May 1983 Report No. STAN-CS-83-966

A Formal Approach to Lettershape
Description for Type Design

by

Pijush K.Ghoshand Charles A. Bigclow

Department of Computer Science

Stanford University
Stanford, CA 94305

Computer Science Department
Report No.STAN-CS-83-966

A Formal Approach to
Lettershape Description
For Type Design

PIJUSH K. GHOSH
CHARLES A. BIGELOW

Research sponsored by

National Science Foundation IST -8201926
United Nations Development Program
Systems Development Foundation

COMPUTER SCIENCE DEPARTMENT
Stanford University

}@oo\]cr\u-hwl\)p-x

Contents

Introduction

Albrecht Durer and a Disobedient Student
Parameterization: A Serious Problem
Syntactic Description of Letterforms
Stroke Analysis for Lettershapes
Lettershape Description Language

A Phrase-Structured Grammar for LDL
Mathematics for Decomposition
References

Appendix A

19
21
25
31
34
40

Introduction

To an octopus, a triangle is visually equal to a diamond but not to a square(4l]. Very
often we fail to distinguish x (times) from x (letter), U (union symbol in set theory)
from u (letter), v (logical or symbol for binary operation) from v (letter), or the Greek
¢ (phi) from the slashed zero @ (empty set symbol). There are thousands of such simple
geometrical shapes which are visually equivalent and it is hard to discriminate them
from each other. We, therefore, use adjectival descriptors of shape. For example, we
describe u as the ‘union symbol’ and u as the ‘small letter u’. However, this adjectival
descriptor method is often misleading, since almost no word has a precise meaning in
any language. Consider, for example, the word tree. The word tree should convey to
your mind some sort of woody structure with a trunk, limbs, twigs, leaves etc. Now
let us imagine this tree as it undergoes a series of changes: First a young man comes
along and cuts its initials in the trunk. Is the object, our “tree”, still a tree? Second,
a strong wind blows of some of its main branches. Do we still have a “tree”? Finally,
the owner starts to remove it by whittling away at the twigs, sawing off the limbs,
chopping down the trunk, digging up the stump, and converting the entire original
body of material into firewood and trash. Now the question is, at what precise instant
did the “tree” cease to be a tree? The point is that if the word tree has a precise
meaning, then there must be an answer to this last question. One can carry out a
similar process by gradually extending the leftmost stem of the letter N and finally
generates the letter h in one hundred steps. Again a similar question is, at what
precise instant did the letter N become the letter h? Hence the words used to refer to
geometrical shapes, pictures or physical objects can not be exact in their meaning.

In this report, we are primarily concerned with lettershapes which are sufficiently
regular, deviating only in small ways from truly 2-D geometric shapes, and which
have only two grey levels — black and white. The main question is, how can we
specify a lettershape. Can a lettershape be specified, or can it be only shown? By
“specify” we mean, describe characteristics in such a way that the important pictorial
aspects of the original can be recovered in some resonably short amount of time. To
put it another way, is it possible to have a notational system for lettershapes, a
way to write them symbolically to avoid both ambiguity and obscurity, in the way
that we have notations to write mathematical relations, electronic circuits, or music?
The problem has become acute now that number-crunching machines have started
producing thousands of lettershapes, and seem to give artists an infinite freedom in

lettering design.

The answer is by no means obvious, and a complex hybrid investigation is nec-
essary for this purpose. This should include psychologists concerned with determining
how humans extract information from visual stimuli, as well as mathematicians and
computer scientists concerned with developing mathematical models and algorithms
to supply to the machines similar information for generating visual images.

Most of the time, scientists approach phenomena analytically. A traditional
analytical approach would dissect a form and measure its components, on the as-
sumption that synthesizing the measure would reconstitute the form. The Gestalt
psychologists, however, resisted this analytical quantification. The Gestaltists argued
that the form itself, and not its parts, is the proper unit of observation. The whole
form in the mind is little more than a mental compound made up of its constituent
elements. But the Gestalt emphasis upon wholeness as figural unity had at least one
undesirable consequence: their philosophy tended to promote the mistaken idea that
because our perceptual worlds are made up of objects, our perceptual apparatus deals
with objects only as whole things. On the contrary, we may now know that one
of the major constructive operations our visual apparatus performs is to build up a
“picture” of a visual scene out of a series of glances at different parts or aspects of the
scene[7]. In the recent past, many perceptual psychologists have turned to analyzing
the constituents of form perception, but with a vocabulary that tries to incorporate
Gestalt discoveries.

This report is designed to explore some analytic means of specifying lettershapes.
Computer representation and analysis of lettershape have made use of two diametri-
cally different approaches, one representing a shape by its boundary, the other by its
skeleton or medial axis. Generally speaking, the boundary representation is conceptu-
ally simpler to the designer, but the skeletal representation provides more insight into
the “piecedness” of the shape. Donald Knuth’s METAFONT is one of the sophisticated
lettering design system which has basically adopted the medial axis approach. More-
over, METAFONT system has introduced the idea of metafont-description of a letter,
i.e., to give a rigorous definition of the shape of a letter in such a way that many
styles are obtained from a single definition by changing only a few user-defined pa-
rameters. That is why we have considered METAFONT system as our starting point and
have shown how we can arrive at the definition of a formal language for specifying
lettershapes. We have also introduced a simple mathematical model for decomposing
a letter into its constituent elements.

This work is a pre-preliminary step to spectfy a letterform. The unkind fact

2

is that, every shape is contert-sensitive. If any type design system allows too much
freedom, it creates more problems. Each alphabet has characteristic rules that limit
the formal possibilities, though not, of course, the creativity of the artist working
within the tradition. The creative possibilities of, say, English poetry are on the one
hand bounded by the structure of the language, but on the other hand appear infinite
for the speakers of the language. Something similar seems to be true for any formal
language for type design.

Our hope is that a factor analytic approach may enable us to identify a small
set of geometric attributes that predict how a designer will judge, and, by inference,
perceive the shapes. These would then be taken to be the “visual alphabet” of

letterform generation.

2
Albrecht Durer and A Disobedient Student

In his treatise Underweysung der Messung mit dem Zirckel und Richtscheyt Albrecht
Durer gives instructions for the geometric design of the Roman capital letters[13]. He
states each step of the constructions clearly and unambiguously. We would like to
present his instruction steps for designing the letter ‘A .

‘Draw for each a square of uniform size, in which the letter is to contained./
But when you draw in it the heavier limb of the letter, make this of the width
of a tenth part of the square,/ and the lighter a third as wide as the heavier:
and follow this rule for all letters of the Alphabet.

First make an A after this fashion : Indicate the angles of the square by the
letters a, b, ¢, d : then divide the square by two lines bisecting one another at
right angles- the vertical e,f and the horizontal gh :/ then, in the lower line,
take two points i and k, distant respectively one tenth of the space c,d from the
points ¢ and d:/ then, from the point i draw upwords to the top of the square
the lighter limb; and thence downwards the heavier limb, so that the outer edge
of both may touch, respectively the points i and k:/ then let the triangle be left
between the limbs, and the point e be fixed at top in the middle of the letter,
and next join both limbs beneath the horizontal line, and let this limb be a third
as broad as the heavier limb./

Now let the arc of a circle, applied to the top of the outside edge of the
heavier limb, project beyond the square. Then cut off the top of the letter with
a serpentine or curving line, so that the concavity decline towards the lighter
limb,/ and prolong acutely either limb of the letter at the bottom of either side,
so as to meet the angles of the square at ¢ and d: this you shall make with the
arc of a circle, whose semi-diameter is one seventh of the side of the square./

..Moreover, this same letter A you may cut off at top with the side of the
square, and then produce to a fine point in either direction, as you did the feet
below.../

Likewise the same A you may draw in yet another manner- that is, pointed
at top./

And note likewise that in exactly the same fashion in which this letter is

acutely prolonged at top and bottom, are the other letters to be so prolonged
which are drawn with oblique lines, as V, X, Y, although a few changes may be

necessary.. .

We have here subjoined an engraving of this letter.’ (Fig.l)

FIGURE 1

-t

Many lettering artists regard this treatise (as well as other treatises of the same
kind) as of little practical value, since the rules of constructions are constrained by ar-
tistically worthless and inflexible geometrical calculations. To make the constructions

analytically more flexible and hopefully artistically more useful, we may modify each
and every instruction step (separated by /) of Durer and observe the consequences.

The new instruction steps could look like this:

1. The basic letter need not be square; it could be a rectangle, or a rhombus or
even a parallelogram. When we design letters with the help of a computer, it
is better to parameterize the grid, so that by choosing appropriate values of
the parameters we are able to produce all kinds of grids, as described above.

2. The width of the heavier stem need not be exactly 1/10th of the side of the
square. This relationship may also be a variable parameter.

3. The lighter stem may also be treated as a variable parameter in the same
way.

We can proceeed in this fashion, and ultimately find that we have described
a letter-shape in terms of a large number of parameters whose values can be varied
at will to produce different forms of the letter. This is equivalent to a METAFONT
description of a letter.

Donald Knuth in his article The Concept of Metafont {28] describes Meta-font
as:
«

a schematic description of how to draw a family of fonts, not simply the draw-
ings themselves”.

He also adds:

“such descriptions give more or less precise rules about how to produce drawings
of letters, and the rules will ideally be expressed in terms of variable parameters so
that a single description will actually specify many different drawings”.

|

3
Parameterization: A Serious Problem

Parameterization, however, creates a new problem for the designer. As soon as he or
she starts work, there is the problem of HOW to paramerize. Basically there are two
ways to choose the parameters:

1. Each and every possible parameter is an independant variable, or

2. Some of the parameters are functions of other parameters.

The first method gives rise to too many parameters, which overwhelm the de-
signer with potential choices. This method is potentially too flexible. Arbitrarily
choosing the values of the parameters may generate peculiar graphical patterns rather
a series of well-formed letters. Thus, the problem is: how to choose the proper values
of the parameters.

The second method poses a different questions- how to parameterize, that is,
which parameters should be kept as independent variables and which of the rest of
the parameters should be related to them, and in what ways. One should not also
forget the fact that the range of shapes is likely to be limited if there is a small set
of control parameters.

It may be senseless to search for a unique best algorithm for parameter-choice,
since there is no evidence for the existence of such an algorithm. The method of
choosing parameters mainly depends on what type of variations the artist would like
to produce from the basic description of a letterform. Thus, the proper choice of
parameters is at least in part subjective.

Yet characterizing the problem of parameterization as a subjective issue does not
solve the basic problem. Douglas Hofstadter has used an appropriate term: ‘Knobbi-
fying’ the alphabet[23].

The idea is as follows: once the description of a letter is made, it can be viewed
as a black bor with a number of parameters as as external knobs. The designer can
‘then twiddle the knobs to produce different forms of the same letter.

knob1/parameter 1

a-font description
of

warious forms of the letter

a letter
knob n/parameter n

INPUT BLACK BOX OUTPUT

FIGURE 2

These ideas of knobbifying and twiddling occurred to us (though under different
names) while we were exploring the fluidity of METAFONT letter programs by seeing
how far the letters can be stretched and still retain their identities. One such set of
experiments was based on a very simple METAFONT program for the letter ‘b’.

EXPERIMENTAL LETITER b

%Knobs of the experimental letter ‘b"

new o,p,q,r,s,t;

n=0.25; ’
0=1.30; #
p=—0.05; a
q=0.65;
r=0.70; | &
$=0.30; ‘--‘%"Zf\\ L
t=0.05; — o)
E?L__—/
Black Box [

FIGURE 3

We had seven kaobs (variables n, o, p, q, T, s, t) for twiddling and started our
game by changing the value of ‘rknob from positive to negative value. The result
was this.

nev o,p,q,r,s,t; %
n=0.25; 2
0=1.30; N
p=~0.05;
q=0.65;
r=-0.70;
s=0.30;
t=0.05;

FIGURE 4

Naturally we were disheartened to get the letter ‘d’ since we were expecting-a ‘b’
instead. We rcalised that r-kncb is not the appropriate knob to fiddle with, therefore
we changed the values of o- and p-knobs. To our surprise we got some picture which
looks like the letter ‘Q’.

new o,p,q,r,s,t;

n=0.25;
0=0.70;
p=-0.65;
q=0.65; 3
r=-0.70; -
£=0.30; T
£=0.05;

FIGURE 5

B o

We put the r-knob back in its ‘original posilion and this time we produced the

letter ‘P’, but still not a new form of ‘b’.

new o,p,q,r,s,t;

n=0.25;
0=0.70;
p=—0.65; T
q=0.65; __ﬁ{é“‘\\
r=0.70; A \"[4
s=0.30; % -
£=0.05; '

FIGURE 6 ;ﬂ

Then we went back to the previous value of r and also changed the value of the
parameter p to its initial value. The result was a graphical symbol which resembles

the letter ‘a@’.

new o,p.,q,r,s,t;

n=0.25;
0=0.70; 17
p=-0.05 ;
q=0.65; 5
r=—-0.70";)
5=0.30; {;__“__
t=0.05; '

FIGURE 7

10

At this point, without thinking much (since thinking was not helping at all), we
made the value of ‘p’ and ‘q’ equal to the value of ‘o’ and we got the letter ‘C’.

new o,p,q,r,s,t;

n=0.256;
0=0.70;
p=0.70;
q=0.70;

r= -0.70; -
§=0.30; ;
t=0.05;

FIGURE 8

Still we had some hope (being optmists) of generating an exotic ‘b’, so we
changed the value of ‘r’ to equal that of ‘n’. The resulting drawing was a verti-
cal line which resembles the letter ‘I’.

new o,p,q,r,s,t;

n=0.25;
0=0.70;
p=0.70;
q=0.70;)

r=0.25; 1 R
s=0.30; __j :
£=0.05; 5 A

FIGURE 9

11

Gatia i QAL vt 1

We then arbitrarily changed the values of o, p and r and we next, had the letter
‘G’ in our possesion. '

new o,p,q,r,s,t;

n=0.25;
0=0.35;
p=0.05; "ﬁﬁjizzt‘u
q=0.70; ;ﬂﬁf
r=-0.70
5=0.30; }] 5
t=0.05; a "

D‘t‘\,‘
RS

S
e, e

FIGURE 10

Finally we gave up our unsuccesful experiment when we produced an inclined
straight line which doesn’t resemble any letter shape.

new o,p,q,r,s,t;

n=0.25;
0=0.05;
p=0.05;
q=0.05;

r=-0.70; e
s=0.30;
t=0.05; g?wh‘,_ -

e 8

FIGURE 11

One might get the idea at this point that all the twenty six letters of the Roman
lowercase alphabet could be produced by carefully choosing the parameter-values of
this METAFONT program. We are sorry to state that it is not possible. I-lowever, we
have written another simple METAFONT program which did produce all the twenty six

12

lower case letters. The letters are added at the end of this report. An interested
designer may also produce numerals, punctuation marks and other letter-forms using
the program. Let us now open the black box and examine the program to see why

1. arbitrary change of the parameter values produce other letter forms and
graphical patterns, instead of generating new forms of the letter ‘b’;

2. the program is unable to generate all the letters, no matter how distorted
they may be.

BLACK BOX
YHere is the inside circuitry of our BLACK BOX

%Wrawing the straight vertical line
x1=n#*1; yl=o*h;
x2=x1; y2=p*h;
draw 1..2;
%Drawing the arc segment
x3=xb=x1; y3=q*h;
x4=r*1; y4=s+h;
y5=t*h;

draw (5..)3..4..5(..3);
fi.

There are two ‘draw’ statements; (1) therefore, the picture has atmost two seg-
ments. (2) In the first appearance, it seems that the first ‘draw’ command always
generates a vertical line, but that is not the case. If the parameters ‘0’ and ‘p’ get
same values, the picture transforms to a single point. (3) Similarly the second ‘draw’
command can generate either a point, a straight line or an arc depending on the
parameter value, although we might have expected to get an arc all the time. (4)
Moreover even if it is an arc, we don’t know what would be the positional relationship
between the vertical line and the circular arc. the program allows many (not ‘all’
due to the constraint x3=x5=x1) possibilities.

An improved program looks like this.

“New Program for the 'letter b’’;
%

subroutine error:

no proofmode;

13

TR

x50=x52=0.81; x51=x53=1.01;
y50=y53=1.2h; y52=y61=1.4h;

cpen; 3

draw 50..51;
draw 52..63;
new ef; ef=0;
fi.

%

%The external. Knobs
new diRi,diIi,dilii,dIi,diiRii,diilii,diiliii;
diRi=0.25; YParameters for lst draw command
dili=1.30;
diIii= -0.05;
dIi=0.65; YParameters for 2nd draw command
diiRii=0.70;
diiIii=0.30;
diiliii=0.05;

%

%The Main Program

ef=0;

%

%Drawing the straight vertical line
x1=diRi*1; yl=dili*h;

x2=x1; y2=diIii*h;

if y2yl: new ef; ef=1;

else: draw 1..2;
new ef; ef=0;
fi;

%

%Drawing the arc segment

x3=xb5=x1; y3=dIlixh;

x4=diiRii*1; y4=diilii*h;
y5=diiliii*h;

if yby3: new ef; ef=1; fi;

if x4x3: new ef; ef=1; fi;

if(y5-y2) (y1-y3): new ef; ef=1; fi;

if ef=1:call error;

else: draw (5..)3..4..5(..3);
fi;

fi.

14

The second program differs from the first one in the following respects:

1. Each knob has an appropriate label on it. This enables the user to know which
parameter is being twidelled. (It is like the labels VOLTJME, TONE, BALANCE

’

on the knobs of a stereo cassette recorder). ‘d’ in the parameter name signifies

53]
1

draw, ‘R’ means x-value, ‘I’ means imaginary quantity or y-value, specifies

’

first, ‘ii” means second and so on. For example dilii means- ‘in the draw

command 1, parameter for the y-value of the second point’.

2. Four conditional branching have been added to check the type of strokes
that each ‘draw’ command generates and their positional relationships. If the
appropriate conditions do not hold true for improper choice of parameter
values, the program raises an error flag and notifies the user which ‘draw’
command is causing problem.

The result of changing the parameters in this new program with the old set of
values is shown in the following pages. The error flag is the ‘X’ in the upper right—
hand corner.

15

o

A

B i e N

-

16

e

17

4

5

FIGURE 12

18

4
Syntactic Description of Letterforms

We have already cited Knuth’s description of the meaning of a meta-font. It is a
schematic description of how to draw a family of different forms of a letter-- not
simply the drawing of the letter itself.

In this context Bigelow has pointed out that, ‘Letters have structure which the
system must comprehend’[3][4][5]. More precisely,

Any metafont system should provide a descriptive scheme in terms of which
the structural features of individual letter shape can be efficiently described
and talked about.

The word ‘efficiently’ used in the sense that the description should be understood
both by the designer and the machine.

A convenient way to describe a picture is to use a two-level data structure.
This is reasonable since we are trying to represent a 2-D image by a I-D language.
More precisely, this is to describe a picture in terms of its subparts/subpictures and
adjacency relationships among the parts. For example, Grimsdale et al. (cited in
Pattern recognition Technigues, Ullman J.R., 1973) divided the letter ‘R’ into six
subpictures and expressed the relational information with the help of an adjacency
graph[42]. Their work is shown in the following figure. (Fig.13)

e0Q

CA) ’ f
(h)

FIGURE 13

19

This concept of describing pictures in terms of primitive elements or subpic-
tures and their relationship is analogous to the syntactic structure of languages. For
example,

<sentence > — <subject phrase> <verb> <object phrase>
describes a relationship between the subparts of a sentence.

The letter shapes in any script are some specific class of pictures (by ‘specific
class’ we mean to exclude the very general class of any complex image, which is
difficult to handle). It is possible to set up a ‘syntactic model’ for description of
letter forms.

Before proceeding further, let us take a brief look of the ‘real world of letters’
and examine HOW (or, whether any) syntactic structures are embedded within them.

20

5
Stroke Analysis for Lettershapes

Most lettering artists have described (directly or indirectly) how they make letters
from simple brush or pen strokes. For drawn letters also, similar parts of different
letters can be related. We observe that the letters h, n, m etc., or v, w, y etc., are
grouped together at the time of design. Here is not the place to give a detailed account
of the typographers’ work, yet we offer one or two examples in this context.

Michel Harvey in his book Lettering Destgn has shown some of the characteristic brush
strokes which are important for designing Roman Letters[22] (Fig.14)

O

FIGURE 14

21

He has also shown the sequence of brush strokes in a built-up letter,as shown in the

following figure. (Fig.15)

FIGURE 15

There is also the analysis of a roman ‘R’ made by E.M.Catich, in which economical

Lrush strokes produce a letter of great elegance. (Fig.16)

FIGTJRE 16

N S

22

We also did an experiment on some existing letter forms. Goudy in his book The
Alphabet and Elements of Lettering presented his work on letters of different forms[19).
After carefully examining his alphabet designs, we found that all the letters of all the
alphabets are actually formed out of some (not too many) basic primitive strokes. It
appears to us that he designed his letters by the ‘method of cutting and pasting’ and
sometimes ‘rubber-banding’. Of course he didn’t do that manually, but he appears to
have adopted that conceptual technique. By experimenting with cutting and pasting,
we were able to produce some of Goudy’s letters. Sketches of our work is shown in
the next page. One should note here how nicely different forms of a letter can be
produced from a few primitive subparts. One should also note that rubber-banding
technique has been adopted to produce the horizontal stroke of the letter ‘H’.

23

6
Lettershape Description Language

A syntactic model for lettershape description can be roughly viewed like this:

1. This is a description model in terms of subparts or strokes present in the
letter, and properties of and relations among these subparts.

2. The descriptive statements which generate a letter constitute a hierarchic
system that can be represented by a multi-level graph.

3. Labels are assigned to the different levels; Each label consists of two parts:
i) the NAME of the subpart type (in other words, phrase name) and ii) the
A TTRIBUTE values of the subpart. The NAME is actually a convenient way of
referring abstractly to sets of invarient properties and property relationships;
an ATTRIBUTE list is a set of modifiers or variable properties.

4] The CONCATENATION OPERATORS, which relates the subparts, have also two
parts- the class name and the attribute lists.

To illustrate how the proposed scheme would work in an actual application, let
us consider an example.

Example: We have to generate two letters ‘h’ and ‘n’ which are shown in Fig.18a.

We can figure out two subparts VI, (Vertical Line) and CS1 (Curve Segment 1)
necessary to design the letters. They are shown in Fig.18b.

25

ol [Py
'Pl |
y 4
— —0-

X3 ? v : Xa ::fﬁ
VERTICAL-LINE C—-STROKE1
(b)

1

S
A
COM_STROKE1 V-STROKE2
& (d)
1
V-STROKES
¢

FIGURE 18

For the time being let us consider these subparts as the “first level” primitives.
These subparts are represented in our model like this:
Label Class: SIMPLE STROKE

NAME ATTRIBUTES
(Pen type, dimension; Recf pt; Cordinates of pts)

1. VERTICAL-LINE hflat, wl, w2; Xrcf, Yref; X, Y1, Y2
2. CURVE-STROKE hilat, wl, w2; Xrcf, Yref; P1, P2, P3, P4

NOTE: For each subpart at every level, the reference point is necessary to exactly specify the

adjacency relationship between two subparts.

Let the concatenation operators be as folows:

CONCATENATION OPERATORS

NAME ATTRIBUTES
(Distnnce—— a positive value)
1. Left (It) dist
2. Right (rt) dist
3. Above (ab) dist
4. Below (bl) dist
5. Adjacent (ad) (no attribute)

The descriptive statements :

V-STROKE1 := VERTICAL_LINE (v1) ;
C-STROKE | := CURVE_STROKE (v2);

COM_STROKEL := V_STROKE1 right by lu above by Ou of C_STROKEL;

form a complex stroke COM_STROKE! which is shown in Fig.18c.

NOTE: Unless cxplicitely specified, the reference point of COM_STROKEL coincides with the
reference point of C_STROKE 1, since conceptually we cut the V_STROKIEL from the
graph sheet and pasted it on top of C_STROKI1; we didnt touch the C_STROKEL at
all.

27

COM_STROKEL is one level higher than VL and CS1, and according to our model
should take new attribute values. ‘For example, we can write

Label Class: COMPLEX STROKE

NAME ATTRIBUTES
(Ref pt; X-stretch, Y-stretch; Rotation etc.)
1. COM_STROKEL Xref, Yref; XX, YY; ROT;

It is not necessary to state the attribute value for the higher levels explicitely
at all times. Unless specified, it assumes the default values of the system.

The next step is to generate the long vertical bar for the letter “h’. This can
be easily done by changing the attribute values of VL. The statements for generating

the letter ‘h’ are:
V-STROKE2 := VERTICAL_LINE (v3);

LET-h := V-STROKE2 adjacent of COM_STROKLE];

Note that LET-h has higher level than COMP_STROKE1 and its attribute sets

may be as follows:

Label Class: LETTER

NAME ATTRIBUTES
(Ref pt; X-stretch, Y-stretch; Rotation; l-sp, R—sp;‘..)

1. LET-h Xref, Yref; XX, YY; ROT; Isp,rsp;....

Assigning a set of attributes to the elements of different class or category
serves many useful purposes. For example, we can define one special stroke, say
NULL-STROKE. This stroke can combine with any other stroke in a usual manner and
does nothing but to put the second stroke in a higher level. Thus a simple stroke
may be converted to a complex stroke without any visible change. By varying the
attribute values of the complex stroke thus formed, we can rotate, shrink or expand

it according to our need.

28

To be clearer, let us generate V-STROKE2 in the following manner:

COM_STROKE2 := V-STROKE! adjacent of NULL-STROKE;
COM_STROKE3 := COM_STROKE2 (v4);

LET_h := COM_STROKE3 adjacent of COM_STROKEL,;

We have simply changed the ‘y-stretch’ parameter in v4 to generate a stroke as
shown in Fig.18d.

The letter ‘N’ can be generated in one of the above ways.

The multi-level graphs for the letter ‘h’ is shown iu Fig.19.

LETTER-h

COMP_STROKEL

(rt-ab)

C_STROKE1 V_STROKE1 V_STROKE2

(a)

LETTER-h

(adj)

COMP_STROKE1 COMP_STROKE3
(rt-ab) (adj)

C_STROKE1 V_STROKE1 NULL_STROKE V_STROKE1
(b)

FIGURE 19

29

We have not discuss of how to generate the primitive strokes like VL or CS1. This
can be done in the same way that Knuth’s METAFONT generates them, or by some other
similar systems. However, we can think of a model different from METAFONT , to treat
the whole structure within our proposed formalism. Roughly this can be viewed like
this:

1. The lowest level object type is the POINT. Its two permissible attributes are
gray scale and Cartesian coordinates, i.e., POINT(x,y.g).

2. Few more primitive elements also can be thought of.
VECTOR_DIRECTION(gradient , sense-of-movement),
CURVATURE(val), etc.

3. The next higher level element types are simple strokes like
STRAIGHT_LINE(pl,p2), VERTICAL_LINE(x,y1,y2),
HOROZONTAL_LINTE(x1,x2,y),

ARC(pl,p2,p3) / ARC(pl,p2,curvature),
SMOOTH_CURVE(pl,p2,....pn) / SMOOTH_CURVE(p1,d4,...) etc.

30

7
A Phrase-Structured Grammar for LDL

Our proposed model of heirarchical structure of subpatterns is analogous to the syn-
tactic structure of a language.

The central idea of formal language theory is the generation and/or analysis of
the strings (sentences) of languages in terms of grammars, typically Phrase-Structure
Grammars. The structural description of the language in terms of a grammar is
called a syntaz of the language. Analysis in terms of this structure is called syntactic
anclysis, or parsing.

Accordingly, a Phrase-structure grammar is a four-tuple
G = (Vn, ‘/tyP)S)‘

V,.: nonterminals/variables

Vi terminals

S € V,: Start/sentence symbol
P: productions/rewriting rules

Vat1 V=0

Productions have the general form

a—f3

where «,f arc strings over V, u V¢ , and ‘—’ is read “is replaced by”.

In formal language theory, the only relation between the elements in a string
is concatenation, i.e., the juxtaposition of adjacent elements. The most crucial point

involved in adapting the techniques of formal language theory to letter shape design
is the generalisation of this simple notion to include the other relationships.

With the help of the old example, we shall show what the phrase-structure
grammar will look like for our proposed model.

31

Our Old Example of Generating Letter h

We shall denote the concatenation operators by the symbol ‘¥’

* = { lt-ab, It-bl, rt-ab, rt-bl }
Vo = { COM_STROKEL, COM_STROKE2, COM_STROKE3, LET-h }
Vi = { C_STROKE1, V_STROKE!, V_STROKE2, NULL-STROKE }

Writing p-name for non-terminals or phrase-name and w-name for word or
terminal-name, we can easily state the productions for our proposed model as follows:

P:
S + p-name
p-name — p_name*p_name
p-name ~— p_name*w_name

p-name — w_name*w_name.
!

Therefore,

case A:
S — LET-h
— COM_STROKELI*V_STROKE2
— (C_STROKE1*V_STROKE1)*V_STROKE2.

case B:
S — LET-h
— COM_STROKE1*COM_STROKE3
> (C_STROKE1*V_STROKE1)*(V_STROKEI*NULL_STROKE).

32

Extention of the idea of Hierarchic Structure

The idea of this hierarchic structure, and assigning different attribute sets at different
levels, can be extended from the meta-font description of a letter to a system of
typesetting a book or journal.

For example, the letters form a WORD whose attributes may be spacing, posi-
tion, etc. The words form a LINE-OF-TEXT whose attributes are left/right margin,
indentation, position in a page, projection and so on. Similarly, a pace is made up of
lines (non-empty or empty) with attributes like shape, position in the white space and
so on. Selection of attribute sets at different levels depends on the type of require-
ments of the artist, the ease of setting the values for different attributes, and finally
on their efficient implementation in the machines.

33

8
Mathematics for Decomposition

Basic Postulates
The basic postulates of our Decomposition Mathematics can be stated as follows:
1. A collection fy, f2,. ... fm of figures is a decomposition of a pattern P in m pieces
iff
P =U;fi,

any two pieces f; and f; are distinct, but do not necessarily have disjoint
interiors. By the term figure we mean a bounded region in a 2-D plane,
hereafter which will be mentioned as ‘region’.

2. For any allowed transformation, or concatenation of’ transformation g, there
may be some f; and f;, where

fi=gk.
3. For any g (as described in Postulate 2),
gP = Uigfi.

4. The union operation is defined as commutative, as well as associative, i.e.,
aUfi=fUfi;

LU0 =(fiu f)u fx.

Due to the Postulate 2, there arise two types of regions-- pure regions and
transformed regions. The second type is generated by applying some allowed trans-
formation(s) on the pure regions.

If F denotes the set {fy, f2 ,....,fm} for figure P (P is any character, i.e., letter
shape or symbol in an alphabet), then the set E which is the unton of all F’s may be
termed as FElement Set for a particular font of an alphabet. The elements of I are
either pure or transformed regions. There then exists a subset (most of the time, a
proper subset) I3 of E, whose elements are the pure regions. B is evidently the Pattern
Primitive Set for the alphabet.

A Few Important Considerations

The following considerations may serve as a guide-line for selecting the pattern prim-
ives:

1. The number of elements in B should be as few as possible. The set B can be
defined as ‘good’ set if the number of elements are less than the number of
characters in the alphabet.

2. Each element in B should be conceptually clear to the designer.
3. The representation of the elements should be compact, but computationally
convenient for the machine.
Graph Representation Techniques

It is often helpful to represent each character by a graph. This graph representation
partially enables us to comprehend how a decomposed letter will be stored inside the
machine in an ab