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ABSTRACT

Capture rules were introduced in [U] as a method for planning the

evaluation of a query expressed in first-order logic. We examine a

capture rule that 1s substantiated by a simple top-down implemen-

tation of restricted Horn clause logic. A necessary and sufficient

condition for the top-down algorithm to converge is shown. It 1s

proved that, provided there 1s a bound on the number of argu-

ments of predicates, the test can be performed in polynomial time;

however, if the arity of predicates 1s made part of the input, then

the problem of deciding whether the top-down algorithm converges
1s NP-hard. We then consider relaxation of some of our constraints

on the form of the logic, showing that success of the top-down algo-

rithm can still be tested in polynomial time if the number of argu-

| ments 1s limited and in exponential time if not.

I. PRELIMINARIES

We consider the question of capture rules and their substantiation

as outlined in [U]. The purpose is to plan the evaluation of queries
expressed in logical terms. Suppose we are given a “logic pro-

| gram” in the form of first-order Horn clauses, which we shall write

| in the Prolog form:

| A(z, co cap) iT B(y11, - oe Y 1m,)» SRR , Bie (Yk 1, IEEE Yim)

|. The meaning of such a statement is that By and B, and . . . and

B, imply A. Initially, we shall make the following restrictions on
- the form of the clauses.

1. Arguments may not be constants.

2. Arguments may not involve functions; e.g., A(z, y) is legal, but
A(f (z), y) is not.

| 3. A variable may appear only once on the left side of a rule.
Thus, A(z, z) :- B(x, y), C(y, vy) is illegal because of the

t Work partially supported by AFOSR grant 80-0212 and an Einstein Fel-
1 lowship of the Israeli Academy of Arts and Sciences. The work was per-
i formed at Hebrew University.
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arguments of A, although C, being on the right side, is permit-
ted to have repeated arguments.

Conditions (1) and (3) will eventually be relaxed. Condition (2)

1s a familiar simplification made by people investigating logic

applied to databases, such as [HN]. In Section IV we shall briefly

consider applications of our results to rules that do not obey (2).

When discussing databases with a collection of logical ruler; that
affect the interpretation of the data, it 1s normal to identify certain

predicate symbols as representing relations of the database; the

remaining predicates take as values the relation consisting of all

facts about that predicate that can be deduced from the database.

Database predicates are assumed not to appear on the left sides of

rules; that 1s, they are not defined in more primitive terms. The
use of databases with associated logic was discussed in many of the

articles in [GM], for example.

A query to such a database 1s a “goal,” or predicate symbol

with given arguments, which may each be either bound or free. A

query A(z, ..., z,) is intended to produce a relation over those of
the z;'s that are free. It is formed by taking the relation for A and
performing a selection in which, if Z; is a bound variable, then the

i?" component of the relation must have value z;.

Example 1: Let us introduce our running example: computing the

transitive closure of a graph. We take E(x, y) to be a database
relation, which we may interpret as the arcs of a directed graph.

The transitive closure of £ may be defined by the two rules:

ry: T(z, y) = E(x, ¥)
ro: T(z, y) :- E(x, 2), T(z, y)

Then the relation associated with T is easily seen to be the transi-
tive closure of E.

A possible query is T( 1, w), that is, list all the nodes that can
be reached from node 1. In principle, the answer to this query 1s

found by computing T, selecting for the first component equal to 1,

and then projecting onto the second component. There are more
efficient ways to answer that query, and one of the purposes of this

paper 1s to investigate a more efficient algorithm and a test for

whether that algorithm works for a given set of rules. .

Rule / Goal Trees

One way to define the relation denoted by a query 1s to expand it in

a tree of rules and goals. This 1s the methodology followed by Pro-
log, and it has been used in a number of systems recently, such as



[MS] and [T*]. The nodes of the tree are either goal nodes,
corresponding to predicates with specific arguments, or they are

: rule nodes, corresponding to Horn clauses, also with a particular
substitution for its variables. The root node 1s a goal node

corresponding to the query.

The children of a rule node are goal nodes corresponding to the

terms on the right side of the rule. The children of each goal node

correspond to the rules whose heads (left sides) unify with the goal.
| Whatever substitution for variables 1s implied by the unification

applies not only to the rule node, but to its goal children.

Example 2: Consider the goal T( 1, w) from Example 1. The upper
levels of the rule/goal tree for this query are shown in Fig. 1. Con-

ventionally, we represent rule nodes by their left sides and the :-

symbol only; the complete rule can be deduced from the children
of the rule node. Since variables are local to a rule node and its

goal children, we have used arbitrary values for the free variable 2

appearing in rule 75; 2 and 2 1 are the values chosen. Note that the
tree is infinite, since the goal T(z 1, w) is equivalent, after a substi-
tution of variables, to its ancestor goal T(z, w). .

Aw)
T(1,w):- 731 w):-| AN
£(1, w) E(1, 2) T(z, w)

T(z, w):- T(z, w):-

/ / \
Ez, w) E(z, z1) T(z 1, w)

| Fig. 1. Rule/goal tree.

We may define relations for the nodes of a rule/goal tree as fol-

lows. Relations for goal nodes are over those arguments of tne

predicate symbol for that goal that are free variables, and relations

for rule nodes are over all variables appearing in the rube. To com-
pute the relation for a goal, take the relations for its rule children,

; project them onto the variables of the goal, and take the union. To
compute the relation for a rule, take the natural join of the
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relations for its rule children. There 1s a technicality that if there

1s a variable appearing on the left side of the rule but not the sight,

we must take the Cartesian product of the result with a copy of the
“domain” of the variable. If that domain 1s infinite, this operation

may not make sense, so we shall assume that the component for
any such variable 1s represented by a placeholder and that we do

not actually compute the Cartesian product. See [U] for details of

the construction of relations as we work up the tree.

Even though the tree 1s infinite, the above construction makes

sense. (See [CH], e.g.) The reason 1s that all the operations on reia-

tions that we use are monotone, meaning that if we add tuples to
one of the arguments, the effect on the result of the operation is

only the addition of zero or more tuples. For example, the set
difference A-B of relations 1s not monotone, because we could add

tuples to B and as a consequence delete tuples from the result.

We may therefore define the relation associated with the root
of an infinite rule/goal tree to be the limit of the relation we get by

cutting off the tree at the top m levels, computing the relation of

the root by assuming that nondatabase relations at the bottom
level are empty, and taking the limit as n -» eo. Of course the

resulting relation could be infinite, even if the database relations
are finite.

Rule/ Goal Graphs

A joke told by mathematicians goes as follows. The professor was

teaching the formula
n

Yi=n{n+1)/2
1=1

The clever student was asked to give a concrete value of n and to

tell what the formula said. The student replied “let n = ng. Then

the formula says”

Ng

Yi =ng(ngtl)/2
i=1

Well we don’t think that’s very funny either, but it does serve to

introduce an important point. It is necessary to distinguish
between free variables and “bound variables.” The latter are sym-

bols representing values that will be known as we implement the

query, but are not necessarily known at the planning stage. The

former represent attributes in the relation printed as .a response

to the query, or in intermediate relations that are computed to

help form the response to the query.
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In planning how to respond to a query, we may use the fact that

a bound variable, like ny, is fixed and finite in any situation, while
free variables can assume any of an unlimited number of values in

the same relation. As a simple example, if answering a query
requires us to answer questions of the form “what 1s the sum of the

first mg squares,” we know we can write an iterative program that

will sum the first ng squares. The loop will eventually terminate,
although we cannot predict how long it will take until we know ny.
In contrast, the query “what 1s the sum of the first n squares” asks

for an infinite set of pairs (n, (n(n+ 1)/ 2), and there is no algo-
rithm that can compute it.

To take advantage of this distinction between bound and free

variables, and to help with the planning of efficient strategies to

answer complex queries, [U] introduced “frule/goal graphs,” in

which the nodes correspond to predicates and rules, with a

specified selection of variables bound. We shall assume that the

order of variables 1s fixed, and that order will be the lexicographic

one by default. Then a goal like T(z, y) is represented in the
rule/goal graph by four nodes T9, where q = q,95, and each gq; is
either b (bound) or f (free). Thus, Tf corresponds to the case
where z 1s bound and ¥ 1s free. Similarly, rules are represented by

nodes with superscripts to indicate which variables are bound and

which are free. Thus, r8/f represents 7, of Example 1 with z
bound and y and z free.

The predecessors of a goal node correspond to all the rules
whose heads have the same predicate as the goal. Similarly, the
predecessors of a rule node are the goals that appear on the right

of the rule. In both cases, the superscripts must be correct, and

the rule to follow is that X? has YP as a predecessor only if p
makes a variable bound exactly when ¢ makes that variable bound.

Example 3: Figure 2 shows that portion of the rule/goal graph for
the rules of Example 1 that is relevant to the node Tf . That is, we
show only T%f | its predecessors, their predecessors, and so on. s

Capture Rules

Also introduced in [U] 1s the notion of “capturing” a node of the
rule/goal graph. When we capture a node like 7% we must have an
algorithm that, given any bound value, say zg, for the first argu-

ment of 7, will produce the relation that is the set of y for which

T(xg, y) is true, i.e., the relation for 7, selected for z = Tg and
projected onto the y-component. This algorithm, called the sub-
stantiation, may only make use of algorithms that produce the
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Fig. 2. Rule/goal graph.

relations for certain other, already-captured nodes, given values

for any variables that the superscripts for these nodes indicate are
bound.

[U] discusses several capture rules and the requirements that

a capture rule must follow. Chief among these 1s the requirement
that whenever the rule applies to capture a node (or set of nodes)

of the rule/goal graph, supported by the fact that another set of

nodes 1s already captured, there is an algorithm that for any node

among the set just captured, takes the values of the bound vari-

ables for that node, and computes the relation for that node and

bindings, calling only on hypothetical routines that do the same for

the nodes supporting the capture. As a simple example, we may
capture any node whose predicate is a database relation, and if the

predecessors of a node in the rule/goal graph are all captured,
then we may capture that node. However, there are other, more

complex rules that work under a variety of conditions.

Capture rules help us to plan the implementation of a query,

and they are analogous to query optimization strategies in ordinary

relational database theory. They must be independent, in the
sense that the test for applicability of a rule 1s local; it depends

only on the set of nodes supporting the capture, and not on the

particular algorithms that substantiate the capture of the support-

ing nodes. Different capture rules will typically have substantia-

tions of different costs, and 1t would be natural to make passes

over the rule/goal graph using capture rules of increasing cost,
until the goal node corresponding to the query 1s captured. By

unraveling the sequence of captures, we have a method for com-

puting the query, and that method is likely to be as efficiently

implementable as any algorithm for answering that query.

However, while it 1s easy to state capture rules and their sub-
stantiations’ it 1s much harder to answer the question: given an

algorithm for computing relations, what 1s the most general cap-
ture rule that it substantiates? Put another way, can we provide a
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necessary and sufficient condition for a given query-
implementation algorithm to work? We shall next discuss a partic-
ular, very simple algorithm and show exactly the conditions that

will allow it to be used to capture a set of nodes.

II. AN ALGORITHM FOR SUBSTANTIATING CERTAIN CAF’TURE RULES

In this section we shall first introduce the notion of a *downwards

dependency” in database relations. This idea is used to define a

variant of top-down construction of the rule/goal tree. In the next

section we g.ve a test for whether this construction converges when

applied to a given set of rules.

Downwards Dependencies

Let R(X,,..., X,) be a database relation. We shall assume that
the domain of each attribute X; is the nonnegative integers. Our
real requirement 1s that there be a partial order < on each domain

with no infinite descending chains, i.e., infinite sequences
a,>as>  .-. However, our proofs are easily seen to generalize to
such partial orders, and all our counterexamples, will use the non-

negative integers.

We shall take the dependency X; => X; to mean that in every
tuple of R, the j*® component is strictly less than the i** com-
ponent.

Example 4: IfE (X, Y) represents the edges of a finite acyclic
directed graph, then we may assume that if there 1s an arc n -»m,

then n > mm. If that is the case, then there is a dependency
X => Y. We could also assume that the nodes were numbered so

that if n-m then n < m , which would give us the dependency
Y => X. However, we cannot assume both at once.

For another example, in the relation

EMPS (FMP, SALARY, MGR)

| we might assume that EMP => MGR. That would make sense if

there were no cycles in the managerial hierarchy (typical organiza-

tions seem to have cycle-free hierarchies) and the hierarchy had a

finite number of levels (even corporations with an infinite number

of employees seem to have a finite number of levels of manager).

Again, we could also choose to order the names of employees so

that the dependency MGR => EMP held, but we could not have
both. .

In addition to the three constraints on the form of rules men-

tioned in Section I, we shall add two more. In what follows, we
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make the natural translation of => dependencies on the attributes
of relations to the same relationship on variables. That 1s, if

R(X, Y, Z) is a relation’ with X => VY, and there is a term
R(w,v,w) in some rule, then we shall say u => v in that rule.

4. Innoruledowehavez =>2 andy => 2 forz #%.

5. If in some rule we have £ => y , and y 1s an argument of some

nondatabase relation on the right, then x appears on the left

side of the rule, and y does not.

Example 5: The rules from Example 1 satisfy the above conditions,
if we take the dependency in the relation E(X, Y) to be X => Y.
Rule (5) does not hold if we instead assume Y => X. .

The Algorithm

The algorithm we shall consider 1s a simple modification of top-

down expansion of the rule/goal tree. The change applies to the

case in which we have just expanded a rule node, and there are one

or more database relations among the goal children. Moreover’
there 1s at least one dependency X => Y that applies to a goal

node whose X-component is a constant zg.

We consult the relation corresponding to that node for all the

Y-values, say {¥1,..., Yi |, that appear in tuples with X-value z,.
Suppose that the free variable corresponding to attribute Y is vy.

(Note that y must be free by condition (5) on the form of rules.)

Then for each goal node that involves variable y , we create & chil-

dren, and in the i* child, the goal has y; in place of y. This pro-
cess of expansion 1s repeated for each free variable y that can be

replaced by a set of constants. Note that by condition (4), if y can
be expanded’ there 1s a unique way to do so. In cases where more

than one application of => is possible for a goal, we shall expand
the variables such as Y at once, in all possible ways, so the original

goal has children with these variables replaced by all possible com-
binations of constants.

The construction of the rule/goal tree continues, until all
leaves are either

I. database relations,

2. rule nodes with empty right sides,

3. goal nodes that have been “expanded” by the rule above, but

where the set of constants {¥ 1, ..., ¥r} was actually empty, or

4. goal nodes corresponding to nodes of the rule/goal graph that

have already been captured. These tree nodes will, in the

remainder of the paper, be treated exactly as if they were
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database relations, and the term ‘database relation” will be

construed to include them.

If and when the tree construction terminates, we work up the

i tree, computing the relations for each node in the normal way.

It 1s important to note that this algorithm uses one specific

“trick,” which we call sideways information passing, to help con-

vergence. There are other tricks we could use; for example, if a
goal leaf 1s known to return an empty relation, then its parent will

i also return empty, which may lead to its parent returning empty,
and so on. Also, we could use sideways information passing to
enumerate the possible values for a free variable whenever that

variable appears in a database relation. These improvements on

the algorithm might or might not be made in practice; the decision
whether 1t is worthwhile to replace free variables by sets of con-

stants 1s not clearcut. Unfortunately, these other variants of the

top-down algorithm do not appear to have simple decision pro-

cedures that will tell us whether they converge for a given set of

rules. The decision procedure we propose 1s, of course, a sufficient

condition for the more powerful variants.

4 2

~NyY
Fig. 3. Directed acyclic graph.

Example 6: Suppose we use the rules of Example 1 on the graph of

Fig. 3. We shall assume that there is a => dependency from the
first component of EF to the second. In Fig. 4 we see the rule/goal

tree for the goal T(5, w), i.e., the tree of nodes accessible from 5.
We use arbitrary names of the form yi for free variables

corresponding to y in rule 73. When a variable is bound to a set of
constants by the sideways information rule, we show that set

equated to the variable. The goal node T(3, ¥2) is equivalent to the
: goal T(3, y). We show a dotted line from the former to the latter,

which may be interpreted in one of two equivalent ways.

f However, limiting sideways information passing to the direction of => ar-

i rows has some good intuition behind it. Since the values on the right are
i less than the values on the left of the =>, we might expect the set of
4 values on the right corresponding to a given value on the left to be rather
i small. That would typically be true if the dependency were EMP => MGR,

for example, but not if it were the other way around.



-10 -

I. A subtree equivalent to that dangling from T(3, y) will appear
below T(3, y2).

2. The system will identify the equivalence of the two goals, and
the relation for 7T(3, y2) will be copied from the relation for
T(3, y) when the latter is computed. This strategy is used, for
example, in [MS], but 1t doesn’t affect convergence of the algo-

rithm, even though it may make some trees that would be
infinite become finite. The reason 1s that when the tree would

otherwise be infinite, there must be a pair of identical goals
that are ancestor and descendant. For these nodes, we shall

never be able to compute the desired relation working up the
tree.¥

T(5, w):- T(5, w):-

~~ NN

T(3, ¥)< _ T(4, y)

rade mp aw3, ¥):- 3, y)- > TH, y):-- 7'(4,vy ):-

| yd ~N N \ \ I ~~
E(3, y) E(3, y=1L2) It. y1I\E(4, y) E(4, vel YR?)‘o

T(1,y1) T(R, yl) __~T(3 y?)

T(1, y1):- T(1, y1):- T(2,y1):-- T2, y1):-
| 0 / ~~ |

E(Lyl)E(Lyl=¢)T(y1,y3) ERR y1) ER y1=¢) T(y 1, y4)
/ /

none none

Fig. 4. Expansion of rule/goal tree with sideways

information passing.

t Iterative bottom-up methods of evaluating such relations may work ([R],
[HN], [U], e.g.), but bottom-up evaluation is often a far more expensive
process than top-down expansion of the tree, and the use of these more
powerful methods will not be considered here.



II. TESTING WHETHER THE TOP-DOWN ALGORITHM CONVERGES

| In essence, given our five restrictions on the form of rules, very
limited things can happen as we trace any path down the rule/goal

tree. In particular, let us follow what happens to the arguments in

a goal node. Suppose A(zg, Yq. 2) is a goal, where zy and yg denote
specific constant values, and z 1s a free variable. A rule head that

unifies with this goal will bind one of its variables to £45 and one to
Yo Condition (3) assures that the same variable could not be

bound to both x4 and ¥4, or to one of these and to 2.

Possibly, the right side of the rule has a term or terms with

dependencies that make some variable(s) be strictly less than zg

or Yo (but not both). In that case, the sideways information

feature of the algorithm of Section II will create descendant goals

in which these variables are replaced, in all possible ways, by con-
stants.

Thus, all variables appearing in the rule are either set equal to

xy or Yq, are bound to values strictly less than one of these, are
bound to 2z (the third argument of A), or are new free variables.
The same, therefore, applies to the goal nodes that are children of

the rule node (or grandchildren in the case that expansion of vari-

ables into sets of constants occurs). We shall see that the presence

of free variables as arguments of goals does not affect convergence

of the algorithm, so we need only trace the positions in which

| bound arguments occur.

Argument Mappings

It helps to express the way bound arguments are passed down the

rule/goal tree by directed, bipartite graphs, which we shall call
argument mappings. In these graphs, the two sets of nodes will be
called the domain and range sects, and all arcs will go from the
domain to the range. The domain and range sets are each
*1dentified with a class, which 1s a predicate symbol with a super-

script indicating which arguments are bound. For example, the

| class corresponding to the term A{zg, yg, 2) would be ABS
The domain and range sets each have nodes for each bound

variable in their class. If A (z, . . . , x) appears on the left of a
rule and B(yq, - - . ,Y¥m,) appears on the right, then there is an
argument mapping from class A? to B? if the following conditions
are met.

1. p makes an argument y; bound if and only *if 1t 1s either equal

to an argument that g makes bound, or z; => y; for some vari-
: able z; that ¢ makes bound.
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2. There is an arc from x; to ¥; labeled Of if and only if =; is bound
according to g, and y; and z; are the same variable.

3. There 1s an arc from z; to Yj labeled 1 if and only if Zz; 1s bound
by q and z; => y;.
According to condition (4) on the form of rules, there can be

only one arc into any node. Since argument mappings only use

nodes for bound variables, there will be exactly one arc into each
node. Also, condition (5) tells us that there are no other => rela-

tionships; each one must be from a domain node to a range node.

Example 7: Consider the rule

Az, y) - B(z, z, 2), C(y, 2)

and suppose that a dependency on C tells us y => 2 . Then the fol-

lowing is the argument mapping from class A% to B%%:

NON
That is, the first two arguments of B each come from the first

argument of A, while the third argument of B is related by => to
the second argument of A. =

Argument mappings can be composed in an obvious way, and

| the result will be an argument mapping, although the labels on arcs

may become larger than 1. The mappings still have the property
that there 1s exactly one arc into each of the range nodes, and the

domain and range sets of nodes are each identified with specific
classes.

We can see a composition as representing a path in the rule

goal tree. If the classes of the domain and range sets are A* and

B? respectively then there is a path in some rule/goal tree from

a goal node labeled A, with bound arguments where ¢ indicates, to

a goal node labeled B, with bound arguments where p indicates. If

there 1s an arc from x to ¥, labeled 0, then argument y of the

latter node 1s 1dentical to argument x of the former. If the arc has
label m > 0, then the value of y 1s at least m less than the value of

T We omit O labels on arcs, as a default.
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Fixpoints of Argument Mappings

We can now begin to see how argument mappings relate to the

convergence of the algorithm of Section II. If arbitrarily long com-
positions of argument mappings exist, but the labels on their arcs

remain bounded, then we can start the rule/goal construction off

with bound arguments that exceed the bound on the labels. We

can load the database with tuples guaranteeing that whenewer we

are forced by a => dependency to take a step downward, WE can
step downward by 1. It 1s then possible to show that some path in

the rule/goal tree grows forever, corresponding to the arbitrarily

| long sequence of compositions of argument mappings with limited
arc labels.

‘Conversely, if the only growing sequences of compositians of

argument mappings also have growing labels on the arcs, then no

matter what value we start our bound arguments with at the root

of the rule/goal tree, we shall eventually find that some argument

must become negative as we follow any path in the tree. However,

there are no negative values in domains, which means that at

some point along the path, we applied the sideways information
transfer rule, but there were no values in the database far the

variable on the right of the =>. In that case, the path in the
rule/goal tree terminated after some finite length.

To test whether compositions of argument mappings have

~ growing arc labels or not, we can ask about fixpoints of mappings.
Consider a mapping whose domain and range sets are in the same

class. Then there 1s an obvious correspondence between the

domain and range nodes, so we can identify corresponding pairs of

nodes and draw the mapping on a single set of nodes, with exactly

one labeled arc entering each node. We call this graph the col-

lapsed graph for the mapping. Then this mapping is said to have a
fixpoint if there 1s an assignment of numerical values to the nodes
such that if there 1s an arc labeled m from node v to node wu, then

: the value of u 1s exactly m less than the value of v .

Example 8: Consider the following argument mapping, which we

assume goes from some class to the same class.

AN
We can compose 1t with itself as follows:
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~N
SN

The result of this composition, as a bipartite graph, is

0 ©O

IRR,0

We may identify the nodes in a column, and show the composition

as a collapsed graph:

L 2

YOY 5
2

Lemma 1: The following three conditions are equivalent far the

compositions of any finite set of argument mappings.

a) There 1s an infinite sequence of mappings gy, Ma, . . . and & con-
stant ~~ C such that for all 2, the composition

pi 0 p53 0 o py 1s legal (the class of the domain of wu;
equals the class of the range of u;_q for all j), and in its argu-
ment mapping, no arc has label greater than c .

b) There 1s an argument mapping with a fixpoint.

c) There 1s an argument mapping whose collapsed graph has no

cycle with a positive sum of edges.

Proof:

(c) implies (b). As each node has exactly on entering arc, all col-

lapsed graphs are collections of cycles, with trees fanning out from

some of the nodes in the cycles. Let k be the largest weight (sum
of edge labels) of any path in the graph. Since there are no posi-

tive weight cycles, k is finite. Assign k to each node that is in a
cycle. Then, work down from the roots of the trees, assigning to
cach node the value of its parent minus the label of the arc enter-

ing that node. For example, the nodes in the collapsed graph of
Example 8 would be assigned values 3, 3, 2, 1, 0, from the left.

(b) implies (a). A fixpoint of any mapping is also a fixpeint of that
mapping composed with itself any number of times. But the
fixpoint has specific values, whose differences are bounded, so if
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the arc labels grow as we compose the mapping with itself many

times, we cannot meet the condition of a fixpoint, that the values of

the nodes differ by the label of the arc between the nodes. Thus, if
there 1s a mapping with a fixpoint, there 1s an arbitrarily long

sequence of compositions with a bound on arc labels.

(b) implies (c). Suppose we have a mapping with a fixpoint, but its

collapsed graph has a positive-weight cycle, involving nodes

| ny > Ns > ->n, >ny. Then if we compose the mapping with
itself £ times, the resulting mapping has the same fixpoint, but the
collapsed graph for the mapping has a positive-weight loop at each

of the nodes ny, . . .,M, an impossibility for a mapping that has a
fixpoint.

(a) implies (b). Suppose such an infinite sequence and constant c
exists. Consider what happens 1f we start with arguments

(c,c,...,c) and apply the mappings gy, Ma, . © . in turn. First,
note that some class A must occur an infinite number of times as

the range class of these compositions. As the composition of map-

pings at each step has no arc of label greater than ¢ , no value ever

gets below 0. Thus, we can find two steps at which the range class
is A, and the values of the arguments are the same. The mapping
consisting of the composition of the u's between these two steps

evidently has a fixpoint. =

An Algorithm to Test the Conditions of Lemma 1

Condition (¢) 1s easiest to test. We iteratively find the set of argu-

ment mappings that are compositions of the given set of mappings,

Sy. However, we shall not distinguish between arc labels greater

than 0, since we care only whether a positive-weight cycle exists,
not what the exact weight of the cycle is. The details of the itera-
tion are given in Fig. 5.

Complexity of Testing Condition (c)

Let there be r argument mappings and let m be the maximum size

of a domain or range set. Then 7 is also an upper limit on the
number of classes. Hence the number of different mappings, with

labels above 1 replaced by 1, is no more than 7%(2m)™; the ractor
r? represents the 7 choices for the domain and range classes, while
(2m)™ represents the fact that each of the m or fewer range
nodes has an entering arc from any of at most m domain nodes,
each arc labeled O or 1. Thus, the number of mappings ever

marked “new” 1s no greater than this quantity. For each “new”

mapping, we look at no more than r V’S, spending (J(m) time on
each pair. Thus, a bound on the running time of the algorithm 1s
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s = Sp;
mark all members of S “new”;

while changes to S occur do begin
for all new @ 1n S do begin

mark gu “old”;

let A be the range class of yu,

for all mappings vin Sg with domain class A do
begin

p:=VOou,

let 0 be p with arc labels greater
than 1 replaced by 1;

ifaisnotin S then begin
mark ¢ ‘new’;

S =s5 UU {ol
end

end

end

end

Fig. 5. Algorithm to test Lemma 1.

o(r3(2m) m+).

This figure looks formidable, but it 1s typical for m, which

corresponds to the number of arguments of predicates in the logi-
cal rules, to be small, perhaps limited by 3 or 4. If we regard m as

a constant, the algorithm 1s actually polynomial in the size of the

input (the argument mappings written out). Moreover, in typical
cases we do not expect to generate anything like the full set of pos-

sible mappings, nor shall we typically generate only one new map-

ping per iteration of the loop; thus the actual time consumed will
probably be acceptable. In case m must be considered a variable,

we can still show the following.

~~ Theorem 1: Deciding whether condition (¢) of Lemma 1 holds is in
PSPACE.

Proof: We shall give a nondeterministic polynomial space algorithm

to decide; this can be converted to a deterministic polynomial

space algorithm by Savitch’s theorem.7 Guess a starting class A
and a mapping with domain class A to get an initial mapping and

range class for that mapping. Repeatedly guess a mapping whose

domain equals the range of the current mapping, and compose the

T See [HU] for notions of nondeterministic algorithms, Savitch’s theorem,
etc.



current mapping with the chosen one to get a new current map-

ping. If the range class of the current mapping is A, check
! whether the collapsed graph is free of positive-weight cycles, and

: say “yes if so.
Throughout this process we have only to record one mapping

at any time, and no arc labels above 1 are ever needed, since they

may be replaced by 1. Thus, the required space is of the same

order as that needed to write the largest argument mapping in the
input, and 1s therefore linear in the input size. .

A Capture Rule for the Algorithm of Section II

We shall now describe the conditions under which we can capture

a set of nodes of the rule/goal graph using as substantiation the

algorithm of Section II. First, we need to modify the construction

of the rule/goal graph slightly to accommodate the sideways

information passing inherent in that algorithm. The change
occurs when we consider the superscript on a goal node AP that is
the predecessor of some rule node 7%, where A is not a database
relation. In the modified graph, p will make a variable z bound

not only if ¢ makes x bound, but also if there 1s some other vari-

able y such that g makes ¥ bound, and there 1s a dependency
y => z coming from some term on the right side of 7. That term

could have the same predicate A.

Example 9: Consider the rules

ro. A(z, y, 2) - B(z, z, w), C(y, Ww)
ry: B(z, y,2)- A(z, z,y), Aly, vy, 2)

| We shall assume a dependency from the first argument of C to the
second.

; The modified rule/goal graph, or at least the portion that 1s

required to capture A®®, is shown in Fig. 6. The important point- about the modification is that B®®®, rather than Bf, is a prede-
4 cessor of r{®® and r{b® The reason is that the dependency on C
3 tells us => w in ry and y => w in 75. .

The capture rule allows us to capture any set S of nodes pro-
: vided

; I. All predecessors of S are either in S or already captured, and
i 2. When the nodes of S are converted to argument mappings in a
: manner to be described, the set of mappings does not satisfy
: the conditions of Lemma 1; that is, every composition of the

mappings from a class to the same class has a positive-weight
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of

0b ye _—

AN J bbb
fbb bbb

Fig. 6. Modified rule/goal graph.

cycle.

For example, we may let

S = {ADDO 7 J bbb r fo00 Bobb 800

in Fig. 6, and condition (1) will be satisfied since C is a database

relation, and therefore c®f can be captured by elementary means
[UL

Conversion of Rules to Argument Mappings

The conversion process is as follows. Suppose A? is a node of S and
r? is one of its predecessors (i.e., 7 is a rule with head A). Let oO
be a nondatabase predicate appearing on the right side of 7, and

suppose that corresponding to this occurrence of B on the right is
the predecessor B! of rP.f Then there is an argument mapping
from class AY to BY. For each node in the range set, say

corresponding to variable x, there 1s an entering arc from

a) The node of the domain set corresponding to zx if Z is bound

according to g; in this case the arc has label O, or

b) The node corresponding to y of the domain set if y is bound

according to q@ and there 1s a dependency ¥ => Z due to some

other predecessor of 7?.

Note that the definition of the modified rule/goal graph guarantees

that all and only the variables made bound by ¢ will satisfy (a) or
(b)

Example 10: For the set S consisting of all the nodes in Fig. 6

except for C®F, we get the mapping

t+ Recall that if B* is already captured, then this occurrence of B is a “da-
tabase relation.”
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A000

1pbb JN
from the path through 7{®?® from B®? (o A®® and we get the
mapping

Abbb

1Bove ed
from the path through rf000 For paths through 73%%, we must
realize that AY? represents both terms on the right of 7g,
A(z, z,y) and A(y.y, z). For the former, we get the mapping

bod o

4 bbb INN
and for the latter we get

pbod o !Abbd pe 0

Validation of the Capture Rule

We can now show that the capture rule given above exactly

characterizes the conditions under which the algorithm of Section

IT substantiates the capture of set of nodes S.

: Theorem 2: Suppose we have a set of nodes S of a rule/goal graph

meeting condition (1) of the capture rule. Then the algorithm of

Section II attempts to construct an infinite tree when started with

some database and with some goal A(z, . . . ,x;) corresponding to
some node A? in S (i.e., the z's are bound exactly when ¢ says
they should be) if and only if the conditions of Lemma 1 are met.

Proof:

If: Suppose that a sequence My, Mg, =. . and constant c¢ as
described in condition (a) of Lemma 1 exist. Let AY be the domain

class of gy. Then we shall show that for some database there 1s an
infinite sequence of nodes constructed in the rule/goal tree with

root A{aq,..., a), where a; is either c, if ¢ makes argument z;
bound, or a; = x;, a free variable, if not. The database we have in
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mind is any one where for each dependency X => Y all relations

with attributes X and Y have, for any pair (i, j) with c= 1 > J =0,

a tuple with X-value 2 and Y-value j.

We shall construct a path in the rule/goal tree that has nodes

corresponding to each of the mappings in the given sequenae. In

particular, corresponding to u, will be a goal node B(¥y, - - - w¥m).
if the range class of wu, is BP for some p . We shall call this node
N,. The y;’'s will be as follows. Let v be the composition

Mp O © 0 uy. If p says that argument 2 of B 1s free, then
could be any variable. If argument 2 is bound, then look at the arc

entering the range node for position 2 in wv. If that arc has label d,

let y; = c¢ -d. By our assumptions, d < ¢ , so no constant beaomes
negative.

As a special case, let the goal node at the root be Ng. Then we

can perform an induction on nm to construct each of the nodes Nj,

it 2 1. Suppose we have constructed the node N, = B(y¥ 1, . . ,%m),
and we want to construct the node N,,; = C(2,, . . . , 24). Then
there must be some rule with B on the right and a term C on the

left, such that g,4+; was constructed from 7 to reflect the transi-
tion from B on the left to this occurrence of C on the right. There

can be only free variables appearing once among the arguments of

the left side of by conditions (1)—(3) regarding the form of rules.
Thus, the left side unifies with the goal at N,, , and it has a child
corresponding to this occurrence of C on the right of 7.

This child has some occurrences of constants that are copies

of constant arguments of HB. By the way u,,; was constructed

from 7, 2; will be a copy of y; if and only 1f x,,, has an arc with
label OQ from the domain node corresponding to ¥; to the range

node corresponding to 2;.
If pn,q has no arcs labeled 1 we are done; the child

corresponding to C serves as N,,;. Suppose there is some arc, say

to the range node for 2;, that has label 1. Then there must be
some term [ on the right of 7 that has variables y; and 24, and
Y; => 2z;. Our database relations, of which J is one, have been
constructed so that if y; has constant value e in N,, then there 1s
in D a tuple with e in the component for %; and e¢ -1 in the com-

ponent for 2Z;. Thus, there will be a grandchild of Ny, in which 2,
has the value e -1. By the inductive hypothesis, in the composi-

tion of uw, 0. -. 0 pq, the arc into y; has some label d , 1s0 in

Hn+1 0 © °° o My the arc into 2; has label d +1. Thus, e = ¢ —& and
e-1 =c -(d +1), so the inductive hypothesis about the value of 2;
is proven. Note that d +1 < ¢ must hold by condition (a) of Lemma
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1, so we can never face a situation where e¢ -1 does not exist in the

database.

If there are several arcs labeled 1 in wu, ,;, then we can find &

grandchild of N, that has the proper value for each argument thal

is the target of one of those arcs. This grandchild 1s N,,,. We
have now completed the induction on n and see that an infinite

path in the rule/goal tree exists.

Only if: The converse also requires some attention to details, bu”
the ideas are the same as for the first part of the proof, and we

shall only sketch them. Suppose we are given an infinite path in
the rule/goal tree. We look at the goal nodes along the path, skip-
ping those whose children are also goal nodes; that happens only
when sideways information transfer occurs. Then we can con-

struct a sequence of argument mappings corresponding to this

sequence of goal nodes in the obvious way. Suppose c¢ 1s the larg-
est constant appearing among the arguments at the root of the

tree (if there are no constants then we may take ¢ = 0).

Every arc of label 1 in an argument mapping corresponds to &

situation in which a constant at some goal node 1s set equal to &
value that 1s strictly less than a certain constant at the previous

goal node. Thus, we may prove by an easy induction down the

path that no arc in the composition of the first n argument map-

pings has a label higher than c, for if it did, then in the rule/goa.
tree there would be a negative constant. Thus, condition (a) of
Lemma 1 1s seen to hold. =

Complexity of Deciding Whether the Capture Rule Applies

As discussed in [U], we can assume that we apply the capture rule
only to minimal sets S, and these can be found in time that is

linear in the number of nodes of the rule/goal graph by finding

strong components in the reverse graph.

- Let there be s rules, at most £ terms on any right side, and le
the maximum number of arguments in a predicate be m. The

number of argument mappings constructed from these rules 1s nc

more than s£2™, that is, no more than the number of rules, mult'-
plied by the number of terms on the right of each rule, and the

number of combinations of bound and free variables among the

arguments of the left side of the rule.

By the reasoning given prior to Theorem 1, we may test cond.-

tion (c) of Lemma 1, which 1s equivalent to testing condition (a), ir

time O(s3t323™m(2m )m+1) or O(s3t3(16m)™*1). Suppose we let n
be the size of the input, i.e., the rules written down. Then surely S.
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t, and m are all no larger than mn. Hence, we may observe the fol-
lowing.

Theorem 3: If m, the maximum number of arguments in a predi-

cate, 1s constant, then we can find all applications of the capture

rule of Section II in polynomial time, If not, the problem is in EXP-

TIME, that is, time 2 to a polynomial. =

IV, APPLICATION TO RULES WITH FUNCTIONS IN ARGUMENTS

The 1deas of the previous sections can be applied in certain situa-

tions to rules in which there are functions. Without loss df gen-

erality, we shall speak of a *‘cons’ function used as a list former;
[x|y] denotes the list with head z and tail ¥; [] denotes the empty
list.

In [U], there 1s a discussion of an efficient test for a subset of

the cases in which we can capture a set of nodes using as a sub-
stantiation the straightforward top-down construction of the

rule /goal tree. This capture rule applies to collections of rules in
which all the cons operators appear on the left sides of rules The

motivation behind the capture rule 1s that in some cases we could

detect that for a particular argument, say the i*®, whenever we
had a goal node A{(z,,...,x;) in the rule/goal tree, with a descen-
dant 4(y4, .. . Yk), then y; could be proved to be a proper sublist
of z; (both these arguments would be bound variables, of course).
The test for this condition 1s polynomial in the size of the set cap-
tured; that 1s, if there are 7 nodes, and m 1s the maximum number

of variables in the rule or in a predicate corresponding to any

node, then the algorithm 1s polynomial in 7 and m .

In [N], a similar idea is proposed, but it is more general, in that
convergence of the top-down algorithm can be proved by finding

any set of the arguments of A, say {%;,. . . ,%n } such that in any
ancestor-descendant situation described 1n the previous para-

graph’ there is at least one %; for which ¥; can be shown a proper
subpart of xy; 7 can vary for different ancestor-descendant pairs.
The algorithm proposed in [N] for detecting such situations
involves considering all possible paths from A to A in the rule/goal

graph, as well as all possible subsets of arguments’ so it can be

exponential in both 7» and m.

Example 11: The following example taken from [N] shows how look-

ing for subsets of arguments that together guarantee convergence

can be an advantage. The merger of two lists to form a third can
be expressed as:
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merge (z,[], xz) :-
merge ([].y.y):-
merge ([a|z], [bly], [a|z]) - a <b, merge(z, [bly], 2)
merge ([alz], [bly], [bl2]) :- @ > b, merge ([alz], ¥. 2)

Certainly, if the third argument is bound, then whenever merge
calls itself recursively, the third argument 1s a proper subpart of

its initial value. But in addition, if the first and second arguments
are both bound, then one or the other (but not both) will become

a proper subpart of its initial value, so we are able to oapture not

only merge 7% , but also merge ®f with a capture rule substan-
tiated by top-down expansion of the rule/goal tree. =

Of course, in more general sets of rules, involving the mutual

recursion of many predicates, and the shifting of arguments from

one position to another, detecting all such opportunities can be

time consuming — exponential in the size of the problem as we

mentioned. Fortunately, the methods of the previous section
carry over to this case, and we can adapt them to provide a test

that 1s exponential in m but polynomial in 7. Moreover, sinoe our

algorithm looks at only those argument mappings that it isforced
to look at, while [N] looks at all possible paths through the set of

nodes being captured regardless of whether or not they are gen-

erating different argument mappings, we expect our approach to

be far more efficient in practice.

From rules with structured arguments on the left we can coen-

struct argument mappings that are analogous to those used in

Theorem 2. Here, an arc labeled 1 from Xx to y corresponds to the

notion that y 1s a proper subpart of z, rather than being numeri-
cally less than zz. An arc labeled 0 means that y is z itself. As

long as there are no structured arguments on the right, there till

be an argument mapping in the sense of Section ITT between any

rule head and any nondatabase term on the right. That 1s, each

argument appearing on the right side, whose value is bound, will
either be a copy of a bound variable on the left, or a subpart of

one of these. The test of Theorem 2 will then answer the question

of [N]: will a given set of rules lead to infinite recursion when the
root goal has a certain set of arguments bound.

The proof of the if’ portion can be modified so that instead of

starting with constant ¢ for each bound argument at the reot of

the rule/goal tree, we start with a constant list that 1s a complete

tree of depth c¢ , 1.e., the head and tail of the list are each complete

trees of depth c¢ -1. Moreover, Theorem 3 will apply; if there is a
constant upper bound on the number of arguments in a term,
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then the test is polynomial in the size of the data.

Example 12: Strictly speaking, the rules of Example 11 violate our
constraint that the arguments on the right be without structure.

However, it is easy to see that the argument /b ly] in the right side
of the third rule and [a |x] in the fourth are copies of iarguments
on the left side of those rules, so we can use arcs of label 0 to

reflect the copying of arguments in each case.f Then the argu-

ment mappings corresponding to rules (3) and (4) of Example 11
are (assuming all three arguments are bound):

and

respectively. The class is merge®®® for each domain amd range, of
course.

[t 1s easy to see that any composition of these two mappings
will have a positive-weight cycle, so top-down expansion 1s

guaranteed to converge; sideways information passing as
described in Section II is not needed, and in fact doesn’t make

sense, since we are using the structure of the list arguments to
force progress downwards, rather than using any numerical ine-

qualities. Notice also that if the third argument of merge 1s free

rather than bound, the two mappings are changed only by having

the rightmost column disappear. The remaining mappings still

have no composition without a positive-weight cycle, so we can

capture merge %®f , as [N] observed. Similarly, if only the third
argument 1s bound, we have argument mappings consisting only of

"the rightmost column; this set has no composition without a

positive-weight cycle, so we can capture merge ff °..

t+ Incidentally, it is possible to avoid structured arguments on the right if we defineia "car"

function that extracts the first element of a list. Then we could write: car([aly }, a):-,
merge ([alz], v, [a]z]) :- a <b, merge(z, y, 2), car(y, b), and merge (z, [bly], Wiz] :-
a >b, merge(z, y, z), car(z, u).
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V.AN INTRACTABILITY RESULT

While the capture rule of Section III can be applied in polynomial

time if the maximum number of arguments in any predicate is
fixed, the same problem turns out to be intractable if we let the

number of arguments be part of the input. We begin by showing

the following intractability result, and then show how the difficulty

of deciding properties of argument mappings translates into prob-

lems about logical rules.

Lemma 2: It 1s NP-hard to determine, given a set of argument map-

pings, whether some composition of those mappings 1s free of

positive-weight cycles.

Proof: Our reduction is from 3SAT. Suppose we are given an

instance of 3SAT in which the variables are z4,..., 2, , and there

are f factors, Fy, . . . , Fy. Initially, let us construct a set of argu-
ment mappings in which there are v +1 classes, which we denote

Ag, A4,...,4A,, and each class has f +1 arguments, which we
number 0, 1, . . . , f . Variable % corresponds to A,, and factor j
corresponds to argument Jj; Ag and argument 0 play special roles
as we shall see.

There will be one argument mapping from Ag to A, in which all
arcs have both head and tail corresponding to the same argument,
as:

0

All arcs but that for argument O have label 1.

Next, for each variable =; there are two argument mappings,

one corresponding to x; and the other to Z;. Each takes class A;
to class A;4q (to class Ag if © = w). All arcs in these mappings have
label 0. In the mapping for Z;, range node 0 has an arc from
domain node 0. Range node J, for 7 = 1, has:

I. An arc from domain node 0 if Z; 1s a term in Fy.
2. An arc from domain node j otherwise.

The pattern 1s suggested below.

0 o

“3g

For the argument mapping corresponding to Z;,, the same
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construction 1s used, but the arc comes from domain node O if and

only if Z; is in Fy.
Consider a composition of mappings that takes us once from

Ag to Ato --- to 4, and back to Ay. The composition uses one of
the two possible mappings for each variable, and therefore

corresponds 1n a natural way to a truth assignment. If that truth

assignment 1s satisfying, then every range node has an arc that

comes from domain node 0, with label 0. But if some fac tor I; 1S
not satisfied, then range node J has an arc from domain node j,
and the label is 1. Thus, the existence of a composition taking us

from Ag, once around the cycle, and back to Ag, with no positive-

weight cycle, 1s equivalent to the existence of a satisfying assign-
ment.

It 1s also easy to show that if we start the cycle at some class

other than Ag, then the absence of a positive-weight cycle implies

that, had we started at Ag and made the same choices of map-

pings, we would again have gotten no positive-weight cycle.

However, there 1s a bug in this construction: we must consider

compositions that go around the cycle of classes more than once.

In particular, we could go around once, destroy the loops of weight

1 for some of the arguments, using one truth assignment, then go

around a second time and kill the rest with another truth assign-

ment. It would be nice if we could arrange that every time we went

| more than once around the cycle of classes there was guaranteed
to be a positive-weight cycle, but that does not seem possible.

Fortunately, we can do something different; we can guarantee that

there is a positive-weight cycle whenever we go around the cycle
more than once and we pick a different truth assignment for one
or more variables.

To this end, for each variable z; we introduce two more argu-

ments for all classes. In the mapping for z;, the arcs for these

arguments are

e

PN
while in the mapping for Z; they are

0

}
In all other mappings, the arcs for these two arguments are
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bo0

If the first time around the cycle, the mapping for z; is chosen,
then the collapsed graph for the composition 1s

0 1

CA

If some subsequent time around the cycle, the mapping for Z; 1s
chosen, then the collapsed graph becomes

L 1

and now, whatever mappings are chosen, there will always be a

loop of positive weight at the first of these two arguments.

Symmetrically, if the mapping for Z; 1s chosen the first time

around the cycle, and later the mapping for zx; 1s chosen, there will
always be a positive-weight loop at the second argument. Now, we

know that if there 1s a composition of argument mappings with no

positive-weight cycle, it cannot involve both the mappings for z;
and Zz;. Thus, if there 1s no loop of positive weight at the node for

any of arguments 1 through f, then the truth assignment

corresponding to the mappings actually chosen must cover all fac-

tors and 1s therefore a satisfying assignment. =

Example 13: To give an illustration, we shall consider the boolean

expression (xz; + z3)(Z{ + 3), which strictly speaking is not an
instance of 3SAT. The mapping from Ag to Ay is

The two mappings from A; to Ap are

0 0 oO

INIT INAo 0

The one on the left corresponds to xz, and represents the fact that

x, covers the first factor but not the second; the mapping on the
right 1s for Z, and expresses the fact that Z; covers the second

term only.

The mappings from As to Ag are
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NIT TATO 0 0

while the mappings from Asto Ag are

0 0 0 0

THE TTTb 0

Figure 7 shows the paths in the composition that represencs

the truth assignment zz; = zo = 23 = 1. Its collapsed graph,

1 1 1

CAAT AT ATE:
1s seen to have no positive-weight cycle, because the assignment

chosen 1s satisfying. =

CEH

Ag 00 O

Fig. 7. Composition of argument mappings.

Theorem 4: The question of deciding whether a given set of logical

rules obeying conditions {1)—(5) permits the capture of a given set
of nodes by the capture rule of Section III 1s NP-hard.

Proof: By Lemma 2, all we must do 1s show that given any set of

. argument mappings, we can construct a set of rules yielding those
and only those mappings. Of course, the size of the set of rules

must be polynomial in the size of the set of argument mappings,
and in fact it will be linear.

For each class A we shall have a predicate A, and the node we
shall attempt to capture is 4% **"®. Suppose there is am argument
mapping from class A to class B, with ¥ domain nodles and m
range nodes. Then there will be a rule of the form

A(z, ...,z) - B(yy ....Ym) other terms

If there is an arc from domain node 2 to range node 3, labeled O,
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then y; = z;. If there is such an arc, but it is labeled 1, then y; is
a new variable, and among the “other terms” alluded to above, we

introduce a new database relation C{z;, Yj). with a dependency

When constructing argument mappings from rules, this rule

yields only one mapping, and it 1s exactly the mapping from which-.

it was constructed. It is easily seen to satisfy conditions {1)—(5)
on the form of rules. =

Example 14: From the argument mapping

INN
we construct the rule

A(z), 23,23) - B(z,, Ya, 23), Cz}, y2)

with dependency xz, => ya» enforced by C. .

VI. SOME GENERALIZATIONS

In this section we shall briefly cover relaxation of our conditions

(1) and (3) on rules.

Duplicate Arguments on the Left Sides of Rules

Condition (3), that no variable appear twice among the arguments
of any one term on the right side of a rule, 1s fairly straightfor-
ward to eliminate. First, let us observe where the test for conver-

gence might break down when rules can have left sides like

A(z, x):-. There is a possibility that, although an infinite sequence
of argument mappings whose compositions have no arcs of weigh:

above c¢ exists, when we try to convert this sequence into an

infinite path in the rule/goal tree, we fail because A(z , x) does no*
unify with a goal A{yg, 2g). Here, ¥g and 2g are two distinct bound

| variables.

| A simple solution 1s to replace terms with identical arguments
| by terms with different predicates, in fewer variables, so that nc

| term whatsoever has duplicate arguments. The merger of argt.-
ments must be propagated from the left sides of rules to the right.
sides, as discussed in the lemma that follows.

Lemma 3: Every set of rules satisfying conditions (1) and (2) 1s

equivalent to one in which, if predicate A appears with duplicate

arguments on the left of some rule then A does not appear on the

: right of any rule.
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Proof: For each predicate symbol A and each partitian 7 af the
arguments of A , we introduce a new predicate symbol ¥,. A, has
one argument for each block of mw. Suppose rule = has A on the
left, and any two arguments ofA that are the same variable are in

the same block of mn. Then we generate a rule 7, with A, on the

left, and each term B on the right replaced by B,, where p groups
two arguments into a block of the partition only if they are the

same variable in term B, or their variables appear in arguments of
A that are in the same block of mr.

| So that we can get, in the modified set of rules, the same
answer to any query that we wold get in the original rules, we
retain the original predicate symbols, and for each one we intro-
duce rules of the form

A(Zq, Zp) = An(¥10 Ym)

for all partitions 7. Here, each ¥; corresponds to the #* block of
7, and z; = gy; if and only if j is in block 2 of 7. =

| Example 15: Consider the rule

| r: A(z, z,y, 2) -B(z,y,2, w), Clw,w, z)

For partition {12, 34}, i.e., the partition that equates the first two
arguments and equates the last two arguments, we get the rule

T1234 A1234(2.Y)- Biz3a(z. yy, w),Cips(w, )

| We use y as a representative for the block 34, which equates y
| and z.

The partition §13, 24] cannot be used with rule 7; the reason is
that the left side of 7 equates arguments 1 and 2 of A, so these
positions cannot appear in different blocks of a partition.

As another example, suppose we were given the query

Aa, w, ag, bg). One of the starting rules

A(z, z,y,2):- A1a34(z.Y, 2)

unifies with this goal, producing the goal A;z34(@g, ag, bg). How-
ever, this goal will produce only a subset of the relation returned
by the starting rule

A(z, y, 7,2) :- A1324(2. ¥, 2)

and its first goal, 4,32 4(a@q, Ww,by).

On the other hand, the starting rule

j A(z, z,y,Yy)- Az 34(Z. ¥)
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does not unify with the goal, because the last two arguments, ag

and by, which we presume are different constants, cannot be
unified. .

Theorem 5: We can decide whether or not the algorithm of Section

IT will lead to infinite loops even if terms are allowed to have dupli-

cate arguments. If the number of arguments in predicates 1s
bounded, then this test can be performed in polynomial time; if

: not, then the decision may take exponential time.

Proof: We modify the set of rules as in Lemma 3. If the number of
arguments of predicates 1s bounded, then the number of rules is

multiplied by some constant factor. We already know we can use

the argument mapping test of Lemma 1 to decide whether there is

an ‘infinite loop with root A, for any partition 7. Thus, given a

query with predicate symbol A, we have only to find which start
rules unify with the query and determine, using condition (¢) of

Lemma 1, whether the corresponding A,'s can lead to infinite
loops.

Constants in Rules

Constants in rules are different from bound variables in the sense

we have been using the latter term. Constants appearing in rules

never change, so their particular values may be used when decid-

ing whether a capture rule may be applied. In contrast, the bound
variables will always have a particular value when we use the sub-

stantiation algorithm for a capture rule, but in planning what

strategy to use, we may not assume we know the value of a bound

variable. In fact, the algorithm used to substantiate the capture

rule may involve the same calculation with a variety of different
values for the bound variable.

When we allow constants in rules, we come up against the same

problem that we face with duplicate arguments on the left: infinite

sequences of argument mappings may not translate into infinite

paths in the rule/goal tree, because unification with a particular

constant 1s impossible. When selecting our database to allow the

infinite path, we need not choose only tuples with pairs (%, i-1) in
situations where the second component 1s constrained to be less

than the first. Rather, we can arrange that all pairs (i, j), where
j <1, appear in these relations.

However, that 1s not sufficient if we are faced with a situation

where we have a constant, say 1, in a rule, and in the sequence of

argument mappings there are inequalities that imply this argu-

ment must be at least 2. The following example illustrates the
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problem.

Example 16: Suppose we have the following rules, where some
terms have been elided, and symbol Z denotes a variable that

(because of the elided terms and dependencies that we shall not

state) 1s forced to be strictly less than =.

A(z,y) :- B(z,Z),...
B(z,.. -C(z,%),. -.
Cz,.. .. D(z, z),--
D(z, 1) :----

Figure 8 shows the composition of the three argument mappings

implied by the first three rules. The dashed lines, labeled 2 , among

nodes on one level represent the fact that that the value of the

argument at the tail must exceed the value of the head by at least
2. We also see absolute lower limits on the value of certain nodes,

that may or may not be implied by a dashed arc. In particular, the

second argument of D 1s forced to be at least 2, because it 1s

identical to the first argument of £, which in turn was forced to be

at least 2 greater than the second argument of C. Thus, the rule

for DJ) cannot be applied after the three rules above it are applied,
but if we simply constructed argument mappings as in Section III,

we would have no way of knowing that. .

A 0

0 \1

=1] 1

1

C TZ,
>2 I\2

1 0

D Y >2

Fig. 8. Composition of argument mappings with

inequality constraints.

We therefore propose the following modification to the argu-

ment mapping construction of Section III. Include in the collapsed
graph:

I. Dashed arcs, with labels.

2. Lower bounds for the nodes.

The meaning of these two additional notations 1s as described in

Example 16.
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Formally, suppose we have a collapsed graph G with set of

nodes vq, . ..,Vy,, With a collection of solid and dashed arcs and
lower bounds for nodes. Also, suppose that there 1s an argument

mapping pg from {vq,... ,v,,} to range node set {wq, ...,w,]. Let
H be the collapsed graph for the composition of the mapping

represented by G with the mapping x. Then in H there 1s a dashed

arc from wj; to w; with label & if either:

I. There is some node v, with an arc in yu labeled O to wy; and an
arc to w; labeled 1; in this case, k& =1.

oo. 2. There are nodes vp and Vg, with a dashed arc in G from v, to
vg labeled s , an arc in wu labeled O from wv, to wy, and an arc
labeled 7 from vg to w;. Here, ris O or 1, and k=7 +s.

Note that if & has an arc labeled 1 entering w;, then w; will not be
the tail of a dashed arc in H. This observation reflects the fact

that 1f the argument corresponding to wy; 1s only constrained to be
strictly less than the value of some other argument, then the

value of w; has no lower limit (except 0, since all values are

assumed nonnegative).

The lower bound on a node w; 1s determined as follows.

1. If there 1s a lower bound 7 on some node Vy in G, and there 1s
an arc in u labeled 0 from wv, to wy, then 7 is a lower bound on
Wy.

2. If wy is the tail of a dashed arc labeled s in H, and r is a lower
bound on the node at the head of this arc, then r+s 1s a lower

bound on the value of wy.

Of course, we need only record the highest of several lower bounds
on a node. It can be checked that no dashed cycles ever result
from this construction.

Example 1'7: The collapsed graph for the composition of the first
two mappings in Fig. 8 1s:

CT"
>2 "5

and the collapsed graph for the composition of all three is:

1 0

C 22
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We may also attach to the domain nodes of the argument map-

pings themselves an indication if that node represents a constant.

Thus, in Example 16, the second domain node for the mapping
from D would have the associated constant value 1. When campos-

ing argument mappings, we do not allow the composition 1f a con-
stant node must be matched with a node whose lower bound

exceeds that constant. If we do so, then we claim that all legal

compositions of argument mappings with the additional informa-

tion described above will correspond to paths in the rule/goal

tree. Thus, we shall claim without detailed proof the following
theorem.

Theorem 6: We can decide whether or not the algorithm of Section

IT will lead to infinite loops even if rules are allowed to have dupli-

cate arguments and constants. If the number of arguments is
bounded and there 1s bound on the size of constants that appear

in rules, then this test can be performed in polynomial time; #f not,

then the decision may take exponential time.

Proof: When computing all compositions of a set of argument map-

pings with dashed arcs and with lower bounds, we need not distin-

guish lower bounds or arc labels that exceed the makimum con-
stant mentioned in the rules. Thus, if the maximum number of

arguments and the maximum constant are both fixed, indlepen-
dent of the instance of the problem, then the number of different

argument mappings 1s still polynomial in the space it takes to
write down the rules.

If there are no a priori limits on these quantities, then the
number of arguments still cannot exceed the problem size nm, and

the constants appearing in rules cannot be larger than ¢™. The
number of arc labels and limits in a given mapping 1s no more than

0(n*), so the number of different argument mappings is no more
than (c¢™)¥) for some d. This quantity, (c®)"°, is still limited by 2
to a polynomial. =
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