
HEH NTIS.PB96-150883 .u

AUTOMATIC DEDUCTION

STANFORD UNIV., CA

JUL 82

et E—D 0;

U.S. DEPARTMENT OFCOMMERCE |
| Netionel Technical informetion Service

This document is complete
as paginated by source.
Refer to Index.

PB96-150883

October 982 Report No. STAN-CS-82-937
Also numbered: HPP-82-19

Automatic Deduction

by

Michael Ballantyne, W. W. Bledsoe, Jon Doyle

Robert C. Moore, Richard Pattis, Stanley J. Rosenschein

Department of Computer Science

Stanford University

Stanford, CA 94305

Va A
: ow 2k

apie
Sprirpfnld, Vinginla B01

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
y READ INSTRUCTIONS

Y REPORT NUMBER PBS -150883 3. RECIPIENT'S CATALOG NUMBER
STAN-CS-82-937; HPP-82-19 IRIE
2 TITLE tong Supiimie) 8. TYPE OF REPORT & PERIOD COVERED

Automatic Deduction technical, July 1982

6. PERFORMING ORG. REPORT NUMBER

J. AUTHOR(S) STAN-CS-82-937; HPP-82-19

Michael Ballantyne, W. W. Bledsoe, Jon Doyle, §. CONTRACT OR GRANT NUMBERI(sl
Robert C. Moore, Richard Pattis, Stanley J. Rosenschein MDA 903-80-C-0107

(edited by Paul R. Cohen and Edward A. Feigenbaum)
9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PAOGRAM ELEMENT, PROJECT, TASK

Department of Computer Science AREA & WORK UNIT NUMBERS
Stanford University |

| Stanford, California 94305 U.S.A.
11. CONTROLLING OF FICE NAME AND ADDRESS 13. REPORT DATE 13. NO. OF PAGES

Defense Advanced Research Projects Agency July 1982 64
Information Processing Techniques Office 15. SECURITY CLASS. (of this report)
1400 Wilson Avenue, Arlington, VA 22209 Unclassified

YR Rola Stapaon,Hes LRATRepreventacive to
Office of Naval Research, Durand 165 18s. DECLASSIFICATION/DOWNGRA DING
Stanford University SCHEDULE

16. DISTRIBUTION STATEMENT (0! this regortl

Reproduction in wholeor in part is permitted for any purpose
| of the U.S. Government.

12. DISTRIBUTION STATEMENT (of the sbstract entered in BIOCk 20, il gittgrent fram report)

20. ABSTRACT (Continue On tevarsa side il necesss’y and identify Dy Dbiock numbar)

This report is reproduced from Chapter XII, "Automatic Deduction,” of the Handbook of
Artificial Intelligence (Vol. III, edited by Paul R. Cohen and Edward A. Feigenbaum).
The chapter was written by Michael Ballantyne, W. W. Bledsoe, Jon Doyle, Robert C.
Moore, Richard Pattis, and Stanley J. Rosenschein. Janice Aikins organized the chspte
and edited most of the articles. This chapter on automatic deduction, also called
automatic theorem proving, describes resolution.and natural-deduction theorem proving,
the Boyer-Moore theorem prover, nonmonotonic logic, and logic programming.

FORM

BD 1 JAN 1473 UNCLASSIFIED
EDITION Of Y NOV $8 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Dota Emerem)

eS
RITY ASSIFICATION OF THIS PA Wh Dat ered) y

20 ABSTRACT (Continued)

DD. 2.14 73x1 JAN 73

EOITION OF 1 NOV 68 1S OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

Automatic Deduction

Michael Ballantyne, W. W. Bledsoe, Jor Doyle, Robert C. Moore,

Richard Pattis, and Stanley J. Kosenschein

Chapter Xa of Volume III of the

Handbook of Artificial Intelligence

edited by

Paul R. Cohen and Edward A. Feigenbaum

This research was supported by both the Defense Advanced Research Projects

Agency (ARPA Order No. 3423, Contract No. MDA 903-80--C-0107) and the SUMEX-
AIM Computer Project under the National Institutes of Health (Grant No. NIH
RR-00785). The views and conclusions of this document should not be interpreted
as necessarily representing the official policies, either expressed or implied, of the

Defense Advanced Research Projects Agency, the National Institutes of Health, or
the United States Government.

© 1982 by William Kaufmann, Inc. All rights reserved. No partof this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by

any mcans, rlecironic, mechanical, photocopying, recording, or otherwise, without

the prior writicn permission of the publisher. [lowever, this work may be reproduced
in whole or in part for the official use of the U.S. Covernment on the condition that

copyright notice is included with such oficial reproduction. For further information,

write Lo: Permissions, William Kaufmann, Inc., 33 First Street, Los Altos, CA 94032.

snymSEENdiastren 80 ou.

CHAPTER XII: AUTOMATIC DEDUCTION

A. Overview / 77

B. The resolution rule of inference / 86
C. Nonresolution theorem proving / 94
D. The Boyer- Moore theorem prover / 102
E. Nonmonotonic logics / 114
F. Logic programming / 120

FOREWORD

The Handbook of Artificial Intelligence was conceived in 1975 by Professor
Edward A. Feigenbaum as a compendium of knowledge of Al and its ap-
plications. In the cnsuing ycars, students and Al rescarchers at Stanford's

Department of Computer Science, a major center for Al rescarch, and at
universities and laboratories across the nation have contributed to the project.

The scope of thc work is broad: About 200 short articles cover most of the im-

portant ideas, techniques, and systems developed during 25 ycars of research
in AL

Overview articles in cach chapter describe the basic issues, alternative

approaches, and unsolved problems that characterize arcas of Al; they are
the best crilical discussions anywhere of activity in the ficld. Thesc, as well
as the more technical articles, are carefully edited to remove confusing and
uncsscntial jargon, key concepts are introduced with thorough explanations
(usually in the overview articles), and the three volumes are completely in-
dexed and cross-referenced to make it clear how the important ideas of Al
relate to cach other. Finally, the Handbook is organised hierarchically, so
that readers can choose how dceply into the detail of each chapter they wish
to penctrate.

This technical report is reproduced from Chapter X11, “Automatic Dedue-
tion,” of the flandbook (Vol. 111, edited by Paul R. Cohen and Edward A.

‘ Feigenbaum). The overview was written by Robert C. Moore, who also
reviewed the other articles. W. W. Bledsoe provided the article nn resolu-
tion theorem-proving and edited the article on natural deduction, which was
prepared by Michael Ballantyne. Stanley J. Rosenschein wrote the article on :

logic programming; Richard Pattis, the article on the Boycr-Moore theorem
prover; and Jon Doyle, the article on nonmonotonic logic. Janice Atkins or-
ganized the chapter and edited most of the articles.

A. OVERVIEW

A CENTRAL PROBLEM in Al research is how to make it possible for com-
puters to draw conclusions automatically from bodies of facts. Any attempt
to address this problem requires choosing an application, a representation for
bodies of facts, and methods for deriving conclusions. This article provides an |
overview of the issues involved in drawing conclusions by means of deductive
inference from bodies of commonsense knowledge represented by logical for-
mulas. We first review briefly the history of automatic deduction—its origins,

| its {all into disfavor, and its recent revival. We show why deductive methods
are necessary to solve problems that involve certain types of incomplete infor- |
mation and how supplving domain-specific control information offers a solu-
tion to the difficulties that previously led to disillusionment with sutomatic
deduction. We discuss the relationship of automatic deduction to the new
field of logic programming. Finally, we survey some of the issues that arise in
extending automatic-deduction techniques to nonstandard logics.

Historical Background

Automatic deduction, or mechanical theorem-proving, has been a major
concern of Al since its earliest days. At the first formal conference on Al, held
at Dartmouth College in the summer of 1858, Newell and Simon (1956) dis-
cussed the Logic Theorist. a deduction system for propositional logic. Minsky
was concurrently develuping the ideas that were later embodied in Gelernter’s
theorem prover for elementary geometry (see McCorduck, 1979, p. 106; Gelern-
ter, 1963). Shortly after this, Wang (1960) produced the first implementation
of a reasonably efficient, complete algorithm for proving theorems in proposi-
tional logic.

Following these early efforts, the next important step in the development
of automatic-deduction techniques was Robinson's (1965b) description of a
relatively simple, logically complete method for proving theorems in first-order
predicate calculus (see Article I1I.C1, in Vol. I). Robinson's procedure and those
derived from it sre usually referred to as resolution procedures (Article XJ1.B),
because the basic rule of inference they use is the resolution principle:

From (Av B) and (~A\v C), mfer (BV C).

Robinson's work had a major influence on two somewhat distinct lines
of research. One of these was mathematical theorem-proving, which aims at
providing practical tools for discovering new results in mathematics. (That
line of research is not the main focus of this chapter, although Article X11.C
is oriented in that direction.) But Robinson's work also had a major impact

77

78 Automatic Deduction xX

on research into commonsense reasoning and problem solving. His ideas in
this area brought about a rather dramatic shift in attitudes toward automatic
deduction. The early attempts at automatic theorem-proving were generally
thought of as exercises in expert problem solving: the Logic Theorist was
regarded as an expert in propositional logic and Gelernter’s program was
considered an expert in geometry. However, the resolution method seemed
powerful enough to make it possible to build a completely general problem-
solver by describing problems in first-order logic and deducing solutions by a
general proof procedure.

Tue idea of using formal logic as a representation scheme and deductive
inference ac a reasoning method was apparently first suggested as an approach
to commonsense reasoning and problem solving by McCarthy in 1959. in his
“Advice Taker” proposal (see McCarthy, 1068). Black (1968) made the first
serious attempt to implement McCarthy's idea in 1964. Robinson's work
provided encouragement {or this approach, and a few years later Green (1969)
carried out extensive experiments with a question-antwering and problem-
solving svstem based on resolution (see Article mL.C1, in Vol. 1, on the QA}
program).

The results of Green's experiments and several similar projects were di:
appointing, however. The difficulty was that, in the general case, the search
space generated by the resolution method grows exponentially with the aum-
ber of formulas used to describe a problem, so that problems of even moderate
complexity cannot be solved in a reasonable time. Several domain-independent
heuristics (e.g., set of support; see Article XI1.B) were proposed to deal with |
this issue, but they proved too weak to produce satisfactory results.

It appears that these failures resulted principally from two consiraints
the researchers had imposed upon themselves: They attempted to use only
uniform. domain-independent proof procedures. and they tried to force all
reasoning and problem-solving behavior into the fr. mework of logical deduc-
tion. Like a number of earlier ideas such as self-organizing systems and
heuristic search. automatic theorem-proving turned out not 10 be the magie
formula that would solve all Al problems at once. In the reaction that fol-
lowed, however, not only was there a turning away {rom attempts to use
deduction to create general problem-solvers, but there was slso widespread
condemnation of any use of logic or deduction in commonsense reasoning or
problem solving. Arguments made by Minsky (1980, Appendix) and Hewitt
(1975; Hewitt et al., 1973) seem to have been particularly influential in this
regard.

Despite the disappointments of the late 1960s and early 1870s, there has
recently been a revival of interest in deduction-based approaches to common-
sense reasoning. This is apparent in the work of McDermott (1978), Doyle
(1979, 1980), and \oore (1980a, 1980b}; in the current work on nonmonotonic
reasoning (Bobrow, 1980); and in recent textbooks by Nilsson (1980) and
Kowalski (1979). To a large extent, this renewed interest seems to stem from

A Overview 9

the recognition of an important class of problems that resist solution by any
other method.

Why the Deduction Problem Will Not Go Away

If a description of a problem situation is complete in terms of the objects,
properties, and relations relevant to the problem, we can answer any question
by evaluation—deduction is unnecessary. To illustrate, suppose we have a
knowledge base of personne] information for a company and we want to know
whether there is any programmer who earns more than a vice-president earns.
We could express this question in first-order logic as:

SOME (X,Y) ((TITLE(X) = PROGRAMMER) AND

(TITLE(Y) = VICE-PRESIDENT) AND

(SALARY(X) > SALARY(Y))) .

If we have recorded in our knowledge base the job title and salary of every
emplovee. we can simply find the salary of each programmer and compare
it with the salary of every vice-president. No deduction is involved in this
process. On the other hand. we may not have specific salary information for

: each employee. Instead. we may have general information about (lasses of

empiovees. such as: |

All vice-presidents are managers.
ALL (XX) ((TITLE(X) = VICE-PRESIDENT) «

(CATEGORY (X) = MANAGER))

All programmers are professionals.

ALL (X) ((TITLE(X) = PROGRAMMER) -

(CATEGORY (X) = PROFESSIONAL))

All professionals earn less than all managers.

ALL (X,Y) (((CATEGORY(X) = PROFESSIONAL) AND

(CATEGORY(Y) = MANAGER)) «

(SALARY(X) < SALARY(Y))) .

From this information we can deduce that no programmer earns more than
any vice-president, although we have no information sbout the exact salary
of any employee.

A representation formalism based on logic gives us the ability to express
| many kinds of generalizations. even when we do not have a complete descrip-

tion of the problem situation. Using deduction to manipulate expressions
in the representation formalism allows us to make logically complex queries
of a knowledge base containing such generalizations. even when we cannot
evaluate a query directly. On the other hand, Al inference systems that are
not based on automatic-deduction techniques either do not permit logically
complex qu-ries to be made or they answer such queries by methods that
depend on the presence of complete information. For an Al system to handle

0 Automatic Deduction AN § |

the kinds of incomplete information people can understand. it must at least
be able to do the following:

: 1 Say that something has a certain property without saving which thing
has that property:

3(X) P(X);

2. Say that everything in a certain class aas a certain property without

saying wha: everything in that class is:

CC Y)(PX) = RIX);
3. Say that at least one of two statements is true without caving which

statement Ir true:

PvQ;

4. Say expliritly that a statement is false. as distinguished from simply not

saying that it is true:

~P).

Any representation formalism that has these capabilities will be, at the very

least. an extension of classical first-order logic (see Article 111.C1. in Vol. 1), and
any inference system that can deal adequately with these kinds of generaliza-

tions will have to have at least the capabilities of an automatic-deduction
system. Thus, although Al rejected logic as a representation method and
deduction as a reasoning method, Al systems that reason with incomplete
informetion are actually equivalent to automatic-deduction systems.

The Need for Specific Control Information

As ve remarked above, the fundamental difficulty with attempting to
base a general. domain-independert problem-solver on automatic-deduction

tr chniques is that there are too many possible inferences that can be drawn
st any one time. Finding the inferences that are relevant to s particular
problem can be an impossible task, unless domain-specific guidance is supplied
to contro! the deductive process.

One kind of guidance that is often critical to efficient system performance
is information about whether to use facts in a forward-chaining or dackward-
chaining manner. The deductive process can be thought of as a bidirectional
search process (see Article I.C34, in Vol. 1), partly working forward from
known facts to new ones, partly working backward from goals to subgoals. and
meeting somewhere in between. Thus, if we have a fact of the form (P — Q).
we can use it either to generate Q as a fact, given P as a fact. or to generate
P 3s a goal, given Q as a goal. Early theorem-proving systems used every fact
both ways, leading to highly redundant searches. More sophisticated methods

A Overview R1

that eliminate these redundancies were graduall:- devised. Eliminating redun-
danciez. however. creates choices as 10 which way facts are to be used. In the
systems that attempted to apply only domain-independent control heuristics,
a uniform strategy had to be imposed. Often the strategy was to use all facts
in a backward-chaining manner only, on the grounds that this would at least

guarantee that all the inferences drawn would be relevant to the problem at
hand.

The difficulty with this approach is that the question of whether it is
more efficient to use a fact for forward than for backward chaining depends
on the specific content of that fact. For instance. according to the Talmud.
the primary criterion for determining whether someone is Jewish is:

V(X) (Jeuish(mother(X')) — Jeuwish(X)).

That is. a person is Jewish if his or her mother is Jewish. Suppose we were to
try to use this rule for backward chaining. as most uniform proof procedures

would. It would apply to any goal of the form JEWISH(X). producing the
subgoal JENISH(MOTHER(X)). This expression. however, is also of the form
JEWISH (X). so the process would be repeated. resulting in an infinite descend-
ing chain of subgoals:

GOAL: JEWISH (MORRIS)

GOAL: JEWISH (MOTHER (MORRIS))

GOAL: JEWISH (MOTHER (MOTHER(MORRIS)))

GOAL: JEWISH (MOTHER (MOTHER (MOTHER (MORRIS))))

If. on the other hand, we use the rule for forward chaining, the number of
applications is limited by the complexity of the fact that originally triggers
the inference:

FACT: JEWISH (MOTHER(MOTHER (NORRIS)))

FACT: JEWISH (MOTHER (MORRIS))

FACT: JEWISH(MORRIS) .

It turns out, then, that the efficient use of a particular fact often depends
on exactly what that fact is and also on the context of other facts in which

it is embedded. Many examples illustrating this point are given by Kowalski
(1979) and Moore (19803), involving not only the distinction between forward

| and backward chaining but other control decisions as well.
Since specific control information needs to be associated with particular

facts. the question arises as to how to provide it. The simplest way is to embed
it in the facts themselves. For instance, the distinction between forward and

backward chaining can be encoded by having two versions of implication,
for example, (P — Q) to indicate forward chaining and (Q — P) to indi-
cate backward chaining. This approach originated in the distinction made in

2 Automatic Deduction XII

the programming language PLANNER (see Article V1.A. in Vol. 11) between
antecedent and consequent theorems. A more sophisticated approach is 10
make certain decisions (such as whether to use a fact in the forward or

backward direction) themselves questions for the deduction system to reason

about. by using “meta-level” knowledge. The first detailed proposal along
these lines appears to have been made by Hayes (1973), while experimental

systems have been built by McDermott (1978) and de Kleer et al. (1979),
among others. Wevhrauch (1980) has perhaps done the most to explore the
kind of system architecture in which this sort of reasoning would be possible.

Theory Formection and Logic Programming

Another factor that can greatly affect the efficiency of deductive reasoning
is the way in which a body of knowledge is formalized. That is. logically
equivalent formalizations can have radically different behavior when used with
standard deduction techniques. For example. we could define the relation

ABOVE as the transitive closure of ON in at least three ways:

v(X,Y) (ABOVE(X,Y) eo

(ON(X,Y} OR 3(Z) (ABOVE(X,2) AND ON(Z,Y)))) . |

¥ (X,Y) (ABOVE(X.Y) = :

(ON(X,Y} OR 3(2) (ON(X,2) AND ABOVE(Z.Y)))) ,

Y (X.Y) (ABOVE(X,Y) o=

(ON(X.Y) OR 3(Z) (ABOVE(X,Z) AND ABOVE(Z.Y)))) .

(These formalizations are not quite equivalent, as they allow for different pos-
sible interpretations of APOVE if infinitely many objects are involved. They
are equivalent. however, if only finitely many objects are being considered.)

Each of these formalizations will produce different behavior in a standard

deduction system. no matter how we make local control decisions of the
kind discussed in the previous section. Kowalski (1974) noted that choosing
among such alternatives involves decisions similar to those made when writing
programs in a conventional programming language. In fact, he otserved that
there are ways to formalize many functions and relations so that applying
standard deduction methods will have the effect of executing them as computer
programs. These observations have led to the development of the field of logic
programming (Kowalski, 1979) and the creation of new computer languages
such as PROLOG (Warren, Pereira, and Pereira. 1977). Such developments
are discussed in Article XILF.

Automatic Deduction tn Nonstandard Logics

So far. we have discussed automatic deduction for classical first-order

logic only. Many commonsense concepts, however. are most naturally treated

A Overview 83

in either higher order or nonclassical logics. This presents a problem. because

classical first-order logic is the most general logic for which the techniques of
automatic deduction are at all well developed. It turns out. though. that there |
are a number of techniques for reformulating representations in nonstandard
logics in terms of logically equivalent representations in classical first-order
logic.

Higher order logic differs from first-order logic in that it allows quantifi-
cation over properties and relations as well as individuals. That is. if we have

a first-order logic that allows us to make statements about all physical objects.
the corresponding second-order logic would allow us to make statements ahout
ail properties of and relations among physical objects: a third-order logic

would allow us to make statements about properties of and relations among
these properties and relations: and so forth.

In some cases, the transition from first-order to higher order logic presents
fewer difficulties than might at first appear. In fact, the standard deductive
procedures for first-order logic also work for higher order logic. except that
general predicate abstraction is not performed: that is. these procedures will
not construct predicates out of arbitrary complex formulas. If John is a man
is ropresented as MAN (JOHN). the predicate MAN can be retricved when we ask

: the second-order question. What properties does John have? All the deduction
svstem has to do is match X(JOHN) against MAN(JOHN) and return MAN as the
value of the variable X. But from the assertion that John is either a butcher

or a baker, represented as

BUTCHER (JOHN) OR BAKER (JOHN) ,

the svstem could not infer, without using predicate abstraction,that John
has the disjunctive property of being a butcher-or-baker. The svstem would
have to recognize that this complex expression could be reformulated as a
one-place predicate applied to JOHN.

(LAMBDA (Y) (BUTCHER(Y) OR BAKER(Y))) (JOHN) ,

which is of the right form to match X (JOHN).
If this sort of predicate abstraction is not required, stunaard first-order

deduction techniques are sufficient. There has been some work extending the
standard techniques to handle the more general case (e.g.. Huet, 1975). but
this makes the deduction problem much harder because of the combinatorics
of all the different ways predicate abstraction may be performed.

Another problem commonly encountered is how to do automatic dedue-
tion in logics that allow intensional operators. These are operators. such as
BELIEVE and KNOW. that produce sentences whose truth values depend fully
on the meanings, not just the truth values, of their arguments. Classical logic
is purely extensional. because the truth value of a complex formula depends
only on the extensions (denotations, referents) of its subexpressions. The
extension of a formula is considered to be its truth value, so the operator OR

h3 Automatic Deduction 1

is extensional because the truth of (P or Q) depends only on the truth of P
and the truth of @Q: no other properties of F and Q matter. The operator
BELIEVE. on the other hand. is intensional because the truth of A believes that

P depends generally on the mezning of P, not just on its truth value.
Many of the rules of classical logic, such as substitution of equals for

equals, do not apply within the scope of an intensional operator. To use a
classic example, since the morning star and the evening star refer to the same

object, it must be the case that The morning star is Venus is true if and only
if The evening star 1s Venus is true. However, it might be that John believes
the morning star is Venus is true. but that John believes the evening star is
Venue is false because. although the two embedded sentences have the same
truth value. they differ in meaning.

Fortunately. many of the difficulties presented by intensional operators
can be overcome by reformulating the statements in which they occur. There
are a number of methods for doing this, but one that is particularly elegant is
to reformulate intensional opertors in terms of their possible-world semantics

(Kripke, 1971; Hintikka, 1971:. The idea is that, rather than talking about
what statements a person believes, we talk instead about what states of
affairs. or possible worlds, ar: compatible with what he believes. Essentially,
A belteves that P is paraphrased as P 1s true in every world that is compatible
with what A believes. This can be expressed in ordinxry first-order logic
by making all predicates and functions depend explicitly on the particular
possible world they are evaluated in. The failure cf equality substitution in

the preceding example is then accounted for by noting that what John believes
depends on what is true in all possible worlds that are compatible with what
he believes, but an assertion that the morning star and the evening star are
the same is a statement only about the actual! world. Application of this idea
to reasoning about intensional operators in Al systems has been explored in
depth by Moore (1980b).

Finally. a type of nonstandard logic that has received much recent atten-

tion is nonmonotonic logic. Minsky (1980. Appendix) has noted that the treat-
ment of commonsense reasoning as purely deductive ignores one of ite crucial
aspects—the ability tn retract a conclusion in the face of further evidence.
A frequently cited example is that, if we know something is a bird, we nor-
mally assume it can fly. If we find out that it is an ostrich, however, we
will withdraw that conclusion. This sort of reasoning is called nonmonotonic
because the set of inferable conclusions does not increase monotonically with
the set of premises as in conventional deductive logice. The addition of the

premise that something is an ostrich results in removing the conclusion that
it can fly. While many procedures have been implemented that support this
type of reasoning, their theoretical foundations are questionable. Most of the
recent work on nonmonotonic logic (Bobrow, 1980: see Article XJL.E) has thus

been directed at developing a coherent logical basis for this kind of reasoning.

A Overview 85

References

McCarthy (1968). Black (1968), and Green (1968) discuss formal logic as
a representation scheme and deductive inference as a reasoning method for
commonsense reasoning and problem solving. This theme is amplified in two
readable texts by Nilsson (1971, 1980). For references on some of the other
topics discussed in the overview, see the reference sections of the subsequent
articles.

B. THE RESOLUTION RULE OF INFERENCE

ONE of the best known methods of automatic theorem-proving is the reso-
lution procedure introduced by J. A. Robinson {1965b). In this article, we
describe the method, present some examples, and discuss extensions to it.

Derivation of the Resolution Rule

The resolution method shows whether a theorem logically follows from
its axioms. If a theorem does follow from its axioms, then the axioms and

the negation of the theorem cannot all be true—the axioms and the negated
theorem must lead to a contradiction. The resolution method is a form of

proof by contradiction that involves producing new clauses, called resolvents.
from the union of the axioms and the negated theorem. These resolvents
are then added to the set of clauses from which they were derived. and new
resolvents are derived. This process continues. recursively. until it produces
a contradiction. Resolution is guaranteed to produce a contradiction if the
theorem follows from the axioms. The simple resolution rule that produces
resolvents is derived in the following paragraphs.

By the expression (P — Q) we mean [If P is true, then Q is true; for
example. John is a boy — John is male. A central rule of inference in logic is
modus ponens:

((P—=Q)and P) I Q),

which means that if (P — Q) is true and if P is true. then we can conclude
that Q is true. An extension of this is the chain rule:

(P—Q)and (Q = R) | (P—R)).

When the implications in the chain rule are rewritten in their logically equiv-
alent form (=P Vv Q), the chain rule becomes

(-PvQ)and (QVR) — (~PVR),

which can be written as:

(~P VQ)
(~Q VR)

(~PVR).

86

B The Resolution Rule of Inference 87

There is an apparent cancellation of the @ and —-Q. The disjunctions
=P Vv Q). (=@Q \ R). and (=P \V R) are called clauees. and (=P \' R) is called
the resolvent of (=P v @) and (=Q Vv R).

Implications in this simple form, called clause form. can be resolved
against each other; two clauses can be resolved to a single one. The heart
of the resolution proof method is to negate the theorem to be proved and
then to simplify and resolve clauses until a contradiction is found.

An Ezample

As an example of resolution. consider proving that (Dv E) follows from
A= CvVvD)yr{A Dv EY 2A (A — ~C). The first step is to negate the

theorem: (—~(D v E)). This is logically equivalent to (=D A —E). The next
step is to convert the axioms and theorem to clauses. The procedures for
this are explained in the last section of this article and in several texts

ie.g.. Nilsson, 1980): all we need to know here is that the implication (4 — B)
can be rewritten as the equivalent clause (=A v B).

The axioms are:

(A=CVvD)A
(AVDVE)A -

(A = =C).

They are rewritten as the clauses, and the theorem is added to the list:

| (~rAvCvD)A
(AvDvVE)A

(mA v =C)
(-D A-E).

The 7. conjunctions are dropped. leaving five clauses:

1. (~FAVC VD)

2. (AvVD VE)

3 (=Av=C)

| 4. (=D)

5 (~E).

If the theorem follows from its axioms, the axioms and the negation of the
theorem cannot all be true. Consequently. a contradiction must be implicit
in the five clauses just derived: they cannot all be true simultaneously. The
purpose of resolution is to find the contradiction. \We will resolve clauses

against each other until a contradiction “drops out”:

88 Automatic Deduction XII

1. (~AVCvD)
2.(AvDVE)

Resolution 1: (CvDvE) -~A and A
cancel each other.

22. (AvD VE)
3. (mA Vv ~C)

Resolution 2: (Dv Ev-C) -4 and A
cancel each other.

Resolution 1. (Cv Dv E)
Resolution 2. (D vv Ev =C)

Resolution 3: (Dv E) ~Cand C
cance! each other.

Resolution 3. (D v E)
4. (=D)

Resolution 4: (E) -D and D
cancel each other.

Resolution 4. (E)
5. (=F)

CONTRADICTION

This illustrates the process by which we determine that clauses and their
resolvents cannot all be true simultaneously.

The example just presented is from propositional logic. Now let us con-
sider first-order predicate calculus, where variables, predicates, quantifiers. and
functions are permitted (see Article 111.C1, in Vol. 1, for a discussion of logics).
The expression Pz) means P is true for z. For example, P(z) might mean
z is a positive number, so that P(2) is true, whereas P(-3) is false. Or P(x)
might mean that z 13 a boy, in which case we would expect P{John; to be true
and P(Peggy) to be false.

We will use the notation Vz P(z) and 3x P(z) to mean For all 2 P(x)
and For some z P(z), respectively. The first form is called a universe! quan.
tification. since it conveys the meaning that the clause is true for all objects:
the second is called an existential quantification. since it savs that the clause
is true for at least one object. For example.

Vz (N(z) — 2* > 0), and

dz (Nz) Az <0)

are true formulas. The first says that if z is a number, then the square of all
Z is either positive or zero. whereas the second says that there is at least one

B The Resolution Rule of Inference 89

object that is a number and is negative. Notice that =Yz P(z) is equivalent
to =r =P(z). and ==r P(z) is equivalent to Vz ~P(z).

It is also possible to have function symbols such as f and g. For example,
f(z) can mean father of z Thus, if M(z) means z is a male, then M{/(z)) is
always true.

Two complications arise when proving theorems with variables, quanti-
fiers. predicates, and functions. One is getting them into clause form; the
other is the process of unification. Converting predicate logic to clause form
is for.nally straightforward (see the last section of this article). However, it
i¢ important to understand the conceptual operations as well as the formal
ones. especially those associated with eliminating quantifiers. To eliminate
existential quantifiers. we simply choose a constant: for example. =r F(z) is
replaced by Pla). We instantiate the claim that an r exists by choosing a
particular a to take its place. However, if an existential v.antifier is within
the scope of a universal quantifier. there is the possibility that the z that exists
somehow depends on the identity of the universally quartified variable. Thus.
we cannot replace it with an arbitrary constant. To account for this, whenever
an exictential quantifier occurs within the scope of a niversal quantifier. its
varizhle i« replaced with a function of the universaliv quantified variable.

For example. vr =y Plr.y) is rewritten as Yz P(z. f(z)). denoting that the
second argument of the predicate P is a furction of the first. In this esau.ple,
f is called a skolem function, and f(z) is called a skolem expression.

We have discussed the rationales for eliminating existential quantifiers.

Universal quantifiers are simply dropped from clause form, because after exie-
tentially quantified variables have been replaced by constants or skolem func-
tions. we may assume that the remaining variables are universally quantified.
In the previous example, y was replaced by a skolem function and z is assumed
to be universally quantified; thus, the quantifier V is deleted. resulting in the
clause Ptr. f(z)

The other complication in proving theorems in predicate calculus arises
during resolution itself. Recall that during resolution we would have constants
“canceling” each other out; for example, ~A v B and 4 v C would resolve
to B v C after canceling A and —A. But how are resolvents to be produced
when there are variables and skolem functions? For example, does Pa) cancel
-P(z) in the following resolution?

-P(z) v Q(z) and
Pla) v R(2)

Qa) v R(2)

In this case. the answer is yes: P(a) cancels ~P(z). because the expression
~Piryis claiming that there ie no z for which P(r) is true (recall that r is
universally quantified), and P(a) is claiming that there ts an object a for which
Pla) is true. Thi< is an example of unification. the process of deciding whether

90 Automatic Deduction XII

the arguments of predicates are comparable for the purpose of resolution, and,
if they are comparable. what common substitution rnetance should be used.
In this case. the substitution instance was a; it replaces all instances of z.

including that in the predicate Q. The process of unification is analogous
to that of finding a common denominator for fractions: In order to make

comparisons between numbers expressed as z/3 and numbers expressed as
z/17, each is re-expressed as z/51. Similarly, thire is a unification algorithm
that finds a cornmon substitution instance for the arguments of predicates.

With these preliminaries over. we can now proceed 10 examples of resolu-
tion theorem proving in the predicate calculus.

The first step is. again. to negate the theorem and then put the axioms
and the theorem in clause form:

(-Pla)y ~ vz (Plz) v QU(1)))) (Axicm=)

22 Q(2) (Theorem)

vz =Q(z) {Negated Theorem)

In this case. a is a constant symbol. and there «-¢ no existential quantifiers
and so no need for skolemization. Universal quantifiers are simply dropped.
The A connectives are also dropped to vield three clauses:

1. =Pla)

2. P(z)v Q(f(z))

3. =Q(2).

These are resolved against each other as follows:

1. Clause 1 and cisuse 2 are resolved to produce Q(f{a)): the substitution
it afor z. or a/z.

2. Q(f(a)) is resolved against clause 3 to vield a contradiction: the sub-
stitution ic f(a) for z. or f(a)/z.

Since a contradiction is produced, we can conclude that the theorem followed
from its axioms.

Another example is proving that there is always a number zreater than
another number from the axiom that a number is less than its successor. {In
this case, infiz arithmetic functions are used in the clauses: they could equally
well be written in prefiz notation; e.g., Vt < (t. PLUS(t. 1)}.)

Ve(t<t+1) (Axiom)

YzZy(z < y) (Theorem)

First we negate the theorem:

JzVYy -(z < yg).

Then. since r is an existentially quantified variable that i= not within the scope
of a universal quantifier. we replace it with a constant. This eliminates the

R The Resolution Rule of Inference Ql

existential quantifier: universal quantifiers are simply dropped as before. The
resulting clauses are:

1. 1 <t+1]

2. -la <y).

But this inmediately results in a contradiction when a is substituted for t

and a + 1 is substituted for y.
A final example illustrates skolemization:

vz3y P(z,y) (Axiom) |

=z Pla, 2) (Theorem)

where a is a constant. First. we negate the theorem. vielding Vv: -P(a. 2).
Next. we eliminate quantifiers. Since zy is within the scope of the universal

quantifier vz. the variable y is replaced. not with a constant, but. instead.
with a skolem function. Universal quantifiers are dropped as usual:

1. P(z.g(x))

2. -P(a,z).

These clauses obviously resolve to a contradiction under the substitution
a'r. gla)'z.

It can be shown that resolution is complete for (i.e.. can prove all theorems
in) first-order predicate logic (Robinson, 1963b) and is sound (i.e.. will not
indicate that nontheorems are true).

Strategies

Although resolution is complete. it can be extremely time-consuming. As
brought out in ihe overview (Article XI1.A). resolution-based approaches to
problem solving fell into disfavor for just this reason.

Several strategies have been proposed to minimize the branching factor
of resolution proof trees. Several are discussed in detail in Nilsson (1980) and

in Chang and Lee (1973), and, thus, only two are briefly discussed here.
Set-of-support strategy. When at least one parent of each 1esvivent is

chosen from the negation of the theorem or from the set of clauses that are
derived from it. a set-of-support strategy is being used. This strategy clearly
restricts the number of clauses that can be resolved at any given time. It is
usually more efficient than breadth-first search.

Linear-input-form strategy. This strategy involves choosing resol-
vents so that one resolvent is always from the base set (the set of original
clauses). It is more efficient than the previous strategy. but it is not complete.
which is to say that there are cases in which it will not find a contradic-
tion when one exists. Nonctheless. the strategy is often used because of its
simplicity and efficiency.

92 Automatic Deduction X11

In addition to strategies designed to reduce the combinatorial explosion
involved in resolution, other simplifications can be made. One is to eliminate

tautologies from the set of clauses. A tautology is a trivially true clause
containing the subexpression A v —A.

Converting a Formula to Clausal Form

A formula, F, to be proved by resolution must first be negated and
converted to clausal form. It is assumed that F is a first-order formula that

is fully quantified. Conversion to clausal form is done by a series of steps:

1. Negate F: Replace F by —-F.

2. Remove — and « by replacing (A — B) by (~A v B) and (A ~ B) by
(FAV B)A(-B Vv A)

| 3. Move - inward, using the rules:

~(-A)= A,

~AAB)=-AvV -B,

~AvV B)= -A A -B,

. -Vz A(z) = 3x ~A(z),
-3z A(z) = Vz ~A(z). :

4. Move V and 2 inward (optional).

5. Rename variables 30 that no two quantifiers quantify the same variables.

6. Exchange 3 for akolem functions and then drop V's (see below).

7. Convert to CNF (conjective normal form) by repeatedly applying
De Morgan's Laws:

~{AAB)=-AvV-B

~AV B)= -AA-B.

In step 6, if 3y P(y)is within the scope of universal quantifiers Vz1Vz3...VZq,
and not within the scope of any existential quantifier, then replace 3y P(y)
by P(f(z1, ...,2a)), where { is a new function symbol (a skolem-function
symbol). All universal quantifiers are then dropped from the formula. Thus,

Vvz3yV¥Yz3w P(z,y, 2, wv)

is replaced successively by

VaVz3w P(z, fi(z),2,w)

Vz V2 P(z, fi(2), 2. fa(z, 3)

Pz, h (z), ff Ja(z, z)).

If n = 0, then y is replaced by a skolem constant yg (i.e., 2a function of
0 arguments).

B The Resolution Rule of Inference 93

It is usually faster to replace ~(P — Q) by (P A —Q) before converting
(P= @Q)w (~P v Q) when P is a large formula.

References

The resolution rule of inference was first described by Robinson (19635b).
Resolution has been extended to handle the equality relation; this is discussed
in Robinson and \Wos (1969). This extension permits one to prove theorems
such as P(a) A a = b — P().

Strategies for speeding up resolution theorem proving have been discussed
in several places. Wos. Robinson. and Carson (1965) discussed set of support;

hyper-resolution was considered by Robinson (1963a}: locking was the subject
of Bover's thesis (1971): and SL-resolution was discussed by Kowalski and

Kuchner (1971). Model elimination was introduced by Loveland (1978). Gen.
eral texts on theorem proving are Loveland (1978) and Chang and Lee (1973).

Nileson's two textbooks (1971, 1980) are clearly written introductions to.
among other things, theorem proving as a8 problem-solving tool for Al systems.

C. NONRESOLUTION THEOREM PROVING

IN nonresolution or notural-deduction theorem-proving systems, a proof is
derived in a goal-directed manner that is natural for the humans using the
theorem prover. Natural-deduction systems represent proofs in a way that
maintains a distinction between goals and antecedents. and they use inference
rules that mimic the reasoning of human theorem-provers.

In resolution theorem-provers. no distinction is made between goals and
antecedents. But in natural-deduction systems. the distinction is carefully

mairtained for the clarity that it brings to the proof process. For example,
a2 natural-deduction system might display the following “worksheet” during a
proof:

H,. P

Hy. (P—Q)

Hy. (RAQ—YS)

C. Q oo
Cas. (R—S).

It indicates that H,, Hz, and Hy are three hypotheses and C, and C; are
goals. A resolution system would represent the same situation uniformly with
a set of clauses:

1. P

2. “PvQ

3. “Rv (~QVS)

4. QVR

5. Qv-=-§.

Although these representations sre logically equivalent, we have lost all infor-
mation in the second one about goals—about what we want to prove.

The representation of proofs in natural-deduction systems is especially
advantageous for man-machine interactive theorem-proving. in which a human
is required to intervene occasionally to help with the proof. It also facilitates
the implementation of semantic or domain-specific heuristics that help to
guide the search.

However, the clousal representation has one powerful advantage: A proof
can be derived with a single inference rule—the resolution rule. In contrast,
natural-deduction systems have relatively complex inference rules that simu-
late the kind of reasoning steps that humans use to develop proofs. For
example. suppose we want to prove that Fred has a hot tub, and we know

94

C Nonresolution Theorem Proving 95

that everyone who lives in California has a hot tub and that Fred lives in
California:

Antecedents: (Live-California(Fred) A (Live-California(X') — Hottub{X'))
Goal: — Hottub(Fred) .

To prove Hottub{ Fred), we scan the antecedents for anything that will
enable us to conclude Hottub Fred). and. if we find such a hypothesis, we set
up the subgoal of proving it. In this case, we can conclude Hottub{ Fred) if
we can prove {Live-California(X) — Hottul{X) and (Live-California(Fred)).
So we set up the subgoal of proving Live-California{ Fred). Formally. we can
derive a back-chain rule of inference:

To prove ([H # (4 — B)—~ Ci:
If (B— C). then prove (H — A). |

In the next section, we present several of the proof rules from the IMPLY

system, developed at the University of Texas (Bledsoe and Tyson. 1973).

IMPLY

: IMPLY views a conjecture to be proved as a conjunction of goals to be
achieved. and it considers 2 goal achieved when it finds a subatitution under
which the goal is valid. A substitution is simply an assignment of terms to
each variable in the conjecture. In other words, IMPLY considers a conjecture
proved when it finds some object or objects for which the conjecture is valid.
For example, the conjecture

(P(x) — Q(z)) A Pa) = Qo)

ie valid for the substitution a/z: that is, if every z in the formula were replaced
by a, then the statement would be a valid inference.

Let C be a conjecture we wish to prove and let H be the conjunction of
hypotheses that. hopefully, implyC. IMPLY will attempt to find a substitution
‘@) such that (H — C)(#) is a propositionally valid formula. For example,
if His

Pra) A (P(z) — Q(z)

and C is

Qa),

then the substitution (8) = a/z will make (H — C)(§) valid.
In the following discussion. we assume that all formulas are quantifier

free. That is, before the proof process starts, all universa’ and existen-
tial quantifiers, ¥ and 2. are removed by skolemization (sce Article XI.B).
Skolemization for both resolution and natural deduction is done in much the

same way, except that the roles of ¥ and 2 in natural deduction are the

96 Automatic Deduction XI

opposite of their roles in resolution, because resolution is a refutation pro-
cedure and natural deduction is not. For example. for natural deduction.

Yz P(x)— Q(a); skolemizes to [P(z) — Q(a)} and |[H — 3SzVy P(z.y)]
skolemizes to [H — P(z, g(z))].

Formulas are submitted to IMPLY, which attempts to prove them by
application of the rules discussed below. If F is a formula, [F| denotes the
value of IMPLY applied to F.

IMPLY rules. Some of the IMPLY proof rules are shown below.

1. MATCH: [H= (C]

If H(6) = C6),
then (8)

(the empty substitution is T).

This is the simplest of IMPLY's rules. The goal C is matched to the hypoth-
esis H and, if a substitution can be found. that substitution is returned. For

example, (P(r) — P(a)) is MATCH because a substitution a/z makes H and
C equal. The substitution is found by unification (see Article X11.B). MATCH
would fail for the clause (Q(z) — P{a)) because the predicates P and Q are
different.

2. AND-SPLIT: |H —- ANB]

If [H — A is (6)
and [H — B(#)] is (7),
then (8)(2).

If we want to prove that H implies A and B, we first prove that (H — A)
for some substitution. and then, using that substitution in B, we prove that
(H — B). For example, to prove |P(z) — P(a) A (Q(z) — P(a))}, we obtain
the substitution a/r when we prove [P(z) — P(a)}, and that substitution is
carried into the second step, namely, to prove [P(z) — (Q(a) — P(a))}. If. in
proving this, we obtain another substitution, A, then 8 and)\ are composed

to produce a substitution under which the entire expression [P(z) — P(a) A
(Q(z) — P(a))} is valid.

3. CASES: [H; v H; — C]

If [Hy — Clis (8)
and [H2(0) — C} is (\),
then (8)()\).

To prove that either of H, or H, implies C, we must prove that they both
do. Thus, we attempt first to prove [Hy — C] for some substitution, then
[Ha — C) under the previous substitution, and, if this second proof produces
a substitution, the two are composed.

C Nonresolution Theorem Proving 97

4. OR-FORK: AANA B= (C]

If A—Clis (6),
then (0).

else |B — (].

To show that A and B imply C, we must prove that A implies C or that B
implies C. For example, (Q(z) A P(a) — P(z)] is valid if either Q(z) — P(2))
or [P(a) = P(z)] is valid.

5. PROMOTE: (H — (A — B)]

‘HAA—-F.

This rule save simply that in trying to prove an implication (A — B) we can
use A as an additional hypothesis.

6. BACK-CHAIN: [H A(A~ B)— Cj

If ({B— Cis (6)
and [H — A(9)] is (3),
then (8)()\).

This rule applies when a term that implies the goal has an antecedent that
must be proved. It says that if C can be implied from B. and (A — B), then

we must try to prove A. For example, we can prove Q in [P A (P — Q) — @Q]
if we are able to prove P. If we instantiate H, A, B, and C in the BACK-CHAIN
rule with P and Q, we obtain

| iQ ~Qis (0)
and [P — P(6)] is ()\),
then (6)()\).

Obviously. [Q — @Q, and {P — P] follow from the MATCH rule. In this example
we have not considered substitutions. |

Consider what these inference rules do and how they differ from the

resolution rule. Each, with the exception of MATCH, reduces a goal to sub-
goals. Most of these subgoals are easily tested by MATCH; it simply tests
whether there is a substitution instance for the expression. The resolution
rule, by contrast, reduces clauses but does not propagate goals from one infer-
ence to the next.

IMPLY’s rules are incomplete, but in most cases this does not prevent
it from finding proofs of theorems. In fact, in many areas of mathematics,
the great majority of proofs can be found without the extra inference rules
required to make IMPLY complete. However, it can be made complete (Love
land and Stickel, 1973) and, in fact, one application warranted this (Bledsoe,
Bruell. and Shostak, 1979).

08 Automatic Deduction XI

Some proof procedures similar to IMPLY are described in Reiter (1976),
Bibel and Schreiber (1974), Ernst (1971. 1973), and Nevins (1974. 1973).

Incorporating Heuristics into Theorem Provers

Most of the advantages derived from the use of natural-deduction theorem
provers are not due to any decrease in the theoretical complexity of proofs
but. rather, to the ease with which the proofs and the heuristic information
incorporated into the prover can be understood. Most domain-dependent
heuristics are discovered only after much analysis of attempted proofs. and

: the more intelligible proof structure of natural systems facilitates this analvsis.
The next paragraphs describe kinds of heuristic knowledge that are typi-

cally grouped together under the heading of nonresolution theorem proving.
Reduction. The term reduction is used in two distinct but analogous

wavs. One interpretation is that reduction is the replacement of one logical
expression by an equivalent, simpler expression. Alternately, reduction refers
to the replacement of a term denoting an object by a simpler term. In both
cases. the expression

L—R

stands for a reducer. The reducer L — R is applied to'a formula or term F
by replacing an expression of the form L(f) (where (6) is a substitution) by
the expression R(6). The resulting formula or term is called an immediate
reduction. Reductions are simpler in that they have fewer symbols or are
smaller: formal requirements for simpler relations are discussed by Knuth and
Bendix (1970) and Lankford (1975).

From elementary set theory, IMPLY uses (among others) the following
reducers:

te (ANB)—teAAtEB

te (AUB)—~tc AVteB

tC (ANB)~tC AAtCBB.

Examples of reducers from algebra include:

24+0—2

zZ-1—=1x

z+(—2)—=0

—(z+y) = (=2) + (-v).

IMPLY maintains a list of reducers that are applied to a newly created expres-
sion until it cannot be reduced further: the resulting expression is called the
irreducible form of the original expression relative to the list of reducers.

There are two very important properties of certain sets of reducers. A set
of reducers (R) is said to have the following:

C Nonresclution Theorem Proving 99

1. The finite termination property (FTP). if there is no sequence of expressions
fo.t)..... where t,., is an immediate reduction of t,.

2. The unique termination property (UTP). if. for every expression t. all irre-
ducible forms of t are identical.

Any set of reducers that has both the FTP and the UTP is called a complete set

of reducers. There are algorithms for deciding whether a set of reducers with
the FTP has the UTP (see knuth and Bendix, 1970; Lankford 1975; Peterson

and Stickel. 1977). In fact. the same algorithm can be used to extend a set
of reducers that fails to have the UTP to one that does. Much research is

currently being done on extending these algorithms.
Forward chaining. In addition to the rules mentioned earlier. INIPLYs

se: of rules includes:

FORWARD-CHAINING: [(AA (A — B)) = C]

I A is ground (i.e.. has no variables) and A’ = A(§),
then (B(8) AAA (A = B))—-C).

This rule differs from backward chaining in that it adds a new term to the
set of hypotheses: From (4 A {A" — B)). this rule adds B(#) to the set of

hypotheses when 4’ = .4(#). that is. when a substitution instance can be
found for .4 and 4’. Note that this rule does not produce smaller subgoals.
a= do the other rules we described. but, rather, it is used to infer auxiliary
terms.

The rule contains an explicit ground restriction that A should have no
variables. An intuitive justification for the ground restriction is that, since
A is an assertion made by the hypothesis about specific objects (the ground
terms) in the world. immediate consequences (B(8)) should be explored.

Many theorem provers have carried this forward-chaining rule a step
further and have incorporated domain-specific knowledge into a set of demons
that scan the hypotheses for sets of assertions. Upon finding the assertion it
is jooking for, a demon makes its own assertions. For example, a theorem
prover might contain the following demon from elementary set theory:

Scan the hypothesis for sets A, B, and C. If the assertions AC B and
C C B are present, and if the set AUC is mentioned somewhere, then

assert AUC C B. -

Provers using variations of this technique are described by Ballantyne and
Bennett (1973). Ballantyne and Bledsoe (1977), Nevins (1975), and Hewitt
(1971).

Decision procedures. Certain theories, unlike number theory, have the
property that there are algorithms to decide whether a sentence is true or

false in the theory. Significantly, these algorithms are often direct and can
make such decisions very quickly. For example, sets of linear inequalities over
the real numbers can be decided very quickly by the simplex algorithm. The

100 Automatic Deduction XII

theory of arithmetic restricted to addition and multiplication by constants can
be decided (Presburger. 1930). and. in fact, if ore restricts the quantification
on sentences in prenex form to universal quantification, that theory can be

decided quickly (Bledsoe. 1974; Shostak, 1975). Decision procedures dealing
with integration (Risch, 1969) are a main component of MACSYMA. Many
fragments of theories useful in program verification have fast decision proce
dures (Nelson and Oppen. 1978).

A particularly interesting extension of this idea is to let the theorem

prover “grow” its own decision procedures for classes of equational theories
using the concept of complete sets of reducers (see Knuth and Bendix. 1870:

Lankford. 1975: Huet. 1972: Lankford and Ballantyne, 1977: Ballantyne and
Lankford. 1979: Peterson and Stickel, 1977).

Induction. Induction is another area in which the addition of heuris-

tics can improve the performaiice of a prover. Since the development of a
sophisticated set of such heuristics is one of the major achievements of the
Bover-Moore theorem prover, we refer the reader to Article XJ1.D.

Examples and counterexamples. Examples and counterexamples play
an important but poorly understood role in automatic theorem proving. Spe
cifically. if T is a set of axioms for a theory and if H — C is an attempted
theorem. then an example is an interpretation of the predicate. function, end
constant symbols that satisfies H and the axioms. :

For example, let T be the axioms for the real numbers, and let A be
f(a) SOA f(b) 2 0 A CONTINUOUS(/, a, b)], where f, 2, and b are constants
and CONTINUOUS(f, a, b) means that the function f is continuous on the closed
interval [a,b]. Then the assignment

a—0

be—1

J — (Mz)2z-1)

is an example.

To see how this example might be useful in controlling the search for
a proof, suppose that the theorem prover is asked to prove the ccnclusion
C = (SOME z)(f(z) = 0), given the above axioms and hypotheses. Suppose
that, in the course of proving C, the prover encounters the subgoal f(t) < 0,
where { is a term that evaluates to 3/4 in the example. Since f(t) = f(3/4) ==
2-3/4-1 = 1/2 and since 1/2 is not less than or equal to 0, the prover is
allowed to discard this subgoal. Several theorem provers have incorporated
examples as a subg sal filter (Gelernter, 1959: Reiter, 1976; Bledsoe and Ballan-
tyne, 1979). In all these provers, the examples must be generated by the
user. However, Bledsoe and Ballantyne describe a program that, when given
an example, extends the interpretation to include the skolem functions and
constants that result from quantifier elimination.

It seems likely that mathematicians use examples much more often as sub-
goal proposers than as subgoal rejectors. Mathematicians often use examples

C Nonresolution Theorem Proving 101

to guide the search for a proof from beginning to end. Since they usually
discover theorems by building and inspecting examples, it seems likely that
the same examples would be useful in proving these theorems. Constructing
good examples is a very difficult task but one that must be understood if
reasonably competent theorem proving is to be done by computer. Lenat’s
AM system (1976; Article XIV.D4c) constructed and used examples to help
make conjectures.

Conclusion

Nonresolution. or natural-deduction. proof procedures are designed to

develop proofs in a goal-directed manner that is easy for humans to under-
etand. Unlike resolution methods. natural deduction uses inary proof rules to

reduce goals to subgoals. In addition. natural-deduction systems often include
domain-specific heuristics to speed up parts of a proof.

Any proof that can be derived by natural deduction can also be derived
by resolution, given enough time. The advantage of natural deduction is
chiefly that the proofs it produces are relatively easy to understand. This is
very important whenever there is interaction between an automatic theorem
prover and a human.

References

The IMPLY system is discussed in Bledsoe and Tyson (1975).

D. THE BOYER-MOORE THEOREM PROVER

THE Boyer-Moore Theorem Prover (BMTP; Boyer and Moore, 1979) embod-
ies an extensible mathematical theory (recursive function theory) in which
theorems can be stated and automatically proved. The system is designed
to prove theorems by continuously rewriting the current formula (Bledsoe,
1971. 1977) without ever having to backtrack and alter a decisior.. While
cach rewriting rule is sound. formal equivalence is not necessarily preserved:
thus. the system is not complete. But heuristics are employed to guide the

rewriting process, applying rules that the system believes will allow reten-
tion of the “theoremness” of a formula. The theory can be extended by
new function definitions and new data types. Novel features include the
automatic use of structural induction (Burstall, 1969) and recursive quantifi-
cation (Skolem, 1967). The relations between recursion, termination, and the
inductively defined data objects allow the BMTP to produce induction proofs
automatically. Recursive functions. used as an alternative to quantification.
offer a powerful form of expression when dealing with finitely constructed
objects such as the discrete mathematical structures employed by computer
programs.

Rather than operate in the predicate calculus (see Article I.C1, in Vol. 1),
the Boyer-Moore Theorem Prover treats axioms and theorems as functions.
Axioms have the values non-F (true) or F (false). A theorem is proved by
showing that the value of its function is non-F. For example, a statement
that multiplication is distributive over addition would have appeared in QA3
(Green, 1969: see also Article MI.C1, in Vol. 1) as:

FORALL x FORALL y FORALL z §SUM(y.z.a1) AND PRODUCT (x,al,a) AND
PRODUCT (x,y.b1) AND PRODUCT (x,3,b2) AND SUM(b1,b2,b) AND
EQUAL (a,b)

(where z, y, 2, a. ay, b, by, ba are all variables). In the BMTP, the theorem
becomes:

(EQUAL (TIMES x (ADD y z)) (ADD (TIMES x y) (TIMES x 3))) .

The Bover-Moore Theorem Prover automatically proves the theorems it
is presented with, possibly using rewrite lemmas that have been retained
from the proofs of previous theorems or axioms that have been added by the
introduction of new data types. Most theorems cannot be proved fron: first

principles. so the user must structure the proof by determining intuitively
. which lemmas will be necessary. These are then proved a: theorems in their

own right and saved. Since lemmas must be proved before they can be

102

D The Bover-Moore Theorem Prover 103

automatically used. the BMTP is assured of the validity of the proof of the
final theorem. Even theorems that can be proved without leminas can have

their proofs speeded up by the use of lemmas. If the BMTP fails to prove the
desired result, the proof attempt helps the user determine where the proof

went awry and formulate new Jemmas. Thus, the BMTP is an automatic
theorem prover in the sense that the user specifies only what to prove, not
how to prove it. But if a proof fails, the user provides a bit of the “how” by
fcrmulating an appropriate lemma.

The system is experimental and is continually being tested and improved.
It has proved approximately 400 theorems. including the soundness and com-
pleteness of a tautology checker for propositional calculus. the equivalence of
interpreted and optimized compiled code for a simple arithmetic language.
the correctness of the Bover-Moore fast string-searching algorithm. and the

prime-{actorization theorem.

The Theory

The svntax of the theory is closely related to the prefix notation in LISP.
Terms are variables or are specified by (f 7; ...z,). where f is an n-arv
function symbol and all z, are terms. Constants are represented as O-ary

functions (e.g.. (TRUE). (FALSE). (ZERO)). The variables in any formula are
implicitly universally quantified.

Functions are introduced by adding the equality axiom:

(f 21... za) = (function body) .

To retain consistency. the BMTP requires that each newly defined function be
either nonrecursive or recursive but provably total. The proof of totality is
based on the notion of measure functions and well-founded relations. This is

discussed in detail later in this article in the section on induction.

In making function definitions it is often necessary to include tests that
allow the returned value of a function to be one of a set of terms. The usual

treatment of 'ogic does not allow for the embedding of propositions within
terms. so the BMTP recreates the effects of propositions at the term level.
Bover and Moore create four axioms to define the functions EQUAL and IF;
these form the core of the BMTP. \We abbreviate (TRUE) as T and (FALSE) as
F. and add the axiom that T and F are distinct:

1. T#F

2. X=zY=» (EQUALXY) aT

3. X#Y = (EQUALXY) =F

1. X=zF=2(IJFXYZ2 =2

S. X#F2(IFXY2)=Y

104 Automatic Deduction Xu

(For those readers who are not familiar with LISP notation, (IF X Y 2) means

If X, then Y; else Z.) Thus, the term (IF X Y 2) has the value 2 if the
proposition X = F is true and it has the value Y if X = F is false.

Bover and Moore do not define predicates but, instead, deal within a
theory of functions. Proving that the value of a function is not F is the
way the BMTP proves that a function is a theorem. Functional versions of
common logical connectives are defined with IF. These definitions capture the
semantics of the common logical connectives:

1. (NOT P) = (IJFPFT)

2 (ANDPQ) = (QFP (IFQTF)F)

3. (ORPQ =(IFPT (IFQTF)

4 (IVPLIES PQ) = (IFP (IFQ TF) T)

In addition to these and other functions, the BMTP allows the creation

of arbitrary data tvpes. These are typically defined inductively and made
known to the system by the Shell mechanism (discussed below), which adds
axioms that are guaranteed to leave the theory consistent. Data objects are

considered to be finitely constructed. Data types are mutually exclusive yet
not as:umed to be exhaustive. This guarantees that the subsequent addition
of new data types will not invalidate previously proved theorems.

Proofs within the BMTP are accomplished by absorption, idempotency,
the law of excluded middle (eg, TVX —=T, FVX =X, Xv-X=T,
and their commutative counterparts), and induction principles. Recursion as a
control structure is analogous to inductively defined data types as a data struc-
ture. The proof-theoretic counterpart of these two is the Generalized Principle
of Induction, or Noetherian Induction. A consistent induction mechanism is

presented within the theory. It allows a base case ax well as k remaining
induction steps. each of which can contain several induction hypotheses. It
requires a relation that is well-founded on a measured set of variables over
all substitutions required to instantiete the k + 1 cases. Heuristic methods
are employed in the BMTP to formulate this schema; they are discussed later
in this article in the section on induction. A well-founded relation r is one

that admits no infinitely decreasing sequences. That is, there cannot exist an
infinite sequence 1,2, ... such that (rX41X;). A simple well-founded relation
is < on the nonnegative integers, since for any X; we cannot find an infinite
sequence of z, such that

ee Xia € Xi € Xo £0- € X)y

The Shell mechanism. The Shell mechanism is used to introduce new

data types. It is just a syntactic form from which consistent and complete
type-axioms are created. As an illustration, the definition of lists by the Shell
mechanism is as follows:

p The Bover-Moore Theorem Prover 105

add the shell CONS, of 2 arguments

recognizer LISTP
accessors CAR, CDR

default values °*NIL®", "NIL" .

A few of the important axioms that were added (with symmetric CDR
axioms) are the following:

(LISTP (CONS x y)) — a CONS of two things is always
a list

(EQUAL (CAR (CONS x y) x)) — definition of the CAR accessing
function

(IMPLIES (LISTP x) (LESSP (CAR x) x)) -— a measure property used in

proving termination

(EQUAL (EQUAL (CONS a b) (CONS x y)) — two CONSes are equal if their

~ (AND (EQUAL = x) (EQUAL bd y))) parts are equal
(IMPLIES (LISTP x) — the svstem can trade CARs

(EQUAL (CONS (CAR x) (CDR x)) and CDRs for CONSes

x))

Overview of the Theorem Prover

The BMTP proves that a formula is a theorem by continually rewriting the
formula until it is reduced to T. The BMTP operates in a strictly linear manner
without backtracking. This strategy leads to a stratification of the classes of
rewrite rules, co that the more conservative transformations (i.e., those which

guarantee equivalence) are attempted first. Induction rewrite rules are applied
last. since they are the least conservative transformations and it is important

that induction be applied to the simplest and most general form of a formula.
As a consequence. many of the rewrite rules have been designed to produce a

formula that is more amenable to inductive arguments. We will now discuss
these rule classes. Rules at level 1 + 1 are tried only when all rules at level
t fail to be applicable. If 8 rewrite rule applies at any level of the hierarchy,
the formula is rewritten and the entire theorem prover is recursively invoked
on the new formula.

Simplification

The formula is rewritten by the logical proof rules, the initial axioms,
| the axioms added by function and data-type definitions, and retained lemmas

that were previously proved as theorems. (The formuia is also rewritten to
conjunctive normal form. or clause form; see Article X11.8.) All these rewriting
rules retain truth-value equivalence. The Simplifier is a small theorem-prover
in ite own right. Examples of the information known to the Simplifier are:

1. Logical Proof Rule:
X /T=T

106 Automatic Deduction XI

2. Initial Axiom:

xy (IFxyz)sy

3. Function Axiom:

(APPEND x y) = (IF (LISTP x)

(CONS (CAR x) (APPEND (CDR x) y)) y)

4. Data-type Axiom:

(CDR (CONS x y)) = y

5. Lemma: |

(APPEND (APPEND x y) z) = (APPEND x (APPEND y 2))

Simplification is sufficient to prove the following formula (which is the
base case of the induction needed to prove that APPEND is associative):

(IMPLIES (NOT (LISTP A))

(EQUAL (APPEND (APPEND A B) C)

(APPEND A (APPEND B C)))) .

Knowing that A is not a list allows the APPEND functions to open up and
return their second arguments: see the functional definition of APPEND above.
The formula simplifies to:

(IMPLIES (NOT (LISTP A)) .

(EQUAL (APPEND B CO)

(APPEND B C))) .

Since the two APPEND terms are identical, this simplifies to:

(IMPLIES (NOT (LISTP A)) T) .

This in turn simplifies to T, since the formula is equivalent to the clause
(LISTP A) V T, which by the above proof rule is rewritten to T.

If simplification cannot determine the truth value of a formula. it will
probably be necessary to apply the induction rewriting rules. The next four
cases illustrate how the formula is prepared for induction.

Elimination of Undesirable Concepts |

The BMTP restates a formula, trading some functions for others when
the substituted formulas are easier to rewrite or have more lemmas involving
them. This type of rule is a special subclass of the general simplification rules
and is handled separately since it requires special processing. An example of
this kind of rule is:

(p x) = (p (CONS A B)), if xis known to be a list.

An example of its application is found in the proof of the theorem that
the function REVERSE is its own inverse:

D The Bover-Moore Theorem Prover 10%

(IMPLIES

(AND (LISTP X)

~ (EQUAL (REVERSE (REVERSE (CDR X))) (CDR X)) |
(PLISTP (CDR X)))

(EQUAL (REVERSE (APPEND (REVERSE (CDR X))

(CONS (CAR X) *NIL*)))

X))

= (IMPLIES

(AND (LISTP (CONS A B))

(EQUAL (REVERSE (REVERSE (CDR (CONS A B)))) (CDR (CONS A B)))

(PLISTP (CDR (CONS A B))))

(EQUAL (REVERSE (APPEND (REVERSE B)

(CONS A "XIL")))

(CONS A B))) .

Here we have traded a CAR and CDR for a CONS. Note that this transformation

was applicable since X was known to be a list from the hypothesis of the
implication. A and B are new variable names.

This fairly complicated formula is passed back to the Simplifier. which
rewrites it as:

(IMPLIES

(AND (EQUAL (REVERSE (REVERSE B)) B)

(PLISTP B))

(EQUAL (REVERSE (APPEND (REVERSE B)

(CONS A "NIL")))

(CONS A B))) .

Use of Equalities

The BMTP uses equalities by substituting equals for equals. and then it |

usually removes the equality term from the formula. This is not guaranteed to
be complete, but the heuristic decision procedure in BMTP that decides which
terms to substitute performs excellently. The equality term is removed to
simplify the statement of the formula (which hopefully is still a theorem). Two
distinct classes ofsubstitutions—uniform substitution and cross-fertilization—

are performed.
Uniform substitution. If the term (EQUAL x ev) is found, where x iss

: term and ev is an explicit value. then ev is uniformly substituted for x within
the rest of the formula. The symmetric case applies.

Cross-fertilization. If the term (EQUAL x y) is found, where both x and
y are not explicit values, and another term of the form “(p (an) term) term

| that contains y))" is found, then x is substituted for y only in the right-hand
side of p. and the equality is removed from the formula. The symmetric case
applies. This heuristic is closely related to the way induction is performed. it is

108 Automatic Deduction XI

designed to allow maximum use of the induction hypothesis. The connection is

a bit subtle and the reader is referred to Boyer and Moore's (1979) description.
Continuing the above example. the antecedent has an equality of the

form “(EQUAL x B)" and the consequent term is of the form “(p (term) (term
with B)).” so we cross-fertilize. This results in:

(IMPLIES

(PLISTP PB)

(EQUAL (REVERSE (APPEND (REVERSE B)

(CONS A "NIL")))

(CONS A (REVERSE (REVERSE B))))) .

Generalization

A further simplification can be accomplished by replacing a term in the
formula by a variable, thus generalizing the formula and allowing an induction
on the new variable position in the formula. Hopefully, by the time we reach
this point, the internal structure of the term has already contributed its
significance to the proof and can be ignored. To prevent the formula from
becoming overgeneralized. the BMTP can add certain type-restrictions to the
variable introduced. The REVERSE example that we have been following does
not adequately illustrate generalization, so we move temporarily to a different
example:

(EQUAL (APPERD (FLATTEN 2)

(APPEND (FLATTEN V) ANS))

(APPEND (APPEND (FLATTEX Z) (FLATTEN V))

ANS))

= (IMPLIES (AND (LISTP A) (LISTP B))

(EQUAL (APPEND A (APPEND B ANS))

(APPEND (APPEND A B) ANS))) .

Here, (FLATTEN 2) and (FLATTEN V) have been generalized to A and 3,
respectively. Tvpe information has been added showing that both A and 3 are
list data types, since the system is aware of a theorem stating that FLATTEN

always produces a list. The formula now is just the statement that APPEND
is associative.

Elimination of Irrelevant Terms

In performing the above transformations, it is often the case that irrele-
vant terms are left in a formula. Removing these terms cleans up the formulas.
While these terms are difficult to spot in general, there are two special cases,

shown as rules 1 and 2 below, that frequently occur. In both cases. all the

D The Bover-\oore Theorem Prover 109

terms of a formula are first partitioned into equivalence classes with term 1
in the came class as 1erm 2 if they share a common variable.

Rule 1. If a class contains only nonrecursive functions, then all terms in
the class are removed from the formula. If these formulas were

always non-F. the Simplifier should have been able to prove this
fact. Passing these terms on te; the Induction mechanism will not

help, since the terms are not recursively defined.

Rule 2. If a class contains a single recursive function, it is removed. A
single function that cannot be shown to be always non-F by the
Simsplificr probably can assume non-F values.

Continuing our example of the proof (EQUAL (REVERSE (REVERSE X)) X).
the theorem is generalized to:

_ (IMPLIES
(PLISTP B)

(EQUAL (REVERSE (APPEND X (CONS A °“NIL"))) -

(CONS A (REVERSE X))))

by replacing all occurrences of (REVERSE B) with X. Nc extra type information

i¢ added during generalization. The antecedent is eliminated by rule 2. leaving
the formula:

(EQUAL (REVERSE (APPEND X (COKS A “"NIL*")))

(CONS A (REVERSE X))) ,

which is a statement asserting that reversing the concatenation of X and A is
equivalent to concatenating A with the reverse of X.

Performing an Induction

If. in the course of these rewrites, the theorem has still not been reduced

io T, the BMTP automatically formu.ates a valid induction argument to try
to prove the theorem. The heuristics employed here represent the heart of

the BMTP. Inductions are formulated by using information collected at the
time the function is defined and at the time the actual induction is needed.

Function-definition time. \\'hen a function is defined, the system must
prove that the function terminates before allowing the definition. Termination
is proved by finding a well-founded function that decreases when applied to
2 subset (measured set) of the arguments used in all recursive calls. The sys-
tem exhaustively searches through all lexicographic orders of all well-founded
functions (LESSP is initially the only one. but others are added by the Shell
mechanism) applied to all subsets and permutations of a function's arguments.
Theise are all collected in a set of induction templates that are associated with

110 Automatic Deduction 11

the newly defined function. These templates include the form of the induc-
tion to be performed and all of the variable substitutions that will need to be
made.

The following illustrates the creation of induction templates at function-
definition time for REVERSE, which is defined as:

(REVERSE X) = (IF (LISTP X)

(APPEND (REVERSE (CDR X)) (CONS (CAR X) *NIL®))

(CONS X "NIL™)) .

The proof of termination is fairly simple, since REVERSE is monadic and there
is only one recursive function call within its body. The BMTP utilizes the
information that the recursive function call is executed only if X is known
to oe a list. Thus, to prove that REVERSE terminates, it tries to prove the
theorem:

© (IMPLIES (LISTP X) (LESSP (CDR X) X)) .

The system proves this theorem (it recursively calls itself) by noticing that
this formula is equivalent to an axiom added by the Shell mechanism during
the definition of lists. This is the only way the system can prove termination.
so the only induction template produced is:

(AND (IMPLIES (NOT (LISTP x)) (p x))
(IMPLIES (AND (LISTP x)

(p (COR x)))
(p x3)) .

This states that, to prove the formula (p x) where p involves the REVERSE
function, it is sufficient for the BMTP to prove that:

1. If x is not a list (the base case), then (p x) can be proved. :

2. If x is a list and (p (CDR x)) is assumed to be true (the induction
hypothesis), then (p x) can be proved.

Typically, the formula p will also involve other recursive functions that have
their own induction templates. The problem of which induction template to
use cannot be handled at function-definition time (since the BMTP has no
way to determine how a newly defined function will be used) and is handled
when the induction rewrite rules are trying to rewrite the formula.

Instantiation time. When an induction rewrite rule is attempted. the
induction templates for all recursive functions in the formula are retrieved.

These templates are then sifted by the following rules:

1. Only legal templates (with valid substitution instances) are retained.
Substitutions may be invalid for many reasons, the most common that

D The Boyer-Moore Theorem Prover 111

the template requires that a nonvariable argument he used as an induc-
tion variable. The REVERSE induction template could not be used if
the formula p involved only terms like (REVERSE (f x)): hopefully. the |
generalization heuristics will substitute a variable for the function (¢ x).

2. Induction schemata sre obtained when the legal icmplates are instan-
tiated by performing the required substitutions. All subsumed induction
schemata are discarded. This means that the system will discard weaker

induction arguments for ones with a richer case structure (duplicates are
removed by this method aleo).

3. The remaining templates are then merged. Two templates are merged if
they contain a cornmon induction variable. allowing for the final induc-

tion scheme to contain induction hypotheses for every relevant induction

variable. Thus. if one induction scheme requires induction on the vari.

ables x and y and another requires induction on the variables y and
2. i. seems plausible to require simultaneous induction on all of x. ¥.
and z. |

4. If more than one scheme still exists and there is one “unflawed” scheme,
then all “flawed” schemes are discarded. An induction scheme is unflawed

if every occurrence of an induction variable is in a position where it is
: decomposed.

5. Finally, if more than one scheme still exists. a scoring function deter
mines which one to use.

8. The final scheme is then instantiated for the specific formula to be

proved.

Boyer and Moore (1979) report that 90% of all inductions’ arguments vield
only one unflawed scheme and. of the remaining 10°¢. half have no unique
correct scheme (i.e.. the theorems are symmetric in some variables).

Continuing the REVERSE example, the BMTP is about to create an induc-
tion argument for proving:

(EQUAL (REVERSE (APPEND X (CONS A "NKIL")))

(CONS A (REVERSE X))) .

It determines the induction schemata for REVERSE and APPEND, and since

both functions perform CDR recursions on X, their schemata are merged to
create the unique induction schema. which is finally used:

| (AND (IMPLIES (NOT (LISTP X)) (p X A)
(IMPLIES (AND (LISTP X)

(p (COR X) A))
(pXA)). |

112 Automatic Deduction \IJ

Themes of the Boyer-Moore Theorem Prover

Proof by induction. The outstanding feature of the BMTP is that jt

automates induction proofs. Since most common data-types (integers, lists,
trees. formulas) are defined inductively, it is imperative that theorem provers
that prove properties of programs have the capability of performing inductive
arguments (automatically or manually). The excellent performance of the

BMTP is in a large part due to the heuristic methods employed in constructing
induction proofs. These heuristics form the core contribution the BMTP has
made to Al research.

Referencing problem. A key problem in current theorem-proving svs-
tems is the performance degradation due to increased knowledge. \While

increased knowledge should improve a system's performance. it typically just
expands the possible solution space, causing excess searching. This has been

named the referencing problem by Bledsoe (1974). Resolution theorem-provers
suffer greatly from this problem. Such methods as proof by analogy (Kling.
1971) have been used to restrict the reference set. but they have met with little

success, The BMTP does not address this issue with a.iy more sophistication

than trying the rewrite rules in reverse chronological order (with complex

results first). This simple strategy has proved effective even when operating
within an environment that contains approximately 400 theorems.

The language of the theorem prover. Since the main application
of the BMTP has been to prove properties of programs, a possible misconcep-
tion should be avoided. There is a difference between the language used to
express formal statements whose validity is being proved and the language

used to express a program. The theory is just a mathematical tool for mak-
ing precise assertions sbout the properties of discrete mathematical objects.
The language used to express the theory is closely related to the pure LISP
programming language and should be considered as an alternative to the use
of the predicate calculus. Frequently, programs can be written as functions
within the theory (since the semantics of a LISP-like program can be easily

captured within the language of the theory) just as it is possible to use predi-
cate calculus as a programming language (Kowalski, 1974). But a distinction
should be made between the language used to express theorems and the pro-
gramming language used to describe an algorithm about which the BMTP is
proving theorems. When proving properties about programs, the user applies
a relevant theory of program semantics to derive formal statements whose
validity implies that the program has the desired properties. These statements
are then translated into the theory on which the BMTP operates. The BMTP
can then be instructed to try to establish the validity of these statements. To
illustrate this fact, the proof of the correctness of the compiler is expressed by
McCarthy's functional method, while the correctness of the string-searching
algorithm is expressed by Floyd's method of inductive assertions.

D The Bor er-Moore Theorem Prover 113

Performance. Two performance measures are relevant to theorem prov-
ers. The first is the system's ability to represent typical facts and theorems in

the domain of interest (epistemological adequacy). The second is the ability
to prove theorems within a reasonable amount of time. Both performance
measures contain ambiguity (e.g., “typical,” “reasonable”). But in the BMTP,
many interesting facts and theorems c2a be represented, and proof times are
commensurate with a user's patience when debugging proofs interactively.
The BMTP has been applied to a large number of theorem-proving tasks, some
of which are very difficult by human standards. Most theorems are proved
in well under a minute. although most proofs require lemmas to be proved

previously. Nevertheless. this is one of the most powerful theorem provers
available.

References

Boyer and Moore discuss their theorem prover in their 1979 article.

E. NONMONOTONIC LOGICS

| SEVERAL FORMS of nondeductive reasoning have attracted careful scrutiny.
Purely deductive reasoning techniques have long been recognized as inade-
quate for capturing all intelligent thought. Statistical and inductive reasoning,
which concern inexact and generalizing reasoning. have received much study
as possible extensions or alternatives to deductive reasoning. Nonmonotanic

ressoning. recently formalized in nonmonotonic logics. is the latest extension
to deductive reasoning. This article sketches the nature of. reasons {or. and

approaches to nonmonotonic logics.

The Task of Logic

The task of logic is the judgment of arguments. Historically, logic has
been the science of argumentation, the study of which arguments are good and
which are not good. Different purposes engendered different conceptions of
good. Arguments to convince capricious, distracted. and sometimes irrational
humans were judged by the standards of effective rhetoric. which concern,
among other things, the size, structure, motivation, and emotional impact

of arguments and their steps. Inductive logics judged arguments that made
generalizations; statistical logics judged arguments that dealt with frequencies
and probabilities; and deductive logics judged arguments that made restate
ments, that is, truth-preserving inferences.

While important insights were gained into the philosophical and practical
questions underlying rhetorical, statistical, and inductive reasoning, perhaps
the philosophically most striking advances were made in connection with
deductive reasoning. Philosophers, logicians, and mathematicians explored
the powerful ideas of formal languages, trutl.-theoretic semantics, set theory,
and the mathematics of formal systems, model theory, and proof theory.
These ideas proved so fruitful that logic for the most part came to be identified
with deductive logic, the study of truth-preserving inferences. This identifi-
cation grew so strong that many of the proposed nondeductive logics have
been attacked as false logics. But logic is a science of thought and argument,
not merely a science of truth-preserving inferences.

The Task of Nonmonotonic Logic

The task of nonmonotonic logics is to judge cases of nonmonotonic reason-
ing. that ie. reasoning that involves adopting assumptions that may have to be
abandoned in light of new information. For example, a scheduling secretary

114

E Nonmonotonic Logics 115

may employ the inference rule that he (or she) should schedule cach new
meeting on the closest future Wednesday unless and until he finds reasons for
scheduling the meeting otherwise. While working out the week's schedule. the |
secretary: may tentatively schedule the first meeting on the next Wednesday,
only to reschedule it later, thereby abandoning his initial assumption, when he
learns that a meeting is requested for that Wednesday specifically to accom-
modate a visitor.

This reasoning is called nonmonotonic in contrast wo the monotonicity of
the set of theorems of a set of axioms in deductive logic. In deductive logic,
the addition of new axioms to a set of axioms can never decrease the set of

theorems. At most, the new axioms can give rise to new theorems. co that the

set of theorems grows monotonically with the set of axioms. In nonmonotonic

logics, the set of theorems may lose members 2s well as gain members when

new axioms are added.

Reasoning by Default

Two cases of nonmonotonic reasoning have been studied: reasoning by
default and reasoning by circumscription.

The defaults of reasoning by default are statements or rules according to
which (as in the scheduling example above) some statement is to be believed.
unless and until otherwise demonstrated. Defaults can be found in many
places in standard Al techniques. They are used in stating generalities to

which exceptions may be acknowledged without catastrophe. For example. &
default might be that all birds can fly; penguins and ostriches are exceptions.

In structured knowledge-representation systems (see Article MM.C7, in Vol. 1).
such defauits often take the form of default fillers of frame slots. For exam-

ple. an airline reservation system might describe each customer with a pas-
senger frame in which the class slot has the default value coach. Defaults also

enter into many knowledge-representation systems implicitly through what is
known as the closed-world assumption. The closed-world assumption is taat
all relationships not explicitly stated to hold do not hold. For example. typical
procedures for inheriting statements in one frame from more general frames
by way of generalization links assume that a frame is generalized only by those
frames explicitly listed as generalizations or, in turn, by their generalizations.
Thus, if the elephant frame has a sole generalization link to the mammal

| frame. the inheritance procedures will search only mammal and not any
other frames. in spite of the possibility that new generalization links may be
attached to elephant later and would then be searched as well. Yet another use
of defaults is in the typical STRIPS assumption that performed actions change
none of the program’s beliefs about the world except those explicitly listed in
the description of the action (see Article XV'.B). For example, a description of a
robot's action of moving from one location to another would list only changes

116 Automatic Deduction XII

in beliefs about the robot's position. When the robot moves. the STRIPS

assumption default would leave its belief about world geography intact.

Reasoning by Circumscription

Another case of nonmonotonic reasoning, which may well overlap defaults
in some (or even all) cases, is that of parsimonious reasoning, or reasoning by
circumscription. In reasoning about some problem, one often assumes that

the problem involves only those objects and relationships that it mentions,
and no others. The inheritance procedures mentioned above made such an
assumption (the closed-world assumption) about the nonexistence of unlisted

generalization links and generalizing frames. As another example. in the well-
kr.own missionaries-and-cannibals problem of traversing a river uneaten, one
typically does not think of solutions involving bridges, rocket ships, handcuffs,
murder of the cannibals, or holes in the boat. Another way of viewing
the circumscription principle is the assumption that all qualifications to the
problem have been stated explicitly.

Formal Characterizations of Defaults

Two sorts of detailed formalizations of nonmonotonic defaults have been

proposed. namely, Reiter's logic of defaults and McDermott and Doyie’s non-
monotonic logics.

Both logics roughly interpret Default S as S ts provable unless end until §
can be disproved. The difficulty with this interpretation is its circularity, that
what can be inferred depends on what inference rules sre applicable, while,
at the same time, what inference rules are applicable depends on what can
be inferred. For example, suppose that we decide to use only the ordinary

logical rules of inference in attempting to disprove statements and that the
information to be captured consists of three statements: Default A. Default B,

arid =(A A B). Here, neither A nor B can be disproved using the ordinary
logical rules of inference, so we declare both A and B to be provable by means
of the default statements. These two new conclusions are inconsistent with

=~(A A B). Instead of declaring the initial three statements to be inconsistent,
the nonmonotonic logics try to refine the notions of provability to say that
there are two coherent interpretations of these axioms, namely, one in which
A and ~B are provable and one in which B and ~A are provable. This is a
big departure from ordinary logie, in which a single set of axioms has exactly
one set of conclusions that can be drawn from it. The key problem addressed
by the nonmonotonic logics is that of providing some well-defined semantics
for defaults that allows a single set of axioms and defaults to have several
coherent interpretations.

In all the nonmonotonic logics, the meanings of provable and consistent for
a statement and a set of axioms are defined nonconstructively by a

E Nonmonotonic Logics 117

mathematical definition of what coherent sets of conclusions are, relative to

a given set of axioms and defaults. These definitions are nonconstruciive
primarily because the coherent interpretations supplied by the logics are in
general not even recursively enumerable. Roughly put, the logics declare that
interpretations are found by adding in as many statements (assumptions) as
possible, in accordance with the defaults, but at the same time avoiding add-
ing in so many assumptions as to produce an ordinary logical inconsistency.
In the above example, for instance, the two coherent interpretations of the
three statements are produced by adding in just one of the assumptions. A or
B. By the time one assumption is added in. the negation of the other can be
deduced by ordinary logical rules of inference. =o that the other assumption
i¢ ruled out. as it would lead to an inconsistency. This rough description of
the semantics provided by the logics does not do them justice. For the precise
definitions involved, the reader is referred to the original papers (Reiter, 1980;
McDermott and Doyle, 1980).

While Reiter's and McDermott and Doyle's approaches to formalizing
defaults have much in common in the way they interpret defaults and in

their major theoretical properties, they differ in logical form. as one approach
formalizes defaults as inference rules and the other as modal formulas. Unless

one is vitally interested in logic for its own sake, or in pursuing the future
development of better nonmonotonic logics. these differences in logical form
can be passed over as small differences in notation for capturing the same
ideas.

Reiter (1980) formalizes defaults by adjoining a new sort of inference
rule called a default to an ordinary logic of statements and inference rules.
Default inference rules are of the form If P, and it is consistent to assume

Q, then infer R, written P: Q/R, where P, Q, and R are ordinary formulas.
Given condition P, a default allows the inference of R providing that Q is not
disprovable. With this notation. the simplest sort of default, that of Assume
A if it cannot be disproved, is written simply as “: A/A": that is. P is empty
and @Q = R = A.

Instead of stating defaults as inference rules, McDermott and Doyle (1980;
McDermott, 1980) state defaults as modal formulas. They use an ordinary
logical language extended by the unary modal operator not-disprovable. The
analogue in nonmonotonic logic of a default inference rule P : Q/R of the logic
of defaults is P A not-disprovable Q — R. Thus the simplest sort of default is
stated in these nonmonotonic logics as not-disprovable A — A. Although we
taid earlisr *hat nonmonotonic logics and the logic of defaults are for many
purposes ‘ni.ictic variants, that is not really true. The modal nonmonotonic

logic formuiations are, for better or worse, actually more expressive than the
nonmodal logic of defaults. This is because one can make statements about

defaults: for example

not-dusprovable(not-disprovable A — A) — (not-disprovadble 4 — A),

11s Automatic Deduction PN

in noninonotonic logics. whereas in the logic of defaults no means exists for
referring to the default inference rules.

The Genesis of Practical Nonmonotonic Inference Rules

Neither of these approaches says anything about which nonmonotonic
statements or rules should be used in representing information about a par-
ticular domain. The logics all leave that decision to the Al system designer.
However, McCarthy (1980) and Dacey (1978) have each developed theories
that appear to bear on the problem of formulating defaults. McCarthy for-
malizes reasoning by circumscription as an explicitly nonmonotonic rule of
inference». Ducer. on the other hand. formalizes his theory of conclusions

in terms of classical decision theory. rather than in terms of nonmonotonie
reasoning.

The idea of circuinseription, in McCarthy's (1980) treatment. becomes an
inference rule for formulating sets of assumptions on the basis of the available

information. The circumscription inference rule computes axiom schemata
from sets of axioms. schemata that can be applied to make a variety of assump-
tions. To circumscribe a set of axioms A with respect to some predicate P
mentioned in 4. one constructs a sentence schema stating that the only objects
satisfving P are those whose doing so follows from the axioms A. All state
ments following via ordinary deductive rules of inference from that sentence
schema are said to be the conclusions reached by cireumsecriptive inference

with respect to P from the original axioms A. For example, suppose we know
only one red-haired person, our friend Jane. If we see someone looking like

Jane in the crude sense of merely being red-haired, we might. by circumscrip-
tion. assume that that person is Jane, because Jane is the only person we know
fitting that description. This inference is nonmonotonic. of course. since if we
now learn that Jane has an identical twin sister Joan, we can no longer con-
clude that anyone who looks like Jane is Jane. Expressed formally in terms of
McCarthy's circumscription, this example might be translated as follows. We
start with the set of axioms A = (red-haired(Jane)) and circumscribe on the
predicate red-haired. The circumscription of this predicate in A is the axiom
schema

(Jane) A Vz (#(z) — red-haired(z)) — V z (red-haired(z) — #(z)).

If we now substitute our only known instance of a red-haired person into this
schema. that is. if we substitute the formula z = Jane for #(z). we get

Jane = Jane A Vz (2 == Jane — red-haired(z)) — V x (red-haired(z) — z = Jane).

The first two parts of this formula are true, and simplifying it leaves the
resulting assumption, or default. Vz (red-haired(z) — z = Jane). which we
can apply to any new person who looks like Jane (i.e. is red-haired). Vet this
inference is nonmonotonic in that, if we add the new axiom red-haired{ Joan)

E Nonmonotonic Logics 119

to A, we can no longer draw any such identifying conclusion. At best, we can
infer by another application of circumscription the less specific conclusion

vr (red-haired(x) — r = Jane vv 2 = Joan).
Another approach to forming and rejecting tentative hypotheses, the

theory of conclusions developed by Dacey (1978) after a suggestion of Tukey
(1960). can be viewed as proposing a general rule about when to adopt and
when to abandon defaults. Dacey formulates conclusion theory in terms
of classical decision theory rather than in the proof-theoretic terms of the

preceding approaches. Classical decision theory analyzes how the strength of
each of one’s hypotheses about the world should be revised with each new

evidential fact. The intent of conclusion theory is to avoid the continual

reevaluation of all hypotheses. to instead accept certain strong hypotheses as
conclusions. and to hold these conclusions unless and until the introduction

of very strong contrary evidence. Although Dacey apparently intends that
the set of conclusions be the set of beliefs of the reasoner. his reasoner is

isolated and unreflective. in that the rules of adoption and abandonment are
used in developing scientific laws de novo. Once communication or summaries

of conclusions are desired. as in writing an initially substantive Al program.
the form of each conclusion seems to approximate that of a default. Thus.
conclusion theory might be adapted to the role of judging the propriety of
adopting or abandoning defaults.

The Mathematics of Theory Evolution

Each of the approaches above treats in detail primarily the atoms of

reasoning. either individual inference steps or the sets of beliefs preceding and
following the inference step. So far. much less attention hae been devoted to
classifying the larger, more complex ways in which nondeductive inferences

can change the current set of beliefs of a reasoner. The beginnings of a larger
analysis of theory evolution are touched on by McDermott and Doyle (1980).

Dovle (1979. 1980). Gumb (1978, 1979). Weyhrauch (1980). and. less formally,
in the philosophy of science literature in general (e.g.. Quine and Ullian. 1978).

References

The area of nonmonotonic reasoning has to date supplied more questions
than definitive answers, but the questions it raises are vital. For further infor-
mation. peruse the papers collected in the special issue of Artificial Intelligence
on nonmonotonic logic (such as those cited above) and the papers indexed in
the bibliography by Doyle and London (1980). Further fruitful formalizations
of nondeductive reasoning techniques may well be awaiting discovery. For
example. Collins (1978) and. less directly, Wason and Johnson-Laird (1972)
investigate patterns of human nondeductive reasoning. Which of these may
now succumb 10 formal analysis?

F. LOGIC PROGRAMMING

LOGIC PROGRAMMING refers to a family of higher level languages and an
associated programming style based on writing programs as sets of assertions.
These assertions are viewed as having declarative meaning as descriptive
statements about entities and relations. In addition, the assertions derive

a procedural meaning by virtue of being executable by an interpreter. Indeed.
executing a logic program is much like performing a deduction on a set of
facts.

A logic program consists of a set of clauses, where the general form of a
clause is:

(consequent) :- (antecedent,), (antecedents), ..., (antecedents) |

and each item in a clause is a poritive literal, that is, an atomic formula
P(term,. ...,term,) for some predicate P. Not all clauses have antecedents.

A simple logic program for reversing a list is given by the following set of
clauses: .

APPEND (NIL, X,X)

APPEND (CONS (X,Y) ,Z,CONS(X,U)) :- APPEND(Y.Z.U)

REVERSE (WIL, NIL)

REVERSE (CONS(X.Y) .Z) :- REVERSE(Y,R), APPEND(R,CONS(X,NIL),Z) .

Two observations must be made about this program: First, the terms involving
CONS are not evaluated as they would be in LISP; rather, they are treated ss
symbolic objects. Second, both APPEND and REVERSE take one more argu-
ment than the corresponding LISP function. This is because APPEND(X,Y.2Z)
does not name a function but. rather, names the relation Z is the result

of appending X end Y. Similarly, REVERSE(X,Y) means } ts the result of
reversing X. One consequence of this is that a logic program, unlike its LISP
counterpart, can often be run backwards. For example, the APPEND program
could be used to find pairs of lists that, when concatenated, yield a given list.

To execute a logic program, we supply a goal, for example, REVERSE
(CONS(A,CONS(B,CONS(C,NIL)).,X). The interpreter finds substitutions for X
that make the formula a consequence of the clsuses in the program. This is
done by cycling through the cisuses, matching the goal against the consequent
(by unification; see Article X11.B), recursively setting up antecedents as sub-
goals, and backtracking in case of failure. If sll the subgoals can be satisfied,
the goal is proved. and the substitutions found during matching constitute
an answer. Forced backtracking can be used to produce systematically all
substitutions that make the goal provable. For the goal above, the interpreter
would find the substitution CONS(C,CONS(B.CONS(ANIL))) for X.

120

F Logic Programming 121

One feature that distinguishes logic programming from ordinary theorem-

proving is that. while the declarative semantics allow the clauses—and the
antecedents within a clause—to appear in any order, the procedural interpre-
tation is sensitive to the order. Thus, the programmer can rely on assertions

being searched in sequence, top to bottom and left to right, and can structure
a program for maximum efficiency.

Another difference between logic programming and general theorem-

proving has to do with the restrictions on the form of the assertions them-
selves. In theorem.proving terminology, logic programs consist of sets of Horn
clauses—disjunctive formulas with at most one positive literal. It is easy to
see that the clauses of a logic program are Horn ciauses: Any disjunction

| of the form -4 . -B + v =C v D can be rewritten as an equivalent

iznplicational formula. A & B& + & C = D, which is a notational variant
of the form of clauses in logic programs.

By enforcing this restriction to Horn clauses. logic programming ensures
relative tractability of deductions. It should be noted that. as with most very-

high-level programming languages, it is not hard to write extreniely inefficient
logic programs—especially since the interpreter’s basic strategy is exhaustive
backtracking. Many implementations give the programmer some control over
backtracking and allow the insertion of a special symbol (typically a slash,
» “) between antecedents in a clause to prevent backtracking past that literal.
Thie often improves efficiency, but at the expense ofsemantic purity, since

some deductive consequences of the clauses may be underivable while other
formulas. not logical consequences of the clauses, may be “deduced” from
failure to derive a fact. (This latter case corresponds to the THNOT construct
in the PLANNER languages.)

Logic Programming and AJ

Although logic programming has been applied to diverse problems. some
of which can hardly be considered exclusively Al problems (e.g., database
management). there are at least two reasons why logic programming has spe-

cial importance for Al. First, logic programming offers an alternative to LISP
as a powerful language for symbol manipulation, apart from the semantic con-
tent of the symbols qua representations. The interpreters that drive logic pro-
grams do unification (Robinson, 1965b, and Article XI1.B) and, thus, already
incorporate the pattern-matching machinery that many applications require
and that is programmed explicitly in LISP.

The second. and more important, reason why logic programming is of
interest to Al has to do with its usefulness for knowledge representation.
Predicate logic i= a formalism considered by many to be a natural and powerful
representation language marred oniy by its perceived computational inef-
ficiency (see Article I1I.C1. in Vol. 1). Any approach based on logic that can

122 Automatic Deduction XJ

demonstrate efficient execution {which logic programming does. in fact. claim)
would be a serious candidate as a representation language.

To see how a logic program could be used to represent real-world knowl.
edge. consider the following simple set of clauses:

SEES(X.Y) := PERSON(X), PHYSOBJ(Y), OPEN(EYES(X)), IN-FRONT-OF(X.,Y)

SEES (X,Y) :~ PERSON(X), EVENT(Y). WATCHING(X, FILM-OF(Y))

PERSON (MOTHER (John))

EVENT (BIRTHDAY (Henry))
EVENT (GRADUATION (John))

WATCHING (MOTEER (John), FILM-0OF (GRADUATION(Joan))) .

Consider the following three goals:

1. SEES(MOTHER (John), GRADUATION (John))

2. SEES (MOTHER (U), GRADUATION(U))

3. SEES({U,V)

These goals can be viewed as queries to a deductive question-answering system.
The first can be paraphrased Did John’s mother see his graduation?’—a yes/no
question. The second and third goals resemble “\Vh-questions™—the free

variables U and V’ indicating that the answer is to be the individual or indi-
viduals satisfying the condition. In particular, the second goal corresponds

to the question Who ts it whose mother saw his graduation? The third asks
simply. Who saw what?

The logic-program interpreter would cycle through the asserted facts,
matching the goal against the consequent and solving the antecedents as
subgoals. If the subgoals can be satisfied, the goal is proved and the answer to
the yes/no question will be YES. If, after exhaustively trying alternative facts,
the goal still cannot be proved, the answer is NO. For goals with variables, the
svstem can produce all substitutions that make the goal provable. With the
clauses given above. the answer for goal 1 would be YES: the answer for goal
2 would be I” = John: and the answer for goal 3 would be Ll” = MOTHER (John),
V' == GRADUATION (John).

Development of Logic Programming and Current Status

The parallels between computation and logical proof have long been recog-
nized. especially in the theory of computation. An interesting discussion of
the many connections between logic and computation can be found in an
early work of McCarthy (1963). In a sense, executing an applicative program,
for example. a program in “pure” LISP, can be thought of as calculating the
proof of an identity “f(arg,, args. ...) = result” by applying various axioms
of identity according to a fixed control regime, much as the assertions of a
logic program are applied.

I Logic Programming 123

Ordinarily. logic programming is understood to refer more narrowly to
the style of programming introduced and advocated by Kowalski (1974. 1979.
which was eventually incorporated into PROLOG, the best-known of the logic

programming languages. PROLOG has several dialects and is supported in
numerous installations in the United States, in Britain, and on the Continent.

Especially active groups are in Edinburgh, London, Marseilles, and Budapest.
Diverse applications have been programmed in PROLOG, including natural-
language processing (Colmerauer et al., 1973), database retrieval (Warren.
1981). and program synthesis and planning (Warren, 1974).

PROLOG. and logic programming in general, has increased in popularity
'r; recent vears. In Europe. especially. PROLOG is a serious contender as
the major Al implementation language. Much effort has been devoted to

developing PROLOG compilers that compete favorably with LISP in efficiency
of generated code (Warren, Pereira. and Pereira, 1977). In the United States,
a):0. there has been interest in PROLOG, as well as in LOGLISP. a LISP-based

logic-programming svstem developed at Syracuse University (Robinson and
Sibert. 1980).

Cenelusion

To a certain extent, the development of logic programming has followed
the pattern of LISF. Both languages are founded on clear, mathematically
motivated fcrmalisins. Both languages have a side-effect-free kernel and a
procedural interpretation that can be defined in a simple and elegant fashion.
Yet both language families have vielded to the practical needs of their user
communities and have incorporated numerous features that detract from
their underlying elegance in favor of improved convenience and efficiency.
In a sense. the fact that logic programming has progressed to the point of
incorporating such features attests to its practicality and growing popularity.

References

Kowalski (1974, 1979) discusses logic progran:ming and Warren, Pereira,
and Pereira (1977) discuss the PROLOG language.

BIBLIOGRAPHY

Ballantyne, A. M., and Bennett, W. 1973. Graphing methods for topological proofs.
Meme ATP-7, Mathematics Dept., University of Texas, Austin.

Ballantyne, A. M., and Bledsoe, W. W. 1975. Automatic proofs of theorems in
analysis using non-standard techniques. Memo ATP-23, Mathematics Dept., Uni-
versity cf Texas, Austin. (Also in J. ACM, July 1077.)

Ballantyne, A. M., and Lankford, D. 1979. New decision algorithms for finitely
presented commutative semigroups. Memo MTP-4, Mathematics Dept., Louisiana
Tech University.

Bibel, W., and Schreiber, J. 1974. Proof search in a Gentsen-like system of first
order logic. Bericht Nr. 7412, Technische Universitat, Munich.

Black, F. 1968. A deductive question-answering system. In M. Minsky (Ed.),
Semantic information processing. Cambridge, Mass.: MIT Press, 354-402.

Bledsoe, W. W. 1971. Splitting and reduction heuristics in automatic theorem
proving. Artificsal Intelligence 2:55-77.

Bledsoe, W. W. 1974. The sup-inf method in Presburger arithmetic. Memo
ATP-18, Mathematics Dept., University of Texas, Austin.

Bledsoe, W. W. 1977. Non-resolution theorem proving. Artificial Intelligence 9:1-35.

Bledsoe, W. W., and Ballantyne, A. M. 1879. On automatic generation of counter- |
examples, Memo ATP-44A, Mathematics Dept., University of Texas, Austin.

Bledsoe, W. W,, Brucll, P., and Shostak, R. 1879. A prover for general inequalities.

Memo TPP-40A, Mathematics Dept., University of Texas, Austin.

Bledsoe, W. W., and Tyson, M. 1975. The UT interactive theorem prover. Memo
ATP-17, Mathematics Dept., University of Texas, Austin.

Bobrow, D. G. (Ed.). 1980. Special issue on non-monotonic logic. Artificial Intalh-
gence 13(1,2).

Boyer, KR. S. 1971. Locking: A restriction of resolution. Doctoral dissertation, Univer

sity of Texas, Austin.

Boyer, R. S., and Moore, J. 8. 1879. A coraputational {>gic. New York: Academic
Press.

Burstall, R. 1969. Proving properties of programs by structural induction. Computer
Journal 12(1):41-48.

Chang, C., and Lee, R. C. 1973. Symbolic logic and mechanical theorem proving. New
York: Academic Press.

Collins, A.M. 1978. Fragments of a theory ofhuman plausible reasoning. TINLAP-S,

194-201.
Colmerauer, A., Kanoui, H., Pasero, R., and Roussel, P. 1973. Un sysieme do
communication homme-machine en francais. In Rapport, Groupe d’Intelligense Arts
ficielle, Universite d'Aiz-Maraeille, Luminy, France. :

Dacey, R. 1978. A theory of conclusions. Philosophy of Science 45:563-574.

’ 124

Bibliography 12%

de Kleer, J, et al. 1978. Explicit control of reasoning. In P. H. Winston and R. H.

Brown (Eds.), Artificial intelligence: An MIT perspective (Vol. 1). Cambridge, Mass.:
MIT Press, 93-116.

Doyle, J. 1979. A truth maintenance system. Artificial! Intelligence 12:231-272.

Doyle, J. 1980. A model for deliberation, action, and introspection. Tech. Rep.

AI-TR-581, Al Laboratory, Massachusetts Institute of Technology. (Doctoral

Doyle, J., and London, P. 1980. A selected descriptor-induced bibliography to the
literature on belief revision. SIGART Newsletter 71:7-23.

Emst, G. W. 1971. The utility of independent subgoals in theorem proving. Infor- .
‘mation and Control 18:237-252.

Emst, G. W. 1073. A definition-driven theorem prover. JJCA! 3.

Gelernter, H. 1959. Realisation of a geometry theorem-proving machine. Proceed-
ings of an International Conference on Information Processing. Paris: UNESCO House,
273-282.

Gelernter, H. 1963. Realization of a geometry theorem proving machine. In E. A.

Feigenbaum and J. Feldman (Eds.), Computers and thought. New York: McGraw-
Hill, 134-152.

Green, C. 1969. Theorem-proving by resolution as a basis for question-answering

systems. In B. Meltzer and D. Michie (Eds.), Machine intelligence §. New York:
~ American Elsevier, 183-205.

Gumb, R. D. 1878. Summary of research on computational aspects of evolving
theories. SIGART Newsletter 67:13.

Gumb, R. D. 1079. Evolving theories. New York: Haven.

Hayes, P. J. 1973. Computation and deduction. Symposium on the Mathematical

Foundations of Computer Science, Crechslovekia Academy of Science, 105-118.
Hewitt, C. 1971. Description and theoretical analysis (using schemata) ofPLANNER:
A language for proving theorems and manipulating models in a robot. Rep. No.

Al-TR-258, Al Laboratory, Massachusetts Institute of Technology. (Doctoral dis-
sertation.)

Hewitt, C. 1975. How to use what you know. IJCAI {, 189-198.

Hewitt, C., et al. 1973. A universal modular actor formalism for artificial intel-
ligence. 1JCAI 8, 235-245.)

Hintikka, J. 1971. Semanties for propositional attitudes. In L. Linsky (Ed.), Refer
ence end modality. London: Oxford University Press, 145-167.

Huet, G. 1972. Constrained resolution: A complete method for higher order logic.
Rep. No. 1117, Jennings Computing Center, Oase Western Reserve University.

Huet, G. 1075. A unification algorithm for typed lambda calculus. Theoretical
Computer Science 1:27-57.

Kling, R. 1971. A paradigm for reasoning by analogy. Artificial Intelligence

2:147-178. |
Knuth, D. E., and Bendix, P. 1970. Simple word problems in universal algebras.

In J. Leech (Ed.), Computations! problems in abstract algebra. Oxford, England:
Pergamon Press.

126 Bibliography |

Kowalski, R. 1974. Predicate logic as a programming language. In J. L. Rosenfeld
(Ed.), Information processing 74. Amsterdam: North-Holland, 569-574.

Kowalski, R. 1979. Lopic for problem solving. New York: American Elsevier.

Kowalski, R., and Kuchner, D. 1971. Linear resolution with selector function.
Artificial Intelligence 2:227-260. :

Kripke, S. A. 1071. Semantical considerations on modal logic. In L. Linsky (Ed.),
Reference and modality. London:)xford University Press, 63-72.

Lankford, D. S. 1975. Complete sets of reductions for computational logic. Memo
ATP-25, Mathematics Dept., University of Texas, Austin.

Lankford, D. S., and Ballantyne, A. M. 1977. Decision procedures for simple
equational theories with commutative axioms: Complete sets of commutative

reductions. Memo ATP-35, Mathematics Dept., University of Texas, Austin.

Lenat, D. B. 1976. AM: An artificial intelligence approach to discovery in mathe-

matics as heuristic search. Rep. No. STAN-C* -76-570. Computer Science Dept.,
Stanford University. (Doctoral dissertation. Reprinted in R. Davis and D. B.
Lenat. 1980. Knowledge-based systems in artificial intelligence. New York: McGraw-

Hill.)
Loveland, D. 1978. Automstic theorem prowng: A legal basis. Amsterdam: North-

Holland.

Loveland, D., and Stickel, M. 1873. A hole in goal trees: Some guidance from |
resolution theory. 1JCAJ $, 153-161.

McCarthy, J. 1863. A basis for a mathematical theory of computation. In
P. Braflort and D. Hirschberg (Eds.), Computer programming snd formal systema.
Amsterdam: North-Holland. |

McCarthy, J. 1968. Programs with common sense. In M. Minsky (Ed.), Semantic
information processing. Cambridge, Mass.: MIT Press, 403-409.

McCarthy, J. 1980. Circumscription—A form of non-monotonic reasoning. Artificial
Intelligence 13:27-39. .

McCorduck, P. 1979. Machines who think. San Francisco: Freeman.

McDermott, D. 1978. Planning and acting. Cognitive Science 2:71-109.

McDermott, D. 1980. Non-monotonic logic II: Non-monotonic modal theories. Rep.
No. 174, Computer Science Dept., Yale University.)

McDermott, D., and Doyle, J. 1980. Non-monotonic logic I. Artificial Intelligence
13:41-72. :

Minsky, M. 1980. A framework for representing knowledge. In J. Haugeland (Ed.),
Mind design: Philosophy, prychology, end artificial intelisgence. Montgomery, Vt.:
Bradford Books.

Moore, R. C. 1980a. Reasoning Fom incomplete knowledge in a procedural deduction
system. New York: Garland.

Moore, R. C. 1080b. Reasoning about knowledge and action. Tech. Note 191, Al

Center, SRI International, Inc., Menlo Park, Calif.

Nelson, C. G., and Oppen, D. 1078. Efficient decision procedurcs based on con-
gruence closure. Memo AIM-309 (CS-646), Computer Science Dept., Stanford
University.

Nevins, A. J. 1974. A human oriented logic for automatic theorem proving. J. ACM
21:606-621.

Bibliography 127 |

Nevins, A. J. 1975. Plane geometry theorem proving using forward chaining. Arts
ficial Intelligence 6:1-23. |

Newell, A., and Simon, H. A. 1956. The logic theory machine. IRE Transactions on
Information Theory 2:61-79.

Nilsson, N. J. 1971. Problem solving methods mn artificial intelligence. New York:

McGraw-Hill.
Nilsson, N. J. 1980. Principles of artificial intelligence. Palo Alto, Calif.: Tioga.

Peterson, G. E., and Stickel, M. 1977. Complete sets of reductions for equational
theories with complete unification algorithms. Mema, Computer Sciences Dept.,

University of Arizona.
Presburger, M. 1030. Uber die Vollstandigkeit eins gewissen Systems der Arithmetik

ganser Zahlen in welchem die Addition als einsige Operation hervortritt. Sprs-
woadanie 3 1 kongresu matematykow krajow slovienskich, Warszawa {Comptes-rendus du
I congrés des mathématiciens des pays slaves), 92-101.

Quine, W. V,, and Ullian, J. S. 1978. The web of belic/ (2nd ed.). New York: Random
House.

Reiter, R. 1076. A semantically guided deductive system for automatic theorem

proving. IEEE Transactions on Computers C-235.

Reiter, R. 1980. A logic for default reasoning. Artificial Intelligence 13:81-132.

Risch, R. 1969. The problem of integration in finite terms. Trensactions of the AMS

139:167-189.
Robinson, G. A., and Wos, L. 1969. Paramodulation and theorem-provingin first

order theories with equality. In D. Michie (Ed.), Machine intelligence §. Edinburgh:
Edinburgh University Press.

Robinson, J. A. 1965a. Automatic deduction with hyper-resolution. International

. J. Computational Mathematics 1:227-234.

Robinson, J. A. 1965b. A machine-oriented logic based on the resolution principle.
J. ACM 12:2341.

Robinson, J. A., and Sibert, E. E. 1980. Logic programming in LISP. School of
Computer and Information Science, Syracuse University.

Shostak, R. S. 1875. On the completeness of the sup-inf method. SRI International,
Inc., Menlo Park, Calif.

Skolem, T. 1967. The foundations of elementary arithmetic established by means of
the recursive mode of thought, without the usc of apparent variables ranging over
infinite domains. In From Frege to Goedel Cambriage, Mass.: Harvard University
Press.

Tukey, J. W. 1960. Conclusions vs. decisions. Technometrics 2:423-433.

Wang, H. 1960. Toward mechanical mathematics.- IBM J. Rescarch end Development
4:3-22.

Warren, D. H. D. 1974. WARPLAN: A system for generating plans. Memo 786,
Computational Logic Dept., School of Artificial Intelligence, University of Edin-
burgh.

Warren, D. H. D. 1981. Efficient processing of interactive relational database queries
expressed in logic. Proceedings of the Conference on Very Large Databescs, Cannas,
France, 372-281.

128 Bibliography

Warren, D. H. D., Pereira, L. M., and Pereira, F. 1977. PROLOG—The language and
its implementation compared with LISP. Proceedings of the Symposium on Artsficial
Intelligence and Programming Languages (ACM); SIGPLAN Notices 12(8); and SIGART
Newsletter 64:109-115.

Wason, P. C., and Johnson-Laird, P. N. 1972. Psychology of reasoning: Structure and
content. Cambridge, Mass.: Harvard University Press.

Weyhrauch, R. W. 1980. Prolegomena to a theory of mechanised formal reasoning.
Artificial Intelligence 13:133-170.

Wos, L., Robinson, G. A., and Carson, D. F. 1965. Efficiency and completeness of °
the set of support strategy in theorem proving. J. ACM 12:536--541.

NAME INDEX

Pages on which on author’s work is discussed are italicised.

Ballantyne, A. M., #9, 100 Lenat, D. B., 101
Bendix, P., 38, 99, 100 London, P. B, 119
Bennett, J. 8., 99 Loveland,D. W., 83, 97
Bibel, W., 98

Black, F., 78,85 McCarthy, J., 78, 85, 118, 132
Bledsos, W. W., 97, 98, 100, 101, 102, 112 McCorduck, P., 77
Bobrow, D. G., 78, 84 McDermott, D. V., 78, 82, 117, 119
Boyer, R. 8., $3, 182-189, 108, 111}, 113 Minsky, M., L., 77, 78, 8}

Bruel, P., ” i” Moore, J. 8., 102-163, 108, 111, 113Burstall,R. M., 1 | * Moore,R. C., 78, 81, $4
Carson, D. F., 83 |

Chang, C. L., 91, 83 wos,©. Oo 108Collins, A. M., 119 evine, A. J., 99,
Colmerauer, A., 133 News, A., 77

Nilsson, N. J., 78, 15, 87, 81, 83

‘Dacey, R., 118, 119
de Kloer, J., 22 Oppes, D., 100

3. 18, 117, 118

Ernst,G.W.,98 Pereira, I. 82, 123
Pereirs, L. M., 83, 123

Gelernter, H. L., 77, 100 Peterson, G. B., 03, 100
Gress, C. C., 78, 85, 102 Presburger,M., 100
Gumb, R. D., 119

Quine, W. V., 119
Hayes, P. J., 88

Hewiwt,C., 78,99 Raiter,R., 98, 100, 117
Hintikka, J., 84 Robinsca, G. A., 33
Huet, G., 83, 100 © Robinson, J. A., 77-78, 8, 91, 83, 131, 133

Johnsoa-Lsird, P. N., 119 Rovessl, P, 133

Kanoul, H., 133 | Schreiber, J. F., 9
Kling, R., 118 Sibert, B. KE, 123
Khager, A., 112 Simon, H. A, T7
Keuth, D. R., 8, #8, 100 Skolem, T., 162 |
Kowslekl, R., 78, 81, 82, 93, 113, 123 Stickel, M., 97, 99, 100
Kripke, 8. A, M4
Kuchner, D.,.93 Tukey, J. W,, 119 |

Tyson, M., 101
Lankford, D. S., 88, 99, 100
Lee, R.C., 01,88 Ullisa,J. 8., 119

| 129

130 Name Index

Wang, H., 77
Warren, D. H. D., 83, 123
Wason, P. C,, 119

Weyhrauech, R. W,, 82, 119
Wos, L., 93

SUBJECT INDEX

Advices Taker, 78 Completeness of a knowledge representa
Al programming languages tion, 79
LISP, 103, 120-123 in logic, 91 |
PLANNER, 83, 121 Composition of substitutions, 98
PROLOG, 82, 123-124 Consequent reasoning in Jogic programming,
QA3, 78 120

AM, 100 Consistency in nonmonotonie logics, 118

Antecedent theorem in logic programming, Control
120-123 of deductive inference, 90-83

Automatic deduction, 76-123. See alse Logic; backtracking, 120, 1231
Theorem proving. backward chaining, 80, 93, 97

Boyer-Moore theorem prover, 102-113 demons, #9
circumscription in, 116 forward chaining, 80, 99-108

and commonsense reasoning, 78 Counterexamples, 100-101
control strategles in, 30-83

decision procedures in, 99-100 Decision procedures In theorem proving,
deduction contrasted with evaluation in, 99-100)

79 Declarstive knowledge representation vs.

default reasoning in, 115-118, 119 procedural knowledge representation,
with examples, 100 120
heuristics for, 91-42, 33-100 Deductive inference, 76-133 .
IMPLY, 95-9¢, 90 control in, 00-82 |

and induction, 109-110 “search in, 80
logic programming, 77, 82, 120-121, 123 Default reasoning, 115-116, 119

Logic Theorist (LT), 77 Demon, #9
and natural deduction, 94-98, 101 Difference In GPS, 118
and nonmonolonic logic, 114-119

and nonresclutlen theorem proving, 94- Equility in logie, 03
102 Evaluation, as opposed to deduction, 79-80

and reduction, 98-99 Examples in automatic deduction, 100-101
resolution method in, 77-78, 56-87, 91- Existential quantification, 38-989, ¥1

94, "”
and unification, 39-90, 91, 96, 120, 121 Finite termination property, #9

First-order logic. See Logic, first order.

Backiracking in logic programming, 138, Forward chaining, 30, 93-100
121 Fuaction

Backward chaining, 30, 05, 97 in the Boyer-Moors Theorem Prover, 104
in IMPLY, ¢§, 97 in logic, 58-89, 31

Boycr-Moore theorem prover, 100, 103-113

. Generalization in the Boyer- Moore Theorem
Chain rule, 3¢ Praver, 108 :
Cireumseription, 115-118, 118, 119

Clause form, 87, 89-91, 92, M4 Hora clauses, 1231
Closed-world assumption, 11§ . |

Combinatorial explosion, 78 IMPLY, 95-98, 99
Commonsense reasoning, 34 Induction, 100, 112:

131 |

132 Subject Index

in the Boyer-Moore Theorem Prover, 102, Representation of knowledge

109-110 closed-world assumption in, 118
Induction templates, 100-110, 111 completeness of, 78

Intensional operators, 84 declarative, 120
in logic programming, 121-122

Linear input form, 91 meta-knowledge In, 82
Logic, 15, 77-122 procedural vs. declarative controversy, 120

extensional, 84 Resolution rule of inference, 86-87, 93, 94,

first-order, 80, 88-89, 91 I
higher order, 82-84 Resolution theorem proving, 77-78
intensional, 84 strategies to improve efficiency, 91-92
nonmonotonic, 84, 114-119 Resolventas, 86, 87-88, 93
nonstandard, 77, 82-84

predicate, 88-89, 91 Shell ivechanism, 104-105, 110
propositional, 77, 88 Simplex algorithm, 98

Logic programming, 77, 82, 120-121, 123 Simplification in the Boyer-Moore Theorem
Prover, 108

MACSYMA, 9% Skolem function, 89-91
Skolemization, 95

Natural deduction, 94-95, 101 STRIPS assumption, 1%
Nonmaonatanic reasoning, 114-119 Substitution, 93
Nonresolutior theorem proving, 94-102 in the Boyer-Moore Theorem Prover, 107

Substitution instance, 90

Pattern matching, 121 _ |
PLANNER, 82, 121 Tautology, 92
Predicate abstraction, 83 Theorem proving, 76-123
Predicate calculus, 77, 88-89, 121-122 goal-directed, 94-95
Presburger arithmetic, 99 natural-deduction, 34-35, 101
Problem solving, automatic, 77-78 honrcsolution, 34-93, 101
Programming in logic, 77, 82, 120-123 Thon, asa 1Proof by contradiction, 86-87, 13 cory of conclusions, 118-119

Tal deduction, 94-95, 101 Unification, 89-90, 91, 96, 120, 121
resolution, 86-87, 93 Unique termination property, 84

Propositional caleulus, 77, 88 Univers:| quantificetion, 88-89, 91

QAS, 78
Quantification

existential, 83-89, 91 .

in higher order logics, 83 |
universal, 38-89, 91

Question answering, 78

Reasoning
backward, 80, 95, $7 .
deductive inference, 76-123

default, 115-116, 119

forward chaining, 80, 99-100
Recursive function theory, 102

Reducers, 98-9¢

complete set, 99

immediate reduction, 98
Referencing problem, 112

