St . Ct t. - ) Ce PIECES RI wt. - C Teel +. . . a Te Co t. Lo Wc RES . . nL Co Lo NR
=. . ) . «7 -. i ’ «Le Ll N .’ Io . - - “ |” "gn ‘nt °e WT Py Ay CL Ws KE i Rs y co ny a a * oe ~~. a - “a "a Ce - ' oY
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Aes The subsentences are respectively positive and negative, as indicated by the annotation. We may
oy regard the assertion as a goal by negating it. By application of the general version of the resolution
.
ne rule, we may derive the new row

true and

" h if q(a, b)28 not
AN then [alse

Ce By the application of true-fulse transformation rules, this goal reduces to

ca (f(a, b))
nr and g(/(a, b))
no q(a, B)

a Note that the nnifier 0 has been applied to all variables in the given rows, including those in the
L 3 output entry. Because the given assertion has no ontput entry, the derived output cutry 1s not a
ok conditional expression. This application of the rule is in accordance with the polarity strategy.

Se The resolution rule and the true-false transformation rules have been shown by Murray [82] to
aA constitute a complete system for Arst-order logic. The polarity strategy maintains this complete-

.- We nse an associative-commutative unification algorithm {as in Stickel [81]) so that the as-
CL sociative and commutative properties of such operators as addition and conjunction can be taken
a into account in finding a uniticr; thus, p( f(x) + (b+ g(a))) can be unitied with p((g(y) + J(b)) +x).

We have introduced two additional rules to give special treatment to equality and other i-

J portant relations (Manna and Waldinger [85]), but these rules play no part in the portion of the
vo derivation to be discussed.
MRS

IO We shall need the induction rule; this we describe next.

_ THE MATHEMATICAL INDUCTION RULE

The rules presented so far do not allow us to introduce any repetitive construct into the
A program being derived. The induction rule acconnts for the introduction of recursion in the derived

® | program. We employ a single well-Tonunded induction rule, which applies Lo a variety of theories, |
Ce A well-founded relation <,, is one that adits no infinite decreazing sequences, Le. sequences
"s Zy,L9,T3, ..., such that
nl
PR

25 For instance, the less-than relation < is well-founded in the theory of nonnegative integers, but
a not in the theory of real numbers.

‘ a
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- The version of the well-founded induction rule we need for the derivation is expressed as follows
SRS (the general version is more complex): |
9

z Crs :

fan Suppose our initial tableau is |

ER 1] outputs
oe assertions goals f(a)

Re In other words, we are attempting to construct a program f that, for an arbitrary input a, yiclds
0 an output z satisfying the input-output condition

if Pla]
ol then Rla, 2].

hts According to the well-founded induction rule, we may prove this assuming as our induction hy-
- pothesis that the program [ will yield an output f(«) satisfying the same input-output condition

LX then R(x, /(z)],
. provided that z is less than a with respect to some well-founded relation <,,, that is, z <,, a. In

= other words, we may add to our tableau the new assertion

be tf T <, 4a

- then if Plz]

Na then R[z, [(x)] |

cL The well-founded relation <,, used in the induction rule is arbitrary and must be selected later in

the proof.

pn. For example, consider the initial tablean obtained from the square-root specification:

[-." " oinlpntsJ ANS ris assertions gonls sqrt(r, ¢)

3
. 22 <r and

oa not [(2 +)? < r]
oo mn eee — emeeee
Se By application of the well-founded induction rule, we may introduce as a new assertion the induc-
@ tion hypothesis

. then of 0<z and 0 <v

hy [sqrt(z, v)] <r and
[ 3 then 7 :Cie nol ([wqre (=, 1) t+ v] < x)
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- In other words, we may assume inductively that the output of the square-root program we construct
2 2 will satisfy the input-output condition for inputs z and » that are less than the given inputs r and
OX ¢ with respect to some well-founded relation <,,.

ON Use of the induction hypothesis in the proof may account for the introduction of a recursive

ho call into the derived program. For example, suppose that in the square-root derivation we manage
to develop a goal of form

"a G 32 < 3 and
L~ not ([2 +6] <s

The boxed subsentences of this goal and the induction hypothesis are unifiable; a most-general

- unifier is

7 0: {ze 3, ved, 2 sqri(s, 8)}.

o Therefore, we can apply the resolution rule to obtain the new goal

A Gltrue]
oo and

- not [then if 0 <3 and 0 < §
hie then false

ns -

co This goal reduces under transformation to |

\ Gltrue
have and |

: tisqrt(s, 6J (3, 8) <4 (r, ¢) and [sart(+, 8)]
~ 0<s and 0<&

he Note that a recursive call sqri(s, 8) has been introduced into the ontput entry ax a result of
oe thix step. The condition (0 € 8 and (0 < 8) in the goal ensures the legality of the arguments s and

| d, i.0., that they satisfy the input condition of the desired program. The condition (s, 8) <,, (r, ¢)
Pr ensures that the evaluation of the recursive call cannot lead to a nonterminating computation. (If
nh there were an infinite computation, we could construct a corresponding mlinite sequence of pairs
SON of arguments decreasing with respect to <,,, thus contradicting the definition of a well-fonuded

relation.)

| @ The particular well-founded relation <, referred to in the induction hypothesis is not yet

4 ’ specified; it is selected at a later stage of the proof. IF we allow well-founded relations to be objects
iu our domain, we may regard the sentence z <,, y as an abbreviation for <{w, z, y); thus, w

vo is a variable that may be instantiated to a particular relation. We assume that the properties of
aot many known well-founded relations (such as <,,c., the proper-subtree relation over trees) and of
F-= functions for combining them are among the assertions of our initial tableau.

S08 We have given the simplest version of the induction ale, which is applied only to the initial
2 rows of the Lablean; in its general version, we may apply the rule to any of Lhe rows, and we may
fe

Je oo. - Ce)Se ) Lt CL asl Cr Jem Stee te Ce Ce eee te iy wr I OT » we "Tt, =. ter AE - “a > Yat “wt Te Fe Te" Ta *«< ia yy
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- strengthen or generalize the rows to which the rule is applied. In this more general version, the
oy rule accounts for the introduction of auxiliary subprograms into the program being constructed.

he J

& We shall avoid discussion of auxiliary subprograms here.

Mo We are now ready to present the most interesting segment of the derivation of the square-root
or program.

oe THE DERIVATION
wv

Ng

pa Recall that, in the theory of real numbers, the specification for the real-unmber square-root program
tu is

Lo sqrt(r, ¢) < find z such that
z2 <r and not (2 +6)? < r],

ch where 0 <7 and 0 < e.

-] In other words, we want to find an estimate z that is within a tolerance ¢ less than /r, the exact
L square root of 7, where we may assume that r is nonnegative and c is positive.

Pu We begin accordingly with the tableau | |

= assertio al outputsnL assertions goals sqré(r. «

3 2. [<r] and not[(z+?<r] | 2
LYN

SS =

The assertion and goal of this tableau are the input and output conditions, respectively, of the
1) given specification; the output entry of the goal is the output variable of the program.

, THE DISCOVERY OF BINARY SEARCH
\ CR

We are about to apply the resolution rule to goal 2 and itself. To make this step casier to

Ch understand, let us write another copy of goal 2.

| 2. 22<r and not IE 1¢))<r | | 2 |
@ . .
7 We have renamed the variable of the second copy of the goal, so that the two copies have no
ne variables in common.

AAR The boxed subsentences of the two copies of the goal are uniliable; a most-general nuifier is

@ / {z2—2+c}.
[ ‘ . .

“3: Therefore, we can apply the resolution rule between the two copies of goal 2 to obtain
hs
LNG
Ny J

av.
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oN r
=" . 3 IRE 2
2 true and not [((2 +e) +¢€) < r] tf (2+¢)* <r
SEE and then 2+ ¢€

Ol 2? <r and not false else 2

- By application of transformation rules, including the rule

bY .

- u + u — 2u,
Ti.

SA this goal can be reduced to

>

> = 2 < . 2z°sSr if (+e) <r
_. 3. and then 2 +
Dh not [(2 +2¢)2 < r] else 2

on (We have reordered the conjuncts for pedagogical reasons only; because we use associative-coms-
Cy imitative unification, their actual order is irrelevant.)

ne According to goal 3, it suffices to find a rougher estimate 2, which is within a tolerance 2e¢ less

EN than /7, the exact square root of r. For then cither 2 + ¢ or 2 itself will be within ¢ less than /r,
ER depending on whether or not 2 + ¢ is less than or equal to /r. The two possibilities are illustrated
th below:
Lt . vr VN

So z Z+e€ Zz + 2¢ z Z+€ z+ 2

ob Case: 2+ <r Case: not [24+ ¢ < fr]

) Goal 3 contains the essential idea of binary search as applied to the square-root problem.
Lc Althonghthe idea seems subtle to us, it appears almost iinmediately in the derivation. The step
ro 18 nearly inevitable: any brute-force search procedure would discover it.

aE The derivation of goal 3 is logically straightforward, but the intuition behind it may be a bit |
eo mysterious. Let us paraphrase the reasoning in a more geometric way. Our initial goal 2 expresses
3 that it suflices to find a real number z such that /r belongs to the half-open inteeval [z, z + ¢).
7. Our rewritten goal 2 expresses that it ig equally acceptable to tind a real muauber 2 such that VT
. belongs to the half-open interval [2, 2+ «). We shall be content to achieve either of these goals;

Le, we shall be happy if /r belongs to either of the two half-open intervals, In taking 3 to be
oN 2 «, we are concalenaling the two intervals, oblaining a new half-open interval [z. 2 IF 2¢) twice

® the length of the original. Jt sullices to find a real number 2 such that \/r belongs to this new,
= longer interval, because then /r mst belong to one or the other of the two smaller ones.Ea 8

{=>
i

;- INTRODUCTION OF THE RECURSIVE CALLS

i . . * . »
RON Let us continne the derivation one more step. By the well-founded induction rile, we may
vl introduce the induction hypothesis

§ J tate CIE Oe gh RETA REL RRL . ." a - - . [] “> " v. . . Lo, . TE A EC TUEAE eT at al a an . - . i - . . -



el

ho

AE if (z, v) <u (1, €)
5 then sf 0 <z and0 <v

- sqrt(z, v)| < ¢ and
then & (z, )] = 0 .

_ not ([sqrt(s, v) + v] < z)

In other words, we assume inductively that the output sqri(z, v) of the program will satisfy the
- input-output condition for any inputs x and v such that (z, v) <,, (r, ¢). The boxed subsentences
RE of goal 3 and the induction hypothesis are unitiable; a most-general unifier is

pr 0: {zr ve 2, 3 sqri(r, 2d}.

We obtain (after true-false transformation)

A 4. {r, 2¢) <y {r, ©) if [sqrt(r, 2) +¢€]” <r
fo and then sqrt(r, 2¢) + ¢
oe 0<7r and 0 < 2c else sqrt(r, 2¢)

. Note that at this point three recursive calls sqre(r, 2¢) have been introduced into the output
CL entry. The condition (0 < r and 0 < 2c) ensures that the arguments r and 2¢ of these recursive
ol calls will satisfy the input condition for the program, that r is nonnegative and 2¢ is positive. |
Le The condition (r, 2¢) <,, (r, ¢) cnsures that the newly introduced recursive calls cannot lead to
. a nonterminating computation. The well-founded relation <,, that serves as the basis for the
SE induction 1s as yet unspecified. |

A We omniit those portions of the derivation that acconnt for the introduction of the base case
Ch and the choice of the well-founded relation. The final program we obtain is

) sqri(r, ) « tf « < maz(r, 1)

Lo then if [#qre(r, 2¢) + (| <r
a then sqri(r, 2¢) + ¢
-. else sqrt(r, 2c)
Ph else 0.

® A few words on this program are in order.

n DISCUSSION OF TIIE PROGRAM

J The program first checks whether the error tolerance ¢ is reasonably small. If ¢ is very big,
-. that. is, if mnaz(r, 1) < ¢, then the output can safely be taken to be 0. For, because 0 <r, we have

i 0% <r. |

® And because max(r, 1) < ¢, we have r < c and 1 < ¢, and hence r < ¢3 - that is,

= not [(0 + €)? < r].

a y —- 1% , -.- CatAR a a .a=S . ete te Te . ot . » ~ . . Ce ere“ "er Tere, cee0" CeA - ° -. “\” te "\. -
nS . or REJl " =, aN av Ie “y ",. Cp =. ‘ ” ‘o” Pa . . RN OA « "ot ; a = “* RY § ". . o = BN as PP VE PPX, nN“3N,andahoaN



Pola THER - . - . . . - Ld - - \ LJ - » - L - . - - i. 4 Hy “| ry ta ~ N . - ye . -

~ |!

: 18

. Thus, 0 satisfies both conjuncts of the output condition in this case.

~ If ¢ is small, that is, € < maz(r, 1), the program finds a rougher estimate sqré(r, 2¢), which is
g within 2¢ less than /r. The program asks whether increasing this estimate by « will leave it less
a than /r. If so, the rough estimate is increased by ¢; if not, the rough estimate is already close

cnough. Tf

| The termination of the program is a bit problematic, because the argument ¢ is doubled with
cach reenrsive call. However, the argument r is unchanged and recursive calls are evaluated only in y

: the case in which € < maxz(r, 1), so there is a uniform upper bound on these increasing arguments.

More precisely, the well-founded relation <,, selected in the proof is one such that

: (2, 2y) <w (z, y),

provided that 0 < y < maz(r, 1).

| If the multiple occurrences of the recursive call sqre(r, 2¢) are combined by climinating com-
mon subexpressions, the program we obtain is reasonably clticient; it requires [logs (rmax(r, 1)/¢)]
recursive calls.

‘ Onr final program is somewhat different from the iterative program we considered in the
X beginning. The iterative program divides an interval in half at each iteration; the recursive program

doubles an interval with cach recursive call. Division of the interval in half occurs implicitly as the
| recursive program anwinds, 1.e., when the recursive calls yield output values.

' It is possible to obtain a version of the ilerative programm by formal derivation within the
| dednetive-tablean system. Although the derivation and the resulting program are more complex :

) (it requires two additional inputs), it was this derivation we discovered first, because we were
: already familiar with the iterative program. | ]

a We first found the recursive program in examining the consequences of purely formal derivation |
i steps, not because we expected them to lead to a program but becanse we were looking for strategic

considerations that would rule them ont. When we examined the program initindly, we suspected
g an error in the derivation. We had not seen programs of this [orm before, and we certainly would
S not have constructed this one by informal means. :

; ANALOGOUS ALGORITHMS |

- Many binary-search adgorithins have been derived in an analogons way. Let us first consider some

. other real-numerical problems.

L

| REAL-NUMDBER ALGORITHMS

Suppose a program to perform real-number division is specitied as follows:

\ div(r, s, () « find z such that

: 2-4<r and not [(z+¢)-3 <r] |
v where 0 <7 and 0 < = and () < e.

‘

CRT a J a * . ow Lt WY Jo - Ce. et N . a Te nS . a. 3 J "a . - “3, ol Te - ‘e - a . - -. -. . “~ - .
, Lo -® . Pa Pa cL. Mn" “uC -.” . . Cu LA "te LC - 7 « . er” Ca . a Tat re CY w,. - a =, “, - SE Ta Seta Ale Te " Te Tut

: » ad Cag” a” PP PI, fn - Maas’ RARER EE RENT PPR, PIAA NT ATIRIN DA



| oo i } i} hE on ! . = ’ . ; ea Ta a. . -

os 19 :

LC In other words, the program is required to yicld a real mamber z that is within a tolerance € less
[_~ than r/s, the exact quotient of dividing r by 3. We obtain the program
.R

ON div(r, 8, ¢) <= if ¢-3<r
ae then if [div(r, 3, 2¢) + 3 -8<r
oe then div(r, 3, 2¢) + ¢€
I else div(r, s, 2c)
vy else 0)

oe The rationale for this program, like its derivation, is analogous to that for the real-number
< square root. The program lirst checks whether the error tolerance is reasonably small, that is, if
Ol « -3 <r. If eis very big, that is, if r < ¢ + 8, then the output can be taken safely to be 0. For
: because 0 < r, we have

Lh ©.

2 And because r < ¢« - 8, we have r < (0 + ¢) - 8, that is,

ou not [(0 +c) 8< r].

Rr Thus, 0 satisfies both conjuncts of the output condition in this case.

a On the other hand, if ¢ is small, that is, if ¢ - 8 < 7, the program finds a rougher estimate
ov div(r, s. 2¢). which is within 2¢ less than r/s. The program considers whether in creasing this
a estimate by ¢ will leave it less than #/s. If so, the rough estimate may be increased by ¢; if not,

the rough estimate is already close enongh.

) The termination proof for this program is also analogous to that for the square root. Although
~ the argent ¢ is doubled with each recursive call, the other arguments are unchanged and the
=. calls are evaluated only in the case in which ¢ - 8 <r, that is, ¢ < v/s. Thus, there is a uniform
bo upper bound on the donbled argument.

pl It. may be clear from the above discussion that there is little in the derivations for Lhe squares
po. root and division programs that depends on the properties of these functions. More or less the same
Ta derivation sullices to tind an approximate solution to an arbitrary real-nnmber equation f(z) =r.

h | Ll » - - L ] Ld
~. For a given computable function f, we consider Lhe specilication
2° -

xs solver, « ind 2 such tha® & find z such that

ST [(2) <r and nol [f(z +) < r]
0 if b<u
0s where fla) <r and[> Ju) < [hen not (f(u) < ol
3 L} LI . 4
ay flere a and b are primitive constants and u is a variable. In other words, we assume that there
i exist real numbers a and b such that f(a) < r and f(x) > r for every real u greater than b. The

XN
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on specification is illustrated as follows:
LA,
hy

.

Fo flu)

r h od

a v
8 2 2Z2te b

LL Note that we do not need to assume f is increasing or even continuous; if f is not continuous,

a an cxact solution to the equation f(a) = r need not exist, but only an approximate solution is

ore required by the specification.

e The program we obtain is

oc colve(r, ¢) <= tf a+e<b
JERS then sf [(solve(r, 2) +¢) <r
oo then solve(r, 2¢) + ¢

- else solve(r, 2¢)
| else a.

go In the recursive case, in which a + ¢ < b, the program is so closely analogous to the previous
oe binary-scarch programs as to require no further explanation. In the base case, in which b < a + ¢,
We the output can safely be taken to be a. For, by our input condition, we have

__ J(a) <r

J : and (again by our input condition, becanse b < a + ¢)
At not [f(a +¢) < r].

Thus, a satisfies both conjuncts of the output condition in this case.

= The above program may be regarded as a schema, because we may take the symbol f to
py be any primitive function symbol. An even more general binary-scarch program schema can be

N.C. derived from the specification

0% scarch(r, ¢) <= find z such that
Se p(r, 2) and not p(r, z+)

a if b<u |
J where pa) und /
oo then not p(r,u)

where p ix a primitive relation symbol and a and b are primitive constants. We obtain the schema

scarch(r,¢) «& fa+ec<b
.r hy
Ne then if p(r, scarch(r, 2¢) + €)
J then scarch(r, 2¢) + ¢

else scarch(r, 2)

| Te else a

oe FeTE TE I TE IY REE LM. RSE he h RTE REAL Te aT TE [Te NE EN LE FEE SR , . ECE A SP a ta Yam om®
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ot INTEGER ALGORITHMS

- The programs we have discussed apply to the nonucgative real numbers; using the same
approach, we have derived analogous programs that apply to the nonnegative integers. These

A derivations require a generalization step in applying the induction rule. We have avoided presenting
“, generalization and the concomitant introduction of auxiliary programs in this paper, but we give
LY . . .

"" some results of these derivations here.

x Integer square root
LN

bo The integer square-root program is intended to find the integer part of (/n, the real square
AN root of a nonnegative integer n. It can be specified in the theory of nonnegative integers as follows:

. sqrt(n) <= find z such that |
z? <n and not[(z +1)? <n).

; In other words, the program must yield a nonnegative integer z that is within 1 less than /n.

r In the course of the derivation, we are led to introduce an auxiliary program to meet the more
~~ general specification

N sqrt2(n, 7) << find z such that
oo 2’ <n and not [& +1)? < n]

where () <3.

- In other words, we wish to find a nonnegative integer 2 that is within ¢ less than \/n. This auxiliary
[. specification is precisely analogous to the real-number square-root specitication, with ¢ playing the

nN role of the error tolerance c.
A es

- The programs we obtain to meet these specifications are

= sqrt(n) << sqri2(n, 1),

% where

= sqri2(n, i) « fi <n

then if [sqrt2(n, 21) + i] <n
E then sqri2(n, 2) +1

2 else sqrt2(n, 2i)
c clse (),

q

- Integer quotient

- The integer quotient progratn can be specified similarly:. 1 5 i

quot(m, n) <= find z such that
Fo z.n<m and not [(= 1) :n < m]
. where () < n.

4
ud
4
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lL - In other words, we wish to find a nonnegative integer z that is within 1 less than m/n, the real-
vy number quotient of mn and n.

oo In the course of the derivation, we are led to introduce an auxiliary program to meet the more
CC general sp. cification

oo quotd(m, n, 1) <= find z such that
i z.n<m and not((z +1) -n < mj
Lo where 0 <n and 0 <4.

. In other words, we wish to find a nonnegative integer 2 that is within ¢ less than m/n.

The programns obtained to meet these specifications are

wo quot(m, n) <= quotd(m, n, 1)

where

v quotd(m, n, i) « tf i-n<m
x then if [quot3(m, n, 21) + q nm
Co then quotd3(m, n, 2t) +1 |

8 else quot3{mn, n, 21)
Co else 0.

The derivation is again analogous.

= DISCUSSION

J The derivations were first discovered manually; the real-munber square-root derivation was
Po sitbsequently reproduced by Yellin i an interactive programe-synthesis system. The only antomatic
ln implementation of the system (Russell [83]) is unable to construct the derivation [or a simple reason:
ve it never attempts to apply the resolution rule to a goal and itself.

‘a The results of this investigation run counter to our usual experience. It is common for a bit of
= reasoning that seems simple and intnitively straightforward to turn out to be difficult to formalize

- and more dillicult still to duplicate antomatically. Here the opposite is true: an idea that requires
a substantial leap of human ingenuity to discover is captured mechanically in a few casy formal

Oo steps.

o |
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