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Rule
RULE-Z

if
[OBJECT-10 HQ LIGHT]
[CONCAVITY-8 PHYSICAL-PART-OF OBJECT-10]
[BODY-9 PHYSICAL-PART-OF OBJECT-10-J
[BOTTOM-8 PHYSICAL-PART-OF OBJECT-I0]
[CONCAVITY-8 AKO CONCAVITY]
[CONCAVITY—-8 HQ UPWARD-POINTING]
[BODY -9 AKO BODY]
[BODY-9 HQ CYLINDRICAL]
[BODY -9 HQ SMALL]
[BOTTOM-8 AKO BOTTOM]
[BOTTOM-8 HQ FLAT]

then
[OBJECT-1o AKO CUP|

unless
[[OBJECT-1o AKO OPEN-VESSEL] HQ FALSE]
[[OBJECT-10 HQ LIFTABLE] HQ FALSE]
[[OBJECT-1o0 HQ STABLE] HQ FALSE]
[[BODY-9 HQ GRASPABLE] HQ FALSE]

case
DEFINITION-1 DESCRIPTION-2 DESCRIPTION-4 DESCRIPTION-I

Should I index it as a rule?
>y
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To use DEFINITION-1 I need to know if [OBJECT-3 AKO OPEN-VESSEL]
| am trying to show [OBJECT-3 AKO OPEN-VESSEL]
Supplyy.n,?,r=rules, p = precedents,or a suggestion:
> P
I find:

DESCRIPTION-Z < 3. Tinks >
I note [CONCAVITY-3 PHYSICAL-PART-OF OBJECT-31 for use with DESCRIPTION-
2
I note [CONCAVITY-3 AKO CONCAVITY] for use with DESCRIPTION-2
| note [CONCAVITY-3 HQ UPWARD-POINTING] for use with DESCRIPTION-2
The evidence from DESCRIPTION-2 indicates [OBJECT-3 AKO OPEN-VESSEL]
The evidence from DEFINITION-1 indicates [OBJECT-3 AKO CUP]
Rule RULE-l is derived from DEFINITION-1 DESCRIPTION-2 DESCRIPTION-3
DESCRIPTION-1 and looks like this:

Rule
RULE-1

i f
[OBJECT-g HQ LIGHT]
[CONCAVITY-7 PHYSICAL-PART-OF OBJECT-91
[HANDLE-4 PHYSICAL-PART-OF OBJECT-91
[BOTTOM-7 PHYSICAL-PART-OF OBJECT-91
[CONCAVITY-7 AKO CONCAVITY]
[CONCAVITY-7 HQ UPWARD-POINTING]
[HANDLE-4 AKO HANDLE]
[BOTTOM-7 AKO BOTTOM]
[BOTTOM-7 HQ FLAT]

then
[OBJECT-9AKO CUP]

unless
[ [OBJECT-g AKO OPEN-VESSEL] HQ FALSE]
[[OBJECT-9 HQ LIFTABLE] HQ FALSE]
[[OBJECT-9HQ GRASPABLE] HQ FALSE]
[[OBJECT-9 HQ STABLE] HQ FALSE]

case
DEFINITION-1 DESCRIPTION-2 DESCRIPTION-3 DESCRIPTION-1

Should I index it as a rule?
>y
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Abstract

It is too hard to tell vision systems what things look like. It is easier to talk about purpose
and what things are for. Consequently, we want vision systems to use functional
descriptions to identify things, when necessary, and we want them to learn physical
descriptions for themselves, when possible.

This paper describes a theory that explains how to make such systems work. The theory is a
synthesis of two sets of ideas: ideas about learning from precedents and exercises
developed at MIT and ideas about physical description developed at Stanford. The strength
of the synthesis is illustrated by way of representative experiments. All of these experiments
have been performed with an implementation System.

This research was done in part at the Artificial Intelligence Laboratory of Stanford
University and in part by the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for MIT’s artificial-intelligence research is provided in
part by the Advanced Research Projects Agency of the Department of Defense under
Office of Naval Research Contract N00014-80-C-0505.
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Figure 1. A cup with a handle.

Key Ideas

It is too hard to tell vision systems what things look like. It is easier to talk about
purpose and what things are for. Consequently, we want vision systems to use
functional descriptions to identify things, when necessary, and we want them to
learn physical descriptions for themselves, when possible.

For example, there are many kinds of cups: some have handles, some do not;
some have smooth cylindrical bodies, some are fluted: some are made of porcelain,
others are styrofoam, and still others are metal. You could turn blue in the face
describing all the physical possibilities. Functionally, however, all cups are things
that are easy to drink from. Consequently, it is much easier to convey what cups
are by saying what they are functionally.

To be more precise about what we are after, imagine that you are told cups are

open vessels, standing stably, that you can lift. You see that the object in figure

I has a handle, an upward pointing concavity, and a flat bottom. You happen to

-know it is light. Because you already know something about bowls, bricks, and

suitcases, you conclude that you are looking at a cup. You also create a physical
model covering this particular cup type.

Our first purpose, then, is to explain how physical identification can be done
using functional definitions. Our second purpose is to show how to learn physical
models using functional definitions and specific acts of identification.

It is important to note that our theory of model learning involves a physical
example and some precedents in addition to the functional definition:

m The physical example is essential, for otherwise there would be no way to know
which precedents are relevant.



Let E be an exercise. E is an exercise about a light object.
The object’s body is small. The object has a handle. The
object’s bottom is flat. Its concavity is upward-pointing.
Its contents are hot. In E show that the object may be
a cup.

Let E be an exercise. E is an exercise about a light
object. The object’s bottom is flat. Its body is small and
cylindrical. Its concavity is upward-pointing. Its contents
are hot. Its body’s material is an insulator. In E show
that the object may be a cup.

For the first of these two exercises, the rule requiring a handle works immediately.
It is immaterial that the contents of the cup are hot.

For the second, the rule requiring a small. cylindrical body works immediately.
Again it i1s immaterial that the contents of the cup are hot since nothing is
known about the links among content temperature | graspability, and insulating
materials. Proving some knowledge about these things by way of some censors
makes identification more interesting.

Suppose, for example. that we teach or tell the machine that an object with hot
contents will not have a graspable body , given no reason to doubt that the object’s
body is hot. Further suppose that we teach or tell the machine that an object’s body
is not hot, even if its contents are, if the body is made from an insulator. All this is
captured by the following censor rules, each of which can make a simple physical
deduction:

Let Cl be u Censor. Cl is a censor about an object. The
object’s body 1s not graspable because its contents are
hot unless its body is not hot. Make CI a censor using
the object’s body is not graspable.

Let C2 be a censor. C2 is a censor about an object. The
object’s contents arc hot. Its body is not hot because its
body’s material is an insulator. Make C2 a censor using
the object’s body is not hot.

Repeating the second exercise now evokes the following scenario:

Asking whether the object is a cup activates the rule about cups without handles.
The ifconditions of the rule are satisfied.

The unless conditions of the rule are checked. One of these conditions states
that the object’s body must not be plainly ungraspable.

Asking about graspability activates the censor relating graspability to hot
contents. The censor’s if condition is satisfied. and the ccnsor is about to block the
cup-identifying rule. The censor’s unfess condition must be checked first, however.

The censor’s unless condition pertains to hot bodies. This condition activates a
second censor, the one denying that a body is hot if it is made of an insulator. This
second censor'‘s /f condition is satisfied, and there are no unless conditions.
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Figurc 2. The matcher detcrmines part corrcspondence using the links that populate the precedent

and the problem. I'he matcher pays particular attention to links that arc cnmeshed in the CAUSE
structure of the prccedent.

L]

ACRONYMuses generalized cylinders to describe how objects fill space.
A generalized cvlinder 1s formed when a planar cross section moves along a curve in
space. sweeping out avolume. The size of the planar cross section may change as it
moves. The angle between the planar cross section and the curve is held constant,

typically at 90°. Figure 4a shows some examples.

o  ACRONYMuscs ribbons and ellipses to represent what a viewer sees.

Ribbons are tw o-dimensional analogs to generalized cylinders. A ribbon 1s formed
whenaline is moved along a two-dimensional curve. perhaps changing size as it
moves. The angle between the line and the curve is held constant, typically at 90°.
Figure 4b shows some examples.
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Figure 9. The brick precedent and the bowl precedent establish that the object is stable and that
it is an open vessel. The cause links of the precedents are overlaved on the exercise. leading to
questioned links that are immediately resohved by the facts. Overlayed structure is dashed. Many
hiks of the precedents are not shown to avoid clutter on the diagram.
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Figure 4. Parta shows some examples ot generalized cylinders. Part b shows ribbons and ellipses
corresponding to the objects in part a.

are found, the determination cm be quite specific. not only about shape and size,
but also about position. Having found the ribbon corresponding to the body of an
arrplane. for example, it is possible to predict the location, orientation, and size of
the ribbons corresponding to the wings.

Brooks’s landmark thesis concentrated on exactly this sort of prediction [Brooks
1981].

In principle. prediction knowledge cm be used to condition the earliest vision
procedures to the situation at hand. In current practice, carly vision procedures
operate autonomously up to the fevel where ribbons and ellipses are formed. Efforts
arc underway to push predictions further toward the pixels.
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diagram.




cup

= Open-vessel

stable
liftable

Figure 5. The functional definition of a cup. This semantic net is produced using an English
description. AKO = A Kind Of. HQ = Has Quality.

Let X be a definition. X is a definition of an object. The
object is a cup because it is stable, because it is liftable,
and because it is an open-vessel. Remember X.

Of course, other, more elaborate definitions are possible. but this one seems to
us to be good enough for the purpose of illustrating our learning theory.

The English is translated into the semantic net shown in figure 5.

The next step is to show an example of a cup, such as the one in figure 6a.
ACRONY M is capable of translating such visual information into the semantic net
shown in figure 6b. But inasmuch as our connection to ACRONYM is not complete,
we currently bypass ACRONYM by using the following English instead.

Let E be an exercise. E is an exercise about a red
object. The object’s body is small. The object’s bottom
is flat. The object has an upward-pointing concavity.
The object has a handle.

In contrast to the definition, the qualities involved in the description of the
particular cup are all physical qualities, not functional ones. (Assume that all
qualitics involving scales, like small size and light weight, arc relative to the human
body, by default, unless otherwisc indicated.)

In the next step, we enhance the physical example’s physical description. This
enables us to specify physical properties and links that are not obtainable from
vision.

The object is light.

Now it is ime to show that the functional requirements are met by the
enhanced physical description. To do this requires using precedents relating the



cup’s functional descriptors to observed and stated physical descriptors. Three
precedents are used. One indicates a way an object can be determined to be stable:
another relates liftability to weight and having a handle: and still another explains
what being an open-vessel means. All contain one thing that is irrelevant with
respect to dealing with cups: these irrelevant things are representative of the detritus
that can accompany the useful material.

Let X be a description. X is a description of a brick.
The brick is stable because the brick’s bottom is flat.

The brick is hard.
Remember X.

Let X be a description. X is a description of a suitcase.
The suitcase is liftable because it is graspable and because
it is light. The suitcase is graspable because it has a
handle.

The suitcase is useful because it is a portable container
for clothes.

Remember X.

Let X be a description. X is a description of a bowl.
The bowl is an open-vessel because it has a concavity
and because the concavity is upward-pointing.

The bowl contains tomato soup.
Remember X.

With the functional definition in hand, together with relevant precedents, the
analogy apparatus is ready to work as soon as it is stimulated by the following
challenge:

In E, show that the object may be a cup.

This initiates a search for precedents relevant to showing something is a cup. The
functional definition is retrieved. Next, a matcher determines the correspondence
between parts of” the exercise and the parts of the functional definition, a trivial

task in this instance. Now the verifier overlays the cause links of the functional

" definition onto the exercise. Tracing through these overlayed cause links raises three
questions: is the observed object stable, is it an open vessel, and is it liftable. All
this is illustrated in figure 7.

Questioning if the object is liftable leads to a second search for a precedent,
this time one that relates function to form. causing the suitcase description to be
retrieved. The suitcase description, shown in figure 8, is matched to the exercise, its
causal structure is overlayed on the cxercise, and other questions are raised: is the
observed object light and does it have a handle. Since it is light and does have a
handle, the suitcase description suflices to deal with the liftable issue, lcaving open
the stability and open-vessel questions.



cup’s functional descriptors to observed and stated physical descriptors. Three
precedents are used. One indicates a way an object can be dctermined to be stable;
another relates liftability to weight and having a handle; and still another explains
what being an open-vessel means. All contain one thing that is irrelevant with
respect to dealing with cups: these irrelevant things are representative of the detritus
that can accompany the useful material.

Let X be a description. X is a description of a brick.
The brick is stable because the brick’s bottom is flat.

The brick is hard.
Remember X.

Let X be a description. X is a description of a suitcase.
The suitcase is liftable because it is graspable and because
it is light. The suitcase is graspable because it has a
handle.

The suitcase is useful because it is a portable container
for clothes.

Remember X.

Let X be a description. X is a description of a bowl.
The bowl is an open-vessel because it has a concavity
and because the concavity is upward-pointing.

The bowl contains tomato soup.
Remember X.

With the functional definition in hand, together with relevant precedents, the
analogy apparatus is ready to work as soon as it is stimulated by the following
challenge:

In E, show that the object may be a cup.

This initiates a search for precedents relevant to showing something is a cup. The
functional definition is retrieved. Next, a matcher determines the correspondence
between parts of” the exercise and the parts of the functional definition, a trivial

task in this instance. Now the verifier overlays the cause links of the functional

~ definition onto the exercise. Tracing through these overlayed cause links raises three
questions: is the observed object stable, is it an open vessel, and is it liftable. All
this is illustrated in figure 7.

Questioning if the object is liftable leads to a second search for a precedent,
this time one that relates function to form, causing the suitcase description to be
retrieved. The suitcase description, shown in figure 8. is matched to the exercise, its
causal structure is overlayed on the cxercise, and other questions are raised: is the
observed object light and does it have a handle. Since it is light and does have a
handle, the suitcase description suffices to deal with the liftable issue, leaving open
the stability and open-vessel questions.
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Figure 5. 'The functional definition of a cup. This semantic net is produced using an English
description. AKO = A Kind Of, HQ = Has Quality.

Let X bc a definition. X is a definition of an object. The
object is a cup because it is stable, because it is liftable,
and because it is an open-vessel. Remember X.

Of course, other, more elaborate definitions are possible. but this one seems to
us to be good enough for the purpose of illustrating our learning theory.

The English is translated into the semantic net shown in figure 5.

The next step is to show an example of a cup, such as the one in figure 6a.
ACRONYM is capable of translating such visual information into the semantic net
shown in figure 6b. But inasmuch as our connection to ACRONYM is not complete,
we currently bypass ACRONYM by using the following English instead.

Let E be an exercise. E is an exercise about a red
object. The object’s body is small. The object’s bottom
is flat. The object has an upward-pointing concavity.
The object has a handle.

In contrast to the definition, the qualities involved in the description of the
particular cup are all physical qualities, not functional ones. (Assume that all
qualitics involving scales, like small size and light weight, arc relative to the human
body, by default, unless otherwise indicated.)

In the next step, we enhance the physical example’s physical description. This
enables us to specify physical properties and links that are not obtainable from
vision.,

The object is light.

Now it is time to show that the functional requirements are met by the
enhanced physical description. To do this requires using precedents relating the
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Figure 4. Parta shows some examples ot gencralized cylinders. Part b shows ribbons and ellipses
corresponding to the objects in part a.

are found, the determination can be quite specific. not only about shape and size,
but also about position. Having found the ribbon corresponding to the body of an
airplane. for example, it is possible to predict the location, orientation, and size of
the ribbons corresponding to the wings.

Brooks’s landmark thesis concentrated on exactly this sort of prediction [Brooks
1981].

In principle, prediction knowledge cm be used to condition the earliest vision
procedures to the situation at hand. In current practice. carly vision procedures
operate autonomously up to the level where ribbons and ellipses are formed. Efforts
arc underway to push predictions further toward the pixels.
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The brick prcecedent and the bowl precedent establish that the object is stable and that
‘T he cause links of the precedents arc overlayed on the exercise, leading to

questioned links that are immediately resoly cd by the facts. Overlayed structure is dashed. Many
Iinks of the precedents are not show n to avoid clutter on the diagram.
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o ACRONYMuscs generalized cylinders to describe how objects fill space.

A generalized cvlinder is formed when a planar cross section moves along a curve in
space. sweeping out avolume. The size of the planar cross section may change as it
moves. The angle between the planar cross section and the curve is held constant,
typically at 90°. Figure 40 shows some examples.

« ACRONYMuscs ribbons and ellipses to represent what a viewer sees.

Ribbons are two-dimensional analogs to gencralized cylinders. A ribbon is formed
when aline 1s moved along a two-dimensional curve, perhaps changing size as it
moves. e angle between the line and the curve is held constant, typically at 90°,
Figurc 4b shows some examples.
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Let E be an exercise. E 18 an exercise about a light object.
The object‘s body is small. The object has a handle. The
object’s bottom is flat. Its concavity is upward-pointing.
Its contents are hot. In E show that the object may be
a cup.

Let E be an exercise. E is an exercise about a light
object. The object’s bottom is flat. Its body is small and
cylindrical. Its concavity is upward-pointing. Its contents
are hot. Its body’s material is an insulator. In E show
that the object may be a cup.

For the first of these two exercises, the rule requiring a handle works immediately.
It is immaterial that the contents of the cup are hot.

For the second, the rule requiring a small. cylindrical body works immediately.
Again it is immaterial that the contents of the cup are hot since nothing is
known about the links among content temperature, graspability, and insulating
materials. Proving some knowledge about these things by way of some censors
makes identification more interesting.

Suppose, for example. that we teach or tell the machine that an object with hot
contents will not have a graspable body, given no reason to doubt that the object’s
body is hot. Further supposc that we teach or tell the machine that an object’s body
is not hot, even if its contents are, if the body is made from an insulator. All this is
captured by the following censor rules, each of which can make a simple physical
deduction:

Let Cl be a Censor. Cl is a censor about an object. The
object’s body is not graspable because its contents are
hot unless its body is not hot. Make Cl a censor using
the object’s body is not graspable.

Let C2 be a censor. C2 is a censor about an object. The
object’s contents are hot. Its body is not hot because its
body’s material is an insulator. Make C2 a censor using
the object‘s body is not hot.

Repeating the second exercise now evokes the following scenario:

Asking whether the object is a cup activates the rule about cups without handles.
The ifconditions of the rule are satisfied.

The unless conditions of the rule are checked. One of these conditions states
that the object’s body must not be plainly ungraspable.

Asking about graspability activates the censor relating graspability to hot
contents. The censor’s if condition is satisfied. and the censor is about to block the
cup-identifying rule. The censor’s unless condition must bc checked first, however.

The censor’s unless condition pertains to hot bodies. This condition activates a
second censor, the one denying that a body is hot if it is made of an insulator. This
second censor’s if condition is satisfied, and there are no unless conditions.

15



Figure 1. A cup with a handle.

Key Ideas

It is too hard to tell vision systems what things look like. It is easier to talk about
purpose and what things are for. Consequently, we want vision systems to use
functional descriptions to identify things, when necessary, and we want them to
learn physical descriptions for themselves, when possible.

For example, there are many kinds of cups: some have handles, some do not;
some have smooth cylindrical bodies, some are fluted: some are made of porcelain,
others are styrofoam, and still others are metal. You could turn blue in the face
&scribing all the physical possibilities. Functionally, however, all cups are things
that are easy to drink from. Consequently, it is much easier to convey what cups
are by saying what they are functionally.

To be more precise about what we are after, imagine that you are told cups are
open vessels, standing stably, that you can lift. You see that the object in figure
1has a handle, an upward pointing concavity, and a flat bottom. You happen to

know it is light. Because you already know something about bowls. bricks, and
suitcases, you conclude that you are looking at a cup. You also create a physical
model covering this particular cup type.

our first purpose, then, is to explain how physical identification can be done
using functional definitions. our second purpose is to show how to learn physical
models using functional definitions and specific acts of identification.

It is important to note that our theory of model learning involves a physical
example and some precedents in addition to the functional definition:

m The physical example is essential, for otherwise there would be no way to know
which precedents are relevant.
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Abstract

It is too hard to tell vision systems what things look like. It is easier to talk about purpose
and what things are for. Consequently, we want vision systems to use functional
descriptions to identify things, when necessary, and we want them to learn physical
descriptions for themselves, when possible.

This paper describes a theory that explains how to make such systems work. The theory is a
synthesis of two sets of ideas: ideas about learning from precedents and exercises
developed at MIT and ideas about physical description developed at Stanford. The strength
of the synthesis is illustrated by way of representative experiments. All of these experiments
have been performed with an implementation system.

This research was done in part at the Artificial Intelligence Laboratory of Stanford
University and in part by the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for MIT’s artificial-intelligence research is provided in
part by the Advanced Research Projects Agency of the Department of Defense under
Office of Naval Research Contract N00014-80-C-0505.



To use DEFINITION-1 I need to know if [OBJECT-J AKO OPEN-VESSEL]
I am trying to show [OBJECT-3 AKO OPEN-VESSEL]
Supplyy.n,?,r = rules, p = precedents,ora suggestion:
> p
I find:

DESCRIPTION-2<3. Tinks >
I note [CONCAVITY-3 PHYSICAL-PART-OF OBJECT-31 for use with DESCRIPTION-
2
| note [CONCAVITY-3 AKO CONCAVITY] for use with DESCRIPTION-2
Inote [CONCAVITY-3 HQ UPWARD-POINTING] for use with DESCRIPTION-2
The evidence from DESCRIPTION-2 indicates [OBJECT-3 AKO OPEN-VESSEL)
The evidence from DEFINITION-I indicates [OBJECT-3 AKO CUP]
Rule RULE-I is derived from DEFINITION-1 DESCRIPTION-2 DESCRIPTION-3
DESCRIPTION-1 and looks like this:

Rule
RULE-I

i f
[OBJECT-9 HQ LIGHT]
[CONCAVITY-7 PHYSICAL-PART-OF OBJECT-91
[HANDLE-4 PHYSICAL-PART-OF OBJECT-91
[BOTTOM-7 PHYSICAL-PART-OF OBJECT-91
[CONCAVITY-7AKO CONCAVITY]
[CONCAVITY-7 HQ UPWARD-POINTING]
[HANDLE-4 AKO HANDLE]
[BOTTOM-7 AKO BOTTOM]
[BOTTOM-7 HQ FLAT]

then
[OBJECT-g AKO CUP]

unless
[[OBIJECT-g AKO OPEN-VESSEL] HQ FALSE]
[[OBJECT-9 HQ LIFTABLE] HQ FALSE]
[[OBJECT-g HQ GRASPABLE] HQ FALSE]
[[OBJECT-9 HQ STABLE] HQ FALSE]

case
DEFINITION-1 DESCRIPTION-2 DESCRIPTION-3 DESCRIPTION-I

ShouldlI index it as a rule?
>y
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Rule

RULE-Z
if
[OBJECT-10 HQ LIGHT]
[CONCAVITY-B PHYSICAL-PART-OF OBJECT-10]
[BODY-9 PHYSICAL-PART-OF OBJECT-10 ]
[BOTTOM-8 PHYSICAL-PART-OF OBJECT-10)
[CONCAVITY—-8 AKO CONCAVITY]
[CONCAVITY-8 HQ UPWARD-POINTING]
[BODY-9 AKO BODY]
[BODY-9 HQ CYLINDRICAL]
[BODY -9 HQ SMALL]
[BOTTOM-8 AKO BOTTOM]
[BOTTOM-8 HQ FLAT]
then
[OBJECT-1o AKO CUP|
unless
[[OBJECT—-1o0 AKO OPEN-VESSEL] HQ FALSE]
[[OBJECT-10 HQ LIFTABLE] HQ FALSE]
[[OBJECT-1o HQ STABLE] HQ FALSE]
[[BODY-9 HQ GRASPABLE] HQ FALSE]
case

DEFINITION-1 DESCRIPTION-2 DESCRIPTION-4 DESCRIPTION-1

Should I index it as a rule?
>y
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