June 1983 Report No. STAN-CS-83-972

Experience with a Regular
Expression Compiler

by

Anna R. Karlin, Howard W. ‘T’rickcy, and Jeffrey D. Ullman

Department of Computer Science

Stanford University
Stanford, CA 94305

EXPERIENCE WIT11 A REGULAR EXPRESSION COMPILER¢t

Anna R. Karlin
Howard W. Trickey
Jeffrey D. Ullman
Stanford Univ., Stanford CA

The language of regular expressions is a uscful one for specifying certain scquential processcs
at a very high level. They allow easy modification of designs for circuits, like controllers, that
are described by patterns of events they must recognize and the responses they must make
to those patterns. This paper discusses the compilation of such expressions into reasonably
compact layouts. The translation of regular expressions into nondeterministic automata by
two diflerent methods is discussed, along with the advantages of each method. A major
part of the compilation problem is selection of good state codes for the nondeterministic
automata; one successful strategy is explained in the paper.

I. The Regular Expression Language

Wc shall give a brief introduction to the language of regular expressions; for more information on this
language and on nondeterministic finite automata, the reader is referred to Hopcroft and Ullman [1979].
Reégular expressions consists of operators and operands. The operands are abstract symbols that represent
events in terms of combinations of wires. Events are assumed to occur at discrete times, so regular expressions

define synchronous systems.

Operators

The operators of our language are:

I. Juxtaposition (no operator) standing for sequencing of events. That is, if regular expressions R and §
each represent a set of events, then RS represents the set of events consisting of an event of R followed

by an cvent of S.

2. The + operator standing for union. Thus, I + S stands for the set of events that are either events of

R or events of S.

3. The unary postfix operator * standing for the closure, or “any number of” operator. Thus, R* stands

for any sequence (including the null scquence, denoted €) of events in R.
In our language wcC also use the shorthand operators:
4. R** stands for one or more occurrences of events in R, that is, RR".
5. R? stands for zero or one occurrence of an cvent in R that is, £ + e.
Example 1: Let a and b be events, ie., abstract symbols of our language. Then ab stands for an a followed

t Rescarch supported by DARPA contract MDA- 80-C-0107 and NSF grant MCS-82-034105.
|

immediately by a 6; ab* stands for an a followed by any number of b’s, ic., {a, ab, abb,. . . }; ab** stands
for{ab,abb, .. } Also, @ + 6 stands for either an @ or a 6, and (a + b)* stands for any sequence of u’s and

b’s, in any order. []

Special Operands

In addition to abstract symbols as operands, we allow two other operands.
I. A dot () is an operand that matches any combination of input wires, ie., it is always seen.
2. The symbol # is never seen, no matter what input wires are on. Although seemingly without purpose,

this symbol is essential when we use state names in our expressions, as described below.

Line Declarations

Our expression language has declarations of five types: lines, symbols, outputs, states, -and subexpressions.
The lines are wire names, from which the symbols are constructed. For example,

line x, y[8]

declares x to be the name of a wire, and y to be the name of a group of eight wires, which may be referred

to individually in symbol definitions as y[1],. . . , ¥[8].

Symbol Declarations

Symbols are the operands of regular expressions mentioned above. Each is defined by a set of wires that

must be on and a set that must be off. Thus,

symbol zap(x, y [1], -v[3])

declares that abstract symbol zap is seen whenever wires x and y[l] are on, and wire y[3] is off. Any other
wires are ignored when deciding whether event zap is seen. Note that, unlike the usual conventions in

automata theory, we allow more than one symbol to be seen at the same time. for example, we could define

symbol zip(y[1], y[2])

and sce both zip and zap at the samec time, if x, y[1], and y[2] arc on, while y(3] is off.

Output Declarations

Output symbols are embedded in the regular expression and represent output wires. The exact rules
determining when an output wire is raised arc complicated, and the details appear in Uliman [1983]. Ilowever,

the gencral idea is that if Ris a regular expression, U is an output symbol and RU a subcxprcssion of the

2

complete regular expression, then wc raise output U immediately alter seeing a sequence of inputs that forms
an event of R. An example will help make the idcas known. If we declare

output u, v

and write the regular expression

aip (zip U + zap U V)*

then after the first event, which must be zip or no output is ever made, we look for any sequence of events
zip and tap. Bach time we see zip, we raise output U, and each time we see zap we raise both U and V. If
at any time we see neither zip nor zap, we not only raise no output, but recognition of the regular expression

has “derailed,” and we never make any more output.

State Declarations

State names arc used like “goto’s” in the regular expression. While the regular expression language is most
appropriately used in situations where there is little need for explicit state transitions, we have found that
the occasional use of such transitions is almost cssential. With this feature, our language has all the power
of deterministic finite automaton languages, like SLIM (Henncssy [1981]), while also offering the expressive

power of regular expressions where that is more appropriate. WC can declare 8 to be a state by the declaration

state s

Then, in the regular expression, there will bc one occurrence of 8 followed by a colon; thus 8 : marks the
“label” position of a, where control transfers whenever it is determined that state 8 is entered. Often, we
find a : preceded by #, the symbol that is never matched, so that control does not accidentally reach state
8 without an explicit transfer to that state.

In the expression there can be any number of occurrences of 8 not followed by a colon; these are the
“goto’s” to state 8. As with output symbols, a state symbol is activated when a match for the preceding
regular expression is recognized. The reader should be reminded that because of the inherent nondetcrminism
in the input recognition process defined by regular expressions, the use of states can bc mere general than
in a deterministic [inite automaton language. For cxamplc, two or more goto’s to dilferent states could be

activated at the same time, causing us to be in both states at once.

Program Structure

The fifth kind of declaration is a subcxprcssion, where an identifier is declared to stand for a regular

cxprcssion. Thus

line x
symbol

zero(-x)
one(x)
output OUT

4

.* one one (one zero? zero?)++ OUT
i

Fig. 1. Bounce filter regular expression.
subexp string = (zip + zap)*

declares string to stand for any sequence of zip’s and zap’s, so

string zip zip string

stands for any sequence of zip’s and zap’s with at least two zip’s in a row.

After all declarations for a program, there is a single semicolon, followed by a single regular expression.
The limitation to one expression is not significant, since there can be any number of output symbol occur-
rences in the expression. We can even use the # operand to simulate a multistate automaton by using an
expression of the form

statel: expressionl
+ # state2: expression2

+ # Staten: exprcssionn

Presumably, each of the expressions has within it one or more state symbols, which cause transitions to

other states.

Example 2: A bounce filter is a device with a single input and single output; the output will gencrally agree

s

with the input, but we wish to ignore small “bounces,” where for a small number of cycles the input changes
and then returns to its original value. For our example, we shall ignore one or two consecutive 0 or 1 inputs
that do not match their surroundings. The regular expression that defines this output as a function of the

input is shown in Fig. 1.

The first line of text declares 2 to be a wire; this wire is the only input wire in this example The next
two lines declare zero and one to be abstract symbols, seen, respectively, when the input wire is off and on.
The fourth line declares OUT to bc an output signal, the only output in this example. ‘Then comes the
obligatory semicolon, and finally the expression itself. The expression says that the output OUT is to be
raised whencver we sce an input pattern that requires the output to be 1. That is, WC may see anything at

all (indicated by the .*), then two one’s and one or more groups represented by the expression

4

line cars, tol, tos
output RESET, IIWYGREEN, IIWYYEL, FARMGRN, FARMYEL
state highway, farm
symbol
carstol(cars, tol)
carsntol(cars, ~tol)
nocars(-cars)
timeup(tol)
notol(-tol)
switch(tos)
wai t(~tos)

highway: (nocars+notol)* IIWYGREEN
carstol RESET
wait* IIWYYEL switch farm RESET

+ # farm: carsntol* FARMCRN
(nocars+timeup) RESET
wait* FARMYEL switch highway RESET

Fig. 2. Traffic light controller.
one zero? zero?

that is to say, each group consists of a 1 followed by up to two optional 0's. The 1 from the first group forms
the third consecutive 1, along with the 1’s that match the two carlier symbols one in the expression. After
these three I's, there cannot be three O’s in a row, no matter how many groups are present, so the output

in response to any input that matches the pattern of the expression given in Fig. 1 should be 1. [J

Example 3: Now, let us see how to write as a regular expression the famous traffic light controller from
Mead and Conway (19801. This problzm involves a light at the crossing of a highway and farm road. A
sensor detects cars waiting on the farm road to cross the highway; its output is the line cars in Fig. 2. Two
timing signals are also used to control the light. The short time out signal, tos in Fig. 2, indicates that
cnough time has elapsed from the last time the RESET output signal was raised that a yellow light may
be turned to red. The long time out, tol in Fig. 2, is used to measure the minimum time, from the last
RESET, that we shall allow the highway to be green, even when cars are waiting on the farm road, and
also to measure the maximum time that we shall allow the farm road to be green, cven if there is a steady

stream of cars on that road.

Let us examine the parts of the expression in detail. Starting from the highway state, the subcxpression

(nocars + notol)*

matches any sequence of events in which either therc are no cars waiting, or the long timeout interval has not

clapscd. As long as that is the case, the highway stays green, as rcliccted by the fact that the HWYGREEN
5

output follows this subcxprcssion. Then if both the cars and tol signal are on, the input no longer matches

(nocars + notol)*

but it matches the longer expression

(nocars + notol)* carstol

[
because the carstol symbol is seen whenever both the wires cars and tol are on. Note that the output and

state symbols, such as HWYGREEN, are ignored when considering subexpressions of the complete expression
that might match the input.

In response to a match of the above expression we emit signal RESET, which starts the counter for
the purpose of measuring the time of the yellow light. Any input that matches the above expression also
matches

(nocars +notol)* carstol wait*

since wait can occur zero times in a match of wait*. Thus, at the same time RESET is signaled, HWYYEL
is also signaled, and the highway light turns yellow, while the farm road remains red.

As long as the short timeout period has not elapsed, wait will continue to be seen, so the above expression
will be matched, and IIWYYEL, but not RESET, will be emitted continuously. Then, when switch, the
abstract symbol that represents the tos wire going on, is seen, we can no longer emit HWYYEL, because the
input seen since we entered the highway state no longer matches the above expression. However,

(nocars + notol)* carstol wait* switch

is matched. Thus, we emit the two following signals, f&rm and RESET. The first takes us to the farm
state, and since that state is followed by subcxpression carsntol®, which is matched by the empty string, we
immediately signal FARMGRN as well. That causes the farm road to become green and the highway red.
The events following the farm state are similar to those just discussed for the highway state, and we shall
omit a detailed description.

‘We might note that although the traflic light is inherently a four-state device, we used only two states,
and in fact, we did so only for convenience; we could do without states altogether. There is really no need
for the farm state, because whenever we enter it, we would “fall through” to it anyway. WC can do without
the highway if we put the closure operator around the whole expression, thus causing the cycle to repeat
indefinitely. The state-free expression for the traffic light is

((nocars + notol)* HWYGREEN carstol RESET
wait* IWYYEL switch RESET
carsntol* FARMG RN (nocars + timeup) RESET
wait* I'A RMY BL switch RESET)*

1.’

Figure 3 outlines the way regular expressions are compiled into PLA’s. The language of nondeterministic
finite automata (NFA’s)is used as an intermediate language We shall not detail the language here, as it is
fairly conventional. The important thing to remember is that the nondeterministic states each correspond
to a single operand of the expression. There are two reasons we prefer to work from the NFA, rather than

converting regular expressions into deterministic automata and using standard state-coding heuristics.

l.

shall discuss the differcnce below. The details of the compiling algorithms involved in translating regular

cxpressions to NFA’s by cither mcthod are found in Trickey [1982] and Ullman [1983].

Regular
Expressions

e ~N

Before Type After Type

Compiler / Compiler

NFA Language

State Coder

d

Logic
Minimizer

{

PLA
Generator

Fig. 3. Outline of RE Compiler.

The Compilation Strategy

Somctimes the regular expression is short, yet the number of states of the deterministic automaton is
enormous. We worked with one example of an expression, that described pattern matching with don’t
care’s, where the regular expression has 72 operands, yet the deterministic automaton has over eight
million states. By coding the NFA directly, we were able to get a PLA with 24 fecedback wires, which

is only one more than the minimum possible for the implementation of an 8,000,000 state machine.

The regular expression gives us important clues to a good state coding. In particular, wC shall see below
that we can always find a PLA implemcntation with one term per operand, i.c., one terrn per NIFA state.
If we converted to a deterministic automaton, we might losc some of the useful information and wind

up with a PLA with more terms, unless we spent a great deal of effort optimizing the coding.

The “before” and “after” type compilers are really implemented by a switch on a single compiler; wc

7

We have experimented with several strategies for the state coder. They all depend on knowing the
conflict matrix of the NFA, i.e, which pairs of states can be on at the same time. We shall have more to say
about these strategies later.

The output of the state coder is a PLLA personality. This personality has the number of its terms reduced
by a program called GRY, written by llemachandra [1982] and basedon algorithms described in Hachtel et

al. [1982]. The output of the minimizer is fed to a PLA generator written by Kevin Karplus.

IIT. The Partition of Regular Expressions

The first thing the regular expression compiler does is break up the given expression into manageable pieces;
we try to have each piece represent about fifty operands. One of the important features of the regular
expression approach to design is that expressions can be broken up into subexpressions that have very little
interaction; in essence the outer expression “calls” the subexpression at exactly one place, and the call can
be represented by a pair of wires carrying a startup signal to the subexpression recognizer and a completion
signal back to the caller. For example, the bounce filter of Example 1 could have its expression broken into

main = .* one one subtt OUT
sub = one zero? zero?

It is important to realize that the circuit recognizing the subcxpression can receive start signals more
than once, and may even be working on more than one “call” at a time, but this activity is a correct
implcmentation of regular expressions. We should also be aware that if there are state “goto’s” connecting a
subexpression to its environment, then more than one pair of wires will be necessary for the interconnection.

Before translating the subcxpressions into NFA’s, the compiler does a certain amount of algebraic man-
ipulation of the subexpression to reduce the number of NFA states needed, if possible. For example, we left-

and right-factor expressions, so

abc + ade

becomes

a(b + d)c

The motivation for splitting the expression into small pieces is that the PLA implcmentation degrades
in both speed and in area used per regular expression operand, as the number of operands grows. That is,
the area of a PLA for an n-operand expression could bc proportional to n%. The reason WC do not therefore
break the expression into PLA’s of size 1 is that the PLA cost also has an overhead term. The result is
that to get the lowest ratio of operands to PLA area we should uSC subexpressions of about 15-25 operands

for each PLA. lowever, because of the wasted area involved in putting many PLA’s togcther, we prefer

8

somewhat more than the optimal number of operands per PLA to reduce the overbcad due to PLA’s that
don’t quite lit together.

A previous incarnation of the compiler attempted to translate the expression directly to a layout using
an algorithm of Floyd and Ullman [1982] that requires area that grows only proportionally to the number
of operands. However, the network-of-I’LA’s implementation was found superior in practice. The reader
should also be aware of another approach to laying out regular expression recognizers in linear area due to

Kung and Foster [1982], which we have not tried.

Another style of implementation is described in Ullman [1982], where regular expressions were translated
into the lgen logic language (Johnson [1983]) and thus implemented as Weinbcrger arrays. The area of such
implementations was found to be comparable to the PLA implementation. Theoretically we might expect
the Weinberger array approach to use less area than PLA’s, but to form circuits of very large aspect ratio
as the size of the expressions compiled grows.

The reader is also referred to Trickey [1981] for a description of some experiments with the systematic
exploration of the different ways a regular expression could bc partitioned into subexpressions, and the sub-
expressions converted to PLA’s that would fit together with little wasted area: It was found that significantly
improved layouts could be obtained, but the computation time grew exponentially with expression size. That
makes it doubtful the method could be applied to expressions with more than a few hundred operands, unless

some way of focussing the search for partitions’were found.

IV. Before and After NFA Constructions

Now, let us return to the two methods whereby NFA’s arc constructed from regular expressions. We begin .

either process by identifying each operand with a state.

Example 4: Consider the bounce filter of Example 2. We may number the operands of the expression from

left to right as follows.

.1* oney onez (one, zerog? zerog!)t+ OUT;

Wc may then associate with operand ¢ the state Nj.

In Fig. 4 we sce what looks like a transition diagram for a finite automaton. It actually represents the
successor relationship among the states or operands, i.e., which operands can follow which in the regular
expression. For example, there is an arc from Ny to N4 because after seeing a 0 corresponding to zeros, we
could begin another group consisting of -a 1 and up to two O’s, and such a group rnust begin with a 1 that

matches oney. W also have an arc from Ny to Ng, because after matching zeros wC could sec another 0

9

¢) 7R

start =pNp——pp Ny=———®» Nj—Pp Ny —P N5 —» Nz —» N;
' —~

Fig. 4. Successor relation for bounce filter.
that matched zerog. Finally, there is an arc from Ng to NNy because after seeing a match for zeros we have
seen an input that matches the subexpression prior to the OUT output and therefore must make the OUT

signal. See Ullman [1983] for the details on the algorithm used to compute the successor function. O

Whether we usC the before or the after interpretation of states, we can see transition diagrams like Fig.
4 as representing places that can be “active,” which WC might represent by putting a marker on a subset of
the nodes. When we use the before interpretation, a marker at state Ny tells us we are ready to recognize
the operand corresponding to that state. Thus, if state N of Fig. 4 is active at a given time unit, it will
activate for the next time unit the states N4, Ng, and Ny, provided an input O is seen. If the input is not 0,
those states will not be activated by Ng. Nz will not be active at the next time unit, unless it is activated

by a transition from Ny, its only predecessor.

Figure 5(a) shows the before interpretation of the NFA for the bounce filter. Each transition in Fig. 4 is
made on the input that corresponds to the state at the tail of the transition. Those states that correspond to
the operands that could match the first input seen, namely N; and Np, are designated initial. A transition

into N7 causes the associated output, OUT, to be raised.

In the after interpretation of NFA’s, each state represents a situation where we have already scen the
corresponding operand of the regular expression and are ready to recognize the symbol corresponding to
any of its successor states. Figure 5(b)shows the after interpretation of the bounce filter. In general, each
transition is labeled by the symbol corresponding to the state cntcred by the transition, while in the before
interpretation the samec transition is cxccutcd when the input matches the operand of the state that the
transition leaves. In the after interpretation, the start is a state itself, with transitions to its successors on
the appropriate inputs, as shown in Fig. 5(b). Finally, states associated with output symbols are no longer
states in any uscful scnse. Rather, transitions into such states, shown in Fig. 5(b) as associated with ¢,
mean that the states from which such a transition is made are to raisc that oulput signal as soon as they

themseclves arc cntered.

. 1
start-é\Nl———;Ng——b Ny —> N4—§N5—'—’NS—QN7

O 1 1 1 €

start ——p N; —> Ny —P N3—P> N, —>N; —_— Ns—') N,

N

1

(b) After method interpretation

Fig. 5. Interpretations of bounce filter NTFA.

Comparison of Methods

Neither method is uniformly superior to the other. The advantage of the before method is that when we
convert the NFA to a PLA, we need only one term per state (plus extra terms corresponding to transitions
from the initial states when the start signal is raised). To see why, we have t¢ understand that each NFA
state is coded by turning on a subset of the feedback wires of the PLA; we shall discuss the method of
selecting the representation of each state shortly. In the before interpretation, we need for each state N a
term that checks

I. The code bits representing N were turned on at the previous time unit, and

2. The input corresponding to N is seen.

This term must turn on all the wires in the or-plane that are nceded to rcpresent any of the successors of
state N. It may be unclear at the moment how one represents NFA states (which may be on simultaneously
in various combinations), unambiguously by turning on sets of bits; we shall cover the method in the next

section.

Example 5: Figure G(a) shows the PLA constructed from Fig. 5(a) if we code states Ny through N; with a
single wire cach. (This turns out to bc as good as we can do for the bounce filter NFA.) The left and right

11

22122222 1 1.00O0O00O0
21212222 00 10O0O0O0
21221222 000T1O0O0O0
21222122 000 T1T1T1'1
20222212 000T1O0T1
202 22 221 000T1O0O0°1
12222222 1 1.00O0O00O0
11222222 0010O0O0O0
. XN1N2N3N4N5N6 . N1N2N3N4N5N6N7
(a) Before method PLA.
12222222 1 00 0O0O0O
11222222 01 00O0O0O0
22122222 1 00 0O0O0O
211222 22 01 00O0O0O0
21212222 0010O0O0O0
21221222 000T1O0O0°1
21222122 000T1O0O0°1
20222122 000O0T1T1'1
21222212 000 T1O0O0°1
20222212 000O0O0OT 1
21222221 000 T1O0O0°1
S XN, Ny N3 N{Nj5Ng N1N2N3N4N5N6N7

(b) After method PLA
Fig. 6. Before and after PLA’s for bounce filter.
groups are the and- and or-planes. A 0 or 1 in the and-plane means that the wire represented by the column
must be off or on, respectively, for the term corresponding to the row to be seen. A 2 in the and-plane means
“don’t care.” In the or-plane, 1’s represent taps, so each column is the logical “or” of the terms with I's in

that column. Note that Ny, the output, need not be fed back.

The first six rows are the terms for states Nj through Ng. For example, row one says that if we are in
Nj, and the input “dot” is seen (i.e., the input may be O or 1, represented by the 2, or “don’t care, in the
input column, X), we turn on Nj and N for the next time unit. Row two says that if state Ng is on, and

the input is 1, turn on N3 for the next time unit.

The last two rows duplicate rows one and two, but with the start signal S replacing the wires for Ny
and Nj, respectively, in the term’s conditions. Thus, these last two wires express the fact that Ny and Na

are on initially. Cl

If we use the after interpretation of NFA’'s then we must create for each state N, and each symbol a
labeling a transition out of that state, a‘term to check that the stntc is on and that the input is scen; if so,

the successors of N on input a arc turned on in the or-plane for the next time unit. If successor M has an

12

c-transition to an output signal, then those terms that turn on M in the or-plane also turn on that output

wire.

Example 6: Figure 6(b) shows the after method PLA for the bounce filter. For example, rows three and
four represent the transitions from Ny on “dot” and 1 to states Ny and Ng, respectively. Note that since Ny,
Nj, and Ng have c-transitions to N7 in Fig. 5(b), the last five rows of Fig. G(b), which represent transitions
into those states, also turn on the output wire, which is Nj. O

If we compare Examples 5 and 6 we might get the impression that the before method is superior to the
after; each uses the same number of columns, and the after method uses more rows. While it is typical that
the before method saves rows, it is often true that the after method saves columns because it allows better
NFA state codes. It just happens that for the bounce filter, no better state code is possible with the after

method.

V. Selecting NFA State Codes

We shall now take up the matter of how the compiler selects codes for states of an NFA. We first discuss
the notion of conflicting states, that is, pairs of states that can be on at the same time. We show how the
conflict information determines the permissible state codes and we discuss a particular method for finding

legal codes.

Conflicting Symbols and States

Before discussing conflicting states, we need to define conflicting input symbols. Symbols a and b conflict
if both can be on at the same time, i.e., there is no wire £ that is on in the definition of a and off in the
definition of b, or vice versa.

If we are using the before interpretation of an NFA, then we usC the following two rules to compute
pairs of states that conflict. Rule (1) initializes the set of conflicts; we then add conflicting pairs by rule (2)
until no more can be added.

1. Each state conflicts with itself. All initial states conflict with one another.

2. Suppose N and A4 are states that conflict, and they are associated with conflicting symbols a and b.
(Note N = A4 is allowed.) Then for each successor P of N and cach successor @ of M, P and @
conflict.

There are similar rules that can be applied if we use the after interpretation of NFA's; they are:

I. Each state conflicts with itsclf. If N and M are initial states that are ‘associated with conllicting symbols,

then N and M conllict.

a

PN

N,
)
Fig. 7. Example NFA.
2. Suppose N and M conflict, P is a successor of N and Q is a successor of M. Also suppose that P is
associated with symbol @ and Q with b, and a and b conflict. Then P and Q conflict.
Note that the set of conflicts under the after interpretation is always a subset of those found under

the before interpretation. It is this effect that explains why we often get better state codes with the after

method.

Example 7: Suppose we declare symbols by

line x, y

symbol a(-x, -y), b(x), c(y)
Then b and c conflict. However, a and b do not conflict, because of wire #, and a and ¢ do not conflict
because of wire y.

Consider the NFA shown in Fig. 7. In the before interpretation, (Nl, Nz) is a conflicting pair because
both are initial. Next, by rule (2) we find that (N2, Ng)iS conflicting because they are both successors of
the conflicting “pair” (Ng, Ng). Then, we find (Nl, N3)is a conflicting pair because they are, respectively,
successors of the states N3 and Ng, which are conflicting and associated with conflicting symbols.

In the after interpretation, rule (1) yields no nontrivial conflicting p-airs, because the start states Ny and
N, are associated with nonconflicting symbols. However, the successors Ng and Nj of the trivial conflict
between Ng and itself are associated with conflicting symbols, so (Ng, N3)is a nontrivial conflicting pair.

There are no other nontrivial conflicts in the after interpretation. O

Legal Codes for NFA States

It is useful to think of the conflict information as a conflict graph, with states for nodes and edges between
pairs of states that conflict. The compiler makes the simplifying assumption that any cliquet in the conflict

graph represents a set of states that can all bc on at the same time. Surely if some set of states can all be

t A clique is a sct of nodes with an cdge between any two nodes in the set. The clique is maxinal if no node outside the clique
has an edge to cach member of the clique.

14

on at once, then each pair of states in the set conllicts, but the converse is not true; there could be three
different input sequences that lead, respectively, to states M and N, to M and P, and to N and P, yet no

one input sequence turns on M, N, and P together.

Our decision to consider only conflicts between pairs, rather than all subsets, was so that the amount
of information handled by the compiler would grow only quadratically with the regular expression size, not
exponentially as it would if we considered conflicts among arbitrary sets of states. The assumption that all
cliques represent conflicting sets is conservative, in the sense that it may prevent us from taking advantage

of some good codes for states but will not lead us into an error where we design a malfunctioning PLA.

When choosing codes for states, we make the following hypothesis, which is oriented toward the PLA
implementation of NFA’s. We suppose that associated with each state is a vector of k O’s, I's, and 2’s, with
2 standing for “don’t care.” Let C(N, i) be the i** position in the vector for state N. If state N is to be on,
then we turn on the $t* feedback bit whenever C(N, t) = 1. If C(N, £) is 0 or 2, we do not turn on the §th

bit because of N, although it could be turned on because of some other state.

In the and-plane, when we must recognize that we are in state N, perhaps among others, we examine
the feedback bits. If C(N, §) = 1, we check that the ¢** feedback bit is 1; if C(N,i) = 0, we check that it
is 0, and if C(N, i) = 2, we do not check the ith feedback bit. We must consider under what conditions the
code C allows us to interpret all possible combinations of feedback bits correctly. There are two conditions

that together ensure that we shall make the proper infcrences from the feedback bits.

1. When state N is on, we detect N. If C(N, ¢} = 2, we do not check bit 1, so there are no constraints on
t as far as N is concerned. If C{N, i) = 1, and N is on, we know bit ¢ will be turned on, so the test for
N will be met at bit 1. Finally, if C(N, 1) = 0, then we must be assured that no other state M that
conflicts with N, and could therefore be on at the same time as N, has C(M, ¢) = 1. For if there were

such an M, then we could find bit £ equal to 1, and fail to detect N even though it is on.

2. If N is detected, then N is on. Here, we must check that there is no (not necessarily maximal) clique
{Mj,..., M, } that does not contain N but can forge the code for N. That is, for no such clique is it

the case that for all i, 1 < i < k:

a) If C(N,i) = 0, then for all j, C(Mj,z) # 1.

b) If C(N, i) = 1, then there is some j for which C(Mj, 1) = 1.

If no clique satisfies (a) and (b), then the code C satisfies condition (2).

Example 8: Figure 8 shows a conflict graph. A possible 3-bit code for this set of states is:

15

Fig. 8. Example conflict graph.

1 2 3

—_ O = N

2
0
1
1

oNZX

To check condition (1) we have only to examine the 0’s. For example, C(IN, 2) = 0, but there is no other
state conflicting with N that has 1 in its second bit. That is, only M conflicts with N, but C(M, 2) = 2.
We must also check condition (2). For example, it looks like N and P together could forge Q, but

{ N, P} is not a clique, because N and P do not conflict. (J

Simple Coding Methods

The first coding method implemented, which we call the greedy method, is to look for maximal independent
sets in the conflict graph. An independent set is a sct of nodes no two of which are connected by an edge. We
may partition the nodes into maximal independent sets by starting with any node and adding nodes that do
not conflict with any of the nodes previously added, until no more can be added. The result is one maximal
independent set. We then remove the nodes of this set from the graph and start with another nodeto grow
another independent set, and so on. This method has been used for similar purposes in several other works,
such as Haskin [1980] and Nagle, Cloutier, and Parker [1982].

Having obtained a partition into independent sets, we may binary code the states in each set, omitting
the all-zero code, so a set of m states can be coded with [logo(m + 1)] bits. Each of the independent sets
uses bits of its own in the state code, and the code for each state has don’t carc’s in the bits belonging to
the independent sets other than its own. This coding method works because the only possible combinations
of states have at most one from each independent set. The bits for each set tell us which, if any, state from
that set is on. By not using the all-zero code for any state, we can detect the case where no member of an

independent set is on.

Example 9: Consider the conflict graph of Fig. 9. WcC might start growing an independent set with state

16

N. We may add P and Q, because neither conflicts with N or with each other. However, we cannot add M
because it conflicts with N. Thus, we start a second indcpendent set with M, and the partition of Fig. 8 is
{{N,P,Q},{M}}

The first of these sets requires two bits and the second one bit. The resulting state code is that given

in Example 8. O

The Clique Compatability Class Method

A second coding method tried is described in Ullman [1982]. It gave better codes than the greedy method
in some cases. We shall omit a description of that method and instead describe the most recent and most
successful coding method. This approach partitions the states into maximal clique compatibility classes
(MCCC’s). An MCCC consists of a collection of cliques, such that no node of one clique is connected to a
node of another clique by an edge of the conflict graph.

We grow MCCC’s by starting with maximal independent sets and growing them by adjoining nodes
_whenever possible. We can adjoin node N to clique Q if N is adjacent to every node in Q but N is adjacent
to no node in any of the other cliques in the MCCC. After partitioning the conflict graph into MCCC’s, we
code each MCCC in a manner to bc described. We then find the overall state code by using a separate set
of bits for each MCCC, just as we did for independent sets in the greedy algorithm. Each state has its code

in the bits of its own MCCC and don’t care’s elsewhere.

Coding MCCC’s

The basic idea is that we try to use the same code bits for as many cliques in the MCCC as we can. We start
off coding each clique individually, and then try to combine the codes for different cliques. As the states of
one clique can be on or off in any combination, there is nothing better than to use a one-hot code, i.e., use as
many bits as there are states in the clique, with each state given a code consisting of a 1 in a unique position
and 2’s (don’t care) elsewhere.
Then, we combine cliques, in pairs, until we have combined all pairs. The priorities for which pair to
combine are as follows.
l.If there are two cliques or sets of cliques that have codes with the same number of bits, combine them.
However, that number of bits must be at least two, i.c., we do not apply step (1) to a pair of cliques
consisting of one state each. If there are two or more pairs that may be combined, pick a pair that have
the shortest codes.

2. If no sets of cliques may be combined by rule (l), find the two cliques or sets of cliques with the shortest

17

G

%

H

Fig. 9. An MCCC.

codes (including codes of one bit), and combine them. However, do not choose a singleton clique unless

the number of singleton cliques is at least as great as the number of other sets of cliques

remaining.

The combination of two sets of cliques may have the side effect of combining with them a singleton
clique, -as we shall see. That is the reason we do not wish to pick singleton cliques for combination unless
there are so many that they cannot all be consumed in the combination of other cliques. In general, the
rules for combining the codes for two sets of cliques are the following.

1. If one code is shorter than the other, pad the shorter out with leading O’s until they are of equal length.

2. Place a 0 in front of all the codes in one set and a 1 in front of all the codes of the other set.

3. If there are remaining cliques consisting 6(' a single state, choose onec and give it the code 10---0. It is
easy to prove by induction on the number of cliques combined that we never produce an all-zero’s codé.

Thus, 10- --0 will not be the same as the code of any other state in the set.

Example 10: Consider the MCCC shown in Fig. 9, where there are two singleton cliques, two doubletons,

and one clique of size three. The initial codes for the cliques are the following.

A | E 21
F 12
B 1
G 221
c 21 IT 212
D 12 I 122

Note that the bits for different cliques do not yet bear any rclation to each other, so there is nothing wrong
with assigning the code 1 to both A and B, for example.

According to rule (1), our first task is to combine cliques CD and EF, since they are not singletons,
but have the same code length. Let us say we put 0 in front of the codes for C' and D and 1 in front of the
codes for E and F. We then add a singleton, say B, giving it the code 100. The result is a set of five states

with the following code:

B 100
c 021
D 012
E 121
F 112

Now, the set BCDEF and the clique GHI have the same length code, so we combine them, consuming

the singleton A in the process. The resulting code is:

A 1000 F 0112
B 0100 G 1221
c 0021 H 1212
D 0012 1 1122
E 0121

VI. Evaluation of the Compiler

Wc believe that the principal reason to express designs in the regular expression language is its ability to
accept descriptions of the patterns it must recognize and the responses it must make, in a flexible manner.
For example, additional patterns may be added to the description of a controller, and the compiler will
produce the necessary modifications without the user having to worry about the possibility of interactions
betwcen the new patterns and the old ones. Design systems based on deterministic automata do not have
this robustness.

However, it is also important that the design produced by the compiler be of good quality. We have
run several test cases, and these indicate that the compiler performs well, in some cases better than obvious

hand designs of PLA’s. We shall mention some of these trials here.

The Bounce Filter

Here we do not do well; a PLA with about half the area of that of Fig. 6(a) can be designed.

The Traffie Light Controller

Using either the before or after method, the compiler comes up with essentially the same PLA as appears in
Mead and Conway [1980]. The only difference is that the compiler introduces an initialization signal, which

is not really needed for the perpetually running traffic light.

The Pattern Matcher

We alluded above to a regular expression with 72 operands and an 8,000,000 state deterministic automaton.

19

line input{2]
symbol
zero{-input(1])
symbol one{-input|2])
output MISMATCH

f*(
(..

.. (- (zero .* one + one .* zero) +

(zero .* one + one .* zero) .)

+

(- (zero .* one + one .* zero) +
(zero .* one + one .* zero)) . .

)

+

(- - (- (zero .* one + one .* zero) +
(zero .* one + one .* zero) .)

+

(. (zero .* one + one .* zero) +
(zero .* one + one .* zero)) . .

)

) MISMATCH

Fig. 10. Pattern matching regular expression.
This expression is shown in Fig. 10. The problem is to signal mismatches between the first eight symbols read
and the last eight read. Input 1 is represented by turning input [1] on and input[?] off; input 0 is represented
by the opposite, and don’t care, which matches anything, is represented by turning both input wires on. The
expression appears complicated, but the idea is that a mismatch between the first and last eight symbols can
be expressed recursively as either a mismatch between the first four and the next-to-last four; or a mismatch
between the second four and the last four; these mismatches can be expressed as mismatches of two pairs,

and so on.

An obvious hand implementation of a PLA was attempted, using the straightforward idea that each of
the symbols to be remembered, the first eight and the last seven, would be coded by two bits, for 0, 1, and
don’t care. This approach requires 16 fcedback wires for the first eight inputs, 14 more to remember the
most recent seven inputs, and four fecdback wires to represent a counter that counts up to eight, to tell the
PLA whether to remember its current input as one of the first eight symbols. As for terms of the PLA, we
need 16 to feed back the first eight inputs, 14 more to feed back and shift the seven most recent inputs,
16 to load the first eight symbols originally, 32 to detect mismatches, and eight to implement the counter.

Thus, the hand design uses 34 feedback wires and 86 terms.

In comparison, using the before method and the greedy state coder, wC require 28 feedback wires and 62

20

line x[3]
symbol
inO(x[1] x(2])
in1(x[2] -x|[1])
badin(x[1] x[2])
ack(x[3])
noin(-x[1] —x[2])
noack(-x[3])
output OUTA, OUTB, OUTC, ERROR
state statea, stateb, statec
subexp somein = in0 + inl + badin
subexp waitin = noin + badin
subexp allbut0l = ack + badin
)
waitin* (
allbut01 ERROR +
in0 statea +
inl stateb
)
+ # statea: noack* OUTA (
somein ERROR +
ack waitin* (
allbut0l ERROR +
in0 stateb +
inl statec
)
)
+ # stateb: noack* OUTB (
somein ERROR +
ack waitin* (
allbut0l ERROR +
in0 statec +
inl statea
)
)
+ # statec: noack* OUTC (
somein ERROR +
ack waitin* (
. allbut0l ERROR +
in0 statea +
inl stateb

)

Fig. 11. Regular cxpression for transmitter.
terms. When we implemented the MCCC method of state coding, this number was reduced to 24 feedback
wires, which is only one more than the theoretical minimum. This problem is an example where the before
method vyields significantly better results than the after method, as well as significantly better results than

the obvious hand design.

21

And Or
Cols. Cols. Terms Area

Hand-Unoptimized 13 7 29 580
Hand-Optimized 13 7 23 460
Before Compiler 17 11 23 644

After Compiler 13 7 25 500

Fig. 12. PLA’s for communication protocol.

A Communication Protocol

We designed the transmitter portion of the protocol for handling lost bits discussed in Aho, Ullman, and
Yannakakis [1979]. Briefly, that transmitter has two inputs, z[1] and z[2] telling it to send a 0 or 1 down the
channel, while :c[3] is another input wire, used as an acknowledgement signal. The protocol works because
the transmitter sends one of three signals, a, b, and ¢, which we may view as arranged in a circle. To send a
0, the transmitter steps one around the circle and to send 1, it steps twice. States statea, stateb, and stalec
are the states in which the transmitter is trying to send a, b, and c, respectively. We assume that signals

are not mutated, so any signal acknowledged must be the correct one. The regular expression program is

shown in Fig. 11.

In Fig. 12 we see the results of hand and mechanical generation of PLA’s for the transmitter. A
straightforward hand design was optimized by GRY, to reduce the number of its terms. The results of the
before and after methods are shown after optimization by GRY. We should be aware that when we count
columns in the and-plane, we count one column if a signal is needed either true or complemented, but not
both; if needed both ways we count two columns. This method of counting is realistic, provided the PLA

generator used does not force all wires to become true and complemented pairs in the and-plane.

The “area” of the PLA in Fig. 12 is the product of rows and total columns, which is not precisely

accurate, but serves to measure approximately the area actually used by the PLA.

The reader should note that the results shown in Fig. 12 for the compiler are the result of the greedy
algorithm, not the MCCC algorithm. In both the before and after interpretations, the greedy method
achieves the smallest possible number of feedback wires. The MCCC algorithm uses the same number of
bits to code the states as the greedy algorithm does, i.e., the number of feedback wires is the same, but
becausc of differences in the coding used, the number of terms after optimization was slightly larger when
the MCCC coder was used.

22

References

Aho, A. V., J. D. Ullman, and M. Yannakakis [1979]. “Modeling communications protocols by automata,,,
Proc. Twentieth Annual ACM Symposium on the Theory of Computing, pp. 267-273.

Floyd, R. W. and J. D. Ullman [1982]. “The compilation of regular expressions into integrated circuits,” J.
ACM 29:2, pp. 603-622.

Brayton, R. K., G. D. Hachtel, L. A. Hemachandra, A. R. Newton, and A. L. M. Sangiovanni-Vincentelli
[1982]). “A comparison of logic minimization strategies using EXPRESSO: an APL program package for
partitioned logic minimizalization,” Proc. IEEE Intl. Conf. on Circuits and Computers.

Haskin, R. L. [1980]. “Hardware for searching very large text databases,” Ph. D. Thesis, Dept. of Computer
Science, Univ. of Illinois, Urbana, Il

Hemachandra, L. A. [1982]. “GRY: a PLA minimizer,,, unpublished memorandum, Dept. of Computer
Science, Stanford Univ., Stanford, CA.

Hennessy, J. L. [1981]. “SLIM: a simulation and implementation language for VLSI microcode,” LAMBDA,
April, 1981, pp. 20-28.

Hopcroft, J. E. and J. D. Ullman [1979]. Introduction to automata theory, languages, and computation,
Addison-Wesley, Reading Mass.

Johnson, S. C. [1983]. ‘Code generation for silicon,” Proc. Tenth ACM Symposium on Principles of Pro-
gramming Languages.

Foster, M. J. and H.-T. Kung [1981]. “Recognize regular languages with programmable building blocks,” in
VLSI-81 (J. P. Gray, ed.), Academic Press, New York, pp. 75-84.

Mead, C. A. and L. A. Conway [1980]. Introduction to VLSI Systems, Addison-Wesley, Reading Mass.

Nagle, A. W., R. Cloutier, and A. C. Parker [1982]. “Synthesis of hardware for the control of digital systems,,,
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems CAD-1:4, pp. 201-212.

Trickey, H. W. [1981]. “Good layouts for pattern recognizers,” IEEE Trans. on Computers C-31:6, pp.
514-520.

Trickey, H. W. [1982]. “Using NFA’s for hardware design,” unpublished memorandum, Stanford Univ.,
Dept. of C. S.

Ullman, J. D. [1982]. “Coinbining state machines with regular expressions for automatic synthesis of VLSI
circuits,” STAN-CS-82-927, Computer Science Dept., Stanford Univ., Stanford, CA.

Ullman, J. D. [1983]. Algorithmic Aspects of VLSI, Computer Science Press, Rockville, Md.

23

