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PREFACE

\ Abstract
i The past few years have seen a growing interest in the application of three-dimensional image
; processing. With the increasing demand for 3-D spatial information for tasks of passive navigation,

vec 1986}), automatic survesllance fﬂimdmon%certal cartogruphy,
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‘ ,J...-{[Ke}ly W}{&nﬁoﬂ—ﬁfﬂj}\ and inspection sn industrial automatson, the importance of effective o
I stereo analysis has been made quite clear. A particular challenge in this area is to provide reliable and [-.-'::‘_%
! accurate depth data for input to_object or terrain modelling systems, (such as ACRONYM [Brooks 1}
1 1981a)).>This report describes an algorithm Tor such stereo sensing. 1t is founded on an edge-based Ewl
| line-by-line stereo correspondence scheme — one which provides this ‘hree-dimensional analysis in a R
fast, robust, and parallel implementable way. Its processing consists of extracting edge descriptions L:}
of a pair of images, linking these edges to their nearest neighbors to obtain the connectivity structure t”i
of the images, matching the edge descriptions on the basis of local edge measures, and cooperative!v L:j-l‘i
removing those edge pairings formed by the correspondence process which violate the connectivity L ﬁ
structure of the two images. A further matching process, using a technique similar to that used for P
| the edges, is done on the image intensity values within intervals defined by the edge correspondence. L "S
\ The result of the processy!g is a full image array depth map of the scene viewed. ~ -
, Organization of this Report _ !,
1 Chapter 1 discusses some ¢f the psychological and neurophysiological aspects of the human vision o
| system that have had an impact on this work, and within this context lays a basis for the direction g
of the research carried out. The fact that the research is being developed for implementation on a LT
sequential machine, rather than a parallel mechanism as in the human system, imposes (or allows, »:';3-::_
depending upon the particular benefits/deficiencies perceived) certain constraints on the techniques '
used. Despite this distinction in the mechanisms available, the philosophy of the approach taken NN
here has, at an informational level, strong parallele to the human system. “.
Chapter 2 outlines the main differences between the two principal techniques for binoculcr stereo '}'j:;:
analysis — those based on cross-correlation of image intensity values, and those working with image N
intensity contours, or edges. The functioning of the principal exemplar systems from each of these i:f
areas is described, and comments on these provide a background for specifying the goals of this *‘“""
research. Although providing a good summary of the state-of-the-art in stereo matching, Sections NS
2.1 and 2.2 rather go on, and a casual reader, looking for the meat, would be best advised to slip <
them. The chapter ends with a summary overview of the composite algorithm developed in this K
research. The algorithm, as the title of this report indicates, incorporates both edge-based and o
intensity-based analyses. ;...,._,-.
Chapter 3 introduces the principal unit of the analysis, directional zero-crossings in the second AN
difference of image intensity, and identifies the particular geometric and photometric constraints
that are integral to the analysis. el
Chapter 4, dealing with the statistical measures used throughout the analysis, should be read . :
in conjunction with Chapter 5, which discusses the Viterbi correspondence algorithm and the T
®
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w  Depth from Bdge and Intensity Based Stereo

modification to it developed for the matching required here. The two chapters work together to
define the matching process, with the first giving the hairy details of the decision metrics for the
various correspondence processes, and the second showing the way these enter into the computation.
Chapter 5 ends with a full exampls of a single line-pair edge and sntensity correlation.

Chapter 6 presents a cooperative algorithm which enforces global consistency on the tentative edge
matches proposed by the preliminary analysis. Its presumption is that connectivity in the two-
dimensional projection of a scene is indicative of continuity in the 3-space of the scene.

I 2 S RSN
RN NN I ST e
PR R e 4 (R R

Chapter 7 provides two examples of the full processing of the algorithm — the firet on a synthetic
sterco pair of an urban scene, the second on real imagery of natural terrain. The success of the
atereo matching algorithm on these images indicates that it is a powerful technique with general
applicability; its failures suggest areas for future refinement.
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Chapter 8 discusses the contributions of this research to the field of computer stereo vision, and
highlights the areas where its application would bring immediate benefit.

Viewing the Figures

All of the paired figures in this report are drawn for cross-eyed stereo fuston. This means that to
obtain the proper perception you must have the left eye see the right figure and the right eye see
the left figure. The difficulty with so configuring your eyes is that you have probably never in your
life before consciously decoupled your focus from vergence. Your eyes may be aimed in the proper
directions, but since this attitude corresponds to the normal eye position for examining the tip of
your nose, the focus is set at about that diatance. For stereoscopic fusion in this sitwation one must
consciously vary the focus while maintaining the fixation until the desired image is seen clearly. It
will take a while if you haven’t done it before, perhaps a half hour for a d:dicated att=mpt, although
once attained you will surely (it is my hope) find the effort worthwhile.
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The choices possible in stereoscopic presentation are divided between those requiring special viewing
aids, these demand little of the viewer, and free fusion techniques, which require n¢ aiding devices but’
at the cost of considerable initial effort for the viewer. Anaglyphic depictions, where the two images
are presented in complementary colours and must be viewed with suitably chosen complementary |
filters, are likely the most familiar to you. Another technique for slide/film presentation is to polarise
oppnsitely the light passing through the two images and provide polarised filters to the viewers to
v ensure delivery of the proper image to the proper eye. Neither of these techniques is suitable for
I standard xerographic reproduction.

)

The technique chosen here, cross-eyed stereo fusion has one principal advantage over the other form
o of unassisted fusion, often called wull-eyed fuston or simply free fusion. In wall-eyed fusion the
figures are presented so that to obtain the percept the left eye must be directed toward the left ‘
- image, and the right eye be directed toward the right image. Since only in exceptional (and then i
..“ likely damaged) systems can the eyes actually diverge, the separation between the centers of the two |
images cannot, in general, exceed the interpupilary distance of roughly 7 centimeters. This means

that the figures can be no wider than about 7 centimeters — a clear handicap when using limited

resolution graphic devices. There is no such limitation for cross-eyed fusion. Its advantage is then

clear — resolution of dcpictions can be much greater and figures may be projected onto distant

screens for audience viewing. (Oddly enough, the stereoscopic perceptions do differ in these two

! cases, with wall-eyed fusion giving a greater sensation of relative depth for the equivalent monocular .
percepts. Vergence, not just observed disparity, affects the judgements of stereopsis.)
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Preface 1)

Figures 1 and 2 contain exercises which may be of some help in enabling you to develop the skill
(skill?) of cross-eyed stereoscopic fusion. When working with them, remember to have the left eye
fixating on the right figure and the right eye fixating on the left figure. The captions to figures give
suggestions for their viewing. If you can find a pair of 2- or 3-power telescopes and aim them cross-
eyed at the appropriate images, this will greatly ease the task of obtaining stereo fusion. By reducing
the effective focal distance, the lenses will cornpensate for the vergence/focus coupling conflict, and
should allow the images to be more readily fused. But it is better to avoid reliance on such an aid
— you may find yourself somewhere, sometime, wishing to fuse two disparate images and have your
aid nowhere at hand. Unequipped, you will have missed your chance! (This generalizes.) Figure 2-5
seems to be a good example for practise in cross-eyed fusion.

First, fixate on the two circles at the top (if necessary, keeping the lower circles from
distracting you by covering them with a piece of paper). When you have superpositioned
these so that the left eye and right eye together see a single (probably blurred) blob, try
to focus the eyes to make the images clear. If you can do this (this is the single biggest
problem in fusion — controlling the focus), then slowly move your gase down toward the
next pair of circies (following the connecting lines). The percept should be of continually
progressing circles, forming a tapered cylinder (an interesting visual illusion in itself).

Figure 1
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vitt  Depth from Edge and Intenasty Based Stereo

This figure may be more difficult to fuse. Begin by bringing the outer squares into
alignment - the top line flash and lower left and upper right circles may be helpful in
controlling the vergence movements to bring the images together. Once superpositioned,
work on obtaining clear focus, perhaps by concentrating on one of the corner circles or
the upper flash. Once you have this, follow the box perimeter around to the lower line

joining the box to the diamond, follow the diamond perimeter to the circle, and then on
to the cross. You should see the cross lying farthest away, and *he framing box nearest.

R Figure 2

: Here is yet another trick to try if reither of these figures seems fusable even after hours of hopeless
staring. Cut a window about 1.75 inches square from = piece of cardboard. Hold the images about
8 15 inches away from your nose, the card about 5, and line up the two images through the hole so that
the left eye sees all of the right image and the right eye sees all of the left image. If you concentrate
on looking at the frame of the window (not at the scene beyond quite yet!) you will get a vague
impression of the intended depth. Work at keeping your regard on the frame while gradually letting
your focus slip through the two windows to the images below. 1t shouldn’t be too long before you
3 are able to separate the focus from the vergence and see the three-dimensional scene below with
. whatever your customary clarity.
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Chapter 1 | 1
CONTEXT OF THE RESEARCH

Let me draw your attention, at the beginning of this discussion, to the phenomenon of man’s
stercoscopic binocular vision — the fusion of the left and right eyes’ images into a coherent perception
of three-dimensional space. This single and immediate perception of the dimensionality of our world
is a striking achievement. To that minority among us lacking binocular stereoscopic perception (at
least 3%, while as many as 15% may have stercopsis deficiencies ([Bishop 1975], [Richards 1970])), it
is an experience impossible to describe by analoagy. It is unique in character, likened in its vividness
to the perception of colour. This visual system, called “the most sniricate siructure in the known
unsverse” ([Julesz 1976]), h.s been one of the principal contributors to our species’ intellectual and
sociological development. An increasing Jominance over time of the viscal sense has, through its
interaction with manipulative skills, enabled us to become the best living ool users, constructors
who have the ability to mold the world around us to our needs.

An important consideration in the implementation of a machine vision system is the imnpact
knowledge of this marvellous human system should have on the machine system’'s design. To know
something of its development, functioning, and mechanisms would seem to be a prerequisite for a
proper attempt at developing something similar for a machine (be the similarity in mechanism or
effect).

1.1 The Stereopsis Process in Man

In the course of primate mammalian evolution there has been a gradual movement of the eyes from a
lateral-looking attitude to a frontal binocular position. This transformation enabled a considerable
overlap in the visual fields of the two eyes — a necessity for stereo vision — and facilitated a precisely
registered coordination of binocular eye movement. The development of a centrally located high
precision fovea greatly aided this evolution of coordinatsd eye movement. These changes, and the
neurophysiological developments in the cortex accompanying them! were also correlated with the

. development of hand-eye coordination. The adoption of the upright attitude freed the hands from

their previous role in postural support, and enabled the development of manipulative skills under
visual (especially foveal) guidance.

Precision in depth determination is one of the principal advantages of stereopsis — it allows accurate
hand-eye functioning and visuai tracking. Our stereo acuity has been estimated as being between 14
and 40 seconds of arc for normal bifoveolar binocular vision ([Bishop 1975]); the binocular luminance
threshold has been found to be as much as a factor of v'2 lower than the monocular threshold, and
visual acuity increases accordingly for binocular over monocular vision. These observations bear
out the statistical improvement expected from using two independent measuring processes, the two
eyes, rather than one. Beyond the statistical advantages are those of more practical importance —
stereopsis enabled us predators to “see through” the camouflage by which hunted animals sought-to
blend in with their surroundings®(menocular camouflage fails to a stereo perceiver in the range over

‘deve]opment of a partial decussation at the optic chiasma and the organisation in the visual cortex, having cor-
responding fibers from the two retinas synapsing on the same cells in the striate cortex

5Om‘ prey had the complementary advantage of nearly complete peripheral (360°) vision to see us coming.
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2 Depth from Edge and Intenasty Based Stereo

which stereo is effective — theoretically, up to about 500 meters®([Bishop 1975])), and it enables us
a perception of solidness in our visual worlds isomorphic to the solidness of our physical world.

The eyes are positioned about 7 centimeters apart.in the head, otserving the external world through
central projections from two slightly differing viewpoints. This difference in position causes varying
relative lateral displacements, or disparities, of the detail in the two images projecting onto the
retinas. It is these disparities, the differences in horizontal position of corresponding points on the
two retinas (varying directly with the distance from the point of fixation), which provide the essential
data for binocular depth perception. The fusion of the two retinal images into a single perception of
solid 3-space, the process of binocular stereoscopic vision, is termed siereopsss. The subject of this
report is an automating of this process of stereopsis.

1.2 Computer Vision

The involvement of computer scientists with visual processing is in the use of computers as sensory
data processors for observing and inanipulating the environment. Generally, the interest is in bring-
iug the control advantages of visual sensing to the tasks of robotic manipulation and autonomous
navigation. It m'ght be thought that mechanisms chosen for this would be selected more on their
algorithmic tractibility. than on their relevance to neurophysiological or psychological theories of
human perception. This is true to an extent. We have access to neither the parailel processing
biological mechanism that resides in man nor an adequate definition of its functioning, and are
forced largely to rely on sequential machines for the implementation, and introspective insights for
guidance in our algorithms. Still, human'visual functioning is our principal source of observations on
the process of three-dimensional vision, and it supplies the best paradigm we have for a seeing sys-
tem, Clearly, where insights from human visual processing would add to the robustness or flexibility
of the sysiem, our machine should have them. On a more pragmatic note, it makes excellent sense
to pay attention to human visual functioning, for it provides the best of insurance; the problem is
solvable, and the human system does it.

In the present work we do not aim explicitly for our algorithmic system to have biolegical feasibility,
but we do wish to have it parallel the highly effective functioning of the human system — a
functioning where the input is passively sensed (although perhaps actively pursued) visible light,
and the result is an understanding of the physical environment.

There will be obvious hindrances to our work — the computers available are only serial devices
(at the moment), and the mechanisms of sight are little enough agreed upon by neurophysiologists
and perceptual psychologists; neither our devices nor our aigorithms can yet approach the power
and flexibility of the human system. But the goal is there, to develop mechanized vision. Althougli
our computing devices are not ideal for the job, they are adequate for the research; although our
understanding of the process is partial, we have suflicient empirical observation to allow us reasonable
insight into the operation of our sight.

On this last point, it is interesting to note that computer vision is, increasingly, developing a
symbiotic relationship with studies in human perception:

e . to implement a theory requires complete and detailed specification of the process —
this invokes a rigour at the level of the definition,

e  as an experimental tool, the computer stimulates insights which improve the theory.

6t.hc: greatest distance at which an object can just be detected as nearer than an object at infinity
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So, while machine vision researchers look to the perceptual psychology and neurophysiology litera-
ture for insight into mechanisms and measures of adequacy for their algorithms, perceptual theorists
turn to computers as tools for their studies and micans for instantiating and testing their theories
([Marr 1976], [Marr 1977], [Mayhew 1981]).

1.8 Cconsiderations for a Stereopsis Process

1.8.1 - Possible mechaniams of human stereopsis

What is involved in human vision in going from the sensory stimulation of the two separate retinas
to achievement of the depth understanding of stereopsis? Perhaps one or some combination of the
following:

1)  the independent mnnocular recognition of each eve's contents, and a subsequent
matching of recognized items across eyes for distance determination.

2)  a less knowledge-intensive matching process, whereby features (perhaps ‘blobs’)
characterized by uniformity of some property are extracted from each eye’s image
and compared across eyes (without any familiarity with the particular features).

3)  extraction of some information-specific abstraction from the images of the two eyes
(for example, zero-crossings in the second difference of a laterally inhibited signal),
and the matching of these sampled items across eyes.

4)  matching of individua: brightness levels over the entire images of both eyes.

The distinctions between these lie in the level of abstraction attained. ‘I'he actual monocular
recognition of scene content is a great abstraction — image brightness values are ciustered to define

shapes which are representable as symbolic descriptors — whereas the matching of brightness levels,
being little more than photon counting, can hardly be considered as abstraction at all.

The first suggestion above requires the process to have a monocular familiarity with everything in the
scene, implies that whatever it is, it can be recognized when viewed from any perspective, and grants
of the monocular processing a quite remarkable capacity at separating objects from each other and
from their background. With this scenario, the eyes work independently up to the point of placing
the depth component on the object’'s position. Alone, this is not a very satisfactory explanation of
stereo perception. It presupposes an unsubstantiated snner eye projection system for mapping 3-D
known forms to percepts and, most significantly, provides no mechanism for the learning of new
objects. It is contradicted by known characteristics of the human visual system’s processing in its
sufficiency, by our ability to fuse random-dot stereograms ([Julesz 1971]), and in its precision, by
the accuracy and conlinuity of our depth perception. It is presented here as a straw man, merely to
focus on this extreme of stereopsis possibilities.

The second suggestion is an improvement over the first, in that it demands no monocular object
recognition, yet it still hinges on the ability to extract information that is meaningful across images.
Considered as the sole process for stereopsis, it has inadequacies similar to those of the first
suggestion.

Implicit in the discussion of suggestion 2 was that it dealt with a uniformsty measure on the imagery.
Consider suggestion 3 asinvolving the processing of a discontinuity measure. The sort of information-
specific abstraction suggested can vary from individual edge elements to extended contours, perhaps
delineating the outline of some shape (see [Wilson 1978a, Wilson 1878b] for a discussion of spatial

frequency filtering in human vision).
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4 Depth from Edge and Intenssty Based Sizrveo

Suggestions 3 and 4 are similar to each other in that neither presupposes a semantic processing of
the retinal images and both involve extensive cross-correlation on a great quantity cf data. Human
sterecpsis supports approach 3 more strongly ([Wilson 1978a}, [Marr 1979}, [Schumer 1979]), while
not excluding the possibility of interaction with an intensity matching process’ as suggested in 4.
For a machine implementation, questions of computational cost, viewing constraints, reliability, and
desired accuracy will affect the utility of one over the otlrer, and this will be discussed further later.

Observations of visual processing make it evident that, when impoverished, human perception can
rely upon most any of the above techniques. for depth determination.® Nene of them is sufficient
for visual understanding; beyond each must lie a process bringing a unity of interpretation to the
measures. Monocular processing can aid stereopsis by establishing a context or vergence setfing
([Saye 1975]), and can enable fusion despite conflicting evidence at a local level (as demonstrated
by Helmholtz (1906) with positive image/negative image fusion (see page 157 of [Julesz 1971])).
Binocular stereoscopic processing can reveal depth when no cues are available to the eyes in isolation.
Psychophysical evidence ([Gregory 1977]) suggests that the monocular and “cyclopean” processes
([Julesz 1971]) may be highly indeperdent functions.

1.8.2 — Primary versus secondary cueing for stereopsis

Suggestions 3 and 4 use what are termed primary cues for stereopsis — information that relies on
analysis from both eyes working in unison. This primary stereocsis is immediate in the sense that
it provides local depth information everywhere obtainable in the visual field, information that is
unavailable from the eyes individually. It might be said that the percept occurs before cognitive
influences can play a role. Complementary to this is the use of secondary cues for visual depth
perception. Our species has learned much about the environment we have lived in over the past few.
millenia that greatly facilitates the making of subjective visual judgements -— judgements that can
be made on the basis of information presented to either eye, independently. These are monocular
depth cues. Fallible as they are, such cues (see [Gibson 1950]) as:

object overlay or partial occlusion,
perspective deformation,
brightness and shading,

texture density gradient,

motion parallax,

hue variation, and

object relative size,

provide for remarkable judgements of relative depth from a single monocular view. There is no
doubt that these cues, irrespective of their classification as secondary, are principal contributors to
modern man’s perception of his world.

An important poinl to note here is that secondary cues to stereopsis contribute an explicit globality
— they have a spatial component that relates them to parts of the visual field in their locale. A
similar provision is implicit in prémary stereopsis in that local correspondences (depth judgements)
interact to produce the optimal percept for a stereo pair of views — a more global analysis is at work

7although issues of optic nerve bandwidth will impact upon this possibility — it seems unlikely that all photometric
information is wransmitted alung the optic nerve to the lateral geniculate body. There are roughly 108 rods, 107
cones, and, with a mere 106 optic nerve fibres, substantial coding would be necessary.

8There is no pyychophysical evidence that I have seen supporting the first suggestion.
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to ensure some form of continuity or consistency in the three-dimensional interpretation. Automated
stereopsis must also be globally consistent.

It is hazardous to argue about the evolutionary development of man’s depth perception — as to
whether primary analysis preceded secondary analysis, or which has been the dominant factor in our
visual development. Clearly if our visual perception progressed from the lateral-looking attitudes of
our presumed genetic ancestors, then we may have had some form of strictly monocular processing
(perhaps with temporal stereo) before the occasion arose to try any fusion, so the monocular analysis
would have had a head-start on affecting our development; yet certain secondary cues have been
determined to be consequences of experience (for example perspective deformation, as demonstrated
by the Ames room phenomenon and the experiments of [Yonas 1978}, and texuure variation in the
visual cliff experiments of Walk and Gibson [Walk 1961]), so are conceivably learned — it would
appear that they are mediated by higher-ievel functioning,.

from an implementation standpoint, the choice of approach is one based on sufficiency: it seems
obvious, at least to the author, that the primary sensing mode can provide information to allow the
development of a secondary cueing mechanism, while the reverse does not seem to be true. From
this perspective, primary stereopsis is the most interesting. In truth, the two mechanisms probably
developed separately, and exist independently — although cooperatively — in constituting our vision
system.

1.8.8 — The necessity of a primary cueing mechanism

Useful as they are, depth estimates based on secondary cues do not have the same perceptual quality
and accuracy as do those due to stereopsis. Secondary cues provide a cursory form of processing.
They may be seen as arising from abstraction over time of the information presented by the primary
stereopsis process. Our capability at attaining a perception of depth relying solely on the primary
stereopsis process is well documented. The easily-learned fusion of Julesz’ random dot stereograms —
which have neither monocular depth cues nor monocular structure — is a convincing demonstration
that stereopsis is at work in our visual system. Under circumstances of contextual deprivation,
stereopsis enables the perception of depth.

This argues. that for a machine approach to vision a dominant-consideration should be in specify-
ing a stereopsis process — one which autonomously, and without the aid of domain-specific or
environment-induced knowledge, constructs a depth map of the field of view. The contribution
of this report is in a definition and demonstration of a domain-independent stereo correspondence
algorithm, one which can use certain monocular cues where available for ambiguity resolution, but
functions in the primary binocular mode in attaining the depth determinations of stereopsis. The
philosophy underlying the design to be presented here will hopefully be seen as having some relevance
to human visual processing, although the mechantsms developed for the computation will be chosen
strictly for their effectiveness and efficiency as implemented in a serial machine. (Although, as
will be seen later, the structure of the computation has been chosen so as to facilitate a parallel
implementation.)
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Chapter 2

BACKGROUND TO
MACHINE STEREO VISION

2.1 Area-Based Versus Edge-Based Processing

Much of early machine vision work avoided the aspect of three dimensionality inherent in man’s
perception of his environment, and relied upon prejective monocular measures for its analysis of
visual domains. In the last eight to ten years, though, there has been a growing strong interest in
three-dimensional sensing and analysis, and this has brought with it several differing approaches to
the problem of matching the content of a stereo pair of images. The primary division among these
research eflforts is one of area-based versus featurc-based analysis.

The distinction between ‘feature’ and ‘area’ correspondence here can be more a matter of degree
than type. Fealure-based analysis has involved the transformation of the sensed data from a diserete
two-dimensional intensity array to a more symbolic form as significant intensity contours, or ‘edges’ -
features. It is the properties of these features which then provide the metric for the correspondence.
‘Feature’ is a fairly general term, but its use here may be equated with ‘edge’. There are many
fewer ‘edges’ than image elements in a view of a scene, so this transformation, generally, reduces the
computational cost of determining correspondences. A corollary, and noticeable drawback of this,
is that not every point in an image is a ‘feature’, so the result of a solely feature-oriented correlation
will not be the dense depth map one may want.

2.1.1 — Area-based analysts

In area-based analysis two-dimensional windowing operators measure the similarity in intensity
pattern between local areas, or windows, in the two images. Cross-correlation is used to determine
matches between windows in one image wit.. windows in the other. Normalized cross-correlation
has the ability to compensate for contrast and brightness differences across images. If the lighting
and sensor/ptocessing conditions are known, this flexibility in the algorithm may not be required.
In this case other correlation forms such as Normalized RMS or Absolute Difference may be used
(see [Hannah 1974] for a summary of these differing techniques).

Area cross-correlation is often not applied to every pixel in the image arrays, but selectively for
those whose local variance is high. With this approach, the variance measure is used as a filter to
limit possible correspondences; correlation is then used to select the best from among the candidates.
These variations may qualify such approaches as ‘feature-based’, although they will not be considered

-so here. Perhaps a better way of categorizing these systems is as feature-driven area-based. [Levine

1973] limits initial corrclation to areas having local maximal variance, {Henderson 1979] preprocesses
the data o find edges which are then used to bound an area-based search, [Moravec 1980) uses an
‘interest opcrator’ to select significant points in a reference image, and [Genrery 1980] uses a variance
based I test to filter out areas of minimal information, and therefore minimal interest.

Area-based correspondence has been applied quite successfully to the stereo analysis of rolling terrain,
but it degrades when the scene is not smoothly varying and continuous. In images of such domains
many windows to be matched will have no correspondences in the other image (for example, those
windows lying on surfaces which are occluded from the other imaging position). The chie! difficulty
with the arca-based approach is in properly matching window shapes and sizes for conjugate image
arcas, taking into account both variation in terrain siope and discontinuities at surface boundaries
(see [Ryan 1979] and [Ryan 1980)).

]
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Large correlation window sizes are required in attaining statistical significance in tne sampling, yet
the characteristics measured over the windows become less and less representative of the observed
local surface as this window size increases. Discontinuities in the surface can canse a positioned
window in one image to be sampling local intensity values from more than one intensity surfac
in the other image, and a correct cross-correlation would only be possible if the window could be
partitioned and matche¢ with (possibly several) windows of various size and shape in the other
image. Such adaptation requires more flexibility than area-based correspondence has thus far been
shown to provide. Abrupt discontinuities in topographic structure and an abundance of occlusions
characterize urban or cultural areas. It is at precisely these points of depth discontinuity that we
want to obtain accurate surface position measurements, This would suggest that current area-based
proressing is inappropriate for domains with occlusions and abrupt depth discontinities.

. a e e
-

-

Some consideration of this window shaping problem has been attempted in area-based work. [Levine
1973] and [Mori 1973] vary their correlation window sizes with the local intensity variance. They
presume that high variance implies high local texture and thus suggests the need for smaller
correlation windows, while low variance suggests surface uniformity and the need for larger sample
sizes and larger correlation windows. [Panton 1978] uses trapezoidal window shapes in the search
image, as determined by previous and predicted correspondence results, to match the rectangular
windows of the reference image. [Gennery 1980] included a partial solution to this problem for
a specific camera geometry when looking at windows presumed to lie in the ground plane. [Mori
1973| implemented an iterative technique that would compensate for terrain variations by successive
refinements to image registration estimates. Both [Levine 1973} and [Hannah 1974] included in their
alvs+ithms techniques for identifying certain scene occlusions and areas of image non-overlap, but
vhese were entered more as cases «f exception handling, and it is doubtful that they were adequate
as models of occlusion.
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A related problem with area-based correspondence is that increasing window size improves statistical
significance but generally results in poorer 3-space positioning accuracy for the correspondence.
Feature-based analysis obtains more precise positioning (for its edges) in the individual images,
and it can attain correspondingly higher accuracy for its correspondences in 3-space ([Arnold 1978]
indicates that edge-based techniques offer an order of magnitude improvement in accuracy over
area-based correlation methods).

{
"

SN
3

bN_’
\."v
—
-

Area-based correspondence systems also tend to be prediction driven, in that they process an image

.
L serially and al each step use the context of previously matched neighbouring points to limit the
a search for the present correspondence. None provides a backtracking facility with this technique,
- and only [Gennery 1980] includes a scheme for adjusting locally determined miscorrespondences.
f ¢ With little ability to either correct or detect errors, such prediction-guided approaches can lead to
- rapid degeneration once errors begin to occur.

A final and important anomaly to note of area-based processing lies in the basic philosophy of its
analysis, The underlying assumpticn of area-based correspondence is that it is the photometric
‘ properties of a scene that are invariant Lo imaging position, and the correlating of these properties
o will be suflicient to allow the proper correspondences to be determined. But it is nol the measvrable
( photometric properties that are invariant to viewpoint positioning. In the degenerate, although
common cnough case, a surface of a certain intensity seen unobscured from one viewpoint will not
even be visible from another slightly different viewpoint. All that can be said to be truly invariant
to viewpoint positioning is the ¢hree-dimensional structure of the scene itself. A better metric for
the corrclation would be one which deals in some way with that scene three-dimensional structure.
I will return to this point in the discussion of feature-based correspondence methods,

- v r-v

,.ﬁ
1 .
[

T T AT T T T L T T Ty T T Y e g
B ‘ P LT

E, VU, LAV SRS SO LU S G SR, UL SO SR NP SIS AL N DU LU UIL U S TSN SIS IR CHL ST S SO S S PRSP O S S

»
L
.3




K .1
P‘-l
9
i
9

- 5 .

=

T FEESLTy T T T W
. R

- v

i TN

- e

L A

TTTRTTYTTTTY AT Ot RO 1T
SELEUY T

r‘w‘r‘-'-——r"‘- i

8 Depth from Edge and Intenssty Based Stereo

2.1.2 — Area-based correspondence methods

Mapping systems available commercially, and used in the photogrammetry community, are ex-
clusively area-based in their analyses. State-of-the-art photomapping devices employing automated
correlation include the Bendix AS-11B-X ([Scarano 1976]) and the Gestalt GPM-II ([Kelly 1977)).
These systems are not, in general, of much interest slgorithmically; they have inadequate success
rates for the correspondences they produce (failing to determine scene depth at between 40% and
70% of image positions, according to recent studies, see [Friedman 1980]), and require extensive
manual intervention for their operation., More« fruitful insight te the potential of cross-correlation
techniques can be obtained by looking at systems produced in research, rather than development,
environments.

The following summaries describe the more iinportant area-based stereo correlation research systems
of the past decade. The last three are the most recent and most accomplished of these systems.

Gimel’farb, Marchenkv and Rybak System 1972

[Gimel'farb 1972] was the first report to document the use of dynamic programming? in a stereo
correspondence process. The algorithm described processes image pairs on a line-by-line basis,
exploiting epipolar geometry constraints and using known (a priors) disparity and surface slope limits
to constrain the correspondence search. It optimizes a cost function of normalized cross-correlation.
The convolution incnrporates a lateral inhibition computation. The correspondence algorithm is
described analytically as finding the function mapping intensities from one image line to the other.
Testing was done on short wide images (i.e. 5x500). The authors suggest that one could improve the
speed of such stereo processing in two ways. IFirst, in using the results of prior linc analyses to guide
the matching and bound the search on subsequent lines, and second, in partitioning lines into smaller
stretches, reducing the combinatorics of the correspondence matching. The first is a technique that
CDC used in their stereo work (as will be discussed). The second can be seen as a preview of
the multiple resolution correspondence processes of Baker, when it is seen that rough alignment
of corresponding parts of the two lines must be made before breaking them into smaller stretches.
Depiction of the results obtained with the algorithm are a bit sketchy, as the plots shown are of
single line analysis only. The report comments that results from this totally automated process are
comparable to those of human operators using automated photomapping devices, although nothing
quantitative is presented.

Levine and O’Hand!-y System 1978

[Levine 1973] describes a system designed to provide depth information for the Mars rover vehicle’s
autonomous navigation. Tests of its performance were carried out on stereo imagery collected in the
vicinity of the Jet Propulsion Laboratory. Because of the system’s intended use, it was possible to
work with the basic premise that the scene viewed was approximately planar, running off to a horizon
somewhere in the distance (not necessarily in the images). It used collinear epipolar imaging'%for
its two cameras to limit correspondence search. Matching was by intensity cross-correlation, with
an adaptive window size set by the variance at pixe' (7, ) in the image - a large variance sets a
small window size, and vice versa. Processing was organized to run in lines from bottom to top.
Search constraints on possible disparities were exploited throughout the analysis. First the top and
bottom lines were correlated to estimate the overall disparity ranges (netice that this presupposes
that scene depth varies regularly from top to bottom, as in a view toward the horizon). Then a

Ysce chapter 5 for a discussion of this

10see section 3.2.1 for a description of collinear epipolar geometry
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Background §2.1.2 9

prepass anaiysis was applied to a sampling of n lines (n = 5) to set local maximum and minimum
disparity ranges. Correlation along a line pair was over windows with locally maximal variance,
called ‘tie-points’. The local maxima were used to iteratively segment the reference line. A coarse
search using statistical parameters (variance) of image windows was used to find good candidates
for the more expensive computation of the correlation coefficients. The candidate pairings chosen
through this process were then evaluated to select the optimal matches and to refine tlheir positions
in three space. The coarse search was done with every other pixel along a line. Cross-correlation was
only done with windows of similar variance. The system uses the epipolar geometry constraint in a
way that prohibits positional reversals along a line. The authors indicate in the paper that they are
avare of the difficulties introduced by occlusions, and mention an ad hoc scheme for preventing parts
of the images felt to be occluded from being matched, but the technique is not further described.
Twe-dimensional proximity was also used to limit disparity possibilities; an allowable range was
set at each tie-poini by examining neighbouring disparity values on the preceding line (actually the
current line minus 4 — t.e. they process every fourth row and every second element). Final disparity
values were smoothed, and deviants removed.

Mort, Kidode and Asada System 1978

Mori, Kidode and Asada, in a short paper [Mori 1973], describe an interesting stereo mapping
system. In it, epipolar geometry is used to constrain the search for correspondences in the area-
based correlation they use. The system is demonstrated on a model pattern and a pair of aerial
photographs, although only a single line of results is presented. A gaussian weighted correlation
function is used to diminish the effect of peripheral intensity variations. Window size is modified
by the range of disparity expected for the point, and they suggest that this should be set by first
correlating over a large window, then narrowing to a smaller window when the gross disparities are
known (the paper doesn’t explain this resolution reduction process any further). An assumption
of scene continuity is also used in limiting correspondence search. The technique is iterative: the
right image is repeatedly distorted and compared with the left image until no substantial intensity
differences are found. The abstract says that the first matching is done on highly contrasting parts
of the images (‘roads, coast, forest edges’), and the context of this is used, with the smoothness
assumption, to expand the correzspondences intn -.eighboring parts of the scene; but the body of the
paper does not elaborate on this. The paper is very brief and cursory, suggesting much more than
it reveals. It would be very interesting to sce whatever further documentation they have on this
system. Examples arc incomplete and inconclusive. No follow-up has occurred to this work.

Hannah System 1974

[Hannah 1974] describes a series of techniques developed for increasing the efficiency of area-
based correlators. Her thesis contains a discussion of the differences between Discrete Correlation,
Normalized Cross-Correlation, Normalized RMS Correlation, and Normalized Absolute Dilference.
The work takes an experimental approach, and documents the improvements arising from:

e correlating over a sampling of the image arrays, then refining the match estimate using
the full arrays at the point having maximum corrclation coeflicient (this is referred to
as ‘gridding’),

e correlating over reduced resolution depictions of the images, and then refining match
estimates wilth the higher resolution depictions,

e abstracting area characteristics (mean/variance), and using these more symbolic
descriptions for limiting windows to be cross-correlated,

e using known camera geometry constraints to limit search.

A region growing approach is taken in expanding correspondences outward from matched pairs (using
an assumption of surface continuity). Various heuristics are introduced for inferring the distinctions
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10 Depth from Edge and Intensity Based Stereo

between occlusions, corrrespondence errors, and out-of-scene overlaps. Hannah introduced here,
through the autocorrelatior function, a means of assessing the quality of area-based matches.

Panton System 1978

Panton’s paper [Panton 1978! describes a system for obtaining a dense digital depth map of smoothly
rolling terrain. The algorithm, using intensity cross-correlation, processes from left to right in the
images, and so, once initialized, can use locul context of previous matches and estimates based on
the epipolar geometry to provide tight constraints on possible correspondences. Maximization of a
correlation coefficient in the chosen area selects the appropriate match. About 1% of the pixels in
en image are matched in this manner, although the entire image is used in determining the match
correlation coefficients. Positioning accuracy of somewhat better than one pixel is obtained. The
gystem is able to tailor sampling window shape in one image to follow roughly the deformation of
the rectangular window it matches in the other image. This window-shaping issue is one of the
principal difficulties of cross-correlation analysis — only in the case of flat terrain normal to the line
of sight are corresponding windows in the two images of the same shape. Panton’s solution to this
is to approximate the rectangular source window by a trapezoidal window in the other image. The
techinique is based on a large sampling of the surrounding neighbourhood, and uses the terrain relief
predicted by previous neighbouring correspondences to estimate the shape of the trapezoid about a
candidate surface point. Trapezoidal shaping is quite an improvement over matched windows, but is
still just an approximation to the actual projective situation. This algorithm has been implemented
in an experimental parallel processing machine which seems to achieve quite impressive performance
in processing on relatively smooth natural terrain. It is not c¢l:ar whether or how much operator
intervention is required.

Moravee System 1980

Moravec’s research (see [Moravec 1980]) was aimed at providing vehicle contro! information from
visual sensing. His aim was not to construct a depth map, but rather to sample interesting points
in a scene and use Lhese to provide molion calibration information and obstacle cues. There are
three main vision contributions in his research: the interest operator, the binary correlator, and
slider stereo, the first two of which have been widely adopted by researchers in the field. The
tnterest operator and binary correlator date to 1974. The interest operator is a filtering technique for
selecting points at the center of locally maximal directional variance -— these are typically corners.
The binary correlator finds the best match of a feature in one image with the intensities in the
other image using a resolution varying technique. Each feature (as found by the interest operator) is
represented as a series of (5) 6 X 6 windows, in increasing resolution (t.e. 6 X 6, 12 X 12, 24 X 24,...
in the original image). The lowest resolution description of the feature from the reference image is
moved a pixel at a time over the other reduced image, calculating correlation coefficients at each
location. The largest correlation coeflicient is taken as indicating the best match. The next higher
resolution window (i.e. next smaller window) centeréd on this is then scarched (with the next higher
resolution of the feature). This correlation process continues until a 6 X 6 patch is matched in the
5 unreduced image. The correlation has about a 10% error rate. In slider stereo, lateral movement
e of a camera along a track provides 9 equally spaced camera stations. Correlation of the resulting
36 (9 choose 2) possible image pairings provide a series of estimates of distances to scene points.
These estimates are represented as gaussian distributions (mean equal to the distance estimate, and
X the standard deviation inversely proportional to the bascline) weighted by the correlation coefticient
of the feature matches (from the binary correlator). The 36 histcgrams (distributions) are then
summed, and the peak taken to indicate the correct match. Sterco tracking between vehicle motions
: is also performed with the interest operator/binary correlator techniques. Here, features from the
. central image at the previous position arc searched for in the central image of the current position,
. and the results of this correlation inform the system of the vehicle’s actual movement. The positional
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I and depth information obtained from these correlations provide data for the navigational control of
the vehicle. It knows roughly how far it has moved through the scene, and where its obstacles lie.
Feature sampling is chosen so as to cover most of the scene, uniformly.

SO Gennery System 1980

- Gennery’s system [Gennery 198y was designed to provide depth data for vehicular autonomous
navigation. It uses cross-correlation to position points in space. The system incorporates a ground
plane finder (utilizing Moravec’s interest operator and binary correlator [Moravec 1980]) that es-
timates a plane in the scene above which most points lie, and uses this to estimate the camera
relative orientations. This derived camera relative orientation information enables the matching of
corresponding windows to be constrained to a one-dimensional search. Having estimates of scene
noise characteristics (variance, and gain and bias between the two images), hec defines a correlation
measure that provides sub-pixel positioning of corresponding windows. Accompanying these are es-
timates of the confidence and accuracy of the correspondences. Since it progresses across an image
from left to right, his algorithm can use local context of previous matches to suggest tenlative match
sites. If these are inadcquate for unambiguous matching of the particular window, search constraints
based on the epipolar geometry can be used to provide further suggestions for the correspondence.
These begin at the infinity point of the corresponding epipolar line (disparity equals zero), and come
forward (to the left, with increasing disparity) until either a suitable corrcspondence is found or some
already matched windows are encountered. When the correct locale has been chosen, maximization
x of a correlation coefficient in a vicinity of the selected area determines the local best match, This
analysis is followed by a process of fitting ellipsoids to the determined elevation data. These, he
contends, are an appropriate shape representation for use in obstacle avoidance calculations and
scene matching.

2.1.8 — Feature-based analysis

Recall that area-based analysis was criticized as being based on a metric sensitive to imaging position.
. Feature-based analysis avoids much of this problem, and comes closer to dealing with the true
i invariant of the projection process: scene structure. It works generally with the premise that a local
N measure on the intensity function is representative of physical change in the underlying scene. The
local measure on the intensity function could be, for example, a maximum in intensity gradient —

o

" peak in the first difference of intensily, zero-crossing in the second difference. Physical change in
the scene could be a break in depth continuity and accompanying projected surface reflectance or
- luminance change, or a change in surface intensity from a surface detail without topographic break.

The point to notice is that feature-based analysis uses the semantics of intensity variation in its
attempt to extract measures of the physical change in the underlying structure of the projected
views, and uses these two-dimensional observations to infer the three-dimensionality of the scene.
The validity of this intensity edge tracking in a stereopsis system is apparent:

4

- T
s AR

¢ adiscontinuity in surface orientation will, in general, give rise to a variation in incident
reflection which will appear to an imaging source as a change in brightness - tracking
¢ the intensity edge across the two views will track the surface discontinuity;

e a discontinuity in surface reflectance (a surface marking or pigment change) can be
tracked to reveal the three-dimensional position of the variation on the bearing surface;

: o an illumination discontinuity (shadow edge), although not likely corresponding to a
q . sutface discontinuity (the shadow will lie on the surface), will be visible as a brightness
discontinuity - tracking the shadow edge across the two views -will provide depth
information about the shadow-bearing surface;
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12 Depth from Edge and Intenaity Based Stereo

2.1.4 — Feature-based correspondence methods

Probably the most widely known edge-based stereo scheme to date is thai of Marr and Poggio ([Marr
1977)), as implemented in a computer program by Grimson (see the following summary [Grimson
1980]). The algorithm has been fairly well tested on a reasonably wide variety of images (random
dot stereograms, naturul terrain, urban scenes), and is at precent being implerented in hardware
[Nishihara 1981]. [Arnold 1978] developed an edge-based stereo correspondence system that used
local edge properties te select edge match possibilities, and a weighted iteration process to resolve
match conflicts. The stereo processing systein of Henderson, Milier and Grosch of the Control
Data Corporation research group (as summarized in [Henderson 1979}]), called the Automatic Planar
Surface System, uses edges to guide it's area-bascd matching. They address their work specifically
toward the problem of constructing planar models of rectilinear cultural structures from stereo pairs
of aerial imagery. An extensien of this CDC work ([Degryse 1980, Panton 1981]) has lead to a stereo
matching system that uses both local edge information and extended edge information in its stereo
matching. Some earlier systems whose simpler stereo processing was coupled with object modelling
and recognition work will not be discussed here (for example, [Baumgart 1974), [Baker 1976), and
[Burr 1977]).

Arnold System 1978

[Arnold 1978] describes an edge-based stereo correspondence system which uscs edge orientation
and side intensity, and edge adjacencies in determining the set of globally optimal edge matches.
Examples are shown of the processing of aerial views of an aircraft, cars in a parking lot and an
apartment complex. The Moravec interest operator and binary correlator [Moravec 1980] and a
high resolution correlator and camera solver [Gennery 1980] are used in determining the relative
orientations of the two imaging stations, The Hueckel operator [Hueckel 1971} is applied to the
images, producing a set of edge clements for the correspondence. The derived camera attitude
information is then uscd to rcorient the edges to a canonic frame — one where the stereo baseline is
along the z-axis and disparity shifts due to the tilt of the ground plane arc cancelled. Disparities are
restricted to those lying between zero (the ground) and some a priors limit in the z direction. A list
of possible matches in the right image is obtained for each edge in the left image. Loose thresholds
are used to specify the adjacency structure of the edges. A reinforcement/inhibition voting scheme
is applied to the adjacency structurc and match list, and the resulting maxima are chosen as the
correct matches. The technique uses many heuristics and thresholds, and is said to be quite sensitive
to the output of the Hueckel operator.

Control Data Corporation’s Automatic Planar Surface System 1979

The aim of this CDC work [Henderson 1979] was to provide automatic reference preparation
capabilities; the references being structural models of buildings which may then, at a later point, be
used in scene recognition for autonomous guidance. Because of this aim, they addressed their work
specifically toward the problem of constructing planar models of rectilinear cultural scenes from
aerial imagery. They tock an interesting edge and arca-based approach to their solution, using edge
infermation to guide the application of a dynamic programming intensity correlation for line-by-line
pixel matching. The principal contribution of their research is in this ‘Broken Segment Matcher’.
Roughly, their algorithm functions as follows:

o Geometrically transform a pair of images, bringing them into a collinear epipolar
frame.

¢ Locate (via a Sobel operator) and ‘thin’ edges in the two images.

o Iistablish edge correspondences in the first pair of epipolar lines by hand.
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e Maintain two cooperating correspondence processes to minimize the effects of image
noise and extraneous detail. The first process matches intensities using only edges
deemed to be ‘reliable’, such as those sceded to the system through the manual startup.
The second process considers all edges, and, using the correspondences found by the
first process for the particular line correlation it is presently performing, suggests a
larger set of correspondences. Those correspondences which are seen to ‘persist’ over
several preceding second process line analyses (implying that they arise from true scene
geometric discontinuities) are given for consideration to the first process for its nest
line analysis.

The correlation’s metric is pixel intensity difference. The two processes both use a least squares
minimization on these intensity differences to choose the optimal edge correspondences. Edges are
used to bound the linear regions, or intervals, being correlated, and edge correspondence is a side
effect of the intensity correlation — edges themselves are not compared.

The algorithm progresses from one image epipolar line to another, propagating results (to limit
subsequent search) as it goes. The algorithm, as noted in the summary, requires manual starting.
It propagates determined correspondences along paths of proximal edges as it progresses from line
to line. Constraints have been built into the system to make it only applicable to planar surfaced
structures, and the corrclation only accepts transitions indicative of nearly horizontal or vertical
walls ... in fact, they go to substantial effort to ignore surface detail (such as roads, sidewalks,
windows)., The algorithm preprocesses the imagery data in a way that precludes it from working
with anything other than straight lines (as derived from sequences of edges) in the images. They
have processed and documented the analysis of a single scene with their algorithm.

Their aim was to produce a three-dimensional planar rectilinear description of cultural scenes. The
results shown do not indicate that they have succeeded. One point to note is that their use of two
correspondence processes, with the second introducing ‘new’ and removing ‘old’ scene structures
from the analysis, introduces a hysteresis into the processing — new structures (in the direction
of processing) take a while to be believed (‘persist’), while old structures take a while to disappear
once passed. Proacision would seem not to have been one of the desired properties of their system.
Further, a recent paper from the group comments on the instability and ‘noisy’ nature of the two-
process structure ([Degryse 1980]), and explains several constraints they propose introducing to
reduce the effects of these problems (see also [Panton 1981]). The constraints —— the scene is imaged
orthographically, the structures are strictly rectilinear, all vertical surfaces are cither parallel or
orthogonal, and all horizontal surfaces are parallel — are severely restrictive, and have no provision
for the gencrality and flexibility a reasonable stereco system must have. Once introduced into the
analysis, it is difficult to conceive of how these restrictions could be removed for the processing of
more general domains. The constraints they have used serve to bound the applicability of their
process, rather than bounding its cost,

These criticisms aside, however, there is a lot of merit to their work: the overall approach they
took was fairly comprehensive, and they addressed many important imaging and correspondence
questions as side issues of their study. In the context of their goals, the constraints they introduced
were reasonably valid; although one should note that the crucial question of identifying a scene
as cultural in order to allow this constrained intcrpretation was not addressed. A benefit of
having read the reports of this work was in noticing their use of dynamic programming for the
optimization; a variation of this technique has made a considerable contribution to the efficiency
of the correspondence process used in e rescarch I will be discussing here (see [Forney 1973]).
Dynamic programming for stereo correspondence was first documented in [Gimel’farb 1972).
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Marr-Peggio System 1980

The approach of the MIT group is in melding psychological theory and observations into a com-
putational algorithm fo: stereo vision. They consider neurophysiological relevance and biological
feasibility crucial aspects of their algorithm, and support the details of their approach with exten-
sive references to the perceptual psychology literature. The algorithm, developed basically by David
Marr and Tomaso PPoggio [Marr 1977], is an edge-based linc-oriented filtering and matching process.
Grimson’s implementation of the stereopsis algorithm [Grimson 1980] processes as follows:

¢ Fill 4 paics of working arrays with zero-crossing values and oricntations. The tero-
crossings are found by convolving the images with 4 spatial frequency tured band-pass
filters, varying in size from 7 to 63 pixels in width.

¢  Set initial vergence values for the eyes in the two images (marually).

e  Match zero-crossings in the paired arrays with these rclative eye positions. Within
paired arrays, the process decides upon acceptable matches on the basis of zero-crossing
contrast (positive or negative) and very rough edge orientation estimates (quantized to
30 degrees, so slopes must be within approximately 60 degrees of eachother). Matches
are of positive, negative, and zero disparity, relative to the vergence.

¢  Mark ambiguous or ‘no-match’ edges as such.

o  Check unmatched points in regions, and for those where this number is greater than
302, delete all matches. Regions are defined with regard to some statistical measure
to ensure that the size represents a reasonable local sample,

e  On the basis of low frequency filter matchings, make various posstive and negative
vergence movements to bring unmatched high frequency edges into correspondence

(high frequency edges come from the sinallest filters), and iterate on the matching
process.

A subsequent process interpolates a smooth surface to this derived edge-based disparity data, result-

ing in a full depth map. The assumption that allows interpolation to take place is that ‘no snfor-
“mation t3 tnformation,’ i.e. that the lack of edge signal in a part of the scene indicates that there

are no intensity discontinuities there, and thus likely no depth discontinuities. If the scene contains
no occlusions then this assumption is valid; although, even allowing this, it is rather dismissive of
useful intensity data which could provide information on subtle surface shape variations. What the
assumption principally neglects is the difficulty presented by unseen intensity discontinuities ...
those hidden by occluding contours. In his work, Grimson presurmes that an intensity discontinuity
separates image locales of equivalent disparity. Counter examples abound. Having this ‘no fnfor-
mation 13 information’ assumption, the interpolation scheme makes no distinction between surface
boundary points (where there is depth discontinuity) and surface detail (where there 1s none) ... the
former should be breakpoints for the interpolation, the latter knots. The resuiting surface fitling
smooths an ‘elastic plate’ over the cntire scene. Elegant as the interpolatory analysis may be, the
only interesting solution to the preblem of defining inter-edge surface shape would be one which
considers the global context at each edge (‘Is there any indication that this is an occluding edge?’)
and, where possible, domain knowledge (‘Are thesr buildings in the scene? Does this seem to be the
top of one?’). That is, an interpolatory technique must be coupled with a scheme {o distinguish
knots from breakpoints,

The resulls published include the analysis of several random dot stereograms, each composed of 4x4
randomly positioned b'ack and white squares, with the maximum vergence variation running from



e
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2 to 8 dot widths. Other examples include a ground level building scene, a view from a Mars Viking
vehicle, and a random dotted coffee jar.

Asscssment of the algorithm is a bit difficult: it uses a fairly sinple control structure with unsophis-
ticated matching criteria, and its success from these mechanisms is quite remarkable. But questions
arise. The approach lacks a mechanism for assessing global consistency in its correspondence
results. It would seem fron: the discussion of the algorithm that the initial eye vergence plays an im-
portant role in determining the final set of correspondences. By accepting high frequency channel cor-
respondences on a local basis the implementation precludes other vergence matchings which could be
globally more satisfactory (it should be noted that lower spatial frequency is not synonymous with

glodality — sce [Julesz 1976]). Notice also that the low-frequency to high-frequency control struc-

ture that is said to be as used here is shown in [Frisby 1977] to be inadequate as a model for human

sterecpsis. Using a maximum filter size that corresponds to the largest observed in foveal vision only

(the implementation doesn’t vary filter size with cccentricity, as the theory suggests), Grimson has
excluded from his processing the possibility of the more globally-driven radical vergence movements
that seem necessary for scenes having large disparity variations. Perhaps this would be recoverable
through the correct implementation, with filter size varying wita cccentricity ... he has only imple-
mented the theory for foveal vision. Monocular cues, which their theory doesn't address, are
known to provide information for such radical vergence raovements ([Saye 1975]). Initial vergence
is set manually; it is not clear how subsequent major vergence adjustments are controlled. In fact,
several control strategies are experimented with in the text, each to give the optimal results for the
channel noise settings being tested. No clear definition of vergence control is given. In the light of
the chronic failure in past vision research to document limitations and test to the breaking point, it
may seemn rather unfair to bring criticism to an apparently successful algorithm such as this, but its
completeness has yet to be demonstrated (an interesting recent extension of the Marr-Poggio theory
of stereopsis that addresses some of thesc issues is described in [Mayhew 1981]).

Dissatistaction with the Marr-Poggio theory, and its implementation by Grimson, centre around:
a) their (ailure to define precisely its vergence taszchanism,

b) the lack of a global control structure, one which would guarantee some optimal
correspondence between the two images ([Frisby 1977]),

¢) its failure to adequately consider other both local and global constraints in its
matching criteria (such as statistical characteristics of surface slo} e, edge orienta-
tion, and intensity variation), and

d)  the theory’s neglect of established monocular cues to stercopsis ([Saye 1975)) - it
would appear to be owing in large part to chance alone that images with large
disparities could be fused correctly.

Although the approach to be discussed here isn’t based on adherence to a theory of human stereopsis
— rather, it centres on al analysis and exploitation of various geometric and photometric constraints
on an imaged scene -— parallels do exist between it and the Marr -Poggio algorithm. Both process
edge descriplions of the image pair, determining correspondences on the basis of local edge propertics,
both work at several levels of image resolution (although with differing techniques), and both aim
for a depth map description of the imaged scene.

Control Data Corporation Structural Syntaz Approach 1981

Two documents, [Degryse 1980] and [Panton 1981], describe more recent work from the CDC group
that was desigred to supplement their previous epipolar matching process [llenderson 1979], which
they classified as ‘noisy’, ‘fragmented’, and ‘unstable’. They hoped to introduce information of a
more geometric nature to constrain the possible interpretations and “remove some of the unreliabtlity
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16 Depth from Edge and Intensity Based Stereo

and ambigutty” of the matching process. At the same time they redefined their goals so as to
remove the urgency of the ‘autonomous’ in their processing. Again, they are concerned in this work
with the analysis of images of urban structures, stercoscopically projected cither orthographically
or centrally to planar imaging surfaces. The [Degryse 1980] paper describes modifications to their
Broken Segment Matching scheme, while the [Panton 1981] report describes subsequent work.,

Noting the inadequacies of their first stereo system for processing in the same domain [Henderson
1979], calling it 'blind’ to the surrounding context of the cultural scene, they argued that they
needed to incorporate a priory knowledge of cultural scenes into their analysis. They designed a
‘structural syntax’ to provide this geometric information. The structural syntax is introduced as a
set of peomelric principles specific to the sort of 3-D cultural scene their rescarch addressed. Intended
application was restricted to structures in the form of right parallelepipeds; the structural syntax
defined a mechanism for the restrictive interpretation of scenes as these objects.

There are three principal clements of their structural syntax, and these are shared by both recent
approaches:

1) The edge orientation principle uses the convergence of 3-space parallel lines to vanishing points for
clustering parallel edges. The authors presume that building orientations are known and are all
identical, so that a single pair of vanishing points suffices for all scene horizontal edges, and there
is a single vertical edge vanishing point. In the [Degryse 1980] work, this labels edges, so limits
the set of possible edge natches. Note that the syntax is being used here to restrict the projective
orientation and shape of all scene surfaces. Vanishing points are currently determined manually
(utilization of vanishing points for polyhedral scene interpretation has also been suggested in
J.icbes 1981]).

2) The priy.ciple of known or fixed transform slope governs the allowable 3-space orientations of
building faces, constraining surfaces to be either vertical or horizontal, This constrains the
solution paths in their Broken Segment Matching process in [Degryse 1980].

3) The min-max transform principle limits the range of acceptable heights for structures to some
interval known a prior, «nd is used in both the Broken Segment Matching process.

[Degryse 1980] showed no computed results. Testing of the algorithm specified in [Panton 1981] was
done on a small portion of a single pair of images of one medium sized building.

The authors acknowledge that their systems still require extensive testing and development. The
present systems appear to demand a substantial amount of skilled operator intervention, requiring
iterative tuning of parameters and repeated passes through the low-level processes. As an aid to
manual reference preparation cither of these systems may be adequate, But neither will suffice where
automatic and flexible processing is needed. As an example, note that the restrictions imposed by the
‘syntactic rules’; the need for manual intervention at alimost all stages of the processing, and the lack
of success at even this simply structured problem make these systems completely inappropriate for
the real-time processing needed of the system that is to use the models created by such a ‘reference
preparation’ system,
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2.2 Critique of Existing Systems

2.2.1 - Autonorncus processing

A stereo system to operate for 2utonomous mapping, reconnaissance, or inspection in some domain
must be able to initialize itself and run without the need of operator intervention.

Of the systems described above, only Gennery’s runs entirely autonomously. The system of [Panton
1978] appears to require manual initialization, as does certainly the Control Data Corporation
systems [Henderson 1979, Degryse 1980, Parton 1981] and, to a lesser extent, the [Grimson 1980)
system. These may also require manual intervention during the processing — the [Henderson 1979]

and [Degryse 1980] when there are vertical breaks in scene continuity, the [Grimson 1980] when -

the disparity differences exceed the size of the largest convolution operator, and the [Panvon 1978)
system when the terrain approaches discontinuity and the correlator begins to diverge locally from
the correct matchings.

2.2.2 - Domain restrictions

An understanding of its domain of intended use and an analysis of its performance capabilities will
give us insight into a stereo system’s overall range of application, and thus its utility.

In general, the performance of the area-based correspondence schemes will degrade rapidly when
confronted with scenes of discontinuous structure, and this makes them inappropriate for the analysis
of cultural sites. The CDC techuiques of {Henderson 1979}, [Degryse 1980], and [Panton 1981] exclude
the processing of rolling, curved, or even non-rectilinear structures — predisposed to the analysis
of building tops, they are inappropriate for most everything else. None of the systems described
can work well where details in the background have reversed positioning with respect to occluding
surfaces lying before them (consider a finger at arms’ length and the background beyond) — this is
referred to as the edge reversal problem. The Grimson work is the only one which does not make
explicit mention of excluding such positional reversals between the two imaging planes, although it
probably does so in the working of its region disparity consensus and its use of disparity pooling in
the matching process. Excluding edge reversals is such a convenient expedient when working with
ep’onlar geometries that it has been widely accepled for the correspondence processings. That it is
a restriction becomes obvious when it is noticed that it prohibits the simultaneous fusion of a thin
object (like a pole) and its background — relative to the pole, what is left-right in one image will
be right-left in the other. This artefact of the processing may be excused to some extent in that it
is also observed in human stereopsis, but there is no obvious necessity of building limitations of the
human system into a machine system (in their study of the limitations of binocular fusion, Burt and

Julesz ([Burt 1980]) comment on inability to attain fusion with positionally reversed points).

Looking at the range of examples presented in the published results from these stereo systems also
provides insight Lo their applicability. [Panton 1978] has demonstrated a single rolling terrain stereo
pair analysis, as has [Gennery 1980], although Gennery’s scene contains some rather large rocks and
the scene slopes off to a (not seenj horizon. [Levine 1973] shows the processing of two rock-strewn
scenes, similar to thau of Gennery. The views in these area-based systems are, as expected, of
terrain, and depth discontinuities are either not severe or ignored. [Grimson 1980] has applied his
algorithm to considc 1bly more scenes ... many random dot stereograms, and several real image
pairs.
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18 Depth from Edge and Intensity Based Stereo

2.2.8 — Global consistency and monocular cues

The human perceptual system has the advantage that it can call upon higher processes to comment on
the consistency of its visual observations. Only rarely is our binocular sight confused by ambiguities,
and then this can usually be removed with a tilt of the head or slight motion to the side for a different
perspective and more information (an observation which Jlead Moravec to his development of slider
stereo [Moravec 1980]). An interpretation mechanism is at work with which our stereo systems at
present have little to compare. Important considerations for a stereo system are how successful it is
at resolving ambiguities, and how consistent, is its interpretation over the entire scene.

Some researchers have decided that a smooth result is a good approximation to a consistent result,
and perform local averaging of depth measurements, hoping to diminish the impact of gross errors
through the abundance of good correspondences (for example [Levine 1973}, and [Grimson 1980)
with his disparity consensus requirement). A superior approach is to work within a set of valid
assumptions or observations on the nature of the viewed world, and use the implications of these
to choose among ambiguous or inconsistent interpretations. {Gennery 1980] uses an analysis of his
correspondence error distribulions Lo enable the automatic editing out of ‘wild points’. One common
assumption is that the scene is smooth and continuous most everywhere, and can be expected to
be discontinuous at only a small number of locations (for example at those places where the viewed
luminance is undergoing abrupt change).

The way such knowledge enters the analysis varies. In some work, the continuity assumption is used
in prediction. [Levine 1973], [Panton 1978], and [Gennery 1980}, in their area-based systems, use the
context of neighboring points to limit the search for point correspondents, presuming that points
neighboring in two dimensions should be ncighboring in three dimensions. But this has determinacy
problems - the results would change were the analysis to be done in a different order, for example
with right to left scanning rather than left to right — and decisions are made locally, in a set
direction, usually never to be revised. Further, these systems do not have mechanisms for locating
actual scene depth discontinuities (see below). The MIT Grimson work makes good use of inference
on tne continuity of surfaces and the lack of edge signal in its interpolated surface fitting (see the
sumnmary), but again fails to deal adequately with actual scene depth discontinuities. Also, the
system’s use of context in its local edge matching is marginal, in that matching at a lower resolution
(lower spatial frequency) appears to be a prerequisite!!for matching at a level of finer detail (higher
spatial frequency). A global metric is used in consistency checking of disparities over regions —
requiring 70% of the disparities to be in agreement (one standard deviation, presumably), but this
has been implemented without adequate analysis (see (Grimson 1980] page 75, where it appears to
produce a highly quantized, planar effect). [Schumer 1979] discusses a possible mechanism in the
human system for this spatial averaging of disparities.

2.2.4 — Identifying depth discontinuities

As suggested above, an issue related to the achievement of global consistency is the identification
of depth discontinuities in the scene - those places where the viewed surface is not smooth and
continuous. This capacity has not been reliably incorporated into arca-based analyses, where poor
matches arising from occlusions or extreme perspective effects merely return a low correlation value,
indistinguishable from other causes of poor matches. In cases of occlusions, the intensity values in a
window about the depth discontinuity in the two views would have little likelihood of corresponding,
and here, the correlation coeflicient as a measure of similarity is inappropriate. Edge-based analyses
operate with the artefacts of (among other things) depth discontinvities, and the inference capability

nthis may not be always the case; the system description does not mnake a precise definition of the control structure
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is available here for distinguishing occlusions and abrupt changes in depth (although none of the
cited systems use it). [Binford 1981] discusses the inference of spatial events from monocular cues.

2.2,5 — Parallelism possible

A stereo system to be used for tasks of navigation or process control must be judged on its ability to
provide depth measurements at rates approaching real-time. The enormous amount of computation
inherent in the analyses makes it unlikely that a scheme with intrinsic ordered dependence in its
processing will be able to provide adequate speed, The potential for parallelism in the algorithm is
an important consideration.

Neither the [Panton 1978] nor the [Gennery 1980] approaches could take full advantage of the high
parallelism possible in the computation since they process from left to right in columns across the
match image, relying upon previous correspondences to constrain the search for matches. The
(Levine 1973] and [llenderson 1979] approaches are similarly limited, in that they process by lines
from image bottom to top, with each line progression passing up the results of the preceding line
analyses to constrain the search. The Grimson algorithm is amenable to parallel implementation,
and is in the process of being put into hardware ([Nishihara 1981]).

2.2,6 — Four criteria

We would like a stereo mapping system to have:

e mno necessity for manuai intervention, either initially or during the processing,

¢ no domain bias — certainly no predilection to horizontal or vertical surfaces, and no
limitation to strictly rectilinear structures,

o  both local and global metrics, to enable optimization and confidence measures at both
levels,

¢ a capability of being implemented in parallel hardware, with, for example, a simple
partitioning of n processors for n lines of analysis, or a distributed array of m X n .
processors for a pair of m X n image arrays.

2.8 Goals of this Research

As may be inferred from the critiques above, my intention when beginning this research was to
design and implement an autonomous robust, domain independent stereo vision algorithm — one
with a structure that would lend itself to a parallel realization. These various aims were meant to
be achieved in the following ways:

[Robustness] The information in a two-dimensional grey scale image is spatially highly redundant.
Exploiting this, line-by-line processing would be used to obtain locally good correspondence
eslimates, and global conscnsus would be reached through a cooperative process that enforces
three-dimensional continuity.

A two-dimensional grey scale image can be expected to have a broad spatial frequency
spectrum. Filtering this spectrum and processing from the bands of lower frequency to higher
frequency (in the direction of lower to higher noise sensitivity), provides the benefits of a
coarse-to-fine control strategy ([Kelley 1970]). This suggests an analysis at, several ievels of
resolution, guiding the higher resolution matching from the lower resolution analysis. The
hierarchic principle in this is intrinsic to the system’s processing in several ways. Resolution
variation is one of them. The general theme is to process first the most reliable signal and
use this to guide the successively more noise-sensilive analyses.




3 J
. R

N T R TR T RS W W K RIy v, m s Sy T TR e

20 Depth from Edge and Intensity Based Stereo

[Domain Independence] The choice of general constraints (on general observations) as opposed to
specifics of certain configurations, is the principal determinant of domain flexibility.

There are no assumntions on the nature of the viewed scene, other than that its structure
doesn’t vary between left and right imagings.

Testing of the algorithm on images of both cultural scenes and natural terrain would
demonstrate this flexibility.

[Parallel Implementable] The algorithm should be designed so thai its computational structure is
partitionable into parallel streams. Local interactions only (in both the line-by-line matching
and any subsequent global consistency process) would provide for the separation of computa-
tion along line-pairs. With such a structure, a machine with n processors could be made to
do n lines of image analysis in time dependent only on line width.

The results of the processing should be a digital depth map of the viewed scene. This would produce
three-dimensional data in a-form appropriate for input to a three-dimensional terrain and/or object
modelling system (such as ACRONYM [Brooks 1981a}).

These aims were all part of the initial design of the system, and have all been addressed in the
research to be described here.

2.4 Summary of the Processing

Che input to this system is two images forming a collinearized stereo pair. The collinearization is
essential at present in that it guarantees that image lines correspond to epipolar lines (see [Hallert
1960]) — a constraint that greatly facilitates the matching process. The processing is begun by
samplinz the images in both horizontal and vertical directions, measuring the distributions of
intensity values and first difference in intensity values. Intensity distributions are used to adjust
image gain and bias, and the distribution of first difference in intensity is used to determine the
intensity variance 0%, a measure of image noise which has an important role in the correspondeice

process. Figure 2-1 shows a stereo pair of synthelic urban imagery provided by the Control Data-

Corporation. This stereo pair, as all pairs in this report, is positioned for cross-eyed stereo viewing,.

In the first phase of its processing the analysis here is edge-based. Edges are powerful abstractions
of image content, and their use greatly reduces the combinatorics of the correspondence process.
They provide higher precision disparity measures than intensity matching techniques, and, through
their mutual connectivity, enable explicit use of global information for reducing the ambiguity at
the matching level.

To obtain these edges the images are convolved with several operators to produce descriptions of
the image intensity boundaries (edges) at several levels of resolution. The convolution operators
work on a line of the image at a time, and consist of up to four zero-crossing filters and a low-
pass smoother. The smoother is used to reduce the resolution of the lines of the imnages, halving
resolution at each application. Such an approach has had previous successful application in visual
processing (e.g. [Kelley 1970], [Marr 1977], [Moravec 1980], [Grimson 1980}), and has relevant ties to
the neurophysiology of vision, where some researchers feel a multiple spatial frequency analysis is
part of the human system’s processing ([Wilson 1978a}) (although the filtering used here is low pass,
and not bandpass). Reductions in image resolution are made until the image noise (as measured by
the pixel intensity variance statistic) is less than one intensity unit. This resolution diminishing ean
proceed to a maximum of 3 reductions, at which point it has been found that, for the image sizes
used, there is too little image content left to allow for reasonable matching. The filters detect zero-
crossings in Lhe second differences measured at each image pixel. Certain properties are associated
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with the edges found by these zero-crossing filters, and links are kept c.nnecting the edges. with
those near themn in the two-dimensional image. Figure 2-2 shows the full resolution edges found in
the images of IMigure 2-1.

Image lines are paired, corresponding ones from the left and right, and the edges contained in these
are matched via a dynamic programming technique The correspondence process starts with the
lowest, resolution edges, and uses the disparities determined there to select which subsets of the full
resolution edges will be brought together for possible matching. This mapping of low resoiution
correspondences to full resolution edges passes through the intermediate resolution depictions,
although there are no explicit intermediate resolution matchings. Each pair of corresponding lines
is processed independently. Figure 2-3 shows a typical pair of corresponding image lines, taken from
the images of Figure 2-1.

Once all lines have been processec and the various edge correspondences have been deter...ined,
measurcs of interline disparity variance are computed. Statistics of this are used to ‘question’
certain correspondences, -and a cooperative process ensures that those inconsistent correspondences
are removed.

This is the first half of the analysis, a low-to-high resolution matching of image edges with subsequent
global consistency enforcement. It produces a reasonably dense edge-based disparity map of the
viewed scene which forms a template of constraints for a subsequent correspondence analysis. Figure
2-4 shows (in stereo) the connected edge correspondences resulting from the processing of the images
of Figure 2-1 to this point.

The second half of the analysis is a further edge, and then an intensity-based matching, and,
as mentioned, these rely upon the first correspondence process’s results to constrain the match
possibilitics. Selecting corresponding lines from the two images, the edge-based matcher attempts
to pair edges which were either rejected by the earlier optimization process or were removed
as ‘questionable’ during the cooperative consistency enforcement in the process of removing bad
correspondences. Only those edges that are in corresponding intervals are considered for matching
here. This edge matching completes the edge analysis,

The tntensity-based matcher pairs not edges but image pixels themselves. It uses a metric which
minimizes intensity variance and maximizes interpolated surface linearity. As in the edge-based
correspondence process, the context of the matching is tightly constrained — corresponding pixels
must come from corresponding intervals, as delimited by edge pairings. Intcnsity-based matching
in gencral (for example [ITannah 1974], [Panton 1978]) is limited Lo analysis of rolling, smoothly
varying terrain — it fails at surface discontinuivies. Edge-based matching functions expressly at
image locations experiencing high intensity variance, notably at surface discontinuities. So with edge-
based matching providing precision disparity positioning and a highly constraining local context, the
conditions are right for an intensity-based matching in the intervening intervals. Figure 2-5 shows
the final elevation results of this processing for the images of Figure 2-1.

The matching algorithm in these last two cases is again a dynamic programming technique. The
result ol the full processing is a complete image array perspective disparity map of the viewed scene.
IFigure 2-6 highlights the structure and processing {low of this total scheme. A brie” summary of the
system can be found in [Baker 1981a].
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- Chapter 3 | | "
EDGES AND CONSTRAINTS |

3.1 The Use of Edges

The “edge-based” in the title of this report refers to the distinction between th. use of operators to
reduce an image to a depiction of its intensity boundaries, which are then put into correspondence,
and the use of ares windowing mechanisms to measure local statistical properties of the intensities,
which can then be correlated. The system described here deals with the former because of its:

a) reduced combinatorics — there are fewer edges than pixels,

b)  greater accuracy — edges can be positioned to sub-pixel precision, while area
positioning precision is inversely proportional to window size, and considerably
poorer, and

c) more realistic invariance assumptions — area-based analysis presupposes that the
photometric properties of a scere are invariant to viewing position, while edge-based
analysis works with the assumption that it is the geometric properties that are
invariant to viewing position). Fdges are an abstraction of the image, are less

. sensitive to absolute irage brightness levels, and highlight the structural aspects of

o the scene.

Edges are found by a convolution operator. They are located at positinns in the image where a
b change in sign of second difference in intensity occurs. A particular operator, the one employed here
"Q for the full resolution analysis-being 1 by 7 pixels in size!?(see Figure 3-1), measures the directional
- first difference in intensity at each pixel. Second differences are computed from these, and changes
in sign of these second differences are used to interpolate zero-crossings (¢.e. peaks in first difference).
Certain local propertics other than posstion are measurad and associated with each edge — conirast,

5 erientativn, and intenssty to esther side — and links are kept to nearest neighbours above, below,
[ and to the sides. It is these properties that define an edge and provide the basis for the matching.
h Correspondence techniques using similar such edge properties are described in [Marr 1976}, [Arnold
R 1978}, [Baker 1980], and [Mayhew 1981).

} The operator processes left to right (horizontally) and top to bottom (vertically) in two separate
\ passes over the image arrays, looking in each pass for oriented zero-crossings above a (noise-based)
. threshold (see Chapter 4, discussing statistical measures uced in the analysis). Edge orientation is
'-. - determined for each supra-threshold zero-crossing by the ratio of orthogonal components of the first
.- difference operator, as shown in Figure 3-i. The left to right scan uses the horizontal component of

this operator (7 X 1) and the top to bottom scan uses the vertical component (1 X 7).

8.2 The Use of Geometric Constraints

The stereo matching is a search for edge correspondence between images. Figure 3-3 shows the
o edges found in the two images of Figure 3-2 with the second difference operator. The operator works
e in both horizontal and vertical directions, but it only allows matching on edges whose horizontal
- gradient lies above the noise — one standard deviation of the first difference in intensity. With
e no prior knowledge of the viewing situation, one could have any edge in one image matching any

127he edge operator is simple, basically one dimensional, and is noteworthy only in that it is fast and fairly effective.
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G edge in the other. The combinatorics of this can, understandably, get very high. One would like to
G introduce general constraints to limit the cost of this search.

83.2.1 — Search constraints

Knowing the geometric relationships between the cameras used in the imaging can greatly reduce
the search needed in finding edge correspondences. Projective lines, termed epipolar rays, can
be determined in the two images along which corresponding edges must lie. Figure 3-4 shows
the geometry of this situation. With image planes m; and x, having principal points P; and P,,
imaging centres C; and C,, line C|C, is the epspolar azxis through which pass all epspolar planes.

* The intersection of each epipolar plane with the two image planes #; and «, defines corresponding
3 i epipolar lines. A specialization of this general camera geometry is used, wherein the image principal
‘. horizon lines are collinear and the image principal vertical lines are parallel. In this configuration

the epipolar axis does not intersect the image planes, and corresponding image horizontal lines are
in fact epipolar lines. Although excessively restrictive for a general system, this was felt to be a
justifiable simplication for our research work.

Consider Figure 3-5, in which two cameras are arranged in this configuration. Any point in the
scene will project to twe points on their image planes — one through each of the two lens centers
(notice that the image planes are coplanar). The connection of these two points will produce a
line parallel to the baseline between the cameras, and in this cas parallel to the image horizontal
: lines. Corresponding edges in the two images, then, must lie along the same line in the two image
oo planes. This camera geometry gives rise to imagee with a collinear epipolar geometry. The algorithm
X described assumes the stereo pair to be in a collinear epipolar geometry, and if this is not the case
then the appropriate transformation of one image relative to the other must be made before further
processing is done. Note that a less restrictive solution would be to have the correspondence process
informed of the camera geometries, and have it solve for the more general epipolar geometry of
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Figure 3-4. Further refinements to this stereo process will include solving for the geometry at the
matching level, rather than requiring it as a condition on the input.
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This discussion of camera geometry constraints suggests another crucial geometric constraint on the
analysis. The matching algorithm to be described here demands a monotonicity!3of edge order along

ls'l‘he basis of this monotonicity constraint is explained in chapter 5 which discusses the Viterbi correspondence '
slgorithm. °
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epipolar lines. This means that there cannot be reversals of edge order from one image to the other.
Consider Figure 3-6. Left image edge Ly which lies to the left of edge L; cannot match right image
edge Kn if R, lies to the right of edge R,,» which matches edge L;. This constraint lies at the heart
of the Viterbi method, although it is not without its drawbacks. Notice that if the image planes
x; and 7, face eachother, then objects in one image will be sequenced fromn the left while those in
the other will be sequenced from the right. If the edges of these objects were allowed to match, it
would violate our monotonicity constraint. This is a degenerate example of a general problem. The
ordering of objects in the two projected images depends upon their distance from the imaging points
~ foreground/background appear as right-left or left-right depending on the camera site, and it
should be clear that the problem of edge reversals is unavoidable. The use of this constraint will
exclude from analysis, for the time being, such features as wires or overhanging surfaces, features
which lead to these positional reversals in the image (see Figure 3-7). Psychophysical evidenc:
suggests that this reversal also causes the human vision system trouble — we can fuse one or the
other, the nearer or the farther, but not both at the same time ([Burt 1980]). Fusion of the items
causing the reversal can be achieved only by vergence movements executed explicitly to bring them
one at a time into fixation. (A similar method would provide a means of dealing with reversals here
— reprocess the edges left unpaired by the matching process, treating them as satellites possibly
left unmatched because of such local rivalries.)
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3.2.2 — Interpretation constraints

When the edge-based correspondence has finished, it has come up with a judgement on which edges
in the right image match a set of the edges from the left image. This determination is made
on the basis of information strictly local t» each line processed — there is no information made
available to the matching from outside of the line to which it applies. Being so local, it has no
guarantee of being globally correct, yet it is global correctness that we are trying to achieve. A
very strong global constraint that can be of use here is that of edge connectivity (Figure 3-8 shows
the connectivity of the edges of Figure 3-3). It may be presumed (by gencral position) that, in
the absence of other information, a connected sequence of edges in one image should be seen as
a connected sequence of edges in the other, and that the structure in the scene underlying these
observations may be inferred to be a continuous surface detail or a continuous surface bounding
contour. The individual line correlations make their suggestions of which edges correspond, and a
subsequent cooperative process takes these local judgements and the known connectivity and works
toward a global consensus. Statistics are kept (see section 4.2) on interline disparity differences along
connected sequences of edges, and these measures, where a large disparity difference implies a large
change in depth, provide the evidence for removing edge correspondences which violate observed
bounding contour continuity.
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8.2.8 — Constraint summary

The three principal constraints on the analysis are that:

e the geometry of the cameras be known, and in particular, be the specialized geometry
where image lines correspond to epipolar lines,

e there be no edge reversals along epipolar lines (if they are present, the solution will
invplve a monotonic subset of them).

e edge correspondence be consistence with edge connectivity in the images (as these
suggest depth continuity).
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Chapter 4
STATISTICS

4.1 Correspondence Statistics

The best solution for a matching will be determined on the basis of some evaluation funciion. The
evaluation function takes local quantitative measures of correspondence likelihoods and produces
a global score for a potential eolution. Statistical measures play a large role in determining these
local quantitative measures. In the first case one wants to be able to distinguish edges or intensity
variances that are in some sense valid from those that may be merely spurious or a product of the
digitization or imaging processes. Further, one will want to compare edge parameters and intensity
values across images, and have quantitative means for estimating their correspondence likelihoods.
For these tasks, we need some measure of significance in intensity variation.

4.1.1 — Intensity variation

A pixel’s brightness is measured as the integral of a weight function (for example a Gaussian)
over the local intensity surface. The principal variation, or noise, in a pixel’s intensity arises from
characteristics of the sensor used. This variation is referred to as sensor noise,'4 and it may be
modelled as a Gaussian process whose statistics may be estimated by measuring the distribution
of interpixcl intensity differences. Say that the variance of interpixel differences — determined by
sampling first differences in horizontal and vertical scanning directions — is 03, so that its standard

3

deviation is 04 (zero-mean), then the variance in a single pixel’s intensity value may be given as f}
and its standard deviation is o

o= | (4-1)

V2

This measure (standard deviation in pixel intensity variation) is used for several image dependent
computations. The full resoluticn edge operater (having width w = 2n+41,n = 3) could be expected
to have a standard deviation in its difference values of

oy = V2no; = VBo;. (4-2)

It is a zero-crossing operator, locating edges only at those pixels having a zero-crossing in their second
difference (as defined earlier). However, discretization and camera noise make it necessary to look
at more than just this zero-crossing measure. There can be areas where slight noise effects make the
second difference fluctuate back and forth about zero, giving a great density of zero-crossings. A first
difference threshold, based on the operator's intensity variance statistic oy, is used to separate valid
edges from such noise-induced spurfous edges — it ensures that the contrast across an edge is greater
than oy, i.e. the matching will only deal with edges that are stronger than the noise. A further
complication arises in that the signal variance measured here is not just a function of 'ocal image
noise but of course of local image content as well. If the intensitv values are changing monotorically
in some local area, as on a long gradual slope, discretization noise can give rise to zero-crossings in
the second difference and the first difference measure I' will, if the gradient is steep enough, exceed
os. A technique to remove local image gradient content is to apply a lateral inhibition operator to

1“Shot. noise, which varies with t. ~ignal, is not considered here, but if its characteristics are known then its noise
effects can be compensated for by transforming the brightness values via a nonlinear function.
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the signal ([Binford 1981]). This maps a linear function onto zero (i.e. it maps constant gradients
onto zero).

A variation of this method is used here. At positions where there is found to be a zero-crossing in the
second difference, a least squares line is fit through the support of the first difference operator. Each
pixel intensity value I and its standard deviation o; defines a [I — g, + 0] local error interval (see
Figure 4-1). If the linear least squares fit to the intensity data passes through this w-leny.h corridor,
then the proposed edge on which the operator is centred is deemed to be laterally inhibsted, and
is not maintained as a valid edge. Figure 4-2 shows the output of the convolution with the lateral
inhibition operation turned off — compare this with the edge set after lateral inhibition, as shown in
Figure 3-3. This implementation of the lateral inhibition operation is basically an expedient, doesn’t
fit the normal mold of a lateral inhibition operator, and, in being only one dimensional, fails to
take into consideration the more global structure of the image afforded a two dimensional operator.

Its good characteristics are that it is evaluated only at candidate edges and, being centred on a

symmetric operator, is very easy to compute.!®

Least-squares
+ fi1t (edge Is
inhibited)

[ntens/ty

2nd difference
Zero-crossing

i i + p/xe/

1
% t % I | { .
~3 -2 -1 2 +1 +2 +3

Relative posi/tion

Lateral inhibition operator
Figure 4-1

15Furt.her refinements to this stereo process should inciude giving both the lateral inhibition and the low-pass filtere
two-dimensional support,
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Figure 4-2

5 The standard deviation in pixel intensity, g, can also be used to determine the accuracy of edge

positioning. Recall that edge position is specified by an interpolation of the zero-crossings of image
intensity second differences (see Figure 3-1). The standard deviation in the second difference mesasure
is 02 = /do; = 20;. It is clear that the precision of the edge positioning depends upon this
parameter o and the second difference contrast across the edge C = |I{ — I}}|. Since the variation
in intensity value is being modelled as Gaussian, we can determine the joint distribution of the

variation in the quotient z = % as the convolution of the two normal (and equivalent) intensity

N second difference variation distributions with mean zero and standard deviation ¢3. Considering

Ry - Figure 4-3, an error interval [—o3,03] can be defined about the interpolated edge position. The -
probability that the correct edge position passes within o3 of the interpolated position is

- AU AL

f ) oo 2(z—e3)
o / / )f(z)f(y)dzdy = 0.84166

—2(3"-03

v where f is the Gaussian probability density function of (4-10) with n = 0,0 = 3. This is the
integral of the convolution of the distributions in second difference variation, as Figure 4-4 may
clarify. A convolution of Gaussians is Gaussian, so the variation of this convolution has standard
deviation

0. = 23_
YT 141

This is a measure of the vertical variance in interpolated position (as Figure 4-3); the horizontal .
variance in edge position can be determined from this as

= 1.420,‘.

- T

;0

dog _ 1.420; -
T =" (4-3)
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where d is the distance between second differences, d = 1.0. This is a family of distributions with

L T e T |

Ja, v o S

Ir [

Interpolated edge position accuracy
Figure 4-3

4.1.2 — Edge-based correspondences

the right, respectively (see Figure 3-1).

out of the calculations.

. dependence on the measured pixel noise oy and the contrast at the edge C.
t i
Jg; 4 g
- 2 "N‘\ . \‘ ”'l‘
0)< !‘:—\ " AN \\ S UI
2 -+ Y . \n‘\ 't' )/
Z@ T \\"\\\‘ ’,’ I’,"/‘- Zq,
Bl N ‘\\\ A . ';" r’ ?

Convolution of second difference variation
Y and X are the variations in intensity second

difference of I and I¥, respectively, of Figure 4-8.

Figure 4-4

line resolution ¢ times it gives each pixel in the resultant depiction a support

{

t
F
t

.
S YOUE WAL SR P R I BRI WAL APRCTP U VPP0 U TR T WUl AT WO SR A T 0 W SRt S U

S(t) =3 X 2t=1 + S(t — 1), where S(0) =1,

160!’ course an edge doesn’t have an intensity; it has an intensity and a contrast, or two intensities.

The edge-based correspondence process uses the pixe! intensity variance 0% as one consideration in
evaluating the probability of two edges corresponding. If the distribution of I' values is Gaussian,
then intensity differences can be mapped via the Gaussian cumulative distribution function to obtain
a probability P;; that left image edge element E;,; (which for brevity may be written L;) with, say,
intensity value Ij corresponds to right image edge element E, ; (which may be written R;) with
intensity value I, ;.18 In the full resolution matching implemented here each edge L, is treated as
two half-edges — the left side EL;; and the right side ER;; — and the intensity values IL;,
and IE;, are the sums of the three pixel intensity values centred exactly 2.5 pixels to the left and
This selection of intensity values removed from the edge
functions to stabilize the metric, keeping those values in the area of high gradient nearest the edge

The smoothing operator used is a 4 X 1 convolution with weights 1-2-2-1. When invoked to halve
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in the original image. The standard deviation in intensity value for any pixel at resolution ¢ is

of = —2 (4-4)

VSO -2

The standard deviation in intensity difference at resolution ¢ for a first difference operator whose

support is 2n +1 is
T — Voot == n_ . -
0y =Vino; == 5() 16' (4-5)

(for the various smoothing operators used he'c, 1 < n < 3). These standard deviations can
again be used to map intensity differences to c'.rrespondence probability estimates via the Gaussian
cumulative distribution function (they are zero-mean). The reduced resolution edge operators use
these measures in separating valid from spurious edges, and the reduced resolution correspondence
process uses them in estimating the likelihood of edges matching. (Note: throughout, a superscript
of T unll distinguish parameters of reduced resolution t from those of the full resolution analysis.)

These are the intensity statistics used in the edge finding and the correspondence processes. Other
statiatics are involved as well. The three edge-based matching schemes — full resolution, reduced
resolution, and constrained-interval — have differing sets of statistically based metrics for measuring
the likelihood of edges matching in their separate domains. In the following, probabilistic measures,
parameters, or data structures are denoted by the prefix P, and the various multiplicative terms
are independent,.

Reduced Resolution Correspondence

For reduced resolution matchings, at resolution r = ¢ with support 2n + 1, the probability that the
edge LT corresponds to edge R}' in the other image is estimated as:

P Reduced;; = P Stat]; X PIntervaliy ;o) (4-6)
with PStat]; = PLefty; X PRight; X PContrast];,
and 'Pintervalg: p(i),5,p(s) 18 the probability that the interval between
LT and its predecessor L) corresponds to the interval be-

tween RT and its predecessor RZ ;) in the other image (see

Figure 4-5) — p(1) is not meant to equal : — 1, but rather is
the predecessor along the path from ¢ that has a correlate
Correlate(p(s)) = p(7) in the other image,

where PLeft]; is the probability ihat the left intensity value of edge LT
corresponds to the left intensity value of edge R}' in the
otuer image, and is computed as:

PLeft]; = GPROB(ELT, - ELT)), (4-17)

PRight:-l; is the probability that the right intensity value of edge
LT corresponds to the right intensity value of edge RT in
the other image, and is computed as:

A JARA R
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PRight]; = GPROB(ER]; — ER},), - (4-8)
=+0.5
GPROB(z) = ] GPDF(0,07), (4-9)
z—U,

(GPDF being the Gaussian probability density function of (4-10)
with parameters mean and standard deviation)

GPDF(n,0) = e“o's((::_"))’ (4 — 10)

1.0, if Contrast(LT) = Contrast(RT),

T
PContrast;; = {0.0, otherwise.

magmg/?

pO/nC \fﬂ“

/ Ll\\ ERNAY
image VN

plang [ N

,0(1)

Interval compression ratios/ L, _4_2, _L_J
Rl  RZ K3

Interval compression ratio
Figure 4-5
The first three terms of this probability product, composed in PStat form a static probabilitistic
measure that may be precomputed for any particular epipolar pamng (they can be determined a

priori from the edge properties). The last term, PInterval™, interval correspondence probability,
must be determined dynamically at each decision point in the Viterbi correlation (it is an a postersors
measure, depending upon the interval choices available). This interval correspondence probability,

PInterval, estimates the probability that the intervals between two pairs of matched edges are the
projections of the same surface. Currently this is computed in one of two ways - - the first being a

.
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rough intuitive approximation, the other based on a result of Arnold. There seems to be very little
difference in the results of the processing with these measures; Arnold's technique has only been
introduced in this work quite recently, and the difference between the two has not as yet been fully
explored. :

In the rough approximation.

2
min(LengthT, .\, LengthT .
PI"t"”al-{P(i),i.p(j) = 0-75(1.0 - ( (Leng 1,p(s)) g "’(’))) )

max(Lengthg,'p(.'): Length?,,(,-))

where
r Coordinate(RY.) — Coordinate(RT), if Right image interval
Length,, .. = . T . ™ . .
' Coordinate(L],) — Coordinate(LT), if Left image interval

From [Arnold 1980], the probability, based on an assumption of uniformly distributed surface
orientations, has the cumulative distribution function CDF,

o 1
CDF = / tan™!
~co ey +d
where R = Length?l
- Length; .y’
a= 2
b= %

B =camera baseline
2 =scene distance,

and z = lowest coordinate of edge in left image space.

Rather than int. ~..*ng this »*obability density function, Arnold uses evaluations of the integrand
over a unifory \v w.itibatec  smain as his probabilistic measures.

It should be ., .* d that the static probabilitistic measure PStatz;- calculation would lead to a

computation of (/(n?), while the use of interval correspondence probability PInterval brings the
computation up to O(n3).

The Full Resolution Correspondence Process

For full resolution matching, each edge is treated as a doublet, being a left half and a right half.

The probability that one side of left image edge Ly corresponds to the same side of right image edge
R; is estimated as:

PFull;; = PStat;; X Plnterval; y),5,p(5) (4-11)
with P Stat,; = PSid;; X POrient,; X P ReducedRell isp,,,
and P Interval; p(;), ;. iefined as above.

if left half of the edge, then the probability that the left intensity value of edge Ly

corresponds to the left intensity value of edge R;, (P Le ft?j, of (4-7)),
PSidy; =

“ 7 )if right half of the edge, then the probability that the right intensity value of edge

L; corresponds to the right intensity value of edge R;, (PRiyht?j, of (4-8)).
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POrient;; = probability that the orientation of edge L; cor-
responds to the orientation of edge R; in the other image.

This probability of edges corresponding based upon their image-plane orientation
has been derived in tvo ways, as before. The'first (ad hoc) was to determine a
probabilistic weighting;:

POrient;; = 0.75(1 — €?), - (4-12)
. _ 2min(Orientation(L,), Orientation(R;))
"~ mmaz(Orientation(L;), Orientation(R;))’

where the factor 0.75 makes the probability integrate to 1.0. The other derivation
comes from considering the probability of correspondence of two edges L; and R; as
a bivariate distribution in Orientation(L;) and Orientation(R,) with the probability
density function as depicted in Figure 4-6 (after Arnold).

P ReducedRelDisp; ; = 0.75(1 — (NormdevT)?),

NormdevT = normalized deviation from reduced resolution interval disparity.

This latter component provides a btas from the disparities set by the reduced resolution correspon-
dence process. It gives a bias toward edge pairings whose disparity is near that of their interval as
a whole. Consider a potentially corresponding edge pair (L;, R;), as depicted in Figure 4-7. The
disparity associated with this pair matching is Disp; ; = Coordinate(L;) — Coordinate(R;). If the

T

two edges come from a particular reduced resolution interval Interval,, (m)n,p(n)

whose average
disparity is ADiapayp(m),",P(“) , where:

Dispf.,n = D’."p:.('n\) p(n)
ADi8pr, b(m),m,p(n) = 2 ) and

LEm) < Ls < LY, and RY,) < B; < X,

then the deviation in disparity
Ddev™ = ADispl, () mp(n) — DI85, (4-13)

biases the probability of the edges I; and R, corresponding. The normalization is with respect to
the size of the interval. Having not made an analysis of the disiribution of this bias parameter, I
use it as a probabilistic weighting 1 — €2.
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The Constratined-Interval Edge Correspondence Process

The line-by-line constrained-interval edge matching, that which follows the cooperative continuity
process, uses an evaluation function nearly identical to that used by the full resolution edge matching:

PI-nterE;j = P Stat,; | X PInterval,',,(.-)'_,-',,(j) (4 — 14)

with PStat;; = PSid;; X POrient;; X PInterRelDisp,;,
and P Interval; p(i),5,p(5), P Stdij, and POrient,; defined as above.

PInterRelDisp;; = 0.75(1 — (Normdev)'),
and Normdev = normalized deviation from full resolution interval disparity.

4.1.8 - Intensity-based correspondences

The Constrasned-Interval Intensity Correspundence Process

The line-by-line constrained-interval intensity matching, occuring only after the constrained-interval
edge correspondence process, draws again on the measured pixel intensity variance. Here, the
probability that pixel Pizel;; in one image corresponds to pixel Pizel, ; in the other image is set
as:

P Pizel;; = P Intensity,; X P LinearInterpolate,, (4 - 15)
where PIntensity,; = the integral of the Gaussian probability density
function (zerv-mean, o == 04), about the intensity difference.
§+0.5
PIntensity,, = / GPDF(0,v4), (4 -16)
6—0.5 , .

6 = Intensity(Pizel, ;) — Intensity(Pi:cel"j).

and
PlinearInterpolate;; = 0.75(1 — €?), (4-17)

¢ = normalized deviation in disparity Disp,; from a linear interpolation ove: the
interval in which the pixels occur,

Recall that the edge-based matchings treat edges as doublets, being-a left and a right half. Each of
these halves has, independently, the possibility of matching a corresponding edge halfl in the other
image. If it does match one, it is said to be locked at that point, otherwise it is free. Consider that
an interval is locked on its left side by the right half of its leftinost cdge, and on the right side by the
left half of its rightmost edge. For the linear interpolation, if both sides of the interval are locked,
then the deviation from a linear interpolation at a particular pixel pairing is the difference between
its calculated disparity Disp,; and the associated interpolated disparity at that point. Figure 4-8

shows this situation. Figure 4-9 indicates the means for determining the deviation when one side of
the interval is free (fails to be locked). If both are free, as shown in Figure 4-10, then € = 0.
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4:1.4 - Summary of correlation statsistics

The two types of correlation statistics used in the processing are:

e intensity based, and using the Gaussian probability density function to estimate the
likelihood of edges from opposite images matching, and

o geometrically based, where estimates of the distribution of scene characteristics are
used to specify edge correspondence probabilities.

4.2 Cooperative Continuity Constraint Statistice

The cooperative continuity censtraint process is also statistic driven. Each edge in an image has
two-dimensioncl connectivity to the edges to which it is proximal (see Figure 4-11). While the full
resolution correspondences are being formed, measures of the variation in disparity Disp,; between
connected edges are made and accumulated to give a mean and standard deviation [, 0 pisp) of
these inter-edge disparity differences. What these differences measure is the implied change in depth
along the connected sequence of edges. Clearly these changes should be small along a continuous
three-space curve. The accumulated disparity difference statistics (i, 0pisp] provide a metric for
distinguishing between the good and the questionable correspondences chosen by the Modified Viterbi
correlation — those disparity differences which lie outside of the [ — op;ep,  + 7 piyp] difference
window suggest abrupt changes in depth, discontinuities in the supposed continuous 3-space curves
giving rise to the involved image edges. Reasons will be given in section 6-3 for a more arbitrary
setting of ODisp = 1.0.

o
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Left image edges Right Image edges
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Edge connectivity structure
Vertical lines joining edges are image plane connectivity; horisontal lines mark edge
pairings assigned by the correspondence process.

Figure 4-11
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THE MODIFIED
VITERBI CORRELATION ALGORITHM

L
X
Ko
t
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5.1 The Correspondence Problem

When 1 first looked at the computation task of matching edges from one image with those in the
other image, I thought in terms of having a heuristically bounded search which would optimize some ,
metric. The combinatorics of matching m edges from an epipolar line of one image with n edges from
the corresponding epipolar line in the other image, allowing for strictly one-to-one matching but not
considering other distinguishing characteristics, is of order (min(m,n))!, which, for m = n is ml.
For a typical line of the Control Data Corporation imagery, m = n = 11, and 11! = 39,916, 800.
A typical line of the Night Vision Laboratory imagery has m = n = 30, and 30! > 2.65 X 10%2,
Obviously the combinatorics are rather overwhelming, and I put a lot of effort into analysis and
design, trying to find methods to reduce or bound this cost. Certain obvious approaches come to
mnind, and these were implemented and tested:
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using a hierarchic scheme, where edge strength is used to order combinations, and
correspondences are only allowed within strength intervals;

e precluding edges of differing contrasts from corresponding;
limiting disparity values to a certain range;

e using a coarse tn fine strategy, reducing image resolution to enable working first with
the, fewer reduced resolution edges.

In the interests of both parallelism and robustness, it was critical for the design 4
that the results of the stereo matching be independent for each line processed (in ‘
contrast with the algorithm used in [Henderson 1979)), so I could not allow the
solution from line j to affect the order or results for the processing of scanline 7+ 1
(or 5 — 1 or m 5% j for that matter), and this was one common heuristic that had
to be avoided.

- w w v cw o= v v, oW,
L. T TS B R

T
-

= Accompanying these processing constraints was a quite involved evaluation function capable of

£ estimating the maximum score attainable for the correlation from a particular set of correspondences,

{ This use of an evaluation function estimator allowed the introduction of the extensive pruning of a

' branch and bound algorithm. Even with it, though, runs for certain lines took near minutes (on a
DEC KL-10). A better approach was needed, and it appeared in a dynamic programming variant
called the Viterbi algorithm.

(« . The Viterbi algorithm is defined as a recursive optimal solution to the problem of estimating the
state sequence of a discrete-time finite-state Markov process observed in memoryless noise ([Forney
- 1973]). The underlying Markov process is characterized as follows:
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Time is discrete

The state z,, at time m is one of a finite number N of states n, 1 < n < Nj te.
the state space X is simply {1,2,...,N}.

Assuming the process runs in time domain T where t € [1, M|, and the initial and
final states z; and z s are known, the state sequence, mapping T' — X, can
be represented as a vector § = (21,%2,...,Zac).

The process is Markov in the sense that the probability P{(z,41 | 1, %2,. .., Zm) of
being in state z,,41 at time m + 1, given all states up to time m depends
only on the state z,, at time m:

. LR B - L T
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P(z,,.+1 | Z1yT2y¢0 0y zm) = P(Zm.H | zm), and

! PS)= ][I P(zi+1]2) (5-1)

1<i< M

In the problem addressed here of finding the optimal solution to the matching of edges from the left
and right images, corresponding to the state space X is the set of left image edges (numbered 1 to N
along a particular epipolar line); corresponding to the time domain T is the set of right image edges
(numbered 1 to M along the corresponding epipolar line). The state sequence can be represented as
a mapping:

F:T'—=X,

or as a vector:

“ S={(mn)|(m>n),meT,neX},
B +2+is a binary relation indicating that m in T corresponds to n in X

Regardless of representation, it is the record of correspondences for the various edges in T'.

! 5.2 Direct Implementation of the Viterbi Algorithm

One of the assumptions capitalized on in the branch and bound scheme mentioned above held that

there could be no edge reversals in the image plane. This meant that an edge sequence L;, L; in

o one image, with 2 < 7, and ¢, being edge indices, could not coircspond to an edge sequence Ry, R;
@ in the other image, if ¥ > [ (refer to Figure 3-6). This is the cdge reversal constraint, and was
o integral to the pruning. As it happens, this same constraint is the key to the use of the Viterbi
. algorithm.!7 1t provides a monotonicity condition satisfying the sequencing constraint in the finite-
L state correspondence process. Consider Figure 5-1. What distinguishes the Viterbi technique from
B normal search is the ability to partition the original problem into two subproblems, each of which
can be solved optimally and whose results can be processed to yield a global optimum for the original
‘@ problem (‘optimal’ with respect to an evaluation function on the chosen parameters). In a recursive
way, each of the subproblems may be divided and the sclution process repeated. In particular, one
can partition the problem of assigning correspondences among two tuples of edges Edgeset; and
Edgeset, about some tentative pairing (R; ++L;), solve the associated correspondence problems of
edges lying to the left of L; in Edgeset; with those lying to the left of R; in Edgeset, and edges

17[Rubin 1980] describes an image processing search technique, the Locus search, which i« based on the Viterbi
algorithm,
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lying to the right of L; in Edgeset; with those lying to the right of R; in E'dgeset,. ( ¥+ represents
a binary relation, and (a +»b) is read “a in Edgeset, corresponds to b in Edgeset;”.)

Right
Image
edges

re - . —

M1 M

edges

Laft
{mage rJ__l__—
/ N-1 N

I/

)

/
left particion I\ ~ight partition

Typical Right and Left Image Corresponding Epipolar Line Edges
Edgeset; = (LI’L27 Y A ';LN—lrLN)y
Kdgeset, = (Rl, Ry, ... Ry, ..., RM—lyRM)
Figure 5-1

. The optimal solution for the line correlation is that sequence of edge pairings from the left and
o right image lines which is consistent with this monotonicity constraint and maximizes some score.
' .q The score used here was based on summing the individual probability measures for each possible
d edge-pair correspondence (4-11). This summing favours the densest possible surface intrepretation
([Julesz 1976]). Other scorings, such as normalizing, summing weighted probability contributions, or
taking the (more standard) product of probabilities (as defined in (5-3)) do not support this density
preference. Consider a two dimensional array Parray[l : N,1: M] with Edgeset, along the bottom
- axis, and IYdgeset; up the left side axis, as in IFigure 5-2. The Viterbi solution implemented here
- § develops from the left of the image (right image edge index of 1) to the right of the image (right
' image edge index of M), and within this, from the bottom (left image index of 1) to the tap (left
image index of N). The first set of subproblems is all those involving the assignment of RB;. The
second sct of subproblems deals with Ry using the results of the analysis of R;. Thus for M edges
in the right image line, therec are M subproblem sets. A useful mnemonic to bear in mind about
this processing is to ask, al each possible pairing (R; ¥ L), “what is the best possible solution to the
- left of (3.7) #f (R, v+L;)”. The set of solutions (including the optimal) is built up by evaluating this
‘ for all (3, 7).
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Figure 5-2

The matching process is monotonic in both left image edge indices {1 | ¢ € [1, N],L; € Edgeset, },
and right image edge indices {J | j € [1, M],R; € Edgeset, }. This monotonicity means that the
solution for the pairing (R, +*Z;) need only examine that portion of Parray[i : N,1: M) where
n < t,m < j, t.e.” the rectangular subarray whose top right corner is Parrayl[s, j] (otherwise, say
if (Rj41 +>Li—1) preceded (R; +»L;), we note that j + 1 > j and the monotonicity is violated).
The solution for the pairing (5, 7) is the best assignment of edges from Edgeset;,,p € [1,4] and
Edgeset, 4,9 € [1,7], that is, for the edges in the two sets up to and including edges L; and R;.
A scoring function is defined for the various transitions possible in the processing, and these can
3 usually be limited (bccause of the monotonicity) to the obvious three:

{(617751!) = (_1’0)1 ("1’ _1)! (0: —1)}' (5 - 2)
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Through this, subproblem (Edgeset;,, Edgeset, ;) can be solved after subproblem (Edgeset;;_;,
Edgeset, ;) and subproblem (Edgeset ., Edgeset, ;_1) are solved (these both imply the solution of

-y - g

subproblem (Edgeset; 1, Edgeset, ;_1)). Thus, the decision for. any pairing (f, j) can be made with
D just 3 scoring comparisons, making the total line correlation computation O(MN) (or O(N?), where
e M and N are of the same order).
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An entry in Parraylt, j] has associated with it:
e alocal score, Localscore,
e a cumulative score (from the left), Totalsccre, and
o an indicator of the pairing (k,{),k < 1,1 < j, that is the predecessor to (i,j) in the
solution that contains (R; ++L;).

Each such entry in Parray is linked to other entries in Parray via these predecessor indicators. A
chain of these entries contains a locally optimal solution to the line correspondence problem. The
optimal chain over this entire set of chains is the global optimum for the whole line correlation
(note: the chain of the best solution will begin with an entry in column M, specifically, the highest
scoring entry in that column). '

5.8 Modifications to the Viterbi Algorithm

The preceding overview of the scoring mechanism has been slightly misleading, as it doesn’t take into
account several issues . .. those which relate to specific aspects of the various correspondence proceasses
to be performed. The four correspondence processes — reduced resolution edge, full resolution edge,
constrained-interval edge, and constrained-interval intenssty — each have characteristics which make
the above general outline inappropriate. The principal variation comes from:
e the treatment of unassignable pixels or edges (those which may be obscured in the
other image, or be merely spurious).

The complication this introduces is apparent when looking at the optimization metric
used by the Viterbi method. Probabilities are treated multiplicatively (5-3). If one of
the right image edges, R; has no correlate in the left image, then the optimal solution
should have P(R; v+ L;) = 0, Vi € [1, N]. But even a single zero probability will take
the total probability product to zero, since

P(S)= J] P(zm+1!zm)=0,iP(z;|zi_1)) =0, fori < M. (5-3)
1<m<M

Viterbi was not designed with time domain skipping in mind (although having a par-
ticular state unused would present no problem). The scoring mechanism must allow
unmatched pixels and edges in both the left and the right images.

Two other issues also affect the implementation of the Viterbi algorithm. These are:

e the metrics used in the scoring. One, interval compression ratio, drives the computa-
tion to O(N3).

The information needec to compute the left and right image interval ratio will (in
general) not be available to the local (6;,6,) transition rule of (5-2). It is conceivable,
especially when considering the possibilities of the prior unassigned pixel or edge varia-
tion, that this computatio* may need to look as far back as the first left image edge!
The transition mechanism should minimize this search while maintaining optimality.
e the edge index numbering conventions (in certain cases each edge is considered a
doublet, — its left and right sides).

[PV
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With edges split into a left and a right half, the computation is increased (proportional
to the order), and the (6;,6,) transition mechanism (5-2) may need to he altered. The

efficiencies possible in that the left sides of edges cannot match the right sides of edges
should be used in reducing the increased combinatorics arising from the edge splitting.

Considering these difficulties one at a time, the variations they introduce are as follows:

[Unassignable edges] Edges from either image that are either spurious, or are obscured in the other
image, sh* . ! hr left unassigned by the matching process. This means that chains of pairings
(in the v . - . coluticns) may not be joining adjacent edges — there must be provision for
skipping -.ver certain (unassigned) edges in these chains. This is accomplished by allowing
&n edge R; to match the null edge Liy. The alternative, not providing for the interpretation
of ceslain edges as being spurious or obscured, is both unrealistic and unacceptable — there
will always be edges which have either no visible correlate in the other image or no physical
justification in the scene.

Unmatched pixels from the constrained-interval intenssty correspondence process don't re-
quire such special-case treatment, as they are positioned by interpolation.

[Scoring metrics] Interval compression ratio is a measure of the perspective foreshortening of scene
surfaces. This is recognized in the psychological literature as a cue to stereopasis ([Blakemore
1970]). Its computation here requires looking back from a pairing (R, v»L;) in Parray to
the preceding edge pairing, and since this need not necessarily be an adjacent edge (L;—;
or R;j_1), the entire incident subarray may need to be searched. In fact the algorithm can
be structured such that the preceding column (Parray|n,j — 1],n € [1,7 — 1]) is all that is
required here. Nevertheless, this takes the computation for the three edge-based matchings
to O(N3) from O(N3).

A very important implementation detail shculd be noticed here: to guarantee optimality
in those cases where unassigned edges appear in the intervals considered does, in general,
require an N? search over the preceding subarray, making the computation O(N*) where
these occur. The problem is that when using interval compression ratio unassigned pairings
of edge R; cannot make an optimal choice for their predecessor since, as indicated, the choice
will depend upon the assigned pairing of some edge to the right of 1,;. Savings can be made
on this by maintaining lists of possible predecessors for each unassigned pairing (R; FeLig).
Since enly predecessor paths to assigned pairings will affect the decision, somewhat less search
will be necessary in finding the optimal path (in the degenerate case this would still be N3).
A near-optimal solution is found here, where each unassigned pairing is forced t¢ make a
decision about its predecessor.

Constrasned-interval intensity matching is not edge-based, so uses quite different optimization
metrics from those so far mentioned.
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Modified Viterds algorithm §5.8.1 51

[Edge numbering] Eack image edge in the full resolution matching is treated as a doublet, its left
and its right sides. A left side of an edge can only match a left side of another edge, and a
right side of an edge can only match a right side. This splitting allows contrast reversals to be
handled correctly, occuring, for example, when a grey object is seen above a checker-board
with the left image seeing it in relief against the white, and the right image seeing it in
relief against the black. Psychological evidence suggests that human vision cannot achieve
stereopsis under conditions of such contrast reversal whereas the algorithmic mechanisms in
a computational vision scheme will enable edge matching here (this shows a situation where
deviating from the characteristics of the human vision system allows a greater flexibility in
the processing). Providing for this special edge treatment doubles the number of edges with
which the system must deal, so multiplies the standard correlation computation of O(N %)
by 2% = 8 in time and 22 = 4 in space. With the consideration of half-edge polarity, the
increased time complexity is reduced from 8 to 22 = 4.

The reduced resolution correspondence process doesn’t allow contrast reversals, so doesn’t
have this accompanying increase in computation cost.

5.8.1 — Edge-based matching

The chapter on statistics describes in fair detail the optimization metrics used in the edge-based
matchings — it should be referred to for computational specifics of the general outline that follows
here.
The reduced resolution correspondence process evaluates tiie matchings of reduced resolution edges
on the basis of:

1)  contrast about the edge,

2)  intensity difference about the edge (both sides),
3) interval compression ratio between matched edges.

Since it does not allow contrast reversals, it does not treat edges as doublets. Rather, each edge
enters the correlation only once, and the Parray has vertical indices {1 | i € [1, N}, LT € Edgeset[ }
and horizontal indices {j | j € [1, M}, R] € ndgesetT }. The suggestion here is that it is the high-
frequency components of the images which will exhibit this contrast variation, and the low-frequency
components will be expected to be less varying. The intensity variation metric is the product of the
probabilities that the left sides of the edges correspond and the right sides of the edges correspond,
and this is just the product of the two integrals of the Gaussian probability density functions, as
detailed in (4-9). Interval compression ratio usage means that this computation is O(N?) in edges.
Since the reduced resolution correspondence process is so similar to the full resolution correspondence
process, yet simpler in its handling of just single edges (as opposed to doublets), the example of the
Viterbi algorithm correlation to be presented at the end of this chapter will detail only the processing
of a full resolution line pair — the furctionirz of the reduced resolution correspondence process
should be fairly obvious once the full resolution process is understood. Section 5-4 will present this
processing example.

As mentioned, in the full resolution correspordence process, edges are treated as doublets, their left
and right sides, so the matcher evaluates the correspondences of image half-edges on the basis of:

1)  intensity difference at the appropriate side of the edge,

13

orientation of the edges,

o

)
) interval compression ratio between this edge and its predecessor,
)

[N

disparity bias as set by the reduced resolution correspondence process.
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52 Depth from Edge and Intensity Based Stereo

Each edge enters the correlation twice, giving the Parray vertical indices {s | ¢ € [2,2N +1]), Ly, €
Edgeset; }, and horizontal indices {j | j € [2,2M + 1],1?[* | € Edgeset, }. The intensity variation

metric measures the probability that the sides of the edges correspond, and this is just the integral
of the Gaussian probability density function as detailed in (4-9). The orientations of the edges, as
measured in roughly n degree increments (determined by a scatter analysis) affect the optimization
scoring as indicated in (4-12). (4-13) outlines the computation of the disparity biaz measure.
This, in conjunction with the search interval definition of the reduced resoluison correspondence,
constrains the range of choices in full resolution edge correspondences.!® Again, the use of interval
compression ratio means that the correlation computation is O(N3) in half-edges. The solution to
the correspondence problem for edges along corjugate epipolar lines is specified by the set:

{(Gya VR 520 ), (5-4)
viuere Ly and R, refer to half-edges of the 'ull-resoiution correspondence process.

For conatrained-inierval edge matching, the results of the previous two (reduced and full resolution)
correspondence processes have acted to associate together intervals along conjugate epipolar lines.
The edges in these intervals which failed to find matches in the full correspondence process are re-
examined to see whether the more tightly constraining context will now permit them to be matched
across images. Edges are again treated as doublets, their left and right sides. Here, the correlator
evaluates the correspondences of these image half-edges on the basis of:

1)  intensity difference at the appropriate side of the edge,
2)  orientation of the edges,
3) interval comprzssion ratio between this edge and its predecessor,

4)  disparity btas as set by the full resolution correspondence process.
Notice that these are almost identical to the optimization metrics used for full resolution matching.
The difference is that in constrained-interval matching the bias measure is about the centre of the

interval in which the edges find themselves after the full resolution correspondence process, rather
than about the centre of the intervals. defined by the reduced resolution matching.

5.8.2 — Intensity-based matching

The constrained-interval intensivy correspondence process finds the optimal correspondence of in-
dividual pixels. It looks at pixels in the intervals associated together by the reduced resoiution, full
resolution and constrained-interval edge correspondence processes. (4-16) indicates the probabilistic
measures used for this optimization. The matching of intensity values is a standard correlation
technique, and its analysis is based on the image intensity variance statistics measured at the start
of the processing. The role of the P Linear Interpolate metric (4-17) is a little less obvious. It func-
tions to pull the implied surface toward a linear interpolation with end point conditions as indicated
in Figures 4-8 through 4-10. Perhaps a better metric would be one which used a smoothing measure,
looking for continuity in a few derivatives of the implied surface slope. Further refinements to this
stereo process will include incorporation of an improved interpolation metric.

18“ is interesting to note, as pointed out in [Schumer 1979], that low spatial frequency gratings can be fused at much
larger dispavities than can higher apatial frequency gratings.
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5.4 A Line-Pair Viterbi Edge Correlation

This section demonstrates the processing of the Viterbi algorithm on a pair of corresponding full
resolution image lines. The line-pair are numbers £44g of the Control Data images, and are seen in
Figure 5-3 (edge indices are in octal). The possible right to left edge pairings, indicated by right :
lefty,lefts,...,left,;, are as follows:

(8:6; 8:8,7,11,13,15; 4:10,12,14; &:7,11,13,15 ©:10,12,14; 7:11,13,15; 10: 12, 14,22;
11:7,11,18,15; 13:10,12,14; 18:11,13,15; 14:22; 15:23; 16:24; 17:25 30:26;
31:27; 33:30; 33:31; 34:34; 35:35; 28:36; 37:37,41; 80:40; 381:37,41;)

111 A ,
r /]36
~7
39
: 6
7 12 30
‘LL | DI N W By I N l B T S T T N T 11 1141| | 2 ] L l1|44l7_] ) ) SN J_ELO§J | S S I ?5]31 L1 3 3 1t 13IOJ£1 U D S N S ??‘7 |||||||

Edges of left and right image line 244
Figure 5-3

The right image line is shown above its corresponding left image line. Half-edge indices increase
from left to right — from 2 to 33 for vhe right image line and from 2 to 41 for the left image
line (left half-edges are numbered even, and right half-edges are numbered odd). Figure 5-4 locates
this line pair in the two images. The reduced reseluiion correlation for this pair of lines resulted
in Lhe edge correspondences indicated by the diagonal strokes between edge numbers (for example
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(2/3,6/7) correspond, as do (4/5,10/11)). These matchings constrain the possible pairings of the full
resolution correspondence process. (4-13) indicates a biasing mechanism affecting the probabilistic
estimates for matching full resolution edges from corresponding intervals. The interval shown there
would seem to be that delimited by nearest-neighbour matched edges (nearest-neighbour diagonal
markings in the profiles of Figure 5-3) -— in fact this interval constraint is loosened somewhat, and
an interval is defined as the union of thiy interval and thbse neighbouring it. The biasing uses this
broader range for its probability estimates, and only edges in such corresponding broader intervals
are considered as candidates for matching in the full resolution correspondence process. The reason
for this redefinition of intervals is that the reduced resolution correspondence procrss can make
mistakes, and a little flexible interpretation is called for in using its suggested constraints). It could
also be argued that a low to high resolution matching is not an adequatc model for correspondence
control, and again the broader scope diminishes the negative aspects of this strategy.!”

Pl '_ ﬂ@

The horizontal mark in the images indicates line 2444
Figure 5-4

A linked list depiction of the Viterbi array Parray, Figure 5-5 below, contains all of the Localscore
and Totalscore measures and the associated Predecessor for cach possible full resolution edge
pairing. The designation —n for a left edge index indicates that the right edge is being considered as
paired with the null edge Lyng. This should be interpreted as meaning that the right edge is spurious
and temporarily positioned between L, and L,41, or is obscured from view from the left imaging
point and again positioned between L,, and L, 4. Figure 5-6 shows the two dimensional structure
of the Parray, with the arrows indicating the predecessor links specified in Figure 5-5. The solution
is marked in bold.

Ve recent, [Mayhew 1981] paper discusses more comprehensive control strategies.
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l:((lﬁi_,_lé__g:%@.ﬁl_,_éga_lﬂﬁ% 468:(5,-15  2.078 26) 92:(11,13  3.563,0.332 74) 14g,(16,244.474,0.205 135)
1:(2,- .00 -) Ti:6,-6 0.914 35) 93:(11,-13  3.638 75)  139:(16,.24 4.288 135)
2:(2,-3  0.000 -) 48:(6,-7 '1.6886 37) 94:(11,-14 3.770 v6) 1:10:(17’_g;r4.474 ~138)
(17, . .

3:(2,-4  0.000 -)  49:(6,10  2.075,0.38937) 9b:(11,15  3.886,0.117 76) 34,(17,265.417,0.943 138)
4:(2,-5 0.000 -) 50:(6,-10 2.078 38) 06:(11,-15 3.770 76)  142:(17,-25 4.474 138
5:(2,6 0.914,0.914 -) B51:(6,-11 2.832 39) 97:(11,-186 3.770 76) n*g;fm'

6:(2,-6 0.000 -) 52:(8,12 3.231,0.398 39) 98:([],-17 3.770 76) 144'(20 26 6.359, 0.941 141)
7:(3,-2  0.000 1) 53:(6,-12 2.832 39) 99:(11,-20  3.770 T6)  145:(20.-26 5417 141
8:(3,3 0.059,0.059 1) b54:(8,-13 £.832 39) 100:(11,-21 3.770 76) {2T,C R

9:(3,-3 ~ 0.000 2) 556,14 3.083,0.26039) 101:(11,-22 3.770 76)  147:(21,27 7.326,0.967 144)
10:(3,-4 0.000 3) b56:(6,-14 2.832 39) 10%:(12,-7  1.686 87) 148:(21,-27 6.359 144
11:(3,-5 0.000 4) 57:(6,-15 2.832 39; 103:(12,10 1.772,0.086 87) iWiﬁW"”‘Tﬁ%
12:(3,-6 0.914 5) B8:(7,- . 104:(12,-10 2.078 88) 1650:(22,308.249,0.922 147)
13:(3,7 1.686,0.771 &) 59:(7,-7 1.6886 48) 105:(12,-11 2.832 90) 151:(22,-30 7.326 147
14:(3,~7 0.914 5) 60:(7,-10 2.078 50) 106:(12,12 3.377,0.545 90) TST%}T}“,‘WQ—_EU}
15:(3,-10 0.914 -5)  61:(7,11  2.372,0.29749) 107:(12,-12 3.231 91) 153:(283,319.032,0.783 150)
16:(8,11 1.054,0.140 5) 62:(7,-11 2.832 51) 108:(12,-13 3.636 93) 154:(23, 31 8.249 150
17:(3,-11 0.914 5) 63:(7,-12 3.231 52) 109:(12,14 3.689,0.053 93) T55:(24,- .07 .
18:(3,-12 0.914 5) 64:(7,13 3.636,0.405652) 110:(12,-143.770 ©4) 156:(24,32 9.142,0.110 153)
19:(3,13 0.933,0.01% 5) 65:(7,-13 3.231 52) 111:(12,-15 3.886 95) 157:(24,-32 9.032 153)
20:(3,-12 0.214 5) 66:(7,-14 3.231 52) 112:(12,-16 3.886 96) 158:(24,-33 9.032 153)
21:(3,-14 0.914 5) 67:(7,15 3.721,0.49052) 113:(12,-17 3.886 95) 159:(24,349.498,0.466 153)
22:(3,15 0.917,0.003 5) 68:(7,-15 3.231 52; 114:(12,-20 3.886 95) 160:(24,-31 9.032 153
23:(3,-15 0.914 5 ({10,- . 115:(12,-21 3.886 95) :(25,-31°9.

((4,-6 0.914 12} 70:(10,-7 1.686 59) 116:(12,-22 3.886 95) 162:1(26,35 10.279,0.781 159)
25:(4,-7 1.686 13) 71:410,-10 2.078 60) —%1_"1117: 3, 207 1 163:(25,-35 9.498 159
26:1(4,102.078,0.393 13) 72:(10,-11 2.832 62) 118:(13,11 2,082, 0.004104) :(26,- 270 18
27:(4,-10 1.686 13) 73:(10,12 2.854,0.02262) 119:(13,-11 2.832 105) 165:(26,36 10.763,0.489 162)
28:(4,-11 1.688 13)  74:(10,-12 3.231 63) 120:(13,-12 3.377 106) 166:(26,-36 10.279 162
29:(4,12 1.733,0.048 13) 75:(10,-13 3.636 64) 121:(13,13 3.467,0.0901086) 7:(27,- 10.7
30:(4,-12 1.686 13) 76:(10,143.770,0.13364) 122:(13,-13 3.636 108) 168:(27,37 11.542,0.773 165)
31:(4,-13 1.686 13) 77:(10,-14 3.636 64) 123:(13,-14 3.770 110) 169:(27,-37 10.768 188)
32:(4,14 1.699,0.013 13) 78:(10,-15 3.721 67) 124:(18,156 4.006,0.236110) 170:(27,-40 10.768 185)
33:(4,-14 1.688 13) 79:(10,-16 3.721 67) 125:(13,-15 3.836 111} 171:(27,41 11.025,0.256 185)
34:(4,-15 1.686 13) 80:(10,-17 3.721 67) 126:(13,-16 3.886 112) 172:(27,-41 10.768 165
35:(5,-6 0.914 24) 81:(10,-20 3.721 67) 127:(13,-17 3.886 113) 73:(30,-36 10.76 7
36:(5,7 1.052,0.138 24) 82:(10,-21 3.721 67) 128:(13,-20 3.886 114) 174:(30,-37 11.542 168)
37:(5,-7 1.686 25) 83:(10,22 3.736,0.01467) 129:(13,-21 3.886 115) 175:(50,4011.762, 0.220 168)
36:(5,-10 2.078 26) 84:(10,-22 3.721 67) 130:(13,-22 3.886 116) 176:(30,-40 11.542 188)
39:(5,112.832,0.754 26) B5:(11,-6 0.914 69) T31:(14,-21 4.006 124) 177:(30,-41 11.542 188}
40:(5,~11 2.078 26) 86:(11,7 0.981,0.06769) 132:(14,22 4.148,0.143 124) 178:(31,-36 10.768 173
41:(5,-12 2.078 26) 87:(11,-7 1.686 70)  133:(14,-22 4.006 124 179:(31,37 11.125,0.355173)
42:(5,13 2.296,0.217 26) 88:(11,-10 2.078 71) T134:(15,-22 4.148 182) 180:(31,-37 11.542 174)
43:(5,-13 2.078 26) 89:(11,11 2.244,0.16571) 136:(15,23 4.268,0.120132) 181:(31,-40 11.762 175)
44:(5,-14 2.078 26) 90:(11,-11 2.832 72) 15,-23  4.148 132} 182:(31,41 11.986, 0.224 175)
45:(5,15 2.185,0.107 26) 91:(11,-12 £.231 74) : 68 135) 183:(31,-41 11,762 175)

Linked list depiction of Viterbi Parray, with Right and Left hall-edge indices, Totalscore and
Localscore measures, and Predecessor links. The solution is shown in boldface, starting at 182
(read up from the bottom right).
_ Figure 5-5
In the notation of (5-4), the solution for this line pair is:
{(2,8), (3, 7) (4, 10), (5, 11), (6, 12), (7, 13), (10, 14), (13, 15), (14, 22),(15, 23), (16, 24),
(17,25), (20, 26), (21, 27), (22, 30), (23, 1), (24, 34), (25, 35),(26, 36), (27, 37), (30, 40), (31,41) }
Right image half-edges 11,12, 32, and 33 have no correlate in the left image.

The consistency enforcement process takes these locally-based cdge correspondences, removes those
which violate global contour continuity (as described earlier), and propagates two-dimensional con-
nectivity in the images to add edge correspondences. This leaves a kernel of good correspondences
which provide a context for the constrained-interval edge and tntensity correspondence processes.
Figures 5-7, 5-8, and 5-9 indicate the result of these final correlations on the line pair shown above
(lines 244g in the left and right images). Figure 5-7 plots left image coordinates along the horizontal
axis against right image coordinates up the vertical axis. The arrow heads («—) show the left and
right half-edge lockings (of Figures 4-8 through 4-10). The >Jand |Ksymbols indicate edge pairings
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Figure 5-6
‘ added by the constrained-interval edge matching, again, with the direction of the arrow indicating
the polarity of the locking. The little dots mark pixel correspondences. Figure 5-8 is a left image
‘ coordinate versus disparity representation of Figure 5-7. There are unassigned left image edges at
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those positions where the correspondence process determines the right image pixels are either oc-
cluded or are too dissimilar to be matched. Figure 5-9 has an interpolated depiction of the edge and
intensity matches of Figure 5-8. Remember that this plot is disparity — not depth. The two spikes
to the right of the figure are the leading edge of the large building at the bottom of the image and a
vertical surface of the small building to the right. Since the images are perspective projections, the
vertical surfaces (and places of intersection of vertical surfaces — corners) will appear as slanted in
a disparsty versus posstion depiction. Referring back to Figure 5-4 will clarify this notion.
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Interpolated Edge and Intensity Disparities
Refer to I'igure 5-4. Notice that the intensity-based matching correctly maps the hollow
center of the building to the left, and follows up the edges of the two buildings to the
right. The fact that the imaging is a perspective projection makes the building corners

appear to be non-vertical (sce Figure 5-4) — in fact the vertical vanishing point is at
the center of the image. ‘T'he slope of the wall between the third and fourth double
arrows is consistent with the local edge matchings and intensity values — the situation

is as suggested in Figure 4-8. Such mappings will be seen to occur fairly often in the
intensity-based correspondence process, and show the nced for more global analysie,

Figure 5-9
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Chapter 6 | 59
3-SPACE CONSISTENCY

6.1 Using Continuity of Bounding Contours

!3

|

f

b The edge-based matching described in the preceding sections dealt with line-pairs from the left
B and right images one at a time, I purposefully kept the analysis from incorporating the results of
. prior line-pair analyses into the apalysis of subsequent line-pairs. Quite obviously there is a stro..g
& relationship between the edges on adjacent image lines, and the results of the correlation of one
{‘ﬂ line-pair should be expected to bexr some resemblance to the results of the correlation of its adjacent
s line-pairs. This foilows directly from the continuous nature of surfaces. By far the greatest area in
h our field of view is made up of smoothly varying continuous surfaces — the discontinuities between
B surfaces occupy only a small (but very important) part of that view. The surfaces are generally
x cuntinuous, and we expect the bounding contours of those surfaces to be generally continuous.

:

E The edge-based description aims its analysis at those bounding contours — be they boundaries in the
; ; intensity domain, as delimit, surface detail, or in 3-space, arising as occluding (perhaps self-occluding)
F'1 contours. The projective connectivivy analysis, that part of the edge finding operation which links
> together rieighbouring edges, joins edges that lie along such bounding contours (see Figure 3-8 for
q a depiction of edge connectivity). One would hope that the correspondence process would assign
: similar disparity measures to adjacent edges along these contours — if the contour were flat and

x orthogonal to the line-of-sight then the disparities should all be roughly the same, if the contour
!;‘- were sloping off away from the imaging plane then the disparities of the receding edges should be
L" monotonically decreasing. This relationship of proximal edges having similar disparity can be used
3 as a global constraint on the correspondence analysis.

Figure 6-1 depicts these adjacent disparities along connected stretches of edges in the left and right
images. In this depiction the connectivity (seen in Figure 3-8) is used to progress from edge to
neighbouring edge, but rather than drawing at the coordinates being followed, as in Figure 3-8, the
coordinate of the correlate of the edge is used. (An alternate way to view this is as drawing the
F coordinate plus its disparity.) Edges adjacent in the images will be seen nicely connected if they have
. similar disparities, but will be wildly separated (horizontally) if their disparities differ significantly.
i:j Chapter 7 gives a fuller explanation of this depiction technique.

The relatiouship between continvity in three-space and connectivity in image space is apparent in
: this depiction. Wherever there is a horizontal deviation between image lines, there is either an abrupt
 q break in contour continuity or, more likely, an error in edge correspondence. So edge connectivity
; provides inference on the global constraint of contour continuity. The two questions of interest here
are — at what stage of the processing should this constraint be introduced, and how should it be
implemented in the system? ‘

6.1.1 -- The introduction of the connectivity constratnt

If one were to propagate the results of analysis of line-pair 1 to the processing of line-pair 2, and
then these results to line-pair 3, etc., we would be:

o introducing a directional bias to the processing — how would the whole image analysis
differ were the processing to run instead from bottom to top?;

e running the risk of sending the correspondence process off into irrecoverable error
( — the evidence for the matching of edges on certain image line-pairs can be both
’ ambiguous and highly misleading. To make a single choice at each line correlation is
clearly wrong;
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Correspondence results after local line-by-line processing
Figure 6-1

o precluding oyrselves from a parallel realization of the correspondence mechanism —
the last line would have to wait until all preceding lines were processed.

These options aren’t very inviting. If we wish to include the global edge connectivity constraint with
the line-by-line analysis, then we are left with only one satisfactory solution — a three-dimensional
matching of edges (in the sense that the approach used here is two-dimensional) on left image edges,
right image edges, and lines. This is not (as determined yet) an impossible jcb ... just incredibly
complicated and space and time consuming. It is not obvious what the monotonicity constraint
would be for the third parameter (lines), nor is it clear that the computation could be ordered so
as to be implementable in parallel while maintaining optimality (or even be partitionable). This
approach deserves future consideration, but is not dealt with further here (see [Mcore 1979] for a
brief description of a higher dimensional dynamic programming algorithm).

The problems of incorporating the gl hal with the local analysis make it clear (with the above
proviso) that the processing of line-pairs should occur independently. But how should we proceed
in using the global edge connectivity information?

[Arnold 1982] has devised a scheme for recovering sub-optimal solutions for the individual line-pair
correlations, and makes these alternate pairings available to a subsequent consensus forming process.
If one were to do a global optimization of all of these pairing possibilities, then this would be a valid
approach. However his analysis is local to particular connected stretches of edges.

Another suggestion is to group edges together into eztendcd edges or lines, making contour continuity
explicit. However, the general matching of eztended edges, which may be fragmented, occluded, etc.,
is a problem equivalent to the matching of these locally defined edges, so can’t be thought of as a
fundamental alternative. One ol the main points of match*ng edges, as opposed to larger elements, is
the redundancy of information available at this level, and the greater nonse—xmmumty and robustness
this brmgs Consideration of extended edges can be thought as monocular cueing for the stereopeis,
and in this sense would be complementary to local edge analysis.
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S-space consistency §6.1.8 61

The philosophy throughout the processing discussed here is, as has been stated before, to work
from more reliable signal to less reliable signal, using the results of the higher reliability analyses
to guide and constrain the less reliable ones. This attitude sets the direction for the interaction of
the line-by-line processings. The role of the first edge-based correspondence process is to provide,
if you will, edge-to-edge locking between the two images. These edge lockings will constrain the
registration of the two images. What is heing sought is a rough global matching of the two tmages
— it is not demanded that it be perfect or complete. The flexibility of this target indicates that it
would be sufficient for the processing to seek a mutually-consistent kernel of edge correspondences.
This is done by:

a)  allowing line-pairs to be correlated independently, each forming its own assessment
of edge correspondences, and then '

b)  cooperatively removing all those correspondences which violate contour continuity.

The next section will describe the implementation of a process to remove globally inconsistent edge
correspondences.

6.1.2 — The usc of the connectivity constraint

Ccnsider Figure 4-11. Each edge pairing (R; ++L;) (shown as horizontal lines) has associated with
it a disparity Disp, ;. The difference in disparity between connected edges (connectivity is shown as
vertical lines) is 8 measure of the implied change in depth between the 3-space points represented
by the two pairs of edges. A change in disparity between connected edges that is above some
reasonable value will indicate a break in depth continuity. Except when seen from some anomalous
or coincidental viewpoint, a series of edges connected in one of the images will correspond to a
continuous bounding contour in the scene. So if there is 2-D connectivity between a series of
edges in one image then we should expect their disparities to be smoothly varying. Figure 6-2
illustrates the case of connected correlates along z stretch of edges in both images, and the case
of disconnected correlates (which violate 3-space continuity). A measure of smoothness could be
obtained by computing the statistics of this disparity first difference distribution. This would yield
an interval [ — 0pisp, 4 + Opisp] of acceptable disparity differences, where u is the mean of the
computed first differences, aud op;,p is the standard deviation.

Further thought suggests that these statistics are actually not appropriate. If there are lots of
incorrect correspondences, then the [1—0 pisp, 40 pisp) interval will tend to be large. Is it reasonable
to allow disparity differences over adjacent lines greater than 1.0 (the limit of edge connectivity) to
survive? Not likely, as these indicate that the edges in one of the images cannot connect. Failing to
have simultaneous connectivity in both of the images is not necessarily a bad sign, though, as gaps
frequently occur along any edge path of a contour. The objection here is with edges that are on
adjacent lines and can’t be connectesd because of their relative horizon.al displacement. Weuld it be
reasonable to reject correspondences giving rise to disparity differences that are within the computed
interval but outside of the connectivity range? Yes, if they are unrealizable. What about the opposite
situation, where the standard deviation o p,sp is less than 1 pixel width, with most correspondences
good. Here the interval limit will suggest excluding pairings of disparity difference somewhat lesc
than 1.0? Well, after a little thought it becomes clear that the 3-space consistency process should
not use these statistical measures, but rather employ a simple distance measure which would prevent
discontinuous edges from being matched to the same structure. If the horizontal separation of edges
on adjacent image lines exceeds this measure (chosen to be a single pixel width, 0p,sp = 1.0), then
the two edges cannot be joined in depth. It is important to note that this puts a limit on the
inclination of edges to ike line of sight ... connected edges must be discernab. . as connected within
the 2-space imaging resolution for them to be accepted by the matcher as connected in 3-space.
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Figure 6-2

6.1.8 — Implication of large disparity differences

Identifying the incorrect edge correspondence from an inconsistent disparity difference is not an
obvious process. The problem one immediately sees is that a disparity difference outside of the
range [p — 0pisp, 1t + O pisp| conclusively implicates neither of the contributing edge pairings. It
merely suggests that one of them is inconsistent. Should they both be removed to be sure that
the incorrect one is taken out? Not likely, as this conservative policy would lose too many good
correspondences in clearing out the bad ones. Consider the case in Figure 6-3 of a single incorrect
correspondence bounded above and below by properly assigned correspondences. The two on the
periphery could vote, and throw out the offending middle correspondence. Think of this as a single-
bit error corrector.

If errors were scattered, like this, rather than systematic, then this simple voting technique would
be all that was required. However systematic errors of correspondence occur as well. Consider
a case where long stre‘ches of edges in one image are deemed to correspond to some stretch of
edges in the other image, then switch en masse to correspondence with some other stretch of edges
further down the image. Figure 8-3 also depicts an occurence of this situation. The only inconsistent
disparity difference here would appear at the junction between the apparently consistently connected
stretches. In a worse case situation, a correspondence from the properly asscciated stretch of edges
would be removed for each correspondence incorrectly assigned to the other stretch. A good removal
strategy would be one which minimizes the loss of correct edge correspondences.

ks 5L
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6.2 Cooperative Connectivity Enforcement Algorithm

The mechanism developed for this minimal loss strategy is as follows:

1)  Flag correspondences incident on an inconsistent disparity difference as questionable.

2) If, in so flagging, the correspondence is found already to be flagged, then mark the ‘
correspondence for removal,

3) Do 1 (and 2) until all questionable correspondences have been flagged.

4)  Remove all marked correspondences and re-evaluate the disparity differences about
the newly connected edges.

5) Do 3 and 4 until no further correspondences can be marked for removal.
6)  Remove all flagged correspondences.
7) Do 5 and 6 until no inconsistent correspondences remain.
This algorithm deletes a minimum of valid correspondences, and guarantees the removal of all in-

consistent disparity differences. Figure 6-4 shows the connectivity of Figure 6-1 after the inconsistent
correspondences have been removed by this cooperative connectivity enforcement algorithm.
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STEREO CORRELATION OF
SAMPLE IMAGERY

The best way to understand the functioning of the total stereo algorithm is no doubt through
examples of its processing. This chapter will show you, a step at a time, what is involved in the
analysis of some typical imagery and demonstrate how effectively it works.

7.1 Control Data Corporation Imagery

The input to the process is a pair of collinearized stereo images, as szown in Figure 7-1 intensity
enhanced. Scan lines in these images correspond to epipnlar lines. The stereo pair was created
to demonstrate graphics capability rather than to serve as data for a sterec correlator, so exhibits
several unappreciated characteristics — it has multiple light sources (making the projections of
certain structural edges appear to be discontinuous), and has in effect zero random sensor noise (all
noise is from the sampling and quantization).

The standard deviation in intensity variation for this imagery was sampled and estimated as being
0.596, indicating that any first difference above 0.5961/2 = 0.840 should be considered t¢ be signal
rather than noise. Because of this low noise measure, the reduced resolution matching does not
go beyond a single reduction. Figures 7-2 and 7-3 show the full resolution and reduced resolution
(T = 1) edges found for this imagery. Figure 7-4 shows the connectivity between the various edges
of these two images (recall that edge connectivity plays a part in the global consistency analysis).
. Figure 7-5 is a broadened depiction of the intensities along a pair of corresponding lines of this
imagery while Figure 7-6 shows the full and reduced resolution edges found along these lines. The

: ‘ . A stereo pair of images (from Control Data Corporation) [256 X 256 X 6]
S Figure 7-1
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and right sides of the edges, and horizontally sloping lines show the interpoiated intensity gradients
in the intervals between image edges. Diagonal marks in the upper profile of the figure indicate
edges paired by the reduced resolution matching.
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Full resolution edges of the stereo pair
Figure 7-2
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Connectivity of the edges of the stereo pair
Figure 7-4

Right and Left image corresponding line intensities
Figure 7-5
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68 Depth from Edge and Intensily Based Sterso

The reduced resolution and full resolution edge matchings process line-pairs such as these, deter-
mining the best line-by-line correspondences. Figure 7-7 shows the results of this processing for the
CDC imagery. The depiction may be difficult to understand:

e  The left figure shows the edges of the left image, drawn with their connectivity (as
Figure 7-4 left), but rather than using the coordinate of the left image edges, uses the
coordinates of their mates in the right image (this is equivalent to using the coordinate
plus associated disparity).

e  The right figure shows the edges of the right image, drawn with their connectivity
(again, Figure 7-4 right), but rather than using the coordinates of the right image
edges, uses the coordinates of their mates in the left image (which is the same as the
coordinate minus associated disparity).

e Since the lines joining connected edges are all that are being drawn, if two adjacently
connected edges in one image, for example the left, are found to match two unconnected
edges in the other image, then the line joining them in the left figure will run (nearly
horizontally) as though between the two disparate edge coordinates. What this reveals,
and reveals quite clearly, is the correlation’s decision that there is a variation in depth
between the two matched pairs of edges. In general, horizontal lines suggest errors in
the correlation (notice that there are relatively few in this depiction).

Preliminary matching results
Figure 7-7

The cooperative process that ensures global consistency removes inconsistent matches, propagates
disparities along connected edge paths, and results in a kernel of sound correspondences. These final
edge-based matching results a:e shown in Figure 7-8. The figures are drawn in the manner of Figure
7-7. The stereo depiction of Figure 7-9 is a perspective view of the connectivity shown in Figure 7-8
(which was shown there from directly overhead).
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Final (post-connectivity constraint) matching results
3000 half-edge correlate pairs
Figure 7-8

Perspective view of connected edge elements
Figure 7-9

In the phrasing used earlier, the matching results at this stage form a template of constraints for the
next stage of the processing. Considering the edge-based correspondences on a line-by-line basis, we
can think of the edge matchings as defining # lecal mapping of intervals between the two images.
Edges in the corresponding intervals that have not been assigned matches by the prior correspondence
process are candidates for matching within this more tightly constrained context. The processing of
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an snterval-constrained edge-based matching completes edge matching in the intervals, and a final
correlation, using the intensity values of the pixels themselves, interval-constrained intensity-based
correlation, determines pixel to pixel correspondences. Figures 7-10 and 7-12 show the matching
of edges attained through the edge-bused correlation for several image line-pairs. Original edge
correspondences are indiv ~ted by arrows — and «, where the left arrow positions a right half-edge
and the right arrow positions a left half-edge; subsequent. interval-constrasned edge correspondences
are indicated by >{and |<. Individual comments appear on the figures themselves. An interpoiated
disparity representation of these same graphs can be seen in Figures 7-11 and 7-13 (this display is
perspective, so verticals have varying horizontal componenta)
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Figure 7-12

disparity —
QQM
y -

211

position--»

The surface slope

Interpolated disparities
between the second and third double arrows arises for the same reasons

as it did in Figure 5-9,

Figure 7-13

. S
"l-, ..‘\ -t

1

------ R, et T N T T T P A T S Y R T N |
~ e e e T s R N T YA T - e Tt T T A R R e e
Sample imagery §7.1
E}]g 211
:l§2
_}oo
' b
L
2 = .
: 168
2
o
3% R + * .- -~
isllllllLLﬁLklIJ_lLllll]lqgllllllrlllquJllllllgq4;|lIMIIEQ§11LLllIm§lll|lllPﬂIlllll
position— : - ; T

Figure 7-14 shows the full image array disparity map — the result of the processing of the four

correlations:

1)  reduced resolution edges,

2)  full resolution edges,

3) interval-constrained edges,

4)  interval-constrained pixels.

The depiction is again perspective, and shown from the point of view of the right CDC image.
Without knowing the camera parameters, or at least the relationship between the two sets of camera
parameters, there is no possibility of transforming the representation to an orthographic form. 1
do, however, have an interactive program that allows estimates to be made on the transformation,
and this produced the orthographic correction for the perspective stereo plot of Figure 7-15 (which
is a half resolution depiction - Figure 7-14 was smoothed and sampled at one third resolution
for increased clarity).- Figure 7-16 is a monocular depiction of the perspective projection at full

resolution.
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Perspective view of final edge and intensity correlation — CDC
(the = axis is disparity, not elevation)

The left side of the low building in the upper center, and the far left top sido of the
nearest building (the hollow one) show incorrect surface slopos (as in Figures 5-9 and
7-13). The near left top side of the same lollow building extends too far, running to
the edge of the image. Again, the intensities alone do not provide sufficient in‘ormation
for a correct positioning of these surfaces (they should be in the ground plane). More
global serface information is available, although unused here, and this will provide betier
positioning constraints when further refinements are made to the intentity correlation

algorithm.
Figure 7-14
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7.2 Night Viston Laboratory Imagery

Anothier example of the stereo processing is shown in Figures 7-17 through 7-35. The imagery
depicted here, 2 valiey scene recorded on videotape, was provided by the Night Vision Laboratory
of the United States Army. The scene is synthetic in that it is a papier-maché recreation of an
actual valley, although the imaging is real. There is very little relief in the scene, although it has
a general drift to higher elevations toward the upper left corner. There is only slight difference
in height between the river (running through the centre across the images) and the various land
and vegctation areas. Figure 7-17 shows the stereo pair at full resolution, while Figures 7-18, 7-19
and 7-20 show the three resolution reductions (reduced to the limit for noise suppression). Figure
7-21 shows the edges determined for the full resolution image, and Figure 7-22 shows the edges
determined by the largest convolution operator for the most reduced resolution image (Figure 7-20).
Figure 7-23 depicts the edge counectivity for the full resolution images.

Noise and signal characteristics for this set of data are significantly different from those of the
synthetically imaged CDC data. There is a great deal of small scale structure in the scene. The
standard deviation of intensity variation was 25.603 here, with a standard deviation in first difference
of 25.603v/2 = 38.0. These measures account for the three levels of resolution reduction required
to bring the noise down to an acceptable level. Figure 7-24 is a stereo plot of the intensity values
of the left image of this pair (yet another interesting figure for the cross-eyed stereo freaks), with
intensity being the z component of the plot. It’s startling just how much local intensity variation
there is in these images. For comparison, Figure 7-25 shows a similar plot for the CDC data.

¥ g

NVL stereo pair of images — natural terrain [168 X 200 X 9]
Figure 7-17
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Second resolution reduction
Figure 7-19
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Edges of the third resolution reduction
Figure 7-22
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The next figure, Figure 7-26, shows the intensities and edges found along a single pair of correspond-
. ing lines in the successive resolution reductions of this imagery. Reduced resolution correspoundences
are found among edges in the bottom twe figures, and these are then mapped up, through the
intermediate resolution edges, to the full resolution edges at the top of the pair of figures. Full
resolution correlation is then performed on the edges defined within corresponding intervals.

4 44 64 104 124 144 164 204 224 244 264 o g0  llo 140 170 220° 250

- R4 44 84 104 124 144 164 204 P2& 244 264 3 %, . 60 o 140 170 220 2%
» .
» ' I e . o

- 4,04 64 104 124 144 164 204 224 244 264 3 9, 80, 01000 070, 229, 290, X0

.
gt |
e ' Right and Left image line successive resolution reductions

Figure 7-26

. Figure 7-27 shows the top line of Figure 7-26 with half-edge indices marked. The reduced resolution !
5 correlation pairs edges: |

{ (14, 26), (32, 44), (40, 52), (50, 80), (62, 72), (70, 100) }

The full resclution correlation takes these correspondences, defining intervals for matching, and
determines the pairings:

T {(3,15), (4, 16), (5,17), (6, 20), (7, 21), (10, 22), (11, 23), (12, 24),(13, 25), (14, 26),
(15, 27), (16, 30), (17, 31), (20, 32), (21, 33), (24, 34),(25, 35), (26, 36), (27, 37),
- (30, 40), (31, 41), (32, 44), (33, 45), (34, 46),(35, 47), (36, 50), (37, 51), (40, 52),
(41, 53), (42, 54), (43, 55), (44, 56),(45, 57), (50, 60), (51, 61), (52, 62), (53, 63),
(54, 64), (55, 65), (56, 66),(57, 67), (66, 76), (67, 77), (70, 100), (71, 105),
(72,106), (76,110),(77, 111), (100, 112), (101, 113), (102, 114), (111,115) }
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Figure 7-27

Preliminary results of the correlation are shown in Figure 7-28. Recall that horizontal lines jagging
back and forth across the depiction are indicative of incorrect matches. Quite noticeably, there
are many more errors in this correlation than there were for the comparable analysis of the CDC
imagery. The hope is that the subsequent consistercy enforcement process will be able to use image
continuity to disambiguate the disparity jumps and produce a reliable set of edge matches. Figure.
7-29 shows the results of the consistency enforcement process - - - a significant improvement. Figure
7-30 shows a 3-D perspective view of the connected edges (as was seen from directly overhead in
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Figure 7-28
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Final (posbconnect.zwty constraint) edge-based results
5700 half-edge correlate pairs
Figure 7-29

e Perspective view of connected edge elements

T Figure 7-30

The correlation results at this stage form a template of constraints for the next stage of the processing,
in which the interval-constrained edge-based and the interval-constrained intensity-based matchings
attempt to complete the disparity array. Figures 7-31 and 7-33 show the correspondence of edges
U and disparities attained through these matchings for two sample image line-pairs. The depiction
- is identical to that of Figures 7-10 and 7-12, where the two types of edge mappings were indicated
y . by the two different sorts of arrowheads. The intensity interpolation on these lines can be seen in
- Figures 7-32 and 7-34 (again, these displays are perspective, so verticals have varying horizontal
L components, but this isn’t noticeable with the rolling nature of the terrain).

L-& VG, . SR S SO S, VI AU, AP0, SN . SO -SUD.. AU U NEDEA PRI, SURIT I JUUNE . WRP Ve RPUCIRE St SUEL SR S LONPRCI R SDRCSUR SE  SR S AP O




#2 Depth from Edge and Intensity Based Stereo

48
42

é“, +
34
&]]
28
23
20

15 60 110 140 170 220 250 30
muu.hmuuduumlmunluuu.u.huuuluxmdu_umhx

y
! Ty,

ol

disparit.y—o
~disparity—

position—

s

a5
a2

34
a1
26
23
20
20 80 20

110 140

170 220 2%0
b vosads wus v el podsneed

position—

+—— preliminary edge match
< >|subsequent edge matches

Figure 7-31

Edge correspondences (

”)

Interpolated disparities
Figure 7-32

4%
(42
19744+
134
31
fzs
123
20

115 30 60 110 140 170 220 250 30
STTTRSEITEIRSR) [RRARRRLAR RN IREIRPOTUTRITNTY SVUTELT]

He

disparity—

position—

s,

|'.":
y

Fo
r
o

ML A

A

i

¥y X N

I3

e w7

- .7

disparity—

60
\ llllLLLLLLLLLJJ TY1 PRYTTTTY FYTETRTYITRTITIION

position—r

110 140 170 220 2% 30

Edge correspondences
Figure 7-33

The processing of this interval-constrained edge-based matching and the interval-constrasned
intenssty-based matching result in the disparity map as shown at half resolution in Figure 7-35.
Figure 7-36 shows a monocular view of the full resolution results of this processing.
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Chapter 8 | 8

SUMMARY
AND
CONTRIBUTIONS TO THE FIELD

8.1 Further Considerations

Recall that the goals of this research were to develop a robust, domain independent stereo vision

algorithm — one with & structure that would lend itself to a parallel realization.
[Robustness] The use of a line-by-line coarse-to-fine analysis capitalizing on the redun-

dancy and broad frequency spectrum of grey-scale imagery and the accompany-
ing snter-line global constraints provide for high noise-immunity, recovery from
local correspondence errors, consistency at the level of global interpretation, and
graceful degradation.

= [Domain Independence] The exxamples shown in chapter 7 are from disparate domains.

£ Having no monocular predispositions, beyond the dealing with edges, the system
has nothing in it to bias the analysis toward a particular domain. Probabilistic
measures used are those of generalsituations (although those for specific domains
could be introduced if they were known and applicable). Testing on further
imagery is expected w confirm the generality of the algorithm.

[Parallel Implementable] Estimates based on the run times of the two examples of
chapter 7 suggest that the analysis proceeds at about 3 lines per second. It is thus
expected that a parallel implementation on n processors, fairly straightforward
algorithmically from the current organization, would require something less than
0.5 seconds for an n-line by 256 element analysis with processors of the power
of a DEC KL-10. A more likely early realization would be with something more
modest, perhaps a successor of [Marks 1980], [Burr 1981}, or [Lowry 1981].

More work is needed before this algorithm is ready for use in an integrated system. Primarily, more
imagery data is needed in testing and demonstrating the comprehensiveness of the algorithm. The
imagery shown in chapter 7 is a good beginning at indicating the power of the processing, but it can
only suggust the potential — & broader and fuller image sampling is needed to be convincing of its
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: generality.

!“.‘ Empirical analysis must aleu be made of the accuracy of the correlation aigorithm. Digital ter-
v rain modzals (DTM’s) with accompanying digital stereo imagery could provii:e the needed accuracy
e benchmarks for this. Unfortunately, acquiring DTM stereo imagery and databases has been prob-
o lematic enough that 1 have not been able to include such an analysis in this rerort. Further work

with this algorithm will certainly involve digital terrain model studies.

. The set of parameters chosen for the various correlations should also be re-examined and perhaps
" augmented. Colour information may well be an extremely important addition to this. Although
o it has been shown through research with isoluminance that colour does not play a part in human
5 primary stereopsis (|Gregory 1977]), therc is no information-theoretic reason for so excluding it from
N a mechanized vision system. [Gregory 1977] points out that colour does function as a stimulus to
‘ ‘contour’stereo — the stereo from monocular cues, and my suspicion is that it will be a very powerful
Vo disambiguation metric for either correspondence process.

g Refinement is needed in the spatial sampling used in both the resolution reduction and the lateral
- inhibition processes. This is of importance primarily for the resolution reductions, as the particular
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lateral inhibition operation implemented here is an artefact of the edge operator used which itself
will surely be replaced by one with a better foundation ([Binford 1981]). Further two-dimensional
analysis will also be needed in improving the constrasned-interval intenssty correlation. The errors
seen in Figures 7-10 through 7-15 can be traced nearly without exception to the local line-by-line
nature of its correlation. Much improvement with this is possible and expected werc a more global
analysis to be carried out.

8.2 Application of the Analysis

The research does not end with the development of an algorithm such as this. It is not a stand-
alone process, but rather must serve as a provider of three-dimensional data for the modelling and
recognition processes of a total machine vision system. Reference was made earlier to the importance
of interfacing this sort of depth analysis to an object modelling system such as ACRONYM ([Brooks
1981b]). Reliable and accurate depth measurements would provide a new and invaluable capacity
to the modelling system. Of course there are still many issues to be looked into for this. A few of
the more obvious are:

e How is the depth map to be segmented for structure matching?

e  What shape primitives are to be abstracted from the dense 3-space descriptions for

object representation?

e Will the modelling scheme be able to direct the stereopsis process, suggesting
monocular cues to guide the matching or providing cues to scene structure from the
results of previous analyses?

Regardless of the path chosen for the inaplementation, the marriage of modelling and stereo analysis
will come about — the benefits, if not mere necessity, of depth analysis makes this clear. A modelling
system that can sense the world in 3-D can net only make better judgements about its environment,
it can actively model that environment, forming solid descriptions of everything it encounters, The
modelling will be able to do as we do — pick objects up, turn them about before its eyes, observe
their static and dynamic characteristics, note similarities and differences with other objects seen
and modelled before — doing all this on the basis of three-dimensional spatial struciure. It is this
generative aspect that makes the most exciting contribution to the modelling — objects will be
modelled by being observed, with perhaps only the finest calibration measurements being added to
the description manually. No longer would there be the necessity for object hand measurements and
hand entry of object descriptors.

The automated stereopsis of this system will also bring advantage to terrain modelling and mapping.
Its ability to handie both rolling terrain and the discontinuities of cultural site structures makes it
applicable over a range of sensing situations not approached by current terrain mapping systems.

The most exciting aspects of vision research still lie ahead — at a sensing level, the incorporation
of colour and monocular cueing and enhanced global analysis; at the level of segmentation, the
recognition and clustering of surface shape primitives for coherent symbolic description; at the
modelling level, the further extension or redesign of representational schemes to use this three-
dimensional data; al the meta-modelling level, consideration of ways to describe shape and objects
that will most effectively allow their recognition and manipulation.
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