
June 1983 Report No. STAN-CS-83-972

Experience with a Regular
Expression Compiler

by

Anna R. Karlin, Howard W. ‘I’rickcy, and Jeffrey 1). Ullman

Department of Computer Science

Stanford University

Stanford, CA 94305

PoP

NOray

EXPERIENCE WIT11 A REGULAR EXPRESSION COMPILER?

Anna R. Karlin

Howard W. Trickey

Jeffrey D. Ullman
Stanford Univ., Stanford CA

The language of regular expressions is a uscful one for specifying certain scquential processes

at a very high level. They allow easy modification of designs for circuits, like controllers, that

are described by patterns of events they must recognize and the responses they must make

to those patterns. This paper discusses the compilation of such expressions into reasonably

compact layouts. The translation of regular expressions into nondeterministic automata by

two different methods is discussed, along with the advantages of each method. A major

part of the compilation problem is selection of good state codes for the nondeterministic

automata; one successful strategy is explained in the paper.

I. The Regular Expression Language

Wc shall give a brief introduction to the language of regular expressions; for more information on this

language and on nondeterministic finite automata, the reader is referred to Hopcroft and Ullman [1979].

Regular expressions consists of operators and operands. The operands are abstract symbols that represent

events in terms of combinations of wires. Events are assumed to occur at discrete times, so regular expressions

define synchronous systems.

Operators

The operators of our language are:

I. Juxtaposition (no operator) standing for sequencing of events. That is, if regular expressions R and §

each represent a set of events, then RS represents the set of events consisting of an event of KR followed

by an cvent of S.

2. The + operator standing for union. Thus, I£ + S stands for the set of events that are either events of

R or events of S.

3. The unary postfix operator * standing for the closure, or “any number of” operator. Thus, R* stands

for any sequence (including the null scquence, denoled €) of events in R,

In our language wcC also use the shorthand operators:

4. R** stands for one or more occurrences of events in R, that is, RR".

5. R? stands for zero or one occurrence of an cvent in R that is, R + e.

Example 1: Let a and b be events, ie., abstract symbols of our language. Then ab stands for an a followed

1 Research supported by DARPA contract MDA- 80-C-0107 and NSF grant MCS-82-03105.

I

immediately by a 6; ab* stands for an a followed by any number of b’s, ie., {a, ab, abb,. . . }; ab*t stands

for { ab, abb, .. }. Also, a + 6 stands for either an @ or a 6, and (a + b)* stands for any sequence of u’s and

b’s, in any order. []

Special Operands

In addition to abstract symbols as operands, we allow two other operands. .

I. A dot (.) is an operand that matches any combination of input wires, ic., it is always seen.

2. The symbol # is never seen, no matter what input wires are on. Although seemingly without purpose,

this symbol is essential when we use state names in our expressions, as described below.

Line Declarations

Our expression language has declarations of five types: lines, symbols, outputs, states, .and subexpressions.

The lines are wire names, from which the symbols are constructed. For example,

line x, y|[8]

declares x to be the name of a wire, and y to be the name of a group of eight wires, which may be referred

to individually in symbol definitions as y[1],. . . , ¥[8]

Symbol Declarations

Symbols are the operands of regular expressions mentioned above. Each is defined by a set of wires that

must be on and a set that must be off. Thus,

symbol zap(x, y [1], -v[3])

declares that abstract symbol zap is seen whenever wires x and y[1] are on, and wire y[3] is off. Any other

wires are ignored when deciding whether event zap is seen. Note that, unlike the usual conventions in

automata theory, we allow more than one symbol to be seen at the same time. for example, we could define

symbol zip(y[1}, ¥[2])

and sce both zip and zap at the same time, if x, y[1], and y[2] arc on, while y[3] is off.

Output Declarations

Output symbols are embedded in the regular expression and represent output wires. The exact rules

determining when an output wire is raised arc complicated, and the details appear in Ullman [1983]. Ilowever, |

the general idea is that if Ris a regular expression, U is an output symbol and RU a subcxprcssion of the

2

. complete regular expression, then wc raise output U immediately alter seeing a sequence of inputs that forms

an event of R. An example will help make the idcas known. If we declare

output u, v

and write the regular expression :

aip (zip U + zap U V)*

then after the first event, which must be zip or no output is ever made, we look for any sequence of events

zip and tap. Each time we see zip, we raise output U, and each time we see zap we raise both U and V. If

at any time we see neither zip nor zap, we not only raise no output, but recognition of the regular expression

has “derailed,” and we never make any more output.

State Declarations

State names arc used like “goto’s” in the regular expression. While the regular expression language is most

appropriately used in situations where there is little need for explicit state transitions, we have found that

the occasional use of such transitions is almost cssential. With this feature, our language has all the power

of deterministic finite automaton languages, like SLIM (Henncssy [1981)), while also offering the expressive

| power of regular expressions where that is more appropriate. WC can declare 8 to be a state by the declaration

state s

Then, in the regular expression, there will bc one occurrence of 8 followed by a colon; thus 8 : marks the

“label” position of a, where control transfers whenever it is determined that state 8 is entered. Often, we

find a : preceded by #, the symbol that is never matched, so that control does not accidentally reach state

8 without an explicit transfer to that state.

In the expression there can be any number of occurrences of 8 not followed by a colon; these are the

“goto’s” to state 8. As with output symbols, a state symbol is activated when a match for the preceding

regular expression is recognized. The reader should be reminded that because of the inherent nondetcrminism

in the input recognition process defined by regular expressions, the use of states can bc more general than

in a deterministic finite automaton language. For cxamplc, two or more golo’s to dilferent states could be

activated at the same time, causing us to be in both states at once.

: Program Structure

] The fifth kind of declaration is a subcxprcssion, where an identifier is declared to stand for a regular

cxprcssion. Thus

3 :

line x

symbol

zero —x)
one(x)

output OUT

’

.* one one (one zero? zero?)++ OUT
|

Fig. 1. Bounce filter regular expression.

subexp string = (zip + zap)*

| declares string to stand for any sequence of zip’s and zap’s, so

string zip zip string

stands for any sequence of zip’s and zap’s with at least two zip’s in a row.

After all declarations for a program, there is a single semicolon, followed by a single regular expression.

The limitation to one expression is not significant, since there can be any number of output symbol occur-

rences in the expression. We can even use the # operand to simulate a multistate automaton by using an

expression of the form

statel: expressionl

+ # state2: expression?

+ # Staten: exprcssionn

Presumably, each of the expressions has within it one or more state symbols, which cause transitions to

other states.

Example 2: A bounce filter is a device with a single input and single output; the output will generally agree

with the input, but we wish to ignore small “bounces,” where for a small number of cycles the input changes

and then returns to its original value. For our example, we shall ignore one or two consecutive O or 1 inputs

that do not match their surroundings. The regular expression that defines this output as a function of the

input is shown in Fig. 1.

The first line of text declares z to bc a wire; this wire is the only input wire in this example The next

two lines declare zero and one to be abstract symbols, seen, respectively, when the input wire is off and on.

The fourth line declares OUT to bc an output signal, the only output in this example. ‘Then comes the

obligatory semicolon, and finally the expression itself. The expression says that the output OUT is to be

raised whenever we sce an input pattern that requires the output to be 1. That is, wC may see anything at

all (indicated by the .*), then two one’s and one or more groups represented by the expression

4

line cars, tol, tos

output RESET, IIWYGREEN, IIWYYEL, FARMGRN, FARMYEL
state highway, farm

symbol

carstol(cars, tol)
carsntol(cars, tol)
nocars(-cars)

timeup(tol)
notol(-tol)

switch(tos)
wai t{-tos)

highway: (nocars+notol)* IITWYGREEN

carstol RESET

wait* IIWYYEL switch farm RESET

+ # farm: carsntol®* FARMCRN

(nocars+timeup) RESET

wait* FARMYEL switch highway RESET

Fig. 2. Traffic light controller.

one zero? zero?

that is to say, each group consists of a 1 followed by up to two optional 0's. The 1 from the first group forms

the third consecutive 1, along with the 1’s that match the two carlier symbols one in the expression. After

these three I's, there cannot be three O’s in a row, no matter how many groups are present, so the output

in response to any input that matches the pattern of the expression given in Fig. 1 should be 1. [J

Example 3: Now, let us see how to write as a regular expression the famous traffic light controller from

Mead and Conway (19801. This probl2m involves a light at the crossing of a highway and farm road. A

sensor detects cars waiting on the farm road to cross the highway; its output is the line cars in Fig. 2. Two

timing signals are also used to control the light. The short time out signal, fos in Fig. 2, indicates that

cnough time has elapsed from the last time the RIISET output signal was raised that a yellow light may

be turned to red. The long time out, tol in Fig. 2, is used to measure the minimum time, from the last

RESET, that we shall allow thc highway to be green, even when cars are waiting on the farm road, and

also to measure the maximum time that we shall allow the farm road to be green, cven if there is a steady

stream of cars on that road.

Let us examine the parts of the expression in detail. Starting from the highway state, the subcxpression

(nocars + notol)*

matches any sequence of events in which either there are no cars waiting, or the long timeout interval has not

clapscd. As long as that is the case, the highway stays green, as rcllccted by the fact that the HWYGRIEEN

5

output follows this subexpression. Then if both the cars and tol signal are on, the input no longer matches

(nocars + notol)*

but it matches the longer expression

(nocars + notol)* carstol

|

because the carsto/ symbol is seen whenever both the wires cars and tol are on. Note that the output and

state symbols, such as HWYGREEN, are ignored when considering subexpressions of the complete expression

that might match the input.

In response to a match of the above expression we emit signal RESET, which starts the counter for

the purpose of measuring the time of the yellow light. Any input that matches the above expression also

matches

(nocars +notol)* carstol wait*

since wait can occur zero times in a match of wait*. Thus, at the same time RESET is signaled, HWYYEL

is also signaled, and the highway light turns yellow, while the farm road remains red.

As long as the short timeout period has not elapsed, wait will continue to be seen, so the above expression

will be matched, and IITIWYYEL, but not RESET, will be emitted continuously. Then, when switch, the

abstract symbol that represents the tos wire going on, 1s seen, we can no longer emit HWYYEL, because the

input seen since we entered the highway state no longer matches the above expression. However,

(nocars + notol)* carstol wait* switch

is matched. Thus, we emit the two following signals, farm and RESET. The first takes us to the farm

state, and since that state is followed by subcxpression carsntol*, which is matched by the empty string, we

immediately signal FARMGRN as well. That causes the farm road to become green and the highway red.

The events following the farm state are similar to those just discussed for the highway state, and we shall

omit a detailed description.

‘We might note that although the traflic light is inherently a four-state device, we used only two states,

and in fact, we did so only for convenience; we could do without states altogether. There is really no need

for the farm state, because whenever we enter it, we would “fall through” to it anyway. WC can do without

the highway if we put the closure operator around the whole expression, thus causing the cycle to repeat

indefinitely. The state-free expression for the traffic light is

((nocars + notol)* HWYGREEN carstol RESET
wait* IHIWYYEL switch RESET

carsntol* FA RMG RN (nocars + timeup) RESET
wait* I'A RMY EL switch RESET)*

6

Regular

Expressions Ny
Before Type After Type

Compiler yd Compiler
NFA Language

State Coder

Logic
Minimizer

PLA

Generator

Fig. 3. Outline of RE Compiler.

II.” The Compilation Strategy

Figure 3 outlines the way regular expressions are compiled into PLA’s. The language of nondeterministic

finite automata (NFA’s) is used as an intermediate language We shall not detail the language here, as it is

fairly conventional. The important thing to remember is that the nondeterministic states each correspond

to a single operand of the expression. There are two reasons we prefer to work from the NFA, rather than

converting regular expressions into deterministic automata and using standard state-coding heuristics.

1. Somctimes the regular expression is short, yet the number of states of the deterministic automaton is

enormous. We worked with one example of an expression, that described pattern matching with don’t

care’s, where the regular expression has 72 operands, yet the deterministic automaton has over eight

million states. By coding the NFA directly, we were able to get a PLA with 24 feedback wires, which

is only one more than the minimum possible for the implementation of an 8,000,000 state machine.

2. The regular expression gives us important clues to a good state coding. In particular, wC shall see below

that we can always find a PLA implementation with one term per operand, i.c., one tcrrn per NFA state.

If we converted to a deterministic automaton, we might lose some of the useful information and wind

up with a PLA with more terms, unless we spent a great deal of effort optimizing the coding.

The “before” and “after” type compilers are really implemented by a switch on a single compiler; wc

shall discuss the difference below. The details of the compiling algorithms involved in translating regular

expressions to NIFA’s by cither method are found in Trickey [1982] and Ullman [1983].

7

We have experimented with several strategies for the state coder. They all depend on knowing the

conflict matrix of the NFA, i.e, which pairs of states can be on at the same time. We shall have more to say

about these strategies later.

The output of the state coder is a PLLA personality. This personality has the number of its terms reduced

by a program called GRY, written by Ilemachandra [1982] and basedon algorithms described in Hachtel et

al. [1982]. The output of the minimizer is fed to a PLA generator written by Kevin Karplus.

| ITI. The Partition of Regular Expressions

The first thing the regular expression compiler does is break up the given expression into manageable pieces;

we try to have each piece represent about fifty operands. One of the important features of the regular

expression approach to design is that expressions can be broken up into subexpressions that have very little

interaction; in essence the outer expression “calls” the subexpression at exactly one place, and the call can

be represented by a pair of wires carrying a startup signal to the subexpression recognizer and a completion

signal back to the caller. For example, the bounce filter of Example 1 could have its expression broken into

main = .* one one sub™t OUT

sub = one zero? zero?

It is important to realize that the circuit recognizing the subcxpression can receive start signals more

than once, and may even be working on more than one “call” at a time, but this activity is a correct

implementation of regular expressions. We should also be aware that if there are state “goto’s” connecting a

subexpression to its environment, then more than one pair of wires will be necessary for the interconnection.

Before translating the subcxprcssions into NIFFA’s, the compiler does a certain amount of algebraic man-

ipulation of the subexpression to reduce the number of NFA states needed, if possible. For example, we left

and right-factor expressions, so

abc + ade

becomes

a(b + d)c

The motivation for splitting the expression into small pieces is that the PLA implementation degrades

in both speed and in area used per regular expression operand, as the number of operands grows. That is,

the area of a PLA for an n-operand expression could bc proportional to n2. The reason WC do not therefore

break the expression into PLA’s of size 1 is that the PLA cost also has an overhead term. The result is

that to get the lowest ratio of operands to PLA area we should USC subexpressions of about 15-25 operands

for each PLA. However, because of the wasted area involved in putting many PLA’s togcthcr, wc prefer

8

somewhat more than the optimal number of operands per PLA to reduce the overbcad due to PLA’s that

don’t quite lit together.

A previous incarnation of the compiler attempted to translate the expression directly to a layout using

an algorithm of Floyd and Ullman [1982] that requires area that grows only proportionally to the number

of operands. However, the network-of-I’LA’s implementation was found superior in practice. The reader

should also be aware of another approach to laying out regular cxpression recognizers in linear area due to

Kung and Foster [1982], which we have not tried.)

Another style of implementation is described in Ullman [1982], where regular expressions were translated

into the lgen logic language (Johnson [1983]} and thus implemented as Weinberger arrays. The area of such

implementations was found to be comparable to the PLA implementation. Theoretically we might expect

the Weinberger array approach to use less area than PLA’s, but to form circuits of very large aspect ratio

as the size of the expressions compiled grows.

The reader is also referred to Trickey [1981] for a description of some experiments with the systematic

exploration of the different ways a regular expression could bc partitioned into subexpressions, and the sub-

expressions converted to PLA’s that would fit together with little wasted area: It was found that significantly

improved layouts could be obtained, but the computation time grew exponentially with expression size. That

makes it doubtful the method could be applied to expressions with more than a few hundred operands, unless

some way of focussing the search for partitions’were found.

IV. Before and After NIFFA Constructions

Now, let us rcturn to the two methods whereby NFA’s arc constructed from regular expressions. We begin .

either process by identifying each operand with a state.

Example 4: Consider the bounce filter of Example 2. We may number the operands of the expression from

left to right as follows.

.1* oneg onez (one, zeros! zerog!)tt OUT

Wc may then associate with operand ¢ the stale N;.

In Fig. 4 we sce what looks like a transition diagram for a finite automaton. It actually represents the

successor relationship among the states or operands, i.e., which operands can follow which in the regular

expression. For example, there is an arc from Ng to N4 because after seeing a 0 corresponding to zeros, we

could begin another group consisting of ‘a 1 and up to two O’s, and such a group rnust begin with a 1 that

matches oney. WC also have an arc from Ng to Ng, because after matching zeros wc could see another 0

9 :

O AN

Fig. 4. Successor relation for bounce (filter.

that matched zerog. Finally, there is an arc from Ng to N; because after seeing a match for zeros we have

seen an input that matches the subexpression prior to the OUT output and therefore must make the OUT

signal. See Ullman [1983] for the details on the algorithm used to compute the successor function. []

Whether we usc the before or the after interpretation of states, we can see transition diagrams like Fig.

4 as representing places that can be “active,” which wC might represent by putting a marker on a subset of

the nodes. When we use the before interpretation, a marker at state N; tells us we are ready to recognize

the operand corresponding to that state. Thus, if state Ng of Fig. 4 is active at a given time unit, it will

activate for the next time unit the states Ng, Ng, and N;, provided an input 0 is seen. If the input is not O,

those states will not be activated by Ng. Ns will not be active at the next time unit, unless it is activated

by a transition from Ny, its only predecessor.

Figure 5(a) shows the before interpretation of the NFA for the bounce filter. Each transition in Fig. 4 is

made on the input that corresponds to the state at the tail of the transition. Those states that correspond to

the operands that could match the first input seen, namely Nj and Ng, are designated initial. A transition

into NN; causes the associated output, OUT, to be raised.

In the after interpretation of NFA’s, each state represents a situation where we have already scen the

corresponding operand of the regular expression and are ready to recognize the symbol corresponding to

any of its successor states. Figure 5(b)shows the alter interpretation of the bounce filter. In general, each

transition is labeled by the symbol corresponding to the state cntcred by the transition, while in the before

interpretation the same transition is cxccutcd when the input matches the operand of the state that the

transition leaves. In the after interpretation, the start is a state itself, with transitions to its successors on

the appropriate inputs, as shown in Fig. 5(b). Finally, states associated with output symbols are no longer

states in any uscful sense. Rather, transitions into such states, shown in Fig. 5(b) as associated with ¢,

mean that the states from which such a transition is made are to raisc that oulput signal as soon as they

themselves arc cnterced.

10

1

NATNy => Ny — Nj — Ng a = N,

iad
(a) Before method interpretation

€

. 1

. () 1 1 1 0 0 €
startSo—rp N3——> Ny—> N; —— Ng—> N,

1 1 €

| 1

(b) After method interpretation

Fig. 5. Interpretations of bounce filter NFA.

Comparison of Methods

Neither method is uniformly superior to the other. The advantage of the before method is that when we

convert the NFA to a PLA, we need only one term per state (plus extra terms corresponding to transitions

from the initial states when the start signal is raised). To see why, we have t¢ understand that each NFA

state is coded by turning on a subset of the feedback wires of the PLA; we shall discuss the method of

selecting the representation of each state shortly. In the before interpretation, we need for each state N a

term that checks

I. The code bits representing N were turned on at the previous time unit, and

2. The input corresponding to N is seen.

This term must turn on all the wires in the or-plane that are nceded to rcprcscnt any of the successors of

state N. It may be unclear at the moment how one represents NFA states (which may be on simultaneously

in various combinations), unambiguously by turning on sets of bits; we shall cover the method in the next

section.

Example 5: Figure G(a) shows the PLA constructed from Fig. 5(a) if we code states N; through N7 with a

single wire cach. (This turns out to bc as good as we can do for the bounce filter NFA.) The left and right

11

22122222 1100000

| 21 212 2 2 2 0 01 00 0O
21 2212 2 2 0 001 000

21 22 21 2 2 0 00 1 1 11

: 2 02 2 2 2 1 2 0 00 1 0 11
202 22 2.21 0 00 1 0 01

1 222 2 2 2 2 I 1.0 00 00

: 112222722 0 01 00 0O

. XN{NyN3NNsNg. NyN;N3NyNsNgN;

: (a) Before method PLA.

1 2222222 1 000000

: 11222222 0100000

; 2 212 2 2 2 2 1 00 00 O00

: 2 1122222 0100000
: 21 212 2 2 2 0 01 00 0O

21 2212 2 2 0 00 1 0 01

21 22 21 2 2 0 00 1 0 01

2 02221 22 0 00 O01 11

: 21 22 2 212 0 00 1 0 01
: 2 022 2 21 2 0 00 00 1 1

21 2 2 2 2 21 0 00 1 0 01

S X Ny Ny N3 N,N; Ng Ny Ny N3 Ny Ns Ng Ny

: (b) After method PLA

Fig. 6. Before and after PLA’s for bounce filter.

: groups are the and- and or-planes. A 0 or 1 in the and-plane means that the wire represented by the column

must be off or on, respectively, for the term corresponding to the row to be seen. A 2 in the and-plane means

“don’t care.” In the or-plane, 1's represent taps, so each column is the logical “or” of the terms with 1's in

that column. Note that Ny, the output, need not be fed back.

j The first six rows are the terms for states IN; through Ng. For example, row one says that if we are in

N,, and the input “dot” is seen (i.e., the input may be 0 or 1, represented by the 2, or “don’t care, in the

input column, X), we turn on Nj and Nj for the next time unit. Row two says that if state Ng is on, and

the input is 1, turn on Nj for the next time unit.

The last two rows duplicate rows one and two, but with the start signal S replacing the wires for Ng

and Nj, respectively, in the term’s conditions. Thus, these last two wires express the fact that Nj and Ng

f are on initially. Cl

If we use the after interpretation of NFA’s then we must create for each state N, and each symbol a

labeling a transition out of that state, aterm to check that the stntc is on and that the input is scen; if so,

: the successors of N on input a arc turned on in the or-plane for the next time unit. If successor M has an

c-transition to an output signal, then those terms that turn on M in the or-plane also turn on that output

wire.

Example 6: Figure 6(b) shows the after method PLA for the bounce filter. For example, rows three and

four represent the transitions from Nj on “dot” and 1 to states Ny and Nga, respectively. Note that since Ny,

Ns, and Ng have c-transitions to N7 in Fig. 5(b), the last five rows of Fig. G(b), which represent transitions

into those states, also turn on the output wire, which is Nj. J

If we compare Examples 5 and 6 we might get the impression that the before method is superior to the

after; each uses the same number of columns, and the after method uses more rows. While it is typical that

the before method saves rows, it is often true that the after method saves columns because it allows better

NFA state codes. It just happens that for the bounce filter, no better state code is possible with the after

method.

V. Selecting NFA State Codes

We shall now take up the matter of how the compiler selects codes for states of an NFA. We first discuss

the notion of conflicting states, that is, pairs of states that can be on at the same time. We show how the

conflict information determines the permissible state codes and we discuss a particular method for finding

legal codes.

Conflicting Symbols and States

Before discussing conflicting states, we need to define conflicting input symbols. Symbols a and & conflict

if both can be on at the same time, i.e., there is no wire z that is on in the definition of a and off in the

definition of b, or vice versa.

If we are using the before interpretation of an NFA, then we usc the following two rules to compute

pairs of states that conflict. Rule (1) initializes the set of conflicts; we then add conflicting pairs by rule (2)

until no more can be added.

1. Each state conflicts with itself. All initial states conflict with one another.

2. Suppose N and A4 are states that conflict, and they are associated with conflicting symbols a and b.

(Note N = A4 is allowed.) Then for each successor P of N and cach successor @ of M, P and @

conflict.

There are similar rules that can be applied if we use the after interpretation of NFA’s; they are:

1. Each state conflicts with itself. If N and M are initial states that are ‘associated with conflicting symbols,

then N and M conllict.

13

| a
Ny

start N;

| Fig. 7. Example NFA.

2. Suppose N and M conflict, P is a successor of N and Q is a successor of M. Also suppose that P is

associated with symbol a and Q with b, and a and b conflict. Then P and Q conflict.

Note that the set of conflicts under the after interpretation is always a subset of those found under

the before interpretation. It is this effect that explains why we often get better state codes with the after

method.

| Example 7: Suppose we declare symbols by
line x, y

symbol a(x, -y), b(x), ¢(y)

Then b and c¢ conflict. However, a and b do not conflict, because of wire z, and a and ¢ do not conflict

because of wire ¥.

Consider the NFA shown in Fig. 7. In the before interpretation, (N1, Na) is a conflicting pair because

both are initial. Next, by rule (2) we find that (Nq, N3 is conflicting because they are both successors of

the conflicting “pair” (Na, Ns). Then, we find (Ny, N3)is a conflicting pair because they are, respectively,

successors of the states Ng and Nj, which are conflicting and associated with conflicting symbols.

In the after interpretation, rule (1) yields no nontrivial conflicting p-airs, because the start states Nj and

Ny are associated with nonconflicting symbols. However, the successors Ngo and Nj of the trivial conflict

between Ng and itself are associated with conflicting symbols, so (Ng, N3)is a nontrivial conflicting pair.

There are no other nontrivial conflicts in the after interpretation. O

Legal Codes for NFA States

It is useful to think of the conflict information as a conflict graph, with states for nodes and edges between

pairs of states that conflict. The compiler makes the simplifying assumption that any cliquet in the conflict

graph represents a set of states that can all bc on at the same time. Surely if some set of states can all be

t A clique is a sct of nodes with an edge between any two nodes in the set. The clique is maximal if no node outside the clique
has an edge to cach member of the clique.

14

on at once, then each pair of states in the set conflicts, but the converse is not true; there could be three

different input sequences that lead, respectively, to states M and N, to M and P, and to N and P, yet no

one input sequence turns on M, N, and P together.

Our decision to consider only conflicts between pairs, rather than all subsets, was so that the amount

of information handled by the compiler would grow only quadratically with the regular expression size, not

exponentially as it would if we considered conflicts among arbitrary sets of states. The assumption that all

cliques represent conflicting sets is conservative, in the sense that it may prevent us from taking advantage

of some good codes for states but will not lead us into an error where we design a malfunctioning PLA.

When choosing codes for states, we make the following hypothesis, which is oriented toward the PLA

implementation of NFA’s. We suppose that associated with each state is a vector of k O’s, I's, and 2’s, with

2 standing for “don’t care.” Let C(N, t) be the ith position in the vector for state N. If state N is to be on,

then we turn on the $t* feedback bit whenever C(N, i) = 1. If C(N, t) 1s O or 2, we do not turn on the jth

bit because of N, although it could be turned on because of some other state.

In the and-plane, when we must recognize that we are in state N, perhaps among others, we examine

the feedback bits. If C(N, §) = 1, we check that the ¢** feedback bit is 1; if C(N,t) = 0, we check that it

is 0, and if C(N , t) = 2. we do not check the ** feedback bit. We must consider under what conditions the

code C allows us to interpret all possible combinations of feedback bits correctly. There are two conditions

that together ensure that we shall make the proper infcrences from the feedback bits.

I. When state N is on, we detect N. If C(N, i) = 2, we do not check bit 1, so there are no constraints on

1 as far as N is concerned. If C(N , 1) = 1, and N is on, we know bit ¢ will be turned on, so the test for

N will be met at bit ¢. Finally, if C(N, ¢) = 0, then we must be assured that no other state M that

conflicts with N, and could therefore be on at the same time as N, has C(M, t) = 1. For if there were

such an M, then we could find bit ¢t equal to 1, and fail to detect N even though it is on.

2. If N is detected, then N is on. Here, we must check that there is no (not necessarily maximal) clique

{M,,...,. M, } that does not contain N but can forge the code for N. That is, for no such clique is it

the case that for all i, 1 <i < k:

a) If C(N,i) = 0, then for all j, C(Mj,{) # 1.

b) If C(N, i) = 1, then there is some j for which C(Mjy, 3) = 1.

If no clique satisfies (a) and (b), then the code C satisfies condition (2).

Example 8: Figure 8 shows a conflict graph. A possible 3-bit code for this set of states is:

15

| P

Q

Fig. 8. Example conflict graph.

| 1 2 3

M 2 2 1

N I 0 2

P 0 I 2

Q | | 2

To check condition (1) we have only to examine the 0’s. For example, C(N, 2) = 0, but there is no other

state conflicting with N that has 1 in its second bit. That is, only M conflicts with N, but C(M y 2) = 2.

We must also check condition (2). For example, it looks like N and P together could forge Q, but

{ N, P} is not a clique, because N and P do not conflict. 0

Simple Coding Methods

| The first coding method implemented, which we call the greedy method, is to look for maximal independent

sets in the conflict graph. An independent set is a sect of modes no two of which are connected by an edge. We

| may partition the nodes into maximal independent sets by starting with any node and adding nodes that do

; not conflict with any of the nodes previously added, until no more can be added. The result is one maximal

i independent set. We then remove the nodes of this set from the graph and start with another node’to grow

another independent set, and so on. This method has been used for similar purposes in several other works,

| such as Haskin [1980] and Nagle, Cloutier, and Parker [1982].

Having obtained a partition into independent sets, we may binary code the states in each set, omitting

the all-zero code, so a set of m states can be coded with [logg(m + 1)] bits. Each of the independent sets

uses bits of its own in the state code, and the code for each state has don’t care’s in the bits belonging to

the independent sets other than its own. This coding method works because the only possible combinations

| of states have at most one from each independent set. The bits for each set tell us which, if any, state from

that set is on. By not using the all-zero code for any state, we can detect the casc where no member of an

independent set is on.

Example 9: Consider the conflict graph of Fig. 9. Wc might start growing an independent set with state

| 16

N. We may add P and Q, because neither conflicts with N or with each other. However, we cannot add M

because it conflicts with N. Thus, we start a second indcpendent set with M, and the partition of Fig. 8 is

{{N,P,Q},{M}}.

The first of these sets requires two bits and the second one bit. The resulting state code is that given

in Example 8. OJ

The Clique Compatability Class Method

A second coding method tried is described in Ullman [1982]. It gave better codes than the greedy method

in some cases. We shall omit a description of that method and instead describe the most recent and most

successful coding method. This approach partitions the states into maximal clique compatibility classes

(MCCC’s). An MCCC consists of a collection of cliques, such that no node of one clique is connected to a

node of another clique by an edge of the conflict graph.

We grow MCCC’s by starting with maximal independent sets and growing them by adjoining nodes

‘whenever possible. We can adjoin node N to clique Q if N is adjacent to every node in Q but N is adjacent

to no node in any of the other cliques in the MCCC. After partitioning the conflict graph into MCCC’s, we

code each MCCC in a manner to bc described. We then find the overall state code by using a separate set

of bits for each MCCC, just as we did for independent sets in the greedy algorithm. Each state has its code

in the bits of its own MCCC and don’t care’s elsewhere.

Coding MCCC'’s

The basic idea is that we try to use the same code bits for as many cliques in the MCCC as we can. We start

off coding each clique individually, and then try to combine the codes for different cliques. As the states of

one clique can be on or off in any combination, there is nothing better than to use a one-hot code, i.e., use as

many bits as there are states in the clique, with each state given a code consisting of a 1 in a unique position

and 2’s (don’t care) elsewhere.

Then, we combine cliques, in pairs, until we have combined all pairs. The priorities for which pair to

combine are as follows.

I. If there are two cliques or sets of cliques that have codes with the same number of bits, combine them.

However, that number of bits must be at least two, i.e., we do not apply step (1) to a pair of cliques

consisting of one state each. If there are two or more pairs that may be combined, pick a pair that have

the shortest codes.

2. If no sets of cliques may be combined by rule (1), find the two cliques or sets of cliques with the shortest

17

A B

Cc - D FE e—

G ———H

AN7

Fig. 9. An MCCC.

codes (including codes of one bit), and combine them. However, do not choose a singleton clique unless

the number of singleton cliques is at least as great as the number of other sets of cliques

remaining.

The combination of two sets of cliques may have the side effect of combining with them a singleton

clique, .as we shall see. That is the reason we do not wish to pick singleton cliques for combination unless

there are so many that they cannot all be consumed in the combination of other cliques. In general, the

rules for combining the codes for two sets of cliques are the following.

I. If one code is shorter than the other, pad the shorter out with leading O’s until they are of equal length.

2. Place a 0 in front of all the codes in one set and a 1 in front of all the codes of the other set.

3. If there are remaining cliques consisting of a single state, choose one and give it the code 10---0. It is
easy to prove by induction on the number of cliques combined that we never produce an all-zero’s code.
Thus, 10- --0 will not be the same as the code of ay other state in the set.

Example 10: Consider the MCCC shown in Fig. 9, where there are two singleton cliques, two doubletons,

and one clique of size three. The initial codes for the cliques are the following.

A I E 21

F 12

B 1’

G 221

C 21 II 212

D 12 | 122

Note that the bits for different cliques do not yet bear any relation to each other, so there is nothing wrong

with assigning the code 1 to both A and B, for example.

According to rule (1), our first task is to combine cliques CD and EF, since they are not singletons,

but have the same code length. Let us say we put 0 in front of the codes for C and D and 1 in front of the

codes for E and F. We then add a singleton, say I, giving it the code 100. The result is a sect of five states

with the following code:

:

B 100

C 021

D 012

E 121

F112

Now, the set BCDEF and the clique GHI have the same length code, so we combine them, consuming

the singleton A in the process. The resulting code is:

A 1000 F 0112

B 0100 G 1221

C 0021 H 1212

D 0012 1 1122

E 0121

VI. Evaluation of the Compiler

Wc believe that the principal reason to express designs in the regular expression language is its ability to

accept descriptions of the patterns it must recognize and the responses it must make, in a flexible manner.

For example, additional patterns may be added to the description of a controller, and the compiler will

produce the necessary modifications without the user having to worry about the possibility of interactions

betwcen the new patterns and the old ones. Design systems based on deterministic automata do not have

this robustness.

However, it is also important that the design produced by the compiler be of good quality. We have

run several test cases, and these indicate that the compiler performs well, in some cases better than obvious

hand designs of PLA’s. We shall mention some of these trials here.

The Bounce Filter

Here we do not do well; a PLA with about half the area of that of Fig. 6(a) can be designed.

The Traffic Light Controller

Using either the before or after method, the compiler comes up with essentially the same PLA as appears in

Mead and Conway [1980]. The only difference is that the compiler introduces an initialization signal, which

is not really needed for the perpetually running traffic light.

The Pattern Matcher

We alluded above to a regular expression with 72 operands and an 8,000,000 state deterministic automaton.

19

line input(2]
symbol

zero(-input|1])
3 symbol one{-input[2})
; output MISMATCH
: ’

; .. (. (zero .* one + one .* zero) +
(zero .* one + one .* zero) .)

j +

1 (. (zero .* one + one .* zero) +
1 (zero .* one + one .* zero) .) . .

+

(. . (- (zero .* one + one .* zero) +
(zero .* one + one .* zero) .)

(. (zero .* one + one .* zero) +
(zero .* one + one .* zero) .) . .

;) MISMATCH

Fig. 10. Pattern matching regular expression.

This expression is shown in Fig. 10. The problem is to signal mismatches between the first eight symbols read

and the last eight read. Input 1 is represented by turning input [1] on and input[2] off; input O is represented

by the opposite, and don’t care, which matches anything, is represented by turning both input wires on. The

expression appears complicated, but the idea is that a mismatch between the first and last eight symbols can

be expressed recursively as either a mismatch between the first four and the next-to-last four; or a mismatch

between the second four and the last four; these mismatches can be expressed as mismatches of two pairs,

and so on.

An obvious hand implementation of a PLA was attempted, using the straightforward idea that each of

the symbols to be remembered, the first eight and the last seven, would be coded by two bits, for 0, 1, and

don’t care. This approach requires 16 fcedback wires for the first eight inputs, 14 more to remember the

most recent seven inputs, and four feedback wires to represent a counter that counts up to eight, to tell the

PLA whether to remember its current input as one of the first eight symbols. As for terms of the PLA, we

need 16 to feed back the first eight inputs, 14 more to feed back and shift the seven most recent inputs,

16 to load the first eight symbols originally, 32 to detect mismatches, and eight to implement the counter.

Thus, the hand design uses 34 feedback wires and 86 terms.

In comparison, using the before method and the greedy state coder, wC require 28 feedback wires and 62

20

line x[3]
symbol

in0(x[1] =x[2])
in1(x[2] -x[1])
badin(x[1] x[2})
ack(x[3])
noin(-x[1] —x[2])
noack(-x(3])

output OUTA, OUTB, OUTC, ERROR
state statea, stateb, statec

subexp somein = in0 + inl + badin

subexp waitin = noin + badin

subexp allbut0l = ack + badin
]

waitin® (
allbut0l ERROR +

in0 statea +

inl stateb

)
+ # statea: noack* OUTA (

somein ERROR +

ack waitin®* (
| allbut0l ERROR +

in0O stateb +

inl statec

)
)

+ # stateb: noack* OUTB (
somein ERROR +

oe ack waitin®* (
allbut0l ERROR +

in0 statec +

inl statea

)
)

+ # statec: noack™ OUTC (

somein ERROR +

ack waitin®* (
. allbut0l ERROR +

in0 statea +

inl stated

)
)

Fig. 11. Regular expression for transmitter.

terms. When we implemented the MCCC method of state coding, this number was reduced to 24 feedback

wires, which is only one more than the theoretical minimum. This problem is an example where the before

method yields significantly better results than the after method, as well as significantly better results than

the obvious hand design.

21

And Or

Cols. Cols. Terms Area

Hand-Unoptimized 13 7 29 580

Hand-Optimized 13 7 23 460

Before Compiler 17 11 23 644

After Compiler 13 7 25 500

Fig. 12. PLA’s for communication protocol.

A Communication Protocol

We designed the transmitter portion of the protocol for handling lost bits discussed in Aho, Ullman, and

Yannakakis [1979]. Briefly, that transmitter has two inputs, z[1] and z[2] telling it to send a 0 or 1 down the

channel, while z(3] is another input wire, used as an acknowledgement signal. The protocol works because

the transmitter sends one of three signals, a, b, and c¢, which we may view as arranged in a circle. To send a

0, the transmitter steps one around the circle and to send 1, it steps twice. States statea, stateb, and stalec

are the states in which the transmitter is trying to send a, b, and c, respectively. We assume that signals

are not mutated, so any signal acknowledged must be the correct one. The regular expression program is

shown in Fig. 11.

In Fig. 12 we see the results of hand and mechanical generation of PLA’s for the transmitter. A

straightforward hand design was optimized by GRY, to reduce the number of its terms. The results of the

before and after methods are shown after optimization by GRY. We should be aware that when we count

columns in the and-plane, we count one column if a signal is needed either true or complemented, but not

both; if needed both ways we count two columns. This method of counting is realistic, provided the PLA

generator used does not force all wires to become true and complemented pairs in the and-plane.

The “area” of the PLA in Fig. 12 is the product of rows and total columns, which is not precisely

accurate, but serves to measure approximately the area actually used by the PLA.

The reader should note that the results shown in Fig. 12 for the compiler are the result of the greedy

algorithm, not the MCCC algorithm. In both the before and after interpretations, the greedy method

achieves the smallest possible number of feedback wires. The MCCC algorithm uses the same number of

bits to code the states as the greedy algorithm does, i.e., the number of feedback wires is the same, but

because of differences in the coding used, the number of terms after optimization was slightly larger when

the MCCC coder was used.

22

References

Aho, A. V., J. D. Ullman, and M. Yannakakis [1979]. “Modeling communications protocols by automata,
Proc. Twentieth Annual ACM Symposium on the Theory of Computing, pp. 267-273.

Floyd, R. W. and J. D. Ullman [1982]. “The compilation of regular expressions into integrated circuits,” J.
ACM 29:2, pp. 603-622.

Brayton, R. K., G. D. Hachtel, L. A. Hemachandra, A. R. Newton, and A. L. M. Sangiovanni-Vincentelli

[1982]. “A comparison of logic minimization strategies using EXPRESSO: an APL program package for
partitioned logic minimizalization,” Proc. IEEE Intl. Conf. on Circuits and Computers.

Haskin, R. L. [1980]. “Hardware for searching very large text databases,” Ph. D. Thesis, Dept. of Computer
Science, Univ. of Illinois, Urbana, Ill.

Hemachandra, L. A. [1982]. “GRY: a PLA minimizer,,, unpublished memorandum, Dept. of Computer
Science, Stanford Univ., Stanford, CA.

Hennessy, J. L. [1981]. “SLIM: a simulation and implementation language for VLSI microcode,” LAMBDA,
April, 1981, pp. 20-28.

Hopcroft, J. E. and J. D. Ullman [1979]. Introduction fo automata theory, languages, and computation,
Addison-Wesley, Reading Mass.

Johnson, S. C. [1983]. ‘Code generation for silicon,” Proc. Tenth ACM Symposium on Principles of Pro-
gramming Languages.

Foster, M. J. and H.-T. Kung [1981]. “Recognize regular languages with programmable building blocks,” in
VLSI-81 (J. P. Gray, ed.), Academic Press, New York, pp. 75-84.

Mead, C. A. and L. A. Conway [1980]. Introduction to VLSI Systems, Addison-Wesley, Reading Mass.

Nagle, A. W., R. Cloutier, and A. C. Parker [1982]. “Synthesis of hardware for the control of digital systems,,,
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems CAD-1:4, pp. 201-212.

Trickey, H. W. {1981]. “Good layouts for pattern recognizers,” IEEE Trans. on Computers C-31:6, pp.
514-520.

Trickey, H. W. [1982]. “Using NFA’s for hardware design,” unpublished memorandum, Stanford Univ.,
Dept. of C. S.

Ullman, J. D. [1982]. “Coinbining state machines with regular expressions for automatic synthesis of VLSI
circuits,” STAN-CS-82-927, Computer Science Dept., Stanford Univ., Stanford, CA.

Ullman, J. D. [1983]. Algorithmic Aspects of VLSI, Computer Science Press, Rockville, Md.

23

