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PREFACE :

The past few years have seen a growing interest in the application of three-dimensional image Bb. processing. With the increasing demand for 3-D spatial information for tasks of passive navigation, NEN
| Wo —{{Gennory_1980}; {Moravec 1086}, automatic survesllance| {fitenderson—1670}),0 aerial cartography, i]
| wf Kelly 1077};-[Panton—1978}), and inspection in industrial’ automation, the importance of effective a
| "stereo analysis has been made quite clear. A particular challenge in this area is to provide reliable and i
| accurate depth data for input toobject or terrain modelling systems, (such as ACRONYM [Brooks “hy
| 1981a]]. This report describes an algorithmTor such stereo sensing.Tt is founded on an edge-based p
| line-by-line stereo correspondence scheme — one which provides this ‘hree-dimensional analysis in a La

| fast, robust, and parallel implementable way. Its processing consists of extracting edge descriptions | ey
| of a pair ofimages, linking these edges to their nearest neighbors to obtain the connectivity structure no

of the images, matching the edge descriptions on the basis of local edge measures, and cooperative! ou
| removing those edge pairings formed by the correspondence process which violate the connectivity $ “

structure of the two images. A further matching process, using a technique similar to that used for b
| the edges, is done on the image intensity values within intervals defined by the edge correspondence. Lon

The result of the processing is a full image array depth map of the scene viewed. (—~ WS
| | Organization of this Report | i

Chapter 1 discusses some ¢f the psychological and neurophysiological aspects of the human vision a
| system that have had an impact on this work, and within this context lays a basis for the direction go.
| of the research carried out. The fact that the research is being developed for implementation on a So

sequential machine, rather than a parallel mechanism as in the human system, imposes (or allows, EN
depending upon the particular benefits/deficiencies perceived) certain constraints on the techniques b

| used. Despite this distinction in the mechanisms available, the philosophy of the approach taken ER

| here has, at an informational level, strong parallele to the human system. i
| Chapter 2 outlines the main differences between the two principal techniques for binoculcr stereo a
| analysis — those based on cross-correlation of image intensity values, and those working with image SE
| intensity contours, or edges. The functioning of the principal exemplar systems from each of these o-

areas is described, and comments on these provide a background for specifying the goals of this Rs
| research. Although providing a good summary of the state-of-the-art in stereo matching, Sections NL

2.1 and 2.2 rather go on, and a casual reader, looking for the meat, would be best advised to slip To
them. The chapter ends with a summary overview of the composite algorithm developed in this Lo
research. The algorithm, as the title of this report indicates, incorporates both edge-based and Co
intensity-based analyses. ..
Chapter 3 introduces the principal unit of the analysis, directional zero-crossings in the second Cl
difference of image intensity, and identifies the particular geometric and photometric constraints an
that are integral to the analysis. a

Chapter 4, dealing with the statistical measures used throughout the analysis, should be read 9
| in conjunction with Chapter 5, which discusses the Viterbi correspondence algorithm and the rr
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modification to it developed for the matching required here. The two chapters work together to

( define the matching process, with the first giving the halry details of the decision metrics for theSE various correspondence processes, and the second showing the way these enter into the computation.

3 Chapter 5 ends with a full exampls of a single line-pair edge and intensity correlation.
% Chapter 6 presents a cooperative algorithm which enforces global consistency on the tentative edge
Ne. matches proposed by the preliminary analysis. Its presumption is that connectivity in the two-

> dimensional projection of a scene is indicative of continuity in the 8-space of the scene.
> Chapter 7 provides two examples of the full processing of the algorithm — the first on a synthetic

& stereo pair of an urban scene, the second on real imagery of natural terrain. The success of theAY atereo matching algorithm on these images indicates that it is a powerful technique with general
> applicability; its failures suggest areas for future refinement. |

L Chapter 8 discusses the contributions of this research to the field of computer stereo vision, and |a highlights the areas where its application would bring immediate benefit. |
ha )

EL,

Fig All of the paired figures in this report are drawn for cross-eyed stereo fuason. This means that to
pr obtain the proper perception you must have the left eye see the right figure and the right eye see
¥- the left figure. The difficulty with so configuring your eyes is that you have probably never in your
on life before consciously decoupled your focus from vergence. Your eyes may be aimed in the proper
x directions, but since this attitude correspondsto the normal eye position for examining the tip of

Lo your nose, the focus is set at about that distance. For stereoscopic fusion in this situation one must |
X consciously vary the focus while maintaining the fixation until the desired image is seen clearly. It |

will take a while if you haven't done it before, perhaps a half hour for a d:dicated attempt, although |
once attained you will surely (it is my hope) find the effort worthwhile. |

wv The choices possible in stereoscopic presentation are divided between those requiring special viewing |
~ aids, these demand little of the viewer, and free fusion techniques, which require nc aiding devices but:
X at the cost of considerable initial effort for the viewer. Anaglyphic depictions, where the two images |
\, are presented in complementary colours and must be viewed with suitably chosen complementary |
» filters, are likely the most familiar to you. Another technique for slide/film presentation is to polarize |
" oppnsitely the light passing through the two images and provide polarized filters to the viewers to |
a ensure delivery of the proper image to the proper eye. Neither of these techniques is suitable for
¥ standard xerographic reproduction. |

8 The technique chosen here, cross-eyed stereo fusion has one principal advantage over the other form
" of unassisted fusion, often called wall-eyed fuston or simply free fusion. In wall-eyed fusion the |
~ figures are presented so that to obtain the percept the left eye must be directed toward the left |
Ll image, and the right eye be directed toward the right image. Since only in exceptional (and then |
 § likely damaged) systems can the eyes actually diverge, the separation between the centers of the two
v; images cannot, in general, exceed the interpupilary distance of roughly 7 centimeters. This means |

a that the figures can be no wider than about 7 centimeters — a clear handicap when using limited |
: resolution graphic devices. There is no such limitation for cross-eyed fusion. Its advantage is then
a clear — resolution of depictions can be much greater and figures may be projected onto distant
:- screens for audience viewing. (Oddly enough, the stereoscopic perceptions do differ in these two |
‘ cases, with wall-eyed fusion giving a greater sensation of relative depth for the equivalent monocular

’- percepts. Vergence, not just observed disparity, affects the judgements of stereopsis.)

:



br

he . "e
oe Preface "mw
>.

Figures 1 and 2 contain exercises which may be of some help in enabling you to develop the skill

T . (skill?) of cross-eyed stereoscopic fusion. When working with them, remember to have the left eye
i» fixating on the right figure and the right eye fixating on the left figure. The captions to figures give

suggestions for their viewing. If you can find a pair of’ 2- or 3-power telescopes and aim them cross-
Lo eyed at the appropriate images, this will greatly ease the task of obtaining stereo fusion. By reducing

= the effective focal distance, the lenses will compensate for the vergence/focus coupling conflict, and
o should allow the images to be more readily fused. But it is better to avoid reliance on such an aid

— you may find yourself somewhere, sometime, wishing to fuse two disparate images and have your

aid nowhere at hand. Unequipped, you will have missed your chance! (This generalizes.) Figure 2-5

x seems to be a good example for practise in cross-eyed fusion.
;

N .
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~

k . :

» :

=

N |
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J First, fixate on the two circles at the top (if necessary, keeping the lower circles from
- distracting you by covering them with a piece of paper). When you have superpositioned

x these so that the left eye and right eye together see a single (probably blurred) blob, try
ol to focus the eyes to make the images clear. If you can do this (this is the single biggest

. problem in fusion — controlling the focus), then slowly move your gaze down toward the

x next pair of circies (following the connecting lines). The percept should be of continually |" - progressing circles, forming a tapered cylinder (an interesting visual illusion in itself).
ge a .

nN Figure 1
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a. This figure may be more difficult to fuse. Begin by bringing the outer syuares into |
alignment — the top line flash and lower left and upper right circles may be helpful in

a controlling the vergence movements to bring the images together. Once superpositioned,
| work on obtaining clear focus, perhaps by concentrating on one of the corner circles or

the upper flash. Once you have this, follow the box perimeter around to the lower line |} Joining the box to the diamond, follow the diamond perimeter to the circle, and then on

- to the cross. You should see the cross lying farthest away, and *he framing box nearest. |
“i | OF 2 |od gure |

Here is yet another trick to try if neither of these figures seems fusable even after hours of hopeless |
staring. Cut a window about 1.75 inches square from = piece of cardboard. Hold the images about, |

b .

A 15 inches away from your nose, the card about 5, and line up the two images through the hole so that |
5 the left eye sees all of the right image and the right eye sees all of the left image. If you concentrate |

on looking at the frame of the window (not at the scene beyond quite yet!) you will get a vague
R impression of the intended depth. Work at keeping your regard on the frame while gradually letting |
o your focus slip through the two windows to the images below. 1t shouldn't be too long before you |

& are able to separate the focus from the vergence and see the three-dimensional scene below with |
: whatever your customary clarity.

1
x 1

.



Chapter 1 1 So]

CONTEXT OF THE RESEARCH 3]
oy —

Let me draw your attention, at the beginning of this discussion, to the phenomenon of man's istereoscopic binocular vision -— the fusion of the left and right eyes’ images into a coherent perception RI
of three-dimensional space. This single and immediate perception of the dimensionality of our world i
is a striking achievement. To that minority among us lacking binocular stereoscopic perception (at 0 F
least 3%, while as many as 15% may have stereopsis deficiencies ([Bishop 1975], {Richards 1970])), it BE 2
is an experience impossible to describe by analogy. It is unique in character, likened in its vividness RE
to the perception of colour. This visual system, called “the most intricate structure sn the known NE
unsverse” ([Julesz 1976]), h.is been one of the principal contributors to our species’ intellectual and ed
sociological development. An increasing Jominance over time of the visual sense has, through its ) :

interaction with manipulative skills, enabled us to become the best living tool users, constructors 4who have the ability to mold the world around us to our needs. oa nt

An important consideration in the implementation of a machine vision system is the impact aE
knowledge of this marvellous human system should have on the machine system's design. To know RS
something of its development, functioning, and mechanisms would seem to be a prerequisite for a NI
proper attempt at developing something similar for a machine (be the similarity in mechanism or TT
effect). cod

BERTI

1.1 The Stereopsis Process in Man ‘e
In the course of primate mammalian evolution there has been a gradual movement of the eyes from a FL )
lateral-looking attitude to a frontal binocular position, This transformation enabled a considerable a

overlap in the visual fields of the two eyes — a necessity for stereo vision — and facilitated a precisely TR
registered coordination of binocular eye movement. The development of a centrally located high BE

precision fovea greatly aided this evolution of coordinated eye movement. These changes, and the yg
neurophysiological developments in the cortex accompanying them? were also correlated with the ISNT

development of hand-eye coordination. The adoption of the upright attitude freed the hands from

their previous role in postural support, and enabled the development of manipulative skills under So

visual (especially foveal) guidance. LL :

Precision in depth determination is one of the principal advantages of stereopsis — it allows accurate -@- \
hand-eye functioning and visuai tracking. Our stereo acuity has been estimated as being between 14 Con
and 40 seconds of arc for normal bifoveolar binocular vision ([Bishop 1975]); the binocular luminance J
threshold has been found to be as much as a factor of v2 lower than the monocular threshold, and SE
visual acuity increases accordingly for binocular over monocular vision. These observations bear NE

out the statistical improvement expected from using two independent measuring processes, the two .® x
eyes, rather than one. Beyond the statistical advantages are those of more practical importance — ~ ow
stereopsis enabled us predators to “see through” the camouflage by which hunted animals soughtto RR

blend in with their surroundings®(monocular camouflage fails to a stereo perceiver in the range over a ;

4 development of a partial decussation at the optic chiasma and the organization in the visual cortex, having cor- Lo ;
responding fibers from the two retinas synapsing on the same cells in the striate cortex @ .

Sour prey had the complementary advantage of nearly complete peripheral (360°) vision to ses us coming. -
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| which stereo is effective — theoretically, up to about 500 meters®([Bishop 1975])), and it enables us
| C a perception of solidness in our visual worlds isomorphic to the solidness of our physical world.

co The eyes are positioned about 7 centimeters apart.in the head, observing the external world through
Lo central projections from two slightly differing viewpoints. This difference in position causes varying
oe relative lateral displacements, or disparities, of the detail in the two images projecting onto the
ul retinas. It is these disparities, the differences in horizontal position of corresponding points on the

two retinas (varying directly with the distance from the point of fixation), which provide the essential
. data for binocular depth perception. The fusion of the two retinal images into a single perception of
a solid 3-space, the process of binocular stereoscopic vision, is termed siereopsis. The subject of this

: report is an automating of this process of stereopsis.

a 1.2 Computer Vision
oe The involvement of computer scientists with visual processing is in the use of computers as sensory

| - data processors for observing and inanipulating the environment. Generally, the interest is in bring-
iug the control advantages of visual sensing to the tasl:s of robotic manipulation and autonomous

‘@ navigation. It m'ght be thought that mechanisms chosen for this would be selected more on their
5 algorithmic tractibility. than on their relevance to neurophysiological or psychological theories of

oo human perception. This is true to an extent. We have access to neither the parallel processing
i . biological mechanism that resides in man nor an adequate definition of its functioning, and are

pL forced largely to rely on sequential machines for the implementation, and introspective insights for |- guidancein our algorithms. Still, human visual functioning is our principal source of observations onthe process of three-dimensional vision, and it supplies the best paradigm we have for a seeing sys- |
oC tem, Clearly, where insights from human visual processing would add to the robustness or flexibility |
2 of the sysvemn, our machine should have them. On a more pragmatic note, it makes excellent sense |

el to pay attention to human visual funclioning, for it provides the best of insurance; the problem is |
solvable, and the human system does it. |v In the present work we do not aim explicitly for our algorithmic system to have biological feasibility, |

] but we do wish to have it parallel the highly effective functioning of the human system — a
- functioning where the input is passively sensed (although perhaps actively pursued) visible light, |
} and the result is an understanding of the physical environment. |

i There will be obvious hindrances to our work — the computers available are only serial devices |
* (at the moment), and the mechanisms of sight are little enough agreed upon by neurophysiologists |
Co and perceptual psychologists; neither our devices nor our aigorithms can yet approach the power |
LL and flexibility of the human system. But the goal is there, to develop mechanized vision. Althougli |
- our computing devices are not ideal for the job, they are adequate for the research; although our
J understanding of the process is partial, we have suflicient empirical observation to allow us reasonable
' @ insight into the operation of our sight. |

a On this last point, it is interesting to note that computer vision is, increasingly, developing a
. symbiotic relationship with studies in human perception:
oo e . to implement a theory requires complete and detailed specification of the process —
3 this invokes a rigour at the level of the definition,

a ¢ as an experimental tool, the computer stimulates insights which improve the theory. |
,

: |
———

 o 8 ihe greatest distance at which an object can just be detected as nearer than an object at infinity |
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C . So, while machine vision researchers look to the perceptual psychology and neurophysiology litera- |
Le ture for insight into mechanisms and measures of adequacy for their algorithms, perceptual theorists

turn to computers as tools for their studies and nicans for instantiating and testing their theories |

NE ([Marr 1976], [Marr 1977], [Mayhew 1981]).

[. 1.8 Considerations for a Stereopsis Process |

3 ; 1.8.1 — Possible mechaniams of human stereocpsss |

i What is involved in human vision in going from the sensory stimulation of the two separate retinas
€ to achievement of the depth understanding of stereopsis? Perhaps one or some combination of the
Le following:
J 1) the independent monocular recognition of each eye's contents, and a subsequent
a matching of recognized items across eyes for distance determination.

ee © 2) a less knowledge-tntenstve matching process, whereby features (perhaps ‘blobs’)
Fq characterized by uniformity of some property are extracted from each eye's image4 P

" k and compared across eyes (without any familiarity with the particular features).
oo 3) extraction of some information-specific abstraction from the images of the two eyes
N (for example, zero-crossings in the second difference of a laterally inhibited signal),
NE and the matching of these sampled items across eyes.

C 4) matching of individuai brightness levels over the entire images of both eyes. |
SE The distinctions between these lie in the level of abstraction attained. ‘The actual monocular
cL recognition of scene content is a great abstraction — image brightness values are clustered to define
vo shapes which are representable as symbolic descriptors — whereas the matching of brightness levels, :

ne being little more than photon counting, can hardly be considered as abstraction at all. |
a ‘The first suggestion above requires the process to have a monocular familiarity with everything in the |[e scene, implies that whatever it is, it can be recognized when viewed from any perspective, and grants

of the monocular processing a quite remarkable capacity at separating objects from each other and |
. from their background. With this scenario, the eyes work independently up to the point of placing
o the depth component on the object's position. Alone, this is not a very satisfactory explanation of

ro stereo perception. It presupposes an unsubstantiated snner eye projection system for mapping 3-D |
La known forms to percepts and, most significantly, provides no mechanism for the learning of new
.. objects. It is contradicted by known characteristics of the human visual system’s processing in its |
= sufficiency, by our ability to fuse random-dot stereograms ([Julesz 1971]), and in its precssion, by |
: the accuracy and continuity of our depth perception. It is presented here as a straw man, merely to
. focus on this extreme of stereopsis possibilities.

nt The second suggestion is an improvement over the first, in that it demands no monocular object
q recognition, yet it still hinges on the ability to extract information that is meaningful across images. |
Sa Considered as the sole process for stereopsis, it has inadequacies similar to those of the first
a suggestion. |

NE Implicit in the discussion of suggestion 2 was that it dealt with a uniformity measure on the imagery.
. Consider suggestion 3 as involving the processing of a discontinuity measure. The sort of information-

; a specific abstraction suggested can vary from individual edge elements to extended contours, perhaps
’ delineating the outline of some shape (see [Wilson 1978a, Wilson 1978b] for a discussion of spatial

ro frequency filtering in human vision).

| ”
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(: Suggestions 3 and 4 are similar to each other in that neither presupposes a semantic processing of= the retinal images and both involve extensive cross-correlation on a great quantity cf data. Human
a sterecpsis supports approach 3 more strongly ([Wilson 1978s}, [Marr 1979}, [Schumer 1979]), while
- not excluding the possibility of interaction with an intensity matching process’ as suggested in 4.
Ln For a machine implementation, questions of computational cost, viewing constraints, reliability, and
oh desired accuracy will affect the utility of one over the other, and this will be discussed further later.

\ Observations of visual processing make it evident that, when impoverished, human perception can
Lo rely upon most any of the above techniques. for depth determination.® None of them is sufficient
oe for visual understanding; beyond each must lie a process bringing a unity of interpretation to the
a measures. Monocular processing can aid stereopsis by establishing a context or vergence setting
L ([Saye 1975]), and can enable fusion despite conflicting evidence at a local level (as demonstrated
a by Helmholtz (1906) with positive image/negative image fusion (see page 157 of [Julesz 1971])).
{ | Binocular stereoscopic processing can reveal! depth when no cues are available to the eyes in isolation. :
vo Psychophysical evidence ([Gregory 1977]) suggests that the monocular and “cyclopean” processes
x ([Julesz 1971]) may be highly independent functions.

} 1.5.2 — Primary versus secondary cueing for stereopsss
- Suggestions 3 and 4 use what are termed primary cues for stereopsis — information that relies on
xX analysis from both eyes working in unison. This primary stereocsis is immediate in the sense that
0 it provides local depth information everywhere obtainable in the visual field, information that is
oY unavailable from the eyes individually. It might be said that the percept occurs before cognitive

influences can play a role. Complementary to this is the use of secondary cues for visual depth || perception. Our species has learned much about the environment we have lived in over the past few.

iN millenia that greatly facilitates the making of subjective visual judgements -— judgements that can |
> be made on the basis of information presented to either eye, independently. These are monocular
op depth cues. Fallible as they are, such cues (see [Gibson 1950]) as: |

oF e object overlay or partial occlusion,

N e perspective deformation,
o e brightness and shading, |

a e texture density gradient, |
D e motion parallax, |
- es hue variation, and

¥ e object relative size,
= provide for remarkable judgements of relative depth from a single monocular view. There is no |
a doubt that these cues, irrespective of their classification as secondary, are principal contributors to |
Le modern man’s perception of his world.

: An important poinl to note here is that secondary cues to stereopsis contribute an explicit globalsty
4 — they have a spatial component that relates them to parts of the visual field in their locale. A
ns similar provision is implicit in primary stereopsis in that local correspondences (depth judgements)
: interact to produce the optimal percept for a stereo pair of views — a more global analysis is at work |

x Talthough issues of optic nerve bandwidth will impact upon this possibility — it seems unlikely that all photometric
information is transmitted aleng the optic nerve to the lateral geniculate body. There are roughly 108 rods, 10

& cones, and, with a mere 108 optic nerve fibres, substantial coding would be necessary. |
8 There is no psychophysical evidence that I have seen supporting the first suggestion. !
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i . to ensure some form of continuity or consistency in the three-dimensional interpretation. Automated |
< stereopsis mst also be globally consistent. |

Xe It is hazardous to argue about the evolutionary development of man’s depth perception — as to |
EE whether primary analysis preceded secondary analysis, or which has been the dominant factor in our
= visual development. Clearly if our visual perception progressed from the lateral-looking attitudes of |
- our presumed genetic ancestors, then we may have had some form of strictly monocular processing
§ (perhaps with temporal stereo) before the occasion arose to try any fusion, so the monocular analysis |
oo would have had a head-start on affecting our development; yet certain secondary cues have been
Yn determined to be consequences of experience (for example perspective deformation, as demonstrated
ol by the Ames room phenomenon and the experiments of [Yonas 1978], and texture variation in the
ww visual cliff experiments of Walk and Gibson [Walk 1961]), so are conceivably learned — it would

i appear that they are mediated by higher-ievel functioning.
on from an implementation standpoint, the choice of approach is one based on sufficiency: it seems
oO obvious, at least to the author, that the primary sensing mode can provide information to allow the |
i development of a secondary cueing mechanism, while the reverse does not seem to be true. From
- this perspective, primary stereopsis is the most interesting. In truth, the two mechanisms probably
Ln developed separately, and exist independently — although cooperatively — in constituting our vision
4 system.
will )

1.8.8 — The necessity of a primary cueing mechansem

- Useful as they are, depth estimates based on secondary cues do not have the same perceptual quality
o and accuracy as do those due to stereopsis. Secondary cues provide a cursory form of processing.

g They may be seen as arising from abstraction over time of the information presented by the primary
cE stereopsis process. Our capability at attaining a perception of depth relying solely on the primary
oy stereopsis process is well documented. The easily-learned fusion of Julesz’ random dot stereograms —

which have neither monocular depth cues nor monocular structure — is a convincing demonstration
i. that stereopsis is at work in our visual system. Under circumstances of contextual deprivation,
- stereopsis enables the perception of depth.

» This argues. that for a machine approach to vision a dominant consideration should be in specify-
ing a stereopsis process — one which autonomously, and without the aid of domain-specific or

- environment-induced knowledge, constructs a depth map of the field of view. The contribution
» of this report is in a definition and demonstration of a domain-independent stereo correspondence
RE algorithm, one which can use certain monocular cues where available for ambiguity resolution, but
- functions in the primary binocular mode in attaining the depth determinations of stereopsis. The
L philosophy underlying the design to be presented here will hopefully be seen as having some relevance

| to human visual processing, although the mechanisms developed for the computation will be chosen

v strictly for their effectiveness and efficiency as implemented in a serial machine. (Although, as
; will be seen later, the siructure of the computation has been chosen so as to facilitate a parallel
J implementation.)

d
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i Chapter 2 |

n BACKGROUND TO |
= MACHINE STEREO VISION

Eo

\ 2.1 Area-Based Versus FEdge-Based Processing
Much of early machine vision work avoided the aspect of three dimensionality inherent in man’s

vi perception of his environment, and relied upon projective monocular measures for its analysis of
ot visual domains. In the last eight to ten years, though, there has been a growing strong interest in
ks three-dimensional sensing and analysis, and this has brought with it several differing approaches to
{ the problem of matching the content of a stereo pair of images. The primary division among these
Le research efforts is one of area-based versus featurc-based analysis.
Lo The distinction between ‘feature’ and ‘area’ correspondence here can be more a matter of degree
Lo than type. Feature-based analysis has involved the transformation of the sensed data from a discrete

two-dimensional intensity array to a more symbolic form as significant intensity contours, or ‘edges’ -
ye features. It is the properties of these features which then provide the metric for the correspondence.
q ‘Feature’ is a fairly general term, but its use here may be equated with ‘edge’. There are many
ne fewer ‘edges’ than image elements in a view of a scene, so this transformation, generally, reduces the
of computational cost of determining correspondences. A corollary, and noticeable drawback of this,
- is that not every point in an image is a ‘feature’, so the result of a solely feature-oriented correlation

will not be the dense depth map one may want.

L 2.1.1 — Area-based analysts
oN In area-based analysis two-dimensional windowing operators measure the similarity in intensity
ps pattern between local areas, or windows, in the two images. Cross-correlation is used to determine
- matches between windows in one image wit. windows in the other. Normalized cross-correlation
co has the ability to compensate for contrast and brightness differences across images. If the lighting

and sensor/processing conditions are known, this flexibility in the algorithm may not be required.

b ~, In this case other correlation forms such as Normalized RMS or Absolute Difference may be used |
(see [Hannah 1974] for a summary of these differing techniques). |
Area cross-correlation is often not applied to every pixel in the image arrays, but selectively for |

0 those whose local variance is high. With this approach, the variance measure is used as a filter to
a limit possible correspondences; correlation is then used to select the best from among the candidates. |
> These variations may qualify such approaches as ‘feature-based’, although they will not be considered i
an -s0 here. Perhaps a better way of categorizing these systems is as fealure-driven area-based. [Levine |

1973] limits initial correlation to areas having local maximal variance, [Henderson 1979] preprocesses |
i the data lo find edges which are then used to bound an area-based search, [Moravec 1980] uses an
od ‘interest operator’ to select significant points in a reference image, and {Genrery 1980] uses a variance
x based F' test to filter out areas of minimal information, and therefore minimal interest. |

= Area-based correspondence has been applied quite successfully to the stereo analysis of rolling terrain, |
LT but it degrades when the scene is not smoothly varying and continuous. In images of such domains |
C many windows to be matched will have no correspondences in the other image (for example, those |
‘ windows lying on surfaces which are occluded from the other imaging position). The chic! difficulty
4 with the area-based approach is in properly matching window shapes and sizes for conjugate image
- arcas, taking into account both variation in terrain siope and discontinuities at surface boundaries
r. (see [Ryan 1979] and [Ryan 1980]).

4
2)
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T Large correlation window sizes are required in attaining statistical significance in tne sampling, yetFC the characteristics measured over the windows become less and less representative of the observed
: 2 local surface as this window size increases. Discontinuities in the surface can canse a positioned
SEN window in one image to be sampling local intensity values from more than one intensity surfac: |
oN in the other image, and a correct cross-correlation would only be possible if the window could be
 . partitioned and matched with (possibly several) windows of various size and shape in the other

C image. Such adaptation requires more flexibility than area-basecd correspondence has thus far been= shown to provide. Abrupt discontinuities in topographic structure and an abundance of occlusions
2h characterize urban or cultural areas. It is at precisely these points of depth discontinuity that we
x want to obtain accurate surface position measurements. This would suggest that current area-based
3 proressing is inappropriate for domains with occlusions and abrupt depth discontinities.

. Some consideration of this window shaping problem has been attempted in area-based work. [Levine
{ 1973] and [Mori 1973] vary their correlation window sizes with the local intensity variance. They |
- presume that high variance implies high local texture and thus suggests the need for smaller
. correlation windows, while low variance suggests surface uniformity and the need for larger sample

_ sizes and larger correlation windows. [Panton 1978] uses trapezoidal window shapes in the search
> image, as determined by previous and predicted correspondence results, to match the rectangular

$ windows of the reference image. |[Gennery 1980] included a partial solution to this problem for
. a specific camera geometry when looking at windows presumed to lie in the ground plane. [Mori

1973| implemented an iterative technique that would compensate for terrain variations by successive

oe refinements to image registration estimates. Both [Levine 1973} and [Hannah 1974] included in their |
- alvs-ithms techniques for identifying certain scene occlusions and areas of image non-overlap, but
SE vliese were entered more as cases «f exception handling, and it is doubtful that they were adequate

T as models of occlusion.
Sully A related problem with area-based correspondence is that increasing window size improves statistical
- significance but generally results in poorer 3-space positioning accuracy for the correspondence.
oe Feature-based analysis obtains more precise positioning (for its edges) in the individual images,
3 and it can attain correspondingly higher accuracy for its correspondences in 3-space ([Arnold 1978] |
.- indicates that edge-based techniques offer an order of magnitude improvement in accuracy over

L area-based correlation methods).
, Area-based correspondence systems also tend to be prediction driven, in that they process an image

serially and at each step use the context of previously matched neighbouring points to limit the
- search for the present correspondence. None provides a backtracking facility with this technique, |
= and only [Gennery 1980] includes a scheme for adjusting locally determined miscorrespondences. |f 4 With little ability to either correct or detect errors, such prediction-guided approaches can lead to
_- rapid degeneration once errors begin to occur.

A final and important anomaly to note of area-based processing lies in the basic philosophy of its |
Lo analysis. The underlying assumpticn of area-based correspondence is that it is the photometric
h properties of a scene that are invariant to imaging position, and the correlating of these properties |
a will be sufficient to allow Lhe proper correspondences to be determined. But it is nol the measvrable |
( photometric properties that are invariant to viewpoint positioning. In the degenerate, although |
- common cnough case, a surface of a certain intensity seen unobscured from one viewpoint will not |
HL even be visible from another slightly different viewpoint. All that can be said to be truly invariant
veo, to viewpoint positioning is the ¢three-dimensional structure of the scene itself. A better metric for
. the correlation would be one which deals in some way with that scene three-dimensional structure.

5 I will return to this point in the discussion of feature-based correspondence methods. |

g
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(} 2.1.2 — Area-based correspondence methods
‘ Mapping systems available commercially, and used in the photogrammetry community, are ex-
J" . . . » v ’

- clusively area-based in their analyses. State-of-the-art photomapping devices employing automated
oy correlation include the Bendix AS-11B-X ([Scarano 1976]) and the Gestalt GPM-II ([Kelly 1977]).
AS These systems are not, in general, of much interest slgorithmically; they have inadequate success

N rates for the correspondences they produce (failing to determine scene depth at between 40% and |1 70% of image positions, according to recent studies, see [Friedman 1980]), and require extensive
manual intervention for their operation. More fruitful insight te the potential of cross-correlation

tv techniques can be obtained by looking at systems produced in research, rather than development,
x environments. |
i» The following summaries describe the more iinportant area-based stereo correlation research systems

: of the past decade. The last three are the most recent and most accomplished of these systems.
- Gimel’farb, Marchenkv and Rybak System 1972

- [Gimel’farb 1972] was the first report to document the use of dynamic programming? in a stereo |
correspondence process. The algorithm described processes image pairs on a line-by-line basis,

3 exploiting epipolar geometry constraints and using known (a priors) disparity and surface slope limits
! to constrain the correspondence search. It optimizes a cost function of normalized cross-correlation.

The convolution incorporates a lateral inhibition computation. The correspondence algorithm is
i described analytically as finding the function mapping intensities from one image line to the other.

n Testing was done on short wide images (i.e. 5x500). The authors suggest that one could improve the
i, speed of such stereo processing in two ways. IFirst, in using the results of prior linc analyses to guide

3 the matching and bound the search on subsequent lines, and second, in partitioning lines into smaller |- stretches, reducing the combinatorics of the correspondence matching. The first is a technique that
on CDC used in their stereo work (as will be discussed). The second can be seen as a preview of |
2 the multiple resolution correspondence processes of Baker, when it is seen that rough alignment
AK of corresponding parts of the two lines must be made before breaking them into smaller stretches.
. Depiction of the results obtained with the algorithm are a bit sketchy, as the plots shown are of

N single line analysis only. The report comments that results from this totally automated process are i” comparable to those of human operators using automated photomapping devices, although nothing
; . quantitative is presented.

: Levine and O’Hand/-y System 1978 |
a [Levine 1973] describes a system designed to provide depth information for the Mars rover vehicle's
4 autonomous navigation. Tests of its performance were carried out on stereo imagery collected in the
3 vicinity of the Jet Propulsion Laboratory. Because of the system’s intended use, it was possible to |
a work with the basic premise that the scene viewed was approximately planar, running off to a horizon |
» somewhere in the distance (not necessarily in the images). It used collinear epipolar imaging!®forw- somewhere in y g pip ging

- its two cameras to limit correspondence search. Matching was by intensity cross-correlation, with
4 an adaptive window size set by the variance at pixe! (2,7) in the image - a large variance sets a |
- small window size, and vice versa. Processing was organized to run in lines from bottom to top.

Search constraints on possible disparities were exploited throughout the analysis. First the top and |
bottom lines were correlated to estimate the overall disparity ranges (netice that this presupposes

ce that scene depth varies regularly from top to bottom, as in a view toward the horizon). Then a

1 % sce chapter 5 for a discussion of this ‘

10. section 3.2.1 for a description of collinear epipolar geometry
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1 prepass anaiysis was applied to a sampling of n lines (n = 5) to set local maximum and minimumoi disparity ranges. Correlation along a line pair was over windows with locally maximal variance,
AS called ‘tie-points’. The local maxima were used to iteratively segment the reference line. A coarse |
no search using statistical parameters (variance) of image windows was used to find good candidates
nL for the more expensive computation of the correlation coefficients, The candidate pairings chosen
a through this process were then evaluated to select the optimal matches and to refine their positions

N in three space. The coarse search was done with every other pixel along a line. Cross-correlation was |only done with windows of similar variance. The system uses the epipolar geometry constraint in a

way that prohibits positional reversals along a line. The authors indicate in the paper that they are
i avare of the difficulties introduced by occlusions, and mention an ad hoc scheme for preventing parts
& of the images felt to be occluded from being matched, but the technique is not further described.

Two-dimensional proximity was also used to limit disparity possibilities; an allowable range was

C set at each tie-poini by examining neighbouring disparity values on the preceding line (actually the- current line minus 4 — t.e. they process every fourth row and every second element). Final disparity
- values were smoothed, and deviants removed.

Mort, Kidode and Asada System 1978
|

| Mori, Kidode and Asada, in a short paper [Mori 1973], describe an interesting stereo mapping
qd system. In it, epipolar geometry is used to constrain the search for correspondences in the area-
hs based correlation they use. The system is demonstrated on a model pattern and a pair of aerial

photographs, although only a single line of results is presented. A gaussian weighted correlation

a function is used to diminish the effect of peripheral intensity variations. Window size is modified
- by the range of disparity expected for the point, and they suggest that this should be set by first

AA correlating over a iarge window, then narrowing to a smaller window when the gross disparities are

T known (the paper doesn’t explain this resolution reduction process any further). An assumption
FY of scene continuity is also used in limiting correspondence search. The technique is iterative: the

-. right image is repeatedly distorted and compared with the left image until no substantial intensity |
Ge differences are found. The abstract says that the first matching is done on highly contrasting parts
oo of the images (‘roads, coast, forest edges’), and the context of this is used, with the smoothness |
- assumption, to expand the correspondences intn -.eighboring parts of the scene; but the body of the

C paper does not elaborate on this. The paper is very brief and cursory, suggesting much more than— it reveals. It would be very interesting to sce whatever further documentation they have on this
NR system. Examples are incomplete and inconclusive. No follow-up has occurred to this work. |
. |

- Hannah System 1974 |

- [Hannah 1974] describes a series of techniques developed for increasing the efficiency of area- |
"4 based correlators. Her thesis contains a discussion of the differences between Discrete Correlation, |
- Normalized Cross-Correlation, Normalized RMS Correlation, and Normalized Absolute Difference. |
cL The work takes an experimental approach, and documents the improvements arising from: |

) e correlating over a sampling of the image arrays, then refining the match estimate using |
the {ull arrays at the point having maximum correlation coefficient (this is referred to

or as ‘gridding’), !

: e correlating over reduced resolution depictions of the images, and then refining match |
. estimates with the higher resolution depictions, |

NE eo abstracting area characteristics (mean/variance), and using these more symbolic |
- descriptions for limiting windows to be cross-correlated,

3 p e using known camera geometry constraints to limit search. |
q . A region growing approach is taken in expanding correspondences outward from matched pairs (using
- an assumption of surface continuity). Various heuristics are introduced for inferring the distinctions

4
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Ca between occlusions, corrrespondence errors, and out-of-scene overlaps. Hannah introduced here,
through the autocorrelation function, a means of assessing the quality of area-based matches.

0) Panton System 1978

2s Panton’s paper [Panton 1978! describes a system for obtaining a dense digital depth map of smoothlyoo rolling terrain. The algorithm, using intensity cross-correlation, processes from left to right in the

) images, and so, once initialized, can use local context of previous matches and estimates based onita the epipolar geometry to provide tight constraints on possible correspondences. Maximization of a
= correlation coefficient in the chosen area selects the appropriate match. About 1% of the pixels in
Se an image are matched in this manner, although the entire image is used in determining the match

WN correlation coefficients. Positioning accuracy of somewhat better than one pixel is obtained. The
om system is able to tailor sampling window shape in one image to follow roughly the deformation of

{ the rectangular window it matches in the other image. This window-shaping issue is one of theSues principal difficulties of cross-correlation analysis — only in the case of flat terrain normal to the line
£0 of sight are corresponding windows in the two images of the same shape. Panton’s solution to this
vn is to approximate the rectangular source window by a trapezoidal window in the other image. The
SRA technique is based on a large sampling of the surrounding neighbourhood, and uses the terrain relief
oe predicted by previous neighbouring correspondences to estimate the shape of the trapezoid about a

ig candidate surface point. Trapezoidal shaping is quite an improvement over matched windows, but ishe still just an approximation to the actual projective situation. This algorithm has been implemented
Lo in an experimental parallel processing machine which seems to achieve quite impressive performance
SOE in processing on relatively smooth natural terrain. It is not cl:ar whether or how much operator

intervention is required.

WE Moravec System 1980

( Moravec’s research (see [Moravec 1980]) was aimed at providing vehicle control information from
3 visual sensing. His aim was not to construct a depth map, but rather to sample interesting points |
a in a scene and use Lhese to provide motion calibration information and obstacle cues. There are
eo three main vision contributions in his research: the interest operator, the binary correlator, and2 slider stereo, the first, two of which have been widely adopted by researchers in the field. The |
LJ interest operator and binary correlator date to 1974. The interest operator is a filtering technique for |oN selecting points at the center of locally maximal directional variance -— these are typically corners. |
vo ihe binary correlator finds the best match of a feature in one image with the intensities in the |
oo other image using a resolution varying technique. Each feature (as found by the interest operator) is |

represented as a series of (5) 6 X 6 windows, in increasing resolution (i.e. 6 X 6, 12 X 12, 24 X 24,... |
i in the original image). The lowest resolution description of the feature from the reference image is |
“® moved a pixel at a time over the other reduced image, calculating correlation coefficients at each
} location. The largest correlation coefficient is taken as indicating the best match. The next higher |
oo resolution window (i.e. next smaller window) centeréd on this is then scarched (with the next higher |
NS resolution of the feature). This correlation process continues until a 6 X 6 patch is matched in the |
aS unreduced image. The correlation has about a 10% error rate. In slider stereo, lateral movement
RE of a camera along a track provides 9 equally spaced camera stations. Correlation of the resulting |

® 36 (9 choose 2) possible image pairings provide a series of estimates of distances to scene points.
Co These estimates are represented as gaussian distributions (mean equal to the distance estimate, and
oN the standard deviation inversely proportional to the baseline) weighted by the correlation coefticient
a of the feature matches (from the binary correlator). The 36 histcgrams (distributions) are then
- summed, and the peak taken to indicate the correct match. Stereo tracking between vehicle motions

'® is also performed with the interest operator binary correlator techniques. Here, features from the
. central image at the previous position are searched for in the central image of the current position,
co and the results of this correlation inform the system of the vehicle's actual movement. The positional
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T and depth information obtained from these correlations provide data for the navigational control ofsali the vehicle. It knows roughly how far it has moved through the scene, and where its obstacles lie.

) Feature sampling is chosen so as to cover most of the scene, uniformly.

FO Gennery System 1980

; Gennery’s system [Gennery 1980) was designed to provide depth data for vehicular autonomous
navigation. It uses cross-correlation to position points in space. The system incorporates a ground
plane finder (utilizing Moravec'’s snterest operator and binary correlator [Moravec 1980]) that es-

x timates a plane in the scene above which most points lie, and uses this to estimate the camera
nN relative orientations. This derived camera relative orientation information enables the mnatching of
2 corresponding windows to be constrained to a one-dimensional search. Having estimates of scene
- noise characteristics (variance, and gain and bias between the two images), he defines a correlation
(: measure that provides sub-pixel positioning of corresponding windows. Accompanying these are es-
oo timates of the confidence and accuracy of the correspondences. Since it progresses across an image
. from left to right, his algorithm can use local context of previous matches to suggest tentative match
NG sites. If these are inadequate for unambiguous matciing of the particular window, search constraints
Lx based on the epipolar geometry can be used to provide further suggestions for the correspondence.
» These begin at the infinity point of the corresponding epipolar line (disparity equals zero), and come
8 forward (to the left, with increasing disparity} until either a suitable corrcspondence is found or some
Ce already matched windows are encountered. When the correct locale has been chosen, maximization
oA of a correlation coefficient in a vicinity of the selected area determines the local best match. This
2 analysis is followed by a process of fitting ellipsoids to the determined elevation data. These, he
SER contends, are an appropriate shape representation for use in obstacle avoidance calculations and

3 scene matching.
o i 2.1.8 — Feature-based analysts |
wt . !

s Recall that area-based analysis was criticized as being based on a metric sensitive to imaging position. |

7 Feature-based analysis avoids much of this problem, and comes closer to dealing with the true |
N invariant of the projection process: scene structure. It works generally with the premise that a local |= measure on the intensity function is representative of physical change in the underlying scene. The
S local measure on the intensity function could be, for example, a maximum in intensity gradient —
\ peak in the first difference of intensity, zero-crossing in the second difference. Physical change in
i. the scene could be a break in depth continuity and accompanying projected surface reflectance or |
. luminance change, or a change in surface intensity from a surface detail without topographic break.
g The point to notice is that feature-based analysis uses the semantics of intensity variation in its |
Bh attempt to extract measures of the physical change in the underlying structure of the projected |
. views, and uses these two-dimensional observations to infer the three-dimensionality of the scene. |
< The validity of this intensity edge tracking in a stereopsis system is apparent:

. e¢ a discontinuity in surface orientation will, in general, give rise to a variation in incident |
gy reflection which will appear to an imaging source as a change in brightness - tracking |
A the intensity edge across the two views will track the surface discontinuity;

i» e a discontinuity in surface reflectance (a surface marking or pigment change) can be
0 tracked to reveal the three-dimensional position of the variation on the bearing surface; |

v e¢ an illumination discontinuity (shadow edge), although not likely corresponding to a
q. surface discontinuity (the shadow will lie on the surface), will be visible as a brightness
" discontinuity - tracking the shadow edge across the two views will provide depth |
., information about the shadow-bcaring surface;
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(\ 2.1.4 — Feature-based correspondence methods
ho Probably the most widely known edge-based stereo scheme to date is thas of Marr and Poggio ([Marr
Lo 1977]), as implemented in a computer program by Grimson (see the following summary [Grimson
a 1980]). The algorithm has been fairly well tested on a reasonably wide variety of images (random
os dot stereograms, naturul terrain, urban scenes), and is at present being implemented in hardware

N [Nishihara 1981]. [Arnold 1978] developed an edge-based stereo correspondence system that usedlocal edge properties te select edge match possibilities, and a weighted iteration process to resolve
- match conflicts. The stereo processing systein of Henderson, Milier and Grosch of the Control
Lo Data Corporation research group (as summarized in [Henderson 1979}), called the Automatic Planar
ho Surface Systetn, uses edges to guide it's arca-based matching. They address their work specifically
- toward the problem of constructing planar models of rectilinear cultural structures from stereo pairs

{ of aerial imagery. An extensien of this CDC work ([Degryse 1980, Panton 1981}) has lead to a stereoPe matching system that uses both local edge information and extended edge information in its stereo
= matching. Some earlier systems whose simpler stereo processing was coupled with object modelling

ol and recognition work will not be discussed here (for example, [Baumgart 1974), [Baker 1976}, and
= [Burr 1977).

4 Arnold System 1978 |
ei [Arnold 1978] describes an edge-based stereo correspondence system which uses edge orientation
» and side intensity, and edge adjacencies in determining the set of globally optimal edge matches.
LT Examples are shown of the processing of aerial views of an aircraft, cars in a parking lot and an
Ce apartment complex. The Moravec interest operator and binary correlator [Moravec 1980] and a
= high resolution correlator and camera solver [Gennery 1980] are used in determining the relative

T orientations of the two imaging stations, The Hueckel operator [Hueckel 1971] is applied to the
oT images, producing a set of edge elements for the correspondence. The derived camera attitude |
ol information is then used to reorient the edges to a canonic frame — one where the stereo baseline is
- along the z-axis and disparity shifts due to the tilt of the ground plane are cancelled. Disparities are
n restricted to those lying between zero (the ground) and some a prior: limit in the z direction. A list |
| of possible matches in the right image is obtained for each edge in the left image. Loose thresholds |N are used to specify the adjacency structure of the edges. A reinforcement /inhibition voting scheme
- is applied to the adjacency structure and match list, and the resulting maxima are chosen as the |
oo correct matches. The technique uses many heuristics and thresholds, and is said to be quite sensitive
. to the output of the llueckel operator. |

Control Data Corporation's Automatic Planar Surface System 1979 |
~, i

4 The aim of this CDC work [Henderson 1979] was to provide automatic reference preparation |
. capabilities; the references being structural models of buildings which may then, at a later point, be |
o used in scene recognition for autonomous guidance. Because of this aim, they addressed their work |
~ specifically toward the problem of constructing planar models of rectilinear cultural scenes from
» aerial imagery. They tock an interesting edge and area-based approach to their solution, using edge
“4 information to guide the application of a dynamic programming intensity correlation for line-by-line |
- pixel matching. The principal contribution of their research is in this ‘Broken Segment Matcher’. |
uy Roughly, their algorithm functions as follows:

; e (Geometrically transform a pair of images, bringing them into a collinear epipolar
4 frame.

"4 e Locate (via a Sobel operator) and ‘thin’ edges in the two images.

. eo listablish edge correspondences in the first pair of epipolar lines by hand. |

.
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Ad . e Maintain two cooperating correspondence processes to minimize the effects of image
4B noise and extraneous detail. The first process matches intensities using only edges
FL deemed to be ‘reliable’, such as those seceded to the system through the manual startup.
“oc. The second process considers all edges, and, using the correspondences found by the

el first process for the particular line correlation it is presently performing, suggests a
Yo larger set of correspondences. Those correspondences which are seen to ‘persist’ over

Ie several preceding second process line analyses (implying that they arise from true scene
yo geometric discontinuities) are given for consideration to the first process for its nest

y “ line analysis.
2 The correlation’s metric is pixel intensity difference. The two processes both use a least squares

oo minimization on these intensity differences to choose the optimal edge correspondences. Edges are

{ used to bound the linear regions, or intervals, being correlated, and edge correspondence is a side
& effect of the intensity correlation — edges themselves are not compared.
EN The algorithm progresses from one image epipolar line to another, propagating results (to limit

Cs subsequent search) as it goes. The algorithm, as noted in the summary, requires manual starting.
Co It propagates determined correspondences along paths of proximal edges as it progresses from line |

to line. Constraints have been built into the system to make it only applicable to planar surfaced

.'® structures, and the correlation only accepts transitions indicative of nearly norizontal or vertical
bo walls ... in fact, they go to substantial effort to ignore surface detail (such as roads, sidewalks,
vo windows). The algorithm preprocesses the imagery data in a way that precludes it from working
Le with anything other than straight lines (as derived from sequences of edges) in the images. They

oo : have processed and documented the analysis of a single scene with their algorithm. |
Q Their aim was to produce a three-dimensional planar rectilinear description of cultural scenes. The |g - results shown do not indicate that they have succeeded. One point to note is that their use of two
~ correspondence processes, with the second introducing ‘new’ and removing ‘old’ scene structures |
vo from the analysis, introduces a hysteresis into the processing — new structures (in the direction |
Co of processing) take a while to be believed (‘persist’), while old structures take a while to disappear |
\ once passed. Precision would seem not to have been one of the desired properties of their system. |
[ Further, a recent paper from the group comments on the instability and ‘noisy’ nature of the two- |
nL process structure {Degryse 1980]), and explains several constraints they propose introducing to |

reduce the effects of these problems (see also [Panton 1981]). The constraints — the scene is imaged |
2A orthographically, the structures are strictly rectilinear, all vertical surfaces are either parallel or
po orthogonal, and all horizontal surfaces are parallel -— are severely restrictive, and have no provision |

Fe for the generality and flexibility a reasonable stereo system must have. Once introduced into the
e analysis, it is difficult to conceive of how these restrictions could be removed for the processing of
vo more general domains, The constraints they have used serve to bound the applicability of their

process, rather than bounding its cost,
ho

a These criticisms aside, however, there is a lot of merit to their work: the overall approach they |
took was fairly comprehensive, and they addressed many important imaging and correspondence

"a questions as side issues of their study. In the context of their goals, the constraints they introduced
were reasonably valid; although one should note that the crucial question of identifying a scene |
as cultural in order to allow this constrained interpretation was not addressed. A benefit of |

Lo having read the reports of this work was in noticing their use of dynamic programming for the
| optimization; a variation of this technique has made a considerable contribution to the efficiency

) of the correspondence process used in vie research 1 will be discussing here (see [Forney 1973).
5 JN Dynamic programming for stereo correspondence was first documented in [Gimel'farb 1972).

x
h -
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Marr-Peggio System 1980

| The approach of the MIT group is in melding psychological theory and observations into a com-
putational algorithm fo. stereo vision. They consider neurophysiological relevance and biological

feasibility crucial aspects of their algorithm, and support the details of their approach with exten-
sive references to the perceptual psychology literature. The algorithm, developed basically by David
Marr and Tomaso Poggio [Marr 1977], is an edge-based line-oriented filtering and matching process.

\ Grimson’s implementation of the stereopsis algorithm [Grimson 1980) processes as follows:
. e Fill 4 pairs of working arrays with zero-crossing values and oricntations. The vero-

crossings are found by convolving the images with 4 spatial frequency tured band-pass
> filters, varying in size from 7 to 63 pixels in width.

| e Set initial vergence values for the eyes in the two images (manually).
. eo Match zero-crossings in the paired arrays with these relative eye positions. Within
: paired arrays, the process decides upon acceptable matches on the basis of zero-crossing
> contrast (positive or negative) and very rough edge orientation estimates (quantized to
| 30 degrees, so slopes must be within approximately 60 degrees of eachother). Matches

; arc of positive, negative, and zero disparity, relative to the vergence.

: e Mark ambiguous or ‘no-match’ edges as such.

. ¢ Check unmatched points in regions, and for those where this number is greater than
: 30%, delete all matches. Regions are defined with regard to some statistical measure

: to ensure that the size represents a reasonable local sample.
: e On the basis of low frequency filter matchings, make various positive and negative
R vergence movements to bring unmatched high frequency edges into correspondence
: (high frequency edges come from the sinallest filters), and iterate on the matching

process.

A subsequent process interpolates a smooth surface to this derived edge-based disparity data, result-
ing in a full depth map. The assumption that allows interpolation to take place is that ‘no snfor-

3 “mation 8 tnformation,’ i.e. that the lack of edge signal in a part of the scene indicates that there
: are no intensity discontinuities there, and thus likely no depth discontinuities. If the scene contains
- no occlusions then this assumption is valid; although, even allowing this, it is rather dismissive of

useful intensity data which could provide information on subtle surface shape variations. What the
assumption principally neglects is the difficulty presented by unseen intensity discontinuities ...
those hidden by occluding contours. In his work, Grimson presumes that an intensity discontinuity

. separates image locales of equivalent disparity. Counter examples abound. Having this ‘no infor-
mation 18 mformation’ assumption, the interpolation scheme makes no distinction between surface

) boundary points (where there is depth discontinuity) and surface detail (where there 1s none)... the
. former should be breakpoints for the interpolation, the latter knots, The resulting surface fitting
} smooths an ‘elastic plate’ over the cntire scene. Elegant as the interpolatory analysis may be, the

only interesting solution to the problem of defining inter-edge surface shape would be one which

| considers the global context at each edge (‘Is there any indication that this ts an occluding edge?’)
. and, where possible, domain knowledge (‘Are thesr buildings tn the scene? Does this seem to be the
) top of one?’). That is, an interpolatory technique must be coupled with a scheme to distinguish
I knots from breakpoints,

The results published include the analysis of several random dot stereograms, each composed of 4x4 )
randomly positioned b'ack and white squares, with the maximum vergence variation running from
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( 2 to 6 dot widths. Olher examples ir:clude a ground level building scene, a view from a Mars VikingS J vehicle, and a random dotted coffee jar.

: Assessment of the algorithm is a bit difficult: it uses a fairly sitnple control structure with unsophis-
ticated matching criveria, and its success from these mechanisms is quite remarkable. But questions

. arise. The approach lacks a mechanism for assessing global consistency in its correspondence
results. It would seem fron: the discussion of the algorithm that the initial eye vergence plays an im-

\ portant role in determining the final set of correspondences. By accepting high frequency channel cor-
respondences on a local basis the implementation precludes other vergence matchings which could be

- globally more satisfactory (it should be noted that lower spatial frequency is not synonymous with

N glodality — sce [Julesz 1976]). Notice also that the low-frequency to high-frequency control struc-
ture that is said to be as used here is shown in [Frisby 1977] to be inadequate as a model for human
sterecpsis. Using a maximum filter size that corresponds to the largest observed in foveal vision only

¢ (the implementation doesn’t vary filter size with eccentricity, as the theory suggests), Grimson has
- excluded from his processing the possibility of the more globally-driven radical vergence movements
He that scem necessary for scenes having large disparity variations. Perhaps this would be recoverable
cL through the correct implementation, with filter size varying with eccentricity ... he has only imple-
.. mented the theory for foveal vision. Monocular cues, which their theory doesn’t address, are

q known to provide information for such radical vergence raovements ([Saye 1975]). Initial vergence
> is set manually; it is nou clear how subsequent major vergence adjustments are controlled. In fact,
a several control strategies are experimented with in the text, each to give the optimal results for the
BR channel noise settings being tested. No clear definition of vergence control is given. In the light of
~ the chronic failure in past vision research to document limitations and test to the breaking point, it

Le may seem rather unfair to bring criticism to an apparently successful algorithm such as this, but its

t completeness has yet to be demonstrated (an interesting recent extension of the Marr-Poggio theoryx of stercopsis that addresses some of these issues is described in [Mayhew 1981]).

| Dissatisfaction with the Marr-Poggio theory, and its implementation by Grimson, centre around:

| a) their failure to define precisely its vergence nschanism, |

E b) the lack of a global control structure, one which would guarantee some optimal

y correspondence between the two images ([Frisby 1977]),
x c) its failure to adequately consider other both local and global constraints in its |
o matching criteria (such as statistical characteristics of surface slo; e, edge orienta- |
. tion, and intensity variation), and |

: d) the theory's neglect of established monocular cues to stercopsis ([Saye 1975]) - it |
py would appear to be owing in large part to chance alone that images with large |

disparities could be fused correctly. |

. Although the approach to be discussed here isn’t based on adherence to a theory of human stereopsis |
— rather, it centres on ain analysis and exploitation of various geometric and photometric constraints |

» on an imaged scene —— parallels do exist between it and the Marr -Poggio algorithm. Both process |
. edge descriplions of the image pair, determining correspondences on the basis of local edge propertics, |

{ both work at several levels of image resolution (although with differing techniques), and both aim
| for a depth map description of the imaged scene.

Control Data Corporation Structural Syntaz Approach 1981

. Two documents, [Degryse 1980] and [Panton 1981}, describe more recent work from the CDC group |
qo. that was desigred to supplement their previous epipolar matching process [llenderson 1979], which

they classified as ‘noisy’, ‘fragmented’, and ‘unstable’. They hoped to introduce information of a
a more geometric nature to constrain the possible interpretations and “remove some of the unreliability
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u and ambigutty” of the matching process. At the same time they redefined their goals so as to
C remove the urgency of the ‘autonomous’ in their processing. Again, they are concerned in this work
0 with the analysis of images of urban structures, stercoscopically projected cither orthographically
Jy or centrally to planar imaging surfaces. The [Degryse 1980] paper describes modifications to their

C- Broken Segment Matching scheme, while the [Panton 1981] report describes subsequent work. |
Noting the inadequacies of their first stereo system for processing in the same domain [Henderson
1979], calling it ‘blind’ to the surrounding context of the cultural scene, they argued that they
needed to incorporate a priori knowledge of cultural scenes into their analysis. They designed a !
‘structural syntax’ to provide this geometric information. The structural syntax is introduced as a

- set of geometric principles specific to the sort of 3-D cultural scene their research addressed. Intended |
Lo application was restricted to structures in the form of right parallelepipeds; the structural syntax f
Fo defined a mechanism for the restriclive interpretation of scenes as these objects.

u There are three principal clements of their structural syntax, and these are shared by both recent
- approaches:

; - 1) The edge orientation principle uses the convergence of 3-space parallel lines to vanishing points for
clustering parallel edges. The authors presume that building orientations are known and are all

. identical, so that a single pair of vanishing points suffices for all scene horizontal edges, and there
1 ‘ . » . . * » » .

dq is a single vertical edge vanishing point. In the [Degryse 1980] work, this labels edges, so limits
-. the set of possible edge natches. Note that Lhe syntax is being used here to restrict the projective
ol orientation and shape of all scene surfaces. Vanishing points are currently determined manually

; (utilization of vanishing points for polyhedral scene interpretation has also been suggested in |
Lo Jiches 1981]). |:

T 2) The priv.ciple of known or fixed transform slope governs the allowable 3-space orientations ofh ee : ) :
\ building faces, constraining surfaces to be either vertical or horizontal, This constrains the

To solution paths in their Broken Segment Matching process in [Degryse 1980].

SC 3) The min-max transform principle limits the range of acceptable heights for structures to some |
Le interval known a priors, «ud is used in both the Broken Segment Matching process. |

\ [Degryse 1980] showed no computed results. Testing of the algorithm specified in [Panton 1981] was
done on a small portion of a single pair of images of one medium sized building. |

[. |

[ The authors acknowledge that their systems still require extensive testing and development. The |
oa present systems appear to demand a substantial amount of skilled operator intervention, requiring |
Le iterative tuning of parameters and repeated passes through the low-level processes. As an aid to
4 manual reference preparation either of these systems may be adequate. But neither will suffice where |
y automatic and flexible processing is needed. As an example, note that the restrictions imposed by the |
- ‘syntactic rules’, the need for manual intervention at almost all stages of the processing, and the lack |
= of success at even this simply structured problem make these systems completely inappropriate for |
. the real-time processing needed of the system that is to use the models created by such a ‘reference

preparation’ system,

.- |

4
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1 2.2 Critique of Existing Systems |
0 2.2.1 —- Autonormous processing
~ A stereo system to operate for 2utonomous mapping, reconnaissance, or inspection in some domain

y must be able to initialize itself and run without the need of operator intervention. |
ok Of the systems described above, only Gennery’s runs entirely autonomously. The system of |Panton
o 1978] appears to require manual initialization, as does certainly the Control Data Corporation
k systems [Henderson 1979, Degryse 1980, Parton 1981] and, to a lesser extent, the [Grimson 1980)
. system. These may also require manual intervention during the processing — the [Henderson 1979]

Lo and [Degryse 1980] when there are vertical breaks in scene continuity, the {Grimson 1980] when - |
L the disparity differences exceed the size of the largest convolution operator, and the [Panwon 1978]
. system when the terrain approaches discontinuity and the correlator begins to diverge locally from
Co the correct matchings.

- 2.2.2 —- Domain restrictions

i An understanding of its domain of intended use and an analysis of its performance capabilities will |
on give us insight into a stereo system’s overall range of application, and thus its utility.

> In general, the performance of the area-based correspondence schemes will degrade rapidly when
o confronted with scenes of discontinuous structure, and this makes them inappropriate for the analysis
So of cultural sites. The CDC techniques of [Henderson 1979], [Degryse 1980], and [Panton 1981] exclude

8 the processing of rolling, curved, or even non-rectilinear structures — predisposed to the analysis
A of building tops, they are inappropriate for most everything else. None of the systems described

can work well where details in the background have reversed positioning with respect to occluding |

x surfaces lying before them (consider a finger at arms’ length and the background beyond) — this is !
o referred to as the edge reversal problem. The Grimson work is the only one which does not make

explicit mention of excluding such positional reversals between the two imaging planes, although it |
N probably does so in the working of its region disparity consensus and its use of disparity pooling in
) the matching process. Excluding edge reversals is such a convenient expedient when working with |
| eplar geometries that it has heen widely accepted for the correspondence processings. That it is |
. a restriction becomes obvious when it is noticed that it prohibits the simultaneous fusion of a thin |
r. object (like a pole) and its background — relative to the pole, what is left-right in one image will |

be right-left in the other. This artefact of the processing may be excused to some extent in that it |
Mo is also observed in human stereopsis, but there is no obvious necessity of building limitations of the |
a human system into a machine system (in their study of the limitations of binocular fusion, Burt and

.. Julesz ([Burt 1980]) comment on inability to attain fusion with positionally reversed points).
oS Looking at the range of examples presented in the published results from these stereo systems also |
a provides insight Lo their applicability. [Panton 1978] has demonstrated a single rolling terrain stereo |
ty pair analysis, as has [Gennery 1980], although Gennery’s scene contains some rather large rocks and
g8 the scene slopes off to a (not seen) horizon. [Levine 1973] shows the processing of two rock-strewn |
: scenes, similar to thau of Gennery. The views in these area-based systems are, as expected, of
ho terrain, and depth discontinuities are either not severe or ignored. [Grimson 1980] has applied his
% algorithm to considc- ibly more scenes ... many random dot stereograms, and several real image

3 pairs. | ’

y
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t 2.2.8 — Global consistency and monocular cues
CL The human perceptual system has the advantage that it can call upon higher processes to comment on
oN the consistency of its visual observations. Only rarely is our binocular sight confused by ambiguities,
w and then this can usually be removed with a tilt of the head or slight motion to the side for a different
by perspective and more information (an observation which lead Moravec to his development of slider
= stereo [Moravec 1980]). An interpretation mechanism is at work with which our stereo systems at
N present have little to compare. Important considerations for a stereo system are how successful it is
i at resolving ambiguities, and how consistent is its interpretation over the entire scene.

o Some researchers have decided that a smooth result is a good approximation to a consistent result, |
x and perform local averaging of depth measurements, hoping to diminish the impact of gross errors

through the abundance of good correspondences (for example [Levine 1973], and [Grimson 1980] |

{ with his disparity consensus requirement). A superior approach is to work within a set of validSa assumptions or observations on the nature of the viewed world, and use the implications of these
~ to choose among ambiguous or inconsistent interpretations. [Gennery 1980] uses an analysis of his
ol correspondence error distributions to enable the automatic editing out of ‘wild points’. One common
: assumption is that the scene is smooth and continuous most everywhere, and can be expected to
Ls be discontinuous at only a small number of locations (for example at those places where the viewed
Fig luminance is undergoing abrupt change).
2 The way such knowledge enters the analysis varies. In some work, the continuity assumption is used
» in prediction. [Levine 1973], [Panton 1978], and [Gennery 1980], in their area-based systems, use the
i. context of neighboring points to limit the search for point correspondents, presuming that points
x neighboring in two dimensions should be ncighboring in three dimensions. But this has determinacy
- problems - the results would change were the analysis to be done in a different order, for example

L with right to left scanning rather than left to right — and decisions are made locally, in a set |- direction, usually never to be revised. Further, these systems do not have mechanisms for locating :
u actual scene depth discontinuities (see below). The MIT Grimson work makes good use of inference |
. on tne continuity of surfaces and the lack of edge signal in its interpolated surface fitting (see the

oN summary), but again fails to deal adequately with actual scene depth discontinuities. Also, the |
system's use of context in its local edge matching is marginal, in that matching at a lower resolution i

- (lower spatial frequency) appears to be a prerequisite!for matching at a level of finer detail (higher |
:- spatial frequency). A global metric is used in consistency checking of disparities over regions —
- requiring 70% of the disparities to be in agreement (one standard deviation, presumably), but this |

iy has been implemented without adequate analysis (see (Grimson 1980] page 75, where it appears to |wn produce a highly quantized, planar effect). [Schumer 1979] discusses a possible mechanism in the |
human system for this spatial averaging of disparities. |

% 2.2.4 — Identifying depth discontinuities |
’ As suggested above, an issue related to the achievement of global consistency is the identification |
L of depth discontinuities in the scene - those places where the viewed surface is not smooth and |

continuous. This capacity has not been reliably incorporated into arca-based analyses, where poor
vo matches arising [rom occlusions or extreme perspective effects merely return a low correlation value, |

indistinguishable from other causes of poor matches. In cases of occlusions, the intensity values in a |
-. window about the depth discontinuity in the two views would have little likelihood of corresponding,

and here, the correlation cocllicient as a measure of similarity is inappropriate. Edge-based analyses |

y operate with the artefacts of (among other things) depth discontinuities, and the inference capability
A .

3 his may not be always the case; the system description does not make a precise definition of the control structure

.-
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is available here for distinguishing occlusions and abrupt changes in depth (although none of the
Ll . cited systems use it). [Binford 1981] discusses the inference of spatial events from monocular cues.

re 2.2.5 — Parallelism possible |
- A stereo system to be used for tasks of navigation or process control must be judged on its ability to
x provide depth measurements at rates approaching real-time. The enormous amount of computation

inherent in the analyses makes it unlikely that a scheme with intrinsic ordered dependence in its

o processing will be able to provide adequate speed, The potential for parallelism in the algorithm is
Tn an important consideration.
h Neither the [Panton 1978] nor the [Gennery 1980} approaches could take full advantage of the high

parallelism possible in the computation since they process from left to right in columns across the

{ match image, relying upon previous correspondences to constrain the search for matches. The |
a [Levine 1973] and {llenderson 1979] approaches are similarly limited, in that they process by lines |
9 from image bottom to top, with each line progression passing up the results of the preceding lineLu analyses to constrain the search. The Grimson algorithm is amenable to parallel implementation,
". and is in the process of being put into hardware ([Nishihara 1981]).

Fig 2.2.6 — Four criteria

a» We would like a stereo mapping system to have:

. e no necessity for manual intervention, either initially or during the processing,
3 ¢ no domain bias — certainly no predilection to horizontal or vertical surfaces, and no
hv limitation to strictly rectilinear structures,

x e both local and global metrics, to enable optimization and confidence measures at both
J levels,

: e a capability of being implemented in parallel hardware, with, for example, a simple |
» partitioning of n processors for n lines of analysis, or a distributed array of m X n. |
| processors for a pair of m X n image arrays. |
4 .

oo 2.8 Goals of this Research

| As may be inferred from the critiques above, my intention when beginning this research was to |
. design and implement an autonomous robust, domain independent stereo vision algorithm — one |
 q with a structure that would lend itself to a parallel realization. These various aims were meant to
. be achieved in the following ways: |

[Robustness] The information in a two-dimensional grey scale image is spatially highly redundant.
: Exploiting this, line-by-line processing would be used to obtain locally good correspondence |

estimates, and global consensus would be reached through a cooperative process that enforces |
three-dimensional continuity.

b i

a A two-dimensional grey scale image can be expected to have a broad spatial frequency
; spectrum. Filtering this spectrum and processing from the bands of lower frequency to higher
. frequency (in the direction of lower to higher noise sensitivity), provides the benefits of a
% coarse-to-fine control strategy ([Kelley 1970]). This suggests an analysis at several ievels of
: resolution, guiding the higher resolution matching from the lower resolution analysis. The
I hicrarchic principle in this is intrinsic to the system’s processing in several ways. Resolution

3 variation is onc of them. The general theme is to process first the most reliable signal and. use this to guide the successively more noise-sensilive analyses.

:
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i [Domasn Independence] The choice of general constraints (on general observations) as opposed to |
R specifics of certain configurations, is the principal determinant of domain flexibility.
os There are no assumntions on the nature of the viewed scene, other than that its structure

3 doesn’t vary between left and right imagings.
rn Testing of the algorithm on images of both cultural scenes and natural terrain would

v demonstrate this flexibility.i [Parallel Implementable] The algorithm should be designed so thai its computational structure is
eh partitionable into parallel streams. Local interactions only (in both the line-by-line matching

o and any subsequent global consistency process) would proviae for the separation of computa-
na tion along line-pairs. With such a structure, a machine with n processors could be made to
oN do n lines of image analysis in time dependent only on line width.

{ The results of the processing should be a digital depth map of the viewed scene. This would produce
FE three-dimensional data in a-form appropriate for input to a three-dimensional terrain and/or object
a8 modelling system (such as ACRONYM [Brooks 1981a}).

Lo These aims were all part of the initial design of the system, and have all been addressed in the
i research to be described here.

: 2.4 Summary of the Processing
i che input to this system is two images forming a collinearized stereo pair. The collinearization is
8 essential at present in that it guarantees that image lines correspond to epipolar lines (see [Hallert
. | 1960]) — a constraint that greatly facilitates the matching process. The processing is begun by
To sampliny the images in both horizontal and vertical directions, measuring the distributions of
Od intensity values and first difference in intensity values. Intensity distributions are used to adjust ;
» image gain and bias, and the distribution of first difference in intensity is used to determine the |
oN intensity variance 04, a measure of image noise which has an important role in the correspondence |
pL process. Figure 2-1 shows a stereo pair of synthelic urban imagery provided by the Control Data |

Corporation. This stereo pair, as all pairs in this report, is positioned for cross-eyed stereo viewing. |
3 N In the first phase of its processing the analysis here is edge-based. Edges are powerful abstractions |
ho of image content, and their use greatly reduces the combinatorics of the correspondence process.

They provide higher precision disparity measures than intensity matching techniques, and, through |

on their mutual connectivity, enable explicit use of global information for reducing the ambiguity at
:o the matching level. | |

To obtain these edges the images are convolved with several operators to produce descriptions of |
LL the image intensity boundaries (edges) at several levels of resolution. The convolution operators
El work on a line of the image at a time, and consist of up to four zero-crossing filters and a low- |
A E pass smoother. The smoother is used to reduce the resolution of the lines of the images, halving
=. resolution at each application. Such an approach has had previous successful application in visual
"4 processing (e.g. [Kelley 1970], [Marr 1977], [Moravec 1980], [Grimson 1980]), and has relevant ties to |
In the neurophysiology of vision, where some researchers feel a multiple spatial frequency analysis is |
= part of the human system's processing (|[Wilson 1978a}) (although the filtering used here is low pass, |

and not bandpass). Reductions in image resolution are made until the image noise (as measured by |

oN the pixel intensity variance statistic) is less than one intensity unit. This resolution diminishing ean
3 p proceed to a maximum of 3 reductions, at which point it has been found that, for the image sizes
. used, there is too little image content left to allow for reasonable matching. The filters detect zero-

L crossings in the second differences measured at each image pixel. Certain properties are associated
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he with the edges found by these zero-crossing filters, and links are kept ¢.nnecting the edges. with
A . those near them in the two-dimensional image. Figure 2-2 shows the full resolution edges found in
5 the images of IMigure 2-1. |
A Image lines are paired, corresponding ones from the left and right, and the edges contained in these
7a are matched via a dynamic programming technique The correspondence process starts with the

lowest resolution edges, and uses the disparities determined there to select which subsets of the full

y resolution edges will be brought together for possible matching. This mapping of low resoiutionoh correspondences to full resolution edges passes through the intermediate resolution depictions,
oe although there are no explicit intermediate resolution matchings. Each pair of corresponding lines
te is processed independently. Figure 2-3 shows a typical pair of corresponding image lines, taken from
v the images of Figure 2-1.
ho!

~ Once all lines have been processed and the various edge correspondences have been deter...ined,
{ measurcs of interline disparity variance are computed. Statistics of this are used to ‘question’ |
- certain correspondences, and a cooperative process ensures that those inconsistent correspondences
~ are removed.
vo This is the first half of the analysis, a low-to-high resolution matching of image edges with subsequent
a. global consistency enforcement. It produces a reasonably dense edge-based disparity map of the

Fy viewed scene which forms a template of constraints for a subsequent correspondence analysis. Figure
hk: 2-4 shows (in stereo) the connected edge correspondences resulting from the processing of the images
: of I'igure 2-1 to this point.

f.. The second half of the analysis is a further edge, and then an intensity-based matching, and,
LL as mentioned, these rely upon the first correspondence process’s results to constrain the match
i; possibilitics. Selecting corresponding lines from the two images, the edge-based matcher attempts

Tt to pair edges which were either rejected by the earlier optimization process or were removed |
% . as ‘questionable’ during the cooperative consistency enforcement in the process of removing bad |
. correspondences. Only those edges that are in corresponding intervals are considered for matching |
o here. This edge matching completes the edge analysis, |

| The tniensity-based matcher pairs not edges but image pixels themselves. It uses a metric which |
. minimizes intensity variance and maximizes interpolated surface linearity. As in the edge-based |

correspondence process, the context of the matching is tightly constrained — corresponding pixels |
N must come from corresponding intervals, as delimited by edge pairings. Intensity-based matching |
. in gencral (for example [Hannah 1974], [Panton 1978]) is limited lo analysis of rolling, smoothly |
= varying terrain — it fails at surface discontinuities. Kdge-based matching functions expressly at

image locations experiencing high intensity variance, notably at surface discontinuities. So with edge-
: based matching providing precision disparity positioning and a highly constraining local context, the |
a conditions are right for an intensity-based matching in the intervening intervals. Figure 2-5 shows
. the final elevation results of this processing for the images of Figure 2-1. |

The matching algorithm in these last two cases is again a dynamic programming technique. The |
RE result of the full processing is a complete image array perspective disparity map of the viewed scene. |
> I'igure 2-6 highlights the structure and processing {low of this total scheme. A brie” summary of the
E .

“ system can be found in [Baker 1981a].
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S Chapter 8 o

0 EDGES AND CONSTRAINTS

ich 3.1 The Use of Edges

N The “edge-based” in the title of this report refers to the distinction between th. use of operators to
~ reduce an image to a depiction of its intensity boundaries, which are then put into correspondence,

oy and the use of ares windowing mechanisms to measure local statistical properties of the intensities,
1 which can then be correlated. The system described here deals with the former because of its:
“ a) reduced combinatorics — there are fewer edges than pixels,

{ | b) greater accuracy — edges can be positioned to sub-pixel precision, while area
cL positioning precision is inversely proportional to window size, and considerably
i poorer, and

¢) more realistic invariance assumptions — area-based analysis presupposes that the
i photometric properties of a scere are invariant to viewing position, while edge-based

»” analysis works with the assumption that it is the geometric properties that are5 invariant to viewing position). Edges are an abstraction of the image, are less
nL sensitive to absolute image brightness levels, and highlight the structural aspects of

” the scene. |
Edges are found by a convolution operator. They are located at positicrns in the image where a

URE change in sign of second difference in intensity occurs. A particular operator, the one employed here

T for the full resolution analysis being 1 by 7 pixels in size!*(see Figure 3-1), measures the directional
aa. I first difference in intensity at each pixel. Second differences are computed from these, and changes |
- in sign of these second differences are used to interpolate zero-crossings (t.e. peaks in first difference). ;
- Certain local properties other than position are measurad and associated with each edge — contrast,
os erientation, and intensity to esther side — and links are kept to nearest neighbours above, below, |
o and to the sides. It is these properties that define an edge and provide the basis for the matching. |

N Correspondence techniques using similar such edge properties are described in [Marr 1976], [Arnold |
BX 1978}, [Baker 1980], and [Mayhew 1981]. |

i The operator processes left to right (horizontally) and top to bottom (vertically) in two separate
Lc passes over the image arrays, looking in each pass for oriented zero-crossings above a (noise-based) |
= threshold (see Chapter 4, discussing statistical measures uced in the analysis). Edge orientation is |
Le determined for each supra-threshold zero-crossing by the ratio of orthogonal components of the. first |
- difference operator, as shown in Figure 3-1. The left to right scan uses the horizontal component of |
iE this operator (7 X 1) and the top to bottom scan uses the vertical component (1 X 7). |

8.2 The Use of Geometric Constraints |

CY The stereo matching is a search for edge correspondence between images. Figure 3-3 shows the
. edges found in the two images of Figure 3-2 with the second difference operator. The operator works

El in both horizontal and vertical directions, but it only allows matching on edges whose horizontal
- gradient lies above the noise — one standard deviation of the first difference in intensity. With

no prior knowledge of the viewing situation, one could have any edge in one image matching any |

- 12:1 pe edge operator is simple, basically one dimensional, and is noteworthy only in that it is fast and fairly effective.

— .
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iit edge in the other. The combinatoricsof this can, understandably, get very high. One would like to
(4 introduce general constraints to limit the cost of this search.
a 3.2.1 — Search constraints |
CL Knowing the geometric relationships between the cameras used in the imaging can greatly reduce |

v the search needed in finding edge correspondences. Projective lines, termed epipolar rays, can |Ea be determined in the two images along which corresponding edges must lie. Figure 3-4 shows |
a the geometry of this situation. With image planes nm; and x, having principal points P; and P,, i
x2 imaging centres C; and C,, line CC, is the epipolar axis through which pass all epipolar planes. |
SS The intersection of each epipolar plane with the two image planes 7; and =, defines corresponding |
: i epipolar lines. A specialization of this general camera geometry is used, wherein the image principal
'® horizon lines are collinear and the image principal vertical lines are parallel. In this configuration |
ht the epipolar axis does not intersect the image planes, and corresponding image horizontal lines are |
oo in fact epipolar lines. Although excessively restrictive for a general system, this was felt to be a |
sn justifiable simplication for our research work.

A Consider Figure 3-5, in which two cameras are arranged in this configuration. Any point in the |
oo scene Will project to twe points on their image planes — one through each of the two lens centers |
® (notice that the image planes are coplanar). The connection of these two points will produce a
CO line parallel to the baseline between the cameras, and in this cas parallel to the image horizontal |
oC lines. Corresponding edges in the two images, then, must lie along the same line in the two image |
vo planes. This camera geometry gives rise to images with a collinear epipolar geometry. The algorithm
no described assumes the stereo pair to be in a collinear epipolar geometry, and if this is not the case
on then the appropriate transformation of one image relative to the other must be made before further
‘Gp processing is done. Note that a less restrictive solution would be to have the correspondence process
2 informed of the camera geometries, and have it solve for the more general epipolar geometry of
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- This discussion of camera geometry constraints suggests another crucial geometric constraint on the
; analysis. The matching algorithm to be described here demands a monotonicity'3of edge order along

“A 3
1 The basis of this monotonicity constraint is explained in chapter 5 which discusses the Viterbi correspondence

g slgorithm.
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3 epipolar lines. This means that there cannot be reversals of edge order from one image to the other.
§ . Consider Figure 3-6. Left image edge Ly which lies to the left of edge L; cannot match right image
5 k edge Rn if Ry, lies to the right of edge R,, which matches edge L,. This constraint lies at the heart
ho of the Viterbi method, although it is not without its drawbacks. Notice that if the image planes
S_— x; and 7, face eachother, then objects in one image will be sequenced from the left while those in
5 the other will be sequenced from the right. If the edges of these objects were allowed to match, it
SL would violate our monotonicity constraint. This is a degenerate example of a general problem. The

ordering of objects in the two projected images depends upon their distance from the imaging points
| — foreground/background appear as right-left or left-right depending on the camera site, and it

ho should be clear that the problem of edge reversals is unavoidable. The use of this constraint will

= exclude from analysis, for the time being, such features as wires or overhanging surfaces, features
: which lead to these positional reversals in the image (see Figure 3-7). Psychophysical evidenc:
go» suggests that this reversal also causes the human vision system trouble — we can fuse one or the

other, the nearer or the farther, but not both at the same time ([Burt 1980]). Fusion of the items
vo causing the reversal can be achieved only by vergence movements executed explicitly to bring them
i one at a time into fixation. (A similar method would provide a means of dealing with reversals here

| — reprocess the edges left unpaired by the matching process, treating them as satellites possibly
= left unmatched because of such local rivalries.)

¢
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(\
= Left Camera Right Camera Left Camera Right Camera
aS C BA AB C A BC ;’ Ba

te \/ Positional
v reversals

. | Wires ACo Xo y Overhanging¥ Surface 3)CL Detail /\Y \ Surface

PS lhe various ABCD’s are Background
rh visible edges

(1 Examples of surfaces violating the Viterbi monotonicity constraint
i " Figure 3-7 |

3.2.2 —~ Interpretation constraints

- y When the edge-based correspondence has finished, it has come up with a judgement on which edges
ON in the right image match a set of the edges from the left image. This determination is made |
‘® on the basis of information strictly local to each line processed — there is no information made
Lo available to the matching from outside of the line to which it applies. Being so local, it has no
R guarantee of being globally correct, yet it is global correctness that we are trying to achieve. A |
= very strong global constraint that can be of use here is that of edge connectsvity (Figure 3-8 shows |

the connectivity of the edges of Figure 3-3). It may be presumed (by general position) that, in |
» the absence of other information, a connected sequence of edges in one image should be seen as |
'@ a connected sequence of edges in the other, and that the structure in the scene underlying these |
, observations may be inferred to be a continuous surface detail or a continuous surface bounding
oo contour. The individual line correlations make their suggestions of which edges correspond, and a
CL subsequent cooperative process takes these local judgements and the known connectivity and works
- toward a global consensus. Statistics are kept (see section 4.2) on interline disparity differences along
Cs connected sequences of edges, and these measures, where a large disparity difference implies a large
@ change in depth, provide the evidence for removing edge correspondences which violate observed
Co bounding contour continuity.

.
Thr
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- 3.2.8 — Constraint summary |
x i

1 The three principal constraints on the analysis are that:3 |
| eo the geometry of the cameras be known, and in particular, be the specialized geometry |
. where image lines correspond to epipolar lines,

re e there be no edge reversals along epipolar lines (if they are present, the solution will |
involve a monotonic subset of them). |

|

g e edge correspondence be consistence with edge connectivity in the images (as these |
0 suggest depth continuity). |

[S.

“.

.

2 .



i Chapter 4

AS 4.1 Correspondence Statistics |

J) The best solution for a matching will be determined on the basis of some evaluation funciion. The
vl evaluation function takes local quantitative measures of correspondence likelihoods and produces
Re a global score for a potential solution. Statistical measures play a large role in determining these
co local quantitative measures. In the first case one wants to be able to distinguish edges or intensity
Co variances that are in some sense valid from those that may be merely spurious or a product of the |

| digitization or imaging processes. Further, one will want to compare edge parameters and intensityoy values across images, and have quantitative means for estimating their correspondence likelihoods.
x For these tasks, we need some measure of significance in intensity variation. |

4.1.1 — Intensity variation

“® A pixel's brightness is measured as the integral of a weight function (for example a Gaussian)
HE over the local intensity surface. The principal variation, or noise, in a pixel’s intensity arises from
ni characteristics of the sensor used. This variation is referred to as sensor noise,!* and it may be
oy modelled as a Gaussian process whose statistics may be estimated by measuring the distribution
8 of interpixel intensity differences. Say that the variance of interpixel differences — determined by |
Ls sampling first differences in horizontal ard vertical scanning directions — is 0%, so that its standard

3

[ deviation is 04 (zero-mean), then the variance in a single pixel’s intensity value may be given as 2 |
IE and its standard deviation is ” |
So 0 = —. | (4-1) |

This measure (standard deviation in pixel intensity variation) is used for several image dependent
Ww computations. The full resolution edge operator (having width w = 2n+1,n = 3) could be expected |
oa to have a standard deviation in its difference values of |

co. cy = V2no; = V6o,. (4 —2) |

-, It is a zero-crossing operator, locating edges only at those pixels having a zero-crossing in their second |
® difference (as defined earlier). However, discretization and camera noise make it necessary to look
a at more than just this zero-crossing measure. There can be areas where slight noise effects make the
a second difference fluctuate back and forth about zero, giving a great density of zero-crossings. A first |
Ty difference threshold, based on the operator's intensity variance statistic oy, is used to separate valid |
= edges from such noise-induced spurious edges — it ensures that the contrast across an edge is greater

4 than oy, i.e. the matching will only deal with edges that are stronger than the noise. A further |
complication arises in that the signal variance measured here is not just a function of 'ocal image |

Ln noise but of course of local image content as well. If the intensitv values are changing monotonically |
Cs in some local area, as on a long gradual slope, discretization noise can give rise to zero-crossings in |
- the second difference and the first difference measure I’ will, if the gradient is steep enough, exceed
Lo os. A technique to remove local image gradient content is to apply a lateral inhibition operator to

Ughot noise, which varies with t. ~ignal, is not considered here, but if its characteristics are known then its noise |
oC effects can be compensated for by transforming the brightness values via a nonlinear function. |
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os the signal (|Binford 1981]). This maps a linear function onto zero (i.e. it maps constant gradients
. onto zero).

a A variation of this method is used here. At positions where there is found to be a zero-crossing in the
a ) second difference, a least squares line is fit through the support of the first difference operator. Each
NTT pixel intensity value I and its standard deviation o; defines a [I — o;, I + 0] local error interval (see |
NS Figure 4-1). If the linear least squares fit to the intensity data passes through this w-leng.n corridor,

then the proposed edge on which the operator is centred is deemed to be laterally inhsbited, and
= is not maintained as a valid edge. Figure 4-2 shows the output of the convolution with the lateral
os inhibition operation turned off — compare this with the edge set after lateral inhibition, as shown in
= } Figure 3-3. This implementation of the lateral inhibition operation is basically an expedient, doesn’t

fit the normal mold of a lateral inhibition operator, and, in being only one dimensional, fails to |nt ‘take into consideration the more global structure of the image afforded a two dimensional operator. |

¢ Its good characteristics are that it is evaluated only at candidate edges and, being centred on a
I symmetric operator, is very easy to compute.!®

'D |
ro

LC 0 Least-squares | |

[© - + + 0 + fit {eage Is |

0 N_ inhibited)- © O Q T 2nd difference
> zZero-crossing |
e pixel |
a + 4+ +

i -33 -2 -1 2 +1 +2 +3
2 Relative position |

Co Lateral inhibition operator
Co Figure 4-1

' ¢ ) 15 further refinements to this stereo process should inciude giving both the lateral inhibition and the low-pass filters
to two-dimensional support. |

-
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( The standard deviation in pixel intensity, oy, can also be used to determine the accuracy of edge || positioning. Recall that edge position is specified by an interpolation of the zero-crossings of image )
" intensity second differences (see Figure 3-1). The standard deviation in the second difference measure |

. is 0g = 40; = 20;. It is clear that the precision of the edge positioning depends upon this |
| parameter oz and the second difference contrast across the edge C = |I{ — I}|. Since the variation |

= in intensity value is being modelled as Gaussian, we can determine the joint distribution of the |
N variation in the quotient z = 5 as the convolution of the two normal (and equivalent) intensity |
¥ second difference variation distributions with mean zero and standard deviation oz. Considering
. Figure 4-3, an error interval [—o3,02] can be defined about the interpolated edge position. The .~
3 probability that the correct edge position passes within 3 of the interpolated position is |

oo 2(z—03) |
_ / / [(z)f(y)dzdy = 0.84166 |—oo J—2(x+03)

, where f is the Gaussian probability density function of (4-10) with n = 0,0 = 03. This is the |
. integral of the convolution of the distributions in second difference variation, as Figure 4-4 may
3 clarify. A convolution of Gaussians is Gaussian, so the variation of this convolution has standard |
: deviation -= 2 |

Oy = —— = 1.420. :
» 141 ' So

- This is a measure of the vertical variance in interpolated position (as Figure 4-3); the horizontal .
. variance in edge position can be determined from this as |

: dog 1.420, i.
: 21 LN (4-3)

-
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Ld where d is the distance between second differences, d = 1.0. This is a family of distributions with

(: . dependence on the measured pixel noise a; and the contrast at the edge C.
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we Convolution of second difference variation |
» | Y and X are the variations in intensity second{ Interpolated edge position accuracy difference of IY and IZ, respectively, of Figure 4-8. j
SE Figure 4-3 Figure 4-4 |

Ls 4.1.2 — Edge-based correspondencss
» » LJ &  ] L - |

, The edge-based correspondence process uses the pixe! intensity variance o% as one consideration in
NA evaluating the probability of two edges corresponding. If the distribution of I’ values is Gaussian, |
- then intensity differences can be mapped via the Gaussian cumulative distribution function to obtain
- a probability P;; that left image edge element E;; (which for brevity may be written L;) with, say,
' [1] » . » » [) [)

“4 intensity value Ij; corresponds to right image edge element E,; (which may be written R;) with |
intensity value I, ;.18 In the full resolution matching implemented here each edge L; is treated as |

oi two half-edges — the left side EL;; and the right side ER;;— and the intensity values IL;
and IK, are the sums of the three pixel intensity values centred exactly 2.5 pixels to the left and |

: the right, respectively (see Figure 3-1). This selection of intensily values removed from the edge

¥ functions to stabilize the metric, keeping those values in the area of high gradient nearest the edge |
.. out of the calculations. |

3 The smoothing operator used is a 4 X 1 convolution with weights 1-2-2-1. When invoked to halve
oo line resolution ¢ times it gives each pixel in the resultant depiction a support |

0 S(t) = 3 X 271 + S(t — 1), where S(0) = 1,
he

2 1854 course an edge doesn't have an intensity; it has an intensity and a contrast, or two intensities.
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he

5 in the original image. The standard deviation in intensity value for any pixel at resolution t is3 T Oy
=~ of =5 (4-4)

Ne © VES) -2
23 The standard deviation in intensity difference at resolution ¢ for a first difference operator whose

support is 2n + 1 is oo

: T __ T __ n -
38 I= VIN = 5-1 (4-5)
i (for the various smoothing operators used he'c, 1 < n < 3). These standard deviations can

again be used to map intensity differences to c/.rrespondence probability estimates via the Gaussian
-r, cumulative distribution function (they are zero-mean). The reduced resolution edge operators use

these measures in separating valid from spurious edges, and the reduced resolution correspondence
IN process uses them in estimating the likelihood of edges matching. (Note: throughout, a superscript
Lo | of T will distinguish parameters of reduced resolution t from those of the full resolution analysis.)

aN These are the intensity statistics used in the edge finding and the correspondence processes. Other |
oT statistics are involved as well. The three edge-based matching schemes — full resolution, reduced |
2 resolution, and constrasned-interval — have differing sets of statistically based metrics for measuring |
& the likelihood of edges matching in their separate domains. In the following, probabilistic measures, |

paraineters, or data structures are denoted by the prefix P, and the various multiplicative terms
5 are independent.

os Reduced Resolution Correspondence
T™ For reduced resolution matchings, at resolution r = ¢ with support 2n + 1, the probability that the
Ea edge LT corresponds to edge RY in the other image is estimated as:

T __ T T
a PReduced]; = FStatT; X PIntervallygi ci (4-6)
on |

v with PStat]; = PLeft]; X PRight]; X PContrasty, |
LT | and Pintervallp(i),5,p(5) 18 the probability that the interval between |
a LT and its predecessor Li corresponds to the interval be- |
. . tween RT and its predecessor RZ. in the other image (see
o Figure 4-5) — p(1) is not meant to equal : — 1, but rather is
-.. the predecessor along the path from 1 that has a correlate |

a Correlate(p(s)) = p(s) in the other image,

2 where P Left; is the probability that the left intensity value of edge LT
EL corresponds to the left intensity value of edge RY in the
@ otuer image, and is computed as:

<n PLefil; = GPROB(EL]; — ELY,), (4-7)

PL PRight]; is the probability that the right intensity value of edge
a LT corresponds to the right intensity value of edge RT in
km the other image, and is computed as:

L POE . . » “ i” . Cu ee len Bi cas to. rt aaw aaaRRSE.WoaaeyRPTAamat at at emt a aw aed
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q - PRightT, = GPROB(ERT; — ERT), (4-8)
9 =+0.5
So GPROB(z) = / GPDF(0, 0%), (4-9)
oN z—0.5

a (GPDF being the Gaussian probability density function of (4-10)
with parameters mean and standard deviation)

8 1 —os(e52)’y GPDF(n,0) = —e ) (4 — 10)

- V2x0o |
= PContrastT, = 1.0, if Contrast(Ly ) = Contrast(R}),
> 0.0, otherwise.

Hy ’ 9 / \ RN 2 (i) avs 77 ! J |
» . point ! \f NY ye iT |
: Image y \ XN Th ad of 'Sa plane / \ N. h co .’ f |
H \ No 3> Re N |
r . / \ Pd ” ~~ hy bY id N !
in ~ ! ve” a N Ty? ! l
Ry ! ” A .7 NEAR /
Be ! Pe < od A . /
ot |Z Tra Interval No ! |
bo \ wer ’n Com oN |

% ednas |

i Interval compression ratios! LI, l2, LJ
RI R2 R3

gt Interval compression ratio |
Figure 4-5 |

g The first three terms of this probability product, composed in P Stat]; form a static probabilitistic
» measure that may be precomputed for any particular epipolar pairing (they can be determined a
3

" priors from the edge properties). The last term, PInterval™, interval correspondence probability,
a must be determined dynamically at each decision point in the Viterbi correlation (it is an a postersors
o measure, depending upon the interval choices available). This interval correspondence probability,
: tL. PlIntervalT, estimates the probability that the intervals between two pairs of matched edges are the
> projections of the same surface. Currently this is computed in one of two ways «.- the first being a
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£ rough intuitive approximation, the other based on a result of Arnold. There seems to be very little
Lu! difference in the results of the processing with these measures; Arnold's technique has only beenTAL: introduced in this work quite recently, and the difference between the two has not as yet been fully g
Ln explored.

Sl In the rough approximation.

LL min(Length? .\, LengthT ,.
PlIntervaliys, p05) = 0-75) 1.0 min{fongths pu: Longs peg)in max(Length; y), Length;o;)

oa where
ho LenathT  — Coordinate(RY,) — Coordinate(RT), if Right image interval

-. g:%mm = Coordinate(L],) - Coordinate(L]), if Left image interval
RE From [Arnold 1980], the probability, based on an assumption of uniformly distributed surface

orientations, has the cumulative distribution function CDF, |

i CDF = [ tan™! 1 |. — oo eT + b i
-e
oi where __ Length?
ne R= ment
on a= 2 | |

sl B =camera baseline ]
z ==scene distance, |

= and z = lowest coordinate of edge in left image space.

ro Rather than int. ~...*‘ng this »*obability density function, Arnold uses evaluations of the integrand
ro over a unifori.\v coun ‘l:atec main as his probabilistic measures.

I It should be , .* d that the static probabilitistic measure P Stat], calculation would lead to a |
Le computation of (J(n?), while the use of interval correspondence probability P Interval brings the
Fe computation up to O(n3). |

Ly The Full Resolution Correspondence Process |
he For full resolution matching, each edge is treated as a doublet, being a left half and a right half. |
on The probability that one side of left image edge Ly corresponds to the same side of right image edge |
Lo R; is estimated as:

= | PFull;, = PStat;; X Plnterval; 4,590) (4-11)

8 with P Stat; = PSid;; X POrient;; X PReducedRell :sp,,,
3 . and P Interval,py),;,  iefined as above. |

= if left half of the edge, then the probability that the left intensity value of edge Ly
- corresponds to the left intensity value of edge Rj, (PLefty;, of (4-7)), |
to PSsd;; =

. | “ if right half of the edge, then the probability that the right intensity value of edge
To L; corresponds to the right intensity value of edge Rj, (PRiyhty), of (4-8)).

b " " 5 } - ; CL - i A mle aea . a : on_ SmEN esa Ta aeAe.mm ata a1 emPE etm. = En Cm an od
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r A POrient;; = probability that the orientation of edge L; cor-
~ responds to the orientation of edge R; in the other image.

This probability of edges corresponding based upon their image-plane orientation

“ has been derived in tvo ways, as before. The first (ad hoc) was to determine a
q probabilistic weighting:

: POrient;; = 0.75(1 — e?), : (4 —12)

a i = 2min(Orientation(L,), Orientation(R,))
C ~ wmagz(Orientation(L;), Orientation(R;))’
KB where the factor 0.75 makes the probability integrate to 1.0. The other derivation |
~ comes from considering the probability of correspondence of two edges L; and R; as
3 a bivariate distribution in Orientation(L,) and Orientation(R;) with the probability

: density function as depicted in Figure 4-6 (after Arnold).

h P ReducedRelD1sp,; = 0.75(1 — (NormdevT)?),

- NormdevT = normalized deviation from reduced resolution interval disparity. |

no This latter component provides a bias from the disparities set by the reduced resolution correspon- |
. dence process. It gives a bias toward edge pairings whose disparity is near that of their interval as

X a whole. Consider a potentially corresponding edge pair (Ls, R;), as depicted in Figure 4-7, The |
FE disparity associated with this pair matching is Disp;; = Coordinate(L;) — Coordinate(R;). If the |

- two edges come from a particular reduced resolution interval Intervaly, 5m) n(n)’ whose average |
- disparity is ADispy, om) npn) , Where:

‘omT Po |L rr Dippynn — Diep,(m), p(n) |
ADispmpm) mpi) = ————5and |

T T T T |

¢ then the deviation in disparity |

| | Ddev’ = ADispp, o(m),n,p(n) — P1805; (4 — 13) |

a biases the probability of the edges I, and R; corresponding. The normalization is with respect to |
the size of tne interval. Having not made an analysis of the disiribution of this bias parameter, I

¢ use it as a probabilistic weighting 1 — €2. |
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: The Constrained-Interval Edge Correspondence Process
L ’ The line-by-line constrained-interval edge matching, that which follows the cooperative continuity
" process, uses an evaluation function nearly identical to that used by the full resolution edge matching:

B PInterE;; = PStat; X PInterval; p(),5,p(5) (4 - 14)

| with P Stat;; = P Sid; X POrient;; X PInterRelD1sp,,, |
=n and P Interval; p(i),5,p(5) P S1dis, and POrient,; defined as above.

: PInterRelDisp,; = 0.75(1 — (Normdev)*),
. } and Normdev = normalized deviation from full resolution interval disparity.

4.1.8 — Intensity-based correspondences

* The Constrasned-Interval Intensity Correspondence Process

o The line-by-line constrained-interval intensity matching, occuring only after the constrained-interval
" edge correspondence process, draws again on the measured pixel intensity variance. Here, the |

¢ probability that pixel Pizel;; in one image corresponds to pixel Pizel,; in the other image is set |
w P Pizel;; = P Intensity; X P LinearInterpolate,, (4 — 15) |
LC |

\ 2 where P Intensity,; = the integral of the Gaussian probability density

T function (zerv-mean, 6 == a4), about the intensity difference. |
i : 640.5

3 Plntensity,;, = / ok GPDF(0, vq), (4 — 16) |

C 6 = Intensity(Pizel,;) — Intensity(Pizel_ ;). |
oo and
- P LinearInterpolate;; = 0.75(1 — €?), (4-17) |

; ¢ == normalized deviation in disparity Disp; from a linear interpolation ove: the |
4 interval in which the pixels occur, |
3 } Recall that the edge-based matchings treat edges as doublets, being.a left and a right half. Each of |
gL these halves has, independently, the possibility of matching a corresponding edge half in the other |

image. If it does match one, it is said to be locked at that point, otherwise it is free. Consider that
- an interval is locked on its left side by the right half of its leftmost edge, and on the right side by the
4 left half of its rightmost edge. For the linear interpolation, if both sides of the interval are locked,

then the deviation from a linear interpolation at a particular pixel pairing is the difference between
NE its calculated disparity Disp,; and the associated interpolated disparity at that point. Figure 4-8
SE shows this situation. Figure 4-9 indicates the means for determining the deviation when one side of
» the interval is free (fails to be locked). If both are free, as shown in Figure 4-10, then ¢ = 0.

d
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0 4.1.4 —~ Summary of correlation statistics | |
B The two types of correlation statistics used in the processing are:

i” ) e intensity based, and using the Gaussian probability density function to estimate the |
3 likelihood of edges from opposite images matching, and

- eo geometrically based, where estimates of the distribution of scene characteristics are

E used to specify edge correspondence probabilities. |

| 4.2 Cooperative Continuity Constraint Statistics

(| The cooperative continuity constraint process is also statistic driven. Each edge in an image has
- two-dimensioncl connectivity to the edges to which it is proximal (see Figure 4-11). While the {full |
R resolution correspondences are being formed, measures of the variation in disparity Disp,; between
Lo connected edges are made and accumulated to give a mean and standard deviation [u, opis] of
- these inter-edge disparity differences. What these differences measure is the implied change in depth

5 along the connected sequence of edges. Clearly these changes should be sinall along a continuous

b three-space curve. The accumulated disparity difference statistics (i, 0p,,p] provide a metric for
te, distinguishing between the good and the questionable correspondences chosen by the Modified Viterbi
CL correlation — those disparity differences which lie outside of the [1 — 0piep, #t + 7 piyp] difference
i. window suggest abrupt changes in depth, discontinuities in the supposed continuous 3-space curves |
Lo giving rise to the involved image edges. Reasons will be given in section 6-3 for a more arbitrary |
- setting of opp = 1.0.

|

q
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T. THE MODIFIED

5.1 The Correspondence Problem

{- When1 first looked at the computation task of matching edges from one image with those in the |
b other image, I thought in terms of having a heuristically bounded search which would optimize some
7 metric. The combinatorics of matching m edges from an epipolar line of one image with n edges from
ho the corresponding epipolar line in the other image, allowing for strictly one-to-one matching but not
i considering other distinguishing characteristics, is of order (min(m,n))!, which, for m = n is ml.

ig For a typical line of the Control Data Corporation imagery, m = n = 11, and 11! = 39, 916, 800. i
& A typical line of the Night Vision Laboratory imagery has m = n = 30, and 30! > 2.65 X 1032, |
ro Obviously the combinatorics are rather overwhelming, and I put a lot of effort into analysis and
no design, trying to find methods to reduce or bound this cost. Certain obvious approaches come to
" mind, and these were implemented and tested:

T e¢ using a hierarchic scheme, where edge strength is used io order combinations, and |
3 ae correspondences are only allowed within strength intervals; |
{ e precluding edges of differing contrasts from corresponding; |
“ ¢ limiting disparity values to a certain range; |
Co e using a coarse in fine strategy, reducing image resolution to enable working first with

the, fewer reduced resolution edges. |

oR In the interests of both parallelisrn and robustness, it was critical for the design |
Lo that the results of the stereo matching be independent for each line processed (in |
= contrast with the algorithm used in [Henderson 1979]), so I could not allow the
> solution from line 7 to affect the order or results for the processing of scanline j +1 |

(or 7 — 1 or m #£ j for that matter), and this was one common heuristic that had |
i to be avoided.

: Accompanying these processing constraints was a quite involved evaluation function capable of
estimating the maximum score attainable for the correlation from a particular set of correspondences.

4 This use of an evaluation function estimator allowed the introduction of the extensive pruning of a
Fo branch and bound algorithm. Even with it, though, runs for certain lines took near minutes (on a
. DEC KL-10). A better approach was needed, and it appeared in a dynamic programming variant
NE called the Viterbi algorithm.

{ . The Viterbi algorithm is defined as a recursive optimal solution to the problem of estimating the
To state sequence of a discrete-time finite-state Markov process observed in memoryless noise ([Forney
- 1973)). The underlying Markov process is characterized as follows: |

WEEJOVI SU. SPP SU FOE SU SU RPE I ES SASSSPU TSTNSURE TU USESr . a mw. ow J ” i
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oo Time is discrete |

wo The state z,, at time m is one of a finite number N of states n, 1 < n < N; te. |
SO the state space X is simply {1,2,...,,N}.
ol Assuming the process runs in time domain T where t € [1, M], and the initial and
So final states =; and zs are known, the state sequence, mapping T' — X, can |
LC be represented as a vector § = (z1,%Z2,...,ZM).
J The process is Markov in the sense that the probability P{z,+1 | Z1,22,..+ Zm) of
LL being in state z,,4; at time m + 1, given all states up to time m depends |
SNE only on the state z,, at time mm: |

RC P(Zm+1 | 21,Z25- 3 Zm) = P(ZTm+1 | Tm), and || P(S)= JI P(zis1!2). (5-1) |

x In the problem addressed here of finding the optimal solution to the matching of edges from the left
oT and right images, corresponding to the state space X is the set of left image edges (numbered 1 to N

“® along a particular epipolar line); corresponding to the time domain T' is the set of right image edges |
= (numbered 1 to M along the corresponding epipolar line). The state sequence can be represented as |
oe a mapping:

ln or as a vector: |
(| S = {(m,n)| (msn), me T,n€ X}, |
R +—=is a binary relation indicating that m in T corresponds to n in X

ol Regardiess of representation, it is the record of correspondences for the various edges in T. |

¥ 5.2 Direct Implementation of the Viterb:r Algorithm |
Lo One of the assumptions capitalized on in the branch and bound scheme mentioned above held that
Ce there could be no edge reversals in the image plane. This meant that an edge sequence L;,L; in
Lh one image, with © < 7, and 1,5 being edge indices, could not coiswspond to an edge sequence Rg,R; |
@ in the other image, if ¥ > [ (refer to Figure 3-6). This is the cdge reversal constraint, and was
ov integral to the pruning. As it happens, this same constraint is the key to the use of the Viterbi
Co algorithm.” It provides a monotonicity condition satisfying the sequencing constraint in the finite- |
as state correspondence process. Consider Figure 5-1. What distinguishes the Viterbi technique from |
oo normal search is the ability to partition the original problem into two subproblems, each of which |
Lo can be solved optimally and whose results can be processed to yield a global optimum for the original |

[ problem (‘optimal’ with respect to an evaluation function on the chosen parameters). In a recursive
Lr way, each of the subproblems may be divided and the sclution process repeated. In particular, one |
Co can partition the problem of assigning correspondences among two tuples of edges Edgeset; and

: Edgeset, about some tentative pairing (R; ++L;), solve the associated correspondence problems of
A edges lying to the left of L; in Edgeset; with those lying to the left of R; in Edgeset, and edges

' TP——
_ [Rubin 1980] describes an image processing search technique, the Locus search, which i« based on the Viterbi
RY algorithm,
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i lying to the right of L; in Edgeset; with those lying to the right of R; in Edgeset,. ( += represents
i. a binary relation, and (a +b) is read “a in Edgeset, corresponds to b in Edgeset;”.)

se Right
i image

edges
= re J
Lo M-1 M

Laft

=» Image
& edges
1

h 1 2 a. / N-1 N

1 | left particion right partition

- Typical Right and Left Image Corresponding Epipolar Line Edges

” Edgeset; = (Li, Ley... Liy..yLn—1,LN),oa Kdgeset, — (Ri, Rs, cen dt, yw Rp—1, Ra)
= Figure 5-1

os The optimal solution for the line correlation is that sequence of edge pairings from the left and
-. right image lines which is consistent with this monotonicity constraint and maximizes some score.
4 The score used here was based on summing the individual probability measures for each possible
vo edge-pair correspondence (4-11). This summing favours the densest possible surface intrepretation

ri ([Julesz 1976]). Other scorings, such as normalizing, summing weighted probability contributions, or
taking the (more standard) product of probabilities (as defined in (5-3)) do not support this density

nr preference. Consider a two dimensional array Parray[l : N,1: M| with Edgeset, along the bottom
axis, and Ivdgeset; up the left side axis, as in Figure 5-2. The Viterbi solution implemented here

¢ develops from the left of the image (right image edge index of 1) to the right of the image (right
: image edge index of M), and within this, from the bottom (left image index of 1) to the tap (left

oo image index of N). The first set of subproblems is all those involving the assignment of RB;. The
. second set of subproblems deals with Rs using the results of the analysis of 2. Thus for M edges

in the right image line, there are M subproblem sets. A useful mnemonic to bear in mind about

 o this processing is to ask, at each possible pairing (R; ¥L;), “what 13 the best possible solution to the
SE left of (i.7) of (R; v»L;)”. The set of solutions (including the optimal) is built up by evaluating this
oa for all (7, 7).

 ¢
FT
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Lo Right image edges | |

p Viterbi Dynamic Prograraming Array |
- Figure 5-2 |

= The matching process is monotonic in both left image edge indices {1 | t+ € [1,N],L; € Edgeset, }, |
ae and right, image edge indices {j | 7 € [1, M], R; € Edgeset, }. This monotonicity means that the |
oy solution for the pairing (R; +*”;) need only examine that portion of Parray|i : N,1: M]| where
N n < i,m < j, i.e. the rectangular subarray whose top right corner is Parrayl[z, j] (otherwise, say
= if (Ry4+1 +>Li—1) preceded (R; v»L;), we note that j + 1 > j and the monotonicity is violated). |
ot The solution for the pairing (%, 7) is the best assignment of edges from Edgeset;,,p € [1,5] and
Fl Edgeset,4,q € [1,7], that is, for the edges in the two sets up to and including edges L; and Rj. |
yy A scoring function is defined for the various transitions possible in the processing, and these can
"4 usually be limited (because of the monotonicity) to the obvious three:

= | {(6z,6y) = (-1,0),(~1,-1),(0, -1)}. (5-2) |

0 Through this, subproblem (Edgeset;, Edgeset, ;) can be solved after subproblem (Edgeset;;_;, |
Co Edgeset,;) and subproblem (Edgeset,., Edgeset, ;_1) are solved (these both imply the solution of |
A subproblem (Edgeset;s—1, Edgeset, ;—1)). Thus, the decision for. any pairing (t, 7) can be made with |

just 3 scoring comparisons, making the total line correlation computation O(MN) (or O(N?), where
“ M and N are of the same order).

FA | |
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J An entry in Parrayli, j] has associated with it: |
{ - eo a local score, Localscore,
; e¢ a cumulative score (from the left), Totalscere, and

RE e an indicator of the pairing (k,!),k < ¢,1 < j, that is the predecessor to (1, j) in the
- solution that contains (Ry; ++ Ly).

} Each such entry in Parray is linked to other entries in Parray via these predecessor indicators. A
: chain of these entries contains a locally optimal solution to the line correspondence problem. The
B optimal chain over this entire set of chains is the global optimum for the whole line correlation

- (note: the chain of the best solution will begin with an entry in column M, specifically, the highest
scoring entry in that column). |

3 5.8 Modi fications to the Viterbi Algorithm
2

The preceding overview of the scoring mechanism has been slightly misleading, as it doesn’t take into
2 account several issues . .. those which relate to specific aspects of the various correspondence processes
K to be performed. The four correspondence processes — reduced resolution edge, full resolution edge,

- constrained-interval edge, and constrained-snterval intensity — each have characteristics which make |
; the above general outline inappropriate. The principal variation comes from: |
3 eo the treatment of unassignable pixels or edges (those which may be obscured in the
“oo other image, or be merely spurious). |

: |

| The complication this introduces is apparent when looking at the optimization metric
oo used by the Viterbi method. Probabilities are treated multiplicatively (5-3). If one of

the right image edges, FR; has no correlate in the left image, then the optimsl solution |
- should have P(R,; ++L;) = 0, Vi € [1, N]. But even a single zero probability will take |

the total probability product to zero, since

y P(S) == II P(zyn41 Tom) = 0, if P(x | Ti—1)) = 0, for < M., (5 — 3) |
1Sm<M |

Ny Viterbi was not designed with time domain skipping in mind (although having a par-
; ticular state unused would present no problem). The scoring mechanism must allow |
yp unmatched pixels and edges in both the left and the right images.

Two other issues also affect the implementation of the Viterbi algorithm. These are: |
) eo the metrics used in the scoring. One, interval compression ratio, drives the computa- |

tion to O(N3). |

| The information needed to compute the left and right image interval ratio will (in |
- general) not be available to the local (6,4,) transition rule of (5-2). It is conceivable,
) especially when considering the possibilities of the prior unassigned pixel or edge varia-

tion, that this computatio. may need to look as far back as the first left image edge! |
" The transition mechanism should minimize this search while maintaining optimality. |

e the edge index numbering conventions (in certain cases each edge is considered a |
doublet — its left and right sides). |
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5 With edges split into a left and a right half, the computation is increased (proportional |
{tL to the order), and the (6,,6,) transition mechanism (5-2) may need to be altered. The SE
SEN efficiencies possible in that the left sides of edges cannot match the right sides of edges i
iy should be used in reducing the increased combinatorics arising from the edge splitting.

Considering these difficulties one at a time, the variations they introduce are as follows: |

oa [Unassignable edges] Edges from either image that are either spursous, or are obscured in the other |re image, sh. ! hr left. unassigned by the matching process. This means that chains of pairings
B (in the v .  . coluticns) may not be joining adjacent edges — there must be provision for |
= skipping : ver certain (unassigned) edges in these chains. This is accomplished by allowing
: - an edae Ry; to match the null edge L;4. The alternative, not providing for the interpretation
{ of ce. lain edges as being spurious or obscured, is both unrealistic and unacceptable — there

will always be edges which have either no visible correlate in the other image or no physical
ou justification in the scene.

wn Unmatched pixels from the constrasned-interval intensity correspondence process don’t re-

NR quire such special-cese treatment, as they are positioned by interpolation. |
h [Scoring metrics] Interval compression ratio is a measure of the perspective foreshortening of scene
L surfaces. This is recognized in the psychological literature as a cue to stereopsis (|Blakemore
po - 1970}). Its computation here requires looking back from a pairing (R,; ++L;) in Parray to
LC the preceding edge pairing, and since this need not necessarily be an adjacent edge (Li;
lis.” or R;_1), the entire incident subarray may need to be searched. In fact the algorithm can

& be structured such that the preceding column (Parray[n,j — 1],n € [1,7 — 1]) is all that is |
oe required here. Nevertheless, this takes the computation for the three edge-based matchings j
on to O(N?) from O(N?). |

~ A very important implementation detail shculd be noticed here: to guarantee optimality |
 . in those cases where unassigned edges appear in the intervals considered does. in general, |

. require an N? search over the preceding subarray, making the computation O(N*) where |oo these occur. The problem is that when using interval compression ratio unassigned pairings
of edge R; cannot make an optimal choice for their predecessor since, as indicated, the choice |

LL will depend upon the assigned pairing of some edge to the right of R;. Savings can be made |
os on this by maintaining lists of possible predecessors for each unassigned pairing (R; ++L;g). |
SK Since enly predecessor paths to assigned pairings will affect the decision, somewhat less search |

q will be necessary in finding the optimal path (in the degenerate case this would still be N?), |
- A near-optimal solution is found here, where each unassigned pairing is forced t¢ make a |
- decision about its predecessor.

| _ Constrained-interval intensity matching is not edge-based, so uses quite different optimisation |
v metrics from those so far mentioned. |
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- [Edge numbering] Each image edge in the full resolution matching is treated as a doublet, its left
{\ } and its right sides. A left side of an edge can only match a left side of another edge, and a
0) right side of an edge can only match a right side. This splitting allows contrast reversals to be
hel b . . .

oo handled correctly, occuring, for example, when a grey object is seen above a checker-board
o) with the left image seeing it in relief against the white, and the right image seeing it in
Nn relief against the black. Psychological evidence suggests that human vision cannot achieve
To stereopsis under conditions of such contrast reversal whereas the algorithmic mechanisms in

: a computational vision scheme will enable edge matching here (this shows a situation where
= deviating from the characteristics of the human vision system allows a greater flexibility in

a the processing). Providing for this special edge treatment doubles the number of edges with
po which the system must deal, so multiplies the standard correlation computation of O(N?)
- by 2% = 8 in time and 22 = 4 in space. With the consideration of half-edge polarity, the

4 increased time complexity is reduced from 8 to 22 = 4. |= The reduced resolutton correspondence process doesn’t allow contrast reversals, so doesn't .

= have this accompanying increase in computation cost.
- 5.8.1 — Edge-based matching

. The chapter on statistics describes in fair detail the optimization metrics used in the edge-based |
x matchings — it should be referred to for computational specifics of the general outline that follows
AT here.

g | The reduced resolution correspondence process evaluates tlie matchings of reduced resolution edges |
oo on the basis of:

T 1) contrast about the edge, |aly 2) intensity difference about the edge (both sides),
Co 3) interval compression ratio between matched edges.

= Since it does not allow contrast reversals, it does not treat edges as doublets. Rather, each edge |
enters the correlation only once, and the Parray has vertical indices {1 | ¢ € {1, N}, LT € Edgeset[ } :

N and horizontal indices {5 | j € [1, M}, RY € rdgesetl }. The suggestion here is that it is the high-
Ce frequency components of the images which will exhibit this contrast variation, and the low-frequency |
th components will be expected to be less varying. The intensity variation metric is the product of the |
oo probabilities that the left sides of the edges correspond and the right sides of the edges correspond,
on and this is just the product of the two integrals of the Gaussian probability density functions, as
; detailed in (4-9). Interval compression ratio usage means that this computation is O(N?) in edges. |
4 Since the reduced resolution correspondence process is so similar to the full resolution correspondence |
. process, yet simpler in its handling of just single edges (as opposed to doublets), the example of the

Viterbi algorithm correlation to be presented at the end of this chapter will detail only the processing |
vo of a full resolution line pair — the functioning of the reduced resolution correspondence process |

should be fairly obvious once the full resolution process is understood. Section 5-4 will present this

: p processing example.
‘ As mentioned, in the full resolution correspondence process, edges are treated as doublets, their left |

and right sides, so the matcher evaluates the correspondences of image half-edges on the basis of:

- 1) intensity difference at the appropriate side of the edge,

- 2) orientation of the edges,
' 4 i 3) interval compression ratio between this edge and its predecessor,
-.. 4) disparity bias as set by the reduced resolution correspondence process.

Vo
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Each edge enters the correlation twice, giving the Parray vertical indices {¢ | ¢ € [2,2N +1], Ly,| €
Edgeset; }, and horizontal indices {j | j € [2,2M + 1), Ry; | € Edgeset, }. The intensity variation |

J metric measures the probability that the sides of the edges correspond, and this is just the integral
Sa of the Gaussian probability density function as detailed in (4-9). The orientations of the edges, as
+ measured in roughly n degree increments (determined by a scatter analysis) affect the optimization
- scoring as indicated in (4-12). (4-13) outlines the computation of the disparity bias measure.

This, in conjunction with the search interval definition of the reduced resoluiton correspondence,
; constrains the range of choices in full resolution edge correspondences.Again, the use of interval
. compression ratio means that the correlation computation is O(N?3) in half-edges. The solution to

the correspondence problem for edges along conjugate epipolar lines is specified by the set:

- {(F,s; | Re vis}, (5-4)

5 viuere Lg and R; refer to half-edges of th» Tull-resoiution correspondence process.

” For constrained-inierval edge matching, the results of the previous two (reduced and full resolution)
L- correspondence processes have acted to associate together intervals along conjugate epipolar lines.
a The edges in these intervals which failed to find matches in the full correspondence process are re-
by examined to see whether the more tightly constraining context will now permit them to be matched
h across images. Edges are again treated as doublets, their left and right sides. Here, the correlator

& evaluates the correspondences of these image half-edges on the basis of: |
- 1) intensity difference at the appropriate side of the edge, |
= 2) orientation of the edges,

3) interval comprsssion ratio between this edge and its predecessor, |
4) disparity bsas as set by the full resolution correspondence process.

2 Notice that these are almost identical to the optimization metrics used for full resolution matching.
» The difference is that in constrained-interval matching the bsas measure is about the centre of the

interval in which the edges find themselves after the full resolution correspondence process, rather |

N than about the centre of the intervals. defined by the reduced resolution matching.
- 5.3.2 — Intensity-based matching

a The constrained-interval intensivy correspondence process finds the optimal correspondence of in- |
S dividual pixels. It looks at pixels in the intervals associated together by the reduced resoiution, full
Ey resolution and consirained-interval edge correspondence processes. (4-16) indicates the probabilistic |
3 measures used for this optimization. The matching of intensity values is a standard correlation
- technique, and its analysis is based on the image intensity variance statistics measured at the start |
® of the processing. The role of the P Linear Interpolate metric (4-17) is a little less obvious. It func- |
2 tions to pull the implied surface toward a linear interpolation with end point conditions as indicated |
9 in Figures 4-8 through 4-10. Perhaps a better metric would be one which used a smoothing measure,
oF looking for continuity in a few derivatives of the iinplied surface slope. Further refinements to this
- stereo process will include incorporation of an improved interpolation metric. |

) 18, is interesting to note, as pointed out in [Schumer 1979], that low spatial frequency gratings can be fused at much ‘
0 larger dispaiities than can higher spatial frequency gratings. |
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5.4 A Line-Pair Viterbi Edge Correlation

This section demonstrates the processing of the Viterbi algorithm on a pair of corresponding full
Sa resolution image lines. The line-pair are numbers 244g of the Control Data images, and are seen in
no Figure 5-3 (edge indices are in octal). The possible right to left edge pairings, indicated by right :
a lefty, lefty, ...,left,;, are as follows:

; (2:6; 8:3,7,11,13,15; 4:10,12,14; 8:7,11,13,15; 6:10,12,14; 7:11,13,15; 10:12, 14,22;
. 11:7,11,18,15; 12:10,12,14; 18:11,13,15; 14:22; 15:23; 16:24; 17:25; 30:26;

R 31:27; 22:30; 38:31; 34:34; 25:35; 26:36; 37:37,41; 30:40; 381:3741;)

: | |
1 | 4 0 7 So

10 \ goog 6 5’ 37 2
BE 2 0’ 49° RZ mh

52' * k

. Nh 12 45 ls 2 6
| h3 111 147 05 243 301 337 |

: 15 6 |

| 34 |
op

- 111 sf 6 6 |

To 3

| ad Th 42 } , 6 |. ¢ 1 / IC 12 #4 50 |

3 | 111 147 205 243 301 337 | |
| Edges of left and right image line 244 |

| Figure 5-3

. The right image line is shown above its corresponding left image line. Half-edge indices increase |
: from left to right — from 2 to 33 for vhe right image line and from 2 to 41 for the left image

1 line (left half-edges are numbered even, and right half-edges are numbered odd). Figure 5-4 locates
Cl this line pair in the two images. The reduced rescluison correlation for this pair of lines resulted

in ihe edge correspondences indicated by the diagonal strokes between edge numbers {for example
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- (2/3,6/7) correspond, as do (4/5,10/11)). These matchings constrain the possible pairings of the full
y resolution correspondence process. (4-13) indicates a biasing mechanism affecting the probabilistic

TT estimates for matching full resolution edges from corresponding intervals. The interval shown there

Le would seem to be that delimited by nearest-neighbour matched edges (nearest-neighbour diagonal
SN markings in the profiles of Figure 5-3) -— in fact this interval constraint is loosened somewhat, and
IE an interval is defined as the union of thiv interval and thbse neighbouring it. The biasing uses this
- broader range for its probability estimates, and only edges in such corresponding broader intervals

BL, are considered as candidates for matching in the full resolution correspondence process. The reason
for this redefinition of intervals is that the reduced resolution correspondence process can make

Co mistakes, and a little flexible interpretation is called for in using its suggested constraints). It could
cl also be argued that a low to high resolution matching is not an adequate model for correspondence
Ct control, and again the broader scope diminishes the negative aspects of this strategy.”
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co The horizontal mark in the images indicates line 2444

PY Figure 5-4 |

oo A linked list depiction of the Viterbi array Parray, Figure 5-5 below, contains all of the Localscore
Co and Totaiscore measures and the associated Predecessor for cach possible full resolution edge
® pairing. The designation —n for a left edge index indicates that the right edge is being considered as

Co paired with the null edge Ly,4. This should be interpreted as meaning that the right edge is spurious
. and temporarily positioned between L, and L,41, or is obscured from view from the left imaging
a point and again positioned between L,, and L,,. Figure 5-6 shows the two dimensional structure
= of the Parray, with the arrows indicating the predecessor links specified in Figure 5-5. The solution

1s marked in bold.
®

~. 191he recent. [Mayhew 1981] paper discusses more comprehensive control strategies.
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1:(2,-2 70.000 3 75s 0.914 35) 93:(11,-13 3.636 75) 139:(16,-24 4.268 135
he 2:(2,-3 0.000 -) 48:(6,-7 ‘1.686 37) 94:(11,-14 3.770 v0) Hl

v 3:(2,-4 0.000 -) 49:(8,10  2.075,0.38937) 95:(11,15  3.886,0.117 76) 341,(17,265.417,0.943 138)
; . 4:(2,-5 0.000 -) 50:(6,-10 2.078 38) 06:(11,-15 3.770 76)  142:(17.-25 4.474 138
Co 5:(2,86 0.914,0.914 -) B51:(6,-11 2.832 39) 97:(11,-16 3.770 76) EE
SC 6:(2,-6 0.000 -) b52:(6,12 3.231,0.39839) 98:(11,~17 3.770 76) 144:(20,26 6.359,0.941 141)

Lo 8:(3,3 0.059,0.069 1) 54:(8,-13 2.832 39) 100:(11,-21 3.770 76) EY
: 9:(3,-3 0.000 2) 55:(6,14 3.083,0.26039) 101:(11,-22 3.770 4S 147:(21,27 7.326, 0.967 144)10:(3,-4 0.000 3) b6:(6,-14 2.832 39) 102:(12,-7 1.686 7 148:(21,-27 6.359 144

oh 11:(3,-5 0.000 4) HURL 2.832 39) 103:(12,10 1,772,0.086 87) be.. 12:(3,-6 0.914 5) 58:7, 104:(12,-10 2.078 88) 150:(22,308.249,0.922 147)
Vo 13:(3,7 1.686,0.771 5) 59:(7,-7 1.688 48) 105:(12,-11 2.832 90) 151:(22.-30 7.328 147
oF 14:(3,~7 0.914 5) 60:(7,-10 2.078 50) 106:(12,12 3.377,0.545 90) a — EJ
- 15:(3,-10 0.914 5) 61:(7,11 2.372,0.29749) 107:(12,-12 3.231 91) 153:(23,319.032,0.783 150)
Le 16:(3,11 1.054,0.140 5) 62:(7,-11 2.832 51) 108:(12,-13 3.636 93) 154:(23, 31 8.249 150
: 17:(3,-11 0.914 5) 63:(7,-12 3.231 52) 109:(12,14 3.689,0.053 93) T55:(24,- IK :

| 18:(3,-12 0.914 5) 64:(7,13 3.636,0.40552) 110:(12,-143.770 C4) 156:(24,32 9.142,0.110 153)19:(3,13 0.933,0.013 5) 65:(7,-13 3.231 52) 111:(12,-15 3.886 95) 157:(24,-32 9.032 153)
20:(3,-12 0.614 5) 66:(7,-14 3.231 52) 112:(12,-18 3.886 95) 158:(24,-33 9.032 153)
21:(3,-14 0.914 5) 67:(7,15 3.721,0.49052) 113:(12,-17 3.886 95) 159:(24,349.498,0.466 153)

ho 22:(3,15 0.917,0.003 5) i 3.231 id 114:(12,-20 3.886 95) 9054.21 9.032 133
x dita 0.914 2 :((10,~ 115:(12,-21 3.886 95) (20,-34 9.b> :(4,-6 0.914 12) 70:(10,-7 1.686 59) 116:(12,-22 3.886 95) 162:(26,35 10.279, 0.781 159)

ho 25:(4,-7 1.686 13) 71:10,-10 2.078 60) Heies3,- 2.07 i 163:(25,-35 9.498 i)od 26:(4,102.078,0.393 13) 72:(10,-11 2.832 62) 118:(13,1t 2.082, 0.004 104) :(26,- 279 i8
A 27:(4,-10 1.686 13) 73:(10,12 2.854,0.02262) 119:(13,-11 2.832 105) 165:(26,3610.768, 0.489 162)

| 28:(4,~11 1.688 13) 74:(10,-12 3.231 63) 120:(13,-12 3.377 106) 166:(26,-36 10.279 182)i. 29:(4,12 1.733,0.048 13) 75:(10,-13 3.636 64) 121:(13,13 3.467, 0.090 1086) 7:(27,- 10.7
no 30:(4,-12 1.686 13) 76:(10,143.770,0.133 64) 122:(13,-13 3.636 108) 168:(27,37 11.542,0.773 165)

5 31:(4,-13 1.686 13) 77:(10,-14 3.636 64) 123:(13,-14 3.770 110) 169:(27,-37 10.768 185)ko 32:(4,14 1.699,0.013 13) 78:(10,-15 3.721 67) 124:(13,15 4.006,0.236110) 170:(27,-40 10.768 185)
bo 33:(4.-14 1.688 13) 79:(10,-16 3.721 67) 125:(13,-15 3.836 111) 171:(27,41 11.025, 0.258 185)
LC 34:(4,-15 1.686 13) 80:(10,-17 3.721 67) 126:(13,-16 3.886 112) 172:(27,-41 10.768 165it 35:(5,-6 0.914 24) 81:(10,-20 3.721 67) 127:(13,-17 3.886 113) a 1o3) |

36:(5,7 1.052,0.138 24) 82:(10,-21 3.721 67) 128:(13,-20 3.886 114) 174:(30,-37 11.542 168)
Po 37:(5,-7 1.686 25) 83:(10,22 3.736,0.01467) 129:(13,-21 3.886 115) 175:(50,40 11.762, 0.220 168)
; . 38:(5,-10 2.078 26) 84:(10,-22 3.721 67) 130:(13.-22 34.886 115) 176:(30,-40 11.542 168) :

Ls 39:(5,112.832,0.754 26) 5:(11,-6 0.914 bol 131nat 4.006 Bh rata -41 11.542 a) |a. 40:(5,-11 2.078 26) 86:(11,7 0.981,0.06769) 132:(14,22 4.148,0.143 124) 178:(31,-38 10.768 173 |
L 41:(5,-12 2.078 26) 87:(11,-7 1.686 70) 133:(14,-22 4.008 124) 179:(31,37 11.125,0.355 173) |oe 42:(5,13 2.296,0.217 26) 88:(11,-10 2.078 71) Bik15,-22 4.148 1.Ee 180:(31,-37 11.542 174)
N 43:(5,-13 2.078 26) B9:(11,11 2.244,0.16571) 136:(15,23 4.268,0.120132) 181:(31,-40 11.762 175) |A 44:(5,-14 2.078 26) 90:(11,-11 2.832 72)  136:(15,-23 4.148 122 182:(31,41 11.986, 0.224 175) |45:(5,15 2.18%5,0.107 26) 91:(11,-12 §.231 74) [3715.53 1.268 135) 183:(31,-41 11.762 175)
poo
» . . » . » . . . - « !

ot Linked list depiction of Viterbi Parray, with Right and Left half-edge indices, Totalscore and |g pP Y g 8 ’
" Localscore measures, and Predecessor links. The solution is shown in boldface, starting at 182 |
" (read up from the bottom right).
F 4 | Figure 5-5 |

. In the notation of (5-4), the solution for this line pair is: |

{(2,6),(3,7), (4,10), (5,11), (6,12), (7, 13), (10, 14), (13, 15), (14, 22),(15, 23), (16, 24), |
- (17,25), (20, 26), (21,27),(22, 30), (23, 81), (24, 34), (25, 35),(26,36), (27, 37), (30, 40), (31,41) }
- Right image half-edges 11, 12, 32, and 33 have no correlate in the left image. |
Eo

4 The consistency enforcement process takes these locally-based edge correspondences, removes those
k » ] [ . [3 . . . '

which violate global contour continuity (as described earlier), and propagates two-dimensional con- |
: nectivity in the images to add edge correspondences. This leaves a kernel of good correspondences

which provide a context for the constrained-interval edge and intensity correspondence processes.
Figures 5-7, 5-8, and 5-9 indicate the result of these final correlations on the line pair shown above

. (lines 244g in the left and right images). Figure 5-7 plots left image coordinates along the horizontal |
X «. axis against right image coordinates up the vertical axis. The arrow heads («——) show the left and

right half-edge lockings (of Figures 4-8 through 4-10). The >and |Ksymbols indicate edge pairings |

TC Ama on am owt eas ac Ca aa m_ i x a atau - oa - Cc a4



:

- 56 Depth from Edge and Intensity Based Stereo |

a AAA HRRRTe KERELAANNNNAN BREEREREMNM
ERENee Ee

J CEEE; HEEEERENEREEENERRRENEEN

» A HAHAH HHHR AREER EEEEEEENENMM EEEEn
- og SEPT PTET

ore rrr re rrr ret rr
B O Se TTT ITTL rrr

HN ANNA, BX MEREERENBy AER EREREEN
. pe nEEEEENEEEEENAN EENEEERER

= HARARE RERN RERRRRNNE) 0 pot HHHHgreeS TT HR |ee
3 OTT Le ee I Tr re |
: eee LH |SEER EENMMNEERE EnEE |

mE elalelolelalenol; EMMI EEE EEEEN |

o MOLLRLS ETTTPCT= o HEINE EERE EEnEEn |
8 lef Joist ixl olla VIL |

0 TL ATLL TTTrr’ JI LX Ix EL — HEN |J ortho Beelei HH a |INMNMMMMMMEE EEN AHMMERERRERERREEEEEEEEEEEN |

i. hetort |3 INANE ENEEEEEEEEEEEEEEEN |
4MMENENNERNERREEREEEEEEER

y ce 4 6 10 12 14 16 20 22 24 26 30 |

: Right image edges

Viterbi array correspondences of left and right image line 244
The x's indicate edge pairings, while the circles show null correspondences

| Figure 5-6

added by the constrained-interval edge matching, again, with the direction of the arrow indicating
| the polarity of the locking. The little dots mark pixel correspondences. Figure 5-8 is a left image

coordinate versus disparsty representation of Figure 5-7. There are unassigned left image edges at
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po those positions where the correspondence process determines the right image pixels are either oc-
. cluded or are too dissimilar to be matched. Figure 5-9 has an interpolated depiction of the edge and

intensity matches of Figure 5-8. Remember that this plot is disparsty — not depth. The two spikes

& to the right of the figure are the leading edge of the large building at the bottom of the image and a
No vertical surface of the small building to the right. Since the images are perspective projections, the
h vertical surfaces (and places of intersection of vertical surfaces — corners) will appear as slanted in

: a disparity versus possison depiction. Referring back to Figure 5-4 will clarify this notion.

: 244 Rke 52 Ea
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left edge coordinate

Edge and Intensity correspondences | |. .,°reliminary edge matches
t. ge an AsILy ep ¢ k< >{subsequent edge matches |

Figure 5-7

.

eo



~t

a 58 Depth from Edge and Intensity Based Stereo

- . + po |
‘110

LIES

el, 104

ER 100

- t [7a
¥ v Boy 0
“ oa -- r

: =
+

Li

CY 1 » + + + »
J 0

ST positicn.—»

4 Iidge Disparities
LC Figure 5-8

104 [|

ood 100 |
he CH»
2a a

2 Iso i{\ ® \eAN
i. 0

B Mi te PB BB ea Pe |
position-— ) |

u ‘ - . age

i. Interpolated Fodge and Intensity Disparities |
Refer to I'igure 5-4. Notice that the intensity-based matching correctly maps the hollow |
center of the building to the left, and follows up the edges of the two buildings to the

kL right. The fact that the imaging is a perapective projection makes the building corners |
hoo appear to be non-vertical (sce Figure 5-4) — in fact the vertical vanishing point is at
X the center of the image. 'T'he slope of the wall between the third and fourth double
Ta arrows is consistent with the local edge matchings and intensity values — the situation
. is as suggested in Figure 4-8. Such mappings will be seen to occur fairly often in the
nL intensity-based correspondence process, and show the need for more global analysis,

.¢ Figure 5-9
a |
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% Chapter 6 59

( 3-SPACE CONSISTENCY
N |

- 6.1 Using Continuity of Bounding Contours

N The edge-based matching described in the preceding sections dealt with line-pairs from the left
. and right images one at a time. I purposefully kept the analysis from incorporating the results of
; prior line-pair analyses into the analysis of subsequent line-pairs. Quite obviously there is a stro..g
£3 relationship between the edges on adjacent image lines, and the results of the correlation of one
8 line-pair should be expected to beur some resemblance to the results of the correlation of its adjacent

line-pairs. This foilows directly from the continuous nature of surfaces. By far the greatest area in

{ our field of view is made up of smoothly varying continuous surfaces — the discontinuities between
LL surfaces occupy only a small (but very important) part of that view. The surfaces are generally
3 continuous, and we expect the bounding contours of those surfaces to be generally continuous.
. The edge-based description aims its analysis at those bounding contours — be they boundaries in the
_ intensity domain, as delimit, surface detail, or in 3-space, arising as occluding (perhaps self-occluding)

contours. The projective connectivity analysis, that part of the edge finding operation which links

rv together reighbouring edges, joins edges that lie along such bounding contours (see Figure 3-8 for
- a depiction of edge connectivity). One would hope that the correspondence process would assign
- similar disparity measures to adjacent edges along these contours — if the contour were flat and
- orthogonal to the line-of-sight then the disparities should all be roughly the same, if the contour
3 were sloping off away from the imaging plane then the disparities of the receding edges should be
L monotonically decreasing. This relationship of proximal edges having similar disparity can be used
2 as a global constraint on the correspondence analysis.

; Figure 6-1 depicts these adjacent disparities along connected stretches of edges in the left and right |
~ images. In this depiction the connectivity (seen in I'igure 3-8) is used to progress from edge to |
nN neighbouring edge, but rather than drawing at the coordinates being followed, as in Figure 3-8, the |
- coordinate of the correlate of the edge is used. (An alternate way to view this is as drawing the |
L coordinate plus its disparity.) Edges adjacent in the images will be seen nicely connected if they have |
- similar disparities, but will be wildly separated (horizontally) if their disparities differ significantly. |- Chapter 7 gives a fuller explanation of this depiction technique. |
2 The relationship between continvity in three-space and connectivity in image space is apparent in
u this depiction. Wherever there is a horizontal deviation between image lines, there is either an abrupt |
: break in contour continuity or, more likely, an error in edge correspondence. So edge connectivity
] | provides inference on the global constraint of contour continuity. The two questions of interest here
3 are — at what stage of the processing should this constraint be introduced, and how should it be |
= implemented in the system? | |

3 6.1.1 - The introduction of the connectivity constraint :

5 If one were to propagate the results of analysis of line-pair 1 to the processing of line-pair 2, and |
then these results to line-pair 3, etc., we would be: |

eo introducing a directional bias to the processing — how would the whole image analysis |
5 differ were the processing to run instead from bottom to top?;
z e running the risk of sending the correspondence process off into irrecoverable error |
a ] — the evidence for the matching of edges on certain image line-pairs can be both
g | ambiguous and highly misleading. To make a stngle choice at each line correlation is
; clearly wrong;
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he Correspondence results after local line-by-line processing
oF Figure 6-1

- eo precluding ourselves from a parallel realization of the correspondence mechanism — |
( the last line would have to wait until all preceding lines were processed. |
3 These options aren’t very inviting. If we wish to include the global edge connectivity constraint with
x the line-by-line analysis, then we are left with only one satisfactory solution — a three-dimensional oo
5 matching of edges (in the sense that the approach used here is two-dimensional) on left smage edges,

x right tmage edges, and lines. This is not (as determined yet) an impossible jcb ... just incredibly |
complicated and space and time consuming. It is not obvious what the monotonicity constraint |N would be for the third parameter (lines), nor is it clear that the computation could be ordered so
as to be implementable in parallel while maintaining optimality (or even be partitionable). This |

; approach deserves future consideration, but is not dealt with further here (see [Moore 1979] for a |
3 brief description of a higher dimensional dynamic programming algorithm). |

; The problems of incorporating the gl- hal with the local analysis make it clear (with the above |
5 proviso) that the processing of line-pairs should occur independently. But how should we proceed
. in using the global edge connectivity information?

3 [Arnold 1982] has devised a scheme for recovering sub-optimal solutions for the individual line-pair |
. correlations, and makes these alternate pairings available to a subsequent consensus forming process. |
-. If one were to do a global optimization of all of these pairing possibilities, then this would be a valid |
Cd approach. However his analysis is local to particular connected stretches of edges.

Another suggestion is to group edges together into eztendcd edges or lines, making contour continuity
. explicit. However, the general matching of extended edges, which may be fragmented, occluded, etc.,
. 1s a problem equivalent to the matching of these locally defined edges, so can’t be thought of as a
v fundamental alternative. One ol the main points of matching edges, as opposed to larger elements, is
-.. thie redundancy of information available at this level, and the greater noise-immunity and robustness
. this brings. Consideration of extended edges can be thought as monocular cueing for the stereopeis,
- and in this sense would be complementary to local edge analysis.

{
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a The philosophy throughout the processing discussed here is, as has been stated before, to work

{ . from more reliable signal to less reliable signal, using the results of the higher reliability analyses |
C to guide and constrain the less reliable ones. This attitude sets the direction for the interaction of
x the line-by-line processings. The role of the first edge-based correspondence process is to provide,

A if you will, edge-to-edge locking between the two images. These edge lockings will constrain the

a registration of the two images. What is heing sought is a rough global matching of the two images
— it is not demanded that it be perfect or complete. The flexibility of this target indicates that it

Ny would be sufficient for the processing to seek a mutually-consistent kernel of edge correspondences.- This is done by:

a) allowing line-pairs to be correlated independently, each forming its own assessment
> of edge correspondences, and then

: b) cooperatively removing all those correspondences which violate contour continuity.The next section will describe the implementation of a process to remove globally inconsistent edge

3 : correspondences.
+ 6.1.2 — The usc of the connectivity constraint

Consider Figure 4-11. Each edge pairing (R; ++L;) (shown as horizontal lines) has associated with

4 it a disparity Disp,;. The difference in disparity between connected edges (connectivity is shown as
| vertical lines) is a measure of the implied change in depth between the 3-space points represented

LL by the two pairs of edges. A change in disparity between connected edges that is above some
» reasonable value will indicate a break in depth continuity. Except when seen from some anomalous

or coincidental viewpoint, a series of edges connected in one of the images will correspond to a |

x continuous bounding contour in the scene. So if there is 2-D connectivity between a series of; edges in one image then we should expect their disparities to be smoothly varying. Figure 6-2 |
PE illustrates the case of connected correlates along z stretch of edges in both images, and the case |
x of disconnected correlates (which violate 3-space continuity). A measure of smoothness could be
_ obtained by computing the statistics of this disparity first difference distribution. This would yield |

- an interval [4 — Opiap, it + Opisp] Of acceptable disparity differences, where u is the mean of the |

N computed first differences, aid 0p;.p is the standard deviation. |
Further thought suggests that these statistics are actually not appropriate. If there are lots of |

; incorrect correspondences, then the [11—0 pap, 140Diop) interval will tend to be large. 1s it reasonable
- | to allow disparity differences over adjacent lines greater than 1.0 (the limit of edge connectivity) to |
- survive? Not likely, as these indicate that the edges in one of the images cannot connect. Failing to |
r have simultaneous connectivity in both of the images is not necessarily a bad sign, though, as gaps
5 frequently occur along any edge path of a contour. The objection here is with edges that are on
. adjacent lines and can’t be connectes because of their relative horizonual displacement. Would it be |
. reasonable to reject correspondences giving rise to disparity differences that are within the computed |
K interval but outside of the connectivity range? Yes, if they are unrealizable. What about the opposite

| situation, where the standard deviation op, is less than 1 pixel width, with most correspondences

Cg good. Here the interval limit will suggest excluding pairings of disparity difference somewhat less |
. than 1.0? Well, after a little thought it becomes clear that the 3-space consistency process should
LL not use these statistical measures, but rather employ a simple distance measure which would prevent
oe discontinuous edges from being matched to the same structure. If the horizontal separation of edges

Te on adjacent image lines exceeds this measure (chosen to be a single pixel width, O Disp = 1.0), then
a the two edges cannot be joined in depth. It is important to note that this puts a limit on the
4 inclination of edges to ihe line of sight ... connected edges must be discernab.. as connected within
2 the 2-space imaging resolution for them to be accepted by the matcher as connected in 3-space.

4
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T Two cases of edge matching: left is what is expected, right is a continuity |h- failure. i
= Figure 6-2

Lo !

.. 6.1.3 — Implication of large disparity differences |
Identifying the incorrect edge correspondence from an inconsistent disparity difference is not an |

el obvious process. The problem one immediately sees is that a disparity difference outside of the |
N range [p — Disp, 1b + ODisp| conclusively implicates neither of the contributing edge pairings. It
co merely suggests that one of them is inconsistent. Should they both be removed to be sure that |
x | the incorrect one is taken out? Not likely, as this conservative policy would lose too many good

correspondences in clearing out the bad ones. Consider the case in Figure 6-3 of a single incorrect |
. correspondence bounded above and below by properly assigned correspondences. The two on the

periphery could vote, and throw out the offending middle correspondence. Think of this as a single-

bit error corrector. |
a If errors were scattered, like this, rather than systematic, then this simple voting technique would |
| ¢ be all that was required. However systematic errors of correspondence occur as well. Consider |
- a case where long stre‘ches of edges in one image are deemed to correspond to some stretch of |
AS edges in the other image, then switch en masse to correspondence with some other stretch of edges |
Lo further down the image. Figure 6-3 also depicts an occurence of this situation. The only inconsistent |
i. disparity difference here would appear at the junction between the apparently consistently connected
oo stretches. In a worse case situation, a correspondence from the properly associated stretch of edges
- 4 would be removed for each correspondence incorrectly assigned to the other stretch. A good removal |
5 . strategy would be one which minimizes the loss of correct edge correspondences.

3
a
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R Left image Right Image Left image = Right Image
. [ I

J J=

i ' i f t i

‘YD |
= Single correspondence Multiple correspondence
. error error

co Single and Multiple Ccrrespondence Errors
0 | Figure 6-3

6.2 Cooperative Connectivity Enforcement Algorithm

R The mechanism developed for this minimal loss strategy is as follows:

% 1) Flag correspondences incident on an inconsistent disparity difference as questionable.
- 2) If, in so flagging, the correspondence is found already to be flagged, then mark the
ce correspondence for removal.

5 3) Do 1 (and 2) until all questionable correspondences have been flagged.
i 4) Remove all marked correspondences and re-evaluate the disparity differences about
P the newly connected edges.

5) Do 3 and 4 until no further correspondences can be marked for removal.

6) Remove all flagged correspondences.

7) Do 5 and 6 until no inconsistent correspondences remain.

| This algorithm deletes a minimum of valid correspondences, and guarantees the removal of all in-
¢ . consistent disparity differences. Figure 6-4 shows the connectivity of Figure 6-1 after the inconsistent
iN correspondences have been reroved by this cooperative connectivity enforcement algorithm.

¢
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STEREO CORRELATION OF

2 AMPLE IMAGERY
“it . * . - 3 .
2 The best way to understand the functioning of the total stereo algorithm is no doubt through

examples of its processing. This chapter will show you, a step at a time, what is involved in the
a analysis of some typical imagery and demonstrate how effectively it works.

! 7.1 Control Data Corporation Imagery |
4 The input to the process is a pair of collinearized stereo images, as siown in Figure 7-1 intensity |
lL enhanced. Scan lines in these images correspond to epipnlar lines. The stereo pair was created |
Lo to demonstrate graphics capability rather than to serve as data for a sterec correlator, so exhibits

ne several unappreciated characteristics — it has multiple light sources (making the projections of
Lo certain structural edges appear to be discontinuous), and has in effect zero random sensor noise (all

noise is from the sampling and quantization).

& The standard deviation in intensity variation for this imagery was sampled and estimated as being
. 0.596, indicating that any first difference above 0.5961/2 = 0.840 should be considered tc be signal |

rather than noise. Because of this low noise measure, the reduced resolution matching does not

- go beyond a single reduction. Figures 7-2 and 7-3 show the full resolution and reduced resolution |
oC (T = 1) edges found for this imagery. Figure 7-4 shows the connectivity between the various edges |
| of these two images (recall that edge connectivity plays a part in the global consistency analysis). |
Sa Figure 7-5 is a broadened depiction of the intensities along a pair of corresponding lines of this |
- imagery while Figure 7-6 shows the full and reduced resolution edges found along these lines. The |
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q A stereo pair of images (from Control Data Corporation) [256 X 256 X 6)
- Figure 7-1
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oh and right sides of the edges, and horizontally sloping lines show the interpoiated intensity gradients |
in the intervals between image edges. Diagonal marks in the upper profile of the figure indicate

: edges paired by the reduced resolution matching.
x
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- Figure 7-3
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5 Connectivity of the edges of the stereo pair
3 Figure 7-4
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$ 68 Depth from Bdge and Intenssiy Based Sterso
2 The reduced resolution and full resolution edge matchings process line-pairs such as these, deter-
i. mining the best line-by-line correspondences. Figure 7-7 shows the results of this processing for the |

oN CDC imagery. The depiction may be difficult to understand:
> e The left figure shows the edges of the left image, drawn with their connectivity (as

Figure 7-4 left), but rather than using the coordinate of the left image edges, uses the
> coordinates of their mates in the right image (this is equivalent to using the coordinate

plus associated disparity).

. e The right figure shows the edges of the right image, drawn with their connectivity
= (again, Figure 7-4 right), but rather than using the coordinates of the right image
: edges, uses the coordinates of their mates in the left inage (which is the same as the

coordinate minus associated disparity).

} eo Since the lines joining connected edges are all that are being drawn, if two adjacently
S connected edges in one image, for example the left, are found to match two unconnected
x edges in the other image, then the line joining them in the left figure will run (nearly
» horizontally) as though between the two disparate edge coordinates. What this reveals,
” and reveals quite clearly, is the correlation’s decision that there is a variation in depth
! between the two matched pairs of edges. In general, horizontal lines suggest errors in
LO the correlation (notice that there are relatively few in this depiction).

al SRA > AA- y yi py — |

i AN rd |

VR x ©: > | |
2 vx » he |

. Preliminary matching results
Figure 7-7 |

i The cooperative process that ensures global consistency removes inconsistent matches, propagates |
: disparities along connected edge paths, and results in a kernel of sound correspondences. These final
= edge-based matching results a:e shown in Figure 7-8. The figures are drawn in the manner of Figure oo
ig 7-7. The stereo depiction of Figure 7-9 is a perspective view of the connectivity shown in Figure 7-8
. (which was shown there from directly overhead). '
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= Final (post-connectivity constraint) matching results |
N 3000 half-edge correlate pairs

Figure 7-8
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. Perspective view of connected edge elements |
= Figure 7-9 |

: p In the phrasing used earlier, the matching results at this stage form a template of constraints for the |
: next stage of the processing. Considering the edge-based correspondences on a line-by-line basis, we
| can think of the edge matchings as defining # lecal mapping of intervals between the two images.

Edges in the corresponding intervals that have not been assigned matches by the prior correspondence
process are candidates for matching within this more tightly constrained context. The processing of
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¥ 70 Depth from Edge and Intenasty Based Stereo
an snterval-constrained edge-based matching completes edge matching in the intervals, and a final

7 correlation, using the intensity values of the pixels themselves, interval-constrained intensity-based
Mol correlation, determines pixel to pixel correspondences. Figures 7-10 and 7-12 show the matching

oC of edges attained through the edge-bused correlation for several image line-pairs. Original edge
» correspondences are indi. ~ted by arrows — and +, where the left arrow positions a right Aalf-edge
{\ and the right arrow positions a left half-edge; subsequent. interval-constrasined edge correspondences
Ly are indicated by >land |<. Individual comments appear on the figures themselves. An interpolated
ae disparity representation of these same graphs can be seen in Figures 7-11 and 7-13 (this display is
aN perspective, so verticals have varying horizontal components).

.
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, +— preliminary edge matches

: ; Edge correspondences = {subsequent edge matches
0 Figure 7-10
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Interpolated disparities
on Figure 7-11
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: Edge correspondences |
J Figure 7-12
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position--»

SH Interpolated disparities
h The surface slope between the second and third double arrows arises for the same reasons |
AR ax il did in Figure 5-9. |
. Figure 7-13 |

$C Figure 7-14 shows the full image array disparity map — the result of the processing of the four

N correlations: |
Co 1) reduced resolution edges, |
N 2) full resolution edges, |

3) interval-constrained edges,

: 4)  interval-constrained pixels. |

L The depiction is again perspective, and shown from the point of view of the right CDC image. |
Without knowing the camera parameters, or at least the relationship between the two sets of camera |

- parameters, there is no possibility of transforming the representation to an orthographic form. 1
a do, however, have an interactive program that allows estimates to be made on the transformation,
. and this produced the orthographic correction for the perspective stereo plot of Figure 7-15 (which
A is a hall resolution depiction --- Figure 7-14 was smoothed and sampled at one third resolution
g for increased clarity). Figure 7-16 is a monocular depiction of the perspective projection at full
. resolution.
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LT Perspective view of final edge and intensity correlation — CDC i

‘@ (the = axis is disparity, not elevation)
ee The left side of the low building in the upper center, and the far left top side of the

I nearest building (the hollow one) show incorrect surface slopes (as in Figures 5-9 and

on 7-13). The near left top side of the same hollow building extends too far, running to
: =~ the edge of the image. Again, the intensities alone do not provide sufficient information
2 for a correct positioning of these surfaces (they should be in the ground plane). Morect global surface information is available, although unused here, and this will provide better |

Q\ positioning constraints when further refinements are made to the intentity correlation |a algorithm. | |

3 . Figure 7-14 | |

. ' |

h

®

3 9

'@



" .oC. . ~ -v " oa
. _ =: - . otL] - -. © - =' | ~ - -sl. E .. -[a ) . v -L ul L3 i}k 5 - aL } So"
: |f =} . - *IY ~ a. o =
je"o . “i " - - - - 7a Wf. - . | -.

HN

- - " -¥ $ “7X . w 3 a = r.+ " -. - 1 *[2 L] =" -I! 1)hy ~ " - =] 4 [11) > ® tos “a- . - 7bo . Ad ==3SE : aFd an A ,! $A — == = SEES: i a (RSRH Al le = = .} . AR—rd = han oY .ir - arr = Ce - a: ie am a9 - SE = 2S Wc"
.- bg be = -= i Sh yr oo ry - -Ry 2 . 7 = . Sy, — hd

» | aos. Ss ——ESE 7 Rot i I, oN i et oN He: = ReaRA Ss 'ed » - : RE TR od

oC = SA no IH SSou » Oy a Jas ok ii Rit. . on i . =RYSuaRE". . i 52Na) DY 5 x p ie pk ey, x \! i A wv xh) x X ow A en. oo |isan:SrCsCe a-: ) eth o 2C04oe0 — =axy. a oy Sa [] a AY 0 ] A > A 5X . ps a eeA: ' , N=- nr oyS,= |= SR Mes igAzo xoh ’ ne NIxX xXI ., i kd xX 0Ng

b - RE rh oy x) J Jel hy Wee, (WK oe Jy ve er a“ 2=: pia1%Hinscx xX WA xX "=
. Ne : , ool=he LCs, OY ,! x 0Le A oo  —

LT . p< RRrs XN x S550=F: == 3 ’ 5"==’ 2 (—— 7I D4
X—7

}3 &)[ad * O4 .A : a,4 . et 2 }2X ¥ ALER iat 23-“ hd A (] A 3 mei ] Oh -. . LHiNi
; Sls § :

! Ft LEXQ(| x )Q. $g ii—_——— = =LL ]oo iE R Ltl p:es Tm = C —~ . A A A: 0 . S

he , 3oehnSS =I or v eyLn1ot A rs0xXon ves= » ey QOi A A “’ *hoWY, oY 2a L 3y 7 I. Ly ie EN rern th LoyA . JT A§- . : ¢ adheaCh, 2S O“i Ro: IN £5 HoLaSS 1b p=aa fog oe iyf oe, RY 43"iVe otoo J0&xy he Pom: Ee hy ot : oi a0,0To pa ee
> gl Ye a iy Ny fy a Ai es i ohhy A iy HEXN ) xry ay) C=. : Rx ~ pr . RR Aaa v FyRL: Fe=aeolaHa= i= =. ' ! kX a 2 Yor Sa IX , . el 1) AO = \i 4 Soa8=rs a8BR =a ii] ol ah ot, H [2 =HA SE< wiie peli RC 2 olAR RR ’RS

: Laiiipriai T. iRSnl= S|ul od4 N . Ey » LLY Py » * CY

Co. . el¥ £5 po.3heRoTeor Bier:X08fxes = -—: An bi 000 AokSRY oeRGSKLES =
! Akg= :Nad 2 pei%0i\ , Se =) yy A 5 3, ry A nrSa oy, , RS —— 2 5IRe : >; ol, » 57 Ay A A XY ox i XX oF by oy ..oNCY 4\ Fk-— wh2 RRphRespaNYXL7=0s z7

YSaer aANHSK0Sn2===

: : \2! Esfd SR 2 ReRX RXXeEy7
\5 : oNi YY A xxa .X01 ol xy rl=jy \ 7A aA GYA JAGa xvy a a0K x.19 Vv, ox Adwy 2 oHhl X xx yf’ NsOF +EX E = ahrSo Eoo Rs= 1== » ry SS Xo . rig i. . i, A A »— re |. ¥ LE =re) =- 1. _— i

|

|
{

* I
!

Lo oo |I |WELT SEE SE WE ERIE EL FREE OF SUT
N [] . L]

‘

i



v NET SU -. - » - - om . ~ - - w “ om . a TE ys om - - - EE TUR NE SU SUN STE NI AN Nm . ma te RE

X

oe 74 Depth from Edge and Intensity Based Stereo

«Tu ' . . Ji wd

a. - Wt pw : Coe Ty ey

- gly ; We : Hy CT Preeat a J RN 2 h i wo © an TE y
- a, R a * A \ i a - athe - A y m ouyis é I" r i ol . re

. i - - gal \Rei iy \ . Uy ‘ p \ E i nt Low to . ‘ANv i fhe yh ooidhi r. {:freigawe ond k ‘ ty H ! i I.

Cw . a tly ; .. Ng ow ( ELLIE W ptt i {i . 4 : ¢ a ere ry & l ) lngSRN HHT fre fad & {a A
hrs a Td oe we oy “A oe. . an Vu ty, a N A A I : . ., ; . Wo A, y vo SA ! an [aI bd i X PO [I .

NT SR ror v 1 4 1 | HERRCRAIN EE AIREY EXE SIoo ih AI pps I wilt ry i eli lls - LAT a.

CL LlrE ee EWa rit,Hide|4 |

8 ij

- Full resolution CDC plot (cf Figure 7-14) before orthogonalising
x Figure 7-16 |
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{i 7.2 Night Vision Laboratory Imagery- eeee i —

- Another example of the stereo processing is shown ir Figures 7-17 through 7-35. The imagery
K depicted here, 2 valley scene recorded on videotape, was provided by the Night Vision Laboratory
Te of the United States Army. The scene ie synthetic in that it is a papier-méaché recreation of an
at actual valley, although the imaging is real. There is very little relief in the scene, although it has
Wl a general drift to higher elevations toward the upper left corner. There is only slight difference
. in height between the river (running through the centre across the images) and the various land
se and vegetation areas. Figure 7-17 shows the stereo pair at full resolution, while Figures 7-18, 7-19
L and 7-20 show the three resolution reductions (reduced to the limit for noise suppression). Figure
J 7-21 shows the edges determined for the full resolution image, and Figure 7-22 shows the edges
nh determined by the largest convolution operator for the most reduced resolution image (Figure 7-20).

t Figure 7-23 depicts the edge counectivity for the full resolution images.
- Noise and signal characteristics for this set of data are significantly different from those of the
" synthetically imaged CDC data. There is a great deal of small scale structure in the scene. The
g standard deviation of intensity variation was 25.603 here, with a standard deviation in first difference
| of 25.6032 = 38.0. These measures account for the three levels of resolution reduction required

to bring the noise down to an acceptable level. Figure 7-24 is a stereo plot of the intensity values

= of the left image of this pair (yet another interesting figure for the cross-eyed stereo freaks), with
& intensity being the z component of the plot. It’s startling just how much local intensity variation
- there is in these images. For comparison, Figure 7-25 shows a similar plot for the CDC data.
. ’
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5 Stereo plot of NVL image intensity ooFigure 7-24

, Sgn Ka ig afi.

3 Stereo plot of CDC image intensity
. Figure 7-25 |
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= The next figure, Figure 7-26, shows the intensities and edges found along a single pair of correspond-
. ing lines in the successive resolution reductions of this imagery. Reduced resolution correspoudences

9 are found among edges in the bottom twe figures, and these are then mapped up, through the
hl. intermediate resolution edges, to the full resolution edges at the top of the pair of figures. Full

: : resolution correlation is then performed on the edges defined within corresponding intervals.

3 ' 0 B.A 1 . 0
387..10 : 11 ‘RS. we Fe Yd A.

a = | A320 é 6 re N10 ’ E> AES 41 ull ps AC. To. : 2 , . 4 ~ 4 | Bs i ”
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- 4 44 64 104 124 144 164 204 226 244 264 3 0.80. 010, 190,170,220 PC BO)

Ny 4 44 64 104 124 144 164 204 224 244 264 3 30 eo 110 140 170 220 250 30
: AMARA
r | Right and Left image line successive resolution reductions |
5 Figure 7-26 |

- Figure 7-27 shows the top line of Figure 7-26 with half-eage indices marked. The reduced resolution |
= correlation pairs edges: |

- { (14, 26), (32, 44), (40, 52), (50, 60), (62, 72), (70, 100)}

3 The full resclution correlation takes these correspondences, defining intervals for matching, and
. determines the pairings:

{(3,15),(4, 16), (5,17), (6, 20),(7, 21), (10, 22), (11, 23), (12, 24),(13, 25), (14, 26),
ve (15,27), (16, 30), (17, 31), (20, 32), (21, 33), (24, 34),(25, 35), (26, 36), (27, 37), /
- (30, 40), (31, 41), (32, 44), (33, 45), (34, 46),(35, 47), (38, 50), (37, 51), (40, 52),
. (41,53), (42, 54), (43, 55), (44, 56),(45, 57), (50, 60), (51, 61), (52, 62), (53, 63),

(54, 64), (55, 65), (56, 66),(57, 67), (66, 76), (67, 77), (70, 100), (71, 105), |

a (72,106), (76,110),(77, 111), (100, 112), (101, 113), (102,114), (111,115) }
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| Figure 7-27

2. Preliminary results of the correlation are shown in Figure 7-28. Recall that horizontal lines jagging
: back and forth across the depiction are indicative of incorrect matches. Quite noticeably, there
> are many more errors in this correlation than there were for the comparable analysis of the CDC

imagery. The hope is that the subsequent consistercy enforcement process will be able to use image
continuity to disambiguate the disparity jumps and produce a reliable set of edge matches. Figure

8 7-29 shows the results of the consistency enforcement process -.- a significant improvement. Figure
0 7-30 shows a 3-D perspective view of the connected edges (as was seen from directly overhead in
To Figure 7-29).
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ig Figure 7-29
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a - Perspective view of connected edge elements |
Figure 7-30 |

¢ The correlation results at this stage form a template of constraints for the next stage of the processing,
oe in which the interval-constrained edge-based and the interval-constrained intensity-based matchings |
. attempt to complete the disparity array. Figures 7-31 and 7-33 show the correspondence of edges
Ul and disparities attained through these matchings for two sample image line-pairs. The depiction
- is identical to that of Figures 7-10 and 7-12, where the two types of edge mappings were indicated

\ p by the two different sorts of arrowheads. The intensity interpolation on these lines can be seen in |
al Figures 7-32 and 7-34 (again, these displays are perspective, so verticals have varying horizontal

components, but this isn’t noticeable with the rolling nature of the terrain). |
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Ls The processing of this snterval-constrained edge-based matching and the interval-constrasined |

. intensity-based matching result in the disparity map as shown at half resolution in Figure 7-35. |Figure 7-36 shows a monocular view of the full resolution results of this processing.
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: Chapter 8 5[ SUMMARY
Sa CONTRIBUTIONS TO THE FIELD

: 8.1 Further Considerations
} Recall that the goals of this research were to develop a robust, domain independent stereo vision

ex algorithm — one with & structure that would lend itself to a parallel realization.

[ [Robustness] The use of a line-by-lsne coarse-to-fine analysis capitalizing on the redun-
3 dancy and broad frequency spectrum of grey-scale imagery and the accompany-
: ing snter-line global constraints provide for high noise-immunity, recovery from

2 local correspondence errors, consistency at the level of global interpretation, and3 graceful degradation. |
: [Domain Independence] The examples shown in chapter 7 are from disparate domains. |
"Y Having no monocular predispositions, beyond the dealing with edges, the system |
pr has nothing in it to bias the analysis toward a particular domain. Probabilistic |
8 measures used are those of generalsituations (although those for specific domains |
n could be introduced if they were known and applicable). Testing on further |
eo imagery is expected tv confirm the generality of the algorithm.
‘. [Parallel Implementable] Estimates based on the run times of the two examples of |

iL chapter 7 suggest that the analysis proceeds at about 3 lines per second. It is thus |r . expected that a parallel implementation on n processors, fairly straightforward
- algorithmically from the current organization, would require something less than |
2 0.5 seconds for an n-line by 256 element analysis with processors of the power |
r of a DEC KL-10. A more likely early realization would be with something more |

: modest, perhaps a successor of [Marks 1980], [Burr 1981}, or [Lowry 1981). |= More work is needed before this algorithm is ready for usec in an integrated system. Primarily, more |
-. imagery data is needed in testing and demonstrating the comprehensiveness of the algorithm. The |
Le imagery shown in chapter 7 is a good beginning at indicating the power of the processing, but it can |
v only suggest the potential — « broader and fuller image sampling is needea to be convincing of its |
- generality.

3 Empirical analysis must alsu be made of the accuracy of the correlation aigorithm. Digital ter- |
vo rain modzls (DTM's) with accompanying digital stereo imagery could provii:c the needed accuracy |
in benchmarks for this. Unfortunately, acquiring DTM stereo imagery and databases has been prob-
x lematic enough that 1 have not been able to include such an analysis in this rerort. Further work |

with this algorithm will certainly involve digital terrain model studies. |

. The set of parameters chosen for the various correlations should also be re-examined and perhaps
a augmented. Colour information may well be an extremely important addition to this. Although
Ry it has been shown through research with isoluminance that colour does not play a part in human
nC primary stereopsis (Gregory 1977|), there is no information-theoretic reason for so excluding it from
Co a mechanized vision system. [Gregory 1977] points out that colour does function as a stimulus to
- ‘contour’ stereo — the stereo from monocular cues, and my suspicion is that it will be a very powerful

disambiguation metric for either correspondence process.

- ) Refinement is needed in the spatial sampling used in both the resolution reduction and the lateral
A inhibition processes. This is of importance primarily for the resolution reductions, as the particular
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ro lateral inhibition operation implemented here is an artefact of the edge operator used which itself

C will surely be replaced by one with a better foundation ([Binford 1981]). Further two-dimensional
x analysis will also be needed in improving the constrasned-interval intenssty correlation. The errors |a seen in Figures 7-10 through 7-15 can be traced nearly without exception to the local line-by-line |
n nature of its correlation. Much improvement with this is possible and expected werc a more global ;

k- analysis to be carried out. |
|

E 8.2 Application of the Analysis |

3» The research does not end with the development of an algorithm such as this. It is not a stand- |
i; alone process, but rather must serve as a provider of three-dimensional data for the modelling and |
» recognition processes of a total machine vision system. Reference was made earlier to the importance |
¢ of interfacing this sort of depth analysis to an object modelling system such as ACRONYM ([Brooks
3 1981b]). Reliable and accurate depth measurements would provide a new and invaluable capacity
oT to the modelling system. Of course there are still many issues to be looked into for this. A few of

the more obvious are: |

= oe How is the depth map to be segmented for structure matching? |

Faq e What shape primitives are to be abstracted from the dense 3-space descriptions for
ko object representation?
»

e¢ Will the modelling scheme be able to direct the stereopsis process, suggesting |
or monocular cues to guide the matching or providing cues to scene structure from the |
= results of previous analyses?

” Regardless of the path chosen for the i..aplementation, the marriage of modelling and stereo analysis

x will come about — the benefits, if not mere necessity, of depth analysis makes this clear. A modelling |
- system that can sense the world in 3-D can net only make better judgements about its environment, i
' it can actively model that environment, forming solid descriptions of everything it encounters. The |
oe modelling will be able to do as we do — pick objects up, turn them about before its eyes, observe |
: their static and dynamic characteristics, note similarities and differences with other ohjects seen |
Co and modelled before — doing all this on the basis of three-dimensional spatial structure. It is this |
N generative aspect that makes the most exciting contribution to the modelling — objects will be
a modelled by being observed, with perhaps only the finest calibration measurements being added to
- the description manually. No longer would there be the necessity for object hand measurements and |

a hand entry of object descriptors.
Lo The automated stereopsis of this system will also bring advantage to terrain modelling and mapping. |
¥ Its ability to handle both rolling terrain and the discontinuities of cultural site structures makes it |
= applicable over a range of sensing situations not approached by current terrain mapping systems. |

o The most exciting aspects of vision research still lie shead — at a sensing level, the incorporation |
- - of colour and monocular cueing and enhanced global analysis; at the level of segmentation, the
> recognition and clustering of surface shape primitives for coherent symbolic description; at the
0 modelling level, the further extension or redesign of representational schemes to use this three-
x dimensional data; al the meta-modelling level, consideration of ways to describe shape and objects
: that will most effectively allow their recognition and manipulation. |

i . .
Hd
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